Computational exploration of magnesium-decorated carbon nitride (g-C3N4) monolayer as advanced energy storage materials

Publication Name

International Journal of Hydrogen Energy

Abstract

Density functional theory (DFT) computational studies were conducted to explore the hydrogen storage performance of a monolayer material that is built on the base of carbon nitride (g-C3N4, heptazine structure) with decoration by magnesium (Mg). We found that a 2 × 2 supercell can bind with four Mg atoms. The electronic charges of Mg atoms were transferred to the g-C3N4 monolayer, and thus a partial electropositivity on each adsorbed Mg atom was formed, indicating a potential improvement in conductivity. This subsequently causes the hydrogen molecules’ polarization, so that these hydrogen molecules can be efficiently adsorbed via both van der Waals and electrostatic interactions. To note, the configurations of the adsorbed hydrogen molecules were also elucidated, and we found that most adsorbed hydrogen molecules tend to be vertical to the sheet plane. Such a phenomenon is due to the electronic potential distribution. In average, each adsorbed Mg atom can adsorb 1–9 hydrogen molecules with adsorption energies that are ranged from −0.25 eV to −0.1 eV. Moreover, we realised that the nitrogen atom can also serve as an active site for hydrogen adsorption. The hydrogen storage capacity of this Mg-decorated g-C3N4 is close to 7.96 wt %, which is much higher than the target value of 5.5 wt % proposed by the U.S. department of energy (DOE) in 2020 [1]. The finding in this study indicates a promising carbon-based material for energy storage, and in the future, we hope to develop more advanced materials along this direction.

Open Access Status

This publication is not available as open access

Volume

46

Issue

42

First Page

21739

Last Page

21747

Funding Sponsor

Australian Government

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.ijhydene.2021.04.049