Giant room temperature compression and bending in ferroelectric oxide pillars

Publication Name

Nature Communications


Plastic deformation in ceramic materials is normally only observed in nanometre-sized samples. However, we have observed high levels of plasticity (>50% plastic strain) and excellent elasticity (6% elastic strain) in perovskite oxide Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3, under compression along <100>pc pillars up to 2.1 μm in diameter. The extent of this deformation is much higher than has previously been reported for ceramic materials, and the sample size at which plasticity is observed is almost an order of magnitude larger. Bending tests also revealed over 8% flexural strain. Plastic deformation occurred by slip along {110} <11 ¯ 0 >. Calculations indicate that the resulting strain gradients will give rise to giant flexoelectric polarization. First principles models predict that a high concentration of oxygen vacancies weaken the covalent/ionic bonds, giving rise to the unexpected plasticity. Mechanical testing on oxygen vacancies-rich Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 confirmed this prediction. These findings will facilitate the design of plastic ceramic materials and the development of flexoelectric-based nano-electromechanical systems.

Open Access Status

This publication may be available as open access





Article Number


Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)