#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Formal concept analysis and semantic file systems
Author: Ben Martin

Year: 2008

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 2008

Formal concept analysis and semantic file
systems

Ben Martin
University of Wollongong

Martin, Ben, Formal concept analysis and semantic file systems, PhD thesis,
School of Information Systems and Technology, University of Wollongong, 2008.
http://ro.uow.edu.au/theses/260

This paper is posted at Research Online.
http://ro.uow.edu.au/theses/260

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

PhD Thesis: Formal Concept Analysis and
Semantic File Systems

by
Mr Ben Martin
B.I.T., Queensland University of Technology
M.IL.T., Queensland University of Technology

A thesis submitted to the
School of Information Systems and Technology
University of Wollongong in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
School of Information Systems and Technology
2008

Thesis Certification

CERTIFICATION

I, Benjamin M. Martin, declare that this thesis, submitted in partial fulfilment of the
requirements for the award of Doctor of Philosophy, in the School of Information Sys-
tems and Technology, University of Wollongong, is wholly my own work unless otherwise
referenced or acknowledged. The document has not been submitted for qualifications
at any other academic institution.

(Signature)
Benjamin M. Martin
19 October 2008

iii

Ben Martin, Mr (Ph.D., Information Science)
PhD Thesis: Formal Concept Analysis and Semantic File Systems
Thesis directed by Prof. Peter Eklund

The thesis is that a branch of discrete mathematics, Formal Concept Analysis,
when applied to Semantic File Systems can lead to an improved personal information
space. Semantic File Systems share many properties with their non semantic brethren,
bringing more rich metadata and the ability to directly resolve user queries within the
filesystem interface itself.

A filesystem might offer upwards of a million files each of which having in the
order of hundreds of discerning attributes. Formal Concept Analysis has typically been
applied to a much smaller input data set and there are issues with scalability both in
the initial finding of the set of Formal Concepts and also ongoing issues such as finding
the list of files which are currently applicable (the extent) for a Formal Concept.

The thesis is largely dependent on improving the scalability of Formal Concept
Analysis in order for it to be applied to such a large dynamic data store.

Dedication

To the authors of great novels:
Though I have enjoyed many of your works, I have enjoyed too few of your works.

Acknowledgements

Professor Peter Eklund has made this PhD possible. I thank him for his un-
derstanding of the value of applied research, the difficulty in performing it and his
encouragement and guidance throughout the candidature.

Thanks to associate professor Roger Duke for his guidance during the thesis. His
sense of humor brightened the days of many administrative difficulties during the middle
of the candidature.

Thanks to Robert Murphy for listening to queries about indexing and relational
database design and providing valuable insight into SQL throughout the years both of
the PhD and predating it. Apologies for always wanting to talk about libferris over the
years.

vi

Contents
Chapter
1 Introduction 1
1.1 Hypothesis e 2
1.2 Prior work on Formal Concept Analysis
and File Systems 3
1.3 Methodology 5
1.4 Major Results)
1.5 Impact and Importance 7
1.6 Ovwerall Structure 7
2 Background 9
2.1 Introduction 9
2.2 Formal Concept Analysis Preliminaries 9
2.3 Semantic File Systemso L 14
3 Indexing Considerations 23
3.1 Imtroduction 23
3.2 Indexing full text L 24
3.3 Indexing metadata L L 24
3.3.1 ReindexingaFile. L. 25
3.3.2 Query Syntax and Semantics 25
3.3.3 Two Designs for the findex 26
3.3.4 Specially Sorted Berkeley DB Files 27
3.3.5 Relational Database 29
3.3.6 Index Performance 36
3.4 Conclusion 38
4 Formal Concept Analysis and
Spatial Indexing 39
4.1 Introduction 39
4.2 Why Conventional Indexing is Ineffective 40
4.3 Spatial Indexing L 45
4.3.1 Performance Analysis 50
4.4 Asymmetric Page Split Generalized Index Search Trees
for Formal Concept Analysis 57

4.4.1 Complete replacement of Guttman 59

4.4.2 Guttman distribution followed by Formal Concept Analysis . . .
4.4.3 Customized Key Compression
4.4.4 Performance Analysis
4.5 Conclusion

Lattice Closure In A Timely Manner
5.1 Introduction L
5.2 Finding the Closed Frequent Itemsets
5.3 A border algorithm
5.3.1 An Application Example of the Border Algorithm
5.4 A Baseline Algorithm o
5.5 Performance Analysis
5.5.1 Performance on Syntheticdata
5.5.2 Performance on a Filesystem data
5.5.3 Performance on UCI Covtype dataset
5.6 Conclusion L

Formal Concept Analysis and Semantic File Systems

6.1 Introduction

6.2 Application of Formal Concept Analysis
6.2.1 Scaling nominal orders L.
6.2.2 Scaling Geospatial information
6.2.3 Scaling numeric rangeso oo
6.2.4 Natural Groupsof Time
6.2.5 SELInux e
6.2.6 Structuring with URLs
6.2.7 Context Based Navigation

6.3 Conclusion

System Security and Access Control
7.1 Introduction
7.2 An Introduction to Access Control
7.2.1 Discretionary Access Control
7.2.2 Mandatory Access Control
7.3 SELinux - DACand MAC.
7.4 Prior work on Lattices and Access Control
7.5 SELinux and Formal Concept Analysis
7.5.1 Holistic Transitive Information Flow
7.5.2 Transitive Information Flow from a Fixed Type
7.5.3 Single User Access Control
7.6 Conclusion e

Advances to Semantic File Systems
8.1 Introduction L
8.2 Supervised Machine Learning and

Automatic File Classification
8.3 Data models: Semantic Filesystems and XML
8.4 Arbitrary Translation Semantic File Systems

vil

60
60
64
72

75
75
7
78
79
79
79
84
85
87
87

89
89
89
90
90
91
93
97
100
105
106

111
111
112
112
114
116
116
120
121
121
128
132

8.4.1 Relational Models and OpenOffice morphisms
8.4.2 Document Computing and The Semantic Web
85 Conclusion
8.6 Semantic File System Future Directions

9 Conclusion
References e

Bibliography

viil

149
150
152
154

155
157

157

Table

3.1

3.2
3.3
3.4
3.5

3.6
3.7

3.8

5.1

5.2

5.3
5.4

7.1

Tables

Comparative operators supported by the libferris search syntax. The
operators are used infix, there is a key on the left side and a value on the
right. The key is used to determine which EA is being searched for. The
lvalue is the name of the EA being queried. The rvalue is the value
the user supplied in the query.
Inverted lists are stored in the order of the EA key and EA value. Partial
lookups are possible given just the EA key.
Base schema for the docmap table.
The mimetype table.o oL
Extended docmap table. The top of figure is identical to the docmap table
from Figure 3.3..
docattrs, the lookup table to document map join table..
Time in seconds to run a query on the id EA on an findex with the id
EA normalized or inlined in the docmap table.
Benchmarks of running the same base query (id == 40) against the many
instance findex with varying time restrictions. For each benchmark the
suitable time restrictions were anded to the base query to limit which
instances were considered during fquery resolution.

The number of CFI for each configuration. The reduced count is the
number of transactions in an object row reduced formal context. The
reduced count plays a role in the Covering Edges implementation. As
can be seen the reduction process has no bearing for formal contexts
with tlen > 32. Where the data does not support the requested number
of CFI the table has blank cells.
Time taken by various algorithm implementations to make the covering
relations between CFI explicit.
Average border size for various CFI data sets.
Performance of intents only and covering edges algorithms on CFI drawn
from 100,000 objects with 64 attributes.

Filesystem objects in a DAC system have read, write and execute bits
assigned for the owner of the file, those in the owning group and “other”
people with no association as either the owner or being in the owning

BIOUD. « ¢ v v et e e e e e e e e e e e e

X

31
31

7.2

7.3

7.4

8.1

The security context of a running process, the operation requested and
the security context of the file determine if an operation will be permitted

in SELINUX. 115
The number of incident relations in I for the formal contexts of direct
information flows from shadow_t. 125

The attribute labels for the concept lattice of all security types and at-
tributes which can perform operations on the shadow_t. The concept
lattice is shown in Figure 7.12. L. 134

A medallion is broken down into its individual tags at run-time. The “e:”
prefix is a name space prefix which is abridged for presentation purposes. 139

xi

Figures

Figure

2.1 Context of an educational film “Living Beings and Water”. 10
2.2 Hasse diagram for the strong groupings for the cross table in Figure 2.1.

In Formal Concept Analysis terminology this is the Concept Lattice for

the Formal Context shown in Figure 2.1. 12
2.3 The image file Foo.png is shown with it’s byte contents displayed from

offset zero on the left extending to the right. The png image transducer

knows how to find the metadata about the image file’s width and height

and when called on will extract or infer this information and return it

through a metadata interface as an Extended Attribute. 15
2.4 A partial view of a libferris filesystem. Arrows point from children to

their parents, file names are shown inside each rectangle. Extended At-

tributes are not shown in the diagram. The box partially overlapped by

order.xml is the contents of that file. On the left side, an XML file at

path /tmp/order.xml has a filesystem overlaid to allow the hierarchical

data inside the XML file to be seen as a virtual filesystem. On the right:

Relational data can be accessed as one of the many data sources available

though libferris. Lo 18
2.5 The filesystem implementation for an XML file is selected to allow the

hierarchical structure of the XML to be exposed as a filesystem. Two

different implementations exist at the “order.xml” file level: an imple-

mentation using the operating system’s kernel IO interface and an im-

plementation which knows how to present a stream of XML data as a

filesystem. The XML implementation relies on the kernel 10 implemen-

tation to provide the XML data itself. 19
2.6 Metadata is presented via the same Extended Attribute (EA) interface.

The values presented can be derived from the file itself, derived from the

values of other EA, taken from the operating system’s Extended Attribute

interface or from an external RDF repository. 19
2.7 The three tasks to get from a filesystem to the result of Formal Concept

Analysis: the Concept Lattice. 21
3.1 Abstract tuple view of Semantic File System metadata. 23
3.2 A Formal Context for the two term full text query “alice wonderland”. 24

3.3 An inverted list with a linear index shown aboveit. 29

3.4

3.5

3.6

3.7

4.1

4.2
4.3

4.4

4.5

4.6

4.7

4.8

xii

Core tables in the relational database schema. A single docid in the
docmap table can be associated with many tuples in the docattrs table.
A single attrid in the attrmap table can be associated with many tuples
in the docattrs table. The attrid and docid in the docattrs table can be
considered foreign keys. The vid in docattrs can not be a foreign key
because it will reference one of many lookup tables (strlookup, intlookup

etc) depending on the type of the eavalue that was indexed. 32
Looking for the Tokyo. jpg file by searching for all instances of metadata
stored in the findex during 2006. 34

With multiple instances of metadata directly stored in docmap and docattrs
the query must include a subselect to limit consideration to only the most
recently added metadata instance for a urlid. 35
Multiversioned query using negation has undefined semantics. 36

An inverted file index. For each value of interest there is a list containing
all the addresses of tuples which match that value. 41
Example base relation containing modification and size data for objects. 41
Ordinal scales on the size, modification and access times of the objects
in the base table. Nominal scale on the file-owner. 42
On the left: B-Tree index on a date column for the base table. Dates in
nodes are shown as how long before the current time they represent. The
upper nodes are index nodes with the nodes below “12 weeks” omitted.
The 17 and 5 days nodes are leaf nodes of the index which point at records
in the base table. The B-Tree has a restricted branching factor of two
children for illustration purposes. On the right: Resolving the query by
a sequential scan filtering out non matching tuples. 43
Two B-Tree indexes on the base table. The left index is on modified
while the right index is on size. Leaf nodes in both indexes point to
tuples physically located throughout the base table. 44
Expression index on attribute a; using f1, the SQL predicate size <=
4096. The B-Tree structure is degenerate because there is only one value
indexed. At the leaf page level, pages continue to overflow and the B-Tree
approximates in inverted file structure. L. 46
An example R-Tree with a query object on the left. Each node has
a bounding box which fully contains all objects in its child nodes. An
implementation stores the bounding box for each child in the parent node.
Note the example is limited to 2 dimensional space with a low branching
factor for presentation purposes. Lo 48
An example RD-Tree with a query object on the left. Each node has
a bounding set associated which fully contains all objects in its child
nodes. An implementation would store the bounding set for each child
in the parent node. Note that the example is limited to only a small set
size with a low branching factor in the tree for presentation. 49

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

Translating queries involving negation to take advantage of the RD-Tree.
This assumes that the attributes 10, 20 and 30 stand for the predicates
a < 10 and a < 20 and a < 30 respectively. The weight function returns
the number of RD-Tree predicates a tuple contains. So in the above, the
third query doesn’t need to negate the 30 and 40 predicates because the
weight test will already ensure that 30 and 40 are not set.
Selected attributes for the mushroom table and the number of tuples
which have the given attribute-value combination.
Times with hot and cold caches to complete queries for 8 attribute list
context. Times are in seconds.
Times to complete nested scale queries against the covtype database.
The nesting is obtained by generating a nested line diagram in ToscanaJ
placing an ordinal scale on elevation inside an ordinal scale on slope.
Times in seconds with hot and cold caches to complete queries.
Times for query sets against synthetic databases. SQL Explain show
the B-Tree method always electing to disregard all indexes and perform a
sequential scan. The RD-Tree query plan always includes zero sequential
scans. The number in brackets below the Time column header is the tlen.
Execution times for queries using either B-Tree or RD-Tree indexing
against databases of varying density with 10,000 transactions.
Execution times for queries using either B-Tree or RD-Tree indexing
against databases of varying density with 1,000,000 transactions. .
Statistics for the base table and indexes of the synthetic databases. Note
that the B-Tree index size is only for a single column whereas the RD-Tree
covers all 32 colummns.
Effect of formal context density on RD-Tree performance for 100,000
transaction database. The number of items per pattern was reduced in
increments from 128 to 16 giving a max, average and standard deviation
of set bits in the formal context as shown.
Basic Generalized Index Search Tree structure. There are four internal
nodes (shown at the top) and two leaf nodes (just above the base ta-
ble) which contain links to the actual information that is indexed. The
page size for this tree is illustrative and would normally contain hun-
dreds/thousands of entries.
Pseudo code for asymmetric page split. Preallocation will require a
traversal over all keys to be distributed and set union with each key
and L and R. The next step is the central part of the algorithm and only
loops over keys once. The central distribution will require set unions with
each key and both L and R. These can’t be cached from the values com-
puted during preallocation because L and R are incrementally expanded
during this phase. The final shuffle phase potentially touches most of the
keys to be distributed.o o
Pseudocode for asymmetric page split using guttman and an Formal Con-
cept Analysis postprocess to achieve superior bounding set sizes.

xiil

92
93

54

o4

95

4.22

4.23
4.24

4.25

4.26

4.27
4.28

4.29

4.30

5.1

5.2

Concept lattice for the source page after Guttman’s algorithm has been
applied to obtain the initial distribution. The letters above the nodes
indicate which attributes are introduced at that concept. When an at-
tribute is introduced at concept x all concepts connected below concept
x in the diagram also have that attribute. The numbers below the nodes
indicate how many keys match that concept or any connected below it.
For example, there is one key with attributes {d}, four keys with at least
{b,c} and one with {a,b,c}.
Compression of a bitset representing a linear scale.
Overall statistics for various Generalized Index Search Tree implementa-
tions on the scaled UCI covtype database mediumscaledcov.
Number of keys touched during single attribute extent size queries for
the first 128 attributes on an uncompressed index structures. The lowest
number to touched keys is always for Shuffle. From there upwards are:
Asym-NC and RD-NC, in that order.
Number of internal keys touched while querying two attributes against
the RD-Compress and Shuffle-Compress Generalized Index Search Tree
for every 16th other attribute with a primary attribute 25.
Mean number of keys touched for single and double attribute queries.

Overall statistics for various Generalized Index Search Tree implementa-
tions on the IBM data mining synthetic database.
Single attribute queries for the first 32 attributes in t100132n10000plen7il.
This data set involves 100,000 transactions, a total of 10,000 different
patterns, a transaction length of 32, a pattern length of 7 items and a
total of 1000 different items.
Average number of internal and leaf keys touched for single, two and
three attribute queries on various Generalized Index Search Tree imple-
mentations. Note that i3 is the internal mean and 13 is the leaf mean.
Internal counts are exact, leaf counts are expressed as figures rounded to
the nearest hundred. ie. a leaf count in the table of n is for a reading of
nx100leaf keys. L

At the top of the figure is a Formal Context with one of its Formal
Attributes and one of its Formal Objects highlighted. The Data Mining
perspective is shown below. Formal Objects are seen as Transactions, a
group of Formal Attributes is an Itemset. The support for a given Item
or Itemset y is the number of transactions which contain a non proper
superset that itemset L
Algorithm to make the order relation between concepts explicit. Input: F
the set of concept intents partially ordered on the cardinality of the Intent
size from smallest intent size to largest. Output: E an edge mapping from
parent concept intent to child concept intent forming the covers for the
concept lattice of F'. The Intents set introduced on line 8 is also partially
ordered from intents with the smallest cardinality to intents with the
largest cardinality. L o

Xiv

5.3

5.4

5.5
5.6

6.1

6.2

6.3
6.4
6.5

6.6

6.7

6.8

6.9

6.10

The Maxima function returns the set of intents which are maximal from
the given set of intents. The Intents set used as input is ordered from
smallest intent cardinality to largest intent cardinality. Line 4 indicates
that the ordered Intents poset is to be inspected in reverse order, from
largest intent cardinality to smallest.
Steps performed by the border algorithm to find the covers of the concept
lattice shown in Figure 5.5. oL
Concept lattice used as example of border algorithm application.
Modified CoveringEdges using the same syntax as in Concept Data Anal-
ysis [20]. As the iceberg lattice does not contain all concepts, the modified
version must check that the concept (X1, Y1) exists before proceeding.

Plot of the modification time of 201,759 files from /usr/share/. Horizontal
axis shows time from October 1985 to present day with almost 2 years
between graduations. Vertical axis ranges from 0 to 3248 with around
235 files separating each graduation.
Plot of the ctime of 201,759 files from /usr/share/. The ctime for a file
changes whenever any of its metadata (except atime from Istat) changes.
Horizontal axis shows time from 31st January to 05 August 2005 with
two and a half weeks between graduations. Vertical axis ranges from 0
to 2494 with around 250 files separating each graduation.
Plot of the ferris-current-time EA of 201,759 files from /usr/share/.

Plot of the the width of image files from /usr/share/.
Fewer plot points but a similar overall trend to the width plot. Plot of
the megapixels of image files from /usr/share/.
7 formal attributes for each of mtime (modification time) and width using
a standard linear range division. Concepts are represented as circles.
Labels above a concept show the formal attribute which is introduced by
that concept and labels below a concept show the number of filesystem
objects which match that concept or one of its refinements. An introduced
formal attribute is a formal attribute for which this concept is the highest
one in the lattice with that attribute. Thus, where a concept has an
introduced formal attribute all concepts reachable transitively downwards
will also have this formal attribute.
7 formal attributes for each of mtime (modification time) and width. For-

mal attributes are generated based on the density of the input metadata.

Numeric group based scaling on time. The concept “1” is selected offering
four direct refinements one including the “2” attribute and the other three
offering a more restrictive time attribute.
Nominal scaling on time. The concept “1” is selected offering direct
refinements to include “2” or a more restrictive time attribute.
Combination of nominal scaling with ordinal scaling applied to group
the nominal time attributes. The concept “1” is selected offering direct
refinements to include “2” as well as the option of locking the time at
Jan06Trip or adding a further restriction to the time attribute to be equal
or latter than September 2006.

XV

81
82
83

83

92

92
93
94

94

95

96

98

98

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

7.1

7.2
7.3

7.4

Concept lattice for SELinux type and identity of files in /usr/share/ on
a Fedora Core 4 Linux installation. The Hasse diagram is arranged with
three major sections; direct parents of the root are in a row across the
top, refinements of SELinux_identity_system_u are down the right side
with combinations of the top row in the middle and left of the diagram.
Example lattice with no wordnet augmentation.
Example lattice using wordnet augmentation, notice how the wn_article
concept is the common parent of both feature and paper and is also closer
to the top of the lattice than either hyponym.
Second example lattice with no wordnet augmentation drawn from an
findex of a standard Fedora install.
Example lattice using wordnet augmentation, notice how the wn_article
concept is the common parent of both feature and paper and is also closer
to the top of the lattice than either hyponym. Unfortunately in this case
the “feature” drawn from the redirect.m4 file is a homonym and not the
sense that is related to articles.
An iceberg concept lattice showing the 168 Concepts of some geograph-
ically tagged digital photographs. The formal context has 92 attributes
and 2000 objects.
A context based viewer showing the top node of the iceberg lattice from
Figure 6.16. e
A context based viewer showing the Germany of the iceberg lattice from
Figure 6.16. This figure is obtained by selecting the Germany node in
Figure 6.16. There is only the top node as an upper cover and six lower
covers. Three of the lower covers are for geographical refinement and
have their arrows marked with an “X”. Two lower covers are for Time
refinements and have their arrow marked with a “T”. There is an exposure
related refinement marked with an “F”.
The iceberg concept lattice from Figure 6.16 centered on the Konigsalle in
Diisseldorf. There are two time related refinements and a single exposure
refinement (marked with a “F” on the arrow).
Navigating the concept lattice from Figure 6.16 as a Semantic File Sys-
tem. The Diisseldorf concept is selected and lower covers are shown in
both the file browser on the right and as children in the left tree list. The
four virtual directories all and self allow the user to view the extent
or contingent at any concept. The size of the extent of each concept is
shown explicitly in the left tree asan EA.

The can-flow relation for a four class Confidentiality information flow
policy. Information flows are permitted from the attribute label to any
object listed under that label. For example, information in the Secret
class can-flow to the Secret and Top-Secret class.
The can-flow function from Figure.7.1 as a Concept Lattice.
A concept lattice for the information flows of two unrelated information
classes: medical and payroll data.
Information flow from a file in audio_file_t to an application with type
foot. . . e

xvi

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

Concept Lattice of the transitive closure of all direct information flows
in the SELinux targeted policy version 2.6.4-30.fc7 for Fedora 7.

Formal Concept Analysis of transitive information flow out of the shadow_t

security context. The top concept, number 0, has no attributes. Moving
down and to the right, concept number 1 has the introduced attributes
cardmgr_t. Concept number 2 introduces etc_t and shadow_t, concept 6
introduces var_auth_t and concept 7 introduces security_t.
Concept lattice of the transitive closure of the digraph of degree one
or less information flows from shadow_t. The shadow_t attribute is in-
troduced by concept 17. Concept 0 has no attributes. Concept 1 in-
troduces attributes NetworkManager_t and cardmgr_t. Concept 14 intro-
duces attributes nscd_log_t, nscd_t, nscd_var_run_t and samba_log_t. Con-
cept 10 introduces attributes saslauthd_t, saslauthd_tmp_t and saslau-
thdvarrunt. o L
Concept lattice of the transitive closure of the digraph of degree two or
less information flows from shadow_t. The shadow_t attribute appears
on Concept number 7. Concept 5 introduces attributes automount_t
and irgbalance_t. Concept 6 introduces insmod_t and kudzu-t. Concept
4 introduces iptables_t, staff_xserver_t, sysadm_xserver_t, user_xserver_t
and xdm _xserver_t. Concept 0 has no attributes.
Concept lattice of standard read, write and execute POSIX protection
bits for a sample of files. Three sets of read, write and execute bits exist,
one for user, one for group and one for other access. For example, on the
far left side of the figure the /usr/bin/calc program can be read and
executed by everybody on the system.
The concept lattice of the formal context from Table 7.2. It can be
easily seen in Table 7.2 that audioplayer_t can be completely overlayed
onto bash_t and thus bash_t is a subconcept and there are only the three
CONCEPES. o e e e e e
The concept lattice of all security types and attributes which can perform
operations on the shadow_t.
The concept lattice of all security types and attributes which can perform
operations on the shadow_t. The attribute labels for each concept are
given in Table 7.4.
SELinux policy lines that are used to construct the formal context for the

xvii

122

concept lattice in Figure 7.12. The first line means that the system_chkpwd_t

type can access files of type shadow_t if performing a read or a getattr op-
eration. All other types of access to shadow_t files for system_chkpwd_t
will be blocked unless another policy rule explicitly allows it. The last rule
uses an SELinux attribute file_type to allow files_unconfined _type
to access all files in general with a broad range of operations. This policy
rule affects the shadow_t because files of type shadow_t will also have the
SELinux attribute file_type to indicate that they are filesystem files.

The concept lattice of all security types and attributes which can perform
operations on the user_ home t.,

7.15 The concept lattice of all security types and attributes which can perform

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

operations on either the user_home_t or shadow_t. Concept number 2,
which is in the middle of the lattice, introduces the shadow_t-read at-
tribute. Concept number 4, which is second from the right in the third
row up from the bottom, introduces the shadow_t-append, shadow_t-
create and shadow_t-link attributes. Concept 6, which is directly below
concept 4, introduces the shadow_t-relabelfrom attribute. Concept 6 also
inherits shadow_t-relabelto from Concept 5 which is its other direct cover.
Concept 15, which is directly left of concept 6, introduces home_type-
write among other attributes. Concept 16 which is the meet of concept
15 and concept 6 and just below them, introduces no attributes and has
useradd_t in its extent. Concept 75, the bottom concept, introduces no
attributes and has an empty extent.

Viewing the tags associated with file: docs is fully asserted, exe is fully
retracted, agents have offered partial retraction on travel and partial
assertion on waffle. Assertion is shown in green extending from left to
right, retraction is shown in red extending right to left. For readers using
a non coloured medium, the tags with ID 10 and 22 are the only green
OMES. + o v e it e e e e e e
On the left an XML Element node is shown with some child nodes. On
the right a filesystem node is shown with some similar child nodes. Note
that XML Text nodes can be considered to provide the byte content of
the synonymous filesystem abstraction but metadata about their arrange-
ment can not be easily communicated. Child nodes in the XML side do
not need to have unique names for the given parent node and maintain
a strict document order. Child nodes on the filesystem side can contain
more characters in their file names but the ordering is implementation
defined by default.
Union filesystem. The two base filesystems, Basel and Base2 have their
contents combined by set union. Normally there is a linear precedence
relation between the base filesystems to explicitly resolve name clashes.
In this case Basel’s foo.txt will always be selected over the file with the
same name in Base2.o oL
A filtering filesystem. Only files matching a given predicate (in this case
*.png and *.txt) are exposed from the base filesystem.
A virtual filesystem can be seen equally as a virtual XML document. No-
tice that the same EAs are shown by both commands, files and directories
naturally map to XML entities, EAs map to XML Attributes.
An abstract representation of a schema morphism from a virtual directory
to a spreadsheet file. L
Schema for msgs table. The id column is the primary key with a default
sequential next value if id is not given for a new tuple.
Viewing a mounted PostgreSQL relational database as a virtual filesys-
tem. As can be seen the primary key for this directory is the id metadata.
The schema for the msg metadata is a string.

xviil

8.9

8.10

8.11

8.12

8.13

OpenOffice editing a virtual office document created from the current
contents of the msgs table in a PostgreSQL database.
Data flow in the creation of a virtual office document from a mounted
relational database. oL
OpenOffice editing a virtual office document created from the current
contents of a mounted RDF graph.
Mounting RDF as a filesystem. The RDF graph is stored in a collection
of Berkeley db files for fast query processing. These files are named with
afooprefix.
Graphical representation of RDF from Fig 8.12.

Xix

Chapter 1

Introduction

Formal Concept Analysis is a mathematical method which takes as input a binary
relation between two sets and offers as output a partially ordered set of clusters which
minimally represents this binary relation. The clusters are ordered from least to most
specialized cluster and form a finite lattice. The technique is a form of unsupervised
machine learning or concept clustering.

Various challenges arise when one attempts to apply Formal Concept Analysis to
a large dynamic data source. These include issues of scalability, formatting the formal
input data to the Formal Concept Analysis process in a manner to produce interesting
results and the actual algorithm chosen to find the clusters from the input data. The
very presentation of the clusters and their relations to each other in a compelling manner
is also an interesting research topic as the number of clusters increases.

The dynamic information source chosen for this thesis is a modern Semantic
File System [39, 64]. The differences between a traditional Filesystem and a Semantic
File System are detailed in Section 2.3. For this chapter it is sufficient to consider the
Semantic File System as a superset of the traditional file system. The file system [90, 59]
has become the de facto standard for storage and management of semi structured data
on computers. Various file formats such as XML formally describe how a semi structured
document is to be serialized to be stored in a single file on a filesystem.

File systems have evolved from presenting a list of named objects, files, which
contain a contiguous range of bytes to the modern file system comprised of a tree
structure augmented with soft and hard links, sparse files, extended attributes and
transparent support for many on-disk storage formats. Extended Attributes (EA)s [2]
allow the creation, update and removal of key-value data that is stored on a per file
basis.

With the inclusion of soft and hard links, a modern filesystem is no longer a tree
structure and in general is not even required to be a Directed Acyclic Graph (DAG).

File systems perform many roles including storage of a user’s data as well as
metadata and configuration settings. When most users consider metadata that is stored
by a file system they think of a file’s size, modification time, access permissions etc.
While such metadata has been in common use for a very long time, modern file systems
allow much more metadata to be stored and retrieved [2]. It has become common
place for applications to store their configuration settings in the user’s home directory
under UNIX systems, extending the use of file systems to containing metadata about
application instances themselves.

These many ways in which modern filesystems handle many data sources, together

with the diverse manners in which filesystems are used today, makes them a good choice
for a data source when performing Formal Concept Analysis. The scope of what can
be analysed is again broadened when applied to a Semantic File System. Choosing
to apply Formal Concept Analysis to a modern Semantic File System allows not only
traditional filesystems but also relational databases, XML data and graph structured
data to be analysed.

There are many limitations of a hierarchical file system model which are addressed
by using Formal Concept Analysis. The most striking being that a tree structure forces
logical containment of files in a directory and the encoding of metadata about each file
into its path in the tree [25, 30]. The logical containment issue is that a file normally
only exists in a single directory. This can be eased by use of soft and hard links but in
so doing the semantics of file access become more complicated (dangling links, cycles
during link resolution). Encoding metadata into a file’s path hinders the location of
conceptually similar documents because a small change in one piece of metadata may
require one to scan from the root of the tree to find a document. Consider the example
where paths are created by first encoding the year the document was authored and
then the general type of document such as audio, video or text. If one is browsing
/2003/text/whitepaper/libferris/fcasurvey.tex and wishes to find other libferris
white papers that were not necessarily authored in 2003 then they must try other
branches from the root of the tree and scan down a similar path from each of those.

To alleviate the single access path issue many file systems offer the ability to find
conceptually similar documents by showing the results of a query as a file system [39,
47, 41]. Such views have the drawback of being read only or allowing inconsistency and
usually being somewhat separate from the standard navigation paths. In moving to the
finite lattice structure of Formal Concept Analysis both querying and navigation are
presented via the same interface and a user can seamlessly switch between both styles
of interaction [30].

Parts of the Introduction Chapter assume that the reader has some familiarity
with Formal Concept Analysis. Formal Concept Analysis will be presented in detail in
Section 2.2. Very briefly, the “clusters” mentioned above are called Formal Concepts,
the ordering of clusters is a Concept Lattice and the input data that the clusters are
found from is a Formal Context. The term “Formal” shall be left out where no ambiguity
arises, referring to clusters simply as concepts.

1.1 Hypothesis

The thesis is that a branch of discrete mathematics, Formal Concept Analysis,
when applied to Semantic File Systems can lead to an improved personal information
space. Semantic File Systems share many properties with their non semantic brethren,
bringing more rich metadata and the ability to directly resolve user queries within the
filesystem interface itself.

The issues mentioned in the previous section about the encoding of file metadata
in file system paths and the logical containment of files in directories can be remedied
with the integration of Formal Concept Analysis into the system. Formal Concept
Analysis has a solid mathematical background with formally defined semantics [38].
The use of Formal Concept Analysis thus provides a solution to the above problems
complete with a well defined mathematical treatment as opposed to attempts to simply

hide these issues with ad-hoc solutions.

In order to provide this improved personal information space, issues relating to the
scalability of Formal Concept Analysis must be addressed. The application of Formal
Concept Analysis must be able to support large dynamic data sets. This will typically
be in the order of millions of files each having potentially hundreds or thousands of
interesting attributes. This is the key issue of the thesis — if the system requires days
or weeks to perform Formal Concept Analysis on a user’s filesystem then it will be of
no use.

Scalability needs to be addressed in many places: indexing a filesystem such that
queries can be performed to obtain a formal context, indexing on the formal context
such that the set of concepts can be obtained and updated contingent and extents can
be found as the formal context varies with the underlying data set and the ability to
turn a set of concepts into a concept lattice in a timely manner.

1.2 Prior work on Formal Concept Analysis
and File Systems

Applying FCA to file systems can be seen from many perspectives in the literature.
Much research has been done on applying FCA to text document collections [19, 55].
FCA has also been applied to more structured data such as email [25].

Ferré and Ridoux present an alternate representation of FCA as Logical Concept
Analysis (LCA) in [31] where the lattice (O, A, I) has the attributes A replaced by an
(possibly infinite) lattice of formulas and I attaches formulas to the objects in O. It
has been shown that LCA and Formal Concept Analysis are equivalent. LCA is used
to apply Formal Concept Analysis to file systems as a whole [30].

Interacting with a filesystem through a concept lattice, directories become con-
cepts, symbolic links are no longer required and files form the object set O in the formal
context. There is no requirement for symbolic links because FCA allows a file to exist
in many concepts at the same time. Because a lattice structure allows a concept to have
multiple parents it allows objects that are conceptually close to each other to be close
in the lattice as well [13].

Consider the previous example of looking for other libferris white papers. The
example encoded metadata in directory names to form a tree such as /2003/text/
whitepaper/libferris/fcasurvey.tex. Using Formal Concept Analysis one would
only need to move up the lattice to loosen the restriction in the time dimension to see
other related libferris papers. To gain access to informal documentation on libferris one
could then navigate upward to remove the white paper attribute.

Ferré and Ridoux [30] generalize the current working directory pwd(1) into a
history stack of working concepts. This is done to allow one to move to the correct
parent concept easily. The familiar command cd .. becomes a pop operation on the
history stack or a move to the root concept if the history is empty. The semantics of
cd .. become more of a navigation backwards than a navigation to the last direct
super concept as detailed in [30]. The change in semantics is because the relative or
absolute move in the lattice is not broken into sub parts and pushed individually but
each refinement provides a single push onto the stack. If one is doing FCA using this
working concept stack then one could break a navigation into its component attributes
and push them as individual refinements. For example, given the working concept

“/2003/text” and a command cd whitepaper/libferris the stack could have the two
attributes pushed onto it in the order presented on the command line.

Due to concepts being multi parented there can be many paths from the root
concept to any concept in the lattice. The “parent concept” stack should however still
be maintained in the order given by the user so that only the last attribute in the path
is removed by a cd .. command, ie. the particular absolute path chosen to find a
concept is only relevant to future relative path operations. If one can easily strip off the
last attribute of a path then one only needs to store the path used to reach the current
concept to allow relative path operations. Presumably such a technique was not chosen
for [30] due to the use of formulas for attributes in Logical Concept Analysis.

The 1s command is made modal in [30] by separating out the query of the extent
of a concept (1s -r f) from query for the refinements available from a working concept
(1s f). This seems somewhat artificial as the traditional UNIX 1s command makes no
distinction between showing only places to navigate to against showing only the files in
the current directory.

Using the working concept one can easily navigate the concept lattice using famil-
iar commands cd, 1s and pwd modifying the lattice using mv, cp and rm as has been done
in the Conceptual Shell [30]. Although altering the current working directory with cd
should be easy enough, explicit detail is not given in [30] about how one resolves copy,
move and remove operations on objects in the lattice. The most challenging operation
would be the mv command. Consider the case of moving an image from a subconcept
of “true colour” to a subconcept of “monochrome”. Such an operation would require a
lossy transformation to occur on the actual image data in order to maintain the semantic
consistency of the objects in each concept in the lattice.

A commonly noted distinction is between intrinsic attributes of an object which
may be mechanically determined from an object’s byte content, and extrinsic prop-
erties which require user interaction to determine. Extraction of intrinsic properties
from documents covers many domain specific algorithms such as by using the Ripple-
Down Rule (RDR) knowledge acquisition and maintenance methodology from knowl-
edge based systems [55], email headers, regular expression matches and machine learning
algorithms [25, 92], or an arbitrary extraction function [30].

Extrinsic attributes for objects are discussed less than intrinsic. The Conceptual
Email Manager (CEM) [25] uses extrinsic attributes to allow the user to override intrinsic
attributes to always be true or false for a particular message and also to allow CEM
to update attributes such as “mail read” and “new mail” [25].

The collection of intrinsic and extrinsic attributes is used to form the attribute
set A for FCA. In CEM [25] the attributes create a partial order (A, <) such that the
transitivity in the partially ordered attributes is also reflected in the relation I of the
formal context (O, A, I), ie. If for an object o € O and an attribute a € A if ola then
Vu € transitive-parent(a), olp. This allows one to not only tag files with the most
specific attributes but to find them in the formal context using less specific attributes
relative to (A, <). The partial order (A4, <) in CEM is edited using a tree widget in
which multi parented attributes appear under each of their parent attributes in the tree.

Although Ferré and Ridoux use formulas as their attributes they too apply an
ordering to their attributes [31, 30]. Their formulas are ordered by a possibly infinite
lattice and they present methods to enable navigation of the concept lattice built from
these formulas using contextualized logic.

CEM [25] creates conceptual scales automatically based on the partial order it
maintains over the attributes in the formal context. A default scale S, is created
Vi € (A, <) such that S, is true iff an object o has any of the direct children attributes
of pin (A, <). Using LCA for file systems [30] has a similar setup using the lattice of
formulas it follows that one formula p deduces all formula below it in the lattice.

1.3 Methodology

This thesis directly concerns applied Formal Concept Analysis. As such the
complexity of the algorithms, the amount they require to use the systems hard disk and
seek disk heads and ultimately the amount of time required to perform certain tasks is
critical to the thesis.

