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Abstract

ABSTRACT

The commercially available lithium-ion cells, which are the most advanced among the
rechargeable battery systems available so far, employ polycrystalline microsized
powder as the electrode materials, which functions as the Li-ion insertion hosts. With
the advancement of nanotechnology, there is an interest in the replacement of
conventional materials by nanostructured materials. The use of nanoparticles in
composite electrodes for Li-ion batteries may have considerable kinetic advantages due
to the reduction of the diffusion length for lithium-ion insertion into the active mass,
and also because of the reduction of the overall charge transfer resistance of the
electrodes. In this doctoral work, several nanostructured materials were examined and
characterized for possible application as electrode materials in Li-ion rechargeable
batteries. Among the anode candidates studied were free-standing single-walled carbon
nanotube (SWCNT) paper, lead oxide (PbO) and lead oxide-carbon (PbO-C)
nanocomposite, and carbon-coated silicon (Si-C) nanocomposite materials. Meanwhile,
several cathode candidates were also studied: nanostructured vanadium oxide (V20Os),
lithium trivanadate (LiV30g) nanoparticles, and lithium manganese oxide (LiMn,O,)

thin film electrode.

Free-standing SWCNT paper electrodes have been synthesized by a simple filtration
method via positive pressure. The free-standing electrode was produced without any
binder or metal substrate, which reduced the weight significantly. The free-standing
SWCNT paper electrodes were also flexible and had good electrical conductivity. With
the addition of both carbon black and nanosized Si particles, the electrical conductivity
and specific capacity of the free-standing SWCNT paper electrode were greatly
enhanced, so that they retained a capacity of 400 mAh g™ beyond 100 cycles. A new
approach has been used to prepare nanostructured PbO and PbO-C composites via the
spray pyrolysis technique. The prepared powders consist of fine nanocrystalline PbO
homogeneously distributed within an amorphous carbon matrix with highly developed
surface area. The combination of spray technology and carbon addition increased the

specific surface area (above 6 m® g*) and the conductivity of PbO, and also improved

Xiii



Abstract

the specific capacity, with a reversible capacity above 100 mAh g™ retained beyond 50
cycles. An effective, inexpensive, and industrially oriented approach was applied to
produce carbon-coated Si nanocomposites. Carbon-coated Si nanocomposites spray-
pyrolyzed in air at 400 °C showed the best cycling performance, retaining a specific
capacity of 1120 mAh g™ beyond 100 cycles, with a capacity fading of less than 0.4 %
per cycle. The beneficial effect of the carbon-coating in enhancing the dimensional
stability of the Si nanoparticles appears to be the main reason for this markedly

improved electrochemical performance.

One-dimensional (1D) nanostructures of V,0s have been successfully synthesized via a
precipitation process followed by heating in vacuum at 300 °C. The increase in
crystallinity and higher yield of one-dimensional nanostructured oxides contributed
significantly to the improved capacity and enhanced cycle life. V,0s nanoparticles were
also synthesized via the flame spray pyrolysis (FSP) process in air. They showed an
improved cycle life when the cut-off potential for discharging was increased from 1.5 V
to 2.5 V. The significant capacity loss when discharging to 1.5 V is possibly related to
the dissolution of vanadium active mass and the structural changes upon cycling in the
larger potential span. The flame spray pyrolyzed V,Os nanoparticles show excellent
cyclability when cycled between 2.5 V and 4.0 V vs. Li/Li*, retaining a discharge
capacity of 120 mAh g™ beyond 100 cycles at a cycling rate of 100 mA g™*. LiV3Og
nanoparticles (~24 nm in size) have been synthesized by FSP for the first time. The as-
synthesized LiV30g nanoparticles proved to be a promising cathode material for lithium
rechargeable batteries, retaining a specific discharge capacity of 180 mAh g™ beyond 50
cycles. A series of LiMn,O, thin films on either Si (100) or stainless steel substrate were
successfully prepared via pulsed laser deposition (PLD). The as-deposited LiMn,O, thin
films on stainless steel substrate are highly lithium- and oxygen-deficient, as confirmed
by ERDA/RBS and Raman analysis. Lithium and oxygen content increased when the
pulse rate was increased, leading to thicker films. However, the LiMn,0, thin film with
the lowest deposition pulse rate (or thinnest film) exhibited the best electrochemical

performance, retaining a charge capacity of 48 uAh cm™ pm™ beyond 100 cycles.

