Neutron diffraction residual stress determinations in titanium aluminide component fabricated using the twin wire-arc additive manufacturing

Publication Name

Journal of Manufacturing Processes


In recent years, twin wire-arc additive manufacturing (T-WAAM) technique has been considered as a promising method of fabricating and shaping titanium aluminide components with high efficiency and low cost. However, excessive thermal input of the non-consumable tungsten electrode arc deposition induces significant residual stresses in the buildup component, thus accurate measurement of residual stresses is necessary for T-WAAM buildup part quality assessment. In the present research, non-destructive neutron diffraction residual stresses measurements on as-fabricated and heat-treated T-WAAM produced Ti–48Al titanium aluminide components are performed. To exclude the influence of initial large T-WAAM residual stresses on d 0 hkl sample alignment, different d 0 hkl sample dimensions are designed: one is normal thin slice and the other is the meshed sample. According to the obtained results, the conducted post-production heat treatment has partially released initial residual stresses. Also, the meshed design of d 0 hkl sample shows better measurement accuracy than the simple sliced d 0 hkl sample. In addition, T-WAAM fabricated titanium aluminide wall component performs featured tensile-compressive alternating residual stress distribution induced by the layer-by-layer arc deposition.

Open Access Status

This publication is not available as open access



First Page


Last Page


Funding Number


Funding Sponsor

National Natural Science Foundation of China



Link to publisher version (DOI)