The complexity of the application of Formal Concept Analysis is directly depen-
dent on the input data set that forms the formal context. The analysis of many of
the algorithms relies on the output of the process: the number of concepts, how many
connections there are between concepts, or how wide the concept lattice is. Note that
the output and input are directly related but not in a manner that allows algorithmic
complexity expressed in terms of the number of concepts to be easily expressed in terms
relating to the formal context.

This makes traditional algorithm performance analysis such as the “Big-O” av-
erage and worst case complexity more complex to derive. Moreover the worst case
complexity may be largely irrelevant because the cases which can trigger such worst
case are not encountered in reality.

Attempts to present more accurate algebraic performance of algorithms would
require intimate knowledge of the data distribution of the formal context. In the cases
in this thesis the performance relies heavily on the use of sophisticated custom indexing
tailored for performance on secondary storage. Attempting to derive algebraic com-
plexity for these systems would thus require analysis of both the data distribution and
recursive page splitting and subsequent distributions of the pages in the index struc-
ture. Such analysis would likely lead to very complex formulae and would be difficult to
apply to new data sets where the exact data distribution has not been mathematically
abstracted.

As such, empirical testing has been performed to validate the improvements
claimed by the research. Many sections of the thesis thus contain empirical test re-
sults to explicitly quantify the improvements offered. As these results drawn are from
many publications [75, 76, 74, 73] and were performed using different software and hard-
ware configurations they are spread over the thesis rather than combined into a single
chapter.

14 Major Results

Major contributions are presented in the area of indexing support for Formal
Concept Analysis on large dynamic data sets.

It has been found that the use of traditional B-Tree indexing by relational databases
is ineffective for applied Formal Concept Analysis [75]. The thesis starts by present-
ing spatial indexing methods which offer query resolution 80 times faster when Formal
Concept Analysis is applied to a large data source. This performance is obtained with

RD-Tree spatial indexing. This is more impressive again when one considers that hun-
dreds of these queries might be lodged at the database in order to visualize a single
concept lattice. Such results make the application of Formal Concept Analysis to a
large data set in the order of hundreds of thousands to a million objects tractable.

The RD-Tree index structure mentioned above is further improved by the use of
customized asymmetric page splitting algorithms and custom compression. The com-
pression must have knowledge of the Formal Concept Analysis scales that are used
to generate the data that is being indexed. When employing such page splitting and
customized compression tailored to Formal Concept Analysis only 16% the number of
internal keys are touched relative to a RD-Tree for a 16 attribute index. For the IBM
synthetic Data Mining input the Formal Concept Analysis based page split with For-
mal Concept Analysis tailored index compression could actually reduce the index tree
height from 4 to 3 which will directly reduce the number of disk seeks required for each
query. This impact will be more again when one considers that a relational database
will cache the root index node and quite possibly the direct children of the root node.
This leads to the Formal Concept Analysis based index requiring one disk seek com-
pared to the standard RD-Tree requiring two. Disk head seeks are the single slowest
action performed when accessing an index stored on a hard disk drive.

Investigations into applying Formal Concept Analysis to Semantic File Systems
is presented in Chapter 6. This looks at the structure of the concept lattice that is
created in various circumstances and ways to create a lattice which is more interesting
for the user. This chapter diverges from typical Formal Concept Analysis application
in the removal of the assumption that a “domain expert” will be present to generate
scales and assist the end user in the creation of concept lattices.

The link between Data Mining and the finding of Closed Frequent Itemsets and
the process of finding the set of all concepts for a formal context is built on in Chapter 5.
Although mathematically the ordering relation among concepts is implicitly available
once the set of all concepts is found, in a computer system this ordering must be
explicitly recorded. A new algorithm for quickly making the covering relation explicitly
available is presented and empirically tested. This new “border” algorithm is found to
be very effective for the target that it was designed for — making the covers explicit for
up to a few thousand concepts. The major advantage of the border algorithm is that
it does not require the formal context at all. This makes it efficient to apply where the
data source is large and dynamic and simply reading the formal context sequentially
implies a large performance cost.

Chapter 7 investigates the application of Formal Concept Analysis to system se-
curity. It was found that the two security policies offered in Fedora Linux 7, the targeted
and strict security policies, both offer the same level of information flow protection when
considered in a transitive manner. Considering transitive information flow with Formal
Concept Analysis in this manner allows one to see where information can move to in a
computer system when a number of intermediate security states may be required. The
use of Formal Concept Analysis in this manner allows one to see which security states
in the system share a “transitive cluster” in that information can more readily flow
between these security states than others.

Chapter 8 presents investigations into Semantic File Systems themselves. The
major contribution being how a Semantic File System can in many ways be seen as
XML and vice versa. This allows things like arbitrary bidirectional mappings to be

setup between Semantic File Systems to enable schema mutation. Schema mutation
inside the Semantic File System allows possibilities such as the schema of a relational
database to be mutated to the schema of an Office document. With such a bidirectional
schema mutation in place, an end user application such as OpenOffice can be used to
directly open and edit a table in a relational database.

1.5 Impact and Importance

Although the thesis is primarily concerned with the application of Formal Concept
Analysis to a Semantic File System data set many of the methods and results can
be translated to other large data sources. In particular the indexing improvements
presented have been empirically tested against standard large datasets such as the IBM
synthetic data generator [88] and the mushroom and covtype databases from the UCI
dataset [17].

The scalability offered by the methods in this thesis enable Formal Concept Anal-
ysis to be applied to datasets which would previously have been avoided. A single query
once took over 55 minutes and can now be resolved in just over 40 seconds on the same
computer. When one considers that the new resolution does not require any sequen-
tial scans over the data set and only relies on the index structure for resolution and
the previous best practice needed 90 sequential scans to resolve, the scalability of the
index structure presented becomes even more impressive. As the size of the data set is
expanded an order of magnitude the old method would gain more than a linear number
of sequential scans. This only serves to increase the performance advantage of the new
indexing structures.

The Border algorithm in Chapter 5 also directly supports application to larger
data sets because it operates only on the set of concepts and does not require any
knowledge of the formal context.

Chapter 6 works towards a system where an average user who is ignorant of
Formal Concept Analysis can still take advantage of a system employing Formal Concept
Analysis where a “domain expert” is not present. Various methods are presented which
modify the concept lattice to be more user friendly. Although the techniques presented
in Chapter 6 assume that the chapter reader has knowledge of Formal Concept Analysis
the techniques themselves can be offered by a computer system for the use of system
users ignorant of Formal Concept Analysis.

The link of Semantic File Systems to XML shown in Chapter 8 has already
been noticed by private industry with the publication in the Linux Journal [70] and a
presentation of the technique at the Ottawa Linux Symposium 2007 [69].

1.6 Overall Structure

Background information on both Formal Concept Analysis and Semantic File Sys-
tems is presented in Chapter 2. This is followed by a description of building filesystem
indicies and the various trade-offs to this new field of “desktop search” in Chapter 3.
Improvements to indexing for Formal Concept Analysis is presented in Chapter 4. With-
out the work in Chapter 4 Formal Concept Analysis could not be applied in a timely
manner to data sources as large as a filesystem. A new algorithm for finding the cover-
ing relationship among concepts is then presented in Chapter 5 which does not require

access to the formal context at all in order to find the covering relation. With the ability
to resolve Formal Concept Analysis queries in a timely manner and the ability to find
the covering relation on the concepts, the concept lattice, Chapter 6 investigates the
application of Formal Concept Analysis to Semantic File Systems and various ways to
modify the application to achieve more pleasing results. Attention is then turned to
applying Formal Concept Analysis to the security of filesystems in Chapter 7. Security
is considered in the context of a modern Mandatory Access Control system. Various
advances to Semantic File Systems themselves that were researched during the PhD
candidature are then presented in Chapter 8 followed by the Conclusion of the thesis.

The work in Section 8.2 appeared in ADCS 2003 [61]. Section 1.2 appeared in
ICFCA 2004 [62]. Section 2.3 contains information from ICFCA 2004 [62]. Section 6
contains information from ADCS 2005 [73]. Section 4.2 and Section 4.3 contain infor-
mation from ICFCA 2006 [75]. Section 4.4 contains information from ISMIS 2006 [74]
and ICFCA 2007 [76].

Chapter 2

Background

2.1 Introduction

This section presents information on both Formal Concept Analysis and Semantic
File Systems.

2.2 Formal Concept Analysis Preliminaries

This section will first present Formal Concept Analysis in an informal manner
using a running example. This will be proceeded by a more formal treatment. The
interested reader will find Formal Concept Analysis presented with full mathematical
rigour in [38]. The example is the Hungarian educational film taken from [38].

Formal Concept Analysis is concerned with the relation of a set of Objects to a
set of Attributes which those objects may or may not posses. It is convenient to present
this relation in a cross table as shown in Figure 2.1. The objects in Figure 2.1 are
various living things and the attributes describe their desired living space, ability to
move around, having limbs, and other features.

In its purest form, Formal Concept Analysis is only concerned with binary cross
tables where objects either have an attribute or do not. Input data which is not in the
form of a binary relation must first be converted into this format. For example, if there
was a “mass” for each object that would likely be expressed as grams or some other
numeric value. To use such information with Formal Concept Analysis one must first
translate the values into binary attributes. For example, one could assign light, average
and heavy classes with fixed mass values which delineate each class. These three binary
attributes could then be used with Formal Concept Analysis.

The translation of one or more non binary attribute(s) into one or more binary
attribute(s) using a predicate like this is called Logical Scaling [86, 87] in the Formal
Concept Analysis community. The input binary relation is referred to as a Formal
Context.

Given a cross table like Figure 2.1 as input, Formal Concept Analysis will find all
the strongest groupings (cluster) of objects and attributes. A strongest grouping can be
found by starting at any particular cross in the table and trying to expand a rectangle
out in all directions. The catch is that arbitrary reordering of the rows and columns in
the cross table is allowed if it will allow the rectangle to expand. For example, consider
the “One seed leaf” attribute for the Maize object. If the Maize row is exchanged with
the row above it then the “One seed leaf” rectangle can be expanded to include both

10

Surrdsygo so[yons

squu] sey

9AOTI URO

Jeo[poas auo

SOARBI[Paas OMm]

1Aydoro[yo spoaN

pPUR[UO SOATT

Iojem UL SOATT

OAT[0} Iojem SPaaN

X

Leech

Bream

Frog

Dog

Spike - weed
Reed

Bean

Maize

Figure 2.1: Context of an educational film “Living Beings and Water”.

11

the “Spike - weed” and “Reed”. Both of these objects have “Needs chlorophyll” so the
rectangle can be expanded to include that attribute. Note that both “Spike - weed”
and “Reed” have “Lives in Water” but this attribute cannot be included because the
third object (which we originally started with) Maize does not have “Lives in Water”.
We now have a 2 row by 2 column sized rectangle. This rearrangement process must be
repeated until it is no longer possible to expand the rectangle. At that stage a single
“strongest grouping” has been found. Then a different starting cross in the table is to
be selected and the process repeated until all crosses have been used as a starting point.

As can be seen from the above informal description the location of the strong
groupings can be a very computationally expensive task. Let us assume that the num-
ber of crosses in the cross table is ||, the number of attributes is |A|, the number of
objects is |O| and |C| is the number of strong groupings (formal concepts). The upper

bound complexity for computing the number of strong groupings is 2/3 x 2V T+ but

much better algorithms have been developed with O(|A||C||O|). In practice, computing
the concept lattice of a formal context is cubic in the size of the number of objects or
attributes, whichever is larger. As discussed in Section 5 there are techniques to ob-
tain a well defined subset of the strong groupings which offer even better performance.
A comprehensive survey of algorithms and a characterization of their space and time
complexity can be found in [20].

When all the strong groupings have been found they can be arranged in a Hasse
diagram by considering groupings which have more attributes to be extensions or chil-
dren of groupings with a subset of their attributes. For example, a grouping with the
attributes “Can_move, Has_limbs” might have a grouping with attributes “Can_move,
Has_limbs, Suckles_offspring” as an extension or child grouping.

The cross table shown in Figure 2.1 has its strong groupings shown in a Hasse
diagram in Figure 2.2. The attributes for a grouping are shown above the node for
that group. The objects in a grouping are listed below its node. Note that when an
attribute appears on a node z it automatically applies to all the other nodes which are
connected (transitively) below z. An attribute label appears as high as it possibly can
on the diagram. Conversely an object label is added as low in the diagram as possible.
The object label attached to node y applies to all other nodes connected (transitively)
above y. This specialized form of Hasse diagram is known as a labelled line diagram
and is a diagrammatic representation of a concept lattice.

Notice that since all objects “need water to live” that the strong grouping shown
at the top of the diagram contains that attribute. Looking at the strong grouping for
Leech we can see a nearby grouping containing Bream. The only strong grouping that
is not a parent of Leech is “Has limbs” and so we can see that this is the discerning fact
between the two objects. Considering the two attributes “Lives on land” and “Needs
chlorophyll” if we want to find objects which have the latter but not the former we need
to trace downwards from “Needs chlorophyll” being careful not to move to a strong
grouping which has “Lives on land” as a (transitive) parent. It turns out that the only
such object is “Spike - weed”.

A strong grouping is referred to as a Formal Concept in the Formal Concept
Analysis community. The arrangement of strong groupings (cf. Formal Concepts) in
a Hasse diagram based on their attributes (cf. Formal Attributes) is called a Concept
Lattice. The discussion now focuses on giving a more formal treatment to the above
prose.

12

"1°g 9INSI Ul UMOTS JX3)U0)) [RULIO] ST} I0] 892139RT 1deduo))
9} S sy} ASojoururio) sisAfeuy 1deouo)) [RULIO] U] "'g 9INSI Ul 9[qe} SSOID 9} 10} sSuIdnord Suoiys o) I0J WRISRIP 9SSR :g'7 oINS

Jea7 pass auQ

_ w>:|8|p2m>>|mﬁwuz_

13

Formal Concept Analysis [38] is a branch of discrete mathematics concerned with
the study and application of the Galois connection between two sets [27] (for this reason
a Concept lattice is often called a Galois lattice in the French speaking world). The
input to Formal Concept Analysis is a binary relation between two sets. The binary
relation is referred to as a Formal Context. A formal context is a triple (O, A, I) where
O is a set of objects, A is a set of attributes, and I is a binary relation between the
objects and the attributes, i.e. I C O x A. There is no requirement that O and A be
different or disjoint sets.

The Formal Context can be displayed to the user as a Concept Lattice. A Formal
Concept of a Formal Context (O, A, I) is a pair (X,Y) where X CO, Y C A, X ={o €
O|VYmeY:(o,a)elfandY ={a€ A | Yoe X :(o,a) € I}. For a concept (X,Y),
X is called the extent and is the set of all objects that have all of the attributes in Y,
similarly Y is called the intent and is the set of all attributes possessed in common by all
the objects in X. As the number of attributes in Y increases, the concept becomes more
specific, i.e. a specialization ordering is defined over the concepts of a formal context
by:

(X1,Y1) < (X9, Y2) Yo C Y

Formal Concept Analysis is always performed on a binary relation. To extend
the possibilities for input data of Formal Concept Analysis, a non binary relation can
be converted into a binary relation (Formal Context) by a process called scaling.

Many-valued contexts and scaling are now presented more formally.

For non binary relations, data is organized as a table and is modeled mathemat-
ically as a many-valued context, (O, A, W, I,,) where O is a set of objects, A is a set of
attributes, W is a set of attribute values and I, is a relation between O, A, and W such
that if (0,a,w;) € I, and (o0,a,wy) € I, then w; = wy. In the table there is one row
for each object, one column for each attribute, and each cell is either empty or asserts
an attribute value.

A many-valued context holds many similarities to a single table in the relational
model [52, 78].

A refined organization over the data is achieved via conceptual scales. A con-
ceptual scale maps attribute values to new binary attributes and is represented by a
mathematical entity called a formal context. A conceptual scale is defined for a partic-
ular attribute of the many-valued context: if S, = (O, Am, Im) is a conceptual scale of
a € A then we define W, = {w € W | J(o,a,w) € I,} and require that W, C O,. The
conceptual scale can be used to produce a summary of data in the many-valued context
as a derived context. The context derived by S, = (Og, Aq, I;) w.r.t. to plain scaling
from data stored in the many-valued context (O, A, W, I,) is the context (O, Aq, Js)
where for o € O and n € A,

oJgn < JweW: (o,a,w) € I
and (w,n) € I,

Scales for two or more attributes can be combined in a derived context. Consider a
set of scales, S,, where each a € A gives rise to a different scale. The new attributes
supplied by each scale can be combined:

N::UAax{a}

a€A

14

Then the formal context derived from combining these scales is:

gJ(a,n) & JweW: (o,a,w) € I
and (w,n) € I,

Creating a binary relation that can be used as I C O x A can be done by creating
conceptual scales as outlined above [24, 25, 23, 86] or using logical scaling [86, 87]. Both
conceptual and logical scaling can be seen as a method to take one or more columns in
a many valued context and generate one or more new binary columns as the result.

Some standard scaling techniques include: nominal, ordinal and inter-ordinal.

A nominal scale for an attribute A, generates a new attribute in the output for
each value of W, which A, takes in the input. If an object o € O, has value w € W,
for attribute a € A, then it will have attribute A,, in the output.

An ordinal scale takes an attribute A, which has a naturally ordered set of val-
ues W, and divides the input value range into many linear intervals to form output
attributes. An inter-ordinal scale combines two ordinal scales, one using < the other >
on its ordinal range.

An ordinal scale can be used on a many-valued attribute for which there is a
natural ordering, for example, size<=4096,size<=1Mb and so on.

In this representation more specific concepts have larger intents and are considered
“less than” (<) concepts with smaller intents. The analog is achieved by considering
extents, in which case, more specific concepts have smaller extents. The partial ordering
over concepts is always a complete lattice [38].

For a given concept C' = (X,Y") and its set of lower covers (X1, Y1)...(Xy, Y,) with
respect to the above < ordering the object contingent of C' is defined as X —J;*_; X;. The
object contingent shall subsequently be referred to as the contingent where ambiguity
does not arise.

2.3 Semantic File Systems

The notion of a semantic filesystem was originally published by David K. Gifford
et al. in 1991 [39)].
A semantic file system differs from a traditional file system in two major ways:

e Interesting meta data from files is made available as key-value pairs.
e Allowing the results of a query to be presented as a virtual file system.

Interesting meta data is extracted from a file’s byte content using what are referred
to as transducers in [39]. An example of a transducer would be a little bit of code that
can extract the width of a specific image file format. A transducer to extract some image
related metadata is shown in Figure 2.3. Image dimensions are normally available at
specific octet offsets in the file’s data depending on the image format. A transducer
which understands the PNG image encoding will know how to find the location of the
width and height information given a PNG image file.

Queries are submitted to the file system embedded in the path and the re-
sults of the query form the content of the virtual directory. For example, to find
all documents that have been modified in the last week one might read the directory
/query/(mtime>=begin last week)/. The results of a query directory are calculated

15

Foo.png

768 1024

Extended Attributes

A

+width = 1024
+hei ght = 768
+

Figure 2.3: The image file Foo.png is shown with it’s byte contents displayed from offset
zero on the left extending to the right. The png image transducer knows how to find
the metadata about the image file’s width and height and when called on will extract
or infer this information and return it through a metadata interface as an Extended
Attribute.

every time it is read. This is a virtual filesystem because the directory does not exist in
a persistent form, it is materialized on demand. Any metadata which can be handled
by the transducers [39] (metadata extraction process) can be used to form the query.

Another use of the term “virtual filesystem” is the ability to select among various
filesystem implementations. The Linux kernel [59, 90] maintains such an arrangement
allowing incompatible filesystems such as Ext3 and XF'S to be used through a common
interface. The implementation used for testing in this thesis fulfills both uses of the
virtual filesystem term.

The semantic filesystem used for experimentation and empirical testing during
the course of the PhD was libferris [3, 64, 66, 68, 70]. Libferris was chosen because it
was already in a stable state at the beginning of the PhD, it offers the ability to mount
many data sources as a filesystem, it can extract interesting metadata from many file
formats, and as it was written by the PhD author. The later point enables quick applied
research because the code base is familiar to the author.

Although there are many filesystems which implement many of the features of
a Semantic File System it is extremely difficult to compare them all. For example,
the Strigi indexing feature of KDE4 includes support for digging into archives, index-
ing the individual files that are contained within them. Strigi also includes support
for extraction of metadata on a per file basis and searching for information using this
metadata. Unfortunately Strigi is not coupled with the KDE4 virtual filesystem inter-
face directly and as such applications need to have explicit support for accessing search
results. Thus although Strigi comes close to being a Semantic File System it does not
use virtual filesystem interfaces to obtain the data it indexes and does not offer search
results primarily through a virtual filesystem interface.

The filesystem implementation in BeOS' includes support for both metadata
extraction and index and search and can be categorized as an Semantic File System.
Relative to the BeOS implementation, libferris includes support for multiple index for-
mats, federated search, RDF, and geotagging among other features.

A recent and widely known attempt to implement a Semantic File System is

! http://en.wikipedia.org/wiki/BeOS

16

WinFS? . Although most of the literature does not promote WinFS as a Semantic
File System, all of the required features are present in the design. Unfortunately the
availability of WinF'S being limited and the widespread negative press about its perfor-
mance does not fair well for its use in the PhD research. The reader will also see in
Section 3 that using a fully relational schema for indexing semi structured data, such
as a Semantic File System, has performance and extensibility implications.

It is a significant advantage that libferris is open source software. Because the
source code is freely available, the indexing structures presented in Chapter 4 were able
to be implemented and integrated into the system for empirical verification without
any fixed API barriers to closed components to worry about. Moreover, as the entire
solution is freely available, third parties can verify the results presented in the thesis
and build on this research.

Although libferris was chosen as the implementation for empirical testing in this
thesis, the results of the thesis are directly applicable to other Semantic File System
like implementations and indeed other Formal Concept Analysis tools. For example,
although Strigi does not present itself as a virtual filesystem, the indexing structures
presented in Chapter 4 could be used to allow Strigi to return search results based on
the application of Formal Concept Analysis.

Some details are now presented about libferris. References to the availability of
various data sources which can be exposed as a filesystem by libferris are relevant to
allow the reader to see the scope of where Formal Concept Analysis can be applied
through the system described in the thesis. Many readers will not consider things like
relational databases, XML and RDF [85] as being “filesystems” though they can be seen
that way through libferris.

Libferris is a virtual file system. This means that there are many different filesys-
tem implementations and libferris automatically selects which implementation is ap-
propriate for any given URL. For example, given a URL starting with “postgresql://”
the PostgreSQL database filesystem implementation is selected. A URL beginning with
“file://” will use an implementation based on the operating system’s file access system
calls.

An innovation that libferris brings is the ability for the filesystem itself to auto-
matically chain together implementations. The filesystem implementation can be varied
at any file or directory in the filesystem. For example, in Figure 2.4 because an XML
file has a hierarchical structure it might also be seen as a filesystem. The ability to
select a different implementation at any directory in a URL requires various filesystems
to be overlaid on top of each other in order to present a uniform filesystem interface.

When the filesystem implementation is varied at a file or directory then two dif-
ferent filesystem handlers are active at once for that point. The left side of Figure 2.4
is shown with more details in Figure 2.5. In this case both the operating system ker-
nel implementation and the XML stream filesystem implementation are active at the
URL “file://tmp/order.xml”. The XML stream implementation relies on the kernel
implementation to provide access to a byte stream which is the XML file’s contents.
The XML implementation knows how to interpret this byte stream and how to allow
interaction with the XML structure though a filesystem interface.

Note that because in the above the XML implementation can interact with the

2 http://en.wikipedia.org/wiki/WinFS

17

operating system kernel implementation to complete its task this is subtly different to
standard UNIX mounting where a filesystem completely overrides the mount point.

The core abstractions in libferris can be seen as the ability to offer many filesys-
tem implementations and select from among them automatically where appropriate for
the user, the presentation of key-value attributes that files posses, a generic stream in-
terface [58] for file and metadata content, indexing services and the creation of arbitrary
new files.

Filesystem implementations allow one to drill into composite files such as XML,
Indexed Sequential Access Method (ISAM) files,® databases or tar files and view them
as a file system. This is represented in Figure 2.4. Having the virtual filesystem able
to select among filesystem implementations in this fashion allows libferris to provide a
single file system model on top of a number of heterogeneous data sources?® .

Presentation of key-value attributes is performed by either storing attributes on
disk or by creating synthetic attributes whose values can be dynamically generated
and can perform actions when their values are changed. Both stored and generated
attributes in libferris are referred to simply as Extended Attributes (EAs). Examples
of EAs that can be generated include the width and height of an image, the bit rate of
an mp3 file or the MD5 [4] hash of a file. This arrangement is shown in Figure 2.6.

For an example of a synthetic attribute that is writable consider an image file
which has the key-value EA width=800 attached to it. When one writes a value of 640
to the EA width for this image then the file’s image data is scaled to be only 640 pixels
wide. Having performed the scaling of image data the next time the width EA is read
for this image it will generate the value 640 because the image data is 640 pixels wide.
In this way the differences between generated and stored attributes are abstracted from
applications.

The Resource Description Framework (RDF) [85] was created by the W3C to
allow metadata to be stored, queried and exchanged. The use of an RDF repository
in Figure 2.6 allows the Semantic File System to always be able to store metadata.
Some filesystems will not naturally allow metadata to be stored, for example, when an
FTP server is mounted as a filesystem the user may not have the ability to write to
the filesystem. By using a personal RDF repository libferris can allow metadata to be
written for files on the mounted FTP server by keeping this information in the personal
RDF repository and offering it again for these files in the future. In this way the user
of the Semantic File System does not need to be concerned with whether a filesystem
supports writing metadata or not.

The use of RDF as a metadata source also allows the Semantic File System
to obtain metadata from other users or the Internet about files and integrate that
information into the system as a whole.

Another way libferris extends the EA interface is by offering schema data for
attributes. Such meta data allows for applicable collations to be set for a data type with
a default selected for ordering of values, for example, integer vs. string comparison.
Graphical interfaces can also present data in a format which the user will find more
intuitive, for example presenting dates with a calendar interface. As will be mentioned
later, having the correct method of ordering values of a data type (collation) and for an

3 eg. B-Tree data stores such as Berkeley db
4 Some of the data sources that libferris currently handles include; http, ftp, db4, dvd, edb, eet, ssh,
tar, gdbm, sysV shared memory, LDAP, mbox, sockets, mysql, tdb and XML.

file://

A

order.xml

postgresql://

A

localhost

A

order

<order>
<customer id="111"/>

</order>

mydatabase

ﬁ

customerstable

$

customer

fN

111-fred

112-frodo

18

Figure 2.4: A partial view of a libferris filesystem. Arrows point from children to their
parents, file names are shown inside each rectangle. Extended Attributes are not shown
in the diagram. The box partially overlapped by order.xml is the contents of that file.
On the left side, an XML file at path /tmp/order.xml has a filesystem overlaid to allow
the hierarchical data inside the XML file to be seen as a virtual filesystem. On the
right: Relational data can be accessed as one of the many data sources available though

libferris.

19

tmp

T file:// implementation

L order.xml <€

order.xml

XML implementation

order

T

customer

Figure 2.5: The filesystem implementation for an XML file is selected to allow the
hierarchical structure of the XML to be exposed as a filesystem. Two different imple-
mentations exist at the “order.xml” file level: an implementation using the operating
system’s kernel IO interface and an implementation which knows how to present a
stream of XML data as a filesystem. The XML implementation relies on the kernel 10
implementation to provide the XML data itself.

Foo.png

768 1024 |

PNG file transducer

Inference
From other Extended Attributes

EA)
) +width = 1024
+hei ght = 768
.
+secuti ry- context = ben Opera“ng SyS‘em

. Extended Attribute
Interface

+ny-rating = good

4

+aspect ratio = 1.33
4

RDF repository

Figure 2.6: Metadata is presented via the same Extended Attribute (EA) interface. The
values presented can be derived from the file itself, derived from the values of other EA,
taken from the operating system’s Extended Attribute interface or from an external
RDF repository.

20

EA is a prerequisite to generating logical scales for use in Formal Concept Analysis.

In order to quickly find the set of files that have a given attribute value indexing is
available on both the full text of files [104] and on their EAs. The EA index is maintained
in a sorted order to allow the list of files for which a comparative constraint on their
EA holds. For example width<800 can be resolved completely using only the index.
Much more detail is presented on indexing and its use in Formal Concept Analysis in
Section 3.

The term “indexing” could be used to refer both to the process of adding a new
filesystem document to the index as managed by libferris and also to refer to a Relational
Database Management System (RDBMS) index. To avoid ambiguity some terminology
is introduced here which is used throughout the thesis. An index of document metadata
as managed by libferris will be referred to as an findex. From an Formal Concept
Analysis perspective, one can consider an findex as being a large many-valued context
from which many formal contexts can be derived. A query against an findex will be
referred to as an fquery. Obtaining the files which match an fquery will be referred to
as resolving the fquery. This helps to avoid ambiguity when the fquery is translated
into another query language such as SQL by the findex engine. The creation of a
formal context from the findex can be viewed as the resolution of many fqueries
which define the attributes of the formal context.

It is natural for one to consider the files and directories of a Semantic File System
as forming the object set for Formal Concept Analysis. This is more so in a Semantic
File System than a traditional filesystem because in many cases a file can appear as
a directory in an Semantic File System depending on the context. For example, an
archive file like a tar.gz file will appear as a file but can also be read directly as though
it was a directory. In this way one might wish to use the metadata for their files to form
the attribute set for Formal Concept Analysis. If one has some binary metadata about
a file, for example is-character-device, then its presence can be taken to directly
imply a connection in the input binary relation I C O x A for Formal Concept Analysis.

The requirement for input to Formal Concept Analysis to be in the form of
a binary relation presents challenges when applying it to a Semantic File System in
general. This is due to the fact that the metadata attached to the files in a Semantic
File System is rarely simple binary values. Also some metadata which at first appears
to be binary may have additional structure which should be taken into consideration.
For example, the libferris Semantic File System has the notion of tags. A tag allows
the user to categorize their files either explicitly or implicitly [61]. This may at first
appear to be a simple binary attachment where for a specific tag a file either has that
tag associated or it does not. However the tags in libferris themselves form a partially
ordered set and as such the association of an tag x also conveys information about a
files’ association with all the parent tags of x in this partial order.

There are three distinct tasks that must be performed in order to produce a
Concept Lattice from a Semantic File System, these are shown in Figure 2.7. Firstly
the information from the Semantic File System must be indexed in some format. This
is the creation of the findex and also what this chapter is concerned with. Secondly the
information from the findex must be converted into a Formal Context through either
logical scaling or conceptual scaling. This is discussed in Section 6.2. Finally the set of
Formal Concepts must be identified from the Formal Context and the relations between
those concepts explicitly recorded. This is the focus of Section 5.

file://

)

prad

order.xml

Add to findex

@ findex

@ Logical Scaling

Creatures

Reptilia | Mammalia

Aves | Nocturnal

African fat-tailed gocko

x

x

Kangaroo

X

X

Barking Owl

X X

Lattice Closure

Semantic File System

Formal Context

Concept Lattice

21

Figure 2.7: The three tasks to get from a filesystem to the result of Formal Concept

Analysis: the Concept Lattice.

22

Chapter 3 focuses on how indexing is performed for the libferris Semantic File
System. The discussion focuses on how to arrange indexing for EAs — the key-value
metadata pairings. Attention is then turned to how to improve performance for applied
Formal Concept Analysis in Chapter 4.

Chapter 3

Indexing Considerations

3.1 Introduction

This chapter describes the building of indexes on Semantic File Systems and
the issues related to constructing such indexes. Applying Formal Concept Analysis
to file systems will require the filesystem to be indexed in order to possibly achieve
an acceptable level of performance. The chapter starts by describing the problem, in
Section 3.2 indexing of human language file contents is briefly discussed before attention
is turned to the complex issue of indexing filesystem metadata in Section 3.3. To index
metadata two different solutions are considered based on inverted files in Section 3.3.4
and relational databases in Section 3.3.5. Storing many versions of file metadata in the
index and the performance implications of this is considered in Section 3.3.5.3. Finally
attention is turned to empirical performance testing in Section 3.3.6.

One can consider the metadata (EAs) from an SFS to define a collection of tuples
as shown in Figure 3.1.

The creation of an index for a human language document or metadata key-value
pairs (EAs) requires different data structures and implementation techniques. Indexing
must be able to satisfy queries including comparisons on eavalues for given eanames.
On the other hand, human language queries are mainly concerned with the presence
of terms in resulting documents, for example, finding all documents containing the two
words “Semantic XQuery” anywhere in their contents. Although the frequency which
terms appear in documents and the document length can be used to perform ranked
full text queries the user will not specify term frequencies in the query itself.

It is also desirable for indexes to be able to retain past and present values for
metadata on files. It is quite likely that the user will remember some metadata about
files from a given point in time and submit a query based on this. The ability to find files
which had given metadata during an interval in time allows such queries to succeed even
though metadata values have changed. For example, one might like to search for files
which they thought to be “important” a year ago. Files might have been subsequently
modified to be no longer important but we are interested in finding the files which were
important a year ago. As such the query must be evaluated not against the metadata

{ file-url, eaname, eavalue }

Figure 3.1: Abstract tuple view of Semantic File System metadata.

24

Boolean Fulltext Query || Alice | Wonderland

gutenberg_alicel3a.txt X X
Frodo.txt

Thesis.tex X X
gutenberg_frsls10.txt X

Figure 3.2: A Formal Context for the two term full text query “alice wonderland”.

as it stands now but against the metadata as it was a year ago to return the results
which where important a year ago.

Turning again to the size of the index. For a moderate sized Semantic File System
there can easily be 500,000 files each having between 100 and 1,000 EAs. A minimal
“client” install of Fedora Core 2 Linux will have 57,000+ files after install. This file
count will naturally increase once the user places source code, digital images, music files
etc. onto the system.

The indexing system currently implemented in libferris is capable of resolving
queries involving both full text and metadata components [66]. The following presents
some of the issues with creating such indexes, solutions to these issues and empirical
testing of the findex structure.

3.2 Indexing full text

Full text indexing is handled in the traditional manner using inverted files [104,
56]. For other work on Formal Concept Analysis and full text indexing see [19].

As boolean full text queries can be considered to present a binary relation between
terms and documents they are able to be much more mechanically fed into Formal
Concept Analysis. The research has focused on the indexing of metadata and how this
can be used with Formal Concept Analysis.

As an example, consider the fulltext query “alice wonderland” which defines two
Formal Attributes each being defined by the presence of a single query term in the
document. A Formal Context which might result from this query is shown in Figure 3.2.

3.3 Indexing metadata

The range of values produced by reading an EA for all files on the filesystem
will be different depending on the properties of the EA. Some EA will almost surely be
bound to a unique value for each object, for example the MD5 checksum of a file [4].
Some EAs will have a single value shared for a great many files, for example an EA
which is true if a user can read a file. Some EAs will not have a value for many files,
for example the width EA will likely only have a value for image and video files. EA
which have a value for most files shall be referred to as dense EAs. In contrast, EA such
as width will be referred to as sparse. Some EA will be fully dense in that they have a
value for all files, these include the file name, the URL and the size of the file.

The indexing structures used to store the EA will have to gracefully handle both
dense and sparse value binding as well as the range of values for each EA being small
and large.

25

Three things are required of the EA findex:

e Ability to findex or refindex a document. The refindex process presents the
issue of invalidation and compaction of the existing data in the findex for a
file. For example, when a file is already in the findex it may be first removed
requiring the free space in the findex to be reclaimed [33].

e Ability to apply logical scaling to the findex. The findex for an SFS will have
many non single valued attributes, as such it is important for the indexing sys-
tem to efficiently be able to apply logical scaling to the many valued attributes
to generate new single valued attributes. The syntax and abilities for scaling
are outlined in Section 3.3.2.

e Ability to quickly resolve queries which involve predicates on many EAs. For
example, listing the contingent or extent of a concept. To obtain this goal
requires specialized indexing as detailed in Chapter 4.

3.3.1 Reindexing a File

The time which the document is indexed should be recorded by the findex to
allow subsequent reindexing of a filesystem to avoid needless work. This value will be
referred to as the docidtime. The name is derived from the fact that every file in the
index will have a document identifier: the docid. If a file has not been modified in a
“meaningful way” since it was last indexed there is no need to reindex the file.

As detailed in Section 2.3 and in particular Figure 2.6 the libferris Semantic File
System allows metadata from many sources to be stored and presented for a file. This
complicates the procedure to work out if a file has changed in a meaningful way. For
example, metadata can be stored in a personal RDF repository for a file which the user
does not have modification access too. With such functionality checking if the file’s
modification or ctime (time of last status change) is newer than the time that the file
was last indexed will not detect modification of metadata stored as RDF [14, 18]. The
Semantic File System must use a more advanced method to track and update the time
that the last modification to any metadata about a file has occurred.

3.3.2 Query Syntax and Semantics

The query syntax and semantics will have a direct effect on the logical scaling
which is able to be efficiently performed by the findex.

The primary purpose of the syntax is to define a standard implementation in-
dependent syntax and semantics for queries on an EA index. Having a single fquery
syntax allows the logical scales defined for use in FCA to be neutral of the particular
implementation of findex. Each findex implementation is responsible taking queries
in this single fquery syntax and returning the files which satisfy that fquery. The
fquery syntax must be powerful enough as to allow the logical scales that are desirable
to be expressed in the fquery syntax.

The user is free to directly use the fquery syntax to pose queries directly to the
SFS if they wish though this is secondary to the above goal.

The chosen query syntax is designed based on the “The String Representation of
LDAP Search Filters” [43]. This is a very simple syntax which provides a small set of

26

comparative operators to make key operator value terms and a means to combine
these terms with boolean and, or and not. All terms are contained in parenthesis with
boolean combining operators located before the terms they operate on.

The comparative operators have been enhanced and in some cases modified from
the original semantics [43]. Syntax changes include the use of == instead of = for equality
testing. Approximate matching ~“= was dropped in favor of regular expression matching
using perl operator syntax =~. Operators which are specific to the LDAP data model
have been removed. The operators and semantics are presented in Table 3.1. Coercion
of rvalue is performed both for sizes and relative times. For example, “begin today”
will be converted into the operating system’s time representation for the start of the
day that the query is executed.