Xiv



Nomenclature

NOMENCLATURE
e List of Symbols
Symbol Name Unit
aj Activity of species i mol dm™
C Concentration M
C-rate Rate of charge or current density mA g or pA cm™
Cc Charge capacity Ah kg™ or mAh g™
Co Discharge capacity Ah kg™ or mAh g*
Cul Double-layer capacitance Fm?
Dp Average crystal size nm
d Distance between atomic layers in a Aornm
crystal
dt Tube diameter nm
dis Target-substrate distance cm
E Potential of half-reactions V or mV
Eqc DC potential V or mV
Es Final potential V or mV
E; Initial potential V or mV
Es Switching potential V or mV
E° Standard electrode potential V or mV
E>O) Negative electrode potential V or mV
E>™) Positive electrode potential V or mV
AEC, U° Cell potential V or mV
f Frequency Hz
AG° Standard Gibbs free energy Jmol™
I Current A or mA
K Shape factor of the average crystallite (dimensionless)
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Nomenclature

e List of Symbols (con’t)

Symbol Name Unit

L Crystal size nm

Mp Mass of the target atom kgorg

M Mass of the incident ion kgorg

m, m; Mass of species i kg org

N° Number of pulses (dimensionless)

n Number of electrons exchanged or integer  (dimensionless)

P4 Downstream pressure bar

Po2 Oxygen background pressure mbar

Py Upstream pressure bar

Py Power density W dm™

p Specific power W kg™

Q Solution flow rate mL min*

Q Capacity Ah or mAh

Qirrev Irreversible capacity loss %

Oth Theoretical specific charge capacity Ah kg™ or mAh g
Rn Reversible capacity at cycle n Ah kg™ or mAh g*
Ret Charge-transfer resistance Q

Q Capacity Ah or mAh

Qirrev Irreversible capacity loss %

Oth Theoretical specific charge capacity Ah kg* or mAh g
Rn Reversible capacity at cycle n Ah kg™ or mAh g™
Ret Charge-transfer resistance Q

SgeT Specific surface area m?g*

T Temperature Kor°C

Ts Substrate temperature Kor°C

t Time h

v Scan rate mV st

Vi Stoichiometric coefficients of species i (dimensionless)
Wy th Theoretical energy density Wh dm

Wi Theoretical specific energy Wh kg™

AX Amount of guest species mol

XVi



Nomenclature

e List of Symbols (con’t)

Symbol Name Unit

Yij Full width at half maximum in radians radians

OREM RBM frequency cm™

A Wavelength of the incident X-ray beam nm

0 Laser fluence Jem?

2] Angle of incidence ° or degrees

o Electrical conductivity Scm™

T Pulse width ns

e List of Fundamental Constants

Quantity Symbol Value Power of Ten Unit
Avogadro constant Na 6.022 10?; mol™
Boltzmann constant ~ k 1.381 102 JK?
Elementary charge e 1.602 10°° C
Faraday constant F=Naxe 9.6487 10* C mol*
Gas constant R=Naxk 8.319 10° JK* mol™

e List of Conversion Factors

Value Equivalence

1eV 1.602 x 10™J
86.5 kJ mol™
8066 cm™

1cm? 1.986 x 102 J

1 um 10°m

1nm 10°m

1A 10 m

XVii



Nomenclature

e List of Abbreviations

Abbreviation Meaning

AFM Atomic force microscopy

a.u. Acrbitrary unit

BET Brunauer Emmett Teller

CB Carbon black

CCCC Computer controlled cell capture

CNT Carbon nanotube

CVv Cyclic voltammetry

CvD Chemical vapor deposition

DC Disordered carbon

dc Dynamic current

DEG Diethylene glycol

DMC Dimethyl carbonate

DWCNT Double-walled carbon nanotube

EC Ethylene carbonate

EDS Energy dispersive spectroscopy

EIS Electrochemical impedance spectroscopy
ERDA Elastic recoil detection analysis

