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Abstract

In many instances data are available as aggregated measurements for a set of areal
units that are arbitrarily defined in terms of number and boundaries. Analysis using
spatial data is a multi-disciplinary subject attracting the attention of statisticians,
geographers, physical and social scientists. The Modifiable Areal Unit Problem
(MAUP) is the sensitivity of results of statistical analysis to the definition of areal
units for which the data are available. The results vary with the level of aggregation
and the configuration of the zoning system. Multilevel models offer an approach to
the MAUP. Multilevel modeling is potentially subject to the MAUP, since different
estimates of the variance components can be obtained if boundaries are changed or
a different scale is used.

This thesis presents results of experiments conducted to look into the scale effects
of statistics calculated directly from aggregated data and statistics derived from a
simple multilevel under different initial conditions. The analysis of spatial data is
usually affected by the complex relationships between variables and the existence of
spatial autocorrelation. A reason for multilevel models being subject to the MAUP
is that, while the data available may be hierarchical, the population structure may be
more complex. Theoretical and empirical investigations to link a simple multilevel

model and spatial autocorrelation and the implications for the MAUP are conducted.
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Chapter 1

Introduction

This chapter introduces some definitions of key terms and the Modifiable Areal Unit
Problem (MAUP), spatial autocorrelation, and multilevel model. Also the chapter

describes the problems to be tackled in the thesis and the flow of presentation.

1.1 The Modifiable Areal Unit Problem

Analysis using spatial data is a multi-disciplinary subject attracting the attention of
statisticians, geographers, physical and social scientists. A geographical region may
be completely covered by a number of mutually exclusive zones referred to as areal
units. In many instances data are available as aggregated measurements for a set
of areal units that are arbitrarily defined in terms of number and boundaries. The
areal units can be partitioned into smaller subareas or grouped into larger areas in a
hierarchical manner (Wong, 1996), or boundaries can be changed for some reason. In
Australia an example of a hierarchical geographical structure is, from smallest areal
unit to a larger unit; Census Collectors Districts (CDs), Local Government Areas
(LGAs), Statistical Divisions (SDs) and States/Teritories. In the United Kingdom
an example of an hierarchical structure is; Enumeration Districts (EDs), Wards, and

Districts.
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The results of statistical analyses based on the data available for areal units vary
according to the definition of the areal units. Any statistical relationship may be
manipulated by the choice of areal units (Openshaw, 1984b). This phenomenon is
referred to as the modifiable areal unit problem (MAUP). The term was first used
and defined by Openshaw and Taylor (1979) (see Fotheringham and Wong, 1991).
The modifiable areal unit problem reflects not only the properties of the variables
under consideration but also the properties of the zoning system itself (Yule and
Kendal, 1950). Statistical analysis based on data aggregated over spatial units
often produce results that are very different from those obtained from analyzing
corresponding individual or household level data (Steel, Holt and Tranmer, 1996).
One approach would then seem to be to only use data at the lowest possible level
of aggregation (Goodchild, 1992), which may be the individual level. There are
often reasons that it is necessary to aggregate data. One reason is to reduce the
volume of data to be processed. Another reason is that it protects the confidentiality
of personal data (Openshaw and Alvanides, 1996). A further reason is that there
may be no interest in purely individual level relationships, but in relationships at
some higher level of aggregation. Many analyses are tied to arbitrarily defined areal
units and the results apply only for the particular areal units that have been used.
Methods that eliminate or minimize the impact of the MAUP or have predictable

qualities when areal units are changed will be of enormous value.

The MAUP is the sensitivity of results to the definition of the areal units for
which the data are available. These results may vary with the level of aggrega-
tion and the configuration of the zoning system. The MAUP consists of two sub-
problems: the scale problem and the zoning problem (Openshaw and Taylor, 1979).
The scale problem refers to the variation in results that may be obtained when the
same areal units are combined into sets of increasingly larger areal units for analysis
(Openshaw and Taylor, 1979). It is the change in results that occurs as the number
of areal units into which the population is partitioned changes. The zoning problem
refers to the variability in results when different boundaries are used at the same

scale, that is, for the same number of areal units (see Wrigley, Holt, Steel, and Tran-
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mer, 1996). The term "modifiable” is used because the choice of area boundaries
and the number of areas used to cover the population are often not fundamental and
other choices could have been made (Holt, Steel and Tranmer, 1996a). Usually the
areal units used to identify the geographical location of the objects being studied
have no special significance having been constructed for reasons of cost, operational

or administrative convenience (Steel, Holt and Tranmer, 1996a).

Another issue that is related to the MAUP is the ecological fallacy. It occurs
when spatially aggregated data are analyzed and the results are assumed to apply
to relationships at the individual level. It arises when group or area level data are
the only source of information available to the researcher but the objective of the
study are individual level characteristics and relationships (Wrigley et al., 1996).
In ecological analysis, the main data available consist of group or area level means

or totals from a census or sample but the targets of inference are at the unit level

(Holt, Steel, and Tranmer, 1997).

Socio-economic differences between arbitrarily defined areal units contribute to
the effects of the MAUP on statistical analysis. In practice, individuals who live in
the same area tend to be more alike in terms of a variety of socio-economic variables
than individuals in different areas. This is referred to as positive clustering and
is characterized by positive intra-area correlation, a statistic which measures the
homogeneity of individuals within areas or groups (Holt et al., 1996a). Choices of
areal unit boundaries may create areas that are relatively homogeneous, whereas
other choices of boundaries may result in areas that are less homogeneous and thus
the MAUP occurs. The MAUP will usually affect different variables to varying
degrees, leading to the unpredictable scale and zoning effects on the relationships
between variables (Holt, et. al., 1996a). The analysis of spatial data is usually
complicated by the complex relationship between variables, the spatial pattern of
variables and the existence of spatial autocorrelation. There are three kinds of effects
that can lead to spatial clustering being important. One is the tendency for people
with similar attributes to choose to live near each other. Another is that people in

the same area experience the same effects of characteristics of the area. Lastly, the
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tendency for people living nearby to interact and develop common characteristics

(Steel et al., 1994).

1.2 Spatial Autocorrelation

Spatial autocorrelation is a measure of the correlation between values of a variable
with regard to spatial location. It measures the level of spatial interdependence
of the characteristic and strength of the dependence. Spatial autocorrelation can
be categorized as either positive or negative. A positive spatial autocorrelation
implies that similar values appear close together and a negative autocorrelation
has dissimilar values appearing close together. Spatial autocorrelation basically
measures correlation of a single variable for all pairs of points at a particular distance
or some other category. Standard global and some new local spatial statistics have
been developed to detect spatial autocorrelation and spatial association. These
measures include: Moran’s I, Geary C, G Statistic, LISA (Anselin, 1995), GLISA
(Bao and Henry, 1996).

The analysis of spatial data is usually complicated by the complex relationships
between variables and the existence of spatial autocorrelation. The smoothing effect
that results from averaging is a contribution to the scale problem in the MAUP.
As heterogeneity among units is reduced through aggregation the similarity among
units is also reduced. Another factor is spatial autocorrelation. The decrease in the
variance is moderated by the positive autocorrelation of the original observations
and is worsened by negative autocorrelation (Gotway and Young, 2002). This means
that the more the variable is positively autocorrelated, the more the chance that
similar values are grouped together when aggregated so that less variance is lost
at the aggregate level. As the level of autocorrelation decreases and approaches a
negative autocorrelation, the chances increase that non-similar values are grouped
together resulting in a greater loss of variance in the aggregate level.

In this thesis Moran’s I will be used to describe the spatial autocorrelation of a

given variable. Moran’s I was the first measure of spatial autocorrelation and was
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introduced by Moran (1950) to study stochastic phenomena that are distributed in
space in two or more dimension. It has been used in almost all studies employ-
ing spatial autocorrelation. The value of Moran’s I range from 1 indicating strong
positive correlation, to 0 indicating a random pattern, to -1 which implies strong
negative spatial autocorrelation. This statistic can be used to measure spatial auto-
correlation of ordinal, interval or ratio data. The Moran’s I provides a one number

overall measure of spatial autocorrelation.

1.3 Multilevel Modeling

Over the past 20 years multilevel modeling has been used in many applications.
Researchers in social, geographical, education and medical sciences utilize multilevel
modeling when the data have a heirarchical structure. Examples are school/children,
grouped into schools which may then be grouped into districts. In spatial analysis,
data may be collected for areal such as EDs and Wards. In this case the lowest level
maybe the household unit and the possible next level will be EDs and then Wards.

The fundamental principle of multilevel modeling is the existence of different
levels of variation. The methodology is an extension of multivariate regression in
which lower level (say, level-1) and higher level (say, level-2) effects are combined
in a model so that both lower level and higher level variation can be investigated.
Multilevel modeling can be used to isolate variation resulting from the variability
in the lower level from variation resulting from differences between zones. If one is
interested in examining lower level data, variation of a particular variable is not only
a function of attributes at that level but also that of higher level factors. Goldstein
(1998) noted that the application of multilevel modeling has begun to produce new
insights in several areas because relevant software has become more widely avail-
able. He described multilevel approaches to research in education and other areas
of applications. Goldstein (1998) introduced some of the more recent extensions
of multilevel modeling and illustrated their potential for analysing social processes.

Multilevel modeling is another approach that allows for across unit correlations.
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In a series of papers Steel and Tranmer (1998) have developed an approach that
tackles the MAUP and ecological fallacy using a multilevel modeling framework.
They applied the approach to investigate scale effects. The basic model they used
involves assuming that individuals within an areal unit are all equally correlated with
each other and that there is no correlation between individuals in different areal
units. Basically, the approach considers the average within areal unit correlation
between individuals and ignores the association across areal units. A more general
approach can be developed which allows correlation between different individuals to
depend on their spatial location.

Multilevel modeling was originally developed in situations when the levels cor-
respond to non-spatial groups such as schools and hospitals. It has also become a
popular approach for analysing geographic data (Jones and Duncan, 1996). For ge-
ographical data the levels in a multilevel model can correspond to individual, neigh-
bourhoods, and other higher level of geographic units such as administrative areas,
regions or provinces. The effects at a particular level may reflect many influences
that operate at that level such as local policies, physical features, or interactions
between people. The impact of such factors may not be so clear cut. Therefore a

basic issue is how multilevel modelling itself is affected by the MAUP.

1.4 The Problem

This thesis is going to address some issues on how a simple multilevel model is
affected by the MAUP. In Chapter 2 a review of research on the MAUP, including
empirical investigations, theoretical studies, and some methods previously employed,
will be conducted.

In Chapter 3 some theoretical background will be discussed to investigate the
causes of the MAUP. Definitions of some statistics that are relevant to the study
will be presented in this chapter as well as relationships between pertinent statistics.

Initial investigation of the possibility of multilevel modeling as a solution to one

aspect of MAUP, the scale effect, will be presented in Chapter 4. Several experiments
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injecting some specified conditions such as spatial autocorrelations in simulated data
sets in a square grid will be conducted to look into the scale effects on pertinent
statistics.

In Chapter 5 real data from the 1991 UK Census will be used to investigate
the scale effect of pertinent statistics. Several scenarios will be investigated when
individual level data are available and when no individual level data are available.

In Chapter 6 an actual region divided into Enumeration Districts (EDs) and
Wards will be used to generate data sets with different initial conditions. The
behaviors of various statistics, including statistics derived from the simple multilevel
model will be examined in this chapter. The actual region used in Chapter 6 will
be used to generate some arbitrary boundaries to examine the other aspect of the
MAUP, the zonation effect.

Chapter 7 provides a summary and conclusions.

To sum it up, the thesis will look into the MAUP effects of some statistics derived
from the simple multilevel model using real data and simulated data sets. This thesis
will give insight into how simple multilevel modeling and other pertinent statistics
are affected by the MAUP under various conditions.

In particular, the experiments in these thesis investigate a number of questions

concerning scale effects.



Chapter 2

Review of Research into the

MAUP

The research described in this thesis builds on some previous results in the study
of the MAUP. This chapter briefly reviews some previous research relevant to this

thesis.

2.1 Introduction

After the initial discovery of the MAUP, several lines of research have been followed.
A large amount of the research on the MAUP focused on revealing the problem and
was devoted to assessing the magnitude and impact on standard statistics such as
correlation and regression coefficients. Various researchers have conducted studies
to examine the effect of varying scale and aggregation on correlation and regression
coefficients. However, the approaches were mainly empirical and there was little

effort to provide a theoretical explanation or solution.

8
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2.2 Research on the MAUP

Aspects of the MAUP were first raised by Gehlke and Biehl (1934) when they con-
ducted an empirical study that was motivated by an issue pointed out by Dr. Henry
Sheldon in 1931 that stated: 7 a tendency for the correlation coefficient to increase
in size as the units of census tract areas increase in size from one tract to several,
and decrease in number of tracts from 188 to 23”7 (page 169, Gehlke and Biehl,
1934). There are three parts of the study and one concerned the grouping effects in
census tract data. The 252 census tracts of Cleveland were successively grouped into
areas in such a way, that as much as possible, they had approximately the same size
and were made up of contiguous territory. They grouped the 252 census tracts into
200, 175, 125, 100, 50, and 25 areas. They found that the correlation coefficients
between median monthly rental payment and juvenile delinquency increased when
areal units became larger. One of their conclusions was that the magnitude of the
correlation coefficient seems to be affected by the changes of the size of the unit
used in such a way that a smaller value was associated with the use of the smaller

areal units.

Robinson (1950) provides empirical evidence that an ecological correlation is
not equal to its corresponding individual correlation in his studies of illiteracy and
colour and illiteracy and foreign birth. Yule and Kendal (1950) noted the values of
correlation coefficients depended on the size of the unit and the tendency for the
correlations to increase with the size of groups. Blalock (1964) assessed the impact
on the correlation and slope estimates of a bivariate linear model under four dif-
ferent aggregation criteria; random, by the dependent variable, by the independent
variable, and by proximity. There are originally 150 counties in Blalock’s study. He
then formed artificial groupings of 75, 30, 15, and 10 groups. The results showed
that random grouping had no impact on the correlation coefficients and regression
coefficient. The counties are then ranked according to scores of the independent
variable and then grouped so that the first group had the first n lowest scores, the

next group had the next n lowest scores, and so on, where n is the number of coun-
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ties in a group. The correlation and regression coefficients are then computed for
the different groupings. The correlation coefficient was observed to increase with
scale but no effect on the slope coefficient was observed. For grouping by the de-
pendent variable, both the correlation coefficients and the slope coefficient increased
with scale. The increase in the magnitude of the correlation coefficient was of the
same magnitude as for grouping by the dependent variable. Grouping by proxim-
ity resulted in increases in the correlation coefficient and the slope coefficient and
the result was closer to the results of grouping by the independent variable than
grouping by the dependent variable. He commented that grouping by proximity
may in some degree involve units being put together to maximize variation in either

variables and will affect the correlation and regression coefficients (Blalock, 1964).