Operator | Semantics

=" lvalue matches the

regular expression in rvalue

== lvalue is exactly equal to rvalue

<= lvalue is less than or equal to rvalue

>= lvalue is greater than or equal to rvalue

Table 3.1: Comparative operators supported by the libferris search syntax. The opera-
tors are used infix, there is a key on the left side and a value on the right. The key is
used to determine which EA is being searched for. The 1value is the name of the EA
being queried. The rvalue is the value the user supplied in the query.

Resolution of the and and or is performed (conceptually) by merging the sets of
matching file names using either an intersection or union operation respectively. The
semantics of negation are like set subtraction: the files matching the negated subquery
are removed from the set of files matching the portion of the query that the negation
will combine with. If negation is applied as the top level operation then the set of files
to combine with is considered to be the set of all files. The nesting of and, or and
not will define what files the negation subquery will combine with. As an example of
negation resolution consider the fquery which combines a width search with a negated
size search: (&(width<=640) (! (size<=900))). The set of files which have a width
satisfying the first subquery are found and we call this set A. The set of files which
have a size matching the second part of the query, ie, size<=900 are found and we call
this set B. The result of the query is A\ B.

3.3.3 Two Designs for the findex

Two competing designs for the findex have been identified: inverted files and the
relational model. An implementation of both methods has been created within libferris
to allow empirical testing and to support the work in later chapters of the thesis. Each
findex implementation allows the user to create multiple findexes. The user can also
create an findex using any of the different indexing implementations.

The designs will have different performance characteristics and perhaps more
importantly will make available different extra searching capabilities. Extra searching
capabilities are those that are outside of the fquery syntax discussed in Section 3.3.2.

27

With disk prices being so cheap the user may wish to use multiple different indexing
options and combine the strengths of each when searching.

The inverted file implementation uses a collection of specially sorted inverted files
as detailed in Section 3.3.4 (using Berkeley db [7]). The relational model implementa-
tion is detailed in Section 3.3.5 (backed by PostgreSQL [6]).

A Null indexing implementation has also been created to find the amount of time
that is spent in reading and inferring the EA values for files. The Null indexing module
reads all the attributes for files which are to be indexed and does nothing. All queries
against the Null engine return an empty result. The Null engine exists to provide a
baseline for how much of the overall time is spent obtaining the values of EAs. Note
that reading of all attributes for a file may require significant time [39].

In both designs a file will have a unique identifier. For findexes that support
temporal analysis a file will have a single urlid and many docids for each time it has
been observed (reindexed) in the past. For findexes that do not support temporal
analysis the docid is sufficient to uniquely identify a file.

Query resolution is normally two phase, first a fquery string is resolved to a
obtain a set of distinct integers which are thought of as the Document Identifiers. A
Document Identifier is referred to as docid in this paper. A second phase takes a docid
and returns a string which is the URL for that document. This setup allows for both
a small number of documents to be fully resolved and shown to the user and the total
number of matching documents to be quickly known. The use of docids provides good
support for inverted file based indexing engines and does not penalize relational schema.
Other indexing schemes may need to generate synthetic docids and cache results so that
docids can be resolved from the cache.

The operation of refindexing a document presents two choices:

e Completely remove all references to the document in the findex and perform
an findexing operation on the document.

e Retain the old findex data and simply add the document again as a new docu-
ment. When a document is added to the findex the time it is added is recorded
so that normal fquery resolution can consider only the latest version of each
document’s findex data.

The second style allows the findex to resolve fqueries against what the EA
values were in the past. The only findex engine that supports retaining old document
metadata and querying against it is the relational engine.

3.34 Specially Sorted Berkeley DB Files

This is a custom designed solution based on the ideas for full text indexing using
inverted files [104, 16].

Because different types of data collate in different ways multiple Berkeley db
files [7] are maintained. For an example of collation consider that the integer 300 is
greater than 40 when compared numerically but using a lexicographical comparison 300
is smaller than 40 (cf. the UNIX Is(1) commands: 1s -1 vs. 1s -1v). Four collations
are maintained: string, case insensitive string, double and integer. Each collation is
stored in a different Berkeley db file.

28

Each key in the Berkeley database has two parts: the EA key and EA value, see
Table 3.2.

EA key EA value | inverted list of document
numbers that have a match

width 640 {3,4,5,12,51,200}

width 700 {1,6,9}

width 800 {7,13}

width 801 {8,4000}

Table 3.2: Inverted lists are stored in the order of the EA key and EA value. Partial
lookups are possible given just the EA key.

The EA key and EA value taken together are referred to as the inverted list key
and uniquely determine a list of matching documents. The value part of an inverted
list key is the value that each file in the inverted list has for the Extended Attribute
called EA key. Each number in the inverted list references the docid in a document
name lookup table. The docid lookup table allows fast access to the URL of a docid.

By storing the inverted files with the keys and values in sorted order queries such
as width<=800 and size>=50mb can be resolved by determining an upper and lower
bound and merging the inverted lists between these bounds. This resolution relies on
the ability to lookup partial keys in the Berkeley database. For example, to resolve the
query width<=800 using the index in Table 3.2 a partial lookup on “width” is done to
find the lower bound, followed by a complete lookup using the key “width800”, each
document list between these two lookups (inclusive) is merged to form the result. Note
that “width800” will in reality be the string “width” followed by the fixed width binary
value for “800”.

Another asset of having this ordering on the keys in the Berkeley db file is that
the inverted lists that must be merged should be stored close together on disk. Thus the
fetching of the inverted lists and merge process is able to be performed using a disk seek
unintensive cosequential process [33]. Assuming the index file is not fragmented such
a cosequential merge will operate on a list in memory and move the disk head forward
sequentially in a single sweep over the relevant disk sectors.

Resolving regular expression queries with this scheme can be time consuming
depending on how many values a given key has in the index. For example, resolving
name=""my.*foo would involve a partial lookup on name to find the beginning of the
range and while the EA key in the index remains the same a sequential process testing
the given regular expression against the EA value in the index, merging the inverted
lists for each EA value that matches the regular expression.

3.3.4.1 Inverted Lists for Dynamic Index Operation

Inverted lists used in document indexing are normally an ordered list of numbers.
Storing such a structure allows aggressive compression to be employed [104]. However
as many documents are added to the index the inverted lists become larger making the
time to read and decode a list longer. When performing a query for the conjunction of
two inverted lists one would like to limit the number of blocks read from disk. If one

29

Linear Index on docid list chunks

docid list index

e

docid=0 to 5000 docid=5031 to 12082 docid=32084 to 44567

Figure 3.3: An inverted list with a linear index shown above it.

inverted list has a gap between docid 133 and 56,001 then we would like to be able to
quickly skip docids in that range in the other inverted list . To assist skipping ranges
of docids during query resolution the inverted list is normally broken into fixed size
chunks with an index recording the maximum and minimum docid in each chunk [104].
An example chunked inverted list is shown in Figure 3.3.

When merging two such chunked inverted lists to form the set intersection only
the chunks which might contain matching numbers need be read and decoded.

3.3.5 Relational Database

Semantic File System metadata does not map simply into the relational data
model. A primary consideration is whether to attempt to extract and group related
metadata into separate relations in the database. For example, the width, height and
depth EAs are all related as “image” metadata. One can also consider these three EAs
to be related as “animation” metadata when the file is not a single image but a sequence
of images of the same size.

Any mapping of Semantic File System metadata into a relational database will
require a table relating a document URL to a numeric document identifier: the docid.
This shall be referred to as the docmap table.

It is convenient to include metadata which is expected to exist for all files directly
into the docmap table. For example, a file’s size and modification time are almost always
available for storage.

The time which the document was indexed (docidtime) is also stored in the
docmap table to allow subsequent reindexing of a filesystem to avoid needless work as
explained in Section 3.3.1.

The base schema of the docmap table is shown in Table 3.3.

3.3.5.1 Using Separate Relations

All mimetypes are recorded into a mimetypes relation shown in Figure 3.4.

The docmap table shown in Figure 3.3 is extended to contain a integer mimeid
field indicating the mimetype of the file. The mimeid field from docmap table is then
used in a join table (mimeidjoin) to select which type specific table contains metadata
for the particular file. For example, if a PNG image file is added to the index then its

30

Column Type Extra

url varchar(4096) | Primary Key
docid integer Not Null, Unique
docidtime | timestamp Not Null

size integer

mtime timestamp

md5 character(40)

Table 3.3: Base schema for the docmap table.

Column Type Extra
mimetype | varchar(40) | Primary key
mimeid integer

Table 3.4: The mimetype table.

mimetype would be image/png with perhaps a mimeid of 43. The mimeidjoin table
would map the mimeid 43 to the mdimage table where metadata about image files can
be found (width, height etc). The mimeidjoin table would be a many to many relation,
each file could have multiple type specific tables associated.

The use of such a relational model carries the following complications:

e Resolving keys in fqueries becomes more difficult. For the query width<800
how does the query engine know that the user is wanting width in the image
or animation tables? Perhaps they are looking for the width EA which is not
attached to either an image or animation. This can be subverted by forcing
the user to enter image.width to select table and then attribute. This forces
the user to use a different syntax for EA queries against the relational database
indexing engine and to know the table schema used for the EA index.

e Query Extensibility: If there are multiple tables in the database then either all
tables would have to be checked for matches to queries or the user would have
to be made aware of part of the database schema to form acceptable queries.

e EA Extensibility: If EAs are separated into multiple tables then the program
responsible for finding an EAs value would need to provide a “semantic group”
for that EA so that a relational database table can be created to store that
attribute. For example, an EA created to count the number of people in an
image would have to assign a table name for this attribute. This then creates
the situation that the people-count attribute either must be available in the
mdimage table or there must be a new table mdpcounttab with a people-count
column.

3.3.5.2 Using a less Relational Design

A less relational design can allow for easier expansion of supported metadata and
avoid the issues presented in Section 3.3.5.1. The design presented in this section has

31

been implemented in the libferris filesystem as the core findex for performing Formal
Concept Analysis on a Semantic File System.

This database design is concerned with two things for each EA: its basic type
(size and collation) and whether to denormalize it into the docmap table.

The schema has four core concepts: a docmap table (Shown in Table 3.5), a
docattrs table (Shown in Table 3.6) and a fixed collection of value lookup tables. As
the docattrs table references an attribute name through a numeric identifier (attrid), a
attrmap table is needed to find the string representation of the attribute identifier. An
overview is presented in Figure 3.4.

Column Type Extra

url varchar(4096) | Primary Key
docid integer Not Null, Unique
docidtime | timestamp Not Null

size integer

mtime timestamp

md5 character(40)

width integer

height integer

bitf bit varying

Table 3.5: Extended docmap table. The top of figure is identical to the docmap table
from Figure 3.3.

Column | Type Extra

attrid integer | Not Null, Primary Key
vid integer | Not Null

docid integer | Not Null, Primary Key

Table 3.6: docattrs, the lookup table to document map join table.

In the docattrs table the attrid references an attribute name table attrmap
and the vid references one of many lookup tables: intlookup, doublelookup, timelookup
and strlookup.

The lookup tables consist of two columns, one containing the vid and the other
containing a value of the table’s type. For example the intlookup table has a structure
vid=integer, value=integer and the value type for the strlookup table will be varchar.

Resolving an fquery with this schema will involve a three table join for every
EA comparison operator. The three tables involved will be a value lookup table, for
example, intlookup to find the vid for the given EA value, the attrmap table to find
the aid for the given EA name, and the docattrs table to join the aid with vid and
obtain the list of matching docids.

As shown in the docmap table in Figure 3.5 there is also the width, height and
bitf columns. The width and height EA might only available for 5% of all files and
be set to null for all others. Other EA of interest might also be stored directly in the
docmap table with the width and height information, ie. in a denormalized form. If

attrmap
d +attrid
ocmap docattrs +name
+:r1'd +attrid
raocd +vid strlookup
+docidtime +docid
+size +vid
+mtime +value
+md5
+width -
+height intlookup
+bitf +vid
+value

32

Figure 3.4: Core tables in the relational database schema. A single docid in the docmap
table can be associated with many tuples in the docattrs table. A single attrid in the
attrmap table can be associated with many tuples in the docattrs table. The attrid
and docid in the docattrs table can be considered foreign keys. The vid in docattrs
can not be a foreign key because it will reference one of many lookup tables (strlookup,
intlookup etc) depending on the type of the eavalue that was indexed.

33

these EAs are fqueried for often enough it might be that denormalization from the
docattrs join table for those attributes will be acceptable purely for the performance
reasons. Denormalizing an EA into the docmap table requires the fquery processor to
keep a persistent lookup table and tailor SQL query generation to use either docmap
only or the three tables depending on if the EA is normalized.

Resolving a normalized query for an EA means consulting the indexes on one of
the lookup tables, the docattrs and attrmap table and finding the list of docids which
match the query. If the EA is denormalized then only the relational database’s index
for the EA column need be inspected for the immediate production of the docid list.

The best candidate EAs for denormalization are ones for which there is a valid
value for the attribute for most files, for which the range of values for the attribute is
large and for which the attribute is the subject of many searches. In general an EA
which carries only a binary value should be denormalized into the bitf field in docmap.
For EA not meeting these requirements the three table design is preferable to overcome
the space lost by denormalization. For example, although the gamma correction EA
should be available for most image files, the average user is not likely to search for files
based on that EA very often. Also the range of applicable gamma values will probably
be low and as such it will occupy few places in the lookup table when stored normalized.

The bitf field in docmap is used extensively to support geospatial queries and
queries involving file tags (See Section 5.5.2 and Section 8.2). Users typically only have
a small number of individual tags, for example, ranging from a few hundred to a few
thousand. The overhead of storing all tag relations denormalized as part of this bitf
column is limited. A major advantage of grouping the tag relations in bitf is that
the spatial indexing detailed in Chapter 4 can substantially assist in resolving queries
involving multiple tags.

Selecting which attributes should be denormalized is difficult and perhaps an
adaptive strategy based on user searches would be best suited to refining the set of
denormalized attributes. The ability for the findex to record search history and au-
tomatically mutate which attributes are stored denormalized is the subject of future
research.

3.3.5.3 Indexed EA Multi Versioning

The files and directories and the metadata assigned to these objects vary over time
in a filesystem. For example, a trip itinerary file which was tagged as being important in
the week leading up to a trip might have that status stripped after the trip is complete.
As a document is edited its summary metadata may automatically change to better
reflect new or modified content.

When keeping an findex current, if a file already exists in the findex and has
been modified since it was indexed it might be advantageous to retain the old metadata
in the findex and simply store a new instance of the file’s metadata in the findex
as the “most current” version. In this way a single file might have many instances of
metadata in the findex collected at different times.

To support multiple instances of metadata for each file the docmap table must be
modified by removing the url field and adding a urlid column. A new urlmap table is
used to store the url to urlid mapping. This allows each URL to be associated with
multiple docids in the docmap table.

34

ferris-current-time >= 2006 and
ferris-current-time <= 2007 and
important = 1 and tokyo-distance <= 50km

Figure 3.5: Looking for the Tokyo. jpg file by searching for all instances of metadata
stored in the findex during 2006.

Normal fquery resolution will only use the most recent instance of every file’s
metadata. A new EA, ferris-current-time, was added to every file in the Semantic
File System. Reading ferris-current-time returns the current system time. If a
fquery includes the ferris-current-time in a predicate every instance of a file’s
metadata is tested during query resolution. Such overloading of an EA is permissible
as the user is very unlikely to want to search for files based on the exact time they were
indexed. By reserving special EA names which are unlikely to be used by accident for
use as special instructions (pragmas) to the fquery resolution process the query syntax
itself does not require extension.

Queries which mention the ctime EA are also evaluated against multiple instances
of file metadata. The ctime metadata shows the time of the last change to a file’s status
information. The ctime is updated whenever a file is written too or has a small subset
of its metadata changed.

Comparisons against the ferris-current-time EA are handled during query
resolution by comparing to the docidtime in the findex for all instances of metadata.
As the docidtime is created when an instance of metadata for a file is added to the
findex it records the time that the instance was current. As the ferris-current-time
is part of the standard query syntax it can be used twice to express a desired range or
can delineate multiple discrete time ranges.

Consider the following scenario: the user wishes to find all documents which at
one stage were tagged as being important and are geographically relevant to Tokyo. Let
us say that one such file is Tokyo. jpg. In this scenario the user keeps only a selection of
files which are currently important tagged as “important”. The trip to Tokyo occurred
in March 2006 and it is now June 2007. A query using abstract syntax might look like
the following:

important = 1 and tokyo-distance <= 50km

This query will not return Tokyo. jpg because the file is no longer tagged as being
important and the most recent instance of Tokyo.jpg’s metadata in the index will not
match the first part of the query.

If a time interval is specified as shown in Figure 3.5 then all instances of Tokyo. jpg’s
metadata in the findex which were added in the year 2006 will be considered. As
Tokyo. jpg was important during this time interval it will be returned as a result.

To support time interval queries the query translator must detect a time range
which is using the ferris-current-time EA and modify the query translation seman-
tics to allow documents which once matched the query to be returned. If there is no
mention of ferris-current-time or ctime in the query string then only the most re-
cently added instance of metadata for a file should be considered in the query resolution.

SELECT d.docid as docid, 35

d.urlid as urlid
FROM docmap d,
(select max(docidtime) as ddtime, urlid
from docmap
group by urlid
) dd
WHERE d.urlid=dd.urlid
AND d.docidtime=dd.ddtime
AND ...

Figure 3.6: With multiple instances of metadata directly stored in docmap and docattrs
the query must include a subselect to limit consideration to only the most recently added
metadata instance for a urlid.

It was found that storing multiple instances of metadata directly in the docmap
table gave poor performance. This was discovered when testing fqueries against an
findex with 1,000,000 files and 5 instances of metadata for each.

In order to limit the results to only include the most recent instance a query would
have to be constructed as shown in Figure 3.6. The “select max(docidtime)” subselect
query would degenerate to a sequential scan of the docmap table which completely
dominated query resolution time.

Resolving an fquery against all versions of metadata does not require the group-
ing subselect statement. As resolving an fquery against only the most recent instance of
a file’s metadata is the most common findex use some changes to the findex structure
were made to improve performance.

Two new tables, docmap multi and docattrs multi were created with identical
indexes and schema to the non multi tables. After files are added to the findex any in-
stances in docmap which are not the most recent instance are retired into docmap _multi.
A similar procedure is performed for the docattrs table. Such a migration adds a fixed
overhead in the single seconds time frame when dealing with an index of a million files.

To resolve an fquery against only the most recent instance of metadata only the
docmap table need be considered without the expensive subselect statement shown in
Figure 3.6. To resolve an fquery against all instances of metadata the reference to
docmap must be changed to the union of docmap and docmap multi. It was found that
the query optimizer is able to handle such a union statement well.

The semantics of negation in a multi versioned findex are the subject of further
research. Consider the following query shown in Figure 3.7. The inner fquery is looking
for any documents in the time window from the start of the year to the start of this
month which have a small width. It may be the case that document z existed between
these two time frames and was originally a small image but then we obtained a more
detailed version of that image with a width of 1600. The issue then is given that x
will match both the inner fquery and the negation of it because it has a version which
matches both of those queries should x be included in the results. This issue is currently
ignored and x will appear in the result if any version of its metadata in the index matches

) . 36
(! (&(mtime>=begin last year)

(mtime<=begin month)
(width<=200)
)

Figure 3.7: Multiversioned query using negation has undefined semantics.

the final query.

3.3.6 Index Performance

Empirical testing was performed using a Intel Q6600 quad core processor, 4 Gb of
DRR2 800Mhz RAM and the database stored on a model ST380024A seagate 7200RPM
80Gb disk. The operating system was Fedora 7 develop with PostgreSQL version 8.2.4
and libferris version 1.2.0. The specially sorted Berkeley DB findex detailed in Sec-
tion 3.3.4 used stldb4 version 0.4.7 with its embedded build of Berkeley db 4.1.25.

The input data was a set of 1,000, 000 files. A thousand directories were created
each containing a thousand files. In each directory each file was named from 1 to 1000.
Each file was created with an id EA which was set to the file number. This means that
every integer x between 1 and 1,000 would have 1,000 files where id=z.

The same set of files was used for testing the multi instance indexing detailed
in Section 3.3.5.3. First the files were added as per other findexes then each file
was touched to have a modification date a year later and reindexed. For subsequent
reindexing of files each time they were touched adding a year to the previous version.
The entire million files was added five times to the findex.

A total of 5 indexes where created from the test data set: a null index which
always returns no result, a Berkeley db index which shall be referred to as the stldb4
findex (Section 3.3.4), and three indexes using PostgreSQL (Section 3.3.5).

The PostgreSQL indexes include a findex with id denormalized into the docmap,
a findex with id normalized through docattrs and a denormalized findex with 5
instances of metadata for each of the million files. These three indexes will be referred
to as standard, normalized, and multi instance respectively.

Some of the tests were performed using both a hot cache and a “hard cold” cache.
A hot cache means that the operating system kernel and or the database server itself
might hold some information in memory that is relevant to the fquery resolution. A
hard cold cache means that the database server was stopped, the filesystem contain-
ing the files for the database was unmounted and remounted and the database server
restarted. This forces both the database and operating system kernel to have no cache
at all for any information in the findex.

The rationale for denormalizing an EA in the findex is to gain speed at the ex-
pense of disk space. The speed of fquery execution against both the stldb4 findex and
the three relational database findexes is shown in Table 3.7. Although normalization
plays no role in the null and stldb4 findex they are are shown for comparison purposes.

The cold cache query time for the normalized relational database findex is rela-
tively poor because the query planner decides to do a bitmap based sequential scan of
the docmap table. This is driven by the fact that the number of rows to be returned

37

singleversion

findex id=1 | id<=5 | id=< 10 | id<=50 | id<= 100
null 0.47 0.47 0.47 0.47 0.47
stldb4 0.68 1.23 1.29 1.35 1.53

/ hot 0.59 0.61 0.62 0.72 0.83
standard relational 4.06 5.19 6.10 6.01 5.85

/ hot 0.60 0.62 0.64 0.74 0.74
normalized relational | 22.9 69 28 39 46

/ hot 0.61 0.67 1.1 1.1 1.4

Table 3.7: Time in seconds to run a query on the id EA on an findex with the id EA
normalized or inlined in the docmap table.

by even the id=1 query is large relative to the whole table size. The id=1 query will
return on average one in a thousand rows from the table of a million rows. Each row
is relatively small so many rows will fit into a disk page. The cost of non sequentially
reading the number of needed disk blocks is greater than the cost of sequentially reading
the docmap table.

The data in the relational database docmap table will have been added in a manner
that would have spread the tuples matching id=1 fairly evenly throughout the table.
This is a pathological worst case data distribution for the relational database because
the database indexes do not allow much of the docmap table to be skipped.

The stldb4 findex does not suffer as badly from having a completely cold disk
cache because the list of documents matching each id value is stored sequentially. To
resolve the id=1 query the stldb4 findex will only need to read a few blocks from disk.
As the query includes more values for id the stldb4 findex will need to read in more
lists from disk and the query time for cold cache degenerates linearly.

The worst performance was for the normalized relational database findex on a
cold disk cache. This can be explained by the need to read more disk blocks to perform
the join through docattrs.

Notice that the performance on a hot cache between the normalized and denor-
malized relational findexes for id=1 and id<=5 is similar. The id<=5 fquery will return
5,000 rows or 0.5% of the entire findex. Thus the performance for the normalized and
denormalized findex on all but the hard cold cache case should be comparable where
the number of files returned is less than 0.5% of the entire findex.

In order to test the relational database driven findexes in a less synthetic manner
100 files of the million each had 29 bytes written to them and were reindexed. Both the
standard and normalized findex took 1.2 seconds on a hard cold cache to resolve an
fquery size==29. The stldb4 findex took 1.0 seconds on a cold cache to resolve the
same fquery. Hot cache times were 0.67, 0.94 and 0.97 seconds for the stldb4, standard
relational and normalized relational findexes respectively.

The queries in Table 3.8 were devised to test the effects on the query resolution
time of keeping many instances of metadata for each file in the index.

38

restriction on findex | actual fquery seconds
required

No time restriction (id==40) 0.6

1 year (&(id==40) (ferris-current-time<=begin 2009)) | 1.6

3 years (&(id==40) (ferris-current-time<=begin 2011)) | 1.7

5 years (&(id==40) (ferris-current-time<=begin 2013)) | 1.7

all time (&(1d==40) (ferris-current-time>=begin 1970)) | 2.1

Table 3.8: Benchmarks of running the same base query (id == 40) against the many
instance findex with varying time restrictions. For each benchmark the suitable time
restrictions were anded to the base query to limit which instances were considered during
fquery resolution.

3.4 Conclusion

The creation of an findex for the metadata from a Semantic File System brings
many challenges. The findex structure for metadata will be necessarily different than
that chosen for indexing a human language due to the requirement to store a key-value
pair in the findex. The metadata index must be able to service queries involving
comparisons on the value for a given metadata key.

The metadata from an Semantic File System also has varying types for the meta-
data values which have to be taken into consideration when designing the index. Dif-
ferent types bring different collations and these effect query resolutions involving order
such as width<=800. The diverse distributions of values for each metadata key further
complicate index design because metadata keys with many files that match a single
value are better suited to particular index structures than metadata keys where each
value appears for only a few files.

The core of this chapter was Section 3.3.3 where issues with metadata findexes
and solutions where discussed. The ability for an findex to resolve queries against
metadata as it stood in the past was detailed in Section 3.3.5.3.

Empirical testing of the two competing findex designs was conducted in Sec-
tion 3.3.6. A million files were added to the findex and various queries lodged at the
findex on both hot and cold hard disk caches. Some of the queries presented a patho-
logical worst case for the relational database design. This is because the amount of data
sought was too large a percentage of the base table size and the relational database
resorted to a sequential scan of the table producing poor results on a cold disk cache.

To remove the synthetic test that was performing very poorly on a hard cold
cache relational database a test where the query would only return 100 files from the
million was conducted. In this case the relational database chose to use its indicies and
the resulting query times were comparable with the pure inverted file design.

In practice if the relational database design is being used to perform a selection
of queries which are going to return a large percentage of the base table (the worst case
above) for Formal Concept Analysis then each query will not be executed against a hard
cold disk cache and thus query performance will be much more acceptable.

Chapter 4

Formal Concept Analysis and
Spatial Indexing

4.1 Introduction

This chapter describes improvements to indexing over traditional B-Tree index
used by relational database to improve query performance. The improvements that
can be achieved by using tailored indexing can enable Formal Concept Analysis to be
applied to larger data stores than was previously tractable.

Section 4.2 describes why traditional B-Tree indexing is ineffective for typical
Formal Concept Analysis queries. Spatial indexing is introduced in Section 4.3 as a
method of resolving Formal Concept Analysis queries in a more timely manner. Em-
pirical testing is performed in Section 4.3.1 to validate that spatial indexing can vastly
improve Formal Concept Analysis query performance for a number of data sources.
Motivated by this improved performance, Section 4.4 investigates improvements to the
spatial indexing structure itself. The two new spatial index structures are then empir-
ically tested in Section 4.4.4 and found to give superior performance in a number of
important settings.

The motivation for the application of spatial structures was initially for the use
of Formal Concept Analysis on a filesystem [39, 82, 62|, in particular the libferris [3]
Semantic File System. Spatial indexing has been found to bring similar performance im-
provements to more general Formal Concept Analysis applications: sometimes referred
to as Toscana-systems. The spatial method proposed in this thesis has performance
which depends on the number of attributes in each query as well as the density and
distribution of the formal context.

Typical Formal Concept Analysis queries seek all index entries which either (a)
exactly match a given key or (b) are a super set of the given key. As an example of
(b) consider Formal Concept Analysis on animal species: one concept might contain
the attributes {has-tail, has-fur}, to find the objects which match this concept we will
want all known objects which have at least these attributes but may include other
attributes as well. Both of these common query types, (a) and (b), can be vastly aided
with spatial indexing as this chapter explores and presents. Note that even exact match
queries (a) present problems for conventional B-Tree indexes due to attribute ordering
in index creation [75].

40

4.2 Why Conventional Indexing is Ineffective

Prior to this research introducing spatial indexing to FCA applications, two de-
signs dominated Formal Concept Analysis implementations for the indexing of data:
either a single large table in a relational database where objects are rows and their at-
tributes form columns (Toscana) [91] or using inverted files (LISF'S) [82]. The Toscana
design appears to be more widely implemented. The Toscana design is usually imple-
mented using a relational database system [52, 78].

The libferris design is most closely affiliated with the Toscana design with exten-
sions to deal with normalization [64, 89] and the association of tags [61, 67]. A tagis a
pictorial annotation, usually a small icon, that is associated with an file or directory. A
tag often denotes a category.

Shown in Figure 4.1 is an example inverted file index. With an inverted file index
values of interest each have a list of the address of the tuples from the origin of the
base table. For example, an inverted file index on a name column would have a list for
the value “peter” with pointers to all the tuples where the name column was “peter”.
Inverted files work well when there are a limited number of values of interest. Given an
inverted file defined such that the values of interest are formal attributes and a concept
with intent {10000,01000} one must combine the lists for 10000 and 01000 to list the
extent of that concept.

The focus is now turned exclusively to systems using the Toscana design and
relational databases for data storage and indexing. Assuming, without loss of generality,
that the many-valued context is available — denormalized in a single relation which shall
be referred to as the base table. This base table having columns {ci,ca,...cy}. As a
concrete example, consider a base table with 4 numeric columns ¢; = size and ¢y =
modified, c3 = accessed and ¢4 = file-owner. Although the modified and accessed
columns are numeric they are presented here in a human readable form. As an example
consider three ordinal scales on the columns ¢, ¢ and ¢3 and a nominal scale on ¢4 (see
Figure 4.3).

More generally for the base relation we consider a formal attribute {a;} to be
defined through possible values for one or more columns {c¢;, ...c,, }. It can be convenient
to consider the definition of an attribute {a;} as an SQL condition f; on the values of
one or more columns {¢;, ...c, }. Thus for all i € {1...5} the formal attribute a; is defined
by the SQL expression f; on the base table. The convenience of using SQL expressions
fj to define the formal attributes a; is due to the SQL expression returning a binary
result. Note that there is a one-to-one correspondence between A and F', every formal
attribute is defined by an SQL expression. The number of attributes |A| can vary from
the number of columns |C| in the database. The a,, f, and ¢, are shown in Figure 4.3.
For example, from in Figure 4.3 an attribute a, might be defined on the columns {cg, c3}
using the SQL expression f, = modified < last week AND accessed > yesterday!
. The attribute extent for f, would contain all files which have been accessed today but
not modified this week.

Due to the generality of the terms attribute and value some communities use
them to refer to specific concepts which are related to the above uses. For example the
term attribute in some communities would more naturally refer to the ¢;. The above

! date values represented as human readable strings in this example

10000

01000

00100

00010

Base Table

41

Figure 4.1: An inverted file index. For each value of interest there is a list containing
all the addresses of tuples which match that value.

Figure 4.2: Example base relation containing modification and size data for objects.

C1 (6] C3 C4
object-ID | size modified | accessed | file-owner
1 4096 today today | ben
2 800 | yesterday today | peter
3 400k | 1 year ago | last week | ben

42

Attribute | Columns involved | SQL predicate (fz)

ai c1 size <= 4096

as cl size <= 1Mb

as Co modified <= this week
aq co modified <= yesterday
as Co modified <= today

ag c3 accessed <= last week
ar c3 accessed <= yesterday
as c3 accessed <= today

ag cy file-owner = ben

alo Ca file-owner = peter

all c4 file-owner = foo

Figure 4.3: Ordinal scales on the size, modification and access times of the objects in
the base table. Nominal scale on the file-owner.

terminology was selected to more closely model Formal Concept Analysis where the
formal attributes are binary. Thus the (formal) attributes are modeled as the a;.

Consider finding the extent of a concept which has attributes {ai, a3, ay}. The
SQL query is formed with an SQL WHERE clause as “...where f; and f3 and f7...”. For
our concrete example, the SQL predicate will be “...where size <= 4096 and modified
<= this week and accessed <= yesterday ...”.

Previous best practice in the Formal Concept Analysis community was to attempt
to assist such queries with B-Tree indexes over subsets of {c1, ca, ..., ¢, }. The discussion
is now turned to how relational databases use B-Tree indexes during query execution.

A common implementation of relational database queries is to check to see if the
use of an index is estimated at returning a percent of the base table which is below a
given internal threshold [98]. For example, if the use of an index results in 30% of the
tuples in the base table being fetched then the database elects not to use that index.
If there are no other indexes available for the query then it will sequentially scan the
base table to resolve the query. When fetching a large proportion of the base table a
sequential scan is usually faster than using the index because the table can be read in
order [33]. The estimated ratio of matching tuples is called the selectivity. The key
to efficient query execution is therefore for the query to be able to use an index which
will sufficiently narrow the number of tuples fetched to make index usage attractive.

The selectivity of an index is estimated for the values given in the SQL predicate
using statistics of how many tuples will match the given value or value range. For ex-
ample, if 60% of column c3 has values below 20 and the SQL predicate is ¢3 < 20 then
an index on column c3 would be considered unattractive in the resolution of the query
because it is not selective enough on average to outperform a sequential scan. The se-
lectivity can be more formally defined as 100 xestimated tuple count/size of base table.
Thus lower numeric selectivity values are considered “better” in retrieval terms. A
relational database’s query planner will prohibit the use of all indexes which have an
estimated selectivity beyond a predetermined sequential scan cutoff value.

43

4 weeks

N

12 weeks 2 weeks

N

17 days 5 days

Sequential read of table filtering non matching tuples
v

Base Table

Base Table

Figure 4.4: On the left: B-Tree index on a date column for the base table. Dates in
nodes are shown as how long before the current time they represent. The upper nodes
are index nodes with the nodes below “12 weeks” omitted. The 17 and 5 days nodes
are leaf nodes of the index which point at records in the base table. The B-Tree has
a restricted branching factor of two children for illustration purposes. On the right:
Resolving the query by a sequential scan filtering out non matching tuples.

Consider a query against the index shown in Figure 4.4. If one is seeking all dates
more recent than 4 weeks ago they will likely have to scan half the index [95]. Because
the base table is not stored in the order of the index key the records sought will likely be
scattered throughout the base table. Given the high percentage of the base table’s tuples
sought and the scattered positioning of these tuples on disk a sequential scan of the base
table will likely provide the most efficient resolution of the query. Seeking disk heads
is a very slow operation relative to contiguous sequential disk access [33]. Although
some tuples are read and subsequently filtered out using the sequential scan method
the lack of disk head seeks makes sequential scan faster overall for queries seeking a
substantial amount of the base table. This is because data can be transferred from disk
in a contiguous read using the sequential scan much faster than individual pages of the
base table required by the index.

When there are two predicates in the where clause commonly the predicate which
has an available index with the best selectivity is chosen first. After this initial index
selection the other predicate is used as a filter on the tuples as they are read from the
base table [98]. This query design strategy works ineffectively on typical Formal Concept
Analysis SQL queries because there is usually more than one predicate joined with a
logical AND. In the normal case, the selectivity of either predicate will be beyond the
query planner’s sequential scan cutoff.

Again, referring to our example, say we are looking for size <= 4096 and mod-
ified <= this week. Assume an index on size and one on the modified column as
shown in Figure 4.5. For a large database most files will be modified before the current
week. This would give an extremely poor selectivity for the modified subpredicate.
This would rule out the use of an index on the modified column for this query. Thus,
the only chance of using an index would be on the column size. Assuming the base
table was created using metadata from a filesystem the selectivity of the index depends
on that metadata, size <= 4096 results in selectivity good enough to use the index but

44

Index on Modified Index on Size

4 weeks 5Mb

/N /N

12 weeks 2 weeks 5Kb 2Mb 84 Mb

VAN /

Base Table

Figure 4.5: Two B-Tree indexes on the base table. The left index is on modified while
the right index is on size. Leaf nodes in both indexes point to tuples physically located
throughout the base table.

stze <= 4Mb would not offer attractive selectivity.

Considering an ordinal scale Z = {a,, Spm+1, ---Sn} on the size column it is likely
that only a fraction of Z would result in a good enough selectivity to utilize the above
index on the size column. For example, if Z was defined as size <= 4096, size <=
400kb, size <= 4MYb, size <= 40Mb and size <= 400M, it would be likely that only
the first one or two predicates could use the size index with acceptable selectivity.

When both predicates are considered together a single index over multiple columns
may be used in an attempt to achieve better selectivity. For an index created over mul-
tiple columns only the leading columns specified in a predicate are considered when
computing the number of matching tuples using the index.

Consider an example taken from the formal attributes in Figure 4.3. When we seek
the size of the concept with intent {a1, as, a1} we will have 3 predicates size <= 4096,
modified <= today and file-owner = foo respectively. These SQL predicates are
operating on the columns {c1, cg, ¢4 }. Assume that an index is created over {c1, co, c3, ¢4}
to assist this query. Most relational databases do not consider any terms from the
predicate which are not contiguous leading terms in the index when calculating the
selectivity of an index [98]. Nothing in the query makes reference to c3 so only the
predicates size <= 4096, modified <= today will be used to compute selectivity. For
this example the index can’t take advantage of the file-owner predicate which may in
this case offer a significant improvement to selectivity. Given that the use of the column
co will not significantly improve selectivity the use of the whole index deteriorates to
the selectivity of ¢ alone.

More generally, if the B-Tree index is created over {c1, c2, ..., ¢, }. Assume that the
f1 and f; and f5 refer to columns ¢; and ¢4 and c5 respectively. For our target concept,
the critical leading index terms {ca, cs} are left unspecified, implicitly defining them as
matching any value. The query planner will likely only consider the selectivity using

45

only ¢; and decide that the B-Tree index {ci, ..., ¢, } is an unattractive access path. This
is because it will have to scan large parts of the index before ¢4 or ¢5 can contribute to
the selectivity. In practice many relational databases do not consider any terms from
the predicate which are not contiguous leading terms in the index when calculating the
selectivity of an index.

This situation deteriorates further the more columns are available in the rela-
tion due to the probability that leading index terms are not present in the query
predicate. For example, for a concept with a handful of attributes in its intent, say
{{01,02},{a1,a2,as3,a4}}, the chance of having at least one attribute a,, which hap-
pens to have a f, referring to a column in the index’s leading terms, is low. Even with
a reference to a leading index term it is unlikely that the reference will be very selective
by itself. It is a particular strong point of spatial access methods that they gracefully
handle such unreferenced columns on a many column index.

