Large electrostrain in Bi1/2Na1/2TiO3-based relaxor ferroelectrics: A case study of Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-Bi(Ni2/3Nb1/3)O3 ceramics

Publication Name

Journal of Materiomics

Abstract

(1-x)(0.8Bi Na TiO -0.2Bi K TiO )-xBi(Ni Nb )O (BNKT-xBNN) solid solution ceramics were fabricated by high temperature solid-state reaction method. All the compositions possess relaxor ferroelectric features, among which the ergodic BNKT-0.02BNN exhibits large repeatable electrostrain value S = 0.51% at electric field of 65 kV/cm, with high piezoelectric stain coefficient d ∗ of 890 pm/V at 45 kV/cm, while the non-ergodic compositions present unrepeatable large strain response. Based on the electric field-composition phase diagram, the repeatability of strain response in ergodic compositions can be attributed to the reversible electric-field-induced phase transition. In addition, the effects of BNN contents on the macroscopic strain properties are explored by analyzing the existing states of the polar regions with corresponding thermal evolutions and electric-field-induced phase transitions. This research is expected to guide the design of lead free relaxor ferroelectric materials with desired electrostrain properties. 1/2 1/2 3 1/2 1/2 3 2/3 1/3 3 uni 33

Open Access Status

This publication may be available as open access

Volume

7

Issue

3

First Page

593

Last Page

602

Funding Number

51672220

Funding Sponsor

National Natural Science Foundation of China

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.jmat.2020.11.002