Solid-state batteries designed with high ion conductive composite polymer electrolyte and silicon anode

Publication Name

Energy Storage Materials


Polymer solid-state batteries (SSBs) possess the advantages of good interfacial contact, but their application faces low ionic conductivity. Here, three-dimensional (3D) porous composite polymer electrolytes with propylene carbonate plasticizer (3D-PPLLP-CPEs) fabricated effectively, displaying high ionic conductivity even at room temperature. Electrochemical in-situ polymerization of 3D-PPLLP-CPEs occurs during the first discharge process, avoiding safety issues caused by the liquid plasticizer without sacrificing the ionic conductivity of the electrolyte. Besides, the controllable in-situ generated LiF-enriched interface can avoid the Li dendrite growth. To further promote the practical value of SSBs, micro-sized Si@Li3PO4@C with high initial Coulombic efficiency was adopted to replace lithium foil. The LiNi1/3Co1/3Mn1/3O2 (NCM111)//Micro Si@Li3PO4@C full cell has achieved capacity of 129.1 mAh g−1 at a current density of 0.2 C, with capacity retention of 98.5% after 100 cycles, which is the best performance based on the Si anode in SSBs. Even at the high current density of 2.0 A g−1, the capacity remains 92.5 mAh g−1. This design of CPEs and electrodes has paved a new way to construct practical SSBs.

Open Access Status

This publication is not available as open access



First Page


Last Page


Funding Number


Funding Sponsor

National Science Foundation



Link to publisher version (DOI)