If for each ¢ € {l..z} an index on only column ¢; is created most relational
databases will only consider using one of these indexes for resolving a expression f;
which refers to multiple columns [98].

When resolving an SQL query against a base table most relational databases will
only consider using a single index [98]. If one considers the possibility of creating a
custom index to assist queries for each concept, there are potentially |C| = 2141 concept
intents for a formal context. Given that many f, will reference the same column, the
number of unique combinations of columns from the base table will be less than this
number. However, as discussed, the ordering of the columns in the index may have to
be taken into account to improve performance. This ordering of columns in indexes will
raise the number of indexes needed back towards |C|, however, the number of attribute
combinations makes it is infeasible to create custom B-Tree indexes for each concept
intent or column order.

4.3 Spatial Indexing

This section discusses the application of spatial methods to improve index utiliza-
tion in query resolution. First using indexes on SQL expressions is considered followed
by how spatial methods can be applied to expression indexes to improve performance.

Many relational databases allow the creation of indexes on expressions [6]. For
example, given a column name an expression index can be created on lower(name) to
help case insensitive searches. Turning to Formal Concept Analysis one can define an
expression index e, for each respective SQL predicate f,. Consider again our example
from Figure 4.3. The expression index e; on attribute a; is shown in Figure 4.6. In an
expression index tuples which do not satisfy the index expression are not added to the
index.

Turning to the application of expression indexes to Formal Concept Analysis. The
indexes {e1, e, ..., e, } having been defined by scales { f1, fa, ..., fn} are an implementa-
tion artifact which is equivalent to the formal attributes {ai,as, ...,a,} of the formal
context. Thus queries on an attribute a, become queries against the respective index e, .
This allows the materialization of binary attributes from the base table using indexes
alone. Creating expression indexes on the f; expressions does not change the problem of
the query planner ignoring such indexes {e1, ...e,} due to selectivity constraints, high-
lighted in Section 4.2. One can however consider indexing structures over the collected

size <= 4096

/

A
>

\ 4

{

N

Base Table

46

Figure 4.6: Expression index on attribute a; using f1, the SQL predicate size <= 4096.
The B-Tree structure is degenerate because there is only one value indexed. At the
leaf page level, pages continue to overflow and the B-Tree approximates in inverted file

structure.

47

{e1,...,en} indexes.

The use of spatial indexing structures over {ey,...,e,} can provide substantial
increases in FCA query performance. If expression indexes are created for each attribute
then above queries such as @ = {ey, e5,e11} can be classified as a subset query [51] on
the expression indexes. In a subset query over {ej,...,e,} the objective is to seek all
objects with a given subset S C {e, ..., e, } of specified values. For example, the query
seeking “...size <= 4096 and modified <= this week and accessed <= yesterday

.7 specifies objects matching S = {e1, e3,er}.

Note that it is an implementation detail as to whether the expression indexes
themselves must be created to support the higher level spatial indexing. The imple-
mentation used for empirical testing [3] in fact performs the spatial indexing directly on
database 4GL functions [6] thus alleviating the need for the spurious expression indexes.

An indexing structure motivated by the spatial indexing structure, the R-Tree
[44, 81], caters for subset queries: the RD-Tree [50, 106]. A particular strong point of
these structures is that they index multiple columns in arbitrary order and gracefully
handle lookups given a subset of the indexed columns. The subsequent presentation
first describes the R-Tree followed by the RD-Tree.

The internal nodes in an R-Tree structure contain entries of the form;
(bounding n-dimensional box, page pointer), where pages in the subtree reached
by page pointers are within the given bounding n-dimensional box (see Figure 4.7). This
transitive containment relation is the heart of the R-Tree. R-Trees are not limited to
2 or 3 dimensional data and typically use page sizes allowing branching factors much
closer to B-Trees than shown in the example.

Searching for a spatial object in the R-Tree starts at the root node and considers
all children whose bounding box contains the query object. Searching for the query
object in Figure 4.7 begins at the root node (R) — the left node (C1) has a bounding
box not containing the query object so only the right child (C2) is followed. In turn,
the new left node (C2.1) contains the query object and will be followed whereas (C2.2)
is not. At the lowest level (the children of C2.1) many nodes may contain the query
object and these are followed to retrieve tuples in the base table.

The RD-Tree operates similarly by treating input as an n-dimensional binary
spatial area. The R-Tree notion of containment is replaced by set inclusion and the
bounding n-dimensional box replaced by a bounding set. The union of a collection of
sets forms the bounding set. The bounding set of a child is thus defined as the union
of all the elements in the child. The bounding set defined in this way preserves the
“containment” notion of the R-Tree during search as a subset relation. When seeking
an element which might be in a child it is sufficient to test if the sought element is a
subset of the bounding set for the child to know if that subtree should be considered.

An example RD-Tree is shown in Figure 4.8. Searching for the query object 01100
starts at the root node discarding (C1) because it does not contain the query object
and only following the (C2) child. At (C2) the node (C2.2) is not followed because it
does not contain the query object and only (C2.1) is followed. The child (C2.1.2) has
a bounding set 00110 which does not contain the query object and is not considered.
Only (C2.1.1) matches this query and its contents are tested against the query object
to retrieve the results from the base table.

The two main Formal Concept Analysis queries that an RD-Tree can improve are
subset and overlap queries [51, 50]. As described above a subset query seeks all objects

48

VAN

C1 Cc2

fo) |_ Cc2.2

Query Object

c2.1

{ =

Base Table

Figure 4.7: An example R-Tree with a query object on the left. Fach node has a
bounding box which fully contains all objects in its child nodes. An implementation
stores the bounding box for each child in the parent node. Note the example is limited
to 2 dimensional space with a low branching factor for presentation purposes.

11111

/

C1
11100

01100

Query Object

N\

c2
01111

c2.1
01110

\

Cc22
00011

c211
01110
01100
00100
00110

Cc2.1.2
00110
00100
00110

{

Base Table

49

Figure 4.8: An example RD-Tree with a query object on the left. Each node has a
bounding set associated which fully contains all objects in its child nodes. An imple-
mentation would store the bounding set for each child in the parent node. Note that
the example is limited to only a small set size with a low branching factor in the tree

for presentation.

50

Normal query a < 10 and a < 20 and not (a < 30) and not (a < 40)
Simple translation | rd-tree contains 10,20 and not rd-tree contains 30 ...
Custom translation | rd-tree contains 10,20 and hamming-weight(rd-tree) = 2

Figure 4.9: Translating queries involving negation to take advantage of the RD-Tree.
This assumes that the attributes 10, 20 and 30 stand for the predicates a < 10 and
a < 20 and a < 30 respectively. The weight function returns the number of RD-Tree
predicates a tuple contains. So in the above, the third query doesn’t need to negate the
30 and 40 predicates because the weight test will already ensure that 30 and 40 are not
set.

for which the query object is a subset. For example the query object might be @ =
{e1, e3, er} and a matching object 0; € O = {a1, a3, ag,a7}’. For a given set of attributes
A ={ai,ag,...,a,} defined by their respective index expressions E = {ej,eg,...,e,} a
bitset can be derived {b1,bo,...,b,} such that b, is set to true when e, € F is true.
Thus for the example in Figure 4.8 we are seeking the query object 01100 which means
we want all objects where es and ez are true, which is the same as having the formal
attributes {az,as}.

To resolve a subset query the RD-Tree is walked from the root eliminating any
branches with a bounding set which is a subset of the query set. It is apparent that
the more items from {ej, ..., e,} specified in the query the less of the index structure
will be searched. The trend for RD-Trees is the inverse of that of inverted files. To
resolve the above with inverted files the lists for each e, would have to be fetched and
merged. For our same query object 01100 we would have to fetch the lists for 01000
and 00100 to form the set intersection and finally fetch the records from the base table
(see Figure 4.1).

An overlap query seeks objects which have more than a given number of attributes
in common with the query [106]. To efficiently find the contingent size the RD-Tree index
must also contain the hamming weight of the binary expression indexes {ey,...e,} (ie.
formal attributes) which are indexed. The hamming weight for a bitset is the number of
bits which are not zero. This is so objects that are in the extent (but not the contingent)
can be quickly filtered from the result using the index alone.

The specialized overlap query @ contains the attributes @ C {eq, s, ...e,} which
define the exact attributes sought in the result set. The above subset query would not
return object o; € O = {ay,as3,as,a7} for Q = {e1,e3,e7} because attribute ag was
not specified in the query. It can be seen that o; would be in the extent of a concept
with intent @ = {e1, €3, e7} but not in the contingent. An example query translation is
shown in Figure 4.9.

4.3.1 Performance Analysis

The benchmark system was an AMD XP-Mobile running at 2.4GHz with 200Mhz
FSB, 1Gb of RAM at 400Mhz dual channel cas222. The software versions which may
effect performance were Linux kernel 2.6.11rc3, gce 4.0.0 20050308,
PostgreSQL 8.0.1, libferris 1.1.50, ToscanaJ 1.5.1 and Java 1.5.0_01.

Testing was completed on 3 different input data sets: various synthetic formal

51

Column | Value Selectivity Selectivity

(count) | (% of table)
bruises NO 10080 59.9
bruises BRUISES 6752 40.1
capshape | KNOBBED 1680 10.0
capshape | CONVEX 7592 45.1
capshape | FLAT 6584 39.1
capshape | BELL 904 5.4
capshape | SUNKEN 64 0.4
capshape | CONICAL 8 0.05

Figure 4.10: Selected attributes for the mushroom table and the number of tuples
which have the given attribute-value combination.

contexts generated with the IBM synthetic data generator [88], the mushroom and
covtype databases from the UCI dataset [17] and a formal context derived from the
metadata of 67,000 document files [3]. Also, all columns in the databases had single
column B-Tree indexes created on them for every column that might be relevant to
query resolution. The mushroom database has 16,832 tuples and the covtype table has
581,012 tuples.

A test consists of lodging a collection of SQL queries against the database as a
single batch job. Unless otherwise stated these batch tests were completed after the
database was shutdown, the filesystem with the database information was unmounted
(and remounted) and finally the database started again. This process flushes internal
database buffers and the kernel’s disk cache. Where tests were not performed under
these cases, the terms “cold cache” refer to a setup where all buffers were flushed and
the database restarted as above while “hot cache” mean that the queries were performed
with no such flushing or database restart.

For various tests the SQL explain was used on each query in the batch to see how
many sequential table scans were planned for the batch execution. For small datasets
a sequential table scan might prove the fastest method to resolve a query (although
performance is bound to be linear and thus will not scale well to larger data sets).
Other statistics are shown as well such as the selectivity, mean and standard deviation
of a column or table. In order to demonstrate how the spatial indexing performs on
various densities of formal context for the synthetic datasets the distribution statistics
of the attributes in the formal context is shown.

4.3.1.1 Performance on the UCI Mushroom dataset

The attributes used from the mushroom table are shown in Figure 4.10. The two
columns bruises and capshape were used in an attribute list in ToscanaJ. As there
are eight binary attributes when each distinct value for these two columns is considered
there are a total of 256 SQL queries generated.

As the relation is relatively small this test was also conducted with explicitly
hot caches. This should give an indication of performance differences on small data

52

Test type Cold Hot | Sequential

cache | cache scans
B-Tree only 30 18 4
RD-Tree index simple query translation 10 4 1
RD-Tree optimized query translation 1.6 0.4 0

Figure 4.11: Times with hot and cold caches to complete queries for 8 attribute list
context. Times are in seconds.

sets modeling the use case of someone interactively creating and modifying scales. The
benchmark was obtained by executing a test multiple times in a row and only taking
the last batch time. The results are shown in Figure 4.11.

There are 2 versions using an RD-Tree to speed execution: a simple translation
and a customized query. The simple translation just substitutes SQL operations to
consult the RD-Tree and leaves all other query structure identical. This translation is
fairly mechanical and does not fully take advantage of the RD-Tree for query resolution.
The custom translation version takes advantage of adding to the RD-Tree the additional
information of the hamming weight of the index expressions {ey,...e,} as described in
Section 4.3.

4.3.1.2 Performance on UCI covtype dataset

The UCI covtype database consists of 581,012 tuples with 54 columns of data.
For this paper two ordinal columns were used: the slope and elevation. Tests were
performed by nesting an ordinal scale on elevation inside an ordinal scale on slope using
ToscANAJ 1.5.1. This nesting produced a total of 378 queries against the database.
Given that the primary table is 987Mb tests against a hot cache were not performed.
The results are shown in Figure 4.12. The RD-Tree index takes 2m:17s to create. As
there were no explicit negations there was no gain in producing an RD-Tree optimized
SQL query as was done for the mushroom database.

4.3.1.3 Performance on Semantic File System Data

An index for part of the libferris filesystem was created for 66,936 files. A formal
context based on file name components contains 886 formal attributes for these objects.

Test type Cold cache | Sequential

(mm:sec) scans
B-Tree only 56:16 90
RD-Tree index simple query translation 0:42 0

Figure 4.12: Times to complete nested scale queries against the covtype database. The
nesting is obtained by generating a nested line diagram in ToscanaJ placing an ordinal
scale on elevation inside an ordinal scale on slope.

93

Test type Cold cache | Hot cache | Sequential scans
B-Tree only 80 80 487
RD-Tree index 5 1 0

Figure 4.13: Times in seconds with hot and cold caches to complete queries.

Formal attributes were packed into a single SQL bit varying field making the total
size of the formal context only 10Mb. For this formal context there are 488 concepts.
Benchmarks for querying the size of the extent of each context is shown for both hot
and cold caches in Figure 4.13. Without the use of a special purpose index structure
the database degenerated to a sequential table scan for almost every query.

To find the contingent sizes without using an RD-Tree using an SQL query per
concept is slower overall than using a single table scan and handling the logic in the
client. Using a single table scan from a relational database client takes 70 seconds to
find every concept’s contingent size. Using an RD-Tree index the same operation takes
2.2 seconds. The use of RD-Trees implies a cost of creating the index, for the above
example this is 27 seconds. Index creation can happen faster than a client table scan
because it is being done inside the database server process and avoids formatting and
copying overhead. So the index can be created and used faster than any other method
for finding contingent counts.

4.3.1.4 Performance on Synthetic data

The following use synthetic data generated with the IBM synthetic data genera-
tor [88]. Parameters include the number of transactions (ntrans), the transaction length
(tlen), length of each pattern (patlen), number of patterns (npat) and number of items
(nitems). The number of items was fixed at its minimal value of 1000. The tlen, patlen
and npats can be varied to change the density of the resulting formal context while the
ntrans is useful for testing the scalability of the query resolution.

Only the first 32 items were imported into the database. Five values of tlen
were tested, 256, 128, 64, 32 and 16 at various database sizes ranging from 1,000 to a
million transactions. The query sets were constructed by mining the Closed Frequent
Itemsets for the 1,000 transaction database with a minimum support value of 0.01%.
The Closed Frequent Itemsets provide the concept intents for an iceberg lattice [96,
79]. This generated 556 concept intents. A query was generated to find the size of
the extent of each concept. This produced a distribution of 28 single attribute, 224
two attribute, 284 three attribute and 20 four attribute SQL queries. Benchmarks
against these datasets are presented in Figure 4.14 and graphically in Figure 4.15 and
Figure 4.16. Size statistics for the DBMS tables and indexes are shown in Figure 4.18.

The efficiency of using RD-Trees degenerates as the density of the formal context
increases. To measure this effect the number of items per itemset was varied with all
other parameters static. Results are shown in Figure 4.17. The results with 128 items
per itemset are the same as those in Figure 4.14.

The performance of spatial indexing for Formal Concept Analysis in various set-
tings has been examined and shown to provide substantial improvements in many cases.

Query Thousands | Time | Time | Time | Time
Type of trans | (128) | (64) | (32) | (16)
B-Tree 1 0.8 0.8 0.7 0.7
RD-Tree 1 0.7 0.6 0.6 0.5
B-Tree 10 3.3 3.3 3.1 3.1
RD-Tree 10 2.4 1.4 0.9 0.7
B-Tree 100 | 27.6 26.8 26.4 | 26.2
RD-Tree 100 | 19.2 | 10.4 6.7 4.5
B-Tree 1000 | 6:28 | 6:14 | 5:50 | 5:35
RD-Tree 1000 | 5:56 2:32 1:30 1:18

54

Figure 4.14: Times for query sets against synthetic databases. SQL Explain shows the
B-Tree method always electing to disregard all indexes and perform a sequential scan.
The RD-Tree query plan always includes zero sequential scans. The number in brackets
below the Time column header is the tlen.

Query time for 10,000
transaction db

3.5 ——
3 L —
25 F -
Time 9 L |
(sec)
15 | -
1+ /ﬁ—Tree -
L B-Tree -
0.5 ‘
16 64

Itemset size (tlen)

128

Figure 4.15: Execution times for queries using either B-Tree or RD-Tree indexing against
databases of varying density with 10,000 transactions.

95

Query time for 1000,000

transaction db
400 T

350 .-
300
Time250
(sec) 900 L
150
100 B-Tree -

50 :
16 64 128

Itemset size (tlen)

Figure 4.16: Execution times for queries using either B-Tree or RD-Tree indexing against
databases of varying density with 1,000,000 transactions.

350
300 Basetable .
250 [Tree :
Size 200 - n
(MB)150 |- , s
100 + -
50 =

0 1000 2000

Thousands of transactions

Figure 4.17: Statistics for the base table and indexes of the synthetic databases. Note
that the B-Tree index size is only for a single column whereas the RD-Tree covers all
32 columns.

Query Items/ | Max Mean Std | Time
Type pattern | (%) (%) Dev | (sec)
B-Tree 256 64 26 19| 29.3
RD-Tree 38.9
B-Tree 128 36 13 10 27.6
RD-Tree 19.2
B-Tree 64 19 6) 26.4
RD-Tree 10.2
B-Tree 32 10 3 3| 25.7
RD-Tree 6.7
B-Tree 16 5 1.6 14| 259
RD-Tree 4.8

56

Figure 4.18: Effect of formal context density on RD-Tree performance for 100,000 trans-
action database. The number of items per pattern was reduced in increments from 128
to 16 giving a max, average and standard deviation of set bits in the formal context as

shown.

o7

<100 <200 <inf

LN

<130 <156

)

P

Figure 4.19: Basic Generalized Index Search Tree structure. There are four internal
nodes (shown at the top) and two leaf nodes (just above the base table) which contain
links to the actual information that is indexed. The page size for this tree is illustrative
and would normally contain hundreds/thousands of entries.

Base Table

Performance gains from RD-Trees are very effective for sparse formal contexts where
queries can be resolved five times faster on large data sets as shown in Section 4.4.4.2.
The largest benchmark results were found when applied to a large dataset from the
UCI collection where the formal context was generated by nesting one conceptual scale
inside another. In such an environment queries can be executed over 80 times faster
using an RD-Tree than without.

4.4 Asymmetric Page Split Generalized Index Search Trees
for Formal Concept Analysis

In order to improve again on the RD-Tree results presented in Section 4.3.1 one
must first step back from the problem, considering a more generalized index structure
and how the RD-Tree relates to it. It is in the context of this more generalized indexing
that one can see how the index tree is formed and in particular the direct reliance of
the overall index structure and depth on how overfull index pages are split.

A framework for building secondary storage search trees was recently introduced
as the Generalized Index Search Tree [49, 10]. A Generalized Index Search Tree abstracts
the core operations of a tree index structure into a small well defined collection of
functions. Both the R-Tree and RD-Tree can be considered as specific Generalized
Index Search Trees. The page splitting and propagation of page splits toward the tree
root as described above directly transfers into a Generalized Index Search Tree.

A Generalized Index Search Tree is constructed from a collection of pages. A
page is usually much larger than individual keys and may contain many keys. Page
sizes are generally selected based on the hardware that the system runs on. A typical
page size is 8Kb which are usually also referred to as nodes [33]. Some nodes contain
links to other “child” nodes and thus form a tree. Nodes with child links are referred
to as internal nodes. Children without links to other nodes — leaf nodes — contain links
to the indexed data itself. An example tree is shown in Figure 4.19.

The process of adding an entry to a Generalized Index Search Tree can be consid-

o8

ered as two parts: finding the appropriate leaf node in the index, and adding an entry
to that leaf. Finding the leaf node occurs in a similar manner to normal search. The
difference between search and insert being when a node has multiple children which
could contain the new entry a penalty function is used to decide which child node
to insert the entry into. An entry can only be inserted into one leaf node. Typically
penalty will select the child node which is the most closely related to the new entry in
order to aid future searches.

When data is added to a Generalized Index Search Tree eventually a leaf node
will become overfull. When a node is overfull it is typically split into two nodes: the
original node and a new node. Entries are then redistributed between the original node
and the new node. The creation of the new node necessitates a new entry in the original
node’s parent linking the new node into the tree structure. By adding an entry to the
parent node the parent itself may become overfull and thus the process of splitting nodes
will continue up the Generalized Index Search Tree to the root while overfull nodes still
exist,.

The process of splitting a node in a Generalized Index Search Tree is delegated
to the picksplit function. This function decides for each of the entries in the overfull
node whether to store that entry into the original node or new node and provides the
updated and new keys for the parent node.

It can be seen from the above description that the functions which will decide the
shape of a Generalized Index Search Tree are the penalty and picksplit functions.
The following presents customizations of the RD-Tree picksplit function for better
Formal Concept Analysis performance.

As the RD-Tree’s picksplit is based on that of the R-Tree the presentation will
begin with the R-Tree. The R-Tree [44] is a data structure that was created to allow
spatial objects to be indexed effectively. Keys in an R-Tree are n-dimensional bounding
boxes. The R-Tree picksplit first selects the two elements who’s bounding box are
furthest apart as keys to be placed into the parent. These new parent keys are updated
as children are distributed into each child in order to be the bounding box of their
respective child node. The remaining elements are then distributed as children of one
of these new parent keys. A child is distributed into the node to which it causes the
least expansion of that node’s bounding box.

The RD-Tree [50] operates similarly by treating input as an n-dimensional binary
spatial area. The R-Tree notion of containment is replaced by set inclusion and the
bounding n-dimensional box replaced by a bounding set. The union of a collection of
sets forms the bounding set. The bounding set of a child is thus defined as the union
of all the elements in the child. The bounding set defined in this way preserves the
“containment” notion of the R-Tree during search as a subset relation. When seeking
an element which might be in a child it is sufficient to test if the sought element is a
subset of the bounding set for the child to know if that subtree should be considered.
The standard RD-Tree picksplit is based on the spatial R-Tree index structure’s
picksplit.

There is a major distinction between the standard R-Tree index keys and the RD-
Tree index keys: the R-Tree index key is based around n-dimensional bounding boxes
whereas the RD-Tree is based around a “bounding set”. For a given page the bounding
set is simply the union of all the keys in the page. The bounding set faithfully serves
the same purpose as bounding box from which it was derived: both can be treated in a

99

similar manner as a “container” in which all keys of a child page must reside.

Any n-dimensional bounding box can always be represented as 2 x n coordinates:
those coordinates in n-space on two opposite sides of the bounding box. A bounding
set has no such fixed representation and can require an arbitrary number of elements to
represent it (up to the set cardinality). This distinction is very important, an RD-Tree
based index structure needs to focus on keeping its keys small, particularly those closer
to the root of the tree. Both a voluminous bounding box and a bounding set with many
elements are less effective in limiting the amount of a Generalized Index Search Tree
that must be searched. However, a large bounding set will also consume more of a page,
limiting the branching factor of the tree.

For an index on the same information, a tree with a lower branching factor will
be a deeper tree [33]. The limited branching factor index will also have more internal
nodes. The efficient caching of internal nodes in a computer’s RAM is critical to index
performance [33]. Having more internal nodes will decrease the effectiveness of such
RAM caches.

Another critical factor in the selection of small bounding sets is that once a
bounding set is selected for a parent that bounding set has an extremely hard time
becoming smaller again. Further compounding this issue is that poorly chosen bounding
sets at the leaf node level will eventually promote overly large bounding sets towards
the root of the Generalized Index Search Tree.

Minimization of the number of elements in any bounding set should be a priority
given that variation in size of the bounding set effects the overall tree branching factor.
At times a picksplit function should favour making one of the new bounding sets
slightly larger if it means a that the other bounding set can become substantially smaller.

If the page split is too asymmetric then one of the resulting pages may contain
only a single element. Such an index structure may lead to many leaf pages being
drastically under full and degrade overall performance. To counter this situation a
minimum page fill ratio can be selected. There is a balance between maintaining this
minimum ratio and the extension of the bounding set required to do so.

Two methods to achieving an asymmetric page split are considered; a custom
distribution function to completely replace the standard Guttman function [74] and
the application of the Guttman distribution followed by a redistribution using Formal
Concept Analysis.

4.4.1 Complete replacement of Guttman

This customized asymmetric picksplit algorithm pre-allocates elements to pages
where they will not expand the page key, tries to minimize the expansion to one of the
bounding sets, incrementally takes into account any expansion of bounding sets while
distributing elements and attempts to leniently maintain a minimum page fill. The
basic algorithm is shown in Figure 4.20.

Note that the complexity of the core algorithm after the initial left and right keys
are selected and before post split shuffling is linear in the number of keys to distribute.
The shuffle process can range from linear to k? where k is the number of keys. There
are areas of the algorithm which invite variation. The major one being how best to
handle a drastically asymmetric page split.

Though it would be simple to have the final shuffle move elements until a prede-

60

fined minimum page fill was achieved, it is better to try to get closer to this ratio while
still minimizing the number of new elements that have to be added to the under full
page’s bounding set.

4.4.2 Guttman distribution followed by Formal Concept Analysis

In this method the standard Guttman generalization [50] is applied followed by
the use of Formal Concept Analysis to improve the cardinality of one of the bounding
sets.

The algorithm is shown in Figure 4.21. Abstractly the algorithm is mainly con-
cerned with selecting which keys from the source page to move to the target page based
on information from the concept lattice of the source page. As the final step of updating
the extent sizes for the THeap is a computationally intensive task it is made optional
and leads to two implementations for later benchmarking.

Shown in Figure 4.22 is the an example concept lattice for a page after the
Guttman algorithm has been applied. Notice that the concept nodes are coloured de-
pending on the number of keys which exactly match their concept or any downward
transitively connected concept. One can immediately see that concepts with intent “c”
and “d” are less strongly connected to the page. In the following concepts will be iden-
tified by their intent, for example, from the above we shall simply say concept “c” and
“d”. In particular there is a low overlap between “c” and “a” or “b”.

Considering Figure 4.22, assuming that the fixed cuttoff of 40% allowed 14 of the
40 keys to be moved, the algorithm in Figure 4.21 would first move the key matching
the “d” concept from the source to the target page. Following this movement of 1 key
the next smallest movement would be for concept “c”. The movement this time is for 5
keys making a running total of 6 keys moved. By elimination, the next candidate would
be “a” or “b”. This is where the updating of THeap makes a difference. If THeap is
not updated then it is luck if “a” or “b” are selected because their initial counts are
identical. If “a” is selected then the algorithm will terminate rather than move 12 more
keys making a total of 18 > 14. If “b” is selected (which is guaranteed when updating
THeap) then the 8 keys matching “b” are moved. Note that there are only 8 matches
because the previous move of “c” also moved the keys in common with “b and ¢”.

4.4.3 Customized Key Compression

If the input bounding sets are generated from a known structure then compression
can take advantage of that structure. The use of Formal Concept Analysis makes
available both full and partial implication information. Consider the application of
Formal Concept Analysis to a numeric input using a linear ordinal scale: given a set of
objects O such that each o € O has a numeric value v € V associated with it such a
scale will generate a set of (binary) formal attributes a € A associated with the set O.
For example, if the object set was formed using the planets and V' was the number of
moons of the planet then perhaps A = {some, few, many} where planets which have
few moons also have some moons by implication.

Such ordinal scaling is typical in many applications of Formal Concept Analy-
sis [38].

If we are representing a bounding set as a bitset and the first 63 bits are the result
of such a linear ordinal scale then there is a direct implication between a bit and its

61

(1) Using the standard RD-Tree method select the initial left L and right R sets as
new parent keys.

(2) For all sets yet to be distributed, preallocate any set which is a non strict subset
of either parent key {L, R}.

(3) For all unallocated keys

(a) Test if the current key is a subset of either updated parent key, if so then
allocate that key to the child page of the respective parent key.

(b) Attempt to minimize expansion of either parent key, when expansion has
to occur prefer to expand the right parent’s bounding set.

(c¢) If both parents would have to expand the same amount to cater for a key
then distribute as per the normal RD-Tree method.

(4) If either page is drastically under full shuffle keys into it from the other page.
A page is under full if it is less than 10% utilized. Do not expand the under full
page’s bounding set by more than x elements. For our testing x = 1.

Figure 4.20: Pseudo code for asymmetric page split. Preallocation will require a traver-
sal over all keys to be distributed and set union with each key and L and R. The next
step is the central part of the algorithm and only loops over keys once. The central
distribution will require set unions with each key and both L and R. These can’t be
cached from the values computed during preallocation because L and R are incremen-
tally expanded during this phase. The final shuffle phase potentially touches most of
the keys to be distributed.

62

(1) Apply the standard guttman algorithm to obtain the initial two page distribu-
tion.

(2) Calculate the size of the bounding sets of both pages. The page with the smaller
bounding set is the source page and the other the target page.

(3) Calculate the maximum number of keys to move k from as the number of keys
in the source page multiplied by a cutoff percentage x.

(4) For the source page:

(a) Find the Intent (77) of the top formal concept of the page.
(b) Find the lower covers of (T7) and sort them by their extent size. Store this
in THeap.
(c) Initialize CumulativeKeysMoved = 0
(d) While less keys than k& have been moved:
(i) select the next lower cover of (77) that has yet to be considered work-
ing from the lower cover with the smallest extent to the largest.
(ii) Set CumulativeKeysMoved = CumulativeKeysMoved + number of
keys in (T7).
(iii) If CumulativeKeysMoved > k then exit
(iv) Move the keys in (77) to the target page
(v) optionally Remove (77) from THeap and recalculate the extents in
THeap and resort it by extent size.

(5) If the sum of the size of the final bounding sets for the source and target page
are larger than the initial sum of the size of the bounding sets then ignore the
results of Formal Concept Analysis. Otherwise apply the asymmetric page split.

Figure 4.21: Pseudocode for asymmetric page split using guttman and an Formal Con-
cept Analysis postprocess to achieve superior bounding set sizes.

63

Figure 4.22: Concept lattice for the source page after Guttman’s algorithm has been
applied to obtain the initial distribution. The letters above the nodes indicate which
attributes are introduced at that concept. When an attribute is introduced at concept
x all concepts connected below concept x in the diagram also have that attribute. The
numbers below the nodes indicate how many keys match that concept or any connected
below it. For example, there is one key with attributes {d}, four keys with at least {b, c}
and one with {a,b, c}.

64

Original set compressed stored bitset | physical size (bits)
{1,2,3,4,5} N 11111000...0 63
{1,2,3,4,5} Y 000101 6
{1,2,3,...35,36} | N 111000...001100...0 63
{1,2,3,...35,36} | Y 100100 6

Figure 4.23: Compression of a bitset representing a linear scale.

predecessors. If there is an implication between bits then compression is possible.

Instead of using 63 bits to store this scale we can compress this to just 6 bits by
storing only the position of the highest set bit in the first 63 bits. Some examples are
shown in Figure 4.23.

If one considers a Generalized Index Search Tree created using two ordinal scales
then the bounding set can always be compressed to just two integers. It is much more
difficult to take advantage of cross implications between the two ordinal scales.

If the compression used by the Generalized Index Search Tree is to change then
expensive updates to the index would be required. Potentially, every bounding set
which is compressed would have to be loaded, decompressed, recompressed and saved
again. Thus any implications between two ordinal scales which are to be factored into
the Generalized Index Search Tree compression would need to be asserted by a domain
expert.

The storage of a single integer for each ordinal scale in no way changes the me-
chanics of the Generalized Index Search Tree. Due to the storage of two integers it
may be tempting to think that the tree is in some way more closely related to the B-
Tree [33]. This is not the case, the compression is simply an implementation artifact to
enable more bounding sets to be stored in internal nodes.

4.4.4 Performance Analysis

The benchmark system is an AMD XP running at 2.4GHz with 1Gb of RAM. The
database is stored on a single 160Gb 7200RPM PATA disk. The implementations use
the PostgreSQL Generalized Index Search Tree system. Testing was performed on the
Covtype database from the UCI dataset [17] and a synthetic formal context generated
with the IBM synthetic data generator [88].

Where an implementation includes the NC postfix there is no compression of
bounding sets. Where an implementation includes the Comp postfix in its name it
employs compression of bounding sets. Note that the compression is only ever applied
to the bounding sets on internal pages, never to leaf nodes.

There are two compression techniques used — a generic compression Comp and
compression relying on Formal Concept Analysis knowledge FCAComp.

The RD and RD-Comp use the standard Guttman picksplit.

The implementations are as follows: The Asym-NC uses the asymmetric page
split algorithm from Section 4.4.1, Shuf-NC builds on Asym-NC by performing a shuffle
after the initial allocation in an attempt to subvert the creation of drastically under full
pages. Finally Shuf-Comp builds on Shuf-NC by including compression of bounding sets.

65

These implementations use an allowed cardinality expansion of 1 (see Section 4.4.1). To
demonstrate gains for the compression outlined in Section 4.4.3 the Shuf-FCAComp takes
advantage of the ordinal nature of the scales used to generate the set elements.

The GuttFCA implementations use the standard RD-Tree generalized Guttman
distribution followed by Formal Concept Analysis to provide an asymmetric page split
as detailed in Section 4.4.2. The “R” postfix indicates that the THeap is recalculated
after keys from a concept are moved to the target page. The 30p and 50p postfixes in-
dicate a 30% and 50% target for the number of keys to distribute from the source page
respectively. All the GuttFCA implementations use compression — either generic com-
pression when the Comp postfix is used or Formal Concept Analysis specific compression
when the FCAComp postfix is used.

Two major metrics of interest are the tree depth and the number of internal nodes
in the Generalized Index Search Tree. It is unlikely that an entire Generalized Index
Search Tree will be resident in RAM. Normally some of the tree can be cached in RAM
for a successive search. By minimizing the number of internal nodes and the overall tree
depth we can increase the chances that successive searches can find an internal node in
the RAM cache.

4.4.4.1 Performance on UCI Covtype dataset

This section examines the implementations in the setting of the application of
Formal Concept Analysis on a large data source. This selected application is particularly
difficult due to it having 512 formal attributes as well as each formal object having a
relatively large number of attributes.

The UCI covtype database consists of 581,012 tuples (formal objects) with 54
columns of data (many-valued attributes). Two ordinal columns were used: the aspect
and elevation. A scaled table scaledcov was created from the original data source with
a bit varying field containing a single bit for each formal attribute. Formal attributes
were created for the most frequent 256 values for both aspect and elevation resulting in
a 512 bit column. An example formal attribute would be created from a predicate like
“elevation < 3144”. A smaller table called mediumscaledcov was created with only the
first 10,000 tuples.

The static structure of the produced index for various Generalized Index Search
Tree implementations is shown in Figure 4.24. As seen in Figure 4.24 using an asym-
metric page split can reduce the number of internal nodes in the tree by over 30%
(Comparing Asym-NC with RD-NC). Notice that GuttFCA-50p-Comp contains 76% and
81% the number of internal nodes when compared to RD-Comp and Shuf-Comp respec-
tively.

Although the mean leaf fill goes down for the Shuf-Comp tree compared with the
RD-Comp, there are also fewer leaf nodes in all. Considering the statistic of: leaf node
count x mean leaf fill, the Shuf-Comp tree has an overall reduction of over 20% compared
with RD-Comp. As to be expected the custom compression in Shuf-FCAComp significantly
reduces the number of internal nodes in the tree. By allowing more bounding sets to
be stored per internal node the tree itself is reduced in depth. Note that compressing
the bounding sets for internal nodes has a significant effect on reducing the tree depth
(compare RD-Comp and RD-NC).

Queries for the extent size of each single attribute value were executed against

66

Index tree | index leaf | internal | mean
depth size | node node leaf

(Mb) | count | count | free

(Mb) | count | count | free

RD-NC 17 | 66.1 | 3883 4582 | 5247
Asym-NC 14 | 522 | 3581 3100 | 4799
Shuf-NC 12| 47.1 | 3353 2680 | 4539
RD-Comp 7| 37.7| 3846 977 | 4946
Shuf-Comp 7| 331] 3321 915 | 4565
GuttFCA-30p-Comp 6| 34.3 | 3652 741 | 4681
GuttFCA-50p-Comp 6| 343 | 3648 739 | 4677
GuttFCAR-30p-Comp 6 | 34.3| 3652 741 | 4681
GuttFCAR-50p-Comp 6| 343 | 3648 739 | 4677
Shuf-FCAComp 3| 234 | 2912 35 | 3651
GuttFCA-30p-FCAComp 3| 25.3| 3207 35 | 4056
GuttFCA-50p-FCAComp 3| 253 | 3207 35 | 4056
GuttFCAR-30p-FCAComp 3| 253 3207 35 | 4056
GuttFCAR-50p-FCAComp 3| 253 | 3207 35 | 4056

Figure 4.24: Overall statistics for various Generalized Index Search Tree implementations on
the scaled UCI covtype database mediumscaledcov.

67

each index. During query execution the number of internal keys read was recorded.
The results for the three uncompressed index structures are shown in Figure 4.25. It
can be seen that using asymmetric page splits and post distribution shuffling lowers the
number of internal keys touched.

Testing for two attribute queries was conducted by selecting two primary at-
tributes and querying pairings of those primary attributes with each 16th attribute.
For this test only the RD-Compress and Shuffle-Compress Generalized Index Search
Tree are considered. Results are shown in Figure 4.26.

Queries for the extent size of 32 single attributes were executed against each
index. The 32 attributes were selected for query z as the 16zt" formal attribute. Two
attribute queries were formed using the 25, 248 and 293rd attributes in combination with
every 16th attribute. The results are shown in Figure 4.27. It can be seen that using
asymmetric page splits and post distribution shuffling lowers the number of internal
keys touched. The higher branching factor of the FCAComp Generalized Index Search
Tree does require more leaf keys to be touched on average.

The two attribute queries saw a reduction in the number of internal keys touched
with no significant changes in leaf keys touched. Of particular note, the GuttFCA-50p-Comp
Generalized Index Search Tree only touched 85% the number of internal keys when com-
pared with RD-Comp.