ETH Swiss Federal Institute of Technology

EV Electric vehicle

FE-SEM Field-emission scanning electron microscopy
FSP Flame spray pyrolysis

FWHM Full width at half maximum

hcp Hexagonal-close-packed

HEV Hybrid electric vehicle

HR-TEM High-resolution transmission electron microscopy
IPRI Intelligent Polymer Research Institute

ISEM Institute for Superconducting and Electronic Materials
JCPDS Joint committee on powder diffraction standards
LTB Lithium tert-butoxide

MWCNT Multi-walled carbon nanotube

Ni-Cd Nickel-cadmium
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Nomenclature

e List of Abbreviations (con’t)

Abbreviation

Meaning

Ni-MH
NMP
NMR
NNI
NRA
OCP
OEM
PC
PLD
PSI
PSPD
PVDF
PZT
RBM
RBS
R&D
rms
SAEDP
SEI
SEM
SEM
SHE
SS
SWCNT
TEM
TGA
THF
T™MO
uv
XRD

Nickel-metal hydride
1-methyl-2-pyrrolidinone

Nuclear magnetic resonance
National nanotechnology initiative
Nuclear reaction analysis

Open circuit potential

Original equipment manufacturer
Propylene carbonate

Pulsed laser deposition

Paul Scherrer Institute

Position sensitive photo-detector
Polyvinylidene fluoride
Piezo-electric

Radial breathing mode

Rutherford backscattering spectrometry
Research and development

Root mean square

Selected area electron diffraction pattern
Solid-electrolyte interphase
Scanning electron microscopy
Scanning electron microscopy
Standard hydrogen electrode
Stainless steel

Single-walled carbon nanotube
Transmission electron microscopy
Thermogravimetric analysis
Tetrahydrofuran

Transition metal oxide
Ultra-violet

X-ray diffraction

Xix



List of Figures

L1ST OF FIGURES

Figure 2.1 Overview of the different reaction potentials of electrode 9
materials for the lithium-ion battery. White rectangles represent
the positive electrode materials, and shaded rectangles the
negative electrode material. On the left y-axis the materials are
plotted against potential vs. Li/Li*, and on the right y-axis against
potential vs. the standard hydrogen electrode (SHE) [Tarascon
and Armand, 2001; Whittingham, 2004].

Figure 2.2  Some standard potentials of battery electrodes [Novak, 2007]. 13

Figure 2.3 Principles of Li-ion battery operation [courtesy of Paul Scherrer 17
Institute, Switzerland].

Figure 2.4  Schematic drawing showing the shape and components of various 19
Li-ion battery configurations: (a) cylindrical, (b) coin, (c)
prismatic, and (d) thin and flat [Tarascon and Armand, 2001].

Figure 2.5  Comparison of the specific energy and energy density of 20
rechargeable lithium batteries with those of other systems
[Manthiram and Kim, 1998].

Figure 2.6  Discharge behaviors of batteries [Piotto, 2004]. 20

Figure 2.7  Ragone plot of numerous battery systems and supercapacitors 22
[Broussely, 2005].

Figure 2.8  Uses for each type of rechargeable battery [Source: Institute of 23
Information Technology Ltd., Japan, 2002].

Figure 2.9  Li-ion battery market share for 2002 [Source: Institute of 24
Information Technology Ltd., Japan, 2002].

Figure 2.10 (a) Structure of layered lithium cobalt oxide (LiC0Oy), and (b) 41
schematic diagram of the layered LiCoO, structure showing the
ABCABC stacking of the O-Li-O-Co-O-Li-O layers, adapted
from [Reimers and Dahn, 1992; Winter et al., 1998].

XX



List of Figures

Figure 2.11 (a) The three-dimensional structure of LiMn,O,4 spinel and (b) the 44
crystal structure of a typical AB,O, spinel structure. Hatched,
solid, and open circles refer to Li*, Mn****, and O% ions,
respectively, for LiMn,0O,4. The numbers refer to various
crystallographic positions in the spinel structure. Adapted from
[Pervov et al., 1997; Winter et al., 1998].

Figure 2.12 The crystal structure of olivine LiFePQO, in projection along [001]. 47
On the left, expanded view of the framework built on FeOg
octahedra and PO, tetrahedra, with Li-ions in red. The FeOg
octahedra are linked together through corner sharing in the (b, c)
plane. On the right, restricted view of Li, Fe and P distribution
between two distorted, hexagonal close packed (hcp) oxygen-
dense layers (Pra[LiFe]octO4). LiOg Octahedra share edges and Li-
ions may diffuse along [010] and [001]. Image taken from
Tarascon and Armand [2001].

