RIS ID
33884
Abstract
This work describes a fully printable polyaniline-copper (II) chloride sensor for the detection of hydrogen sulfide gas. The sensing device is composed of screen printed silver interdigitated electrode (IDE) on a flexible PET substrate with inkjet printed layers of polyaniline and copper (II) chloride. The sensor is employed as a chemiresistor with changes in measured current being correlated with concentration. On exposure to hydrogen sulfide, 2.5 ppmv (parts per million by volume) is clearly detectable with a linear relationship between measured current and concentration over the 10-100 ppmv region. The detection mechanism is discussed with respect to the hydrogen sulfide response, the choice of electrode materials in addition to UV-vis and surface enhanced Raman spectroscopy (SERS) characterization. © 2006 IEEE.
Grant Number
ARC/FF0669110
Additional Grant Number
Included in
Life Sciences Commons, Physical Sciences and Mathematics Commons, Social and Behavioral Sciences Commons
Publication Details
Crowley, K. H., Morrin, A., Shepherd, R. L., in het Panhuis, M., Wallace, G. G., Smyth, M. R. & Killard, A. J. (2010). Fabrication of polyaniline-based gas sensors using piezoelectric inkjet and screen printing for the detection of hydrogen sulfide. IEEE Sensors Journal, 10 (9), 1419-1426.