4.4.4.2 Performance on Synthetic data

The following use synthetic data generated with the IBM synthetic data gen-
erator [88]. Parameters include the number of transactions (ntrans), the transaction
length (tlen), length of each pattern (patlen), number of patterns (npat) and number of
items (nitems). The parameters were as follows ntrans=100,000 and ntrans=1,000,000,
nitems=1000, tlen=32, patlen=7, npats=10000.

The output of the IBM synthetic data generator is a list of ntrans transactions.
Each transaction contains a number of items. Each item is represented by a unique
integer in the range {1,...,nitems}. Transactions were imported into an int array field
in a PostgreSQL table including only the first n items for n € {16,32,1024}. Such
an arrangement allows an RD-Tree to easily be created on the input data of varying
dimensionality.

The static index structure is presented in Figure 4.28. Gains can be seen for
both the 32 and 64 dimensional RD-Tree picksplit customizations. For the 1,024
dimensional data the standard guttman picksplit remains superior. Notice that for
the rd32 the GuttFCA-30p-Comp is 1.6% larger on disk with about 2% more leaf nodes
though has only 82% the number of internal nodes when compared to RD-Comp.

As can be seen from the 100,000 transaction table shown in Figure 4.29 the
Shuffle-Compress index has significantly fewer internal keys touched in most queries.
There are only two queries where Shuffle-Compress touches more keys than RD-Compress.
For a million transaction table Shuffle-Compress always touches fewer internal keys.
For the million transaction table the mean of the number of internal keys touched for all
32 attributes for Shuffle-Compress is 36% less than the same mean for RD-Compress.

The Shuffle-Compress has more leaf nodes than RD-Compress for both Gen-
eralized Index Search Tree. However the Shuffle-Compress only touched 38% the
number of leaf keys that RD-Compress did overall. This can be explained because the

0

Ne)
“IopIo ey} ul ‘DN-JY Pur HDN-WASY :oIe spremdn oIoy) WOL] ‘©TIFNYS I0] SARM[R ST SAOY POYONO) 0} IOQUINT JSOMO[O], "SOINJONIIS
Xopul passardwooun ue U0 SNLIYIR Q7] ISIY oY} I0J soLIonb ozIs jueixe 9inqLIije d[3UIS SULINP POYDNO0} SASY JO IoqUINN :G7'§ oInSIig

(8¢T-T) ®InqunY

I O

~
D

<

wn

—t

ON-QY e
ON-wAsy [l S
dNuS 7 o

Sallanb 31nqLiale a9|buls 1o) payonol Ay

‘¢z omquipye Arewrrd © Ym 9)NQLI}ye IOYI0 YIQT AIOAD IO 991], Y2IBOS XopU[
Bpazieiauar) ssexdwop-oTFFnys pue ssexdwo)-qy o1} Jsurese sanqriie om) SUIAILND o[y m paydno} sA6y [RUIAUI JO IoquInN 97 f oImS31

payonoy sAsy
005'€ 000°€ 005'Z 0002 00S'T 000'T 005

- O

ssaidwod-a1unys Ml
ssaudwod-qy N

2INQLNY PU0I3S

T
C
,
,
,
,
,
,
,
:

s B

u T L

S931ngli13e oMl BUIAJOAUI SBIIBND 10} PaYIN0] SAD)

70

Index single single two two
attribute | attribute | attribute | attribute
internal leaf | internal leaf

RD-NC 5875 5184 3908 3795

Asym-NC 4800 5188 3139 3841

Shuffle-NC 4401 5218 2946 3815

RD-Comp 3491 5260 2362 3885

Shuf-Comp 3107 5249 2083 3873

GuttFCA-30p-Comp 3171 5194 2014 3881

GuttFCA-50p-Comp 3167 5194 2010 3881

GuttFCAR-30p-Comp 3171 5194 2014 3881

GuttFCAR-50p—Comp 3167 5194 2010 3881

Figure 4.27: Mean number of keys touched for single and double attribute queries.

Index tree index leaf | internal | mean
depth size | node node leaf
(Mb) | count | count | free
rd16
RD-Comp 3 63.5 | 8033 95 | 3950
Shuf-Comp 3 64.9 | 8233 77 | 4051
GuttFCA-30p-Comp | 3 63.9 | 8097 80 | 3982
GuttFCAR-30p-Comp | 3 64.1 | 8118 81 | 3993
GuttFCA-50p-Comp | 3 64.5 | 8175 77 | 4021
GuttFCAR-50p-Comp | 3 64.5 | 8181 79 | 4025
rd32
RD-Comp 4 67.1 | 8462 131 | 3749
Shuf-Comp 4 69.5 | 8789 103 | 3910
GuttFCA-30p-Comp | 4 68.2 | 8620 107 | 3827
GuttFCAR-30p-Comp | 4 68.8 | 8698 104 | 3864
GuttFCA-50p-Comp | 3 69.5 | 8797 100 | 3913
GuttFCAR-50p-Comp | 3 69.7 | 8820 99 | 3924
rd1024
RD-Comp 5 81.5 | 9739 697 | 2804
Shuf-Comp 5 142.5 | 17577 669 | 5117
GuttFCA-30p-Comp | 5 83.5 | 9982 710 | 2928
GuttFCAR-30p-Comp | 5 84.8 | 10169 679 | 3020
GuttFCA-50p-Comp | 5 91.4 | 11003 695 | 3384
GuttFCAR-50p-Comp | 5 95.2 | 11599 582 | 3600

Figure 4.28: Overall statistics for various Generalized Index Search Tree implementations on
the IBM data mining synthetic database.

Shuffle-Compress better clusters like keys into leaf nodes than RD-Compress. Also

71

Single attribute queries against t100132n10000plen7il

]

FEE b

a7

— RD-Compress
: [l Shuffle-Compress

Attribute

1 ,
0 500 1,000 1,500 2,000
Keys touched

Figure 4.29: Single attribute queries for the first 32 attributes in t100132n10000plen7il.
This data set involves 100,000 transactions, a total of 10,000 different patterns, a trans-
action length of 32, a pattern length of 7 items and a total of 1000 different items.

72

Shuffle-Compress being a 7% larger index size overall it has less congested leaf nodes.

A series of subset queries was posed to the database for one, two and three
attributes to test the effectiveness of the index structure. Given that the three in-
dexes contain 16, 32 and 1,024 attributes the single attribute queries were for each of
the attributes that the index contains. As nitems=1,000 there are 021’000 = 499,500
combinations of two attribute queries possible. As such, for each of the n-attribute
queries and index on the first r attributes, only » — n queries are posed. These are for
i € {1,2,...,r — n} for the attributes {a;,...,a;1n}. As the input data should not be
biased toward such queries they should when averaged be fairly representative of any
such n-attribute query against the data. Shown in Figure 4.30 are the mean number of
internal and leaf keys touched while performing these queries.

Note that the Formal Concept Analysis picksplit both yield superior results for
the 16 and 32 attribute indexes. In particular the GuttFCA-50p-Comp index touches less
than 16% the number of internal keys than RD-Comp for 3 attribute queries against the
16 attribute index.

4.5 Conclusion

This chapter has explained why conventional B-Tree indexing is ineffective for
resolving Formal Concept Analysis queries in Section 4.2. This is also the pathological
worst case empirical timings that were found in the previous chapter in Section 3.4.

Spatial Indexing can be employed in order to drastically reduce query times pro-
duced by ineffective use of relational database indices. The spatial designs presented in
Section 4.3 are shown to be effective in the empirical testing performed in Section 4.3.1.
Depending on the distribution of the data being indexed it was found that spatial index-
ing could resolve typical Formal Concept Analysis queries from five to 80 times faster
than conventional indexing.

Further gains are obtained if the method that the spatial index uses to handle
over full pages is modified as shown in Section 4.4. An over full page must be split into
two pages and the old information distributed between these two pages. By employing
an asymmetric distribution when splitting an index page the overall structure of the
index tree can be modified to produce a more efficient index. The two index pages will
require two keys to be placed into the parent index page, keeping these keys as small as
possible is essential to allow more keys to fit into the parent page leading to an index
tree with a reduced height. Each page in the height of an index tree will likely require
an expensive disk head seek and so the index height plays a very large role in the overall
index performance.

The empirical testing on the asymmetric distribution page splits is presented in
Section 4.4.4. The best results can be obtained if the spatial index has more intimate
knowledge of the data it is indexing. This knowledge can be exploited to compress
index keys and as a consequence of smaller index keys, reduce the overall height of the
index structure itself. This is detailed in Section 4.4.3. When employing customized
compression tailored to Formal Concept Analysis only 16% the number of internal keys
are touched relative to a standard RD-Tree for a 16 attribute index. For the IBM
data mining synthetic input the Formal Concept Analysis based page split with Formal
Concept Analysis tailored index compression could actually reduce the index tree height
from 4 to 3 which will directly reduce the number of disk seeks required for each query.

73

Index inl If1 in2 If2 in3 If3
rd16

RD-Comp 6147 | 1851 | 4515 | 3362 | 3772 | 123
Shuf-Comp 2013 | 597 | 1041 88 | 712 31

GuttFCA-30p-Comp | 2587 | 745 | 1197 | 116 | 869 43
GuttFCAR-30p-Comp | 2550 | 750 | 1101 | 117 | 670 35
GuttFCA-50p-Comp | 1634 | 554 | 789 76 | 586 22
GuttFCAR-50p-Comp | 1677 | 548 | 766 67 | 525 20

rd32
RD-Comp 6584 | 1926 | 5045 | 455 | 4129 | 168
Shuf-Comp 3868 | 905 | 1658 | 188 | 1044 60

GuttFCA-30p-Comp | 3887 | 1051 | 2000 | 214 | 1375 77
GuttFCAR-30p-Comp | 3503 | 1002 | 1846 | 202 | 1282 69
GuttFCA-50p-Comp | 2822 | 820 | 1413 | 158 | 921 51
GuttFCAR-50p-Comp | 2543 | 761 | 1242 | 137 | 819 43

rd1024
RD-Comp 8933 | 4622 | 7586 | 2156 | 6451 | 1083
Shuf-Comp 8387 | 2578 | 4229 | 889 | 2432 | 384

GuttFCA-30p-Comp | 9507 | 4580 | 8409 | 2206 | 7425 | 1156
GuttFCAR-30p-Comp | 9218 | 4197 | 7703 | 1894 | 6394 | 947
GuttFCA-50p-Comp | 9382 | 4097 | 7529 | 1862 | 6234 | 958
GuttFCAR-50p-Comp | 8619 | 3457 | 6209 | 1383 | 4666 | 652

Figure 4.30: Average number of internal and leaf keys touched for single, two and three
attribute queries on various Generalized Index Search Tree implementations. Note that i3
is the internal mean and 13 is the leaf mean. Internal counts are exact, leaf counts are
expressed as figures rounded to the nearest hundred. ie. a leaf count in the table of n is for
a reading of n x 100 leaf keys.

74

This impact will be more again when one considers that a relational database will cache
the root index node and quite possibly the direct children of the root node. This leads
to the Formal Concept Analysis based index requiring one disk seek compared to the
standard RD-Tree requiring two.

Chapter 5

Lattice Closure In A Timely Manner

5.1 Introduction

Attention will now be turned to methods for obtaining the concept lattice from the
formal context. As this process is a computationally expensive operation the selection
of algorithm and how it interacts with its input data are important factors contributing
to how interactive the system as a whole can be.

Section 5.2 discusses the issue of finding the set of all concepts for a given formal
context. This is followed by a new Border algorithm for explicitly recording the covering
relation among the set of all concepts in Section 5.3. Empirical testing is carried out in
Section 5.5 to verify that the border algorithm provides acceptable performance for up
to a few thousand concepts.

The process of obtaining a concept lattice can be seen as two distinct subtasks:
finding the set of all concepts and finding the covering relation of the concepts. Finding
the set of all concepts is equivalent to finding the lattice closure. The set of concept
intents uniquely determines the set of concepts.

A recent paper [96] presented both the Titanic algorithm and highlighted the link
between finding the lattice closure in FCA and the problem of locating Closed Frequent
Itemsets (CFI) in Data Mining [45]. The Titanic algorithm is based on the Apriori Data
Mining algorithm [9].

This paragraph establishes the link between CFI in Data Mining and finding the
set of concepts (intents) from a formal context in FCA. An itemset in Data Mining is a
set of formal attributes in the formal context. The support of an itemset is the number
of objects which have at least that itemset in their row in the formal context. This is
shown in Figure 5.1.

For the set of all attributes A, a closed itemset is an itemset X C A for which
there exists no attribute y € A\ X such that the itemset X U{y} has the same support as
X. That is, any itemset is closed if it can’t be expanded to contain any other attribute
and not have a lesser support.

The “Frequent” part of the Closed Frequent Itemset relates to a cut off threshold
in the Data Mining process. For a given minimum support value, any itemset with a
higher support than the minimum is considered frequent. Thus a CFI has a support
above the minimal threshold and can not be expanded to contain any other attribute
without modifying its support. Much computational complexity can be avoided if the
minimum support is set slightly higher than zero. For example, a minimum support in
the range of 2% to 5%.

76

Formal Attribte —/-x

Creatures

Reptilia | Mammalia | Aves | Nocturnal

Formal Object African fat-tailed gecko X x

Kangaroo X X
\\j Barking Owl X X

Itemset

African fat-tailed gecko (Reptilia Nocturnal

N
Kangaroo Mammalia Nocturnal

N\
Barking Owl (Aves) Nocturnal
Item Aves,

V Support = 25%

Wombat Mammalia Nocturnal

Transaction

Figure 5.1: At the top of the figure is a Formal Context with one of its Formal Attributes
and one of its Formal Objects highlighted. The Data Mining perspective is shown below.
Formal Objects are seen as Transactions, a group of Formal Attributes is an Itemset.
The support for a given Item or Itemset y is the number of transactions which contain
a non proper superset that itemset y.

77

Finding the set of all intents in FCA is equivalent to finding the set of all Closed
Frequent Itemsets (CFI) in Data Mining using a minimum support of zero. When the
minimum support is above zero the side effect is that some concepts at the bottom of
the concept lattice are not discovered. Such partial concept lattices are called iceberg
lattices [96].

Algorithms for finding closed frequent itemsets in the Data Mining community
are the subject of much research and recently an annual workshop to benchmark both
algorithms and their implementations has emerged [40].

The set of CFI for a given dataset implicitly contains the concept lattice for that
dataset. In order to display that concept lattice one must make explicit the covering
relation of the CFI. Titanic and CHARM-L [107] explicitly record this covering relation
whereas Data Mining algorithms normally stop after finding the CFI themselves.

The process of obtaining a concept lattice using Data Mining algorithms can be
seen as two distinct subtasks: finding the CFI and finding the covering relation of the
CFI. The active community research on the first step is discussed in Section 5.2 then
the focus is turned to addressing the covering relation from CFI step in Section 5.3 with
empirical testing in Section 5.5.

5.2 Finding the Closed Frequent Itemsets

There are various aspects of the algorithms for finding CFIs which will impact
the design of the findex. These aspects include whether the algorithm expects its data
in a vertical or horizontal orientation, the number of passes over the findex in various
cases and how well the algorithm can be used in an iterative fashion for a fixed support
value. Using the CFI algorithm in an iterative manner allows one to obtain the CFIs
for the top n layers of the lattice while computing the next layer in the background.

The Titanic and Apriori algorithms perform passes over the findex inspecting
each object in turn and working on the attributes which each object has before moving
on to the next object. Such a visiting strategy is based on a horizontal index represen-
tation in which each object has the list of attributes that the object has. The common
alternative to the horizontal representation is to consider each attribute to have an as-
sociated list of object identifiers which identify the objects that have that attribute.
Such a representation is known as the vertical representation. For a vertical representa-
tion the closure computation forms the set intersection of many such lists. Some of the
algorithms which operate on the vertical representation include Eclat and Clique [108]
and implicitly the Logic File System [82] and Docco [11].

Many CFI algorithms form a Frequent-Pattern Tree (FP-Tree) which conceptually
consists of a tree which includes the number of times each itemset occurs [46, 40]. After
such a tree is built from the findex then CFI discovery can be performed using just the
FP-Tree [46]. The FP-Tree has been represented using either a trie [46], an array [42]
or a patricia tree [84].

One advantage of using an Apriori based algorithm is that for each iteration of the
algorithm it generates the next set of intents always moving from the intents consisting
of single attributes to those with a larger intent. This can be considered a breadth
first search of the FP-Tree. The breadth first search has the advantage that for a fixed
minimum support value for a session the lattice can be generated iteratively.

Attempts to adopt depth first FP-Tree searching algorithms such as FPClose [46]

78

to a breadth first iterative implementation suffer from the need to keep intermediate
state available for the next iteration. For FPClose, once an item z is selected to recurse
on a new FP-Tree is created which is conditional on item z in the database. Thus to
perform an iterative FPClose many FP-Trees would have to be stored in memory or
recalculated.

One key issue with using an Apriori algorithm is that it will take at least as
many parses over the findex as the size of the largest intent in the concept lattice. In
contrast the FPClose algorithm will parse over the findex generating an FP-Tree which
is considerably smaller than the findex and from then on recursively mine the FP-Tree
generating smaller FP-Trees. In some cases the FPClose can significantly outperform
the Apriori algorithm [40].

When the concept lattice is to be presented as a diagram to the user the Apriori
based algorithm would be advantageous. This allows the lattice to be computed while
it is incrementally displayed. The limited number of concepts that can be shown in a
diagram will limit the number of database passes required by Apriori. When the lattice
is not directly shown in its entirety, such as in a command line lattice interface running
the FPClose algorithm may be better suited.

For further details of Data Mining CFI algorithms see [40, 80, 83].

5.3 A border algorithm

Although mathematically the ordering relation among concepts is implicitly avail-
able once the set of all concepts is found, in a computer system this ordering must be
explicitly recorded. This section presents a new algorithm for quickly making the cov-
ering relation explicitly available. A later section will provide empirical testing to verify
the performance of the algorithm for the setting it was designed to operate in — making
the covers explicit for up to a few thousand concepts. The major advantage of the
border algorithm is that it does not require the formal context at all. This makes it
efficient to apply where the data source is large and dynamic and simply reading the
formal context sequentially implies a large performance cost.

The Titanic [96] algorithm is based on the Apriori Data Mining algorithm [9]
and groups the finding of the concepts and recording the covering relation into a single
algorithm. A major advantage of separating the recording of the covering relation from
the finding of the set of concepts is that the latter can be freely varied. As mentioned,
finding the set of concepts for an iceberg concept lattice is the same as finding the Closed
Frequent Itemsets (CFI) in Data Mining. There is a great deal of active research being
performed to improve the performance of finding the CFI (that is, the set of concepts
for an iceberg concept lattice). Thus it is highly advantageous to separate the process
of recording the covering relation on concepts (the border algorithm) from the finding
of the set of concepts (CFI) in order to take advantage of newer algorithms for CFI
discovery.

We turn now to the Border algorithm for explicitly recording the covering relation
for a set of concepts.

In the following discussion C will represent the set of all concepts. A naive
algorithm for finding the covering relation among concepts would inspect each concept
as a potential parent for every concept. The complexity to find the parent-child relations
between the concepts for this algorithm is proportional to |C|2.

79

Various order theoretic properties of a concept lattice can be used to reduce the
search space for covers and thus handle a larger |C|. The following border algorithm
maintains a border set B as the concept lattice is inspected in a top down manner. If
the mean size of B is y the complexity becomes proportional to y x |C|.

The border algorithm is shown in Figure 5.2. The algorithm in Figure 5.2 will be
referred to as the “intents only” algorithm in the following. The Maxima function used
by Figure 5.2 is shown in Figure 5.3.

The algorithm only requires the set of all intents F' as input. The algorithm
requires that the intent set be a partial order of least intent attribute cardinality to
maximum intent attribute cardinality. For example, all intents with only one attribute
will be sorted before all intents with two or more attributes. As each intent will uniquely
define a concept the discussion will also simply mention “the concept” for a € F' instead
of the concept with the intent {a}.

There may be many concepts D C F' sharing the smallest intent cardinality. Any
intent of D may be the intent of the top concept of the lattice. As such a new intent
is created t which will act as the intent of the top concept of the lattice. After the
algorithm has completed, if ¢t has only a single child then it can be removed from the
lattice. This allows the algorithm to quickly know what concept is the top concept of
the concept lattice. The top concept is used to initialize the border set with so it must
be known.

The algorithm works by starting with a border of the top lattice node and se-
quentially working through concepts in the ordered intent set a € F' and forming the
intersection with each intent in the border set to find parents of a. After each concept is
checked against the border set any new parent-child relations are explicitly linked and
the border set is updated.

5.3.1 An Application Example of the Border Algorithm

The concept lattice shown in Figure 5.5 is used to present an example of the
application of the border algorithm.

The steps that the border algorithm performs to find the concept lattice are shown
in Figure 5.4. The current concept that is being worked on, the current border set as
well as the Intents set from line 12 in Figure 5.2 before and after Maxima is called on
it. All edge additions are shown at the time when they are performed on line 14 of
Figure 5.2.

5.4 A Baseline Algorithm

The algorithm shown in Figure 5.2 will be referred to as the “intents only” algo-
rithm during benchmarking. The Covering Edges [20] algorithm was implemented with
a minor change to work against ice berg lattices. The modified algorithm is shown in
Figure. 5.6. This modified algorithm will be simply referred to as “covering edges” in
the following.

5.5 Performance Analysis

The benchmark system is a dual core AMD X2 running at 2.2GHz with 2Gb of
RAM at DDR400. The database is stored on a single 80Gb 7200RPM PATA disk. The

80

1) IntentsOnly(F)

[\

w

set t := {}

N
B
Il
B
(-
——
B

Border := {t}

(=}

7) for each a € F

0g)

Intents := {}

~ o~ o~ o~~~ o~~~

Ne)

for each b € Border

—_
o

y:=bNa

Intents := Intents U {y}

[y
[\]

Intents := Maxima(Intents)

—_
w

for each y € Intents

—_
W

Add edge y — a to E

—
(@)

Border := Border \ {y}

Border := Border U {a}

—_ —_
EN | —_
R s N N N s S s I s N N N N -

—
o

if |children(t)| =1

—_
N

for each ¢ € children(t)

[\
@)

Remove edge t — ¢ from E

F = F\{t}

e e e e N e T e e e e e
—_
(=)

[\)
—_

Figure 5.2: Algorithm to make the order relation between concepts explicit. Input: F
the set of concept intents partially ordered on the cardinality of the Intent size from
smallest intent size to largest. Output: E an edge mapping from parent concept intent
to child concept intent forming the covers for the concept lattice of F'. The Intents set
introduced on line 8 is also partially ordered from intents with the smallest cardinality
to intents with the largest cardinality.

81

1) Maxima(Intents)
2
3) Ret := {}

4) for each y € reverse(Intents)

(
(
(
(
(5
(
(
(
(

ismin :=1
6 for each r € Ret
7 it {y} N {r} = {1}
8 ismin := 0
9 if ismin

(10 Ret := RetU{y}

)
)
)
)
)
)
)
)
)
)
(11)
)

(12) return Ret

Figure 5.3: The Maxima function returns the set of intents which are maximal from
the given set of intents. The Intents set used as input is ordered from smallest intent
cardinality to largest intent cardinality. Line 4 indicates that the ordered Intents poset
is to be inspected in reverse order, from largest intent cardinality to smallest.

(1)

Current Concept = {{a}}
Border = {{}}

Intents = {{}}
Maxima(Intents) = {{}}
Add edge {} — {a}

Current Concept = {{c}}
Border = {{a}}

Intents = {{}}
Maxima(Intents) = {{}}
Add edge {} — {c}

Current Concept = {{d}}

Border = {{c},{a}}

Intents = {{},{}}
Maxima(Intents) = {{}}

Add edge {} — {d}

Current Concept = {{b}}

Border = {{d}, {c},{a}}

Intents = {{}, {}, {}}
Maxima(Intents) = {{}}

Add edge {} — {b}

Current Concept = {{ae}}

Border = {{b},{d},{c},{a}}

Intents = {{a},{},{},{}}
Maxima(Intents) = {{a}}

Add edge {a} — {ae}

Current Concept = {{ac}}

Border = {{ae}, {b},{d},{c}}

Intents = {{c}, {a},{},{}}

Maxima(Intents) = {{a}, {c}}

Add edge {c} — {ac}
Add edge {a} — {ac}

(7)

(10)

82

Current Concept = {{ad}}

Border = {{ac}, {ae}, {b},{d}}

Intents = {{d}, {a}, {a}, {}}
Maxima(Intents) = {{a}, {d}}

Add edge {d} — {ad}
Add edge {a} — {ad}

Current Concept = {{bc}}

Border = {{ad}, {ac}, {ae}, {b}}

Intents = {{b}, {c}, {}, {}}
Maxima(Intents) = {{c}, {b}}

Add edge {b} — {bc}
Add edge {c} — {bc}

Current Concept = {{bd}}

Border = {{bc}, {ad}, {ac},{ae}}

Intents = {{d}, {0}, {},{}}
Maxima(Intents) = {{b}, {d}}

Add edge {d} — {bd}
Add edge {b} — {bd}

Current Concept = {{bcd}}

Border = {{bd}, {bc}, {ad}, {ac}, {ae}}

Intents = {{bc}, {bd}, {c}, {d}, {}}
Maxima(Intents) = {{bd}, {bc}}

Add edge {bc} — {bed}
Add edge {bd} — {bed}

Current Concept = {{abcde}}

Border = {{ad}, {ac}, {ae},{}, {bcd}}
Intents = {{bcd}, {ae}, {ac}, {ad},{}}
Maxima(Intents) = {{bcd}, {ad}, {ac},
{ac}}
Add edge {ae} — {abcde}
Add edge {ac} — {abcde}
Add edge {ad} — {abcde}
Add edge {bcd} — {abcde}

Figure 5.4: Steps performed by the border algorithm to find the covers of the concept
lattice shown in Figure 5.5.

83

Figure 5.5: Concept lattice used as example of border algorithm application.

(1) IceBergCoveringEdges(C, (G, M, 1))
(2) for each(X)Y) € C

(3) Set count of any concept in C to 0

(4) for each m € M\Y

(a) inters := X N{m}’
(b) Find (X1,Y7) € C such that X; = inters
(c) if((X1,Y1) exists) then
(i) count(Xy,Y7) := count(Xy,Y7) + 1
(ii) if(|Y1| - |Y|) = count(Xy,Y7) then
(il.a) Add edge (X1,Y1) — (X,Y) to E

Figure 5.6: Modified CoveringEdges using the same syntax as in Concept Data Analy-
sis [20]. As the iceberg lattice does not contain all concepts, the modified version must
check that the concept (X7,Y7) exists before proceeding.

84

implementations use the PostgreSQL database to read the CFI. Testing was performed
on a synthetic formal context generated with the IBM synthetic data generator [88]
databases from the UCI dataset [17] and two filesystem examples. The filesystem ex-
amples include a formal context derived from the metadata of 67,000 document files [3]
and 2,000 geospatially tagged digital pictures. The digital picture context contains over
90 formal attributes.

Tests were run multiple times and the result of the final run was taken. This
reduces the impact of the relational database, disk speed and other non relevant imple-
mentation details because most information will be coming directly from RAM cache
in the relational database itself. This “hot caching” is acceptable as we are mostly
interested in the speed of the core algorithm which makes explicit the covering relations
of the CFI. The core of the implementation was compiled with gcc 4.1.1 using the -04
flag to turn on code optimization.

The implementation itself is single processed and single threaded. At times where
the database server and implementation can run concurrently then advantages in the
dual core CPU can be seen. Note that these are limited to the data fetching portions
of execution, the actual finding of covers is completely contained in the implementation
and makes no use of the second CPU core.

In order not to disadvantage either algorithm in empirical testing variants were
created of each. As the intents only algorithm makes use of many temporary small sized
bit sets it was implemented around boost: :dynamic_bitset<> bit container.

As the covering edges algorithm makes extensive use of intersecting very large
sets, see line 4a from Figure 5.6, the covering edges uses a bitset implementation which
makes use of gap encoding and SIMD execution. Modern processors support Single
Instruction Multiple Data (SIMD) execution which allows simultaneous processing of 4,
8, 16 or more data items with the same instruction in the same processor clock cycle.
The general SIMD concept is also known by specific implementations such as MMX,
SSE, SSE2 etc. These two optimizations greatly reduce execution time for covering
edges on large data sets.

The use of SIMD carries a setup overhead and as such can actually be a disadvan-
tage for smaller bitsets. The choice of bit set implementation being advantageous for
each algorithm was tested by using both bit set implementations to verify empirically
that the choice was optimal.

For sets with 64 or less elements an implementation of intents only was created
using a single 64 bit integer instead of a boost: :dynamic_bitset<>. For covering edges
a version which operates on the row reduced context was created. This implementation
will be referred to as covering edges reduced.

There should be somewhat more efficient ways to perform the covering edges
“setup” that is shown in the following. Regardless of potential improvements this setup
time can not be avoided and the relative differences in speed shown will remain.

5.5.1 Performance on Synthetic data

The following use synthetic data generated with the IBM synthetic data gen-
erator [88]. Parameters include the number of transactions (ntrans), the transaction
length (tlen), length of each pattern (patlen), number of patterns (npat) and number
of items (nitems). The parameters were as follows ntrans=10,000, ntrans=100,000 and

85

ntrans=1,000,000, nitems=1000, patlen=7, npats=10000. For each ntrans value, the
tlen was varied between 32, 128 and 256. Some combinations of tlen and ntrans could
not be generated because the implementation ran into RAM shortages.

The output of the IBM synthetic data generator is a list of ntrans transactions.
Each transaction contains a number of items. Each item is represented by a unique
integer in the range {1, ..., nitems}. Transactions were imported into a bit field column
type in a PostgreSQL table for n € {32,128,256}. An expression index was then created
on the corresponding int array for the bit field column by using a conversion function
to generate an int array from a bit field. Such an arrangement allows an RD-Tree to
easily be created on the int array using the same implementation from Section 4.4.4.2.
The base data type being a bit field allows the fastest possible bulk transfers of data.

The Apriori [9] algorithm was used to generate the CFI for each dataset. Param-
eters for support were varied in order to obtain a desired number of CFI for each data
set. The target CFI count was 1,000, 3,000 and 10,000. Results were not recorded for
datasets which do not support the target number of CFI.

Shown in Table 5.1 is the number of CFI for each input data set along with
the size of the row reduced formal context. The results of running the two algorithms
against the datasets in Table 5.1 is shown in Table 5.2. Where the number of CFI is less
than 3,000 the intents only method has a clear advantage. However once the number of
CFT is at 10,000 the covering edges based algorithms perform much better. The border
algorithm functions very poorly on the 10,000 CFI input because the average number of
concepts in the border set is very high, as shown in Table 5.3. As the border algorithm,
shown in Figure 5.2, visits each member of the border set for each concept having the
average border size almost half the number of concepts makes the overall complexity of
the border algorithm unacceptable.

ntrans | tlen | |[CFI| | |CFI| | |CFI| | row reduced object count
(x1000) 1,000 | 3,000 | 10,000 (x1000)
1.0 | 128 931 2867 9989 1.0

10.0 32 1118 . . 1.0
10.0 | 128 991 | 2983 | 9885 10.0
10.0 | 256 1155 3009 9767 10.0
100.0 | 32 906 | 2909 . 3.8
100.0 | 128 955 | 2880 | 9494 100.0

Table 5.1: The number of CFI for each configuration. The reduced count is the number
of transactions in an object row reduced formal context. The reduced count plays a
role in the Covering Edges implementation. As can be seen the reduction process has
no bearing for formal contexts with tlen > 32. Where the data does not support the
requested number of CFI the table has blank cells.

5.5.2 Performance on a Filesystem data
5.5.2.1 Personal Photo Collection

The first dataset is for 2,000 photographs with metadata describing their location
both semantically and quantitatively. Semantic metadata is captured by associating

ntrans | tlen | [CFI| | algorithm covers time | {m}’ time setup X
(x1000) (mm:ss.d) | (mm:ss.d) | (mm:ss.d)
1| 128 931 | intents only 2.5
covering edges 4.5 0.02 1.1
2867 | intents only 13.4
covering edges 8.2 0.02 3.5
9989 | intents only 3:22.3
covering edges 30.6 0.02 12.3
10 32 1118 | intents only 1.2
covering edges 14 0.01 0.8
128 991 | intents only 1.7
covering edges 2.6 0.2 7.0
2983 | intents only 15.9
covering edges 8.3 0.2 18.1
9885 | intents only 3:24.2
covering edges 28.9 0.2 57.7
256 1155 | intents only 2.6
covering edges 7.1 0.4 12.5
3009 | intents only 16.0
covering edges 19.1 0.4 31.0
9767 | intents only 3:20.1
covering edges 1:21.2 0.4 33.8
100 32 906 | intents only 0.9
covering edges 14 0.9 2.8
covering edges R 0.8 0.04 1.1
2909 | intents only 104
covering edges 5.6 0.9 6.2
covering edges R 3.1 0.04 3.2
128 955 | intents only 1.6
covering edges 3.2 2.0 57.3
2880 | intents only 15.3
covering edges 10.5 2.0 41.5
9494 | intents only 3:12.8
covering edges 34.6 2.1 30.6

Table 5.2: Time taken by various algorithm implementations

relations between CFI explicit.

Table 5.3: Average border size for various CFI data sets.

ntrans | tlen | |[CFI| | average border size
(x1000)

10 | 256 | 3009 956

9767 3399

100 32 906 331

2909 1004

128 955 432

2880 1162

9494 3991

86

to make the covering

87

place names with each file. Quantitative metadata comes from both the metadata
automatically recorded by a digital camera or film processing machine and also indirectly
from the place name tags in the form of longitude and latitude information.

Using the border algorithm takes 0.03 seconds whereas the covering edges requires
0.49 seconds plus 0.2 seconds to setup data structures. Note that although this data
was only for 2,000 images since the border algorithm is dependent only on the CFI
this advantage would only increase proportionally with the number of images in the
collection.

5.5.2.2 Two scales on 200,000 files

An findex was created on a Fedora Core 4 Linux machine using libferris 1.1.54 of
201,759 files in /usr/share/. For this findex a nominal scale was created on mimetype
and a data driven scale on file modification time. A total of 141 formal attributes was
created with these two scales. This findex is the same as that used in Section 6.2.

With these two scales, the support was set to give two datasets with 955 and 5463
concepts. For the 955 concepts the intents only algorithm took 1.6 seconds whereas the
covering edges required 7.5 seconds plus 14.8 seconds of setup time. For the larger
set of 5463 concepts the intent only algorithm needed 1:07 whereas the covering edges
completed with 42.5 and 25.5 seconds of setup time.

5.5.3 Performance on UCI Covtype dataset

This section examines the implementations in the setting of the application of
Formal Concept Analysis on a large data source. This selected application is particularly
difficult due to it having 64 formal attributes as well as each formal object having a
relatively large number of attributes.

The UCI covtype database consists of 581,012 tuples (formal objects) with 54
columns of data (many-valued attributes). Two ordinal columns were used: the aspect
and elevation. Formal attributes were created using 32 formal attributes per ordinal
scale. An example formal attribute would be created from a predicate like “elevation
< 3144”.

A subsample with only 100,000 tuples was created for testing. A support cutoff
was selected to generate datasets with roughly 1,000 and 3,000 CFI. The results are
shown in Table 5.4. It can be seen that the intents only algorithm suffers when the
number of CFI increases. The intents only algorithm does not require to touch the
base table in order to find X for all CFI which presents a significant setup cost for the
covering edges algorithm on such a large input dataset.

5.6 Conclusion

The border algorithm can suffer poor performance as the mean border set size
grows. Some testing has revealed border set averages in the order of half the concept
set size.

This border set issue does not significantly impact the border algorithm where
the size of the CFI set is small (< 1,000)). The use of the border algorithm is generally
advantageous when the number of concepts in the CFI is relatively small (< 3,000)).

88

|CFI| | average intents | covering covering
border only edges edges

size core setup

(seconds) | (seconds) | (minutes : seconds)

1,000 522 1.8 1.7 4:08
3,000 1376 13.5 4.8 10:42

Table 5.4: Performance of intents only and covering edges algorithms on CFI drawn
from 100,000 objects with 64 attributes.

The efficiency of the border algorithm is independent of the number of formal
objects. Only the CFI (that is, the set of concepts of an iceberg concept lattice) are
required for the border algorithm.

For the covering edges algorithm, as the number of formal objects increases the
burden of inspecting the whole database during algorithm setup increases. The setup
for the covering edges algorithm includes finding the extent of each concept and the
attribute extent for every attribute in preparation for step 4a of Figure 5.6.

For a large formal context where formal objects have few attributes and the set
of all formal attributes A is relatively large the covering edges algorithm can be very
slow. This is because step 4a of Figure 5.6 will be executed on average |C| * |A| times
each involving a |O| length bit intersection operation.

Chapter 6

Formal Concept Analysis and Semantic File Systems

6.1 Introduction

Previous chapters have sequentially focused on building up a system in which
Formal Concept Analysis can be applied to a Semantic File System. First an underlying
system was detailed which can create an index of a Semantic File System with acceptable
query performance (Chapter 3), then additional index structures were described allowing
the common queries that Formal Concept Analysis will lodge at such an index to be
resolved in an acceptable time frame (Chapter 4) and finally attention was turned to
obtaining the concept lattice from the set of concepts reasonably quickly (Chapter 5).
At this stage we are finally in a position to apply Formal Concept Analysis to a Semantic
File System to create a query and navigation system.

This chapter is concerned with the application of Formal Concept Analysis to
Semantic File Systems. In particular how to select the Formal Attributes. This includes
the creation of scales on numeric ranges such as geospatial information, number ranges
which present high clustering of values and numeric ranges that represent time values. A
brief investigation into SELinux which will be followed up in Chapter 7. The structuring
of a concept lattice based on file URLs and the use of Wordnet. The chapter concludes
with a look at context based navigation for handling the presentation and interaction
with large concept lattices for the user.

The chapter starts by describing various scaling methods for nominal data in
Section 6.2.1, geospatial data in Section 6.2.2, numeric data in Section 6.2.3, temporal
data in Section 6.2.4 and metadata in file paths in Section 6.2.6. The issue of navigating
a large concept lattice is then investigated in Section 6.2.7 presenting a context based
and file system based method of interacting with a concept lattice.

