
University of Wollongong - Research Online
Thesis Collection

Title: Formal concept analysis and semantic file systems

Author: Ben Martin

Year: 2008

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

2008

Formal concept analysis and semantic file systems Formal concept analysis and semantic file systems

Ben Martin
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Martin, Ben, Formal concept analysis and semantic file systems, PhD thesis, School of Information
Systems and Technology, University of Wollongong, 2008. http://ro.uow.edu.au/theses/260

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages

PhD Thesis: Formal Concept Analysis and
Semantic File Systems

by
Mr Ben Martin

B.I.T., Queensland University of Technology
M.I.T., Queensland University of Technology

A thesis submitted to the
School of Information Systems and Technology
University of Wollongong in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

School of Information Systems and Technology
2008

Thesis Certification

CERTIFICATION

I, Benjamin M. Martin, declare that this thesis, submitted in partial fulfilment of the
requirements for the award of Doctor of Philosophy, in the School of Information Sys-
tems and Technology, University of Wollongong, is wholly my own work unless otherwise
referenced or acknowledged. The document has not been submitted for qualifications
at any other academic institution.

(Signature)
Benjamin M. Martin
19 October 2008

iii

Ben Martin, Mr (Ph.D., Information Science)

PhD Thesis: Formal Concept Analysis and Semantic File Systems

Thesis directed by Prof. Peter Eklund

The thesis is that a branch of discrete mathematics, Formal Concept Analysis,
when applied to Semantic File Systems can lead to an improved personal information
space. Semantic File Systems share many properties with their non semantic brethren,
bringing more rich metadata and the ability to directly resolve user queries within the
filesystem interface itself.

A filesystem might offer upwards of a million files each of which having in the
order of hundreds of discerning attributes. Formal Concept Analysis has typically been
applied to a much smaller input data set and there are issues with scalability both in
the initial finding of the set of Formal Concepts and also ongoing issues such as finding
the list of files which are currently applicable (the extent) for a Formal Concept.

The thesis is largely dependent on improving the scalability of Formal Concept
Analysis in order for it to be applied to such a large dynamic data store.

Dedication

To the authors of great novels:
Though I have enjoyed many of your works, I have enjoyed too few of your works.

v

Acknowledgements

Professor Peter Eklund has made this PhD possible. I thank him for his un-
derstanding of the value of applied research, the difficulty in performing it and his
encouragement and guidance throughout the candidature.

Thanks to associate professor Roger Duke for his guidance during the thesis. His
sense of humor brightened the days of many administrative difficulties during the middle
of the candidature.

Thanks to Robert Murphy for listening to queries about indexing and relational
database design and providing valuable insight into SQL throughout the years both of
the PhD and predating it. Apologies for always wanting to talk about libferris over the
years.

vi

Contents

Chapter

1 Introduction 1
1.1 Hypothesis . 2
1.2 Prior work on Formal Concept Analysis

and File Systems . 3
1.3 Methodology . 5
1.4 Major Results . 5
1.5 Impact and Importance . 7
1.6 Overall Structure . 7

2 Background 9
2.1 Introduction . 9
2.2 Formal Concept Analysis Preliminaries 9
2.3 Semantic File Systems . 14

3 Indexing Considerations 23
3.1 Introduction . 23
3.2 Indexing full text . 24
3.3 Indexing metadata . 24

3.3.1 Reindexing a File . 25
3.3.2 Query Syntax and Semantics . 25
3.3.3 Two Designs for the findex . 26
3.3.4 Specially Sorted Berkeley DB Files 27
3.3.5 Relational Database . 29
3.3.6 Index Performance . 36

3.4 Conclusion . 38

4 Formal Concept Analysis and
Spatial Indexing 39
4.1 Introduction . 39
4.2 Why Conventional Indexing is Ineffective 40
4.3 Spatial Indexing . 45

4.3.1 Performance Analysis . 50
4.4 Asymmetric Page Split Generalized Index Search Trees

for Formal Concept Analysis . 57
4.4.1 Complete replacement of Guttman 59

vii

4.4.2 Guttman distribution followed by Formal Concept Analysis . . . 60
4.4.3 Customized Key Compression . 60
4.4.4 Performance Analysis . 64

