Clusterin, other extracellular chaperones, and eye disease

Publication Name

Progress in Retinal and Eye Research


Proteostasis refers to all the processes that maintain the correct expression level, location, folding and turnover of proteins, essential to organismal survival. Both inside cells and in body fluids, molecular chaperones play key roles in maintaining proteostasis. In this article, we focus on clusterin, the first-recognized extracellular mammalian chaperone, and its role in diseases of the eye. Clusterin binds to and inhibits the aggregation of proteins that are misfolded due to mutations or stresses, clears these aggregating proteins from extracellular spaces, and facilitates their degradation. Clusterin exhibits three main homeostatic activities: proteostasis, cytoprotection, and anti-inflammation. The so-called "protein misfolding diseases” are caused by aggregation of misfolded proteins that accumulate pathologically as deposits in tissues; we discuss several such diseases that occur in the eye. Clusterin is typically found in these deposits, which is interpreted to mean that its capacity as a molecular chaperone to maintain proteostasis is overwhelmed in the disease state. Nevertheless, the role of clusterin in diseases involving such deposits needs to be better defined before therapeutic approaches can be entertained. A more straightforward case can be made for therapeutic use of clusterin based on its proteostatic role as a proteinase inhibitor, as well as its cytoprotective and anti-inflammatory properties. It is likely that clusterin works together in this way with other extracellular chaperones to protect the eye from disease, and we discuss several examples. We end this article by predicting future steps that may lead to development of clusterin as a biological drug.

Open Access Status

This publication is not available as open access

Article Number


Funding Number


Funding Sponsor

National Institutes of Health



Link to publisher version (DOI)