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PhD Thesis: Formal Concept Analysis and Semantic File Systems

Thesis directed by Prof. Peter Eklund

The thesis is that a branch of discrete mathematics, Formal Concept Analysis,
when applied to Semantic File Systems can lead to an improved personal information
space. Semantic File Systems share many properties with their non semantic brethren,
bringing more rich metadata and the ability to directly resolve user queries within the
filesystem interface itself.

A filesystem might offer upwards of a million files each of which having in the
order of hundreds of discerning attributes. Formal Concept Analysis has typically been
applied to a much smaller input data set and there are issues with scalability both in
the initial finding of the set of Formal Concepts and also ongoing issues such as finding
the list of files which are currently applicable (the extent) for a Formal Concept.

The thesis is largely dependent on improving the scalability of Formal Concept
Analysis in order for it to be applied to such a large dynamic data store.
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