Clark and Avery (1976) conducted investigations into bivariate relationships by
examining the scale effect in a simple regression model. Part of their study was
to compare correlation and regression coefficients at individual level and the census
tract groupings of the data. The independent variable was a measure of the level of
education of the head of the household and the dependent variable was a measure of
family income. Individual level household data (952 households) were obtained from
the Los Angeles Metropolitan Area Survey (LAMAS) conducted in 1972. They were
able to use 1556 Census tract units in Los Angeles County for 1970. In addition, they
used two government groupings as aggregate units: 134 Welfare Planning Council
Study areas and 35 Regional Planning Commission Statistical Areas. They found
that the correlation coefficient and regression coefficient of the spatially aggregated
data tends to increase in comparison with the individual household level and that
the coefficients tended to vary at different levels of aggregation. To investigate ag-
gregation effects they used the data derived from LAMAS. The groups were formed
using the criterion of spatial proximity and made as spatially compact as possible
and include the following; 136 groups of 7 individuals, 68 groups of 14 individuals,
34 groups of 28 individuals, and 17 groups of 56 individuals. The correlation and the
regression coefficient between the two variables considered tended to increase with

the level of aggregation, but irregularity happened in the fifth level when both coeffi-
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cients decreased below their corresponding values at the fourth level. In conclusion,
they claimed that “from the empirical evidence of their study, spatial aggregation of
data has significant consequences in the correlation and regression analysis of are-
ally distributed phenomena” (Clark and Avery, 1976, p 436). They also suggested
“that the deviations of the observed from the expected behavior of the coefficients are
related directly to the manner in which the covariation between the independent and
dependent varitables changes with increased aggregation, and indirectly to the way
in which spatial autocorrelation is exhibited among the micro- and macrolevel data”

(Clark and Avery, 1976, p 436).

Taylor (1977) reviewed the work of Blalock (1964) and suggested that the effect
of rising correlation with rising scale was related to spatial autocorrelation. Open-
shaw and Taylor (1979) reported the results from three closely related experiments
on the variation in the correlation coefficients under different spatial and statistical
conditions. The purpose of the experiments was to increase the understanding of
the MAUP from both geographical and statistical perspectives. The first exper-
iment was carried out with the use of a set of data describing Iowa, USA. They
used the 99 counties of lowa as the basic areal units and for each unit they used
two measures: the percentage vote for Republican candidates in the congressional
election of 1968 as the dependent variable and the percentage of population over
sixty-years old recorded in the 1970 US census as the independent variable. The 99
counties were combined into five different areal arrangements with six areal units.
Correlation coefficients for the five areal arrangements were computed and only one
of the five coefficients is below the correlation coefficient computed from the basic
areal units. To identify the limits of the scale and aggregation problem they apply
an automatic zoning algorithm that identifies zonings or groupings of data that ap-
proximately optimize any general function defined in terms of the aggregated data.
To produce zoning and grouping distributions of correlation coefficients they used
a random zoning and grouping system generator. One of the main observations of
the first experiment was ”"There seems to be very distinct differences between zon-

ing and grouping systems in many situations and these seem to be caused by the
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interaction of the contiguity in the zoning with the spatial autocorrelation in the
data.” (Openshaw and Taylor, 1979, page 137). The second experiment was to in-
vestigate the effects of spatial autocorrelation on the correlation coefficient and the
sum-of-squares terms. They used a data set generator based on the quadratic loss
function to construct artificial data. The data set generator was used to produce
new variables with the known properties of the 99 Iowa counties. Two sets of data
were generated in their simulation with the properties of the lowa data and were
designed in such a way that they differed only in terms of autocorrelation. One data
set having maximum positive spatial autocorrelation and the other normally dis-
tributed. The conclusion drawn from the second experiment was “that zoning and
spatial autocorrelation do interact in quite predictable ways and that this interaction
explains much of the variety of results previously obtained from the original autocor-
related lowa data.”(Openshaw and Taylor, 1979, page 140). The third experiment’s
objective was to obtain a more thorough understanding of the relationship between
sum-of-squares and correlations that can be obtained from random arrangements.
The third experiment resulted in their claim "the expected relationship between the
sum-of-squares term and the correlation coefficient was found to be more illusive
than initially expected.” (Openshaw and Taylor, 1979, page 142). They felt that the

MAUP is much more complex than had been previously believed.

Arbia (1989) considered the relationship between the MAUP and the spatial
configuration of the data for both univariate and bivariate statistical analysis. He
looked at a framework that not only takes into account the size of the area but also

the interconnectedness and dependence of areal units.

The effects of the MAUP on multivariate statistical analysis were investigated
by Fotheringham and Wong (1991), who examined the impact of scale and zoning
effects on two multivariate models, a multiple linear regression model and a multiple
logit regression model. Data were from 871 block groups in the Buffalo Metropolitan
Area for the 1980 US census. For the scale investigation, the 871 block groups were
aggregated randomly and contiguously to scales of 800, 400, 200, 100, 50 and 25

areal units and 20 different aggregations were used at each scale. Several statistics
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were examined, including the regression parameters, the standard errors of these
parameters, confidence intervals, Moran’s Coefficients, t values, and 2. For both
models when scale was varied, the regression parameters increased or decreased with
scale. The increase or decrease depending on the relationship (negative or positive)
between dependent and independent variables and the model. The standard errors
of parameter estimates increased as the number of zones is decreased. There was no
obvious relationship between the level of spatial autocorrelation and the severity of
the MAUP. To investigate the zoning problem, the 871 block groups were randomly
aggregated 150 different ways using contiguity constraints, at the same scale of 218
zones. Regression coefficients values varied according to the zoning system so that
values ranged from positive to negative values. They claimed that it is important
for the multivariate analysis that further analysis of the MAUP be presented to
uncover insights into the sensitivity of the analytical results to both scale and zoning

variations (Fotheringham and Wong 1991).

Amrhein (1995) explored the nature and extent of the scale effect and zonation
effect and to challenge the notion in the literature that aggregation effects are per-
vasive and unpredictable. The paper focused on the following question: ”Are the
effects currently described as aggregation effect at least partly a result of method-
ological considerations relating to the appropriateness of the statistics chosen and
their application?” (page 108, Amrhein, 1995). He used simulated data from pre-
determined distributions. Values for locations on a continuous region containing
10,000 locations, which represent addresses for individuals, were generated. The
addresses were generated using a uniform distribution for the variables x and y and
then a normal N(0,1) distribution. Each location was then given values from ran-
domly generated values from a uniform distribution and then a normal distribution.
This resulted in four sets of data based on the selected distribution for addresses
and values of the variables. The 10,000 observations were taken as the population.
To investigate the scale effect, the individuals were aggregated into 100, 49, and 9
square areal units. He also investigated the zonation effect, the effect when different

definition of the boundaries are used while holding the scale constant. From the
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result of the experiments Amrhein (1998) came up with some "aggregation rules”:

1. The mean does not display any pronounced aggregation effects (scale or
zonation) at any level of aggregation used in the study.

2. The variance does not display any pronounced scale effect beyond those ex-
pected from the decrease in the number of observations. However, it was noted that
scale-specific variance values cannot be imputed to other scales without adjusting
for the change in the number of reporting units.

3. Populations with high variances tend to exhibit more pronounced zonation
effects than populations with smaller variance.

4. The regression coefficient does not display scale effects that increase system-
atically with decreasing number of zones.

5. The standard deviations of the regression coefficient display pronounced zona-
tion effects. The standard deviations of the regression coefficient increases to a point
at which it fails to provide reliable information (based on the expectation).

6. The Pearson correlation coefficient exhibits systematically increasing aggrega-
tion effects as the number of groups decreases. The range and standard deviations of
coefficients calculated in the experiment ultimately span the range of the statistics.

Steel and Holt (1996) presented both theoretical and empirical results on random
aggregation. They used the term aggregation effect as the effects observed when
individuals are allocated into spatial groups and the group means are used. They
derived aggregation effects on some common statistics when the individuals are
randomly grouped and the variate values are independent of the group membership.
To investigate aggregation effects, a population of N individuals with the associated
variables X and Y was divided into M random groups. To look deeper into their
theoretical results, they used the same simulation design used by Amrhein (1995).
They generated 10000 locations by using uniform and normal distributions and
values for the variables. The region was then divided into 100, 49, and 9 zones.
From the results, both theoretical and empirical, they formulated rules for random
aggregation and some of them are presented below:

1. The expected value of weighted group-level statistics are not affected by
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aggregation and that any observed change is due to random variation.

2. The variance of the weighted group-level statistics are affected mainly by the
number of groups in the analysis. The variation will be high when the number of

groups is small.

3. The weighted correlation and regression coefficients calculated using m areas

have the same properties as coefficients calculated from m individuals.

Green and Flowerdew (1996) investigated the effects of aggregation on correla-
tion and regression analysis of spatially correlated data generated using three types
of aggregation; random, systematic, and spatial. The effects of aggregation on the
correlation coefficient and regression coefficient were recorded. In comparison to
results obtained from raw data, random aggregation did not change the values of
the correlation and regression coefficients but the standard errors increased. Sys-
tematic aggregation caused a large increase in the correlation coefficient but did not
affect the regression coefficient or the standard error. Spatial aggregation caused a
large increase in the correlation coefficient and smaller increases in the regression
coefficient and standard error. They concluded from the results that if X was spatial
autocorrelated, the correlation coefficient displayed the scale effect but the regres-
sion coefficient was not affected. They also conducted another experiment where
the data were simulated with spatial autocorrelation in Y and not in X. The corre-
lation coefficient decreased for the aggregated data while the regression coefficient
was unchanged. The experiment was continued using an extension to the standard
regression equation to incorporate regional and local effects. The result from this
experiment showed that in the presence of autocorrelation, the correlation coeffi-
cients demonstrated the MAUP effects. The regression coefficients do not exhibit
the MAUP unless there is spatial cross-correlation between the independent and the
dependent variables. From their simulation results and theoretical considerations,
the sum of the two coefficients b(local) and b(regional) displayed no inconsistency
between analyses at different levels of aggregation (Green and Flowerdew, 1996).
They then applied the ideas in real data. They used data from 5 counties from the

1991 Census for Great Britain. The variables considered in their empirical study
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were male unemployment rate and ethnicity.

Amrhein (1995) used simulated data to show the effects of the MAUP on var-
ious statistics including weighted statistics, means, standard deviations, variances,
regression and Pearson correlation coefficients. Amrhein (1995) discussed the con-
cept of an ideal number of aggregates that would reduce computational burden but
would not incur too high aggregation effects. Amrhein and Reynolds (1996) used
data from the British Census for the county of Lancashire to demonstrate the abil-
ity of a modified G (Getis) statistic to predict the effects of aggregation on several
variables. They extended this study and confirmed results by using a much larger

data set from Toronto Census Metropolitan Area (Amrhein and Reynolds, 1997).

The study by Flowerdew et al.(2001) concerned the relevance of the MAUP
to multiple regression. They claimed that the effect of the MAUP on regression
coefficients when the response variable is regressed on a set of explanatory variables
is dependent on the spatial distribution of all variable involved. Some results of

their research are:

1. The MAUP effects on regression results may be generated when there is cross-
correlation between the values Y in one zone and the values of X in the zones in the

immediate vicinity.

2. From the results of their study they suggested, not unreasonably, that compact

zones capture the regional effect better than less compact zones.

3. They also claimed that the results suggested that defining regions individu-
ally for each enumeration districts (ED) by taking the average overall its neighbors
excluding the ED itself might be better at capturing the regional effect than defining

a complete coverage of wards or pseudo-wards for the whole study area.

The paper by Fotheringham and Wong (1991) was the starting point of the study
by Flowerdew et al.(2001)
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2.3 Some Methods Employed to Solve the MAUP

Most of the studies of the MAUP concentrated on identifying parts of the problem
rather than providing an overall solution. Fotheringham (1989) suggested methods
to get around the MAUP which include: ”(i) the derivation of the "optimal” zon-
ing systems; (ii) the identification of basic entities; (iii) sensitivity analysis; (iv)
abandonment of traditional statistical analysis; (v) shifting the emphasis of spatial
analysis towards relationships that focus on rates of change” (page 222, Fothering-
ham, 1989). Wong (1996) summarized the suggested methods into three categories:
(i) data manipulation approach; (ii) technique-oriented approach and (iii) error-
modeling approach.

The following subsections contain reviews of some papers that try to find a

solution to the MAUP as categorized by Wong (1996).

2.3.1 Data Manipulation Approach

The data manipulation approach is based on the belief that if the selected zoning
system can be justified in some way instead for administrative convenience, the
MAUP would vanish (Wong, 1996).

Molering and Tobler (1972) used analysis of variance techniques to partition
the total variation between the lowest level of geographic areas into components
attributable to various aggregation levels in situations where they had nested hier-
archical geographic data. The paper presented a method for examining geographical
scale effects in data available from sources such as the census. They claimed that
the most disaggregated level data are a linear combination of the mean at the dis-
aggregate level and the effects from the different levels of aggregation and that the
variance can be partitioned into parts attributable to the different aggregation levels.
The method can assign variances to different levels of aggregation starting from the
most disaggregate level. The variances can then indicate at which scale the action
is taking place and thus isolate the most important level or levels of aggregation.

This method is not a complete solution to the MAUP because the technique is not
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capable of accommodating multivariate situations and it fails to deal with zoning
or aggregation effects as it requires an a priori definition of the hierarchy to identify
the aggregation level with the most action (Wong, 1996).

Another approach to deal with the MAUP is the concept of optimal zoning first
proposed by Openshaw (1977). In this empirical approach, an ideal or optimal
zonal configuration could be achieved. Basic areal units should be aggregated to
maximize or minimize whatever criteria are used to evaluate the performance of the

model (Openshaw, 1977a, 1977b).

2.3.2 Technique-Oriented Approaches

The technique-oriented approach is based on the belief that the MAUP effects might
have been caused by using inappropriate models or techniques and thus new tech-
niques should be developed (Wong, 1996).

One of the first proposed solutions to the MAUP was suggested by Robinson in
1956. He proposed that weighting areal units by the areas of the units when comput-
ing the regression coefficient is necessary. He claimed that significant discrepancies
in size of areal units should be taken into account and this can be accomplished by
using the actual areas of the statistical units. The simple weighing scheme proposed
by Robinson (1956) fails to correct for the errors propagated by aggregation (Wong,
1996).

Goodman (1959) was the first to seriously consider a model under which eco-
logical inference could validly be used to make inferences considering relationships
at an individual level. He considered regression analysis with separate and different
regression slopes and intercepts for each group ( Holt and Steel, 1996a).

Amrhein and Flowerdew (1989) used Poisson regression model to describe mi-
gration flows in Canada. ”The model failed to capture the aggregation effect typical
of the MAUP, perhaps because the data were not subject to the MAUP” (Amrhein
and Flowerdew, 1989, p 237).

Tobler (1989) argued that there is no MAUP when the correct analysis procedure
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is used and there should be a technique which does not depend on the areal units
resulting in frame independent spatial analysis. He also cast doubt on the correlation

coefficient as an appropriate measure of association between spatial units.

Several other methods had been used to try to deal with scale and zoning prob-
lems. The list of models enumerated by Openshaw (1977a) includes; spatial variate
differencing (Curry, 1971), spectral analysis (Rayner, 1971), space-time versions of

Box-Jenkins model (Cliff and Ord, 1975).

2.3.3 Error Modeling Approaches

Error modeling approaches are based on the idea that "when analysis moves from
one spatial scale to another, relationships among variables and among spatial entities
also change”(Wong, 1996, page 100,). Thus it is necessary to document explicitly

these changes and include them in the modeling and analyses.

Steel et al., (1994) attempted to model the error created by the aggregation pro-
cess so that individual information can be estimated from regional data. This model
depends on decomposing the conditional expectation of the variance-covariance ma-
trix at the regional level into a variance-covariance matrix at the individual level, a
bias component accounting for aggregation effect on a set of variables called grouping
variables, and the residuals from within-group correlation. The grouping variables
are a set of variables that characterize the way in which the individuals are clustered
within a population of interest. According to Steel et al.(1996a), this model is based
on the concept of positive clustering, that is, individuals within areas or groups
are usually more alike than between areas. Wong (1996) is unconvinced about this
model because it seems “to apply only classical statistical concepts while failing to
deal with the spatial aspect of the MAUP, except in the process of deriving regional
level data” (page 102, Wong, 1996).
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2.3.4 Some comments and recommendations on how to find

a solution of the MAUP

"The MAUP was regarded as the most stubborn problem in geography and spatial
science” (page 104, Wong, 1996). Wong (1996) stated that the role of spatial au-
tocorrelation in producing the MAUP is evident and that it is expected that the
solution of the MAUP is probably “to depend on how to model the multivariate
spatial autocorrelation effect in the multi-scale situations” (page 105, Wong, 1996).

