Millimetre wave 3-D channel modelling for next generation 5G networks

Publication Name

AIMS Electronics and Electrical Engineering


Millimetre wave (mm-wave) spectrum (30-300GHz) is a key enabling technology in the advent of 5G. However, an accurate model for the mm-wave channel is yet to be developed as the existing 4G-LTE channel models (frequency below 6 GHz) exhibit different propagation attributes. In this paper, a spatial statistical channel model (SSCM) is considered that estimates the characteristics of the channel in the 28, 60, and 73 GHz bands. The SSCM is used to mathematically approximate the propagation path loss in different environments, namely, Urban-Macro, Urban-Micro, and Rural- Macro, under Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) conditions. The New York University (NYU) channel simulator is utilised to evaluate the channel model under various conditions including atmospheric effects, distance, and frequency. Moreover, a MIMO system has been evaluated under mm-wave propagation. The main results show that the 60 GHz band has the highest attenuation compared to the 28 and 73 GHz bands. The results also show that increasing the number of antennas is proportional to the condition number and the rank of the MIMO channel matrix.

Open Access Status

This publication may be available as open access





First Page


Last Page




Link to publisher version (DOI)