Computational evaluation of superalkali-decorated graphene nanoribbon as advanced hydrogen storage materials

Publication Name

International Journal of Hydrogen Energy


In this study, we proposed that homo superalkali NM4 clusters with high tetrahedral geometry, can be applied to develop high-performance hydrogen storage materials. Moreover, their special bonding structures and chemical stability make them ideal units for decoration of different kinds of pristine monolayers. We made a trial to decorate the NLi4 clusters onto the 1D graphene nanoribbon, and employed density functional theory (DFT) computational studies to solve its electronic structure, and further evaluate its applicability in hydrogen storage. We found that the electronic charges on Li atoms were successfully transferred to the pristine monolayer, thus a partial electronic field around each Li atom was formed. This subsequently leads to the polarization of the adsorbed hydrogen molecules, and further enhances the electrostatic interactions between the Li atoms and hydrogen. Each NLi4 cluster can adsorb at most 16 hydrogen molecules. For this novel material, its total capacity of hydrogen storage can reach to 11.2 wt %, surpassing the target value of 5.5 wt %, set by the U.S department of energy (DOE) [1], making itself an ideal unit for advanced energy materials design.

Open Access Status

This publication is not available as open access

Funding Sponsor

National Computational Infrastructure



Link to publisher version (DOI)