Title

Monitoring work and training load in military settings–what’s in the toolbox?

Publication Name

European Journal of Sport Science

Abstract

Military personnel are required to complete physically demanding tasks when performing work and training, which may be quantified through the physical stress imposed (external load) or the resultant physiological strain (internal load). The aim of this narrative review is to provide an overview of the techniques used to monitor work and training load in military settings, summarise key findings, and discuss important practical, analytical, and conceptual considerations. Most investigations have focused upon measuring external and internal load in military training environments; however, limited data exist in operational settings. Accelerometry has been the primary tool used to estimate external load, with heart rate commonly used to quantify internal load. Supplemental to heart rate, psychophysiological and biochemical measures have also been investigated to elucidate aspects of internal load. Broadly, investigations have revealed that military training requires personnel to perform relatively large volumes of physical activity (e.g. averaging ∼15,000 steps·day−1) of typically low-moderate intensity activity (<6 MET), although considerable temporal and inter-individual variability is observed from these gross mean estimates. There are limitations associated with these measures and, at best, estimates of external and internal load can only be inferred. These limitations are particularly pertinent for military tasks such as load carriage and manual material handling, which often involve complex activities performed individually or in teams, in a range of operational environments, with multiple layers of protection, over a protracted duration. Comprehensively quantifying external and internal loads during these functional activities poses substantial practical and analytical challenges.

Open Access Status

This publication is not available as open access

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1080/17461391.2021.1971774