The early research on the MAUP focused on empirical demonstrations of its
existence. Later research has identified the potential role of population structure
tied to the areal units and spatial autocorrelation. One popular approach to handling
the hierarchical nature of geographical data is multilevel modeling.

Multilevel modeling is used in many projects and most of them look into the
variation at different levels. In a series of papers Steel and Tranmer developed an
approach to tackle the MAUP using a multilevel framework. This framework reflects
a very simple spatial autocorrelation structure, with equal autocorrelation structure,
within groups and zero autocorrelation across groups. However, the impacts of more
complex spatial autocorrelation were not included in their analysis. This thesis will
try to fill that gap. This thesis will look into the impact of spatial autocorrelation

on the scale effect of statistics derived from a simple multilevel model.



Chapter 3

The Causes of the MAUP

This chapter describe some definitions and theoretical relationships between relevant

statistics that are keys to explaining the causes of the MAUP.

3.1 Basic Theory

3.1.1 Spatial Aggregation

Suppose we have a region R with N individuals and associated with the individuals
are two variable Y and X. The region is divided into M groups or areas by some
process. An individual can only belong to one group. The number of individuals in
the gth group is IN,, where g = 1,2,..., M.

Given the situation above, we can define some statistics. The means of Y and X

are

1 N
Y==)Y 1
NZ (3.1)
and

21
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XN
X== ; X;. (3.2)
The corresponding population variances are
T
1 _
Sy N1 d (Vi-Y) (3.3)

and

s, — i X -

The population covariance between Y and X is

St = > (Vi - V)(X; - X). (3.5)

When the data are aggregated across the groups, the data available are (Y, X,),
for g =1,2,..., M, where,

- 1
Y, = N ZYi (3.6)
9 i1€g
and
- 1
Xy=+ > X (3.7)
9 1€g

are the group means. From these aggregated data, we can define some unweighted

statistics. The means are

o1 M

Y:M; f (3.8)
and

.1 M

X:M;Xg' (3.9)

The corresponding variances are
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M - > (Y,-Y)? (3.10)

Syy =
g=1
and
. M
& v v\2
Sxx =17 2 (X,—Y)2 (3.11)
g:
The covariance between the groups is
_ 1 XM . .
Sex = 577 22 ()% = %) (3.12)

The aggregated data can also be analyzed using weighted statistics where the
weights are the corresponding group populations sizes IV,. For the weighted statis-

tics, we have,

’~< [

Z (3.13)

ZIH

and

f: (3.14)

are the weighted means at group level. These are exactly the same as the individual

2 |

level means defined by (3.1) and (3.2) respectively.

The corresponding weighted variances are,

M
1 _ _
Syy = D N, (Y,-Y)? (3.15)
M—-14
and
1 M
9 _ _
g=1

The weighted covariance for the group means is

2
% -

T X, — X). (3.17)
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Given the statistics above further analytical statistics can be produced. The

correlation of the two variable at the individual level can be computed using

. S(l)
o = e (3.18)
1 1
Sy S

The regression coefficients can also be computed. The slope of the regression of

Y on X is

(1)

Bl = v (3.19)

YX — 41 :
SXX

and the intercept of the regression of Y on X is

alh =V — b X (3.20)

Further statistics can also be computed from aggregated data. The unweighted

correlation is

, 3@
= X (3.21)
o(2) a2
SIS

The slope of the regression of Y on X is

~ S
2
by = (3.22)
SXX
and the intercept is
i =Y —b2X. (3.23)

Corresponding population weighted statistics can be calculated from the group

means, giving r@(, bg;(, a%(.
3.1.2 Intra-Area Correlation and Cross Correlation

Tobler’s First Law of Geography (Tobler, 1970) states: ”Fwverything is related to

everything else, but near things are more related than distance things”. In a similar
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way, Tranmer and Steel (2001) claimed that individuals in the same area tend to be
a little more alike than individuals in different areas and used the term “with-area
homogeneity’ to describe this phenomenon. A measure of within-area homogeneity
of a single variable is the intra-area correlation as described by Holt et. al.(1996).
"The higher the value of the intra-area correlation, the more similar the values of
the variable are for different individuals within the same areas”. Consider the model

for a single variable of interest Y:

Yi=py +ay, +ey, for icg (3.24)

where

Y; represents the value of Y for the ith individual in area g

iy is the expectation of Y across the region of interest

ary, is a random variable representing the area effect for the gth area
ey, is a random variable representing the pure individual effect.

Similarly for another variable X, we have:

Xi=px tax, +ex, for icg (3.25)

where

X; represents the value of X for the ith individual in area g

px is the expectation of X across the region of interest

ax, 1s a random variable representing the area effect for the gth area

€x, is a random variable representing the pure individual effect.
Assumptions:

(7) The random variables have population means equal to zero and variance-

covariance matrix

l l
A Ay

AD —
! 1
Ay Ay

(3.26)

where 1=1,2 indicates the level. Individuals are level 1 and areas that are groups

are the level 2 units.
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(77) The random effects are not correlated between levels.

Thus, for variables Y and X the overall variance-covariance matrix is:

- _ Yxx Yyx | ARy AP N AGy AR (3.27)
Yyx Xyy AQ{ Aggf A%{ Ag,l;,

From the model above, important statistics can be formulated.
By considering the expectation of 5’1(/13), and S)(,Qg/ under model (3.24) Tranmer
and Steel (1998) show that the group level variance component, which we shall call

level 2 variance component, can be approximately unbiasedly estimated by

(2) (1
S& — Sy

i (3.28)
where u
. o N-N° o1 - N
N*=N N =% N? N=—.
* M-1" N gzzl 9’ M
Proof:
Tranmer and Steel (1998 ) show
N°—1
Elsy] = Al + (1 - ) AY, (3.29)
ElsA] = A+ N (3.30)

where N°=L1YN2=N(1-C%) , C3=% and &=+ (N,-N)
g g

N2
Hence
N°—1  N(1-C})-1
N-1 MN
1 1
~ M(1+C’J2\[)—m if N is large
1 1
= —(1+Cy - =
(¢ x)
1 _
Sy unless Cyis large and N is small
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Rearranging (3.29) and (3.30) gives an unbiased estimate of [\%,

2 1 2 1
Syy = Syy  _ Syy = Syy

. 1 _
Agg/ == 5 N provided — << N*.
* No—1 *
N* =1+ 55 N*—1 M
From (3.29) an estimate of Ag/lg, is
¢ 1 N° =1\ 7 ) A2 . N°—1 [ i
A% = Sy(/y)f— (1 TN 1 A% ~ S;(/%—A% provided N1 ~ s negligible.

Thus an approximately unbiased estimate of the level 1 variance component is

e 1 (2
ALY = s — AR (331)
Similarly, for X,
) 8(2) _S(l) ) )
AQe = 2= and ARy = S\ - AR (3.32)

The estimate of the level 2 and level 1 covariance are, respectively,

2 1
A® _ Syx — Sy
yx N+—1 "~

Also to O (ﬁ), S(Yl}), is unbiased for Ag,lz/ + Agz/ = Yyy.

~

and AV =50 — AP (3.33)

The intra-area correlation for a variable Y is the correlation between the value
of Y for two different units within the same group. For the model defined by (3.24),

this is equal to

A(2)
Syy = =¥ (3.34)
Yyy
and can be estimated by
A
dovy = —p5- (3.35)
Syy
Similarly, for variable X,
A ) A®
Oxx = Eﬂ and can be estimated by dxx = % (3.36)
XX Sxx

These estimates are method of moments estimates. Alternatively, Maximum

Likelihood (ML) estimates can also be used if the random variable have a Normal
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distribution. From initial empirical results there is not much difference between the
results obtained from the multilevel modeling software MLWiIN (Goldstein, 1998)
that utilized ML and those obtained from the moments approach used by Tranmer
and Steel (1998) as described above for areal unit data. In this thesis we focus on
the moments approach for convenience.

A measure of the within-area homogeneity for a pair of variables is the intra-
area cross-correlation. Similarity of the values of two different variables within areas
can be measured using the intra-area cross-correlation. For the model described by

(3.24) and (3.25), the intra-area cross correlation, dy x is:

AYX
dvy = ——2 X 3.37
X = e (3.37)
and can be estimated by
A®
X (3.38)

o = [c() o)
SxxOvy
There was not much difference when the moments approach and ML aproach was

used for the type of data considered in this thesis. The computation of the intra-

area-cross correlation was done using the method by Tranmer and Steel(1998).

3.1.3 Pure Correlation

The term pure correlation coefficient is used to describe the correlation of two vari-
ables where the effect of the other level is removed and thus reflect effects at a
pertinent level (Tranmer and Steel, 2001). Based on the models given by (3.24) to
(3.27), for levels [=1,2.

l
o AV

Pyx =
! !
\AYAY,

Estimates of the pure correlation coefficient are obtained by using /A\gf)X , Agl()x and

/AX@Y Thus,

(3.39)
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l A0
P, = —YX . 1=1,2. (3.40)
NN
A AYY

3.1.4 Pure Regression

Similarly, a pure regression coefficient refers to the regression coefficient when the
effect of the other level is removed. For level [=1,2 the pure regression coefficient is

defined as:

AWD
!
By = (3.41)
Axx

The estimates are computed using A@X and [\gl()x- Thus,

R AW

!
Vx = o o =Lz (3.42)
XX

3.1.5 Moran’s I

Spatial autocorrelation basically measures correlation of a single variable for all pairs
of points at a particular distance or some other category. Spatial autocorrelation
can be categorized as either positive or negative. A positive spatial autocorrela-
tion implies that similar values appear close together and a negative autocorrelation
has dissimilar values appearing close together. Standard global and some new local
spatial statistics have been developed to detect spatial autocorrelation and spa-
tial association. The global spatial autocorrelation measure most often used is the
Moran’s I coefficient.

The Moran’s I is defined:

> 2 wy(Yi =Y)(Y; = Y)
Y = L7 - (3.43)
(%) Syy 2 3w

where
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Y, denotes the observed value at location i

Y is the average of Y; over N locations

w;; is the spatial weight measure.

The definition of w;;, the spatial weight is an important issue. Different def-
initions of the spatial weight result in different values of the Moran’s I aimed at
detecting different types of spatial relationships and resulting in different conclu-
sions. Weights can be based on contiguity; if say, location i is adjacent to location
J, it is given a weight of 1, otherwise it is given a weight of 0. Weights can also be
based on distance using distance between points or between centroids of polygons.
Another way of defining the spatial weight is based on lagged contiguity. Thus,
different choices of w;; are possible, depending on what type of feature of the spatial
relationships we are attempting to assess. There are software that can be used to
calculate the weight matrix W with elements w;;. In this thesis the Moran’s I was

computed using SPLUS and S+Spatial and R.

3.1.6 Cross-Moran’s 1

Suppose we let,

N N _ _ _ _
1) =7 e (3.45)
(%) Szzzgwij
Rty

Note that

1 1 1 1
Sz = Sy + Sx +25v%
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thus,
N N B ) )
3 92w = V) (X, = I = V) + (X, = X)
](1) _ v
z7Z Ay —
( N ) ZZZZU}@]
i it
N N B ) ) . ) )
Z;wﬁ [(V; = YV)(Y; = V) + (X, — X)(X; — X) +2(Y; = V)(X; — X)]
i 1]
B 1 N N
(*F) Sz 303wy
i i
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(*+) 77 2. > Wi (2= by > wy
s i i

N N _ a

Z§wij(Yi—Y)(Xj—X)
+9 i 1F£]

N-1) g) g N
( N ) ZZZsz]
i it
So we have,

1 1 1 1 1 1 1 1 1
SULI) = S + IS+ 2085

Solving for Iy x, which is Cross-Moran’s I,

1 1 1 1 1 1 1 1
o (s s 2 1) - SR — s

YX
1 1
2/ S\-SSx

Hence, we can calculate Iy x using any method that calculates Moran’s I for a

(3.46)

variable by creating Z; and using (3.46).

3.1.7 Relationships Between Pure Coefficients and the Intra-

area Correlation

The overall correlation, py x can be expressed in terms of the intra-area correlation

and the pure correlations,
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EYX

p f— S —

"X Vo Sxx
AVL + AP
V EYYEXX

1) (1 2) 4 (2
o [ARAGY + o2 AR AR,
yx ZyyZXX vX EYYEXX

= PV (1= dyy) (1= dxx) + p\k Voyyoxx

this shows that

pyx = pyx /(1= dyy) (1= dxx) + 7k V/oryoxx. (3.47)

Thus from (3.47) the level 2 pure correlation coefficient p%{ is:

o2 Pyx = P/ = dyy) (T = dxx)
Y Voyyoxx

The level 1 pure correlation coefficients is:

(3.48)

1 _ Pyx — P@NCX/Y(SXX
Pyx = (3.49)
V(1= dyy)(1 —dxx)

Similarly, the regression coefficient By x can be expressed in terms of intra-area

correlation and pure regression coefficients.

EYX
ﬁ —
YX ZXX

1 2
A + A%
EXX
1 1 2 2
ALy | A

Yxx Yxx

5(/1))< (Xxx —0xxXxx) n 5)(/2;(6XXZXX

Yxx Yxx
= 1(/1))( (1—dxx)+ 51(/2))(5)()(



CHAPTER 3: The Causes of the MAUP 33
Thus, we have
Pyx = 5;(/1))( (1 —dxx)+ 5;(/2;)(5)()(- (3.50)
From 3.50 the level 2 pure regression is
@ _ Bvrx— BN (1= dxx)
Byx = 1A (3.51)
Oxx
and the level 1 pure regression is
1) _ Byx — B%0xx
Byy = Yx ==, (3.52)

YX — (1 . 5XX)

The relationships described above will be used later to look into the behavior of

the pure coefficients given the initial correlation or regression coefficients and the

initial intra-area correlation (or the Moran’s I at level 1).

3.1.8 The relationship between intra-area correlation and

the Moran’s 1

Assume that N, = N, so N* = N. Since N is large, N-1 ~ N. Also since M is large,

M-1 ~ M. The definition of Moran’s I is:

N N _ _
> wy(Y; = Y)(Y; - Y)
J SO s
YY — 1) N N
(%) SYYZ%;“’M
[ E=

(3.53)

Here w;; is the spatial weight measure that is equal to 1 if ¢ and j € g and 0

otherwise.

Since we assume that N, = N, we have,

>N wy =Y Ny(N,—1)= MN(N

1 jF

(3.54)
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This shows that we can regard the intraclass correlation as a measure of the
average spatial correlation within groups. A similar relationship hold for the intra-
area cross correlations and the cross-Moran’s 1.

Equation (3.30) is the key to explaining the MAUP under a simple multilevel
model. Comparing (3.30) with (3.29) we see that in aggregating the data and
calculating a weighted variance the contribution of the level 1 variance component is
unchanged, whereas the contribution of the level 2, an area level, variance component
from approximately 1 to N*. Similar results hold for S§?}( and S§,2 ))( leading to the
scale effect. Examining (3.30), we see that even if the spatial correlation produces
quite small intra-area correlation, the presence of N*, which is effectively the average
number of people per areal units, implies that aggregation may have substantial

effects on the variances and covariances and coefficients calculated from them. *



Chapter 4

Multilevel Modeling and the

MAUP

This chapter describes the first of a series of experiments and results on the scale
effects of relevant statistics derived from a simple multilevel model, as well as the
standard statistics. Different degrees of spatial autocorrelations are considered in

the experiments.

