A few statistical principles for data science

Publication Name

Australian and New Zealand Journal of Statistics


In any other circumstance, it might make sense to define the extent of the terrain (Data Science) first, and then locate and describe the landmarks (Principles). But this data revolution we are experiencing defies a cadastral survey. Areas are continually being annexed into Data Science. For example, biometrics was traditionally statistics for agriculture in all its forms but now, in Data Science, it means the study of characteristics that can be used to identify an individual. Examples of non-intrusive measurements include height, weight, fingerprints, retina scan, voice, photograph/video (facial landmarks and facial expressions) and gait. A multivariate analysis of such data would be a complex project for a statistician, but a software engineer might appear to have no trouble with it at all. In any applied-statistics project, the statistician worries about uncertainty and quantifies it by modelling data as realisations generated from a probability space. Another approach to uncertainty quantification is to find similar data sets, and then use the variability of results between these data sets to capture the uncertainty. Both approaches allow ‘error bars’ to be put on estimates obtained from the original data set, although the interpretations are different. A third approach, that concentrates on giving a single answer and gives up on uncertainty quantification, could be considered as Data Engineering, although it has staked a claim in the Data Science terrain. This article presents a few (actually nine) statistical principles for data scientists that have helped me, and continue to help me, when I work on complex interdisciplinary projects.

Open Access Status

This publication is not available as open access

Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)