Figure 2.13  Structures of layered LiVO,, LiV20s, double sheet LiV4O1, 49
V6013, and LiV30sg. VOs square pyramids are pink, VOg
octahedra are blue, and lithium atoms are green [Adapted from
Whittingham et al., 2005].

Figure 2.14  Electrochemical behaviour of bulk and nanostructured o-Fe,Osas 57
shown by voltage-composition curves. The capacity retention and
scanning electron micrographs of both samples are shown in the
insets [Adapted from Arico et al., 2005].

Figure 2.15 Voltage profile of a 6 nm anatase (TiO,) electrode cycled at0.1 A 59
g%, 1 Ag™ and 10 A g Inset shows the cycle performance at 10
A g [Adapted from Jiang et al., 2006].

Figure 2.16 The supply value chain for commercializing nanotechnology, 61
starting with nanomaterials and technology and ending with
commercial applications. The factors that impede
commercialization are shown in the inner circle and NNI
initiatives to overcome these challenges are shown in the outer
circle [Helmus, 2006].

Figure 3.1  The overall framework of my experimental studies. 64

Figure 3.2  Schematic diagram of the filtration cell used for the fabrication of 66
composite bucky papers.

Figure 3.3  Schematic diagram of the spray pyrolysis process, with inset 67
illustrating oxides-carbon nanocomposites formation, redrawn
with modifications from Needham [2007].

Figure 3.4  Experimental set-up of the FSP process [Madler et al., 2002]. 69

XXi



List of Figures

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 4.1

Figure 4.2

Schematic diagram of the experimental set-up for the PLD
process at the Paul Scherrer Institute, Switzerland [courtesy of
Mrs. Franziska Simmen]: (1) cylindrical target rod, (2) plasma
plume generated by the laser beam, (3) heated and rotating
substrate, (4) focusing lens, (5) laser beam, (6) vacuum pump, and
(7) inlet for oxygen.

Reflection of X-rays from lattice planes according to Bragg’s law
[Giacovazzo, 2002].

Experimental set-up for resistivity measurement via the four-point
probe technique (Jandel multi-height four-point probe and
resistivity test unit, model RM2).

Schematic diagram of a contact mode AFM [Campana, 2005].

Sketch of the inter-atomic forces variation vs. distance between
the AFM tip and sample [Campana, 2005].

Principle of Rutherford Backscattering Spectrometry [Dumont et
al., 2006]. E is the ion energy, M, is the mass of the incident ion,
M, is the mass of the target atom, and @ is the scattering angle.

Principle of Elastic Recoil Detection Analysis [Dumont et al.,
2006]. E is the ion energy, M, is the mass of the incident ion, M,
is the mass of the target atom, and & is the scattering angle.

Profilometer (Dektak 8000) for measurements of film thickness
and surface roughness [courtesy of Paul Scherrer Institute,
Switzerland].

Cross-sectional schematic diagram of the coin-type cell, CR2032,
used in ISEM (Chew, 2006).

Schematic diagram of the homemade electrochemical cell used in
PSI (Coluccia, 2000).

A common impedance spectrum and the corresponding equivalent
circuit for such spectra [Lindsay, 2004].

Photograph of a typical 4-cm diameter SWCNT-derived bucky
paper.

TEM images of SWCNT precursor powder: (a) low resolution
image shows inter-mingled bundles of nanotubes, and (b) high
resolution image revealing the outer diameter of the SWCNT as
approximately 2.7 nm.

XXii

71

73

7l

78

80

81

82

83

85

86

89

93

95



List of Figures

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

(a) XRD pattern of SWCNT precursor powder. (b) Raman 95
spectrum of the SWCNT precursor powder, using a 532 nm laser

line. The inset shows the RBM region of the SWCNTSs, with the
numbers indicating the diameters of the SWCNTSs.

