Title
Construction of air-stable pre-lithiated SiOx anodes for next-generation high-energy-density lithium-ion batteries
Publication Name
Cell Reports Physical Science
Abstract
Due to the high energy density and low production cost, silicon oxide (SiOx) is recognized as one of the most promising anode materials for lithium-ion batteries. However, the low initial coulombic efficiency and rapid capacity attenuation of SiOx anodes severely restricts its commercial application. Here, we propose a scalable strategy of pre-lithiation followed by a thermal passivation to improve the initial coulombic efficiency of SiOx anodes, boosting the large-scale commercial applications of the pre-lithiation strategy. First, the hollow porous SiOx@C spheres (Hp-SiOx@C) with adjustable shell thickness are designed using a self-transformation method, and then an air-stable pre-lithiated Hp-SiOx@C (ASP-Hp-SiOx@C) anode is prepared through an electrochemical pre-lithiation followed by a thermal passivation strategy. The ASP-Hp-SiOx@C anode delivers high initial coulombic efficiency of 99.2% and stable cycling performance after being exposed to the atmosphere with 10%–20% relative humidity for 48 h.
Open Access Status
This publication may be available as open access
Volume
3
Issue
5
Article Number
100872
Funding Number
51604089
Funding Sponsor
National Natural Science Foundation of China