Brain stem representation of thermal and psychogenic sweating in humans



Publication Details

Farrell, M. J., Trevaks, D., Taylor, N. A.S. & Mcallen, R. M. Brain stem representation of thermal and psychogenic sweating in humans. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. 2013; 304 (10): R810-R817.


Functional MRI was used to identify regions in the human brain stem activated during thermal and psychogenic sweating. Two groups of healthy participants aged 34.4 ± 10.2 and 35.3 ± 11.8 years (both groups comprising 1 woman and 10 men) were either heated by a water-perfused tube suit or subjected to a Stroop test, while they lay supine with their head in a 3-T MRI scanner. Sweating events were recorded as electrodermal responses (increases in AC conductance) from the palmar surfaces of fingers. Each experimental session consisted of two 7.9-min runs, during which a mean of 7.3 ± 2.1 and 10.2 ± 2.5 irregular sweating events occurred during psychogenic (Stroop test) and thermal sweating, respectively. The electrodermal waveform was used as the regressor in each subject and run to identify brain stem clusters with significantly correlated blood oxygen level-dependent signals in the group mean data. Clusters of significant activation were found with both psychogenic and thermal sweating, but a voxelwise comparison revealed no brain stem cluster whose signal differed significantly between the two conditions. Bilaterally symmetric regions that were activated by both psychogenic and thermal sweating were identified in the rostral lateral midbrain and in the rostral lateral medulla. The latter site, between the facial nuclei and pyramidal tracts, corresponds to a neuron group found to drive sweating in animals. These studies have identified the brain stem regions that are activated with sweating in humans and indicate that common descending pathways may mediate both thermal and psychogenic sweating.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)