4.5 Conclusion . 72

5 Lattice Closure In A Timely Manner 75
5.1 Introduction . 75
5.2 Finding the Closed Frequent Itemsets 77
5.3 A border algorithm . 78

5.3.1 An Application Example of the Border Algorithm 79
5.4 A Baseline Algorithm . 79
5.5 Performance Analysis . 79

5.5.1 Performance on Synthetic data 84
5.5.2 Performance on a Filesystem data 85
5.5.3 Performance on UCI Covtype dataset 87

5.6 Conclusion . 87

6 Formal Concept Analysis and Semantic File Systems 89
6.1 Introduction . 89
6.2 Application of Formal Concept Analysis 89

6.2.1 Scaling nominal orders . 90
6.2.2 Scaling Geospatial information 90
6.2.3 Scaling numeric ranges . 91
6.2.4 Natural Groups of Time . 93
6.2.5 SELinux . 97
6.2.6 Structuring with URLs . 100
6.2.7 Context Based Navigation . 105

6.3 Conclusion . 106

7 System Security and Access Control 111
7.1 Introduction . 111
7.2 An Introduction to Access Control . 112

7.2.1 Discretionary Access Control . 112
7.2.2 Mandatory Access Control . 114

7.3 SELinux – DAC and MAC . 116
7.4 Prior work on Lattices and Access Control 116
7.5 SELinux and Formal Concept Analysis 120

7.5.1 Holistic Transitive Information Flow 121
7.5.2 Transitive Information Flow from a Fixed Type 121
7.5.3 Single User Access Control . 128

7.6 Conclusion . 132

8 Advances to Semantic File Systems 138
8.1 Introduction . 138
8.2 Supervised Machine Learning and

Automatic File Classification . 138
8.3 Data models: Semantic Filesystems and XML 143
8.4 Arbitrary Translation Semantic File Systems 146

viii

8.4.1 Relational Models and OpenOffice morphisms 149
8.4.2 Document Computing and The Semantic Web 150

8.5 Conclusion . 152
8.6 Semantic File System Future Directions 154

9 Conclusion 155
References . 157

Bibliography 157

ix

Tables

Table

3.1 Comparative operators supported by the libferris search syntax. The
operators are used infix, there is a key on the left side and a value on the
right. The key is used to determine which EA is being searched for. The
lvalue is the name of the EA being queried. The rvalue is the value
the user supplied in the query. 26

3.2 Inverted lists are stored in the order of the EA key and EA value. Partial
lookups are possible given just the EA key. 28

3.3 Base schema for the docmap table. 30
3.4 The mimetype table. 30
3.5 Extended docmap table. The top of figure is identical to the docmap table

from Figure 3.3. 31
3.6 docattrs, the lookup table to document map join table. 31
3.7 Time in seconds to run a query on the id EA on an findex with the id

EA normalized or inlined in the docmap table. 37
3.8 Benchmarks of running the same base query (id == 40) against the many

instance findex with varying time restrictions. For each benchmark the
suitable time restrictions were anded to the base query to limit which
instances were considered during fquery resolution. 38

5.1 The number of CFI for each configuration. The reduced count is the
number of transactions in an object row reduced formal context. The
reduced count plays a role in the Covering Edges implementation. As
can be seen the reduction process has no bearing for formal contexts
with tlen > 32. Where the data does not support the requested number
of CFI the table has blank cells. 85

5.2 Time taken by various algorithm implementations to make the covering
relations between CFI explicit. 86

5.3 Average border size for various CFI data sets. 86
5.4 Performance of intents only and covering edges algorithms on CFI drawn

from 100,000 objects with 64 attributes. 88

7.1 Filesystem objects in a DAC system have read, write and execute bits
assigned for the owner of the file, those in the owning group and “other”
people with no association as either the owner or being in the owning
group. 113

x

7.2 The security context of a running process, the operation requested and
the security context of the file determine if an operation will be permitted
in SELinux. 115

7.3 The number of incident relations in I for the formal contexts of direct
information flows from shadow t. 125

7.4 The attribute labels for the concept lattice of all security types and at-
tributes which can perform operations on the shadow t. The concept
lattice is shown in Figure 7.12. 134

8.1 A medallion is broken down into its individual tags at run-time. The “e:”
prefix is a name space prefix which is abridged for presentation purposes. 139

xi

Figures

Figure

2.1 Context of an educational film “Living Beings and Water”. 10
2.2 Hasse diagram for the strong groupings for the cross table in Figure 2.1.

