Publication Details

Carvalho, R., Kinsela, M., Hanslow, D., Hamylton, S., Linklater, M., Ingleton, T., Morris, B., Allen, K. & Woodroffe, C. (2017). Identifying sediment compartment dynamics on the Illawarra Coast. 26th NSW Coastal Conference (pp. 1-13).


This project aims to produce a framework for assessing compartment dynamics within two sediment compartments in the Illawarra region to assist in assessing coastal hazards. Sediment sources, pathways and sinks will be examined for the Wollongong and Illawarra Coast - South compartments, defined by Geoscience Australia and CoastAdapt. A compartment based approach allows for more holistic coastal planning and management which considers sediment transport at differing scales, and interconnectivity of beaches. This type of approach underpins national guidance on open coast risk assessment and has been incorporated within the NSW Coastal Reforms and the Draft Coastal Management Manual. The adjacent sectors of the Wollongong Coast and Illawarra Coast-South compartments extend for approximately 30 km from Bellambi Point to Bass Point. The rock platform of Red Point marks the shoreline division between these two contrasting compartments. The Wollongong Coast is an urbanized relatively little studied leaky compartment, whereas the Illawarra Coast-South is a well-defined and confined compartment whose main sedimentary characteristics are represented by the infilling of the Lake Illawarra barrier estuary and the erosionprone Warilla Beach. This detailed examination of sediment resources brings together the state-wide coastal seabed mapping program being undertaken by the NSW Office of Environment and Heritage (OEH), and coastal geomorphological investigations being undertaken along the southern NSW coast by the University of Wollongong (UOW). These initiatives involve collation of historical data, sediment sampling, and the use of recently available sophisticated remote sensing technologies, such as terrestrial airborne LiDAR, single and multibeam bathymetry, sidescan sonar imagery, and underwater video and still camera.