Spatio-temporal of surface ozone (O3) variations at urban and suburban sites in Sarawak region of Malaysia

Publication Name

IOP Conference Series: Earth and Environmental Science


Sarawak Region of Malaysia is currently experiencing a high demand for capital needs such as transformation forest to plantations, economic development, and improving transportation systems. Those land cover changes will increase primary pollutant emissions and trigger surface O3 formation. Surface O3 is a secondary pollutant and a significant greenhouse gas contributing to climate change and declining air quality. In this study, variations in surface O3 concentrations at urban and suburban sites in Sarawak were explored using the Malaysian Department of Environment data spanning a two-year cycle (2018-2019). The primary aim of this study is to ascertain the variation of surface O3 concentrations reported at four monitoring stations in Sarawak, namely Kuching (SQ1) (Urban), Sibu (SQ2) (Suburban), Bintulu (SQ3) (Suburban), and Miri (SQ4) (Suburban). The study also analysed the relationship between O3 distribution and nitrogen oxides (NO and NO2). The findings showed that O3 concentrations observed in the region during the study period were lower than the maximum permissible value of 100 ppbv suggested by the Malaysian Ambient Air Quality Standard (2020). SQ4 (Miri) at suburban sites recorded the highest average surface O3 concentrations with an hourly average and daily maximum O3 concentration of 15.7 and 89.5 ppbv, respectively. Temperatures, UV exposure, and wind speed all impact the concentration of surface O3 in Sarawak. In all stations, concentrations of O3 were inversely linked with NO, NO2, and relative humidity (RH). This research will assist the relevant agency in forecast, monitor, and mitigate the level of O3 in the ambient environment, especially in the Sarawak Region.

Open Access Status

This publication may be available as open access





Article Number




Link to publisher version (DOI)