In Formal Concept Analysis terminology this is the Concept Lattice for
the Formal Context shown in Figure 2.1. 12

2.3 The image file Foo.png is shown with it’s byte contents displayed from
offset zero on the left extending to the right. The png image transducer
knows how to find the metadata about the image file’s width and height
and when called on will extract or infer this information and return it
through a metadata interface as an Extended Attribute. 15

2.4 A partial view of a libferris filesystem. Arrows point from children to
their parents, file names are shown inside each rectangle. Extended At-
tributes are not shown in the diagram. The box partially overlapped by
order.xml is the contents of that file. On the left side, an XML file at
path /tmp/order.xml has a filesystem overlaid to allow the hierarchical
data inside the XML file to be seen as a virtual filesystem. On the right:
Relational data can be accessed as one of the many data sources available
though libferris. 18

2.5 The filesystem implementation for an XML file is selected to allow the
hierarchical structure of the XML to be exposed as a filesystem. Two
different implementations exist at the “order.xml” file level: an imple-
mentation using the operating system’s kernel IO interface and an im-
plementation which knows how to present a stream of XML data as a
filesystem. The XML implementation relies on the kernel IO implemen-
tation to provide the XML data itself. 19

2.6 Metadata is presented via the same Extended Attribute (EA) interface.
The values presented can be derived from the file itself, derived from the
values of other EA, taken from the operating system’s Extended Attribute
interface or from an external RDF repository. 19

2.7 The three tasks to get from a filesystem to the result of Formal Concept
Analysis: the Concept Lattice. 21

3.1 Abstract tuple view of Semantic File System metadata. 23
3.2 A Formal Context for the two term full text query “alice wonderland”. 24
3.3 An inverted list with a linear index shown above it. 29

xii

3.4 Core tables in the relational database schema. A single docid in the
docmap table can be associated with many tuples in the docattrs table.
A single attrid in the attrmap table can be associated with many tuples
in the docattrs table. The attrid and docid in the docattrs table can be
considered foreign keys. The vid in docattrs can not be a foreign key
because it will reference one of many lookup tables (strlookup, intlookup
etc) depending on the type of the eavalue that was indexed. 32

3.5 Looking for the Tokyo.jpg file by searching for all instances of metadata
stored in the findex during 2006. 34

3.6 With multiple instances of metadata directly stored in docmap and docattrs
the query must include a subselect to limit consideration to only the most
recently added metadata instance for a urlid. 35

3.7 Multiversioned query using negation has undefined semantics. 36

4.1 An inverted file index. For each value of interest there is a list containing
all the addresses of tuples which match that value. 41

4.2 Example base relation containing modification and size data for objects. 41
4.3 Ordinal scales on the size, modification and access times of the objects

in the base table. Nominal scale on the file-owner. 42
4.4 On the left: B-Tree index on a date column for the base table. Dates in

nodes are shown as how long before the current time they represent. The
upper nodes are index nodes with the nodes below “12 weeks” omitted.
The 17 and 5 days nodes are leaf nodes of the index which point at records
in the base table. The B-Tree has a restricted branching factor of two
children for illustration purposes. On the right: Resolving the query by
a sequential scan filtering out non matching tuples. 43

4.5 Two B-Tree indexes on the base table. The left index is on modified
while the right index is on size. Leaf nodes in both indexes point to
tuples physically located throughout the base table. 44

4.6 Expression index on attribute a1 using f1, the SQL predicate size <=
4096. The B-Tree structure is degenerate because there is only one value
indexed. At the leaf page level, pages continue to overflow and the B-Tree
approximates in inverted file structure. 46

4.7 An example R-Tree with a query object on the left. Each node has
a bounding box which fully contains all objects in its child nodes. An
implementation stores the bounding box for each child in the parent node.
Note the example is limited to 2 dimensional space with a low branching
factor for presentation purposes. 48

