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ABSTRACT

The objectives of this study were to improve our understanding of the contamination
arising in conventional radiotherapy treatment from the various principal processes
involved. The evolution of the contamination was investigated in two main ways: i)

experimental measurements; and ii) the Monte Carlo method.

The magnetic field strengths in this improved design were intended to result in more
uniform magnetic flux densities in the area of interest, with the prediction of a greater
volume where the electron contamination was effectively removed by our magnetic
deflector device. The magnetic field strengths obtained by the magnetic deflector will
theoretically give rise to electron deflection radii that should cause the majority of
electron contamination to exit the treatment field. An enhancement of the electron dose
was never experimentally observed in the irradiated area, and a percentage reduction of
the skin and subcutaneous dose up to 34 % with the NdFeB magnetic device was seen
for a 20 x 20 cm? field size. The elimination of significant electron doses due to
contaminant electrons down to a depth of a few millimetres was obtained with this

newly designed magnetic deflector device.

In the study, the experiments were verified by an Attix chamber and radiographic film.
The surface dose was increased as the field size was increased in an open field and
when a Perspex tray was placed in the beam, with the increase especially significant in
the case where there was both a Perspex tray and a larger field size. The Perspex tray or
a wedge filter eliminate secondary electrons and generate new electrons at the same
time, however, when combined with magnetic field the surface dose is reduced
significantly. Results are also shown for the surface dose profile in two dimensions (x
and y-axis) with the surface dose showing a decrease at all sites within the treatment
field due to the magnetic deflector device, not only for an open field, but also when a

wedge or a Perspex tray is in the beam.

Calculation and analysis of spectra of deflected electrons in photon beams from the
linear accelerator treatment head were investigated. Calculating such spectra with more
accuracy requires knowledge of the characteristics of the electron beam incident on the

target as well as better equipment for modelling the linear accelerator. We used the



Monte Carlo method performed with BEAMnrc and DOSXYZnrc code to derive
estimates for the average energy deposited in the system. Monte Carlo modelling of
photon beams was achieved and adjusted for two parameters: AE = ECUT = 0.521 MeV
and AE = ECUT = 0.700 MeV by matching the Monte Carlo calculated depth dose and
beam profile data with the measured data.

The capability of the Monte Carlo program in evaluating dose distribution has been
verified by comparison with measurements in a water phantom and with radiographic
film. The comparisons were performed for percentage of the build-up dose for various
field sizes. lonisation measurements were made in a solid water phantom by means of
an Attix chamber for experiments to determine the dose in the build-up region. The
measurement of skin dose uses an Attix parallel plate ionisation chamber, which is
primarily used as the benchmark chamber in solid-water phantom dose build-up

measurements.

Monte Carlo simulations were performed to generate data to predict the dose
distribution for 6 MV x-rays. Investigation of dose components of electron spectra are
compared between calculated and measured dose distributions. From the Monte Carlo
calculations and measurements on the surface and in the build-up region for 6 MV x-ray
beams based on our results, we conclude that our optimised simulation model represents
the beam emerging from the treatment head and the calculated percentage depth doses
in such a way that there is a satisfactory match with the experimental measurements for

the same irradiation set-ups.
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