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ABSTRACT 

The objectives of this study were to improve our understanding of the contamination 

arising in conventional radiotherapy treatment from the various principal processes 

involved. The evolution of the contamination was investigated in two main ways: i) 

experimental measurements; and ii) the Monte Carlo method. 

 

The magnetic field strengths in this improved design were intended to result in more 

uniform magnetic flux densities in the area of interest, with the prediction of a greater 

volume where the electron contamination was effectively removed by our magnetic 

deflector device. The magnetic field strengths obtained by the magnetic deflector will 

theoretically give rise to electron deflection radii that should cause the majority of 

electron contamination to exit the treatment field. An enhancement of the electron dose 

was never experimentally observed in the irradiated area, and a percentage reduction of 

the skin and subcutaneous dose up to 34 % with the NdFeB magnetic device was seen 

for a 20 x 20 cm2 field size. The elimination of significant electron doses due to 

contaminant electrons down to a depth of a few millimetres was obtained with this 

newly designed magnetic deflector device. 

 

In the study, the experiments were verified by an Attix chamber and radiographic film. 

The surface dose was increased as the field size was increased in an open field and 

when a Perspex tray was placed in the beam, with the increase especially significant in 

the case where there was both a Perspex tray and a larger field size. The Perspex tray or 

a wedge filter eliminate secondary electrons and generate new electrons at the same 

time, however, when combined with magnetic field the surface dose is reduced 

significantly. Results are also shown for the surface dose profile in two dimensions (x 

and y-axis) with the surface dose showing a decrease at all sites within the treatment 

field due to the magnetic deflector device, not only for an open field, but also when a 

wedge or a Perspex tray is in the beam.   

 

Calculation and analysis of spectra of deflected electrons in photon beams from the 

linear accelerator treatment head were investigated. Calculating such spectra with more 

accuracy requires knowledge of the characteristics of the electron beam incident on the 

target as well as better equipment for modelling the linear accelerator. We used the 



 iii

Monte Carlo method performed with BEAMnrc and DOSXYZnrc code to derive 

estimates for the average energy deposited in the system. Monte Carlo modelling of 

photon beams was achieved and adjusted for two parameters: AE = ECUT = 0.521 MeV 

and AE = ECUT = 0.700 MeV by matching the Monte Carlo calculated depth dose and 

beam profile data with the measured data.  

 

The capability of the Monte Carlo program in evaluating dose distribution has been 

verified by comparison with measurements in a water phantom and with radiographic 

film. The comparisons were performed for percentage of the build-up dose for various 

field sizes.  Ionisation measurements were made in a solid water phantom by means of 

an Attix chamber for experiments to determine the dose in the build-up region. The 

measurement of skin dose uses an Attix parallel plate ionisation chamber, which is 

primarily used as the benchmark chamber in solid-water phantom dose build-up 

measurements. 

 

Monte Carlo simulations were performed to generate data to predict the dose 

distribution for 6 MV x-rays. Investigation of dose components of electron spectra are 

compared between calculated and measured dose distributions. From the Monte Carlo 

calculations and measurements on the surface and in the build-up region for 6 MV x-ray 

beams based on our results, we conclude that our optimised simulation model represents 

the beam emerging from the treatment head and the calculated percentage depth doses 

in such a way that there is a satisfactory match with the experimental measurements for 

the same irradiation set-ups.  
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