Field emission scanning electron microscopy (FE-SEM) images 97
of SWCNT-derived bucky paper: (a) low resolution cross-

sectional image of SWCNT paper, exhibiting densely packed

layers of nanotubes; (b) corresponding high resolution image of

(@), clearly showing highly entangled SWCNTSs between the

layers; (c) low resolution image of SWCNT composite paper with
carbon black, where the wide distribution of tiny white spots

indicates carbon black nanoparticles; and (d) the corresponding

high resolution image of (c), where the carbon black agglomerates

are highlighted as white circles.

Raman spectra for the SWCNT electrodes with 532 nm laser line: 98
(a) carbon black powder, (b) SWCNT powder, (c) SWCNT paper,
and (d) SWCNT composite paper with carbon black.

Electrical conductivity as a function of thickness for SWCNT 100
papers.

Impedance plots for the SWCNT electrodes: (a) bucky paper and 101
bucky paper with 10 wt.% carbon black, and (b) bucky paper with
different thicknesses.

Nyquist plots for SWCNT electrodes: (a) SWCNT powder on Ni 103
foam, (b) thin SWCNT paper, (c) thick SWCNT paper, and (d)
SWCNT paper with 10 wt.% carbon black.

Charge-discharge profiles of SWCNT electrodes: (a) conventional 105
slurry-coated electrode, and (b) “free-standing” bucky paper
electrode.

Discharge capacities vs. cycle number. Current density was 0.08 106
mA cm™.

Cyclic voltammograms of the SWCNT composite paper 107
electrodes: (a) SWCNT paper with 10 wt.% carbon black, and (b)
SWCNT paper with 10 wt.% carbon black and 10 wt.% nanosized

Si particles addition. The scan rate applied is 0.5 mV s™ and the
numbers indicate the cycle number.

(a) Cycle life of the composite bucky paper electrodes. The 108
current density was 0.08 mA cm™. (b) Discharge capacities of the
composite bucky paper electrodes at different cycling rates. The
electrodes were cycled between 0.02 and 1.20 V vs. Li/Li".

xxiii



List of Figures

Figure 4.13 SEM images of “free-standing” SWCNT paper electrodes: (a) 109
before cycling, and (b) after 100 cycles.

Figure 5.1  Typical XRD patterns of a-PbO powders sprayed at different 115
temperatures. The solution concentration was 0.5 M, and the flow
rate was 3.14 mL min™. The traces of B-PbO are marked by *.

Figure 5.2  TEM dark-field images obtained from samples sprayed at (a) 600 117
°C and (b) 800 °C. Individual crystallites are marked as C.

Figure 5.3  Typical SEM images of powders sprayed at (a) 600 °C, (b) 700 119
°C, and (c) 800 °C. The solution concentration was 0.5 M, and the
flow rate was 3.14 mL min™,

Figure 5.4  TGA curves of PbO-C nanocomposites with different PbO/C 121
ratios.

Figure 5.5  XRD patterns of PbO-C nanocomposites from (a) pure PbO; (b) 123
97Pb0O/3C; (c) 91PbO/9C; and (d) 90PbO/10C.

Figure 5.6  SEM images of PbO and PbO-C nanocomposites from (a) pure 124
PbO; (b) 97PbO/3C; (c) 91PbO/9C; and (d) 90PbO/10C.

Figure 5.7  TEM images of nanocrystalline PbO and PbO-C nanocomposites: 126
(a) centered dark-field image of pure PbO, where individual
crystallites are marked as C; (b) bright-field image of 97PbO/3C,
with large PbO particles marked as P; (c) and (d) bright field
images and selected area electron diffraction patterns (inset) of
90PbO/10C at different magnifications. The lead oxide particles
in the carbon rich cluster in (c) are significantly smaller than those
in (b). Some carbon rich clusters, such as that shown in (d),
contained no lead oxide particles, as indicated by the diffuse
contrast in the associated SAED pattern.

Figure 5.8  Raman spectra of PbO-C nanocomposites from (a) 97PbO/3C, (b) 128
91PbO/9C, and (c) 90PbO/10C; and (d) pure disordered carbon
produced from sugar.

Figure 5.9  EDX mapping of PbO-C nanocomposites made from 90PbO/10C 129
(left) and 97PbO/3C (right).

Figure 5.10 CVs of (a) pure nanocrystalline PbO and (b) 90PbO/10C 131
nanocomposite. The scan rate was 0.1 mV s™.

