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SUMMARY 

Low-velocity pneumatic conveying is being used increasingly in industry to transport a 

wide range of bulk soHds due to reasons of low power consumption and low product 

damage, etc. However, investigations into this type of conveying still are at an 

elementary stage. For example, the existing procedures to estimate pipeline pressure drop 

during low-velocity pneumatic conveying stiH are inaccurate and inefficient. For this 

reason, this thesis aims at developing a pressure prediction model that is a function of the 

physical properties of the material, pipeline configuration and conveying condition. 

During low-velocity pneumatic conveying, particles are conveyed usually in the form of 

slugs. This thesis studies initially the pressure drop across a single particle slug and the 

stress state and distribution in the slug through theoretical analysis. 

To obtain detailed information on low-velocity pneumatic conveying, a test rig is set up 

and four types of coarse granular material are conveyed in the rig. Major parameters such 

as mass flow-rate of air and solids, pipeHne pressure, slug velocity and wall pressure, 

etc. are measured over a wide range of low-velocity conveying conditions. 

Based on the experimental results and a dimensional analysis, the relationship between 

the slug velocity and superficial air velocity is established in terms of the physical 

properties of the material and pipe size. Also by using particulate mechanics, a semi-

empirical correlation is developed to determine the stress transmission coefficient for the 

slugs flowing in the pipe with rigid and parallel waUs. A model then is developed to 

predict the overaH horizontal pipeHne pressure drop of low-velocity pneumatic 

conveying. 
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This model is used to predict the pneumatic conveying characteristics and static air 

pressure distributíon for different test rig pipeHnes and materials. Good agreement is 

obtained between the predicted and experimental results. Based on the developed model, 

a method for determining the economical operatíng point in low-velocity pneumatic 

conveying is presented. 

Additional experimental results from the conveying of semoHna show that the 

performance of fine powders is quite different in low velocity. Based on these 

experimental results, an appropriate modificadon to the model is made so that it can be 

appHed to the prediction of pressure drop in low-velocity pneumatic conveying of fme 

powders. 
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ID Intemal diameter of pipe (m) 
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K Slope in Equatíon (6.25) 

k Constant in Equatíon (6.35) and (6.36) 

ki Constant in Equatíon (6.1) 

L Distance of two neighbouring pressure transducers (m) 

Lh Length of horizontal pipe (m) 

Lt Total pipeUne length (m) 

Lth Total horizontal pipeline length (m) 

Lv Vertical pipeline length (m) 

U Distance between a test point and pipe end (m) 

Id Distance between two neighbouring slugs (m) 

Ig Air gap length (m) 

Is Single slug length (m) 

M Total mass of the moving soUds in a pipe (kg) 

m Mass of paiticles (kg) 

mf Mass flow-rate of air (kgs-i) 

mfl Rotary valve air leakage (kgs-^) 

mft Total supplied mass flow-rate of air (kgs-^) 

ms Mass flow-rate of solids (kgs-i) 

mst Mass of particles collected by a slug per unit time (kgs-^ 

m* Mass flow ratío 

NB Number of bends 

Ns Number of the pressure peaks in a certain period of time 

n Number of test materials 

nb Number of the particles contained in the back area of a slug 

nf Number of the paiticles contained in the front area of a slug 

ni Number of the partícles having velocity Upi, i = 1, —, n 

Hni Number of the particles contained in the middle area of a slug 

np Numbers of the partícles of a given mass 
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Pi Air pressure at different points along a pipe (Pag), i = 1, •-, n 

PB Air pressure during a slug flowing through a bend (Pag) 

Ps Air pressure during a slug flowing in a straight pipe (Pag) 

Pfi' Pf2 Pressure force (N) 

Pn Nominal power 

Pu Dissipated energy (J/kgm) 

p Interstitial air pressure (Pag) 

P2, P3 Pressure in Equatíon (5.2) (Psig) 

Pf Permeability factor (m^skg-i) 

Qg Air flow rate (m^s'O 

Qw Shearing force acting on a slug (N) 

R Radius of pipe (m) 

Rb Radius of Bend (m) 

Re Reynold's number 

Rf Friction force between the sliding slug and pipe waU (N) 

Rsi, Rs2 Resistant forces (N) 

Rxy Cross correlatíon functíon 

R Estimation of R ŷ 

r Radius of Mohr circle 

S, S', S", S'" Shearing forces in Jenike shearing test 

Sv Specific suiface (i.e. particle surface per unit partícle volume) (m-i) 

Sxy Cross spectral density 

§ Estimatíon of Sxy 

T Time range of a signal record (s) 