4.8 An example RD-Tree with a query object on the left. Each node has
a bounding set associated which fully contains all objects in its child
nodes. An implementation would store the bounding set for each child
in the parent node. Note that the example is limited to only a small set
size with a low branching factor in the tree for presentation. 49

xiii

4.9 Translating queries involving negation to take advantage of the RD-Tree.
This assumes that the attributes 10, 20 and 30 stand for the predicates
a < 10 and a < 20 and a < 30 respectively. The weight function returns
the number of RD-Tree predicates a tuple contains. So in the above, the
third query doesn’t need to negate the 30 and 40 predicates because the
weight test will already ensure that 30 and 40 are not set. 50

4.10 Selected attributes for the mushroom table and the number of tuples
which have the given attribute-value combination. 51

4.11 Times with hot and cold caches to complete queries for 8 attribute list
context. Times are in seconds. 52

4.12 Times to complete nested scale queries against the covtype database.
The nesting is obtained by generating a nested line diagram in ToscanaJ
placing an ordinal scale on elevation inside an ordinal scale on slope. . 52

4.13 Times in seconds with hot and cold caches to complete queries. 53
4.14 Times for query sets against synthetic databases. SQL Explain shows

the B-Tree method always electing to disregard all indexes and perform a
sequential scan. The RD-Tree query plan always includes zero sequential
scans. The number in brackets below the Time column header is the tlen. 54

4.15 Execution times for queries using either B-Tree or RD-Tree indexing
against databases of varying density with 10,000 transactions. 54

4.16 Execution times for queries using either B-Tree or RD-Tree indexing
against databases of varying density with 1,000,000 transactions. 55

4.17 Statistics for the base table and indexes of the synthetic databases. Note
that the B-Tree index size is only for a single column whereas the RD-Tree
covers all 32 columns. 55

4.18 Effect of formal context density on RD-Tree performance for 100,000
transaction database. The number of items per pattern was reduced in
increments from 128 to 16 giving a max, average and standard deviation
of set bits in the formal context as shown. 56

4.19 Basic Generalized Index Search Tree structure. There are four internal
nodes (shown at the top) and two leaf nodes (just above the base ta-
ble) which contain links to the actual information that is indexed. The
page size for this tree is illustrative and would normally contain hun-
dreds/thousands of entries. 57

4.20 Pseudo code for asymmetric page split. Preallocation will require a
traversal over all keys to be distributed and set union with each key
and L and R. The next step is the central part of the algorithm and only
loops over keys once. The central distribution will require set unions with
each key and both L and R. These can’t be cached from the values com-
puted during preallocation because L and R are incrementally expanded
during this phase. The final shuffle phase potentially touches most of the
keys to be distributed. 61

4.21 Pseudocode for asymmetric page split using guttman and an Formal Con-
cept Analysis postprocess to achieve superior bounding set sizes. 62

xiv

4.22 Concept lattice for the source page after Guttman’s algorithm has been
applied to obtain the initial distribution. The letters above the nodes
indicate which attributes are introduced at that concept. When an at-
tribute is introduced at concept x all concepts connected below concept
x in the diagram also have that attribute. The numbers below the nodes
indicate how many keys match that concept or any connected below it.
For example, there is one key with attributes {d}, four keys with at least
{b, c} and one with {a, b, c}. 63

4.23 Compression of a bitset representing a linear scale. 64
4.24 Overall statistics for various Generalized Index Search Tree implementa-

tions on the scaled UCI covtype database mediumscaledcov. 66
4.25 Number of keys touched during single attribute extent size queries for

the first 128 attributes on an uncompressed index structures. The lowest
number to touched keys is always for Shuffle. From there upwards are:
Asym-NC and RD-NC, in that order. 68

4.26 Number of internal keys touched while querying two attributes against
the RD-Compress and Shuffle-Compress Generalized Index Search Tree
for every 16th other attribute with a primary attribute 25. 69

4.27 Mean number of keys touched for single and double attribute queries. . 70
4.28 Overall statistics for various Generalized Index Search Tree implementa-

tions on the IBM data mining synthetic database. 70
4.29 Single attribute queries for the first 32 attributes in t100l32n10000plen7i1.