6.2 Application of Formal Concept Analysis

It has been found that in many cases some pre-analysis for a Semantic File Sys-
tem is needed in order to best expose the Semantic File System without generating a
cluttered output.

The standard scale types of Formal Concept Analysis: nominal, ordinal and inter-
ordinal can be used though some extensions are useful. Using a file’s URL as a source of
metadata for use in FCA can also be useful. Together with the applications described
below there is a method of restricting which documents from an findex are potentially
useful. This allows areas of the findex to be negated from query results en masse. For

90

example, one might consider only documents under /usr/local to be of interest for a
particular analysis and so restrict all results to also satisfy this condition.

To demonstrate, an findex was created on a Fedora Core 4 Linux machine using
libferris 1.1.54 of 201,759 files in /usr/share/.

6.2.1 Scaling nominal orders

In addition to the standard treatment of nominal scaling [38, 20], two new capa-
bilities for handling ordering over nominal attribute creation have been found useful.

The first ordering capability is to handle MIME type like strings such as image/
pug by allowing the values of the distribution to be split into distinct parts and have
common parent attributes created. Following the MIME example, a common parent
for all image files would be the new mime.image attribute. Using this form of nominal
scaling an ordering can be introduced based on the values of the distribution which will
help to generate a taller, narrower concept lattice [20].

The second ordering capability is to take advantage of the ordering over the user
defined tags when performing nominal scaling via an tag. The ordering on the tags is
a partial order allowing reasonable flexibility in how one designs tag categories. The
ability to handle entire downsets relative to the tag ordering when generating a formal
context allows one to see their lattice including the influence of their tag ordering. Given
an ordered set P and Q C P then () is a downset iff x € Q,y € P and y < x then

Y€ Q.

6.2.2 Scaling Geospatial information

Geospatial metadata is exposed through two cooperating interfaces in libferris.
These are the latitude and longitude EA and the tag system. Geospatial tags are
those which are a child of the libferris-geospatial tag in the tag partial ordering.
Interaction with the filesystem for tagging and retrieval is usually simpler when tags
with city or place names are used instead of world coordinates.

Associating geographical information with files is often referred to as geotagging
in the literature. The tags with digital longitude and latitude information associated
and their hierarchy are normally defined by the user. The association of geotags with
files is performed either explicitly by the user or as an automated process using a GPS
device that continuously collects location and timestamp information. The collected
GPS and timestamp information is then automatically merged with the filesystem, for
example, using the creation time of a file and interpolating the GPS coordinates that
indicate roughly where the user was located when that file was created.

As the tag system is employed the scaling methods of Section 6.2.1 are also appli-
cable for geospatial values. A major advantage of the geotagging system coexisting with
the latitude and longitude system is the ability to handle geospatial regions. The tag
partial order can be used to define geospatial regions that expand from point locations
to physically containing regions. For example, the Sydney Opera House might be given
a specific tag with Sydney as its parent. The Sydney tag may have Australia which
itself has libferris-geospatial as its parent. If less specific tags in the partial order
define containing geospatial regions then the downset handling in Section 6.2.1 can be
used to introduce geospatial refinements into the concept lattice.

91

Without the ability to represent geospatial regions through the tag partial or-
dering in this way one would have to explicitly define the boundaries using bounding
box constraints on the latitude and longitude for the region. Consider the difficulty in
defining the boundary of the city of Sydney using only equality constraints on latitude
and longitude.

6.2.3 Scaling numeric ranges

Three commands exist for creating formal contexts from numeric data in libferris.
These are numeric-ordinal, numeric and gf-numeric.

The numeric client can create many binary attributes each exposing a numeric
interval of the input data as is standard for Formal Concept Analysis. For example,
consider scaling a numeric range of {1, 2, ..., 20} into four attributes at an even interval of
5 using < as is standard in Formal Concept Analysis. This will produce four attributes
with higher successive values having less matches due to the < relation.

The standard application of ordinal scaling preserves both linearity and density
for the input [?]. Due to the intermixing of other attributes in a concept lattice it is
hard to take advantage of the preservation of density information. When one places
these four attributes alongside another ten attributes and generates a concept lattice
the relation between < 10 and < 15 is not so immediately obvious from the concept
lattice. One can see the order of the two attributes but the density information is lost
due to the introduction of the other attributes.

For some value distributions using a linear interval for the range is ineffective.
For example, if one is to scale the values for the file size metadata then the distribution
of values may be very ineffectively presented when split into a low number of linear in-
tervals. To overcome this issue the data-driven-scale option was added to allow numeric
distributions to be scaled taking the value distribution into account. This option will
make an output which will have smaller intervals where many files have similar values
and larger intervals where few files match the interval.

The std-deviations option has been added to handle simpler value distributions
by allowing output to be generated based on the mean and variance of the input distri-
bution.

One can manually select where intervals begin and end using the GTK+ gf-create
client. Figures 6.1-6.4 were generated with gf-create. For value distributions which
neither fit direct data frequency nor standard deviation models the ability to explicitly
choose where intervals begin and end on a value frequency plot can generate a small
number of meaningful attributes. For this purpose an interactive graphical client was
create allowing intervals to be selected with the mouse.

The plot for the modification time (mtime) of the findex is shown in Figure 6.1
and the metadata status change time (ctime) in Figure 6.2. One can see that although
modification was more frequent in recent times the ctime plot has explicit natural clus-
ters of values. Such clusters are likely due to large scale system administration activities
such as distribution release upgrades. Using the graph a small number of meaningful
attributes can be created based on major system update activities.

An EA was added to the libferris system to support the ability for many versions
of a file’s metadata to exist simultaneously in an findex [64]. This EA returns the
current system time when it is read. As expected, the plot for this attribute gives

52480

Col 85 Jul 87 May 89 Mar91 Dec 82 Oct 94 Aug 86 Jun 88 Mar 00 Jan 02 Nov 03
T T T T T T T T T T T

20232 |

25984 [

22738 |

19488 |

16240 |

count

12992 |

o744 |

6496

3248

miime - min85 Oct © 02:02 - max:05 Aug 22 23:35

32480

29232

25984

22738

19488

1624.0

12982

o744

92

Figure 6.1: Plot of the modification time of 201,759 files from /usr/share/. Horizon-
tal axis shows time from October 1985 to present day with almost 2 years between
graduations. Vertical axis ranges from 0 to 3248 with around 235 files separating each

graduation.

n_16.Jul 04 Aug 22 Aug
T T T

count

ctime - min:05 Jan 31 00:58 - max.05 Aug 22 23:35

24940

22445

19952

17458

1496.4

1247.0

9976

Figure 6.2: Plot of the ctime of 201,759 files from /usr/share/. The ctime for a file
changes whenever any of its metadata (except atime from lIstat) changes. Horizontal
axis shows time from 31st January to 05 August 2005 with two and a half weeks between
graduations. Vertical axis ranges from 0 to 2494 with around 250 files separating each

graduation.

93

21 §un_22_Mon 22 Mon 22 Mon 22 Mon 22 Mon 22 Mom 22 Mon 22 Mon 22 Mom 23 Tue 23 Tue
T T T T T T T T T T T
77 77
o oo o 70
63 1 ee
0 @A) @D [e -
56 1ss
) D N)
49 Tae
42 42
SN T - L]
as as
Y e)
28 | 2z
2 Y TR o ot
s 14
S— " — t y our | } t el
215un 22_ton 22 Won 22_fion 22_Mon 22_Mon 22_Won 22_Won 22_Mon 22_Mon 23Tue 23_Tue

ferris-current-time - min05 Aug 21 21:14 - max:0 Aug 23 04:12

Figure 6.3: Plot of the ferris-current-time EA of 201,759 files from /usr/share/.

valuable information about when indexing sessions were held as shown in Figure 6.3.
Looking at Figure 6.3 one would be lead to create three formal attributes, one for each
of the major groupings of matching files.

The width EA presents the width in pixels of a file. For many systems this
EA must be handled explicitly because a small number of extremely large images can
easily distort simpler methods of splitting the value distribution. In this case two
images stand out, sgvol.png from the kdemultimedia package is 7,140 pixels wide and
sunclock_huge_earthmap.jpg from the sunclock_huge_earthmap package is 10,800 pixels
wide. All other image files in the findex are below 3,500 pixels wide. The width plot is
shown in Figure 6.4. One can also start from the megapixel count of images as more
generalized overview of image size to generate formal attributes. As can be seen from
Figure 6.5 there is a similar trend as to the width plot.

Two concept lattices were generated using the width EA and the modification time
for the examples 201,759 files. Both scale the width and modification time metadata
using 7 formal attributes for each. The first one shown in Figure 6.6 uses the standard
linear ranges to generate the formal attributes. Shown in Figure 6.7 is the concept
lattice that results when dividing the input ranges based on value density.

Because the formal attributes in Figure 6.7 are data driven there is much more
interaction between concepts in the resulting concept lattice.

For some numeric EA such as: group-owner-number, user-owner-number the user
may wish to explicitly specify the range for each formal attribute based on knowledge
of the computer system. For example, on many Linux installations the numeric user
and group identifiers above 500 are used for normal user accounts.

6.2.4 Natural Groups of Time

Some applications such as browsing digital picture collections will offer a natural
clustering around a time attribute. Consider a filesystem tree with digital pictures taken

52623

467756

40928

count

20235

23388

17541

1169.4

5847

Figure 6.4: Plot of the the width of image files from /usr/share/.

5223.0 I
47007

01784

count

26115

20892

15869

104458

5223

5847.0 ([

35082 E

3656.1
mu]:

2159.8 4319.6 5479.4 8639.2 107
T T T T
O width
h]
o
L L L
21598 43158 6475.4 86%.2

widih

megapixels

9.0
5847.0

52623

46778

40029

35082

20235

23388

17541

1169.4

5847

T

563
52230

47007

41784

3656.1

31338

26115

20892

15669

10445

5223

94

Figure 6.5: Fewer plot points but a similar overall trend to the width plot. Plot of the
megapixels of image files from /usr/share/.

95

[mtime_70_Jan__1_10_00]

[mtime_S5_Dec_13_18 59

mtime_74_Apr_29_23_29
mtirme_78_Aug_26_12_59
mtime_82_Dec_23_02_29
3 more...

Figure 6.6: 7 formal attributes for each of mtime (modification time) and width using
a standard linear range division. Concepts are represented as circles. Labels above a
concept show the formal attribute which is introduced by that concept and labels below
a concept show the number of filesystem objects which match that concept or one of
its refinements. An introduced formal attribute is a formal attribute for which this
concept is the highest one in the lattice with that attribute. Thus, where a concept has
an introduced formal attribute all concepts reachable transitively downwards will also
have this formal attribute.

96

width_10800

width 832

d
52139 o
[Ees=] [Br&%) [E58N] [EEsE] 58] | LN 5=]
G130 [35343 25477
rms] s o] [Gros] [Eros] EEETE | Ormx] Ei2is) T
9 9 o 22 @

width_130
e

Figure 6.7: 7 formal attributes for each of mtime (modification time) and width. Formal
attributes are generated based on the density of the input metadata.

97

on three different journeys; January 2006, September 2006 and February 2007. For the
purposes of making the example concise we shall only have two other formal attributes
— 1 and 2. The object set will be O = {a,b,¢,d,e, f,g,h,i}. Three of the objects will
be from each trip and the other two attributes will be assigned randomly to the objects
of each trip.

If the time groupings are discerned by looking for the numeric groupings as out-
lined in Section 6.2.3 then the concept lattice will appear like Figure 6.8. This is less
than optimal because at times like from concept “1” the user is forced to select from
refinements with many temporal options. Three different time options doesn’t seem so
bad but considering that there are only three time attributes in the whole of the formal
context such refinements will not scale well to larger image collections with more natural
groupings.

If a simple nominal scale is used when performing Formal Concept Analysis on
this data then the concept lattice will look something like Figure 6.9. The options from
the “1” concept are much more sane than with the concept lattice in Figure 6.8. As
one moves down the lattice they add more time restrictions and can nominate to loosen
those restrictions and move closer to the lattice top.

A combination of both the numeric group detection and ordinal scaling is shown
in Figure 6.10. In this case the user can either lock the time attribute at the Jan06Trip
time frame or decide to place further restrictions on the time and move down the lattice
that way.

Note that although the lattice style of Figure 6.10 has more concepts and overall
appears more congested the refinements offered at each concept are very intuitive. For
applications where the concept lattice is not designed to be directly interpreted as
a whole but instead navigated using a context and the parent-child relation the clean
semantics of navigation of the time dimension in Figure 6.10 will outweigh the additional
(mostly unseen) complexity of the concept lattice as a whole.

6.2.5 SELinux

Security Enhanced Linux (SELinux) [77] allows modern Linux installations to
offer Mandatory Access Control (MAC) as well as the more familiar Discretionary Access
Control (DAC). Under DAC, file access is granted or denied based on the user running
an application. Assume that my user account has read and write access to my thesis
and read access to my music collection. Under DAC a music player has the ability to
overwrite my thesis just as xemacs can read my music files. With MAC programs can
be allowed access only to the files that are required for them to operate. For example,
using MAC I can disallow my media player access to any files relating to my thesis. It
should be noted that my user account will still be the owner of my music files and thesis
though the media player run by me will be disallowed access to some files owned by my
user account.

SELinux information which is attached to files is comprised of three datum: the
identity, role and type. The identity is a SELinux user account, the role is ignored for
files and the type is the primary security attribute for making authorization decisions.

In a minimal installation one has an SELinux user_u account which is shared by
all users in a similar category and a system_u for daemon usage. The example 201,759
files have three identities: root, user_u and system_u. Also there are nine types: etc_t,

98

Figure 6.8: Numeric group based scaling on time. The concept “1” is selected offering
four direct refinements one including the “2” attribute and the other three offering a
more restrictive time attribute.

>=Jan06Tri

Figure 6.9: Nominal scaling on time. The concept “1” is selected offering direct refine-
ments to include “2” or a more restrictive time attribute.

99

Figure 6.10: Combination of nominal scaling with ordinal scaling applied to group the
nominal time attributes. The concept “1” is selected offering direct refinements to
include “2” as well as the option of locking the time at Jan06Trip or adding a further
restriction to the time attribute to be equal or latter than September 2006.

100

fonts_t, httpd_sys_content_t, lib_t, locale_t, man_t, shlib_t, snmpd_var_lib_t, and usr_t.

A very high level view of how access is granted or denied follows, for details
see [77]. Each process also has an associated SELinux context. Access is granted or
denied based on the SELinux context of the process and the file together with the
operation requested to be performed. As such viewing only the SELinux context for
files provides an incomplete picture of overall security policy.

Using the SELinux type and identity of the example 201,759 files the concept
lattice shown in Figure 6.11 is generated. The concept 11 in the middle of the bottom
row shows that user_u identity is only active for 3 fonts_t typed files. Many of the
links to the lower concepts are caused by the root and system identities being mutually
exclusive while the system identity combines with every attribute that the root identity
does.

6.2.6 Structuring with URLs

Often the URL for a file is comprised of metadata forming an ad-hoc hierar-
chy [12]. To put such metadata into the URL itself requires arbitrary decisions about the
ordering of such metadata. For example, one must decide if they are to first classify a file
by its conference name or conference year in the URL .. ./adcs/2005/martin-eklund/

The scale-urls client creates a formal context from the directory components in
URLs. Additional processing can be performed to present a more attractive and useful
concept lattice. For example, heuristics can be used to strip version information from
directory names such as java-1.5.0.

Wordnet [37] is also employed to explicitly allow the generation of formal concepts
for hypernyms of common directory names. Explicit hypernym concepts are generated
as follows: each URL is divided into its directory name components with a number of
the rightmost path components being dropped (normally just one, the filename), each
directory name is then stripped of version information and added to the set D. Many
such preprocessed directory names d € D are then candidates for use with Wordnet. If
d can be found in Wordnet then its synonym set X is found and all the hypernyms for X
are collected. When two or more d have the same synonym set X then the hypernyms
for X are emitted into the formal context with a prefix “wn_” to denote that they have
been mechanically added.

The semantic commonalities between directory names are made more explicit in
the output concept lattice using the Wordnet hypernym associations. Another advan-
tage is that because the “wn_” attributes effectively form the join of many existing
attributes they are closer to the top of the concept lattice. Assuming that the concept
lattice is being read in the usual way from top to bottom having these wordnet concepts
toward the top of the concept lattice can greatly assist understanding and navigation
to the desired concept.

Shown in Figure 6.12 is an example concept lattice that does not take advantage
of wordnet. In this case there are no hints towards the top of the lattice that papers
and features are available. This semantic information is only offered in the second layer
of the lattice from the top. Figure 6.13 includes some augmentation from wordnet, in
particular the wn_article formal attribute has been added based on the paper and feature
attributes. The new wordnet wn_article attribute is one of the first specializations offered

101

selinux_type_usr_t] [selinux_type_man_t] [selinux_identity_root] [selinux_type fonts_t] [selinux_type_locale_t] {selinux_identity_system_u]

selinux_type_etc t

Figure 6.11: Concept lattice for SELinux type and identity of files in /usr/share/ on
a Fedora Core 4 Linux installation. The Hasse diagram is arranged with three ma-
jor sections; direct parents of the root are in a row across the top, refinements of
SELinux_identity_system_u are down the right side with combinations of the top row in
the middle and left of the diagram.

102

LinuxJournal
N

1
1
1

[.../feature/LinuxJournal/2008/.../fileC]
1

..Jother2 /ICFCA/fileB

]
[../other1/Linuxjournal/fileA]

Figure 6.12: Example lattice with no wordnet augmentation.

when reading the lattice top down and a user who is seeking written articles would have
a navigation path offered without having to dig into the lattice.

For the example findex of a filesystem from a standard Fedora install, drop-
ping only the final directory component (i.e., filename) from each URL the wordnet
scheme above generated 403 new “wn_” attributes. An example of one such attribute
is wn_article which is equal to feature V paper.

Shown in Figure 6.14 is a small example concept lattice where the two files of
interest are both masked from the top concept by attributes which one does not imme-
diately consider related to the child concept. Consider that both the concepts labeled
with a1 and a2 may have many more child concepts than those shown. The introduction
of a semantically more general attribute form wordnet in Figure 6.15 may allow the user
greater ease in locating their desired concept.

Unfortunately the use of wordnet is not a free lunch as can be seen in Figure 6.15,
the use of the term “feature” is more likely to be one of the homonyms that is not related
to articles but rather in the sense that describes a characteristic of something.

As in any venture into human language processing there are issues when auto-
matic processing is used and the machine performing the task does not understand the
semantics of the information is it processing.

Modern file systems support Extended Attributes (EAs) which allows arbitrary
key-value data to be attached to files and directories. Additional APIs have been pro-
vided for both UNIX! and Microsoft Windows? operating systems for associating a
key-value pair with a file. With EAs an application can store meta data about a file with
the file itself on disk. One can abstractly consider the EAs for a file f as a subdirectory
which can not contain directories but only files containing meta data about the file f.
In this light, a directory can be seen as a many valued formal context. Assume that a
directory with content GG forms the objects g using its contents. A file ¢ € G may have

! EA and ACL for Linux website, http://acl.bestbits.at/
2 http://linux-ntfs.sf.net /ntfs/attributes/ea_information.html

103

LinuxJournal
~

whn_article

[.../paper/ICFCA/2006/.../fileD])
[.../feature/LinuxJournal/2008/.../fileC]| /
!

1

../other2/ICFCA/fileB] [../other1/LinuxJournal/fileA|

Figure 6.13: Example lattice using wordnet augmentation, notice how the wn_article
concept is the common parent of both feature and paper and is also closer to the top of
the lattice than either hyponym.

sendmail-cf|

I
—\
.../sendmail-cf/otherl/..]

Figure 6.14: Second example lattice with no wordnet augmentation drawn from an
findex of a standard Fedora install.

104

J
.../sendmail-cf/otherl/..]

Figure 6.15: Example lattice using wordnet augmentation, notice how the wn_article
concept is the common parent of both feature and paper and is also closer to the top of
the lattice than either hyponym. Unfortunately in this case the “feature” drawn from
the redirect.m4 file is a homonym and not the sense that is related to articles.

105

an EA m € M with value w € W where m and w are strings. Then w is functionally
dependent on g and m.

6.2.7 Context Based Navigation

Consider a relatively small dataset of 2,000 photographs with metadata describing
their location both semantically and quantitatively. Semantic metadata is captured by
associating place names with each file. For example, marking an image as being of
the Konigsalle in Diisseldorf. Quantitative metadata comes from both the metadata
automatically recorded by a digital camera or film processing machine and also indirectly
from the semantic metadata in the form of longitude and latitude information. For
example, once an image is semantically tagged as of the Konigsalle the digital longitude
and latitude range for this site can be inferred by the Semantic File System.

The combined metadata for these 2,000 photographs generates 92 formal at-
tributes giving rise to a modest iceberg concept lattice of 168 concepts. An overview
of the structure of this concept lattice is shown in Figure 6.16. Although there are
relatively few concepts the direct visualization of the whole lattice becomes difficult.

While the concept lattice shown in Figure 6.16 contains less than 200 concepts
the techniques discussed in previous chapters allow for in the order of 3,000 concepts to
be present in the concept lattice. The layout of concepts in large concept lattices is the
subject of ongoing research in the community [97].

For larger concept lattices drawn from a Semantic File System the set of concepts
and covering relation can be found as detailed in previous chapters. Using a specially
augmented concept based search and navigation interface can enable simpler interaction
with such large lattices. In the following discussion the interface is concerned primarily
with showing the user the current concept and the concepts which are nearby.

Shown in Figure 6.17 is the top concept from the full concept lattice of Figure 6.16.
There are six lower covers and no upper covers for the top concept. Selecting the
Germany lower cover modifies the current concept and results in the interface shown
in Figure 6.18. At this stage we have a single upper cover pointing in to the Germany
center node. There are six lower covers from Germany. Two of the lower covers offer a
refinement in the time dimension, one in the Flash (lighting) used to create the images
and three are geographical refinements on the current concept.

Most digital pictures contain information about the exact time they were taken.
The time related refinements are generated by searching for clustering in this photo
generation time metadata as discussed in Section 6.2.3. This is to avoid flooding the
lattice with many formal attributes which would be generated by a linear numeric scale
on the photo generation time. The use of clustering on photo generation time allows
the system to present time refinements in the lattice in a manner which will usually
have semantics for the user. For example, the digital pictures generated in two distinct
holidays will cluster together to generate the two formal attributes shown as refinements
in Figure 6.18.

Further navigation brings the user to Figure 6.19. The current concept node is at
the Konigsalle in Diisseldorf. From the current concept there are two time refinements
and a Flash refinement. As Diisseldorf geographically contains the Konigsalle there is
only the one geographical generalization offered.

An overall perspective is lost when using a concept based interface as shown in

106

Figures 6.17, 6.18 and 6.19. Due to the loss of information about the lattice as a
whole, the ability to jump to a concept of interest is also lost. To help the user to
quickly search the lattice an interface exists to allow the user to select formal attributes
that are of interest and jump directly to a concept that contains those attributes.

A concept lattice can also be navigated as a Semantic File System. This is shown
in Figure 6.20. Navigation of a concept lattice as a tree has been presented in the
past [23] as well as presentation as virtual filesystem [82].

As well as presenting a concept lattice as a virtual filesystem some new virtual
directories were created to allow a system that is both responsive in an interactive
environment and allows semantically valid batch mode processing. For example, the
user might wish to see a sample of files which match the top concept but will normally
not be interested in manually scanning through half a million files matching the extent
of the top concept.

As shown in Figure 6.20, four virtual directories exist at each concept shown
through the filesystem interface to allow inspection of the extent and contingent of a
concept. The —all virtual directory shows all files in the extent of a concept. The -self
virtual directory shows all the files in the contingent of the concept. These directory
names were chosen as they use a lexicon which is more accessible to users who are not
familiar with Formal Concept Analysis. The -all-s and -self-s directories operate
similarly to the directories without the -s postfix but only show a sample of the extent
and contingent respectively. This allows the user to get an idea of the files contained in
a concept without a longer wait that would be required as the size of the list increases.

The sample virtual directories work with the spatial indexing detailed in Chap-
ter 4 to allow the Formal Concept Analysis system to be interactively explored without
substantial delays.

The all virtual directories allow all of the files from the contingent of a concept
to be systematically operated on from a command line tool. For example, copying all
the digital pictures of the Konigsalle that were taken on a given holiday to a removable
hard disk.

6.3 Conclusion

The application of Formal Concept Analysis typically involves a “Domain expert”
who creates the scales which are applicable to a domain or a data set. When applying
Formal Concept Analysis to a desktop Semantic File System such a domain expert will
not be available and that role will have to be pushed into the computer system or the
system user. Some predefined scales can be shipped with the Formal Concept Analysis
system but the most interesting application of Formal Concept Analysis to a user’s
Semantic File System will involve metadata which was not known to the designer of the
computer system and thus scales can not be shipped for this metadata with the system.

In some cases such as scaling time values an approach combining both nominal
and ordinal scaling in a single concept lattice can generate refinements which may be
more relevant to the system user. This is shown in Section 6.2.4.

For large concept lattices, presentation either through a context interface or as a
virtual filesystem may allow the user both an easier route to using an Formal Concept
Analysis based interface and also the ability to navigate larger concept lattices which
would not be directly understandable (Section 6.2.7).

107

i
Z (‘\\'l/ m \"
/ 4’ N \\4 I “’,'»
\\4\ %‘ % \M*’/:“%Z? ‘\»
//‘4,., @';‘« "f“jw‘ N $\ A
/ ‘(H?“\ 1\\ \“/ ’é / \ '}‘\"
&S w \{\\\»\.r 4 5‘ 'f

,/74 ﬂpw@ ﬂ':') \
\ «e\ "\\
)

167

Figure 6.16: An iceberg concept lattice showing the 168 Concepts of some geographically
tagged digital photographs. The formal context has 92 attributes and 2000 objects.

108

Please see print copy for Figure 6.17

Figure 6.17: A context based viewer showing the top node of the iceberg lattice from
Figure 6.16.

Please see print copy for Figure 6.18

Figure 6.18: A context based viewer showing the Germany of the iceberg lattice from
Figure 6.16. This figure is obtained by selecting the Germany node in Figure 6.16.
There is only the top node as an upper cover and six lower covers. Three of the lower
covers are for geographical refinement and have their arrows marked with an “X”. Two
lower covers are for Time refinements and have their arrow marked with a “T”. There
is an exposure related refinement marked with an “F”.

amym
Text Box

Please see print copy for Figure 6.18

amym
Text Box

Please see print copy for Figure 6.17

109

Please see print copy for Figure 6.19

Figure 6.19: The iceberg concept lattice from Figure 6.16 centered on the Konigsalle
in Diisseldorf. There are two time related refinements and a single exposure refinement
(marked with a “F” on the arrow).

Please see print copy for Figure 6.20

Figure 6.20: Navigating the concept lattice from Figure 6.16 as a Semantic File System.
The Diisseldorf concept is selected and lower covers are shown in both the file browser
on the right and as children in the left tree list. The four virtual directories all and
self allow the user to view the extent or contingent at any concept. The size of the
extent of each concept is shown explicitly in the left tree as an EA.

amym
Text Box

Please see print copy for Figure 6.20

amym
Text Box

Please see print copy for Figure 6.19

110

This chapter presents ongoing research into how to best allow a user to interact
with Formal Concept Analysis where the user might hold great domain knowledge but
be largely ignorant of the terminology and theory of Formal Concept Analysis itself.

Chapter 7

System Security and Access Control

7.1 Introduction

This chapter investigates computer security, how lattices have been used in the
past for analysing system security and finally how Formal Concept Analysis can be used
to assist the field.

The research in this chapter is not intended to vindicate that lattices provide a
better representation than the more traditional usage of graphs to investigate system
security. Rather the idea is that Formal Concept Analysis can be used to provide a
better understanding and auditing of system security and access control policy.

An introduction to access control is given in Section 7.2 with differentiation be-
tween a Discretionary (Section 7.2.1) and Mandatory (Section 7.2.2) Access Control
systems. This explanatory material is followed by a look at SELinux and how it relates
to discretionary and mandatory access control in Section 7.3. Prior work on applying
lattices to access control and information flow is given in Section 7.4. This is followed
by an investigation into how Formal Concept Analysis can be applied to an SELinux
system in Section 7.5 both in a holistic manner in Section 7.5.1 and from a fixed security
type in Section 7.5.2. Single user access control is considered in Section 7.5.3.

In order to limit the scope of the research while remaining relevant to current sys-
tems focus is primarily given to the SELinux environment. SELinux [77, 34] was chosen
for its ability to handle multiple security policies allowing it to scale from handling a
personal computer to a networked military installation [60]. SELinux is a modern ac-
cess control system and security enforcement environment which is both widely available
and well maintained making the research both immediately applicable to systems and
relevant for future years.

Although SELinux was originally deployed to protect operating system and filesys-
tem objects it has recently been added to relational databases such as SE-PostgreSQL
and print servers such as CUPS as well as the XWindow system. The research presented
in this chapter remains largely applicable to these more recent applications of SELinux.

As computer security is a large topic in itself the presentation is limited to an
overview of only the concepts which are necessary for the research. Many details are
omitted or only presented at a conceptual level due to space constraints. Interested
readers should see [77] for more details.

This section makes reference to “security context” and “filesystem object” in a
sense that is not related to Formal Contexts and Formal Objects.

112

7.2 An Introduction to Access Control

In order to discuss certain points it is necessary at times to mention how a Linux
system operates at a fairly low level. For example, in SELinux understanding the typical
manner in which new processes are created is essential to understanding how the security
context of executing applications can be modified. As such the discussion in this section
at times must mention some lower level operations performed by the operating system
in order to discuss how security information is maintained for a running system.

7.2.1 Discretionary Access Control

Access control systems have been integrated the operating systems for decades.
The traditional access control system on POSIX operating systems such as early Linux
and BSD Unix has been Discretionary Access Control (DAC).

A DAC system enforces security based on the notion of “users”. A user in the
system normally has a one to one correspondence with a human who is accessing the
system. For example, the person Ben Martin might log onto a computer as the user
“ben”. A group notion generally exists which can have a list of one or more users who
are members of the group. In modern POSIX systems a user can be a member of one
or more groups simultaneously.

In the following discussion, files, special files and directories will be referred to as
filesystem objects. POSIX operating systems normally expose many operating system
abstractions as special files. For example, network sockets and device files representing
physical disks and audio cards are normally available as special files. This enables an
access control system on filesystem objects to also handle access control for operations
on these operating system abstractions.

A SELinux system can also enforce security policy on operating system calls.
Given that many operating system primitives are also available as filesystem objects,
for the purpose of this discussion such enforcement of operating system call access can
be though of as a request for a special operation on a filesystem object.

Each filesystem object in a DAC system is owned by both a user and a group as
well as having permissions for “other” users. A set of permission bits is assigned to each
filesystem object allowing read, write and execute access to the filesystem object. If the
user attempting read access to a file is the same as the owner of the file then the read
bit is checked to see if that operation should proceed. If the read bit is set then the
operation is permitted otherwise it is denied. If the user is not the owner but they are
in the group that owns the file then the group-read permission bit is tested. If the user
is neither the owner of the file or in the group that owns the file the “other” read bit is
tested to see if people with no association with the file should be granted read access.

For example see Table. 7.1. Assuming that the user ben is the owner of the file
/tmp/junk.txt then he can read and write the file because he is the owner of the file
and these protection bits are set. If the group owning /tmp/junk.txt is tmptxt and
the peter user is a member of this group then he can read the file but is not permitted
to make any changes to it. If the /root/secret.txt is owned by the user root and is in
the rootonly group, and we assume that the only member of the rootonly group is the
root user then only the root user can read or modify the secret.txt file. This is because
there is only the root user in the rootonly group and there is no permission to read or

113

write the secret.txt file granted for “other” users.

’ Filename | user | group | other
read write exe | read write exe | read write exe
/tmp/junk.txt X X X
/root /secret.txt X X
.../bash.man X X

Table 7.1: Filesystem objects in a DAC system have read, write and execute bits as-
signed for the owner of the file, those in the owning group and “other” people with no
association as either the owner or being in the owning group.

The group notion as described here fulfills the requirements of NIST Flat Role
Based Access Control (RBAC) [93]. Flat RBAC is the basic role base access control
outlined by NIST. Further enhancements to RBAC as defined in [93] include support
for hierarchies of roles, separation of duties allowing the security policy to be more
holistic and protected and symmetric RBAC. With symmetric RBAC the permission-
role assignments must be more efficiently reviewable than traditional POSIX systems
allow. It is important to note that the group model described for DAC does fulfill the
least requirements to be considered a role based access control system by NIST [93].

The DAC system seems to offer some protection from one user reading or mod-
ifying another user’s filesystem objects. For example, files which are in Peter Eklund’s
home directory would be owned by the user “peter” and likely belong to the group “pe-
ter”. These files would not allow any access to other people. Given this policy, attempts
made by the ben user to access files in peter’s home directory would fail.

As the above discussion has highlighted there is a lot of security policy that is
contingent on user prudence. If peter makes a file in a directory that ben has access to,
such as /tmp, which has the read bit set for other users then ben will be able to read
that file. This sort of information leak can occur due to unintended programming errors
allowing wider access to files than is strictly necessary.

One example of where such a security model can fail was given in [94] where peter
might trust another user on the system, say Larry. Peter allows a file NOT-FOR-BEN
to be read by Larry under the assumption that Larry will not leak this information
to the ben user. Larry has permission to read the file NOT-FOR-BEN and ben does
not. However Larry can create a new file COPY-0F-NOT-FOR-BEN in a directory that
ben has access to and allow ben permission read COPY-OF-NOT-FOR-BEN. Larry can
set the permission for COPY-0F-NOT-FOR-BEN to whatever he likes because he created
that file and will be the owner of it. Then as long as Larry keeps the contents of
COPY-0F-NOT-FOR-BEN reasonably up to date with changes from NOT-FOR-BEN then ben
can read the NOT-FOR-BEN file through this proxy. Such a loophole is allowed because
Larry has digression over who is allowed to access his filesystem objects.

Such information leaks can also be performed by Larry without him being com-
plicit with ben. These leaks are explicitly created by using trojan horse applications.
A trojan horse application is a modified executable which appears to perform one task
but is also designed to allow unwanted information disclosure.

Under a DAC system when the user executes an application then the application

114

runs with the user’s login credentials (it assumes their user and group for the purposes
of filesystem object access control). This means that any file that the user has read
access too will be available to the application to read. If the user runs a trojan horse
audio player the operating system will allow that application to read a text file called
secret.txt in their home directory as well as any audio tracks that the user has stored.
From the access control point of view if the user owns these files and their read bit is set
then the operating system allows both a text editor and a possible trojan horse audio
player the ability to read secret.txt.

Once a file has been read there are many methods for a trojan horse application
to communicate that possibly confidential data to unauthorized parties. These methods
extend beyond the use of the filesystem as described above in the COPY-0F-NOT-FOR-BEN
example. For example, the trojan horse application can allocate and free memory or
perform some other task that effects the system in a manner that ben can detect. Such
communications are referred to as Covert Channels and the details and mitigation of
such practices are beyond the scope of this thesis.

7.2.2 Mandatory Access Control

The above issues called for Mandatory Access Control (MAC) [15] systems to be
created. In a MAC system each file has a security context assigned to it and applications
that the user executes are given certain permissions to certain types of files. In the above
case the audio playing trojan would have access to an audio track but since it has no
business reading secret.txt then permission will be denied for files of that security
context.

On an SELinux MAC system each file has a security context associated. Each
application that is executed also has a security context associated. A set of security
context transitions are defined which allow the security context to change when an
application is executed.

In this case the user might want a different security context associated with the
text editor, for example allowing them to edit the secret.txt file but not to allow any
access to their multimedia files to the text editor and to deny all network and global
clipboard access to the text editor. Such denials make it harder for sensitive information
to flow out of the text editor application to unintended readers. A type transition can be
setup to automatically make the text editor change from the security context that was
associated with the user’s shell (that executed it) into a new security context tailored
for the text editor.

For example, when the user logs in to the system they might be at a command
line interface presented by a shell program. The shell program will have an associated
security context which might be quite liberal, allowing the user to list many of the
directories which are available to them. When the user executes a text editor an oper-
ating system fork() and exec() sequence is executed. The fork() function creates a
copy of the user’s shell process and the exec() function replaces the shell executable in
the new process with the text editor application. The effective result of this is that a
child process of the shell is created which is executing the text editor. When an exec ()
function is executed the SELinux system might modify the security context that the
new application will be running under. This security context change is called a type
transition in SELinux. In this example, the system is setup to automatically perform a

115

type transition from the shell security context to the text editor security context when
an exec() function executes the text editor binary and the current security context is
the shell security context.

The security context of the application, the operation requested and security con-
text of the filesystem object determine whether an operation is allowed in SELinux. The
decision as to what operations are to be permitted is referred to as Type Enforcement in
SELinux. This makes the type transitions of applications a very important component
in an SELinux system. Part of a security policy is shown conceptually in Table 7.2. In
practice such a representation is not used because it would make for a very large sparse
matrix consuming more resources than necessary.

’ File security context | Application security context ‘
bash_t audioplayer_t

read write getattr | read write getattr
user_home_t X X X
user_home_audio_cfg_t X X X X X X
audio_collection_t X X X X
text_t X X X
secure_text_t X

Table 7.2: The security context of a running process, the operation requested and the
security context of the file determine if an operation will be permitted in SELinux.

For the security policy shown in Table 7.2, the user’s shell will have a great
deal of power in the system. If the secret.txt file is in the secure_text_t security
context then the shell itself will not be given access to read or modify the file. A dif-
ferent application security context would have to be in use to read the secret.txt
file. This might be achieved by running a special text editor which has been audited
and will transition into a secure_text_editor_t application security context. Files which
are in the audio_collection_t security context can be read by an application in the au-
dioplayer_t security context. Notice that an application in the audioplayer_t context
can not access files in the user_home_t or secure_text_t contexts. This is expected as
audio players have no business reading files which are not either their configuration files
(user_home_audio_cfg_t) or audio files for playback (audio_collection_t).

By restricting the audioplayer_t application security context and defining a se-
curity policy where audio playback applications automatically run in the audioplayer_t
application security context the user’s home directory is protected from violation by the
audio playing applications.

