Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes

Publication Name

International Journal of Minerals, Metallurgy and Materials


A facile one-step strategy involving the reaction of antimony chloride with thioacetamide at room temperature is successfully developed for the synthesis of strongly coupled amorphous Sb2S3 spheres and carbon nanotubes (CNTs). Benefiting from the unique amorphous structure and its strongly coupled effect with the conductive network of CNTs, this hybrid electrode (Sb2S3@CNTs) exhibits remarkable sodium and lithium storage properties with high capacity, good cyclability, and prominent rate capability. For sodium storage, a high capacity of 814 mAh·g−1 at 50 mA·g−1 is delivered by the electrode, and a capacity of 732 mAh·g−1 can still be obtained after 110 cycles. Even up to 2000 mA·g−1, a specific capacity of 584 mAh·g−1 can be achieved. For lithium storage, the electrode exhibits high capacities of 1136 and 704 mAh·g−1 at 100 and 2000 mA·g−1, respectively. Moreover, the cell holds a capacity of 1104 mAh·g−1 under 100 mA·g−1 over 110 cycles. Simple preparation and remarkable electrochemical properties make the Sb2S3@CNTs electrode a promising anode for both sodium-ion (SIBs) and lithium-ion batteries (LIBs).

Open Access Status

This publication is not available as open access





First Page


Last Page


Funding Sponsor

Shanghai University of Engineering and Science



Link to publisher version (DOI)