Soil chemical markers distinguishing human and pig decomposition islands: a preliminary study



Publication Details

Barton, P., Reboldi, A., Dawson, B., Ueland, M., Strong, C. & Wallman, J. (2020). Soil chemical markers distinguishing human and pig decomposition islands: a preliminary study. Forensic Science, Medicine, and Pathology,


© 2020, Springer Science+Business Media, LLC, part of Springer Nature. The decomposition of vertebrate cadavers on the soil surface produces nutrient-rich fluids that enter the soil profile, leaving clear evidence of the presence of a cadaver decomposition island. Few studies, however, have described soil physicochemistry under human cadavers, or compared the soil between human and non-human animal models. In this study, we sampled soil to 5 cm depth at distances of 0 cm and 30 cm from cadavers, as well as from control sites 90 cm distant, from five human and three pig cadavers at the Australian Facility for Taphonomic Experimental Research (AFTER). We found that soil moisture, electrical conductivity, nitrate, ammonium, and total phosphorus were higher in soil directly under cadavers (0 cm), with very limited lateral spread beyond 30 cm. These patterns lasted up to 700 days, indicating that key soil nutrients might be useful markers of the location of the decomposition island for up to 2 years. Soil phosphorus was always higher under pigs than humans, suggesting a possible difference in the decomposition and soil processes under these two cadaver types. Our preliminary study highlights the need for further experimental and replicated research to quantify variability in soil properties, and to identify when non-human animals are suitable analogues.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)