Glocal Energy-based Learning for Few-Shot Open-Set Recognition

Publication Name

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition


Few-shot open-set recognition (FSOR) is a challenging task of great practical value. It aims to categorize a sample to one of the predefined, closed-set classes illustrated by few examples while being able to reject the sample from unknown classes. In this work, we approach the FSOR task by proposing a novel energy-based hybrid model. The model is composed of two branches, where a classification branch learns a metric to classify a sample to one of closed-set classes and the energy branch explicitly estimates the open-set probability. To achieve holistic detection of open-set samples, our model leverages both class-wise and pixel-wise features to learn a glocal energy-based score, in which a global energy score is learned using the class-wise features, while a local energy score is learned using the pixel-wise features. The model is enforced to assign large energy scores to samples that are deviated from the few-shot examples in either the class-wise features or the pixel-wise features, and to assign small energy scores otherwise. Experiments on three standard FSOR datasets show the superior performance of our model.11Code is available at

Open Access Status

This publication may be available as open access



First Page


Last Page


Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)