Enhanced lithiophilicity via bismuth-infused framework for advanced lithium metal batteries

Publication Name

Chemical Engineering Journal


Utilizing carbon materials as 3D lithium (Li) hosts hold a significant interest in constructing high-energy batteries. However, there are ongoing challenges associated with these frameworks owing to their poor Li affinity. Recent advancements, including alloying reactions with precious metals like silver (Ag) and gold (Au), have emerged as a promising technique to enhance the electrochemical performance of these host materials. Nevertheless, the search for cost-effective alternatives remains a pressing demand. Herein, this work employed galvanic displacement (GD) to integrate bismuth into disordered porous carbon (Bi-DPC) and optimized across different concentrations (0.01, 0.05, 0.1 M). As a result, the Li deposition onto the Bi-DPC surface exhibited dendrite-free planar morphologies, revealing an outstanding electrochemical performance, including a high CE of around 100 % over more than 100 cycles. These findings underscore the potential of Bi-infused porous carbon as a promising alternative for enhancing Li deposition processes.

Open Access Status

This publication is not available as open access



Article Number


Funding Number


Funding Sponsor

National Research Foundation of Korea



Link to publisher version (DOI)