This data set involves 100,000 transactions, a total of 10,000 different
patterns, a transaction length of 32, a pattern length of 7 items and a
total of 1000 different items. 71

4.30 Average number of internal and leaf keys touched for single, two and
three attribute queries on various Generalized Index Search Tree imple-
mentations. Note that i3 is the internal mean and l3 is the leaf mean.
Internal counts are exact, leaf counts are expressed as figures rounded to
the nearest hundred. ie. a leaf count in the table of n is for a reading of
n× 100 leaf keys. 73

5.1 At the top of the figure is a Formal Context with one of its Formal
Attributes and one of its Formal Objects highlighted. The Data Mining
perspective is shown below. Formal Objects are seen as Transactions, a
group of Formal Attributes is an Itemset. The support for a given Item
or Itemset y is the number of transactions which contain a non proper
superset that itemset y. 76

5.2 Algorithm to make the order relation between concepts explicit. Input: F
the set of concept intents partially ordered on the cardinality of the Intent
size from smallest intent size to largest. Output: E an edge mapping from
parent concept intent to child concept intent forming the covers for the
concept lattice of F . The Intents set introduced on line 8 is also partially
ordered from intents with the smallest cardinality to intents with the
largest cardinality. 80

xv

5.3 The Maxima function returns the set of intents which are maximal from
the given set of intents. The Intents set used as input is ordered from
smallest intent cardinality to largest intent cardinality. Line 4 indicates
that the ordered Intents poset is to be inspected in reverse order, from
largest intent cardinality to smallest. 81

5.4 Steps performed by the border algorithm to find the covers of the concept
lattice shown in Figure 5.5. 82

5.5 Concept lattice used as example of border algorithm application. . . . 83
5.6 Modified CoveringEdges using the same syntax as in Concept Data Anal-

ysis [20]. As the iceberg lattice does not contain all concepts, the modified
version must check that the concept (X1, Y1) exists before proceeding. . 83

6.1 Plot of the modification time of 201,759 files from /usr/share/. Horizontal
axis shows time from October 1985 to present day with almost 2 years
between graduations. Vertical axis ranges from 0 to 3248 with around
235 files separating each graduation. 92

6.2 Plot of the ctime of 201,759 files from /usr/share/. The ctime for a file
changes whenever any of its metadata (except atime from lstat) changes.
Horizontal axis shows time from 31st January to 05 August 2005 with
two and a half weeks between graduations. Vertical axis ranges from 0
to 2494 with around 250 files separating each graduation. 92

6.3 Plot of the ferris-current-time EA of 201,759 files from /usr/share/. . . 93
6.4 Plot of the the width of image files from /usr/share/. 94
6.5 Fewer plot points but a similar overall trend to the width plot. Plot of

the megapixels of image files from /usr/share/. 94
6.6 7 formal attributes for each of mtime (modification time) and width using

a standard linear range division. Concepts are represented as circles.
Labels above a concept show the formal attribute which is introduced by
that concept and labels below a concept show the number of filesystem
objects which match that concept or one of its refinements. An introduced
formal attribute is a formal attribute for which this concept is the highest
one in the lattice with that attribute. Thus, where a concept has an
introduced formal attribute all concepts reachable transitively downwards
will also have this formal attribute. 95

6.7 7 formal attributes for each of mtime (modification time) and width. For-
mal attributes are generated based on the density of the input metadata. 96

6.8 Numeric group based scaling on time. The concept “1” is selected offering
four direct refinements one including the “2” attribute and the other three
offering a more restrictive time attribute. 98

6.9 Nominal scaling on time. The concept “1” is selected offering direct
refinements to include “2” or a more restrictive time attribute. 98

6.10 Combination of nominal scaling with ordinal scaling applied to group
the nominal time attributes. The concept “1” is selected offering direct
refinements to include “2” as well as the option of locking the time at
Jan06Trip or adding a further restriction to the time attribute to be equal
or latter than September 2006. 99

xvi

6.11 Concept lattice for SELinux type and identity of files in /usr/share/ on
a Fedora Core 4 Linux installation. The Hasse diagram is arranged with
three major sections; direct parents of the root are in a row across the
top, refinements of SELinux identity system u are down the right side
with combinations of the top row in the middle and left of the diagram. 101