Ts Sampling tíme intei-val (s) 

tj Different tímes (s), i = 0, 1, •••, n 

tf, ti Time of the first and iast slug occuning in a pressure record (s) 

tp Closing tíme of a solenoid valve (s) 
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ts Time taken by the slug to travel across a pipeUne (s) 

tx Opening and closing tíme of a solenoid valve (s) 

Ua Superficial air velocity (ms'O 

Uamin Minimum supei-ficial air velocity (ms-^) 

Umf Incipient fluidisatíon air velocity (ms-^) 

Ura Mean air velocity (ms-^) 

Up Superficial particle velocity (ms-^ 

Upb Particle velocity in the back area of a slug (ms" )̂ 

Upf Particle velocity in the front area of a slug (ms-^) 

Upm Particle velocity in the middle area of a slug (ms'i) 

Upst Particle velocity in stationary bed (ms'^) 

Us Slug velocity (ms'O 

Usb Velocity of the back surface of a slug (ms-^) 

Usf Velocity of the front surface of a slug (ms-0 

Usp Slip velocity (ms-^ 

Ut Single particle tenninal velocity (ms-^ 

Upi Velocity of each particle contained in a slug (ms-^), i = 0, 1, —, n 

V, V', V", V'" Normal forces in Jenike shearing test 

Vi, V2 Principle forces 

Va Added ceU volume of a stereo pycnometer (cm^) 

Vc Sealed sample cell volume of a stereo pycnometer (cm^) 

Vp Powder sample volume (cm^) 

Vs Total volume of the moving soUds in a pipe 

X Variable in Figure 2.3 

X, y, z Co-ordinates 

xi , •••, X5 Coeffícients in Equatíons (6.26) and (7.19) 

x(t), y(t), z(t) Time histoiy records 

a Cross sectíonal area ratío of statíonary bed to pipe 
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ttb 

P 

Pb 

Pf 

6 

Ae=øi-e2 

Ap 

Api 

Apt 

Apth 

At 

e 

<!> 

<î>s 

(t>w 

7 

7b 

Ys 

Tl 

XA 

^min, ^max 

A,o 

^omin» ^omax 

A,p 

^w 

0 

Incline angle of bend with respect to the horizontal (°) 

Coefficient in Equatíon (6.36) 

Incline angle of the back surface of a slug (°) 

IncUne angle of the front surface of a slug (°) 

Effectíve intemal frictíon angle (°) 

Radian of bend in Equatíon (2.15) (°) 

Pressure drop across a single slug (Pa) 

Pipeline pressure drops at different locatíons (Pa), i = 1, —, n 

Total pipeline pressure drop (Pa) 

Total horizontal pipeline pressure drop (Pa) 

Interval time (s) 

Bulk voidage 

Intemal frictíon angle (°) 

Statíc intemal frictíon angle (°) 

WaU friction angle (°) 

Coefficient of coiTelation 

Bulk specific weight with respect to water at 4 °C 

Particle specific weight with respect to water at 4 ̂ C 

Dynamic viscosity of fluid, Nsm-^ 

Stress transmission coefficient 

Stress transmission coefficient at active faUure 

Minimum and maximum stress transmission coefficient 

Static stress transmission coefficient 

Minimum and maximum static stress transmission coefficient 

Stress transmission coefficient at passive faUure 

Coefficient of intemal frictíon 

Coefficient of wall frictíon 

Angle in Figure (3.8) (°) 
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Øs Angle in Figure (8.12) («) 

Pa Air density (kgm-3) 

Pb Bulk density (kgm-^) 

Pbst Bulk density of stationary bed (kgm-3) 

ps Particle density (kgm-3) 

<5 Normal stress (Pa) 

C\,<32 Principle stresses (Pa) 

(Tb Stress on the back face of a slug (Pa) 

Gf Stress on the front face of a slug (Pa) 

Cx Radial stress (Pa) 

Gg Gravity pressure (Pa) 

Gn Normal stress coordinate 

Otw Total wall pressure (Pa) 

Gw Wall pressure (Pa) 

Gwm Average wall pressure (Pa) 

<^x, CTy, <7z Normal stresses in x, y, z direction (Pa) 

Gxm Average stress in x directíon 

X Shearing stress (Pa) 

Td Time delay between two signals (s) 

Tp Specific tíme delay for the peak value of cross-correlation function (s) 

tn Shearing stress coordinate 

ttw Total shear stress at a wall (Pa) 

Txy, Xxz> 'Cyz Shcar stresses at the planes perpendicular to x, y, z coordinates 

Cû Angle defined in Figure 7.17 (°) 
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