Figure 5.11 The 1%, 2" 5" and 10" charge/discharge profiles of (a) pure 133

nanocrystalline PbO and (b) 90PbO/10C nanocomposite. The
current density was 0.1 mA cm™.

XXiv



List of Figures

Figure 5.12

Figure 5.13

Figure 5.14

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Discharge capacity dependencies of PbO materials sprayed at (a) 135
different temperatures at 0.5 M and 3.14 mL min™, and at (b)

different solution concentrations at 700 °C and 1.57 mL min™.

The current density applied was 0.1 mA cm™.

Cycle life of PbO-C nanocomposites. The current density was 0.1 136
mA cm™. The inset figure presents the specific capacity vs. cycle
number data for the bare carbon powder, and the current density

applied was also 0.1 mA cm™.

Impedance plots for (a) pure PbO and (b) 90PbO/10C electrodes 138
in the de-lithiated state.

Thermogravimetric analysis (TGA) curves of nanocrystalline Si 144
precursor powder; carbon-coated Si nanocomposites spray-

pyrolyzed in air at 500 °C, 400 °C, and 300 °C; and amorphous

carbon spray-pyrolyzed from citric acid at 400 °C in air. The ratio

Si/DC refers to the ratio of the amount of silicon by weight to the
amount of disordered carbon in the spray-pyrolyzed

nanocomposites, as estimated from the TGA curves.

X-ray diffraction patterns of (a) nanocrystalline Si precursor 147
powder; carbon-coated Si nanocomposites spray-pyrolyzed in air

at (b) 500 °C; (c) 400 °C; and (d) 300 °C; and (e) amorphous

carbon spray-pyrolyzed from citric acid at 400 °C in air.

SEM images of carbon-coated Si nanocomposites spray- 148
pyrolyzed in air at (a) 400 °C (low-magnification image); (b) 500
°C; (c) 400 °C; and (d) 300 °C.

TEM images of nanocrystalline Si and carbon-coated Si 149
nanocomposites: (a) low-magnification image of nanocrystalline
Si, with the indexed selected area diffraction pattern (inset)
confirming the presence of Si particles; and (b) carbon-coated Si
nanocomposite spray-pyrolyzed at 400 °C. (c), (d), and (e) are
TEM images of carbon-coated Si nanocomposites spray-
pyrolyzed at 300 °C, 400 °C, and 500 °C, respectively, revealing
the thickness of the carbon-coating layer for each nanocomposite.
(f) High-resolution image of carbon-coated Si spray-pyrolyzed at
400 °C, clearly showing the presence of an interface between the
nanocrystalline Si particle and the amorphous carbon layer.

The first discharge/charge plots of nanocrystalline Si and carbon- 152

coated Si nanocomposite electrodes. Cycling took place between
0.02 V and 1.20 V versus Li/Li" at a cycling rate of 100 mA g™.

XXV



List of Figures

Figure 6.6  (a) First cycle differential capacity plots of nanocrystalline Siand 153
carbon-coated Si nanocomposite electrodes (inset: enlarged plot
of (a)). (b), (c), and (d) are differential capacity plots for carbon-
coated Si nanocomposites spray-pyrolyzed at 500 °C, 400 °C, and
300 °C, respectively, with the numbers indicating the cycle
number. Cycling took place between 0.02 V and 1.20 V versus
Li/Li* at a cycling rate of 100 mA g™,

Figure 6.7  (a) Cycle life of nanocrystalline Si and carbon-coated Si 155
nanocomposite electrodes cycled between 0.02 V and 1.20 V
versus Li/Li* at a cycling rate of 100 mA g™. (b) The
corresponding capacity retained with respect to the first discharge
capacity in (a).

Figure 6.8  Cycling behaviour for electrodes of (a) carbon-coated Si 157
nanocomposite spray-pyrolyzed at 400 °C, with 44 wt.% Si
content; and (b) amorphous carbon spray-pyrolyzed at 400 °C.
Cycling took place between 0.02 V and 1.20 V versus Li/Li* at a
cycling rate of 100 mA g™

Figure 6.9  Impedance plots for electrodes of (a) nanocrystalline Si; and (b) 159
carbon-coated Si nanocomposite spray-pyrolyzed at 400 °C. All
measurements were conducted in the de-lithiated state.