6.12 Example lattice with no wordnet augmentation. 102
6.13 Example lattice using wordnet augmentation, notice how the wn article

concept is the common parent of both feature and paper and is also closer
to the top of the lattice than either hyponym. 103

6.14 Second example lattice with no wordnet augmentation drawn from an
findex of a standard Fedora install. 103

6.15 Example lattice using wordnet augmentation, notice how the wn article
concept is the common parent of both feature and paper and is also closer
to the top of the lattice than either hyponym. Unfortunately in this case
the “feature” drawn from the redirect.m4 file is a homonym and not the
sense that is related to articles. 104

6.16 An iceberg concept lattice showing the 168 Concepts of some geograph-
ically tagged digital photographs. The formal context has 92 attributes
and 2000 objects. 107

6.17 A context based viewer showing the top node of the iceberg lattice from
Figure 6.16. 108

6.18 A context based viewer showing the Germany of the iceberg lattice from
Figure 6.16. This figure is obtained by selecting the Germany node in
Figure 6.16. There is only the top node as an upper cover and six lower
covers. Three of the lower covers are for geographical refinement and
have their arrows marked with an “X”. Two lower covers are for Time
refinements and have their arrow marked with a “T”. There is an exposure
related refinement marked with an “F”. 108

6.19 The iceberg concept lattice from Figure 6.16 centered on the Königsalle in
Düsseldorf. There are two time related refinements and a single exposure
refinement (marked with a “F” on the arrow). 109

6.20 Navigating the concept lattice from Figure 6.16 as a Semantic File Sys-
tem. The Düsseldorf concept is selected and lower covers are shown in
both the file browser on the right and as children in the left tree list. The
four virtual directories all and self allow the user to view the extent
or contingent at any concept. The size of the extent of each concept is
shown explicitly in the left tree as an EA. 109

7.1 The can-flow relation for a four class Confidentiality information flow
policy. Information flows are permitted from the attribute label to any
object listed under that label. For example, information in the Secret
class can-flow to the Secret and Top-Secret class. 117

7.2 The can-flow function from Figure.7.1 as a Concept Lattice. 118
7.3 A concept lattice for the information flows of two unrelated information

classes: medical and payroll data. 118
7.4 Information flow from a file in audio file t to an application with type

foo t. 120

xvii

7.5 Concept Lattice of the transitive closure of all direct information flows
in the SELinux targeted policy version 2.6.4-30.fc7 for Fedora 7. 122

7.6 Formal Concept Analysis of transitive information flow out of the shadow t
security context. The top concept, number 0, has no attributes. Moving
down and to the right, concept number 1 has the introduced attributes
cardmgr t. Concept number 2 introduces etc t and shadow t, concept 6
introduces var auth t and concept 7 introduces security t. 124

7.7 Concept lattice of the transitive closure of the digraph of degree one
or less information flows from shadow t. The shadow t attribute is in-
troduced by concept 17. Concept 0 has no attributes. Concept 1 in-
troduces attributes NetworkManager t and cardmgr t. Concept 14 intro-
duces attributes nscd log t, nscd t, nscd var run t and samba log t. Con-
cept 10 introduces attributes saslauthd t, saslauthd tmp t and saslau-
thd var run t. 126

7.8 Concept lattice of the transitive closure of the digraph of degree two or
less information flows from shadow t. The shadow t attribute appears
on Concept number 7. Concept 5 introduces attributes automount t
and irqbalance t. Concept 6 introduces insmod t and kudzu t. Concept
4 introduces iptables t, staff xserver t, sysadm xserver t, user xserver t
and xdm xserver t. Concept 0 has no attributes. 127

7.9 Concept lattice of standard read, write and execute POSIX protection
bits for a sample of files. Three sets of read, write and execute bits exist,
one for user, one for group and one for other access. For example, on the
far left side of the figure the /usr/bin/calc program can be read and
executed by everybody on the system. 129

7.10 The concept lattice of the formal context from Table 7.2. It can be
easily seen in Table 7.2 that audioplayer t can be completely overlayed
onto bash t and thus bash t is a subconcept and there are only the three
concepts. 130

