Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues

Publication Name

Journal of Energy Storage


Due to urbanization and the rapid growth of population, carbon emission is increasing, which leads to climate change and global warming. With an increased level of fossil fuel burning and scarcity of fossil fuel, the power industry is moving to alternative energy resources such as photovoltaic power (PV), wind power (WP), and battery energy-storage systems (BESS), among others. BESS has some advantages over conventional energy sources, which include fast and steady response, adaptability, controllability, environmental friendliness, and geographical independence, and it is considered as a potential solution to the global warming problem. This paper provides a comprehensive review of the battery energy-storage system concerning optimal sizing objectives, the system constraint, various optimization models, and approaches along with their advantages and weakness. Furthermore, for better understanding, the optimization objectives and methods have been classified into different categories. This paper also provides a detailed discussion on the BESS applications and explores the shortages of existing optimal BESS sizing algorithms to identify the gaps for future research. The issues and challenges are also highlighted to provide a clear idea to the researchers in the field of BESS. Overall, this paper conveys some significant recommendations that would be useful to the researchers and policymakers to structure a productive, powerful, efficient, and robust battery energy-storage system toward a future with a sustainable environment.

Open Access Status

This publication is not available as open access



Article Number


Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)