Security policies for MAC systems generally aim to provide applications with
access to only the filesystem objects that they require in order for the user to perform
their task.

A great deal of attention is paid to the ability for information that is contained
in a filesystem object of one security context to move to a filesystem object of another
security context in a MAC security policy. For example we would not like any applica-
tion to be given the ability to read a secure_text_t security context file and also write
a audio_collection_t type file. Such a permission would effectively allow the applica-
tion to read a secure_text_t file and write it’s contents to a new file with the security

116

context of audio_collection_t. This sort of information flow might not be considered ac-
ceptable because we would like secure_text_t files to have a higher confidentiality than
audio_collection_t files.

7.3 SELinux — DAC and MAC

Access control in an SELinux environment uses both DAC and MAC to enforce
system security. Firstly, checks are performed using traditional DAC. If access is not
granted for an operation based on these checks then it will fail immediately. If access is
granted by DAC then the MAC system is tested to see if it will allow the operation as
well. The operation will only succeed if both DAC and MAC allow it to be performed.
This is in the spirit of the original MAC proposal [15].

Only a few users are allowed to modify the SELinux security policy of a computer.
The security policy itself will define which users will be able to make adjustments to
the system’s security policy and what adjustments they are allowed. For typical users
on the system the security policy will be immutable and the user will have absolutely
no discretion over the policy.

There is no strict distinction between the information contained in the security
context of an application and the security context of a filesystem object in SELinux.
This allows one to consider both of these security contexts as subsets of a single set of
all security contexts in the system.

7.4 Prior work on Lattices and Access Control

Prior work on using lattices with access control is detailed in [94]. This work cen-
tered on information flows and protecting the confidentiality and integrity of filesystem
objects in a MAC system. The confidentiality of a file is concerned with the disclo-
sure of information whereas integrity is concerned with the modification of information.
This section presents the work both in it’s original notation and from a Formal Concept
Analysis point of view.

As defined in [28, 94] an information flow policy is a triple {SC,—,®}, where
SC is a set of security classes, — is a binary can-flow relation, and & is a binary
class combining function. The — function defines which information can flow from one
security class to another. For example, restricted — top-secret means that information
can flow into top-secret from the restricted class. The combining function determines
that security class will be given to information derived from two security classes.

It was shown by Denning [28] that under certain assumptions the above triple
will define a finite lattice. These assumptions are that:

1

(1) SC is finite
(2

(

(

the — can-flow operation is a partial order on SC

3) SC has a lower bound with respect to —

)
)
)
4) @ is a totally defined least upper bound operator.

When the can-flow relation is a total order we can obtain the famous classification
used by the government and military. Many cinema fans will be familiar with this very

117

’ Confidentiality H Top Secret \ Secret \ Classified | Unclassified

Top Secret X X X X
Secret X X X
Classified X X
Unclassified X

Figure 7.1: The can-flow relation for a four class Confidentiality information flow policy.
Information flows are permitted from the attribute label to any object listed under that
label. For example, information in the Secret class can-flow to the Secret and Top-Secret
class.

simple confidentiality order. This assigns four classes from the most confidential class
Top-Secret, through Secret, Classified to Unclassified. The can-flow function is shown
in Figure. 7.1 with the resulting Concept Lattice in Figure. 7.2. In the literature,
information flow lattices are typically presented with more restrictive states at the top
and permitted information flows heading upwards. The can-flow relation has been
presented in the manner more familiar to the Formal Concept Analysis reader, with
information flows leading down the lattice and more specialized states toward the bottom
of the lattice. In this case the @& would need to be the greatest lower bound. For example,
Top-Secret @ Classified = Top-Secret. The Formal Concept Analysis reader can see that
the Top-Secret class can have information from the Secret class and this is an acceptable
condition.

A partially ordered classification lattice example might assign two categories:
medical (M) and payroll (P). To fulfill the Denning properties there would be a security
class Top T for the join of M and P which would contain both types of information
such that M @& P = T. There would also be a bottom lattice node B which contains
neither M or P information. The concept lattice is shown in Figure 7.3. Notice that
the introduced top and bottom node are reversed in the concept lattice. As information
can-flow from both medical and payroll into the top node it serves as the bottom node
in the concept lattice.

Although the core of the simple medical and payroll example is equivalent to a
nominal scale in Formal Concept Analysis the security classes may combine a discrete
arbitrary number of times before meeting the top node.

As noted in [94] totally and partially ordered lattices of the above types may be
combined into a single lattice. The classic example being the combination of the four
level confidentiality lattice (Top-Secret etc) with a classification showing which types of
information are contained in the document. For example, now allowing a user who has
Top-Secret clearance for physics documents to access a file rated as Top-Secret and also
containing information about biotechnology.

For further examples of security policy and examples of lattices which are the
product of one or more sub lattices see [57, 48, 103].

The notion of Dominance is defined in the security literature as A > B (read as
A dominates B) if and only if B — A.

The presentation here follows the Bell-LaPadula (BLP) model presented in [94].
For a given running application for a filesystem object we assume that the security
context is obtained using the A function. Setting aside functions such as filesystem

118

Unclassified

Classified

Secret

Top Secret

Figure 7.2: The can-flow function from Figure.7.1 as a Concept Lattice.

Figure 7.3: A concept lattice for the information flows of two unrelated information
classes: medical and payroll data.

119

object creation and destruction, enforcement in the BLP is carried out such that;

(1) Simple-Security property: Application a can read filesystem object o only if
Aa) > A(o).

(2) *-Property: Application a can write filesystem object o only if A(a) < A(o).

As noted in Section. 7.3 the security context obtained using A on both applications
and filesystem objects are drawn from the same set of all security contexts.

The main purpose of the x-Property is to prevent undesired information flow. An
application which has Top-Secret clearance should not be able to write to a file which is
Unclassified in order to prevent either explicitly malicious or unintended (trojan horse)
information flows which allow information to flow to a lower clearance level.

The Bell-LaPadula model is primarily focused on preserving the confidentiality
of information by explicitly denying insecure information flows. The Biba model is
concerned only with protecting the integrity of filesystem objects. It has been shown that
although the Biba model was initially presented to work in the opposite manner to the
Bell-LaPadula model one may take the lattice dual of a Biba model and evaluate it under
a system designed to enforce the Bell-LaPadula model [94]. Given that both models can
be evaluated using the same enforcement machinery it is also common to build product
lattices of both models to gain both confidentiality and integrity enforcement.

120

audio_player_t)

read

audio_file_t audio_tmp_t

Figure 7.4: Information flow from a file in audio_file_t to an application with type foo_t.

7.5 SELinux and Formal Concept Analysis

This section describes new research performed on existing SELinux security poli-
cies using Formal Concept Analysis. The security policies used were from the Fedora
7 Linux distribution, in particular the targeted and strict policies which were both of
version 2.6.4-30.fc7.

The targeted policy is designed to add as much security to a system while having
little to no impact on system usability. Higher security and low impact on users are
to a great degree conflicting goals. For example, to limit which files an audio playing
application is allowed to read requires the system users to be aware of the security
context of the files they wish to play. As such the targeted policy mainly offers protection
to many system daemons where file access patterns are well known. Very little protection
is offered by default to user’s normal application usage in order to not effect system
usability. The strict policy allows some impact of running in SELinux to be seen by
regular system users in order to offer greater security.

In SELinux, types can be used as the security context for both applications and
filesystem objects. Type enforcement rules describe which types can access which types
and under what conditions. An example of a type enforcement rule might conceptually
say that an application running as type audio_player_t can read a file with the type
audio_file_t. The targeted policy has 1,671 types with 101,051 type enforcement
rules. The strict policy has 2,064 types and 160,493 type enforcement rules.

Each operation permitted by a type enforcement rule might allow an information
flow to be performed. Following from the above example, if audio_player_t can also
write a file which has a type audio_tmp_t then information could possibly flow from
audio_file_t to audio_tmp_t when any application which runs in the security context
audio_player_t is executed. If a second application running as type foo_t is not
permitted to read audio_file_t files directly but can read audio_tmp_t filesystem
objects there is the potential of either collaborative or trojan activity allowing foo_t
applications to read audio_file_t via the information flow permitted in the security
policy for audio_player_t applications. This arrangement is shown in Figure 7.4.

121

In a real security policy such as the SELinux policies chosen for this research there
are a multitude of operations which might be permitted or denied by a security policy.
These include operations which are the more direct “overt” information flow candidates
such as reading and writing files and also some operations which can be used to convey
information in a slightly less direct manner such as the ability to see how large a file
is or when it was modified. For example, a trojan application can easily communicate
information by continually changing the size of a file to create a channel for information
flow to an application which can not read the file’s content but is permitted to see the
file’s size.

The SETools policy analysis tools include some support for performing both direct
and transitive information flow analysis on security policies. Operations are assigned
a weight to indicate how easily they may be used to perform an information flow. For
example, in the case of writing to a file the information flow weight will be large because
writing to a file is a high bandwidth manner for an application to output information.
In contrast the monitoring of a file’s size information is given a relatively lower weight
because it is harder to exploit for information flow and is more likely to be discovered by
the system administrator if an attempt is made to use it for high bandwidth information
flows.

7.5.1 Holistic Transitive Information Flow

The information flow out of all of the 1,671 types T for the targeted policy was
used to generate a formal context of direct information flow D = (7,7, I). The relation
t1y is set where there is a outward flow from a type ¢t € T to a type y € T. As the set
of objects and attributes is the same this formal context is also a directed graph. The
transitive closure J of I is calculated to find how a system running that security policy
might converge over time. When analysing information flows one must assume that the
presence of a flow will be used by an attacker or complicit user. As such the transitive
closure of all the information flows allows one to see if there are any security classes
where information can not flow from one class to another. The concept lattice of the
formal context (7',7,J) is shown in Figure 7.5.

The concept lattice of the transitive information flow shows that there are two
major security groups with a very limited set of types that permit information flow
between these groups.

The structure of the concept lattice of the transitive flow for the 2,064 types in
the strict policy is identical to the targeted policy shown in Figure 7.5. There is a change
in the number of formal objects mainly in the top and second top concept for the strict
policy lattice. Thus Formal Concept Analysis has shown that the two security policies
do not offer any difference as far as strictly layered security is concerned [35, 36].

7.5.2 Transitive Information Flow from a Fixed Type

The password database for a computer contains very sensitive information. A
filesystem object security context is used to protect this information and it is imperative
that access to this security context is properly audited. The password database was
originally stored in /etc/passwd but in modern systems the hashed password is stored in
/etc/shadow instead. This allows many more applications to have access to the passwd

O

10Ul EOF

1719oed T I9AIIST[ATS]R

17 110d7[ATSIR

“adoul 19T

1 sjurodf
17sjorjoadof v LA
17 SJUWAY ,.
17sjAJnout
1-sjuseuwqr
17SJXa1n)
178)
1-sJjodiuans
17sjanqap
17sjyesndd
17SJ8IJU0d
1 A9pq

...Eosm‘mﬁ...
1 UNI . IRA"I9GRURARIOMIIN
1~ 19GRURARIOMIIN
109X 198 RURIANIOMIAN

095§

1~ Ppo[aqeun
1 1udo0.ad
1-gsuny~ooad
172100y do.ad

'), eIOPOq

mp0w 191 08-%'9°g uotsioa Ao1jod pojelre) XNUITHS oY} Ul SMO[UOIJRULIOJUI JO9IIP [[B JO 9INSO[d dAIISURIY 97} Jo 9o1)3eT 1daouo)) :¢'), aInsIj

123

file while only exposing the hashed passwords to applications which really require access
to them.

The shadow_t is used in the strict policy for the /etc/shadow and /etc/gshadow
files along with a lock file to protect these files from simultaneous access. These files
are the only ones on the system that will belong to the shadow_t security context.

To view the information flow out of the shadow_t type the direct information
flows from a type = to type y are obtained. First the direct information flows out
of shadow_t form a set B = {y1,¥2,...,yn} and then for each type y € B the direct
information flows out of y are obtained. This process can be repeated many times to
obtain the set of all information flows that might originate at shadow_t.

Information flows originating directly out of shadow_t are referred to as degree
0 flows. Information flows that originate at shadow_t and have a single intermediate
type are referred to as degree 1 flows. An so on, where the degree specifies the number
of intermediate types that are flowed through to get to the destination type.

The direct information flows out of the shadow_t type up to degree 1 are shown
in the concept lattice in Figure 7.6. The formal context (O, A, I) was obtained by
considering the set of security types 1" to form both the object and attribute set. Where
T = A = O, the incidence relation I is formed such that for o € O and a € A we have
ola iff there exists an information flow from type o to type a.

As the formal context of the direct information flows has A = O the formal
context can be represented as a digraph. As an information flow from a to b to ¢ also
allows by indirection a flow from a to ¢ the transitive closure of the digraph of direct
information flows is also a semantically valid formal context.

The concept lattice of the formal context of the transitive closure of degree 1
or less direct information flows is shown in Figure 7.7. As can be seen by comparing
Figure 7.6 with Figure 7.7 viewing the concept lattice of the transitive closure of direct
information flows produces a much simpler concept lattice.

Shown in Figure 7.8 is the concept lattice of the transitive closure for degree
two or less information flows. The number of incident relations in I for the various
formal contexts of the information flows shown in Figures 7.6, 7.7, and 7.8 is shown in
Table 7.3.

The transitive closure can produce a much more enlightening concept lattice when
considering first and second degree information flows. Considering the transitive closure
of information flow gives a higher level view of how information could possibly flow
through a system. As a computer system can produce millions of filesystem operations
per second the formal context of the transitive closure of information flows provides a
good high level view of the relations of security types.

As more degrees of information flow are added to the formal context the tendency
is for the concept lattice to to converge to having only two concepts. How many degrees
can be used to construct the transitive closure of the formal context before it converges
to produce a two concept lattice gives an indication of how freely information can flow
away from a particular security type.

The concept lattice of the transitive closure of the digraph of degree one or less
information flows shown in Figure 7.7 allows the security auditor a clearer view of the
information flow that the system permits from shadow_t. The shadow_t attribute is
introduced in the concept at the bottom of the lattice. This means that for information
to flow to the concept numbered 2, it must either first pass through any of the concepts

124

Figure 7.6: Formal Concept Analysis of transitive information flow out of the shadow_t
security context. The top concept, number 0, has no attributes. Moving down and to
the right, concept number 1 has the introduced attributes cardmgr_t. Concept number 2
introduces etc_t and shadow_t, concept 6 introduces var_auth_t and concept 7 introduces
security_t.

125

3,4,5,8,9 or 13 or a degree three information flow is required. The transitive closure
of information flows together with the natural clustering offered by Formal Concept
Analysis work together to allow a clean concept lattice to convey information about
how closely coupled two security labels are.

The concept lattices of the transitive closure of multi-degree information flows is
of great interest to the auditor. As mentioned above, as the degree of information flow
increases there is a tendency for the concept lattices of the transitive closure to converge
to a two node lattice. This makes the auditing process iterative, the auditor is looking
for a transitive closure concept lattice that still has many nodes but not to the level
that they will be overwhelmed as would likely be the case if the lattice was medium
sized and highly connected as in Figure 6.16.

Context Max Degree | Transitive Closure | |C]
shadow-d1 1 3,756 65
shadow-d1-tc 1 X 12,281 18
shadow-d2 2 32,625 | 13,835
shadow-d2-tc 2 X 1,956,185 8
shadow-d3 3 47,594 | 15,187
shadow-d3-tc 3 X 2,558,020 2

Table 7.3: The number of incident relations in I for the formal contexts of direct
information flows from shadow_t.

126

Figure 7.7: Concept lattice of the transitive closure of the digraph of degree one or
less information flows from shadow_t. The shadow_t attribute is introduced by concept
17. Concept 0 has no attributes. Concept 1 introduces attributes NetworkManager_t
and cardmgr_t. Concept 14 introduces attributes nscd_log_t, nscd_t, nscd_var_run_t
and samba_log_t. Concept 10 introduces attributes saslauthd_t, saslauthd_tmp_t and
saslauthd_var_run_t.

127

Figure 7.8: Concept lattice of the transitive closure of the digraph of degree two or
less information flows from shadow_t. The shadow_t attribute appears on Concept
number 7. Concept 5 introduces attributes automount_t and irgbalance_t. Concept
6 introduces insmod_t and kudzu-t. Concept 4 introduces iptables_t, staff xserver_t,
sysadm _xserver_t, user_xserver_t and xdm _xserver_t. Concept 0 has no attributes.

128

7.5.3 Single User Access Control

Formal Concept Analysis can be applied to single user access control either in a
standard POSIX setting or on an SELinux environment. As outlined in Section 7.2.1
the security permissions offered by the system for a single user on a POSIX discre-
tionary access control system are very limited. In contrast a mandatory access control
system such as detailed in Section 7.2.2 offers many more permissions with a much finer
granularity for each.

A concept lattice derived from standard POSIX protection bits is shown in Fig-
ure 7.9. There are only 9 main protection bits with a few more possibly used to indicate
very simplistic user identity transitions (setuid) and file “sticky” bits where new files
created in a directory will be inherited by the group owning the directory. As there are
only around twelve attributes in a POSIX DAC system concept lattices will not be as
interesting as for the finer grained formal attributes available on a MAC system.

Filesystem operations which can be explicitly controlled with SELinux include
the following; append, create, execute, execute_no_trans, getattr, ioctl, link, lock, read,
relabelto, relabelfrom, rename, setattr, unlink and write. The security labels of files in
the system and the security context which processes are running under will effect which
of these operations will be permitted by the system.

As shown in Table 7.2 all three of the above mentioned concepts must be taken
into account on an SELinux system to decide if an action should be permitted. In
concrete terms, for a process executing with a given security context, on a file with
a given security context, an action (open, read etc) is either explicitly permitted or
denied.

A formal context with the same structure as Table 7.2 but including all the types
in the SELinux targeted policy has |OJ A| = 3,637,058 and |I| = 2,843, 053.

As the formal context grows extremely large when considering many types at
once it can be more informative to consider again one or more single types and their
explicit relation to the system as a whole. Consider the shadow_t and all the types that
can perform any operation on this object. This subtly is different to Section 7.5.2 and
Figure 7.6 in that we are considering not information flow but direct filesystem level
operations and how certain process types relate to other process types.

Shown in Figure 7.11 is the concept lattice for the security types which can
perform various operations on the shadow_t type. The concept towards the top left
with shadow_t-relabelto as an attribute shows that many of the types require to
know if files of the shadow_t type exist on a system. As one would expect, types which
can read a shadow_t file are also able to invoke getattr on shadow_t files.

Shown in Figure 7.12 are all the types and attributes which can perform any
operation on the SELinux shadow_t in the targeted policy. Some of the SELinux policy
statements which construct the formal context for Figure 7.12 are shown in Figure 7.13.

The types that can access files with the user_home_t are shown in Figure 7.14.
The interaction between the shadow_t and user_home_t is shown in Figure 7.15. The
formal context for Figure 7.15 was created by considering the types that could perform
various operations on either shadow_t or user_home_t.

Considering the concept lattice shown in Figure 7.15, we can see an interesting
interaction between the shadow_t and user_home_t types. The interaction occurs in
concept 16, this concept gets the ability to relabel the security context of files with

129

L .
homben thesis thome/lJen,/th<=.51s. df

@

/u/bin/calc .
/home/ben/bin/myfca

Figure 7.9: Concept lattice of standard read, write and execute POSIX protection bits
for a sample of files. Three sets of read, write and execute bits exist, one for user, one
for group and one for other access. For example, on the far left side of the figure the
/usr/bin/calc program can be read and executed by everybody on the system.

130

user_home_audio_cfg_t - read
user_home_audio_cfg_t - write
user_home_audio_cfg_t - getattr
audio_collection_t - read
audio_collection_t - getattr

@

~

user_home_t - read

user_home_t - write
user_home_t - getattr
text_t - read

text_t - write

text_t — getattr
secure_text_t — getattr

~

audio_collection_t - write
secure_text_t - read
secure_text_t — write

O

Figure 7.10: The concept lattice of the formal context from Table 7.2. It can be easily
seen in Table 7.2 that audioplayer_t can be completely overlayed onto bash_t and thus
bash_t is a subconcept and there are only the three concepts.

131

"‘3"MopeYs o1} Uuo suorjerodo wriojrod wed YOIYM soInqrIjye pue sodA) AJ1moss e Jo 90133 1doouod oy [, 11", oINS

0

IO £5°"
1 puude
1" ppmsseddd Vepuete
1 ppelasn 1 one
1" pmssed wpesds
1 pmssed
1" ppednoid 3R pauljuoduN s3]

WOIJ[a([B[a1-1 MOPEYS Tsnsedad ST Tttt =aloud O
1 epueue uoejonb-adA~a11y
1 wpx 1 ape poweionb—adA~aqy
1 purquim - 198e1onb-adA1 a1y
17I9sn uojunow—adA17a1y
17 pMdY D WL1SAS Nui-adA~aqy
171eMs sSuen~ou aINdaxa—adA1 a1y
17 pyss a1 mopeys| T 1 oniu 1 unout amoaxa-adA1-aqy
1 U)X pyss| | JUIl[UN-1"Mopeys WoIJ[3qe[a1-adAT a1) wutodAnus—adAr~aqy
1" pueds| | 1HeIeS-1"MOpeys aean-adA sy
17pqus| |2URUI-]1"MOpeYS T TnT aenosse-adA1 Ay
17pysi Jul[-1"mopeys 1 uu. m.EMQ. 17 YUlal puadde-ad&yaqy
1 wdi| | 91edID-1"MOpRLS -4 111 L swreu~ppe—adA1~afy
y7puiSopt| |puadde-1-mopeys _}utoms .
qumo_quEw_,_ 1 pane[ses peai-adAray 7 JUNOWoINe
 ar0IMat 17psnipel yoo[-adAraqy
_ 1 210 17sAD [oor-adAy sy
37onanb-uewjiew oirqeRI—adA 31| Nunowun—adAy a1y
1"udo["[e20] / 1 peayepeal Junow-adk i
1 pdyj| [ypo[1-mopeys : 1 oUIM
17{INETI00940p | |1501-1"MOpEYS 17P1001s[qnoLn=s
u\ﬁmmsu 17 sjuunom ,
17puoid < 1 wpesy P
YW STeas—adk- ol N 1 [oIpne POUIIRNE—3 o1 adAY " 31]
1Taduos wdl 1! 14 h -
1 ISt 9]E1D0SSe—][3s
1 [PuIay 17 I8wpaed - el
\\\\\ 17100(S11) 1 puude

~aiouw Gp[e1as—adfy 9y
s1eosse—adA 9y
puadde-adA1—ay
aweu~ppe-adi~aqy

132

the shadow_t type and also to to write to files with the user_home_t type. Such a
combination is highly security sensitive as new files can be created and relabeled to be
in this highly security sensitive type (shadow_t) or conversely the information in the
shadow_t can be directly relabeled to another less secure type. The extent of concept
16 only contains useradd_t which is the security context that only sees very limited use
when the system has a new user account added to it.

In this case we have discovered a concept that contains security types that have a
large amount of power in the system because it can infect secure types or directly cause
information to be leaked out of secure files.

It is most instructive if the concept lattice for two types allows the user to select
from a list of interesting filesystem operations and have the related concepts highlighted
on the concept lattice. For example, being able to see the sublattice related to the
filesystem read operation to quickly pinpoint where possible interactions occur. Such
a system made the highly sensitive concept found in Figure 7.15 much more readily
apparent.

The targeted security policy from Fedora 7 used in this testing has 1,671 types.
Using Formal Concept Analysis directly on two types in this manner will only be feasible
for a fraction of the overall policy. Such two type analysis is not intended to be holistic or
provide full coverage. The aim is to detect and remove superfluous interactions between
two security types.

7.6 Conclusion

This chapter has focused on the application of Formal Concept Analysis to a
computer system running Mandatory Access Control in the form of SELinux. Focus
has not been turned to a networked environment, complex multi role configurations or
multi-level security (MLS).

The topic of Mandatory and Discretionary access control is extensive and a whole
PhD thesis could be written covering improving such systems with Formal Concept
Analysis.

Previous work on applying lattices to investigate information flows in MAC sys-
tems was presented in Section 7.4. The use of lattices in previous work is quite different
to the application of Formal Concept Analysis to direct and transitive information flows
represented as a formal context.

The core of the chapter is Section 7.5 where the application of Formal Concept
Analysis to SELinux is presented. Surprisingly the strict and targeted SELinux security
policy both offer the same level of transitive compartments. One would hope that using
the strict policy there would be more overall nodes in the concept lattice. This would
represent more states in the system which would have effectively identical security given
enough time for information flows to be performed.

A single starting security label is then considered and transitive information flow
reachability considered from that starting type. It is effective to consider the transitive
closure of the formal context when analysing information flows from a single type in
order to see a much simpler lattice which represents the security of the system under
more sophisticated attacks that require one or more intermediate security labels to be
traversed in order to achieve a breach.

Access control from a single user perspective is then investigated with Formal

133

Figure 7.12: The concept lattice of all security types and attributes which can perform
operations on the shadow_t. The attribute labels for each concept are given in Table 7.4.

Concept

Introduced Attributes

© 00 J O U i W N~

N
)

N =
S o0 DN

21

shadow _t-getattr

shadow _t-read

shadow _t-ioctl shadow_t-lock

shadow _t-append shadow_t-create shadow_t-link
shadow _t-relabelto

shadow_t-relabelfrom

file_type-execmod

file_type-getattr

file_type-search

file_type-ioctl file_type-lock file_type-read
file_type-relabelto

file_type-relabelfrom

file_type-mount file_type-unmount

file_type-add_name file_type-append file_type-associate
file_type-create file_type-entrypoint file_type-execute

file_type-execute_no_trans file_type-link

file_type-mounton file_type-quotaget file_type-quotamod
file_type-quotaon file_type-remount file_type-remove_name

file_type-reparent file_type-rmdir file_type-setattr
file_type-transition file_type-unlink file_type-write
file_type-rename file_type-swapon

self-associate

134

Table 7.4: The attribute labels for the concept lattice of all security types and at-
tributes which can perform operations on the shadow_t. The concept lattice is shown

in Figure 7.12.

Concept Analysis both in a Discretionary and Mandatory Access Control system. Se-
curity states which are shared between two security labels are shown in the concept
lattice in Figure 7.15. From such a concept lattice the interaction of two security labels
is made available and concepts which are not necessary can be removed from the system
in order to heighten security.

135

allow system_chkpwd_t shadow_t : file { read getattr } ;
allow amanda_t file_type : dir { getattr search } ;
allow files_unconfined_type file_type

: { file chr_file } { ioctl read ... } ;

Figure 7.13: SELinux policy lines that are used to construct the formal context for the
concept lattice in Figure 7.12. The first line means that the system_chkpwd_t type can
access files of type shadow_t if performing a read or a getattr operation. All other types
of access to shadow_t files for system_chkpwd_t will be blocked unless another policy
rule explicitly allows it. The last rule uses an SELinux attribute file_type to allow
files_unconfined type to access all files in general with a broad range of operations.
This policy rule affects the shadow_t because files of type shadow_t will also have the
SELinux attribute file_type to indicate that they are filesystem files

137

Figure 7.15: The concept lattice of all security types and attributes which can perform
operations on either the user_home_t or shadow_t. Concept number 2, which is in the
middle of the lattice, introduces the shadow_t-read attribute. Concept number 4, which
is second from the right in the third row up from the bottom, introduces the shadow_t-
append, shadow_t-create and shadow_t-link attributes. Concept 6, which is directly
below concept 4, introduces the shadow _t-relabelfrom attribute. Concept 6 also inherits
shadow _t-relabelto from Concept 5 which is its other direct cover. Concept 15, which is
directly left of concept 6, introduces home_type-write among other attributes. Concept
16 which is the meet of concept 15 and concept 6 and just below them, introduces no
attributes and has useradd_t in its extent. Concept 75, the bottom concept, introduces
no attributes and has an empty extent.

Chapter 8

Advances to Semantic File Systems

8.1 Introduction

The research performed during the PhD candidature was focused on enabling
Formal Concept Analysis to be applied to a large dynamic data source such as a Semantic
File System makes available.

As the author has a long background in Semantic File System development there
was also some research performed pertaining purely to the advancement of Semantic
File Systems. Some of this work can be combined with Formal Concept Analysis though
it also stands on its own merits.

The research includes integrating supervised machine learning for automatic in-
formation classification in Section 8.2. The later two sections of the chapter are related
and investigate the relationship of Semantic File Systems to the XML data model and
other XML technologies.

8.2 Supervised Machine Learning and
Automatic File Classification

Although attaching and interacting with typed arbitrary key-value data on files
is very convenient it leaves applications open to interpret the data how they choose.
For this reason specific key-value pairs have been defined for semantic categorization of
files on a system wide basis.

These reserved key-value pairs allow one to associate files with many tags to show
what categories those files are in. The set of all tags T' is maintained in a partial order
(T, <). The relation for u,p € T of u < ¢ means that p logically is-a .

Consider the example of marking an image file: one may attach the tag “sam” to
the image file. One of the parents of the tag “sam” may be “my friends” to indicate that
sam is one of my friends. It follows that the image file is also of one of my friends. This
is due to the partial ordering on the tags imposing transitivity on tag assignment! . It
follows that only the most specific tags applicable to a file need be associated explicitly.

The collection of tags that are associated with a file is stored in a single reserved
key-value pair per user per file. This serialization of tags is called a medallion and it
is not recommended that applications read medallions directly. Each user is expected
to have their own partially ordered tag set and so medallions are attached to files on a
per user basis. For application access the medallion is split into many EA as shown in
Table 8.1.

! The assignment of an tag j to a file will also assign all the parent tags of u to that file

139

attribute value type
medallion.600 <xml...> binary
e:has-cat false boolean
e:has-fuzzy-cat 0.0 double
e:has-animal false boolean
e:has-interesting | true boolean
e:has-burnt true boolean
e:has-burnt-cdb | true boolean
e:list has-interesting, | string
has-burnt list
has-burnt-cd5
e:list-ui has-interesting | string
has-burnt list
e:upset has-interesting | string
has-burnt list
has-burnt-cdb

Table 8.1: A medallion is broken down into its individual tags at run-time. The “e:”
prefix is a name space prefix which is abridged for presentation purposes.

The assignment of a tag to a file is called a belief and logically collects the: file,
tag, time of assertion or retraction, sureness of this belief and who holds this belief. To
represent the holder of the belief a portion of the tag set is used to define “personalities”.
There can be one belief held for each personality for a file and tag combination.

As seen in Table 8.1 the tag attachment, when attachment was done and the
fuzzy belief for a tag are all exposed as EA for each file? . By exposing this data as
simple typed information it can be added to the EA inverted file index and files can be
quickly found based on tag association.

Because many beliefs about tag attachment can exist for any given file a belief
resolution system was introduced to show an overall picture about a file-tag association.
This is expressed in the form of a floating point number ranging from -100.0 for full
retraction to 100.0 for absolute assertion. The default belief resolution gives the “user”
personality veto status and if the user doesn’t have a belief it presents the mean of all
beliefs for the file-tag association. An example of belief resolution is shown in Figure 8.1.

At an abstract level supervised Machine Learning [92, 53, 8, 1] involves two steps:
training and classification. Of the many kinds of machine learning we are most interested
in binary classification algorithms which can tell if a file is in a single category or not.

During training two lists are presented to the machine learning algorithm: a
list of desired documents and a list of non desired documents. The machine learning
algorithm then builds a model to use in its classification mode when it will tell if a
presented document fits into the desired, undesired or unknown category.

The accuracy of the classifications that machine learning offers depends on the
quality and size of its training data. Some machine learning algorithms can perform
relatively better when offered limited training data.

This is very important when attempting to use machine learning for file system

2 All EA in the “e:” namespace are derived EA that are generated from the medallion for each file.
The “e:” EA are not stored separately for each file.

140

Please see print copy for Figure 8.1

Figure 8.1: Viewing the tags associated with file: docs is fully asserted, exe is fully
retracted, agents have offered partial retraction on travel and partial assertion on waffle.
Assertion is shown in green extending from left to right, retraction is shown in red
extending right to left. For readers using a non coloured medium, the tags with ID 10
and 22 are the only green ones.

amym
Text Box

Please see print copy for Figure 8.1

141

classification where the user is not inclined to manually construct a large initial training
collection.

To adapt to the less complete initial model the system needs to be able to add
and remove test cases and retrain agents quickly to support a more evolutionary model
building process. The user can then enhance the model from a small initial one as they
see agents as being a valuable part of the system.

To connect machine learning with libferris one can use tag associations to train
on and then in turn the machine learning can be used to obtain a fuzzy assertion or
retraction for if an tag is applicable for a new file.

There are many design choices when integrating machine learning into the file
system. Firstly there is what machine learning algorithms to use. Usually the algorithm
has different requirements for how much state is required during training, the size of the
model produced during training, the ease with which the model can be updated, speed
of execution in training and classification and relative quality of results.

Two algorithms have been chosen for initial testing: Bayesian [1] and Support
Vector Machine (SVM) [53]. Bayesian filtering is very efficient in terms of speed and its
model allows individual documents to be added or removed without having to retrain
on all test cases.

SVM operates on the Feature Sets of its input files. A file’s feature set is a map
of each term to its relative importance u to the document. The value of u is usually
calculated as the frequency of that term (TF) in the document multiplied by the Inverse
Document Frequency (IDF) for that term. The IDF is the reciprocal of the number of
times a term appears in all documents. Many SVM implementations require a collection
of positive and negative Feature Sets to train on and can not “add” a new case to an
existing model.

We will now take a closer look at the SVM Agent Implementation (SAI).

Generated Feature Sets are cached for two reasons: true belief capturing and
efficiency. True belief capturing reflects that when the user highlights a document as a
training example they are making assertions about that document at that point in time.
For example, when the user asserts that they like a web page they are really talking
about the page as it stands at assertion time. Calculating Feature Sets is a costly act
and must be avoided in order to support timely addition of training examples when the
number of existing Feature Sets is high.

The SAI reuses a lexicon implementation from the fulltext indexing code to map
unique terms to unique integers. These integers are subsequently used in Feature Sets
to identify the terms. The IDF values are stored in a Feature Set which is maintained
by the SAI and updated by the SAI Trainer (SAIT).

To classify a file it needs to be tokenized and a Feature Set u generated for it.
Then g is multiplied by the IDF and normalized by dividing it by the euclidean length
of the entire feature vector for that document. For example, given the initial Feature
Set u = (x1,...,xn) and the IDF Feature Set (41, ..., 3,) the result ¢ = (y1,...,yn) is
calculated as y; = x; * jl/\ﬂztj\il(w?))

It is acceptable for the training of the agent to be a more costly operation than its
use for predictions. The SAIT maintains a Feature Set 7 which is the total number of
times each term appears in the Training Data (TD). When a new Training Case (TC) is
presented it is tokenized and a Feature Set of the documents term frequencies is created
while at the same time 7 is updated. The maintenance of 7 is due to the many possible

142

formulae for calculating the IDF [104]. If one is calculating the IDF as shown above
then 7 is not required and should be the element wise reciprocal of the IDF.

The two major efficiency requirements for the SAIT are the caching of Feature Sets
and the ability to generate a current IDF Feature Sets quickly. The storage and update
of 7 achieves the latter goal while allowing flexibility in how the IDF is generated. The
SAIT applies the same IDF multiplication and normalization as the SAI before training
on those Feature Sets.

Tests were conducted in order to test both the implementation’s correctness and
the utility of the agent based classification under a relatively low training data size.
A subset of the Reuters-21578 test collection® was used with only 179 positive and
191 negative cases. The Reuters-21578 files are a collection of news-feed stories and
have been assigned zero or more categories based on their content. For this test the
positive cases are documents that are about corporate acquisitions and negative cases
are documents that aren’t.

When trained on this data the SVM agent correctly predicted 5 of the 6 classifi-
cation examples with the incorrect result’s prediction value being closer to a zero than
full assertion or retraction. These examples were chosen at random from the news-feed
documents.

The SAIT storing all Feature Sets does consume more storage than is strictly
required. For the above training example the SVM SAI consumed 1.7M of disk for all
of its state, of which the lexicon was 508K (uncompressed in XML format) and the
cached Feature Sets 399K . The svm_light model was 474K . Given that hard disk costs
are well under a dollar per gigabyte it should not be considered unreasonable for agents
to consume tens of megabytes for state information.

3 http:/ /www.daviddlewis.com /resources/testcollections/reuters21578/

143

8.3 Data models: Semantic Filesystems and XML

Taking an abstract view of the data model of a semantic filesystem one arrives at;
files with byte contents, files nested in a hierarchy and arbitrary attributes associated
with each file. This is in many ways similar to the data model of XML; elements with
an ordered list of byte content, elements nested in an explicit ordering with attributes
possibly attached to each element.

Many differences are insignificant, for example, the fact that (extended) attributes
in a semantic filesystem may be derived at run time rather than stored.

The differences between the data models may raise issues and require explicit
handling. The differences have been found to be;

e XML elements can contain multiple contiguous bytes serving as their “contents”.
Files may have many sections of contiguous bytes separated by holes. Holes serve
to allow the many sections of contiguous bytes to appear in a single offset range.
For example, I could have a file with the two worlds “alice” and “wonderland”
logically separated by 10 bytes. The divergence of the data models in this
respect is that the many sections of contiguous bytes in an XML element are
not explicitly mapped into a single logical contiguous byte range.

e XML elements are explicitly ordered by their physical location in the document.
For any two elements with a common parent element it will be apparent which
element comes “before” the other. Normally files in a filesystem are ordered
by an implementation detail — their inode. The inode is a unique number
(across the filesystem itself) identifying that file. Many tools which interact
with a filesystem will sort a directory by the file name to be more palatable to
a human reader.

e The notions of file name and element name have different syntax requirements.
A file name can contain any character apart from the “/” character. There
are much more stringent requirements on XML element names — no leading
numbers, a large range of characters which are forbidden.

e For all XML elements with a common parent it is not required that each child’s
name be unique. Any two files in a directory must have different names.

The differences are shown in Figure 8.2.

The identification of this link between data models and various means to address
the issues where differences arise helps both the semantic filesystem and XML com-
munities by bringing new possibilities to both. For example, the direct evaluation of
XQuery on a semantic filesystem instead of on an XML document.