7.11 The concept lattice of all security types and attributes which can perform
operations on the shadow t. 131

7.12 The concept lattice of all security types and attributes which can perform
operations on the shadow t. The attribute labels for each concept are
given in Table 7.4. 133

7.13 SELinux policy lines that are used to construct the formal context for the
concept lattice in Figure 7.12. The first line means that the system chkpwd t
type can access files of type shadow t if performing a read or a getattr op-
eration. All other types of access to shadow t files for system chkpwd t
will be blocked unless another policy rule explicitly allows it. The last rule
uses an SELinux attribute file type to allow files unconfined type
to access all files in general with a broad range of operations. This policy
rule affects the shadow t because files of type shadow t will also have the
SELinux attribute file type to indicate that they are filesystem files. 135

7.14 The concept lattice of all security types and attributes which can perform
operations on the user home t. 136

xviii

7.15 The concept lattice of all security types and attributes which can perform
operations on either the user home t or shadow t. Concept number 2,
which is in the middle of the lattice, introduces the shadow t-read at-
tribute. Concept number 4, which is second from the right in the third
row up from the bottom, introduces the shadow t-append, shadow t-
create and shadow t-link attributes. Concept 6, which is directly below
concept 4, introduces the shadow t-relabelfrom attribute. Concept 6 also
inherits shadow t-relabelto from Concept 5 which is its other direct cover.
Concept 15, which is directly left of concept 6, introduces home type-
write among other attributes. Concept 16 which is the meet of concept
15 and concept 6 and just below them, introduces no attributes and has
useradd t in its extent. Concept 75, the bottom concept, introduces no
attributes and has an empty extent. 137

8.1 Viewing the tags associated with file: docs is fully asserted, exe is fully
retracted, agents have offered partial retraction on travel and partial
assertion on waffle. Assertion is shown in green extending from left to
right, retraction is shown in red extending right to left. For readers using
a non coloured medium, the tags with ID 10 and 22 are the only green
ones. 140

8.2 On the left an XML Element node is shown with some child nodes. On
the right a filesystem node is shown with some similar child nodes. Note
that XML Text nodes can be considered to provide the byte content of
the synonymous filesystem abstraction but metadata about their arrange-
ment can not be easily communicated. Child nodes in the XML side do
not need to have unique names for the given parent node and maintain
a strict document order. Child nodes on the filesystem side can contain
more characters in their file names but the ordering is implementation
defined by default. 144

8.3 Union filesystem. The two base filesystems, Base1 and Base2 have their
contents combined by set union. Normally there is a linear precedence
relation between the base filesystems to explicitly resolve name clashes.
In this case Base1’s foo.txt will always be selected over the file with the
same name in Base2. 146

8.4 A filtering filesystem. Only files matching a given predicate (in this case
*.png and *.txt) are exposed from the base filesystem. 147

8.5 A virtual filesystem can be seen equally as a virtual XML document. No-
tice that the same EAs are shown by both commands, files and directories
naturally map to XML entities, EAs map to XML Attributes. 147

8.6 An abstract representation of a schema morphism from a virtual directory
to a spreadsheet file. 148

8.7 Schema for msgs table. The id column is the primary key with a default
sequential next value if id is not given for a new tuple. 149

8.8 Viewing a mounted PostgreSQL relational database as a virtual filesys-
tem. As can be seen the primary key for this directory is the id metadata.
The schema for the msg metadata is a string. 149

xix

8.9 OpenOffice editing a virtual office document created from the current
contents of the msgs table in a PostgreSQL database. 151

8.10 Data flow in the creation of a virtual office document from a mounted
relational database. 151

8.11 OpenOffice editing a virtual office document created from the current
contents of a mounted RDF graph. 152

8.12 Mounting RDF as a filesystem. The RDF graph is stored in a collection
of Berkeley db files for fast query processing. These files are named with
a foo prefix. 153

8.13 Graphical representation of RDF from Fig 8.12. 153

	University of Wollongong - Research Online
	Formal concept analysis and semantic file systems
	Recommended Citation

	Copyright warning
	Title page
	Certification
	Abstract
	Dedication
	Acknowledgements
	Contents
	Tables
	Figures

