Title
A mathematical model for the dynamics of happiness
Publication Name
Mathematical Biosciences and Engineering
Abstract
Positive psychology recognizes happiness as a construct comprising hedonic and eudaimonic well-being dimensions. Integrating these components and a set of theory-led assumptions, we propose a mathematical model, given by a system of nonlinear ordinary differential equations, to describe the dynamics of a person’s happiness over time. The mathematical model offers insights into the role of emotions for happiness and why we struggle to attain sustainable happiness and tread the hedonic treadmill oscillating around a relative stable level of well-being. The model also indicates that lasting happiness may be achievable by developing constant eudaimonic emotions or human altruistic qualities that overcome the limits of the homeostatic hedonic system; in mathematical terms, this process is expressed as distinct dynamical bifurcations. This mathematical description is consistent with the idea that eudaimonic well-being is beyond the boundaries of hedonic homeostasis.
Open Access Status
This publication may be available as open access
Volume
19
Issue
2
First Page
2002
Last Page
2029
Funding Number
22910
Funding Sponsor
Mitacs