The file name uniqueness issue is only present if XML is being seen as a semantic
filesystem. In this case it can be acceptable to modify the file name to include a unique
number as a postfix. In cases such as resolution of XPath or XQueries file names
should be tested without consideration of the unique postfix so that query semantics
are preserved.

As XML elements can not contain the “/” character exposing XML as a semantic
filesystem poses no issue with mapping XML element names into file names. Unfor-
tunately the heavy restrictions on XML element name syntax does present an issue.

144

XML Element Node

File / Directory

ere conent -

y

XML Text Node

XML Text Node

Child Implementation
defined
ordering

Child--2
Child Order

U Strange<>\One

Figure 8.2: On the left an XML Element node is shown with some child nodes. On
the right a filesystem node is shown with some similar child nodes. Note that XML
Text nodes can be considered to provide the byte content of the synonymous filesystem
abstraction but metadata about their arrangement can not be easily communicated.
Child nodes in the XML side do not need to have unique names for the given parent
node and maintain a strict document order. Child nodes on the filesystem side can

contain more characters in their file names but the ordering is implementation defined
by default.

XML Text Node

ﬁ

Child

Child

145

The most convenient solution has been found to be mapping illegal characters in file-
names into a more verbose description of the character itself. For example a file name
“foo<bar>.txt” might be canonicalized to an XML element name of “foo-lt-bar-gt.txt”.
The original unmodified file name can be accessed through a name spaced XML attribute
on the XML element.

XML element ordering can be handled by exposing the place that the XML
element appeared in document order. For example, a document with “b” containing
“c,d,e” in that order the “c” file would have a place of zero, and “e” would be two.
With this attribute available the original document ordering can be obtained through
the semantic filesystem by sorting the directory on that attribute. As there is no (useful)
document ordering for a filesystem this is not an issue when exposing a filesystem as
XML.

There is no simple solution to the fact that XML elements can have multiple text
nodes as children. In cases where XML with multiple child nodes exist they are merged
into a single text node containing the concatenation in document order of the child text
nodes. Files with holes are presented as though the hole contained null bytes.

146

Unionfs Basel

bar.png

foo.txt
paper.tex

foo.txt

foo.txt

paper.tex

Figure 8.3: Union filesystem. The two base filesystems, Basel and Base2 have their
contents combined by set union. Normally there is a linear precedence relation between
the base filesystems to explicitly resolve name clashes. In this case Basel’s foo.txt will
always be selected over the file with the same name in Base2.

8.4 Arbitrary Translation Semantic File Systems

Modern filesystems have become virtual filesystems: many sources of information
are presented through a filesystem interface. Such filesystems allow direct interaction
with the operating system kernel through a filesystem interface (/proc, /sys) [59].

Metadata interfaces have been introduced for both stored [59, 5] and derived
file information [39]. Metadata is associated on a per file or directory basis though
an Extended Attribute (EA) interface [62, 61]. EAs are key-value pairs, for example,
size=25 to indicate that a file is 25 bytes in length. This additional information interface
further broadens the possible variations of how a virtual filesystem’s schema will be
designed. For example, the same information can be made available as a single directory
with many subfiles or a single file with many EAs.

In the past virtual filesystems have evolved to include the layering of virtual
filesystems on top of themselves. Such constructs include the unionfs [105] which per-
forms a set theoretic union on many underlying virtual filesystems to filtering and sorting
filesystems [3]. A union virtual filesystem is shown in Figure 8.3 and a filtering virtual
filesystem in Figure 8.4. This section (and the paper it is based on) advances the no-
tions of these fixed simple transforms and morphisms to include dynamically changeable
bidirectional filesystem morphisms.

When one considers filesystems as files and directories (elements) along with meta-
data interfaces allowing key-value pairings (attributes) to be associated with elements
then the boundary between modern filesystems and XML becomes minimal. Differences
do exist, such as XML having multiple text nodes per entity vs a file having a single byte
stream, or as another instance, filesystems mandating a unique name for each subobject
of a directory where XML allows subentities to be repeated with identification relying
on document ordering. The libferris virtual filesystem [62, 3] allows virtual filesystems
to be accessed as XML Document Object Models (DOM)s and DOMs to be mounted
as virtual filesystems. Such a relation is shown in Figure 8.5.

The blurred distinction between XML and filesystems allows one to use a pow-
erful tree morphism language to succinctly describe filesystem morphisms. The XSLT

147

Filterfs Base

bar.png <—» | barpng
foo.txt <«—)» | foo.txt

paper.tex

Figure 8.4: A filtering filesystem. Only files matching a given predicate (in this case
*.png and *.txt) are exposed from the base filesystem.

$ fls -1 d1

-rw-rw-——- ben ben 29 06 Jun 7 20:29 datefile.txt
-rw-rw-——— ben ben 1338 06 Jun 7 20:30 snack.jpg

$ fls ——xml di

<ferrisls>

<ferrisls url="file:///.../d1" name="d1" >

<context protection-ls="-rw-rw----"
user-owner—name="ben" group-owner—name="ben"
size="29" mtime-display="06 Jun 7 20:29"
name="datefile.txt" />

<context protection-ls="-rw-rw----"
user-owner-name="ben" group-owner-name="ben"
size="1338" mtime-display="06 Jun 7 20:30"
name="snack. jpg" />

</ferrisls>

</ferrisls>

Figure 8.5: A virtual filesystem can be seen equally as a virtual XML document. Notice
that the same EAs are shown by both commands, files and directories naturally map to
XML entities, EAs map to XML Attributes.

148

Input filesystem Output filesystem

+name: string +celld = id: integer
rid: int read only. background = grey
+primary-key: name,id +

+phone-number: string \+ce1'l_B = name: string

+ read only. background = grey

¥
+cellC = phone-number
+

Figure 8.6: An abstract representation of a schema morphism from a virtual directory
to a spreadsheet file.

language is a declarative XML grammar to describe tree transformations.

Modern office document formats are XML files. As described above, some virtual
filesystems can also be exposed as XML. If a virtual filesystem has an office document’s
schema then one can use their office applications directly on a virtual filesystem. With
filesystem morphisms one can freely modify the schema of their filesystem to manufac-
ture a virtual filesystem with the desired office document schema.

The libferris virtual filesystem [3] makes a great deal of schema information avail-
able. Examples include what basic type an EA is, such as the size attribute being of
type integer. Other schema constrains which can span many EAs are also available such
as the set of EA which comprise a primary key for a directory. Normally the file name
takes on the properties of a primary key: unique across all files in the directory and not
a null value. When a relational database is mounted as a filesystem the primary key
may be comprised of many EAs.

The availability of type information in the filesystem can also be taken advantage
of in the morphic filesystem. For example, if generating a morphic office document
schema, numeric data taken from a filesystem can be marked as such in the output to
allow a office spreadsheet to correctly process that information. For example, collation
can be set correctly for a column in the spreadsheet.

As the virtual filesystem allows access to schema and type information for its
files it is possible to define morphisms between these schemas and a desired filesystem
format.

As an example consider defining a morphism between the schema of a directory
and the schema of a spreadsheet file. In this case one might wish to ensure that the EA
which comprise the primary key of the directory are presented in read only cells on the
left side of the spreadsheet file. This definition is between the schema of the directory,
in particular which EA comprise the primary key, and the schema of the spreadsheet, in
particular that columns {a,b, ...,n} are read only cells to be painted with a darker grey
background. The morphism also records which EA in the directories schema will map
to which columns in the spreadsheet file. This morphism is based only on the schema
of the input directory and the desired schema of the output, for example, converting to
the schema of a Microsoft Excel 2003 XML file.

This example is shown in Figure 8.6. In this case the primary key is used to define
the morphism onto spreadsheet cells of the EA from the input filesystem. EA which
comprise the primary key are marked as read only in the schema of the office document.

149

msgs
Column | Type Modifiers

id integer primary key, serial
msg varchar(.)

foo varchar(.)

Figure 8.7: Schema for msgs table. The id column is the primary key with a default
sequential next value if id is not given for a new tuple.

8.4.1 Relational Models and OpenOffice morphisms

One method for exposing a relational database through a virtual filesystem is to
consider each tuple as defining metadata about its primary key. Another would be to
create directories for each tuple with a file for each column. It is unlikely that either of
these methods will be fully satisfactory for all users.

Consider a relational database with a table msgs which has a numeric public key
id and two varchar columns msg and foo. Shown in Figure 8.7.

Assuming that a tuple is exposed as a file named using the public key with
metadata attached to the file for each column one might view the virtual filesystem as
shown in Figure 8.8.

The manner in which the relational database is exposed in Figure 8.8 is biased
toward both command line and file manager interaction. The chosen schema for this
filesystem makes coarser level document computing such as opening this relation in a
spreadsheet more difficult.

A relational database has good schema metadata and type availability. Given a
desired schema such as an office spreadsheet file one can mechanically define a schema
morphism to expose this filesystem as a virtual spreadsheet file.

The general data flow to create a virtual office document from a mounted rela-
tional database is shown in Figure 8.10. The XSL file defining the morphism is created
a priori by inspecting the mounted relational database and inferring the morphism re-
quired to generate an office spreadsheet file schema. When the virtual office document
is read, data is taken from the mounted relational database by the morphism engine
for the XSL file to be applied too in order to generate a new virtual filesystem. This
resulting filesystem is then taken as the source for the XML file of the office document.
Also, when the office document is written from OpenOffice the morphism engine applies
a reverse morphism in order to save the information back into the relational database.

Note that although in this case we are expecting to save the data back to the

fls --show-ea=name,msg,schema:msg,foo,primary-key pg://localhost/play/msgs
1 msglvalue schema://xsd/attributes/string foolvalue id
2 msg2value schema://xsd/attributes/string foo2val id

Figure 8.8: Viewing a mounted PostgreSQL relational database as a virtual filesystem.
As can be seen the primary key for this directory is the id metadata. The schema for
the msg metadata is a string.

150

same place it originated we do not seek isomorphisms. The morphism engine is free to
ignore part of the input filesystem, calculate aggregate, derivative or totally unrelated
information for the output virtual filesystem. In this case columns in the spreadsheet
are named based on the schema of the input filesystem. Such names are ignored in
the reverse morphism. To facilitate non isomorphic translations both the forward and
reverse morphism must be explicitly defined.

In this case the overall appearance of the office document can be left for the user
to decide. What is important in the morphism is to translate the schema for a given
relational table into a spreadsheet cell block schema. A simple morphism for a table
would indicate to the user that some cells form the primary key for the table and others
are information relating to that key. This would allow the user to edit information
without risk of violating key constraints by only editing non primary key cells.

An example schema morphism could expose each file (tuple) as a row in the
spreadsheet. Each column in the table would form a cell in each row. A suitable schema
morphism for this example would generate an XSL file which has two core aspects: each
column is named in a header by generating cells regardless of the input filesystem and
an xsl:template which would match input files and translate them into output cells.

The result of these morphisms is the ability to edit a relational database table as
shown in Figure 8.9.

8.4.2 Document Computing and The Semantic Web

At the base of the semantic web is the RDF [85, 14] technology with its schema
language RDFS. The core of RDF is a very simple model based on triples. A triple
consists of a subject, predicate and object. All three of these can be Unique Resource
Indicators (URI)s. In addition objects can be literal values. This model allows one to
define entities with properties expressed on them using predicates which link to literal
values or other entities. Because objects can be URIs they can be used to link to other
subjects and thus form a graph structure.

Due to the triple format being rather different to most past document computing
methods, authoring and editing RDF data presents new issues. By their very nature
URIs are intended to be unique and in practice mostly resemble URLs. Although the
length of URIs can help to avoid the implicit collision of identifiers it also makes the
direct expression of information in RDF more cumbersome.

Using schema morphisms at the filesystem level existing document computing
methods are again applicable to the new Semantic Web data formats.

The main contention with expressing RDF as a virtual filesystem is the lack of a
“root” node in the graph. This can be solved by explicitly nominating a URI to serve
as the root of the virtual filesystem. The URI to use as the root of the RDF mount
can be either specified within the RDF store itself or as an EA on the RDF file. By
allowing the root URI to be an extended attribute of the file, many views of the RDF
store can be made starting at different root URIs by making softlinks to the same RDF
store, each of which nominates a different root URI through an EA on the softlink.

Once the root URI has been identified a virtual filesystem rooted at that URI
can be created. Triples which feature a literal value as their object can be mapped to
Extended Attributes (metadata) in the filesystem. Where a triple features a URI as the
object then the predicate can serve as a directory name and the triple pointed to be the

151

Please see print copy for Figure 8.9

Figure 8.9: OpenOffice editing a virtual office document created from the current con-
tents of the msgs table in a PostgreSQL database.

Open Office
XSL stylesheet Filesystem as XML

. 1

Virtual Filesystem —»| Morphism engine —| Virtual Filesystem

1

Relational Database

Figure 8.10: Data flow in the creation of a virtual office document from a mounted
relational database.

amym
Text Box

Please see print copy for Figure 8.9

152

Please see print copy for Figure 8.11

Figure 8.11: OpenOffice editing a virtual office document created from the current
contents of a mounted RDF graph.

object URI resolved as the directory contents. Thus a directed graph is exposed from
the given subject URI.

In Figure 8.12, a small RDF graph is shown in n-triples format and a virtual
filesystem mounting it from a virtual root element with children explicitly named in the
RDF graph itself. The RDF graph is shown visually in Figure 8.13. The resulting office
document is shown in Figure 8.11.

A similar method to that employed in exposing relational data can then be used
to automatically find a schema morphism for RDF. The RDFS defines the schema for
the RDF graph and as such can be used to automatically generate a schema morphism
from the RDF graph into a desired schema.

This enables direct bidirectional document computing on RDF stores.

8.5 Conclusion

Automatic classification of files is directly advantageous when applying Formal
Concept Analysis to a Semantic File System because the classifications can be directly
used to create a concept lattice. The use of an Semantic File System as the data source
for running Supervised Machine Learning immediately unlocks the ability to run such
Machine Learning on a myriad of data sources such as online web forums and message
groups.

Union filesystems have existed in one form or another for a long time in the
filesystem world. The use of arbitrarily complex forward and reverse translations allows
not only the union of underlying data sources into a single filesystem but also data model
mutation. For example, the rigid data model of a relational database can be augmented
with data from a source with a looser schema such as RDF to create a virtual document
which obeys the schema of an office document. Having support for both forward and
reverse translations allows the mutated filesystem to be modified and effects translated
back to the original data source.

The flexibility provided by the bidirectional arbitrary translations from within
the virtual filesystem itself allows data to be made available in a desired schema, in a

amym
Text Box

Please see print copy for Figure 8.11

153

rdfproc foo serialize ntriples

<http://foo.com/child1l> <fool> "Valuel.1l"

<http://foo.com/child1> <http://foo.com/num> "100"

<http://foo.com/child1>
<http://witme.sf.net/libferris-core/ns/unknown/foo:num> ""

<http://foo.com/child2> <bar2> "no namespaces here"

<http://foo.com/child2> <fool> "value2.A"

<http://foo.com/child2> <http://foo.com/num> "200"

<http://foo.com/child2> <http://foo.com/bari> "This is fun"

<http://foo.com/child2>
<http://witme.sf.net/libferris-core/ns/unknown/foo:num> ""

<http://witme.sf.net/libferris-core/0.1/rdf-root-subject-uri>
<root> <http://foo.com/childl> .

<http://witme.sf.net/libferris-core/0.1/rdf-root-subject-uri>
<root> <http://foo.com/child2> .

fls -Oh ./foo-po2s.db

root

fls -Oh ./foo-po2s.db/root --show-ea=name,fool

http://foo.com/childl Valuel.l

http://foo.com/child2 value2.A

Figure 8.12: Mounting RDF as a filesystem. The RDF graph is stored in a collection
of Berkeley db files for fast query processing. These files are named with a foo prefix.

http://witme.sf.net/libferris-core/ns/unknown/foo:num

http://foo.com/barl un
http://foo.M 4

bar2

no namespaces here
fool
—

T ————value2|A

http://foo.com/nu 100

fool

)
http://witme.sf.net/libferris-core/ns/unknown/fo%|

Figure 8.13: Graphical representation of RDF from Fig 8.12.

154

read and write format with changes effecting the original data source. Such flexibility
has historically been provided by an application developer where the exact schema of a
filesystem does not meet their requirements.

Directly considering the link to the XML data model does raise some areas where
major differences between filesystem and XML data models exist. For many cases these
differences can be smoothed over to allow interaction with a Semantic File System as
though it was actually an XML document. An example of the power of seeing a Semantic
File System as an XML document is in the use of XQuery to query for data stored in an
XML file. The XML file can be converted into a B-Tree file (mountable as a Semantic
File System) and the XQuery will resolve against the B-Tree file taking substantially
less time than the XML file [71].

8.6 Semantic File System Future Directions

Allowing the Semantic File System to protect and maintain its consistency by
asserting a constraints system. Future work will include research on integration with
existing constraints [29] and correctness systems such as XML schema enforcement [99,
100, 101] and the Object Constraint Language [102, 22] with extensions for dynamic
behaviour [32].

Given the vast pool of metadata made available by the Semantic File System
the use of deductive query techniques [26] and formal logic systems [54, 21] could also
enhance the Semantic File System experience as an information resource.

Chapter 9

Conclusion

Special indexing structures are essential to FCA systems with large data sets
like those encountered in semantic file systems. An index structure derived from spatial
indexing for accelerating subset queries has been found to be productive. When the user
wishes to list the files matching a concept an RD-Tree permits this within an acceptable
time frame for interactive use. The link to spatial indexing structures have not been
reported in current best practices elsewhere in the FCA literature [20].

Although the use of spatial indexing was first adopted and implemented to allow
Formal Concept Analysis to be applied specifically to the special circumstances encoun-
tered by Semantic File Systems, the data structures have also been found to be an
advantageous structure for general purpose FCA applications: such as those supported
by TOSCANAJ.

The performance of spatial indexing for Formal Concept Analysis in various set-
tings has been examined and shown to provide substantial improvements in many cases.
Performance gains from RD-Trees are very effective for sparse formal contexts where
queries can be resolved five times faster on large data sets as shown in Section 4.4.4.2.
The largest benchmark results were found when applied to a large dataset from the
UCI collection where the formal context was generated by nesting one conceptual scale
inside another. In such an environment queries can be executed over 80 times faster
using an RD-Tree than without.

The custom Generalized Index Search Tree presented offers at times a 36% drop
in internal node count and in many cases a reduction of the depth over an RD-Tree.
These two metrics directly impact the query performance of such a tree index [33]. It
should be noted that in many typical applications of Formal Concept Analysis many
hundred queries are rendered against the index [75] further compounding the above
performance advantages.

The application of Formal Concept Analysis as a postprocess to the standard
Guttman distribution at page splitting time can help to improve the clustering in the
index structure itself.

The application of compression tailored to take advantage of knowledge of how
Formal Concept Analysis is being applied to the input data can significantly reduce the
size of the index structure. In particular the number of internal nodes can be reduced to
just 4% of that required by generic compression. This is reflected directly in the depth
of the Generalized Index Search Tree going from 7 to just 3 levels.

The ability to resolve queries in a more timely manner facilitates the scalability of
FCA to applications with many more objects and attributes than is presently considered

156

feasible. For example, application to data sets the size of a filesystem becomes possible.
Due to the indexing structure’s ability to more efficiently handle high dimensional data
Formal Concept Analysis can also be applied with a wider scope. For example, the
ability to consider more attributes simultaneously than was previously tractable.

Though the work on applying Formal Concept Analysis to obtain superior clus-
tering post page split is still in its infancy, research contained in this thesis has demon-
strated superior results for indexes with 16 and 32 dimensions.

The exploitation of the link to Data Mining opens up a range of new algorithms
for finding the set of Formal Concepts for a given Formal Context. This is especially
true when only concepts with at least a given number of objects is required. The
publication of the titanic algorithm brought the apriori algorithm from Data Mining
into the Formal Concept Analysis community. The titanic algorithm makes use of how
the apriori algorithm works in order to deliver not only the set of Formal Concepts but
also make the ordering among them explicit at the same time. However, there is no
explicit requirement to use the titanic process and the covering relation between formal
concepts can be made explicit with reasonable time complexity. This opens the door to
using any Closed Frequent Itemset algorithm to find the set of Formal Concepts.

The thesis has focused in large part on improving the state of the art of applied
Formal Concept Analysis. During the course of the research various articles have also
appeared in the Linux Journal [64, 66, 70, 68] and xml.com [63] directly relating to
the research. The implementation has been seen to be well crafted and technically
advanced enough to merit acceptance of the author at the Linux Kongress 2005 [65]
and the Ottawa Linux Symposium 2007 [69]. The combined thesis and implementation
of indexing structures were furthermore interesting enough for the author to present
both at the Linux Kongress 2008 [72]. This reinforces that the applied research has
been performed using an implementation which is of sufficient quality to garner such
wide community interest.

The work in Section 8.2 appeared in ADCS 2003 [61]. Section 1.2 appeared in
ICFCA 2004 [62]. Section 2.3 contains information from ICFCA 2004 [62]. Section 6
contains information from ADCS 2005 [73]. Section 4.2 and Section 4.3 contain infor-
mation from ICFCA 2006 [75]. Section 4.4 contains information from ISMIS 2006 [74]
and ICFCA 2007 [76].

[10]

[11]

[12]

[13]

[14]

Bibliography

bogofilter homepage, http://bogofilter.sourceforge.net/. Visited Sep 2003.
Ea and acl for linux website, http://acl.bestbits.at/. Visited Sep 2003.
libferris, http://witme.sf.net/libferris.web/. Visited Apr 2007.

Md5 hash function rfc, http://www.ietf.org/rfc/rfc1321.txt. Visited Sep 03.

Ntfs extended attributes, http://linux-ntfs.sf.net /ntfs/attributes/ea_information.html.

Visited Sep 2003.
Postgresql, http://www.postgresql.org/. Visited Apr 2007.
Sleepycat berkeley db, http://www.sleepycat.com. Visited June 2004.

Svmfu svm project website, http://five-percent-nation.mit.edu/svmfu/. Visited
Sep 2003.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 487-499. Morgan Kaufmann,
12-15 1994.

Paul M. Aoki. Implementation of extended indexes in POSTGRES. SIGIR Forum,
25(1):2-9, 1991.

Peter Becker. Docco: Document retrieval with formal concept analysis. In En-
gelbert NGuifo et al., editor, Supplementary Proc. of the 3rd Int. Conference on
Formal Concept Analysis. University of Artois, 2005.

Peter Becker and Richard Cole. Querying and analysing document collections
with formal concept analysis. In Australian Document Computing Symposium
(ADCS03). University of Queensland, 2003.

Peter Becker and Peter Eklund. Prospects for formal concept analysis in document
retrieval. In Australian Document Computing Symposium (ADCS01), pages 5-9.
University of Sydney, Basser Department of Computer Science, 2001.

Dave J. Beckett. The design and implementation of the redland RDF application
framework. In World Wide Web, pages 449-456, 2001.

[15]

[16]

[25]

[26]

[27]

[28]

158

D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical foundations
and model. M74-244, Mitre Corporation, Bedford, Massachusetts, 1975.

Michael W. Berry. Understanding search engines : mathematical modeling and
text retrieval. Society for Industrial and Applied Mathematics, Philadelphia, PA,
1999.

Blake, C., Merz, C. UCI Repository of Machine Learning Databases. |[http:
//www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science, 1998.

J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An architecture for
storing and querying rdf data and schema information, 2001.

C. Carpineto and G. Romano. Order-theoretical ranking. Journal of the American
Society for Information Science (JASIS), 51(7):587-601, 2000.

Claudio Carpineto and Giovanni Romano. Concept Data Analysis. Wiley, Eng-
land, 2004.

J. Chomicki and G. Saake, editors. Logics for Databases and Information Systems.
Kluwer, 1998.

Tony Clark and Jos Warmer, editors. Object Modeling with the OCL: The
Rationale behind the Object Constraint Language, volume 2263 of LNCS.
Springer, 2002.

Richard Cole. Document Retrieval using Formal Concept Analysis. PhD thesis,
School of Information Technology, Griffith University, 2001.

Richard Cole, Peter Eklund, and Don Walker. Constructing conceptual scales in
formal concept analysis. In Procedings of the 2nd Pacific Asian Conference on
Knowledge Discovery and Data Mining, number 1394 in LNAI, pages 378-379.

Springer Verlag, 1998.

Richard J. Cole, Peter W. Eklund, and Gerd Stumme. Document retrieval for
email search and discovery using formal concept analysis. Journal of Applied
Artificial Intelligence (AAI), 17(3):257-280, 2003.

Robert M. Colomb. Deductive Databases and Their Applications. Taylor &
Francis, Inc., Bristol, PA, USA, 1998.

Brian A. Davey and H.A. Priestley. Introduction to Lattices and Order 2nd
Edition. Cambridge University Press, Cambridge, UK, 2002.

Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236-243, 1976.

S. M. Embury and P. M. D. Gray. Compiling a Declarative High-Level Lan-
guage for Semantic Integrity Constraints. In R. Meersman and L. Mark, editors,
Proceedings of the 6th IFIP TC-2 Working Conference on Data Semantics (DS-6),

pages 188-226. Chapman & Hall, 1996.

[30]

[31]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

159

Sebastien Ferré and Olivier Ridoux. A file system based on concept analysis. In
Vernica Dahl et al. John W. Lloyd, editor, Proceedings of the First International
Conference on Computational Logic, number 1861 in LNAI, pages 1033-1047,
London, UK, 2000. Springer-Verlag.

Sebastien Ferré and Olivier Ridoux. A logical generalization of formal concept
analysis. In B. Ganter and G. W. Mineau, editors, 8th International Conference
on Conceptual Structures, LNAI, pages 371-384, Heidelberg-Berlin, August 2000.
Springer-Verlag.

S. Flake and W. Mueller. Expressing property specification patterns with ocl,
2003.

Michael J. Folk and Bill Zoelick. File Structures. Addison-Wesley, Reading,
Massachusetts 01867, 1992.

David Caplan Frank Mayer, Karl MacMillan. SELinux by Example: Using
Security Enhanced Linux. Prentice Hall PTR, 2006.

Timothy Fraser. Lomac: Low water-mark integrity protection for cots environ-
ments. In SP ’00: Proceedings of the 2000 IEEE Symposium on Security and
Privacy, page 230, Washington, DC, USA, 2000. IEEE Computer Society.

Timothy Fraser. Lomac: Mac you can live with. In Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference, pages 1-13, Berkeley, CA,
USA, 2001. USENIX Association.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. J. Miller. Introduction to
wordnet: An on-line lexical database. In Proceedings of the 24th Annual Meeting
of the Association for Computational Linguistics, pages 112—-119, 1990.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis — Mathematical
Foundations. Springer—Verlag, Berlin Heidelberg, 1999.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. Jr O’Toole.
Semantic file systems. In Proceedings of 13th ACM Symposium on Operating
Systems Principles, ACM SIGOPS, pages 1625, 1991.

Bart Goethals and Mohammed Javeed Zaki. Advances in frequent itemset mining
implementations: Report on fimi’03. In Bart Goethals and Mohammed Javeed
Zaki, editors, Proceedings of the ICDM 2003 Workshop on Frequent Itemset
Mining Implementations, volume 90 of CEUR Workshop Proceedings, 2003.

Burra Gopal and Udi Manber. Integrating content-based access mechanisms with
hierarchial file systems. In Proceedings of third symposium on Operating Systems
Design and Implementation, USENIX Association, pages 265278, 1999.

Osta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent
itemsets. In Bart Goethals and Mohammed J. Zaki, editors, Proceedings of the
TEEE ICDM Workshop on Frequent Itemset Mining Implementations. Ceur, 2003.

[43]

[44]

[45]

[46]

[49]

[51]

[52]

[53]

[54]

[55]

[56]

160

Network Working Group. Rfc 2254 - the string representation of ldap search filters,
http://www.fags.org/rfcs/rfc2254. html. Visited Sep 2003.

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
Proc. ACM-SIGMOD International Conference on Management of Data, Boston
Mass, 1984.

Jiawei Han. Data mining : concepts and techniques. Morgan Kaufmann Publish-
ers, San Francisco, Calif., 2001.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In Weidong Chen, Jeffrey Naughton, and Philip A. Bernstein, editors,
2000 ACM SIGMOD Intl. Conference on Management of Data, pages 1-12. ACM
Press, 05 2000.

Darren R. Hardy and Michael F. Schwartz. Essence: A resource discovery system
based on semantic file indexing. In USENIX Winter, pages 361-374, 1993.

Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy
and integrity. In ACM, editor, Conference record of POPL ’98: the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, California, 19-21 January 1998, pages 365-377, New York, NY, USA,
1998. ACM Press.

Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized search
trees for database systems. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro
Nishio, editors, Proc. 21st Int. Conf. Very Large Data Bases, VLDB, pages 562—
573. Morgan Kaufmann, 11-15 1995.

Joseph M. Hellerstein and Avi Pfeifer. The RD-Tree: An Index Structure for Sets,
Technical Report 1252. University of Wisconsin at Madison, October 1994.

S. Helmer. Index structures for databases containing data items with setvalued
attributes, Technical Report 2/97, Universitat Mannheim, 1997.

Alan R. Simon Jim Melton. SQL:1999 : understanding relational language
components. Academic Press, San Francisco, CA, 2002.

T. Joachims. Making large-scale support vector machine learning practical. In
A. Smola B. Schlkopf, C. Burges, editor, Advances in Kernel Methods: Support
Vector Machines. MIT Press, Cambridge, MA, 1998.

Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Technical Report TR-90-003, 1, 1990.

M. Kim and P Compton. Formal concept analysis for domain-specific document re-
trieval systems. In The 13th Australian Joint Conference on Artificial Intelligence
AT’01), pages 179-184. Springer-Verlag, 2001.

Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching, Third Edition. Addison-Wesley, 1997.

[57]

[58]

[59]
[60]

[61]

[62]

73]

161

Butler W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613-615, 1973.

Angelike Langer and Klaus Kreft. Standard C+4 IOStreams and Locales:
Advanced programmer’s Guide and Reference. Addison Wesley, Reading, Mas-
sachusetts 01867, 2000.

Robert Love. Linux Kernel Development. Novell Press, 2005.

Wen-Pai Lu and Malur K. Sundareshan. A model for multilevel security in com-
puter networks. In IEEE Transactions on Software Engineering archive, volume 16,
pages 647-659, Piscataway, NJ, USA, June 1990. IEEE.

Ben Martin. File system wide file classification with agents. In Australian
Document Computing Symposium (ADCS03). University of Queensland, 2003.

Ben Martin. Formal concept analysis and semantic file systems. In Peter W.
Eklund, editor, Concept Lattices, Second International Conference on Formal
Concept Analysis, ICFCA 2004, Sydney, Australia, Proceedings, volume 2961 of
Lecture Notes in Computer Science, pages 88-95. Springer, 2004.

Ben Martin. Using libferris with xml, March 2004.
Ben Martin. Filesystem indexing with libferris. Linux Journal, 2005(130):7, 2005.

Ben Martin. A virtual filesystem on steroids: Mount anything, index and search
it. In Proceedings of the 12th International Linux System Technology Conference
(Linux-Kongress 2005). GUUG e.V. / Lehmanns / Ralf Spenneberg, 2005.

Ben Martin. Federated desktop and file server search with libferris. Linux Journal,
2006(152):8, 2006.

Ben Martin. Geotagging files with libferris and google earth (linux.com), April
2006.

Ben Martin. The world is a libferris filesystem. Linux Journal, 2006(146):7, 2006.

Ben Martin. Everything is a virtual filesystem: libferris. In Proceedings of the
10th Ottawa Linux Symposium, 2007.

Ben Martin. Virtual filesystems are virtual office documents. Linux Journal,
2007(154):8, 2007.

Ben Martin. Xquery, libferris, and virtual filesystems, July 2007.

Ben Martin. Semantic filesystems and formal concept analysis: a phd 5 years
in the making. In W. Stief, editor, Proceedings of the Linux-Kongress 2008 in
Hamburg. GUUG e.V. / UpTimes, 2008.

Ben Martin and Peter Eklund. Applying formal concept analysis to semantic
file systems leveraging wordnet. In Australian Document Computing Symposium
ADCS05). Sydney University, 2005.

[74]

[80]

[81]

162

Ben Martin and Peter Eklund. Asymmetric page split generalized index search
trees for formal concept analysis. In ISMIS06, Proceedings, Lecture Notes in
Computer Science, page FIXME. Springer, 2006.

Ben Martin and Peter W. Eklund. Spatial indexing for scalability in fca. In
Rokia Missaoui and Jiirg Schmid, editors, ICFCA, volume 3874 of Lecture Notes
in Computer Science, pages 205—-220. Springer, 2006.

Ben Martin and Peter W. Eklund. Custom asymmetric page split generalized
index search trees and formal concept analysis. In ICFCA, 2007.

Bill McCarty. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly
& Associates, Sebastopol, California, 2004.

Jim Melton. Advanced SQL, 1999 : understanding object-relational and other
advanced features. Morgan Kaufmann Pub., Boston, Mass., 2003.

Mohammed J. Zaki, Nagender Parimi, Nilanjana De, Feng Gao, Benjarath
Phoophakdee, Joe Urban, Vineet Chaoji, Mohammad Al Hasan and Saeed Salem.
Towards generic pattern mining. In Bernhard Ganter and Robert Godin, editors,
Concept Lattices, Third International Conference on Formal Concept Analysis,

ICFCA 2005, Proceedings, Lecture Notes in Computer Science, pages 1-20, Lens,

France, 2005. Springer.

Andreas Mueller. Fast sequential and parallel algorithms for association rule
mining: A comparison. Technical Report CS-TR-3515, Departure of Computer
Science, University of Maryland, College Park, MD, 1995.

Hans-Peter Kriegelm Ralf Schneider Norbert Beckmann and Bernhard Seeger.
The r*-tree: An efficient and robust access method for points and rectangles. In
Proc. ACM-SIGMOD International Conference on Management of Data, Atlantic

city, N.J., 1990.

Yoann Padioleau and Olivier Ridoux. A logic file system. In USENIX 2003 Annual
Technical Conference, pages 99-112, 2003.

Jian Pei. Pattern-growth methods for frequent pattern mining, ph.d. thesis, com-
puting science, simon fraser university, 2001.

Andrea Pietracaprina and Dario Zendolin. Mining frequent itemsets using patricia
tries. In Bart Goethals and Mohammed J. Zaki, editors, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations. Ceur, 2003.

Shelley Powers. Practical RDF. O’Reilly & Associates, Sebastopol, California,
2003.

Susanne Prediger. Logical scaling in formal concept analysis. In International
Conference on Conceptual Structures, pages 332-341. Springer, 1997.

Susanne Prediger. Symbolic objects in formal concept analysis. In Proceedings of
the Second International Symposium on Knowledge, Retrieval, Use and Storage
for Efficiency, 1997.

[33]

[89]

[90]

[91]

[100]
[101]

[102]

[103]

163

R. Agrawal, H. Mannila, R Srikant, H. Toivonen and A. Inkeri Verkamo. Fast
discovery of association rules. In U. Fayyad et al., editor, Advances in Knowledge
Discovery and Data Mining, pages 307-328, Menlo Park CA, 1996. AAAI Press.

Shamkant B. Navathe Ramez Elmasri. Fundamentals of database systems. Pear-
son/Addison Wesley, New York, 2004.

Marc Rochkind. Advanced Unix Programming. Addison Wesley Professional,
2004.

T. Rock and R. Wille. Ein TOSCANA-erkundungssytem zur literatursuche. In
G. Stumme and R. Wille, editors, Begrifliche WissensveraRbeitung: Methoden
und Anwendungen, pages 239-253, Berlin-Heidelberg, 2000. Springer-Verlag.

Mark Rosen. E-mail classification in the haystack framework, 2003. MIT, Masters
thesis, describes the design and implementation of a text classification framework
for the Haystack project.

Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST model for role-based
access control: Towards a unified standard. pages 47-64.

Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9—
19, 1993.

Robert Sedgewick. Algorithmn in C++4 third edition. Addison-Wesley, Reading,
Massachusetts 01867, 1998.

Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal.
Computing iceberg concept lattices with titanic. In J. on Knowledge and Data
Engineering (KDE), volume 42, pages 189-222, 2002.

Tim Hannan, Alex Pogel. Spring-Based Lattice Drawing Highlighting Conceptual
Similarity. In Missaoui and Schmid, editors, Concept Lattices, Third International
Conference on Formal Concept Analysis, ICFCA 2006, Proceedings, LNAI, pages
264-279. Springer, 2006.

Dan Tow. SQL Tuning. O’Reilly & Associates, Sebastopol, California, 2004.

Eric van der Vlist. XML Schema. O’Reilly & Associates, Sebastopol, California,
2002.

Eric van der Vlist. Relax-NG. O’Reilly & Associates, Sebastopol, California, 2003.

Eric van der Vlist. Schematron. O’Reilly & Associates, Sebastopol, California,
2003.

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1998.

Horst F. Wedde and Mario Lischka. Composing Heterogenous Access Policies
between Organizations. In Proceedings of the IADIS International Conference
e-Society 2003, Lisbon/ Portuagal, June, 3-6 2003. International Association for
Development of the Information Society.

[104]

[105]

[106]

[107]

[108]

164

Ian H. Witten, Alistar Moffat, and Timothy C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kaufmann, 340 Pine

Street, San Francisco, CA 94104-3205, USA, 1999.

C. P. Wright and E. Zadok. Unionfs: Bringing File Systems Together. Linux

Journal, (128):24-29, December 2004.

Woo Suk Yang, Yon Dohn Chung, and Myoung Ho Kim. The rd-tree: a structure
for processing partial-max/min queries in olap. Inf. Sci. Appl., 146(1-4):137-149,
2002.

Mohammed J. Zaki and Ching jui Hsiao. Efficient algorithms for mining closed
itemsets and their lattice structure. IEEE Transactions on Knowledge and Data

Engineering, 17:2005, 2005.

Mohammed Javeed Zaki. Scalable algorithms for association mining. In
Knowledge and Data Engineering, volume 12, pages 372-390, 2000.

	University of Wollongong - Research Online
	Cover page
	Copyright warning
	Title page
	Certification
	Abstract
	Dedication
	Acknowledgements
	Contents
	Tables
	Figures
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Chapter seven
	Chapter eight
	Chapter nine
	Bibliography