4.1 Is Multilevel modeling a possible solution to

the MAUP?

Multilevel models offer an approach to a number of issues, including the MAUP.
It can provide estimates of both the average effects of a variable over a number of
settings, and the extent to which that effect varies over settings (Jones and Duncan,
1996). Multilevel modeling allows for effects at different levels.

Multilevel Modeling has been suggested for use with hierarchical data. An ex-

ample of the consequence if a hierarchy is ignored in analysis is given by Aitkin et al

36
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(1981) who reanalyzed the study of Bennet (1976) on primary school children. Ben-
net (1976) claimed that formal styles of teaching reading produced greater progress
among pupils than any other methods. In this study, the grouping of pupils within
teachers and classes were ignored. Aitkin et al. (1981) took these groupings into ac-
count and the statistically significant difference between teachers’ styles disappeared
and they concluded that the formally taught pupils could not be shown to differ from
others (Gleave et al, 2000). When applied to areal data, multilevel modeling is still
potentially subject to the MAUP, since different estimates of the variance compo-
nents can be obtained if boundaries are changed or a different scale is used. A
possible reason for multilevel models still being subject to the MAUP, is that while
the data available may be hierarchical, the population correlation structure may
be more complex. In particular the spatial pattern of correlations between units
may be more complex than that implied by a standard multilevel model. Multilevel
modeling provides an approach to analysing spatially aggregated data but itself may
be affected by the MAUP. We will examine how the results of multilevel modeling
are affected by the MAUP and whether it can produce results that are less affected

than standard analysis methods.

To evaluate the potential effectiveness of multilevel modeling as a possible solu-
tion or approach to the MAUP several experiments were conducted. As an initial
investigation of this possibility, the scale effects of some statistics that can be derived
from multilevel models were computed. These include the intra-area correlation,

intra-area cross correlation, pure correlation and pure regression coefficients.

The following experiments also include single level analyses of the data sets at

different levels of aggregation.

It is well known that the results of individual level analyses are different from
those conducted using group level data. The usual result for correlation coefficients
is that they increase as the level of aggregation increases. If the individuals are
grouped together in a non-random way, the correlation coefficient at the individual
level is usually less than the correlation at group level. The population mean using

the appropriate population weights is not affected by aggregation. The sample
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variance in general is affected by aggregation (Holt, Steel and Tranmer, 1996).

To examine aggregation effects say between individual level and group level anal-
ysis, Holt, Steel and Tranmer (1996) proposed a sample variance components model
wherein the variance can be partitioned into the area and individual level covariance
matrices. Recall the model in Chapter 3. Consider the model for a single variable

of interest Y:

Y; = Uy + Oéyg + €y; (41)

where

iy is the expectation of Y across the region of interest

ary, is a random variable representing the area effect for the gth area

ey, is a random variable representing the pure individual effect.
Assumptions:

E(ay,)=0, E(ey,)=0 , and var(ozyg):Aggz/ : V&I(G}Q):Agz/ :

cov(ay,,ey;)=0 , cov(ey, ey, )=0, for i # "
Properties:

E(Y)=py

var(Y)=Ayy+A7%

coo(Yi,Y)) =AY} ifieg . jeg

= 0 otherwise.

The following section will will investigate the scale effects of some standard statis-
tics and some statistics derived from the multilevel model described by (4.1) when
there are different degrees of spatial autocorrelation present. The aim is to see if
statistics and analyses associated with a simple multilevel model are less affected
than the standard statistics and if the effects are more predictable as scale changes.
Three experiments are conducted. In experiment 1, each variable has the same level
of autocorrelation, which is set to high, medium and low. In experiment 2 neither
variables is autocorrelated. Experiment 3 considers the case when the level of au-
tocorrelation is different for the two variables. A summary of results is provided in

section 4.6.
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4.2 Experiment 1: Scale effects of some statistics

from simulated data

To initially investigate the MAUP effects on analysis based on the multilevel model
described above, various sets of data are generated.

The first three data sets are generated in such a way that both variables, Y and
X are autocorrelated but with different degree of autocorrelation. The degree of
autocorrelation will be categorized as ‘low’, ‘medium’, and ‘high’. In section 4.3 we
look at the case when both variables have no autocorrelation. In section 4.5 we look
into the effects when two variables have different degrees of autocorrelations then
two more data sets were generated, one variable ‘low’ autocorrelated and one ‘high’
autocorrelated. Table 4.1 shows ranges of the categories used in the experiments.
The measure of autocorrelation used in this study is the Moran’s I described in
equation (3.42). The connectivity matrix used in determining the Moran’s I is the
queen’s case. In a square grid, queen contiguity implies that adjacent cell with
common borders and common vertex are considered neighbors. The queen’s case is
used as we start at the individual level and this case creates local neighborhoods
of individuals at a similar distance apart. It also correspond to a rational way to
form larger scale areal units from individuals on smaller scale areal units with both

simulated and real data. The computation of the Moran’s I was done using GeoDa

(Anselin, 1996) and Rookcase (Sawada, M., 1999).

Moran’s 1
Low 0.1-0.3
Medium | 0.4 - 0.63
High 0.7-0.83

Table 4.1: Range of values for the categories

Data Set 1: Y is ’low’ autocorrelated and X is 'low’ autocorrelated
Data Set 2: Y is ‘'medium’ autocorrelated and X is 'medium’ autocorrelated

Data Set 3: Y is 'high’ autocorrelated and X is ’high’ autocorrelated
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4.2.1 Data Set 1: Both variables have low autocorrelation

The data generation process is similar to that used by Green and Flowerdew (1996)
to generate data with a known pattern of spatial autocorrelation.

Values for two variables Y and X are assigned to each cell of a 100x100 square
grid. Two cells are neighbors if they have one common side or common vertex.
Initially, a set of normally distributed random numbers with mean 0 and variance
16, denoted by ~ N(0,16) are generated and are assigned to the spatial locations.
These values are transformed into autocorrelated data by taking the average of
the neighboring values for each data points, an error is then introduced that is
independent and identically distributed (iid )~ N(0,4). The results are the values
of variable X.

The values of variable Y are then generated using a similar procedure. Data are
generated using { 10 + (original set of random numbers) + error}, the error is iid
~ N(0,4). The results are then transformed into autocorrelated data by taking the
average of the neighboring values for each data point. The results are the values of
the variable Y.

To summarize the data generation,

1. Generate A ~ iid N(0,16).

2. Let A* be the average of the neighbors of A as described above.

3. Let B =10 + A + e, where e~ iid N(0,16).

4. Let B* be the average of the neighbors of B as described above.

5. Variables X and Y has values, X = A* + el and Y = B* + e2,

where el~ iid N(0,4) and e2~ iid N(0,4) and el and e2 are independent.

6. The mean and variance of X and Y are then changed to desired values.
To change the mean of a variable, add (my — m;) for each observation where m,
is current mean and ms is the desired mean. The variance of a variable can be
changed by multiplying each observation by (d2/d1) where s is the desired standard
deviation and ¢; is the current standard deviation.

The means for variables X and Y were set at 0.005 and 10, respectively. The

desired variances were set at 6 and 8 for X and Y respectively.
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We have now a set of data (Y,X) with corresponding locations and a certain level
of spatial autocorrelation.

The data sets are then aggregated spatially by contiguous blocks of mxm cells
being grouped together, where m = 2, 5, 10, 20, 25, 50. Thus, the number of zones
are 2500, 625, 400, 100, 25, 4, respectively. This means that when m=2 the 100x100
grid is divided into 2500 zones each containing 4 of the original cells. When m=5,
the 100x100 grid is divided into 625 zones each containing 25 of the original units,

and so on.
Analysis of one realization:

Initially one realization of the data set generation will be used to examine pertinent
statistics. Table 4.2 shows the Moran’s I and the cross-Moran at individual level
and different levels of aggregation of one realization. The connectivity matrix used
in determining the Moran’s I is the queen’s case. In a square grid, queen contiguity
implies that units with common borders and common vertex are considered neigh-
bors. The computation of the Moran’s I was done using GeoDa (Anselin, 1996) and
Rookcase (Sawada, M., 1999). Because of the way the data are generated, variable Y
has higher autocorrelation than variable X as shown in Table 4.2. The cross-Moran

is computed using Equation (3.44) in Chapter 3 sub-section (3.1.6).

Level Iy L L
Individual | 0.1222 | 0.2051 | 0.1102
22500 0.1608 | 0.2292 | 0.1348
7625 0.0493 | 0.0675 | 0.0459
7400 0.0171 | 0.0455 | 0.0342
2100 0.0054 | 0.0612 | 0.0657
725 -0.0125 | 0.0698 | -0.0432
74 - - -

Table 4.2: Moran’s 1

The unweighted variances and the covariances decrease with scale. The weighted
variances and covariances increased with scale. It can be noted that for the case of

equal group population sizes the unweighted variance can be obtained using

Variance(weighted)

Variance(unweighted) =
nZUTLe
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where n,.,e 1s the number of elements in each zone.

Table 4.3 shows the unweighted correlation and regression coefficients. Note that
the weighted and unweighted coefficient are the same because of the equal cell sizes
used. The increase of the coefficients with scale can be attributed to the aggregation

effects of the variances and the covariance of the two variables.

Correlation | Regression
Coeflicient | Coefficient
Individual Data 0.2944 0.3399
Number of Zones
2500 0.4280 0.5398
625 0.5157 0.6813
400 0.5558 0.7586
100 0.6051 0.9084
25 0.7768 1.1115
4 0.7437 1.4561

Table 4.3: Correlation and regression coefficients at different scales, X and Y both
have low autocorrelation

The aggregation effects of the weighted variance of Y (Sg%, / 53%),) is greater than
the aggregation effect of the weighted variance of X (Sg?X / Sgg() because of the way
the data are generated. Variable Y will have greater autocorrelation than variable X.
The unweighted covariance decreases as the number of zones decreases. Reynolds
(1998) suggested that the unweighted covariance tend to decrease when the data
are aggregated because the change in spatial arrangements of the two variables
is more likely make the association random than it is to make it more related.
The aggregation effect of the weighted covariance (S@X / S§,1 ))() is greater than the
aggregation effects of variables X and Y in all levels of aggregation except the last
one. Because of this, the correlations as the data are aggregated are as shown in
Table 4.3. The correlation increases with scale except for the last correlation.

Correlation and regression analysis was conducted using ordinary least squares
(OLS) at each scale. From this point we call statistics calculated from the data
directly at any scale as direct coefficients (or statistics). Thus, the results in Table
4.3 are direct coefficients. It can be observed that both the correlation and regression

coefficients display scale effects. They tend to increase with scale, that is, the
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estimated coefficient increases as the number of zones decreases and therefore the
number of observations increases in each zone.

To look at some statistics that can be derived from the multilevel model de-
scribed in section (3.1.2), further statistics were computed. One purpose of using
the multilevel model is to use the components of the model for further computations
of some useful statistics. Table 4.4 shows the estimated intra-area correlation and
the variance components using the moments approach (Tranmer and Steel(1998)
method) and using MLWIN, respectively for the variable X. The estimates of level
2 variance components derived from MLWIiN are larger than the corresponding es-
timates using the moments estimation approach, resulting in larger estimates of the
intra-area correlation. However, the descending trend as the number of groups de-
crease are similar. In this study the moments approach is used because it can easily
be used when individual unit level data with group indicators are not available,
provided data for group means and a unit level sample without group indicators are

available (see Tranmer and Steel, 1998).

A. Moments
Level 1 Level 2 f\ﬁ?x /A\g?X Oxx
Individual 72500 | 0.8476 | 5.1524 | 0.1413
7625 | 0.5170 | 5.4830 | 0.0862
7400 | 0.3871 | 5.6128 | 0.0654
7100 | 0.0906 | 5.9094 | 0.0151
725 0.0300 | 5.9700 | 0.0050
74 0.0034 | 5.9966 | 0.0006
B. MLWIN
Level 1 Level 2 Ag?)x /A\S})X 5 XX
Individual 72500 | 0.8787 | 5.1213 | 0.1465
7625 | 0.7174 | 5.2826 | 0.1196
7400 | 0.4228 | 5.5772 | 0.0705
7100 | 0.1387 | 5.8613 | 0.0231
725 0.0487 | 5.9513 | 0.0081
74 0.0046 | 5.9954 | 0.0007

Table 4.4: Intra-Area correlations and variance components of X, X have low auto-

correlation

Table 4.5 shows the intra-area (IAC) correlation of the Y variable and the esti-

mated level 1 and level 2 variance components. The results presented are obtained
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using the Tranmer and Steel method(1998). For both variables the intra-area cor-
relations decreases with scale. The level 2 variance components decrease with scale
and approach zero. The level 1 variance components increase as the number of
zones decrease and approaches the individual level variance. Generally, as groups
become larger, more dissimilar units are included leading to the average within-area

homogeneity, which is what  measures, to decrease.

Level 1 | Level 2 AQ, /A\g,lz, dyy
Individual | Z2500 | 1.8632 | 6.1337 | 0.2328
7625 | 1.0670 | 6.9330 | 0.1334
7400 | 0.8533 | 7.1467 | 0.1067
7100 | 0.2593 | 7.7407 | 0.0324
725 | 0.0718 | 7.9282 | 0.0090
74 0.0180 | 7.9820 | 0.0023

Table 4.5: Intra-Area correlations and variance components of Y using moments, Y
have low autocorrelation

The estimated intra-area cross-correlation (IACC) of the two variables, denoted
by 3yxis shown in Table 4.6. The estimated level 2 covariance components de-
crease with scale, the level 1 covariance components increase and intra-area cross

correlation decrease with scale.

~ ~

Level 1 Level 2 A%( Ag/lg( 3y x
Individual | Z2500 | 0.8570 | 1.1824 | 0.1237
7625 | 0.4885 | 1.5509 | 0.0705
Z400 | 0.3981 | 1.6413 | 0.0575
Z100 | 0.1164 | 1.9231 | 0.0168
725 0.0445 | 1.9949 | 0.0064

74 0.0072 | 2.0323 | 0.0010

Table 4.6: Intra-Area cross-correlations and covariance components at two levels, X
and Y both have low autocorrelation

Table 4.7 shows the estimated pure correlation and regression coefficients based
on a simple multilevel model. Pure correlation, as defined in Chapter 3 equation
(3.38), is the correlation of two variables where the effect of the other level is re-

moved reflecting the correlation at the pertinent level. The level 1 pure correlation
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(denoted by ﬁg/l;() increases with scale, starting with a value lower than the corre-
lation coefficient (0.2944) at the individual level but approaches that value as the
number of zones decreases. The change of the pure correlation as the scale changes
is slow compared with the direct correlation shown in Table 4.3. This is a sign of
more stability or being less affected by the MAUP. Estimated pure regressions at
two levels and different scales are also shown in Table 4.7. Pure regression coef-
ficients are the regression coefficient when the effect of the other level is removed.
Pure regression at level 1 (denoted by 68}() approaches the regression coefficient at
the individual level (0.3399) as the number of zones decreases. Level 2 pure coethi-
cients, while different from the individual level, show less scale effect than the direct
coefficients and a general tendency to increase with scale, except when m=4 where

they may be affected by the small number of groups.

