Study of the formation and evolution of solid electrolyte interface via in-situ electrochemical impedance spectroscopy

Publication Name

Applied Surface Science


An understanding of the formation and evolution of the solid electrolyte interface (SEI) layer is still a challenge for lithium ion batteries due to its complexity and non-uniformity. Herein, an in-situ electrochemical technique, named potential resolved in-situ electrochemical impedance spectroscopy (PRIs-EIS), have developed to correlate the Nyquist and Bode plot changes with the voltammetric scan, which is then used to determine the correspondence between circuit components and SEI layer composition. Moreover, the formation and re-oxidation of organic compounds in the SEI layer are studied in conjunction with the electrochemical quartz crystal microbalance characteristics. In particular, it is shown that more inorganic compounds accumulate in the SEI layer as the cycle continues, repairing the pore structure, but decreasing the toughness of the SEI layer. The PRIs-EIS technique is shown to be a powerful, useful and cost-effective tool to illuminate the interfacial reaction mechanism, and the results from this technique aid in the evaluation and design of electrolyte systems.

Open Access Status

This publication is not available as open access



Article Number


Funding Number


Funding Sponsor

National Natural Science Foundation of China



Link to publisher version (DOI)