Figure 6.10 Thermogravimetric analysis (TGA) curves of nanocrystalline Si 162
precursor powder; carbon-coated Si nanocomposites spray-
pyrolyzed in air at 400 °C with different initial precursor solution
concentrations; and amorphous carbon spray-pyrolyzed from
citric acid at 400 °C in air, with an initial precursor solution
weight ratio (nano-Si/citric acid) of 1/10.

Figure 6.11 X-ray diffraction patterns of (a) nanocrystalline Si precursor 163
powder, (b) 83Si/17DC, (c) 68Si/32DC, (d) 51Si/49DC, (e)
44Si/56DC, and (f) amorphous carbon spray-pyrolyzed from citric
acid at 400 °C in air.

Figure 6.12 (a) Cycling behaviour of the nanocrystalline Si and Si/DC 164
nanocomposite electrodes cycled between 0.02 V and 1.20 V vs.
Li/Li* at a cycling rate of 100 mA g*. (b) The corresponding
discharge capacity retained, compared to the first discharge
capacity in (a).

Figure 7.1 XRD patterns for (a) commercial V,0s, (b) V.05 annealed for 45 171
mins at 300 °C (sample A), and (c) V205 annealed for 1 hr at 300
°C (sample B).

Figure 7.2 SEM images of nanostructured V,Os electrodes: (a) and (b) are 172

for V.05 annealed for 45 mins at 300 °C (sample A), while (c)
and (d) are for V,0s annealed for 1 hr at 300 °C (sample B).

XXVi



List of Figures

Figure 7.3  Cyclic voltammograms of nanostructured V,0s electrodes. The 173
applied scan rate was 0.5 mV s™.

Figure 7.4  The 1%, 10", and 20" charge-discharge profiles of nanostructured 175
V,0s electrodes: (a) V.05 annealed for 45 mins at 300 °C (sample
A), and (b) V.05 annealed for 1 hr at 300 °C (sample B). (c)
Charge capacity vs. cycle number for nanostructured V,0s
electroldes cycled between 1.5 V and 4.0 V at a cycling rate of 50
mA Q.

Figure 7.5  Cycling behaviour for sample B V,0s electrode at different cut- 176
off voltages: (a) 1.5 V, (b) 2.0 V, and (c) 2.5 V. The current
density applied was 50 mA g™.

Figure 7.6  XRD patterns for (a) commercial V,0s (micron-sized), and (b) 178
V05 (nano-sized) produced by a one-step flame spray pyrolysis
process.

Figure 7.7  SEM images of V,0s nanoparticles synthesized via FSP: (a) low 179
magnification image, revealing the homogeneity of the spherical-
shaped particles, and (b) high-magnification, field emission SEM
images, confirming the nanosized nature of the particles, with
sizes ranging from 20-40 nm.

Figure 7.8 TEM images of V,0s nanoparticles synthesized via FSP: (a) and 180
(b) are low resolution images, showing that the nanoparticles are
not exactly spherical in shape; (c) is a high-resolution TEM
image, with the (200) crystalline lattice parameter highlighted,
and (d) is the corresponding selected area electron diffraction
(SAED) pattern for the V,0s nanoparticles in image (c).

Figure 7.9  Cyclic voltammograms (CVs) of the FSP-made nanostructured 182
V,0s electrodes for the first 20 cycles at different cut-off
voltages: (a) 1.5 V, (b) 2.0 V, and (c) 2.5 V. The applied scan rate
was 0.1 mV s™. (d) Plot of discharge capacity vs. cycle number
for the corresponding CVs in plots (a), (b), and (c).

Figure 7.10 Prolonged cycling behaviour for the FSP-made nanostructured 183
V,05 electrodes at different discharge cut-off voltages: 1.5 V, 2.0
V, and 2.5 V. The current density applied was 100 mA g™.

Figure 7.11 (a) Electrochemical performance for the FSP-made 185
nanostructured V,0s electrode, cycled between 2.5V and 4.0 V
versus Li/Li* at a cycling rate of 100 mAh g-*. (b) Cycling
behaviour for the FSP-made nanostructured V,0s electrode at
different current densities, when cycled between 2.5V and 4.0 V
versus Li/Li".

Figure 8.1  XRD pattern of the LiV30g nanoparticles synthesized by FSP. 190

XXVii



List of Figures
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