Level 1 | Level 2| p0% | 2% | o2 | 0%
Individual | Z2500 | 0.6821 | 0.2103 | 0.4602 | 0.1926
7625 | 0.6578 | 0.2515 | 0.4578 | 0.2237
7400 | 0.6926 | 0.2592 | 0.4665 | 0.2297
7100 | 0.7594 | 0.2843 | 0.4487 | 0.2484
725 | 0.9290 | 0.2900 | 0.6202 | 0.2516
74 | 0.9088 | 0.2937 | 0.3976 | 0.2546

Table 4.7: Pure correlations and regressions, X and Y both have low autocorrelation

Analysis of Distribution of Statistics

The results above arise from just one realization of the data generation. To examine
the distribution of the statistics derived from the MLM, the data generation is
repeated 500 times. In each repetition, the mean of X and mean of Y is scaled to
0.005 and 10, respectively and the variance of X and Y are also scaled to 6 and 8,
respectively. This makes the different realizations directly comparable. Although
we cannot completely control or change the initial Pearson correlation, the standard
deviation of the initial individual level correlation is not large, the values ranging
from 0.2599 to 0.3247 with mean equal to 0.2929.

Figure 4.1 shows the ranges of the values of the unweighted variance at dif-
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ferent levels of aggregation when the data generation is repeated 500 times. The
unweighted variance and covariance are observed to decrease as the number of zones
decreases. Note that the horizontal axis shows the number of zones in the square
grid, 2500 means that the original 100x100 square grid was made into a 50x50 square
grid giving 2500 square zones; 625 means that the original 100x100 was made into
a 25x25 square grid with 625 square zones; and so on. Recall that the initial vari-
ance for X is 6. For the rest of the thesis, this notations applies. The effect on the
variance of Y is similar to that of the variable X. Thus, given data set 1, we can say
that when a variable has low autocorrelation, the mean of the unweighted variance

decreases with the decrease in the number of zones.

The standard deviation of the variance decreases with the decrease of the number
of zones as shown in the last column of the upper portion of Table 4.8. At this point
the claim of Reynolds that ”When significantly positive autocorrelated variables are
aggregated, increasing the number of regions per cell increases the likelihood that
more widely differing values will be included in each cell, so one would expect the
variability of possible aggregate variance values to increase with the decrease in the
number of cells.” (page 23, Reynolds, 1998) is observed in Figure 4.1. The standard
deviation of the variance increases as the number of individuals included in the
group decreases. In other words, the standard deviation decrease as the number of

groups decreases.

Figure 4.2 shows the distribution of the weighted variance of X and weighted
covariance of X and Y. The boxplots for the variance of variable Y is not shown
because it is similar to the boxplots of the variance of X. The scale effect of the
weighted covariance is similar to that of the effect of the variance. Recall that
all zones have equal number of units include in each group so that the (weighted
variance)= (number of units per group)x(unweighted variance). Thus, the weighted
variance includes the factors of the number of units per group ny,is and unweighted
variance. The variability of the unweighted variance decreases with aggregation but
in Figure 4.2 the standard deviation increases with aggregation. This is because

of the factor n,,;s. Recall that the different levels of aggregations have 2500, 625,



CHAPTER 4: Multilevel Modeling and the MAUP

47

Boxplots Variance(X) at Diffent Levels of Aggregation
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Figure 4.1: Unweighted Variance of X and Covariance(X,Y), X and Y both have low

autocorrelation

400, 100, 25, and 4 groups, which means that the number of units per group for the

different levels of aggregation are 4, 16, 25, 100, 400, and 2500 respectively. Thus,

the standard deviation of the weighted variance is expected to rise because of the

increasing values of npts-

Table 4.9 summarizes the distribution of the weighted variance of X and the
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Unweighted
Variance of X Mean | Median | Minimum | Maximum | Std. Dev.
Individual 6.0000 | 6.0000 6.0000 6.0000 0.0000
2500 2.1682 | 2.1622 1.8998 2.5105 0.1007
625 0.8565 | 0.8539 0.7220 1.0474 0.0580
400 0.5964 | 0.5949 0.4750 0.7335 0.0451
100 0.1757 | 0.1744 0.1103 0.2732 0.0237
25 0.0464 | 0.0454 0.0129 0.0838 0.0130
4 0.0076 | 0.0063 0.0001 0.0361 0.0056
Unweighted
Covariance of X and Y | Mean | Median | Minimum | Maximum | Std. Dev.
Individual 2.0292 | 2.0298 1.8007 2.2493 0.0738
2500 1.1644 | 1.1671 0.9712 1.4121 0.0800
625 0.6070 | 0.6052 0.4452 0.8060 0.0556
400 0.4368 | 0.4311 0.3083 0.5921 0.0476
100 0.1351 | 0.1329 0.0663 0.2369 0.0274
25 0.0369 | 0.0352 -0.0001 0.0862 0.0151
4 0.0061 | 0.0049 -0.0010 0.0380 0.0066

Table 4.8: Description of Unweighted Variance of X and Covariance of X and Y, X
and Y both have low autocorrelation

weighted covariance of X and Y and shows the mean and the median increases with
aggregation. In both the weighted variance and weighted covariance, the standard

deviation increase with aggregation.

Weighted
Variance of X Mean | Median | Minimum | Maximum | Std. Dev.
2500 8.5416 | 8.5474 7.9298 9.1371 0.2004
625 13.4936 | 13.4804 | 11.4946 15.5029 0.6857
400 14.6797 | 14.6807 | 12.2834 17.0218 0.8635
100 17.3023 | 17.2079 | 10.8643 25.2772 2.2145
25 18.2766 | 17.9044 4.9363 33.1333 5.0246
4 18.6786 | 15.5848 0.3227 87.0727 13.6853
Weighted
Covariance of X and Y | Mean | Median | Minimum | Maximum | Std. Dev.
Individual 2.0292 | 2.0298 1.8007 2.2493 0.0738
2500 4.5654 | 4.5653 3.8670 5.3221 0.2380
625 9.5185 | 9.5159 7.2845 12.3398 0.7401
400 10.7004 | 10.6384 7.6858 13.6834 1.0274
100 13.2360 | 13.1340 6.6786 22.4103 2.6029
25 14.4596 | 13.6990 | -0.0417 32.7256 5.8346
4 15.0037 | 12.1987 | -23.7587 91.2361 15.9994

Table 4.9: Description of Weighted Variance of X and Covariance of X and Y, X and
Y both have low autocorrelation
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Boxplots of Weighted Variance of X at Different Levels of Aggregation
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Figure 4.2: Weighted Variance of X and Covariance(X,Y), X and Y both have low

autocorrelation

The effect of aggregation of the variance and covariance influence the effect on
the correlation. Figure 4.3 shows the distribution of the correlation coefficient when
the data are aggregated into smaller number of zones. The figures shows that the
mean and median of the correlation coefficient increases with the level of aggregation,

which is supported by Table 4.10, although the increase is small once we reach 625
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zones. It can be noted also that the standard deviation of the values of the Pearson

correlation increases with aggregation, due to the reduction in the number of groups

in the analysis. The range of values when the data are aggregated to 4 zones almost

have the range of possible values of the Pearson correlation, that is, -1 to +1.

Boxplots of Pearson Correlation at Different Levels of Aggregation

oo
S :
__ —_— 5
© | [ :
o B -
= ] =
— — L : :
< = —
o ] — — :
N —
g ==
o
=
10000 2500 625 400 100 25

Figure 4.3: Pearson Correlation, X and Y both have low autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual
2500
625
400
100
25
4

0.2929
0.4322
0.5413
0.5544
0.5746
0.5790
0.5279

0.2930
0.4328
0.5427
0.5555
0.5761
0.5972
0.7056

0.2599
0.3815
0.4590
0.4290
0.3637
-0.0022
-0.9882

0.3247
0.4830
0.6382
0.6428
0.7237
0.8563
0.9998

0.0107
0.0185
0.0288
0.0343
0.0682
0.1426
0.4756

Table 4.10: Description of the Pearson Correlation, X and Y both have low autocor-

relation

To examine this behavior theoretically, it is known that when the distribution

is bivariate normal, then the sample correlation calculated from N independent
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observations has the following properties (Steel and Holt, 1996):

E(Tyx):p(1—|— 12_]VPQ> +O(N_2) (42)
and ,
Viryx) = % (1 + 121—]€7> +O (N7?). (4.3)

Steel and Holt (1996) show that a weighted aggregated correlation calculated
from M randomly formed groups behaves the same as that calculated from M points.
Hence (4.2) and (4.3) apply with N replaced by M. Equations 4.2 and 4.3 are used
to look at the expected behavior of the correlation coefficient. For different levels of
aggregation, Equations 4.2 and 4.3 are used to estimate the expected values of the
correlations and variances by using M instead of N, where M is the corresponding
number of groups and the results are shown in Table 4.11. Notice that even for
randomly formed groups the expected value of the correlation increases when the
number of groups is quite small. For the individual level and 2500 zones the standard
deviation of the correlation coefficient is approximately equal to the theoretical
value. For smaller number of zones the standard deviation is smaller than the
theoretical values, although it decreases at a similar rate. However, the average
of the correlation does not behave as in the random aggregation, because of the
autocorrelation. Theoretically, the expected value of the correlations seems to be
approximately constant at different levels of aggregations with some increase as M

becomes small. However, this behavior is not observed in this experiment.

E(ryx) | V(ryx) | v/V(ryx)
Individual | 0.3000 | 0.00008 0.0091
72500 0.3000 | 0.00033 0.0182
7625 0.3018 | 0.00133 0.0364
7400 0.3028 | 0.00208 0.0456
7100 0.3113 | 0.00838 0.0915
725 0.3454 | 0.03477 0.1865
74 0.5841 | 0.30191 0.5492

Table 4.11: Expected correlation and the variance and SD at different levels of aggre-
gation assuming no autocorrelation

The percentage loss of variance (plv) of the variance of variables X and Y and
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so with the percentage loss of covariance (plc) of the covariance at different levels
of aggregation has something to do with this behaviour.

First let us define percentage loss of variance (plv). For a variable X, the piv of
X is
(st - st)

1
Siex

plvxx = (4.4)

where Sg(l;( is the variance at individual level and S;?;{ is the weighted aggregated
variance.

Similarly, for variable Y, the plv is

(8% - si%)

plvyy = o (4.5)
Syy
The percentage loss of covariance (plc) is
2 1
(5% - 5%)
pleyx = (4.6)

1
Svx

where Si(/l ))( is the covariance at individual level and 53(3 ))( is the weighted aggregated
covariance.

The percentage loss of variances of the variables X and Y with respect to the
levels of aggregation are almost the same. Although the corresponding percentage
loss of the covariance with respect to the levels of aggregation have similar trend,
they are smaller compared with the percentage loss of variances of both X and Y.
This results in the tendency for the correlation to increase with aggregation.

Figure 4.4 shows the distribution of the estimated regression coefficient. The
standard deviation increases with aggregation. The distribution when the data are
aggregated into 4 zones is not included to allow a clearer picture of the distribution
for the other levels of aggregation. However, the necessary information for this
level of aggregation can be seen in Table 4.12. A trend similar to that observed for
the distribution of the correlation coefficient in terms of the increasing mean and

increasing standard deviation of the estimates is observed.
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Figure 4.4: Regression Coefficient, X and Y both have low autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual | 0.3382 | 0.3383 0.3001 0.3749 0.0123
2500 0.5344 | 0.5343 0.4644 0.5989 0.0239
625 0.7055 | 0.7037 0.5803 0.8418 0.0422
400 0.7288 | 0.7290 0.5627 0.8750 0.0535
100 0.7654 | 0.7653 0.4507 1.1826 0.1148
25 0.7904 | 0.7950 | -0.0037 1.4869 0.2354

4 0.7750 | 0.8681 -6.8700 5.2190 1.0292

Table 4.12: Description of Regression Coefficient,X and Y both have low autocorrela-
tion

Statistics associated with the multilevel model

We now examine some of the statistics associated with the multilevel model pre-
sented above (4.1). Some of the derived statistics display interesting patterns, which
may be affected by the level 1 and level 2 variance components. Figure 4.5 shows
the estimated level 2 and level 1 variance components of variable X.

Note that the level 1 plus level 2 variance components equal the initial variance

of X. Looking at the figure, the mean and median of the level 2 variance components
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Figure 4.5: Variance Components of X, X have low autocorrelation

decrease with aggregation. Recall that the estimated level 2 variance components

have numerator equal to Sg?;( —

d denominator equal to N* — 1 where N*

is equal to N/M=nn;s with values 4, 16, 25, 100, 400, and 2500. Both the numer-

ator and denominator increase with aggregation. The variability of the numerator

increase with aggregation but is divided by an increasing n,,;s thus resulting in a

decreasing standard deviation of the level 2 variance component. The mean and me-
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dian of the level 1 variance component increases with aggregation. However, in both
cases, the standard deviation decreases with aggregation for the level 2 component
and increases for the level 1 component.

Table (4.13) summarizes the distribution of the level 2 and level 1 variance

components. The mean and the median have similar values and decrease with scale.

Level 2
Variance Component(X) | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.8467 | 0.8487 0.6429 1.0452 0.0668
625 0.4987 | 0.4978 0.3657 0.6324 0.0456
400 0.3607 | 0.3608 | 0.2611 0.4581 0.0359
100 0.1130 | 0.1121 0.0486 0.1928 0.0222
25 0.0296 | 0.0287 -0.0026 0.0654 0.0121
4 0.0041 | 0.0031 -0.0018 0.0260 0.0044
Level 1
Variance Component(X) | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 5.1533 | 5.1513 4.9548 5.3571 0.0668
625 5.5013 | 5.5022 5.3676 5.6343 0.0456
400 5.6393 | 5.6392 5.5420 5.7389 0.0359
100 5.8870 | 5.8879 5.8072 5.9514 0.0222
25 5.9704 | 5.9713 5.9346 6.0026 0.0121
4 5.9959 | 5.9969 5.9740 6.0018 0.0044

Table 4.13: Description of the Level 2 and Level 1 Variance Components, X and Y
both have low autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual - - - - -
2500 0.1411 | 0.1414 0.1071 0.1742 0.0111
625 0.0831 | 0.0830 0.0609 0.1054 0.0076
400 0.0601 | 0.0601 0.0435 0.0763 0.0060

100 0.0188 | 0.0187 0.0081 0.0321 0.0037
25 0.0049 | 0.0048 | -0.0004 0.0109 0.0020
4 0.0007 | 0.0005 | -0.0003 0.0043 0.0007

Table 4.14: Description of the Intra-Area Correlation, X have low autocorrelation

Figure 4.6 shows the distribution of the IAC at different levels of aggregation.
The mean and median and the standard deviation decrease with aggregation. Notice
that the behavior of the standard deviation of the IAC is similar to that of the level

2 variance component. This is because the numerator of the estimate of intra-area
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Figure 4.6: Intra-area correlation X, X have low autocorrelation

correlation is the level 2 variance component while the denominator is the variance

of unit level data, which remains constant for the different levels aggregation.

Figure 4.7 shows the behavior of the intra-area cross-correlation (IACC). The

mean and the standard deviation of the mean decrease with the level of aggregation.

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual
2500
625
400
100
25
4

0.1220
0.0719
0.0520
0.0162
0.0043
0.0006

0.1219
0.0721
0.0518
0.0161
0.0041
0.0005

0.0914
0.0514
0.0346
0.0067
-0.0007
-0.0012

0.1502
0.0982
0.0689
0.0293
0.0107
0.0041

0.0091
0.0067
0.0059
0.0037
0.0020
0.0007

Table 4.15: Description of the Intra-Area Cross-Correlation, X and Y both have low

autocorrelation

Figure 4.8 shows both the estimated level 1 and level 2 pure correlations. Looking

at the figure the mean and median of the level 2 pure correlation is not affected by

aggregation but the value is much higher than the initial Pearson correlation that
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Figure 4.7: Intra-area cross-correlation of X and Y, X and Y both have low autocor-

relation

ranges from 0.2599 to 0.3247 with mean 0.2929 (Table 4.10). Note that z4(4 groups)
is excluded because values ranges from -8.7860 to 7.3132 and inclusion would make
examining the distribution for other groupings difficult, see Table 4.16. Note also
that some level 2 pure coefficients when the data are aggregated into 25 zones are
more than 1 or less than -1 which is not a characteristic of a correlation coefficient.
This phenomenon will be examined latter in the chapter. Level 1 pure correlations
seems to have a predictable pattern, with the mean and median increasing with
aggregation and approaching the initial Pearson correlation of the generated data.
Table 4.16 shows the descriptive statistics of the pure coefficients. The standard
deviation of the level 1 pure correlations seems to be constant and from Table 4.16
it can be seen that the standard deviation at different levels of aggregation is the

same.

