Deformation mechanism and texture evolution of a low-Ni Cr–Mn–N austenitic stainless steel under bending deformation

Publication Name

Materials Science and Engineering A


The detailed evolution of microstructure and texture of a low-Ni Cr–Mn–N austenitic stainless steel under bending deformation was studied. The effect of austenite grain orientation on the deformation-induced transformation and deformation twinning mechanisms was investigated in selected grains of analogous orientation located near the outer and inner radius, where distinct deformation mechanisms have been identified in different regions accordingly. With moving towards the outer radius, the concurrent occurrence of transformation- and twinning-induced plasticity was detected, while with moving towards the inner radius, twinning-induced plasticity was hindered. Texture of austenite showed the characteristic single fibre for face-centred cubic materials with a stronger intensity around the α –fibre. The deformation-induced ε-martensite returned an intense {hkil} fibre. The 101‾21‾011 extension twinning was detected only in regions near to inner radius. Interestingly, the deformation-induced αʹ-martensite showed the uncommon h111/h,1,2 fibre upon bending deformation. γ ε ε

Open Access Status

This publication is not available as open access



Article Number


Funding Number



Link to publisher version (DOI)