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Abstract

Voltage fluctuations which cause lamp flicker tend to propagate from the point of ori-
gin to various parts of a power system exhibiting some level of attenuation depending
on factors such as system impedances, composition of loads and frequency compo-
nents of the fluctuating waveform. Maintaining the flicker levels at various busbars
below the planning limits specified by the standards is crucial, and in this regard it
is important to develop an insight into the manner in which the flicker propagates
via systems operating at different voltage levels. This thesis presents flicker trans-
fer analysis methodologies applicable for radial and interconnected power systems
particularly considering the influence of induction motor loads on flicker attenuation.

In the first phase of the work, development of the foundations towards flicker
transfer analysis methodologies is carried out by investigating the stand-alone be-
haviour of induction motors that are subjected to regular supply voltage fluctuations.
The electrical and mechanical response of induction motors to two types of sinusoidal
fluctuations in the supply voltage where (a) a positive or negative sequence sinusoidal
frequency component is superimposed on the mains voltage and (b) mains voltage
amplitude is sinusoidally modulated are examined. State space representation of
induction motors is used to develop a linearised induction motor model describing
the response of the stator current and the rotor speed to small voltage variations in
the supply voltage. The results from the model reveal that various sub-synchronous
and/or super-synchronous frequency components that exist in the supply voltage as
small voltage perturbations can influence the dynamic response of the machine in
relation to flicker. In particular, oscillations in the electromagnetic torque and ro-
tor speed arising as a result of the applied voltage perturbations are found to be
the key influencing factors controlling the stator current perturbations. It has been

noted that, the speed fluctuation caused by a superimposed positive sequence voltage
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perturbation tends to produce extra emf components in the rotor which in turn can
reflect back to the stator. This concept of multiple armature reaction has been found
to be significant in large motors especially when the superimposed frequencies are
closer to the fundamental frequency.

The second phase of the work covers the development of systematic methods for
evaluation of flicker transfer in radial and interconnected power systems taking the
dynamic behaviour of induction motors into account. In relation to radial systems,
small signal models are developed which can be used to establish the flicker propa-
gation from a higher voltage level (upstream) to a lower voltage level (downstream)
where induction motor loads are connected. Although this method can be applied for
regular or irregular voltage fluctuations, emphasis has been given to sinusoidal voltage
fluctuations arising from conventional sinusoidal amplitude modulation of upstream
voltage. Moreover, the method examines the propagation of sub-synchronous and
super-synchronous frequency components that exist in the supply voltage as side
bands and hence determines the overall attenuation in the voltage envelope. The
contribution of induction motors of different sizes and other influential factors such
as system impedance, loading level of the motor are examined. It has been noted that
in general higher frequency components of the upstream fluctuating voltage envelope
tend to attenuate better at the downstream. A method is also presented which allows
aggregation of induction motors at the load busbars in relation to flicker transfer
studies.

In relation to interconnected systems, a frequency domain approach which can
be used to investigate the flicker transfer is presented. This approach can be consid-
ered as an extension to the impedance matrix method as described in the literature
and can overcome some of the limitations of the latter method. In the proposed ap-

proach, induction motor loads are modelled in a more realistic manner to replicate
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their dynamic behaviour, thus enabling the examination of the frequency dependent
characteristics of flicker attenuation due to induction motors and the influence of tie
lines in compensating flicker at remote load busbars consisting of passive loads.

To verify some of the theoretical outcomes real time voltage waveforms captured
from a large arc furnace site have been used, in addition to the experimental work

using a scaled down laboratory set up of a radial power system.
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voltage angle of i'" node [degree]

variation in stator current [pu]

d-q axes stator current variations [pu]
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flicker transfer coefficient from A to B
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