The behavior of the distributions of the pure regression coefficient is shown in

Figure 4.9 and is similar to that of the distributions of the pure correlation. Again
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Figure 4.8: Pure Correlation, X and Y both have low autocorrelation

z4 is not included because the values ranges from -66.3356 to 67.9241. The mean
and median of level 2 pure regression, except when the number of groups is 4, are not
affected by different levels of aggregation but are a little higher that the mean of the
initial regression coefficient. The standard deviation increases with aggregation, the
increase is slow at the first three levels of aggregation but gets larger as the number

of groups decrease. Similar to the level 1 pure correlation, the level 1 pure regression
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Level 2
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.7080 | 0.7071 0.5948 0.8079 0.03907
625 0.7093 | 0.7115 0.5942 0.8609 0.04145
400 0.7071 | 0.7086 0.5177 0.8312 0.04682
100 0.7036 | 0.7065 0.4241 0.9439 0.09026
25 0.7084 | 0.7345 -0.1928 1.1732 0.20077
4 0.7871 | 0.9861 -8.7860 7.3132 1.2305
Level 1
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2076 | 0.2070 0.1695 0.2391 0.0110
625 0.2465 | 0.2461 0.2163 0.2789 0.0103
400 0.2605 | 0.2607 0.2332 0.2869 0.0102
100 0.2834 | 0.2835 0.2542 0.3115 0.0105
25 0.2904 | 0.2904 0.2594 0.3225 0.0105
4 0.2925 | 0.2928 0.2605 0.3241 0.0106

Table 4.16: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
have low autocorrelation

increases as the number of groups decreases. The standard deviation seems to be
constant as depicted by Figure 4.9.
Table 4.17 shows descriptive statistics of level 2 and level 1 pure regression co-

efficients.

4.2.2 Data Set 2: Both variables have medium autocorrela-
tion

To look into the effects of aggregation on variables with higher autocorrelation the
simulations are repeated but with higher levels of autocorrelations for both variable.
To generate a new set of data with a higher autocorrelation, the smoothing process
used to generate data set 1 is repeated for the two variables. This is done by taking
the average of the neighbors of each of the data points for the previously generated
data. We initially examine results for one realization.

The resulting values of Moran’s I are shown in Table 4.18. The contiguity matrix
used is the queen’s case. Note that this time the initial value, that is, the Moran’s I

at individual level is higher than that of the first data set. The values decrease with
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Figure 4.9: Pure Regression, X and Y both have low autocorrelation

aggregation.

The unweighted and weighted variance are affected by scale as shown in Table
4.19 and Table 4.20, respectively. Looking at the decrease of the unweighted variance
on both variables, it can be seen that the change is somewhat slow compared with
the data set 1 (Tables 4.8 and 4.9). The covariance of the new set of data is smaller

than the first one. The decrease of the covariance is slower compared with the
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Level 2
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.5018 | 0.5020 0.3943 0.5863 0.0336
625 0.5033 | 0.5028 0.4052 0.5992 0.0379
400 0.5009 | 0.4996 0.3631 0.6221 0.0428
100 0.5006 | 0.4964 0.2280 0.7019 0.0789
25 0.5010 | 0.4891 -0.1289 1.2025 0.1772
4 0.5662 | 0.5002 | -66.3356 67.9241 4.9090
Level 1
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.1876 | 0.1868 0.1541 0.2149 0.0101
625 0.2184 | 0.2182 0.1907 0.2457 0.0092
400 0.2293 | 0.2295 0.2048 0.2526 0.0090
100 0.2466 | 0.2465 0.2206 0.2718 0.0091
25 0.2518 | 0.2520 0.2251 0.2801 0.0092
4 0.2534 | 0.2536 0.2255 0.2809 0.0092

Table 4.17: Description of the Level 2 and Level 1 Pure Regression, X and Y both
have low autocorrelation

Level I L Iy
Individual | 0.4549 | 0.6223 | 0.1847
72500 0.3740 | 0.4602 | 0.1582
7625 0.1278 | 0.1797 | 0.0881
7400 0.1169 | 0.1326 | 0.0745
7100 0.0259 | 0.1400 | 0.0383
725 -0.0676 | 0.1202 | 0.0160
Z4 - - -

Table 4.18: Moran’s 1

decrease of the covariance of the first data set.

X | v [ S [ 8% | s%
Individual | 0.005 | 10.000 | 6.0000 | 8.0000 | 1.9382
72500 0.005 | 10.000 | 3.7314 | 5.9828 | 1.4873
7625 0.005 | 10.000 | 2.0727 | 3.7572 | 0.9722
7400 0.005 | 10.000 | 1.5626 | 2.9484 | 0.8254
7100 0.005 | 10.000 | 0.5814 | 1.0004 | 0.3306
725 0.005 | 10.000 | 0.1600 | 0.3550 | 0.1336

74 0.005 | 10.000 | 0.0214 | 0.2051 | 0.0247

Table 4.19: Unweighted variance and covariance, X and Y both have medium auto-
correlation

Table 4.21 shows that the correlation and regression coefficients tend to increase
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x | v [ 8% | sh | SO
Individual | 0.005 | 10.000 | 6.0000 8.0000 1.93R82
72500 0.005 | 10.000 | 14.9256 | 23.9312 5.9493
7625 0.005 | 10.000 | 33.1628 | 60.1147 | 15.5557
7400 0.005 | 10.000 | 39.0645 | 73.7104 | 20.6348
7100 0.005 | 10.000 | 5&8.1737 | 100.0409 | 33.0574
725 0.005 | 10.000 | 64.0128 | 141.9836 | 53.4285
74 0.005 | 10.000 | 53.4122 | 512.7969 | 61.6289

Table 4.20: Weighted variance and covariance, X and Y both have medium autocor-
relation

with scale, with the exception of the correlation coefficient for 4 zones. Comparing
the initial correlation and the correlation at different levels of aggregation with that
of the first data ( Table 4.3) it can noted that the increase from initial correlation
up to the different levels of aggregation seems to be slower. There is even a de-

crease when there are only 4 zones. A similar trend is observed with the regression

coefficient.

Correlation | Regression
Coefficient | Coefficient

Individual Data 0.2798 0.3230

Number of Zones

2500 0.3148 0.3986

625 0.3484 0.4691

400 0.3845 0.5282

100 0.4356 0.5685

25 0.5604 0.8347

4 0.3724 1.1538

Table 4.21: Correlation and regression coefficients at different scales, X and Y both
have medium autocorrelation

The estimated variance components and the intra-area correlations are shown
in Table 4.22 and Table 4.23. The values decrease as the level of aggregation is
increased and approach zero as the number of zones is decreased. This is because
when there are few zones, the population within them will be almost as heteroge-
neous as the whole population. The level 2 variance component is larger than the
level 1 variance component for both variables initially. The level 1 variance compo-

nent approaches the individual level variance as the number of zones decreases. This
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time the Level 2 variance component is larger at each aggregation level compared
with the previous data set (Tables 4.4 and 4.23), probably due to the higher level

of autocorrelation.

~

Level 1 Level 2 Ag?)X Agpx 5 XX
Individual | Z2500 | 2.9736 | 3.0264 | 0.4956
7625 | 1.8078 | 4.1922 | 0.3013
7400 | 1.3741 | 4.6259 | 0.2290
72100 | 0.5214 | 5.4786 | 0.0869
725 0.1398 | 5.8602 | 0.0233

74 0.0152 | 5.9848 | 0.0025

Table 4.22: Intra-Area correlations and variance components of X, X have medium
autocorrelation

~

Level 1 Level 2 Agg/ Ag}g/ Syy
Individual | Z2500 | 5.3076 | 2.6924 | 0.6634
7625 | 3.4684 | 4.5316 | 0.4335
7400 | 2.7308 | 5.2692 | 0.3414
72100 ] 0.9204 | 7.0796 | 0.1151
725 0.3229 | 7.6771 | 0.0404

74 0.1616 | 7.8384 | 0.0202

Table 4.23: Intra-Area correlations and variance components of Y, Y have medium
autocorrelation

Looking at the results shown in Table 4.24 the intra-area cross-correlation have
values greater than the previous data set at each level of aggregation. This time
the level 2 covariance component when the data are aggregated into 2500 zones is
larger than the level 1 covariance component and decreases as the number of zones

decreases.

~ ~

Level 1 Level 2 Ag/z;{ Ag,lg( 5y x
Individual | Z2500 | 1.3363 | 0.6019 | 0.1929
7625 | 0.9063 | 1.0320 | 0.1308
7400 | 0.7770 | 1.1612 | 0.1122
7100 | 0.3112 | 1.1637 | 0.0450
725 0.1241 | 1.8142 | 0.0179

74 0.0191 | 1.9191 | 0.0028

Table 4.24: Intra-Area cross-correlations at two levels, X and Y both have medium
autocorrelation
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Pure correlations for the second data set are shown in Table 4.25. The level
2 pure correlation increases with the level of aggregation and begins with a value
not far from the individual level Pearson correlation. In comparison with the first
data set, the corresponding values of the correlation are smaller. The level 1 pure
correlation increases with the level of aggregation where the values are smaller than
the initial Pearson correlation and seems to approach the individual(or initial) level
Pearson correlation. Level 2 pure regression increases with aggregation except when
the number of zones is 4 where it suddenly decreases. The level 2 pure regression

seems to be not affected by aggregation.

Level 1 | Level 2 ,5%( ,6%,1;( IA)%( 6&}(
Individual | Z2500 | 0.3364 | 0.2108 | 0.2518 | 0.2236
7625 |0.3619 | 0.2368 | 0.2613 | 0.2277
Z400 | 0.4011 | 0.2352 | 0.2845 | 0.2204
2100 | 0.4492 | 0.2612 | 0.3381 | 0.2298
225 | 0.5840 | 0.2705 | 0.3942 | 0.2363

74 0.3858 | 0.2802 | 0.1182 | 0.2448

Table 4.25: Pure correlations and pure regression at two levels, X and Y both have
medium autocorrelation

Analysis of Distribution of Statistics When both Variables have Medium

Autocorrelation

As with data set 1 the simulation is repeated 500 times to investigate the distribu-
tions of pertinent statistics.

Figure 4.10 shows the distributions of the unweighted variance of X and un-
weighted covariance of X and Y. The decreasing mean and median of the variance
of X is similar to the results of the previous data set but the values are greater than
the corresponding mean and median of data set 1. Aside from the first aggregation
level (2500 groups) the standard deviation of the variance of X at different levels
of aggregation decreases with aggregation. The decreasing trend of the mean of
the covariance is observed but this time the change from unit level to the different

levels of aggregation is slower than the corresponding values from data set 1. The
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Figure 4.10: Unweighted Variance of X and Covariance(X,Y), X and Y both have

medium autocorrelation

standard deviation also decreases with aggregation but is larger compared with the

corresponding standard deviation of data set 1.

Table 4.26 summarizes the distribution of the estimated unweighted variance and

covariance.

Figure 4.11 shows the distribution of the weighted variance of X. The mean of
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Figure 4.11: Weighted Variance of X and Covariance(X,Y), X and Y both have

medium autocorrelation

the weighted variances is larger than the corresponding values for the results from
data set 1 at different levels of aggregation. The standard deviation increases with
aggregation and is larger in magnitude than the corresponding standard deviation for
different levels of aggregation in data set 1. The mean of the covariance also increases

with aggregation. Looking at Table 4.27, there are values of the weighted covariance
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Unweighted
Variance of X Mean | Median | Minimum | Maximum | Std. Dev.
Individual 6.0000 | 6.0000 6.0000 6.0000 0.0000
2500 3.7375 | 3.7380 3.5637 3.9013 0.0590
625 2.1053 | 2.1007 1.8597 2.3878 0.0812
400 1.5645 | 1.5673 1.3380 1.7714 0.0795
100 0.5110 | 0.5105 0.3150 0.7384 0.0650
25 0.1415 | 0.1403 0.0521 0.2929 0.0381
4 0.0234 | 0.0188 0.0002 0.0847 0.0171
Unweighted
Covariance of X and Y | Mean | Median | Minimum | Maximum | Std. Dev.
Individual 2.1852 | 2.1844 1.8108 2.6272 0.1440
2500 1.7367 | 1.7370 1.3278 2.1716 0.1337
625 1.1323 | 1.1291 0.7690 1.6072 0.1177
400 0.8797 | 0.8777 0.5012 1.2284 0.1085
100 0.3064 | 0.3033 0.0715 0.5913 0.0765
25 0.0880 | 0.0811 -0.0432 0.2186 0.0445
4 0.0151 | 0.0129 -0.0592 0.0928 0.0199

Table 4.26: Description of Unweighted Variance of X and Covariance of X and Y, X
and Y both have medium autocorrelation

that are less than the mean weighted covariance at unit level when the data are

aggregated to 25 and 4 zones. The standard deviation increase with aggregation.

Figure 4.12 shows the correlation at different levels of aggregation. The figure
shows that the mean and median of the correlation increases with the level of aggre-
gation but the increase is slower than the corresponding increase of the correlation
of data set 1. The increase is not as much as in data set 1 because of the decrease
of both the variances X and Y and the covariance of X and Y is lesser when the
data are aggregated into smaller number of groups, thus resulting in a lesser aggre-
gation effect on the correlation. The standard deviation in each level of aggregation
increases with aggregation and is similar to the first data set but with slightly larger
values. In comparison with the standard deviation of data set 1, data set 2 has
slightly higher standard deviations at each level but the trend is similar-they are in-
creasing. The results show increasing correlation with aggregation but the increase
is not as much as the increase of the correlation in data set 1. Similar behavior of
the standard deviation is observed but slightly larger in magnitude compared with

that of data set 1.
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Weighted
Variance of X Mean | Median | Minimum | Maximum | Std. Dev.
2500 14.9501 | 14.9518 | 14.2550 15.6053 0.2359
625 33.6851 | 33.6105 | 29.7553 38.2041 1.2985
400 39.1126 | 39.1834 | 33.4487 44.2848 1.9880
100 51.0970 | 51.0469 | 31.4948 73.8388 6.4979
25 56.6032 | 56.0990 | 20.8290 117.1530 15.2350
4 58.4922 | 46.9210 | 0.3910 211.6970 42.8460
Weighted
Covariance of X and Y | Mean | Median | Minimum | Maximum | Std. Dev.
Individual 2.1852 | 2.1844 1.8108 2.6272 0.1439
2500 6.9469 | 6.9481 5.3110 8.6865 0.5348
625 18.1165 | 18.0657 | 12.3041 25.7149 1.8827
400 21.9924 | 21.9431 | 12.5299 30.7100 2.7131
100 30.6420 | 30.3340 7.1480 59.1280 7.6460
25 35.1790 | 32.4560 | -17.2970 87.4560 17.7870
4 37.7311 | 32.2700 | -147.9700 | 231.9100 49.8300

Table 4.27: Description of Weighted Variance of X and Covariance of X and Y, X and
Y both have medium autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual | 0.3154 | 0.3153 0.2614 0.3792 0.0208
2500 0.3688 | 0.3696 0.2879 0.4529 0.0268
625 0.4040 | 0.4052 0.2900 0.5217 0.0369
400 0.4148 | 0.4183 0.2522 0.5486 0.0439
100 0.4291 | 0.4343 0.1196 0.6421 0.0834

25 0.4304 | 0.4385 -0.2234 0.8142 0.1684
4 0.4013 | 0.5377 | -0.9950 0.9991 0.5207

Table 4.28: Description of Pearson Correlation, X and Y both have medium autocor-
relation

Figure 4.13 shows the distribution of the regression coefficient. Note that results
for aggregation to 4 zones are not included so that the distribution of regression
coefficients for the other levels of aggregation can be displayed more clearly. A sum-
mary of the distribution of the regression coefficient when the data are aggregated

into 4 groups is shown in Table 4.29.

Figure 4.14 shows the estimated variance components of variable X. The mean

and median of the level 2 variance component decrease with aggregation. In com-
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Figure 4.12: Pearson Correlation (The horizontal axis denotes number of groups), X

and Y both have medium autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual
2500
625
400
100
25
4

0.3642
0.4646
0.5377
0.5623
0.5997
0.6238
0.6640

0.3641
0.4650
0.5382
0.5635
0.5999
0.6321
0.7130

0.3018
0.3610
0.3802
0.3537
0.1947
-0.3324
-6.1942

0.4379
0.5681
0.6922
0.7523
0.9330
1.5398
14.3151

0.0240
0.0338
0.0502
0.0626
0.1288
0.2712
1.2784

Table 4.29: Description of Regression Coefficient, X and Y both have medium auto-

correlation

parison with data set 1, the level 2 variance component of X is larger in all levels

of aggregation. Looking at Table 4.22, the means of the level 2 variance compo-

nent of X at different levels of aggregation are as follows; 2.9818, 1.8425, 1.3761,

0.4510, 0.1219, and 0.0168, respectively. In data set 1, the means of the level 2

variance component of X at different levels of aggregation are as follows; 0.8467,

0.4987, 0.3607, 0.1130, 0.0296, and 0.0041, respectively. Thus, as the degree of au-

tocorrelation increases, the level 2 variance component at each level of aggregation
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Figure 4.13: Regression Coefficient, X and Y both have medium autocorrelation

also increases. Like the unweighted variance, the standard deviation of the level 2
variance component decreases, starting from the second level of aggregation to the
last. The ranges of the values from unit level to the last level of aggregation are a
little larger than the corresponding ranges of data set 1. The values of the level 1
variance component are also affected by these results. The standard deviation of
the values seems to decrease with aggregation but not as much as the decrease of
the previous data set.

Figure 4.15 shows the distribution of the estimated intra-area correlation of vari-
able X. The mean decreases with aggregation. The values are larger at all levels of
aggregation compared with the results of data set 1. This is because in all levels of
aggregation the level 2 variance component of data set 1 is smaller than the level
variance component of data set 1. The standard deviation of the intra-area corre-
lation decreases with aggregation. The magnitude of the standard deviations are a
little larger than the corresponding standard deviations of data set 1.

Figure 4.16 shows both the level 2 and level 1 pure correlation coefficients. The
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Figure 4.14: Variance Components of X, X have medium autocorrelation

mean and median of the level 2 pure correlation coefficients seem to change very
slowly except when the number of groups is 4 for the median. The mean is greater
than the initial correlation (3.154) and the standard deviation of these values in-
creases with aggregation but these values are much lower than the corresponding
values from data set 1 and are nearer to the initial correlation. Looking at the upper

part of Table 4.32, the standard deviation of the level 2 pure correlation increases
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Level 2
Variance Component(X) | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 2.9818 | 2.9824 2.7502 3.2001 0.0786
625 1.8425 | 1.8376 1.5810 2.1433 0.0864
400 1.3761 | 1.3791 1.1407 1.5911 0.0826
100 0.4510 | 0.4505 0.2550 0.6784 0.0650
25 0.1219 | 0.1207 0.0357 0.2678 0.0367
4 0.0168 | 0.0131 -0.0018 0.0658 0.0137
Level 1
Variance Component(X) | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 3.0182 | 3.0176 2.7999 3.2498 0.0786
625 4.1575 | 4.1624 3.8567 4.4190 0.0864
400 4.6239 | 4.6210 | 4.4089 4.8593 0.0826
100 5.5490 | 5.5495 0.3216 0.7451 0.0650
25 5.8781 | 5.8793 5.7322 0.9643 0.0367
4 5.9832 | 5.9870 5.9342 6.0018 0.0137

Table 4.30: Description of the Level 2 and Level 1 Variance Components, X and Y
both have medium autocorrelation

Intra-Area Correlation X
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Figure 4.15: Intra-Area Correlation X, X have medium autocorrelation
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| Description [ Mean | Median | Minimum | Maximum | Std. Dev. |

Individual - - - - -
2500 0.4970 | 0.4971 0.4584 0.5333 0.0131
625 0.3071 | 0.3063 0.2635 0.3572 0.0144
400 0.2296 | 0.2298 0.1901 0.2652 0.0138
100 0.0752 | 0.0751 0.0425 0.1131 0.0108
25 0.0203 | 0.0201 0.0060 0.0446 0.0061

4 0.0028 | 0.0022 -0.0003 0.0110 0.0023

Table 4.31: Description of Intra-Area Correlation (X), X both have medium autocor-
relation

with aggregation as depicted by Figure 4.16. These values are very similar to the
corresponding values of data set 1 except for the last level of aggregation. The mean
and median of the level 1 pure correlation, start with a smaller value and approaches
the initial correlation as the number of groups decrease. These values are very sim-
ilar to the corresponding values from data set 1. The standard deviation of these
values seems to be approximately constant as depicted by Figure 4.16 and Table

4.32 but a little larger in magnitude compared with the results from data set 1.

Level 2
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.4012 | 0.4027 0.3019 0.4960 0.0308
625 0.4212 | 0.4234 0.2962 0.5487 0.0404
400 0.4308 | 0.4342 0.2489 0.5737 0.0480
100 0.4423 | 0.4491 0.0961 0.6665 0.0912
25 0.4425 | 0.4541 -0.2762 0.8531 0.1853
4 0.4270 | 0.6170 -2.6191 2.6062 0.6770
Level 1
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2073 | 0.2075 0.1609 0.2535 0.0163
625 0.2573 | 0.2573 0.2134 0.3058 0.0180
400 0.2735 | 0.2735 0.2221 0.3225 0.0189
100 0.3032 | 0.3032 0.2427 0.3700 0.0204
25 0.3119 | 0.3119 0.2572 0.3765 0.0206
4 0.3151 | 0.3151 0.2603 0.3787 0.0207

Table 4.32: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
have medium autocorrelation

Figure 4.17 shows the distribution of level 2 and level 1 pure regression coeffi-
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Boxplots Pure Correlation Level 2
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Figure 4.16: Pure Correlation, X and Y both have medium autocorrelation

cients. The mean of the level 2 pure regression coefficient seems to be not affected
by aggregation but the standard deviation of the values increases with aggregation
as depicted by Figure 4.17 and the last column of the upper part of Table 4.33.
These values are smaller than the corresponding values from data set 1 and a bit
lower than the mean initial regression. The mean of the level 1 pure regression

started with a value less than the initial regression coefficient at the individual level
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Figure 4.17: Pure Regression, X and Y both have medium autocorrelation

and slowly approaches that value as the number of groups decrease. The standard

deviation in each level of aggregation seems to be constant just as the results from

data set 1 but a bit larger.
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Level 2
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.3027 | 0.3041 0.2291 0.3772 0.0239
625 0.3086 | 0.3089 0.2204 0.4176 0.0310
400 0.3106 | 0.3108 0.1719 0.4224 0.0363
100 0.3122 | 0.3118 0.0564 0.5155 0.0686
25 0.3082 | 0.3055 | -0.1810 0.7925 0.1419
4 0.2827 | 0.3308 | -20.5394 12.2534 1.3818
Level 1
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2172 | 0.2173 0.1674 0.2688 0.0175
625 0.2465 | 0.2459 0.2010 0.2965 0.0177
400 0.2546 | 0.2540 0.2021 0.3048 0.0180
100 0.2681 | 0.2675 0.2119 0.3291 0.0184
25 0.2719 | 0.2717 0.2248 0.3284 0.0181
4 0.2730 | 0.2731 0.2258 0.3283 0.0179

Table 4.33: Description of the Level 2 and Level 1 Pure Regression, X and Y both
have medium autocorrelation

4.2.3 Data Set 3: Both variables have high autocorrelation

To be able to observe the behavior of pertinent statistics when two variables both
have high autocorrelation, another set of data is generated. Data set 2 is again
subjected to the smoothing process. The average of the neighbors of each of the
data points of data Set 2 is recorded and becomes the new data set. The process
was able to generate a data set that is more autocorrelated than the data set 2. As
before, the following initial results are from one realization of the data generation.
Table 4.34 shows the Moran’s I at different levels of aggregation, which are higher
than in data set 2.

Level I L Iy
Individual | 0.7138 | 0.8033 | 0.2370
22500 0.5037 | 0.5757 | 0.1709
7625 0.1621 | 0.2207 | 0.0754
7400 0.1040 | 0.1361 | 0.0608
2100 -0.0403 | 0.0378 | 0.0266
725 0.0155 | 0.2076 | 0.1155
74 - - -

Table 4.34: Moran’s 1
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Table 4.35 shows the variances and covariances of the variables at different levels.
The unweighted variance decreases as the number of zones decreases and the values
are a little larger than the corresponding value in each level from the results from
data set 2. The decrease is slower compared with data set 2 and data set 1. Except
for the first aggregation, that is when the number of groups is 2500, the covariance
at all levels of aggregation is larger than the corresponding covariances of data set

2 and data set 1.

X | v | S | Sy | Sy

Individual | 0.005 | 10.000 | 6.0000 | 8.0000 | 2.0259
22500 0.005 | 10.000 | 4.8461 | 6.9693 | 1.7602
7625 0.005 | 10.000 | 3.1691 | 4.8816 | 1.1971
7400 0.005 | 10.000 | 2.5333 | 4.1442 | 1.0289
2100 0.005 | 10.000 | 0.9373 | 1.7078 | 0.4645
725 0.005 | 10.000 | 0.2598 | 0.5333 | 0.1836

74 0.005 | 10.000 | 0.0360 | 0.1399 | 0.0684

Table 4.35: Unweighted variance and covariance, X and Y both have high autocorre-
lation

Table 4.36 shows the weighted variance and covariance of the two variables.
Both the variances of X and Y and the covariance increase with aggregation except
for the variance of X when m=4. The values of these statistics are larger than
the corresponding statistics computed from data set 2 in all levels of aggregation,

reflecting the higher level of autocorrelation.

X | v S SUy SOy

Individual | 0.005 | 10.000 6.0000 8.0000 2.0259

72500 0.005 | 10.000 | 19.3844 27.8773 7.0409
7625 0.005 | 10.000 | 50.7071 78.1063 19.1530
7400 0.005 | 10.000 | 63.3335 | 103.6046 | 25.7221
7100 0.005 | 10.000 | 93.7345 | 170.7823 | 46.4457
725 0.005 | 10.000 | 103.9118 | 213.3024 | 73.4217
74 0.005 | 10.000 | 90.0712 | 349.8199 | 171.0138

Table 4.36: Weighted variance and covariance, X and Y both have high autocorrelation

Table 4.37 shows the correlation and regression coefficients at different levels.
Again, the pattern of increasing correlation and regression coefficients as the number

of zones is decreased is evident. The increase of the correlation with aggregation
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except when the aggregated to 25 and 4 groups seems to be slow in comparison with
the increase of the correlation of data set 1 and data set 2. The same pattern is
observed with the regression coefficient, that is the increase is slow as the data are

aggregated into smaller number of groups.

Correlation | Regression
Coeflicient | Coefficient
Individual Data 0.2924 0.3376
Number of Zones
2500 0.3029 0.3642
625 0.3043 0.3777
400 0.3175 0.4061
100 0.3671 0.4955
25 0.4932 0.7067
4 0.9634 1.8987

Table 4.37: Correlation and regression coefficients at different scales, X and Y both
have high autocorrelation

The intra area correlations of variable X is shown in Table 4.38. The values are
larger than the previous data set because the data generation will generate data
with higher autocorrelation. The value of the intra-area correlation is almost equal
to Moran’s I at the individual level when the data are aggregated into 2500 groups.
The level 2 variance component is initially much larger than the level 1 variance
component, and decreases and seems to approach zero as the number of zones is
decreased. The level 1 variance component approaches the individual level variance

as the number of zones is decreased.

~

Level 1 Level 2 Ag?)X Agpx 5 XX
Individual | Z2500 | 4.4591 | 1.5409 | 0.7432
7625 | 2.9754 | 3.0246 | 0.4959
7400 | 2.3827 | 3.6173 | 0.3971
72100 | 0.8873 | 5.1227 | 0.1462
725 0.2359 | 5.7641 | 0.0393

74 0.0269 | 5.9731 | 0.0045

Table 4.38: Intra-Area correlations and variance components of X, X have high auto-
correlation

Table 4.39 shows the intra-area correlation of variable Y. The behavior of the

scale effect is similar to the intra-area correlation of variable X but larger in value
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at each level of aggregation, this is because of the way the data are generated. The
level 2 and level 1 variance components have behavior similar to that of the variable

X.

~

Level 1 Level 2 /AX@/ Ag/lg/ 3yy
Individual | Z2500 | 6.6222 | 1.3778 | 0.8278
7625 | 4.6658 | 3.3342 | 0.5832
7400 | 3.9732 | 4.0268 | 0.4946
7100 | 1.6278 | 6.3722 | 0.2035
725 0.4947 | 7.5053 | 0.0618

74 0.0269 | 7.8906 | 0.0137

Table 4.39: Intra-Area correlations and variance components of Y, Y have high auto-
correlation

Table 4.40 displays the covariance components that are used in the estimation
of the intra-area cross-correlation. The intra-area cross correlation decreases with

aggregation.

~

Level 1 | Level 2 [\@2}( A%( by x
Individual | Z2500 | 1.6708 | 0.3551 | 0.2412
7625 | 1.1398 | 0.8860 | 0.1645
2400 | 0.9848 | 1.0411 | 0.1421
2100 | 0.4442 | 1.5817 | 0.0641
Z25 | 0.1721 | 1.8538 | 0.0248

74 0.0541 | 1.9718 | 0.0078

Table 4.40: Intra-Area cross-correlations at two levels, X and Y both have high auto-
correlation

Table 4.41 shows level 2 and level 1 pure correlations. Both the level 2 and level 1
pure correlation increases with aggregation. The level 1 pure correlation approaches
the initial correlation and the increase is slow in comparison with the increase in
the previous two data sets. The level 2 pure correlation increase very slowly for the
first three levels of aggregation.

The level 1 pure regression seems to have only a slight increase when the number
of zones is 625 and decreases slightly at 400 zones and becomes stable for the rest
of the levels of aggregation including 4 zones. The level 2 pure regression increases
with aggregation except when the data are aggregated into 4 zones, in which case

there is a sudden increase.
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Level 1 | Level 2| p%% | p0% | 02 | 8%
Individual | 22500 | 0.3075 | 0.2437 | 0.2523 | 0.2578
7625 | 0.3059 | 0.2790 | 0.2443 | 0.2657
7400 | 0.3200 | 0.2728 | 0.2479 | 0.2585
7100 | 0.3717 | 0.2768 | 0.2729 | 0.2482
725 | 0.5036 | 0.2818 | 0.3478 | 0.2470
Z4 | 0.9968 | 0.2876 | 0.4944 | 0.2499

Table 4.41: Pure coefficients at two levels, X and Y both have high autocorrelation

Analysis of Distribution of Statistics when both Variables have High Au-

tocorrelation

As in the previous sub-sections, the data generation is repeated 500 times to investi-
gate the distributions of some pertinent statistics. Figure 4.18 shows the distribution

of the variance of variable X and the covariance of X and Y.

Unweighted
Variance (X) Mean | Median | Minimum | Maximum | Std. Dev.
Individual 6.0000 | 6.0000 6.0000 6.0000 0.0000
2500 4.8941 | 4.8943 4.7439 5.00635 0.0428
625 3.2719 | 3.2674 2.9694 3.58812 0.0915
400 2.5808 | 2.5828 2.2233 2.90657 0.1088
100 0.9305 | 0.9342 0.5834 1.28437 0.1125
25 0.2684 | 0.2625 0.0928 0.55646 0.0720
4 0.0454 | 0.0374 0.0005 0.171253 0.0336
Unweighted
Covariance of X and Y | Mean | Median | Minimum | Maximum | Std. Dev.
Individual 2.1081 | 2.1098 1.4813 2.7771 0.2124
2500 1.8728 | 1.8819 1.2525 2.5238 0.2030
625 1.3644 | 1.3713 0.8132 2.0952 0.1809
400 1.1116 | 1.1077 0.5210 1.7280 0.1693
100 0.4280 | 0.4227 | -0.0088 0.8833 0.1256
25 0.1277 | 0.1180 | -0.1019 0.3436 0.0750
4 0.0224 | 0.0185 -0.1218 0.1651 0.0352

Table 4.42: Description of the Unweighted Variance(X) and Covariance(X,Y), X and
Y both have high autocorrelation

Only the distributions of the variance of X is shown because the distributions of
the variance of Y have similar pattern. The mean of the unweighted variance of X
decreases with aggregation and the change of the mean of unweighted variance of

variable X is slow compared with that of data set 2 and 1. The standard deviation
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Figure 4.18: Unweighted Variance of X and Covariance (X,Y)

of the unweighted variance seems to be in agreement with the claim of Reynolds
that ”When significantly positive autocorrelated variables are aggregated, ... expect
the variability of possible aggregate variance values to increase with a decrease in the
number of cells.”( page 23, Reynolds, 1988). Looking at Figure 4.18 and Table 4.42
the standard deviation of the unweighted variance displayed the same pattern. The

result is very different when the variable have low autocorrelation(data set 1) and
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similar to when the variable have medium autocorrelation(data set 2). The mean of
the covariance at different levels of aggregation decreases with aggregation and the
values are larger than the results from data set 2. The standard deviation decrease
with aggregation and the magnitude are larger than the corresponding value from
data set 2.

Figure 4.19 shows the details of the weighted variance of X and weighted co-
variance of X and Y. The weighted variances increase with aggregation and have
values greater than the corresponding values from data set 2. Table 4.43 shows the
description of the distribution. Looking at the results of Figure 4.19 and Table 4.43,
the standard deviation increases with aggregation. The magnitude of the standard
deviations are larger than the corresponding results from data set 1 at different

levels of aggregation. The mean weighted covariance increases with aggregation.

Weighted
Variance (X) Mean | Median | Minimum | Maximum | Std. Dev.
Individual 6.0000 6.0000 6.0000 6.0000 0.0000
2500 27.9407 | 27.9489 | 27.4546 28.4352 0.1707
625 79.9964 | 80.1087 | 75.1792 84.9025 1.8018
400 101.6260 | 101.6700 | 91.1970 111.2201 3.8030
100 155.5266 | 154.9506 | 107.2980 | 208.5658 18.1176
25 186.2580 | 184.1820 | 71.3480 | 351.8320 | 49.0450
4 199.8920 | 164.8220 | 0.8660 1155.2280 | 154.0120
Weighted
Covariance of X and Y | Mean Median | Minimum | Maximum | Std. Dev.
Individual 2.1081 2.1098 1.4813 27771 0.2124
2500 7.4914 7.5277 5.0098 10.0951 0.8121
625 21.8300 | 21.9410 | 13.0100 33.5230 2.8940
400 27.7894 | 27.6920 13.0243 43.2011 4.2328
100 42.8040 | 42.2730 | -0.8770 88.3270 12.5600
25 51.0650 | 47.2130 | -40.7540 | 137.4190 | 29.9950
4 56.0200 | 46.1580 | -304.6190 | 412.7350 | 87.9640

Table 4.43: Description of the Weighted Variance(X) and Covariance(X,Y), X and Y
both have high autocorrelation

Figure 4.20 shows the distribution of correlations at different levels of aggrega-
tion. The mean and median of the correlation increase in a very slow manner and
decrease slightly when the data are aggregated to 4 zones. The slow decrease of
the variances of variable X and Y and the covariance cause the slow increase of the

mean of the correlations. The standard deviation increases with aggregation and
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Figure 4.19: Weighted Variance of X and Covariance(X,Y), X and Y both have high

autocorrelation

the magnitudes of the standard deviations are a little higher than the corresponding
standard deviations from data set 2. The results show a very slow increase of the

mean correlation as the data are aggregated into smaller number of groups.

Figure 4.21 shows the distribution of regression coefficients when the variables X

and Y both have high autocorrelation. The trend is similar to that of the behavior
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Figure 4.20: Pearson Correlation, X and Y both have high autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual | 0.3043 | 0.3045 0.2138 0.4009 0.0307
2500 0.3203 | 0.3218 0.2145 0.4260 0.0342
625 0.3372 | 0.3395 0.2031 0.4802 0.0425

400 0.3429 | 0.3442 0.1682 0.5003 0.0486
100 0.3542 | 0.3585 | -0.0082 0.5958 0.0893
25 0.3553 | 0.3549 | -0.2679 0.7604 0.1762
4 0.3306 | 0.4556 | -0.9971 0.9994 0.5392

Table 4.44: Description of Pearson Correlation, X and Y both have high autocorrela-
tion

of the correlation coefficient, with a low increase of the mean regression coefficient
as the data are aggregated to smaller number of groups. The standard deviation

increases with the level of aggregation.

Figure 4.22 shows the distribution of the estimated variance components of vari-
able X. The mean of the level 2 variance component of X decrease with aggregation
and the values are larger than the corresponding results from data set 1. The stan-

dard deviation increases up to when data are aggregated to 400 groups and decrease
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Figure 4.21: Regression Coefficient, X and Y both have high autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

Individual
2500
625
400
100
25
4

0.3514
0.3826
0.4169
0.4307
0.4600
0.4795
0.4880

0.3516
0.3846
0.4179
0.4333
0.4598
0.4823
0.5456

0.2469
0.2559
0.2461
0.2184
-0.0119
-0.3411
-6.5081

0.4629
0.5124
0.5839
0.6387
0.8120
1.2732
7.1885

0.0354
0.0409
0.0532
0.0626
0.1241
0.2538
1.1234

Table 4.45: Description of Regression Coefficient, X and Y both have high autocorre-

lation

then on. The mean of the level 1 variance component increases with aggregation.

The distribution of the variance components of Y is not shown since the behavior is

similar to the behavior of the distributions of variable X.

Figure 4.23 displays the distribution of the intra-area correlation of variable X.

The mean (or median) of level 2 variance component decrease with aggregation The

mean intra-area correlation at different levels of aggregation are larger than the

corresponding results from data set 2.
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Figure 4.22: Variance Components of X, X have high autocorrelation

Figure 4.24 shows the distribution of intra-area cross-correlation. Similar to the
results of the previous data set, the mean decreases with aggregation, although the

values are greater that the previous two data sets.

Figure 4.25 shows the distribution of the estimated level 2 and level 1 pure correlations.
Note that the figure shows only aggregation up to 25 zones, this is because when the

data are aggregated to 4 zones, there are some values that are not a characteristic
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Level 2
Variance Component X | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 4.5230 | 4.5233 4.3229 4.6726 0.0571
625 3.0847 | 3.0799 2.7627 3.4215 0.0974
400 2.4320 | 2.4341 2.0605 2.7705 0.1130
100 0.8705 | 0.8742 0.5234 1.2244 0.1125
25 0.2442 | 0.2386 0.0749 0.5219 0.0694
4 0.0344 | 0.0280 -0.0015 0.1351 0.0269
Level 1
Variance Component X | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 1.4770 | 1.4767 1.3274 1.6771 0.0571
625 2.9153 | 2.9201 2.5785 3.2373 0.0974
400 3.5681 | 3.5660 3.2295 3.9395 0.1130
100 5.1295 | 5.1258 4.7756 5.4767 0.1125
25 5.7558 | 5.7614 5.4781 5.9251 0.0694
4 5.9656 | 5.9720 5.8649 6.0015 0.0269

Table 4.46: Description of the Level 2 and Level 1 Variance Component X, X have

high autocorrelation

Intra-Area Correlation X
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Figure 4.23: Intra-Area correlation of X, X have high autocorrelation

of a correlation coefficient. In this particular case there are values that exceed 1

and less than -1. This phenomenon will be investigated later. The increase of the
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| Description [ Mean | Median | Minimum | Maximum | Std. Dev. |

4

Individual
2500
625
400
100
25

0.7538
0.5141
0.4053
0.1451
0.0407
0.0057

0.7539
0.5133
0.4057
0.1457
0.0398
0.0047

0.7205
0.4604
0.3434
0.0872
0.0125
-0.0003

0.7788
0.5702
0.4617
0.2041
0.0870
0.0225

0.0095
0.0162
0.0188
0.0188
0.0116
0.0045

Table 4.47: Description of Intra-Area Correlation of X, X have high autocorrelation

Intra-Area Cross-Correlation
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Figure 4.24: Intra-Area Cross-Correlation, X and Y both have high autocorrelation

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |

4

Individual
2500
625
400
100
25

0.2589
0.1895
0.1541
0.0587
0.0170
0.0025

0.2604
0.1898
0.1536
0.0580
0.0157
0.0020

0.1697
0.1108
0.0684
-0.0040
-0.0148
-0.0141

0.3539
0.2958
0.2427
0.1235
0.0470
0.0190

0.0289
0.0259
0.0243
0.0180
0.0104
0.0041

Table 4.48: Description of Intra-Area Cross-Correlation, X and Y both have high

autocorrelation
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Figure 4.25: Pure Correlation, X and Y both have high autocorrelation

mean level 2 pure correlation is very slow and the values are near to the initial
correlation coefficient of 0.3. The variability of the level 1 pure correlation for each
level of aggregation is very similar to the results from data set 2 but slightly larger.
Level 1 pure correlations also have results similar to the results from data set 2 and
again are a bit larger. The variability of the level 1 pure correlation start with a

smaller value and stabilizes when the level of aggregation reaches 400 groups and
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stay constant up to the last level of aggregation.

Level 2
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.3271 | 0.3295 0.2148 0.4369 0.0357
625 0.3412 | 0.3439 0.2018 0.4897 0.0441
400 0.3467 | 0.3478 0.1618 0.5098 0.0507
100 0.3574 | 0.3624 -0.0275 0.6061 0.0937
25 0.3580 | 0.3583 -0.2936 0.7775 0.1855
4 0.3421 | 0.5040 -1.4352 2.4131 0.6084
Level 1
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2224 | 0.2225 0.1641 0.2867 0.0206
625 0.2602 | 0.2602 0.1876 0.3314 0.0258
400 0.2719 | 0.2719 0.1902 0.3472 0.0280
100 0.2941 | 0.2941 0.2107 0.4046 0.0304
25 0.3015 | 0.3014 0.2251 0.4014 0.0306
4 0.3038 | 0.3042 0.2126 0.4002 0.0306

Table 4.49: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
have high autocorrelation

Figure 4.26 displays the distributions of level 2 and level 1 pure regressions.
The mean of level 2 pure regression seems to be not affected by aggregation and
the values are very near but smaller than the initial regression coefficient. The
standard deviation increase with aggregation. The level 1 pure regression increase
with aggregation but this time in a very slow manner, the standard deviation of the

values seems to be constant.

4.2.4 Discussion of Experiment 1

The mean is not affected by aggregation in both the weighted and unweighted anal-
ysis. The unweighted variance always decreases with aggregation regardless of the
level of autocorrelation. However, the decrease depends on the level of autocorrela-
tion as measured using the Moran’s I statistic. The decrease for the variables with
high positive autocorrelation seems to be small compared with variables with lower
positive autocorrelation. The reason is that the variable with high positive auto-

correlation have neighboring values that are likely to be similar and when they are
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Figure 4.26: Pure Regression, X and Y both have high autocorrelation

aggregated, a relatively smaller variation is lost compared with a lower positively
autocorrelated variable. Reynolds (1998) stated that when a variable is spatially
located, the variance can be partitioned into sums of variances within various sub-
regions and the variance of the average values of all subregions. He further stated
that the process of aggregation removes the sum of the variances within subregions

so that a variable with positive autocorrelation will have on the average smaller
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Level 2
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2699 | 0.2717 0.1776 0.36016 0.0295
625 0.2738 | 0.2756 0.1656 0.4003 0.0356
400 0.2741 | 0.2740 0.1232 0.4111 0.0406
100 0.2750 | 0.2757 | -0.0187 0.4756 0.0739
25 0.2718 | 0.2685 | -0.2295 0.7680 0.1528
4 0.2525 | 0.2962 | -14.841 13.8764 1.2087
Level 1
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2322 | 0.2315 0.1759 0.3006 0.0225
625 0.2482 | 0.2472 0.1767 0.3218 0.0257
400 0.2535 | 0.2533 0.1720 0.3261 0.0269
100 0.2608 | 0.2609 0.1831 0.3625 0.0277
25 0.2629 | 0.2634 0.1954 0.3514 0.0269
4 0.2634 | 0.2638 0.1846 0.3471 0.0265

Table 4.50: Description of the Level 2 and Level 1 Pure Regression, X and Y both
have high autocorrelation

variance within each subregion so, less variance is lost.

Looking at a particular

result from the experiments above, Table 4.51 shows three variables with different

levels of autocorrelation as measured using the Moran’s I with queen’s connectivity

matrix and their corresponding individual level variances. It also shows the variance

when the individual level data are aggregated into smaller number of zones. Looking

at the values, we can see that the more autocorrelated the variable, the lesser the

change in the variance when the data are aggregated compared with the variables

with lower autocorrelation.

Variable X1 X2 X3

Moran’s I (Individual) | 0.1222 | 0.4549 | 0.7138
Variance (Individual) | 6.000 | 6.000 | 6.000
Variance (2500 Zones) | 2.1361 | 3.7314 | 4.8461
Variance (625 Zones) | 0.8065 | 2.0727 | 3.1691
Variance (400 Zones) | 0.6126 | 1.5626 | 2.5333
Variance (100 Zones) | 0.1516 | 0.5814 | 0.9373
Variance (25 Zones) 0.0462 | 0.1600 | 0.2598
Variance (4 Zones) 0.0067 | 0.0214 | 0.0360

Table 4.51: Moran’s I and Unweighted Variance
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Note that from for the simple multi-level model given by 5.1 we have, V' (X'g) =
"j)\;—gx 14+ (N, — 1)AE?)X and the unweighted variance reflects the variances of these
means. In subsection 3.1.8 we saw that larger Moran’s I will result in larger A
leading to the larger variances. Also, as zones get bigger N, increases and A®
decreases, so the variance goes down and thus explains the behavior of the decrease

of the variance.

A connection between Moran’s I and A® with appropriate choice of connectivity

was derived in section 3.1.8 and will be examined more closely in Chapter 6.

The correlation coefficient is affected by the level of aggregation and tends to
increase as the number of zones decrease regardless of the level of autocorrelation.
The mean correlation increases with aggregation. The increase however, depends on
the level of autocorrelation. Data set 1 consist of variables X and Y that are both
low autocorrelated although variable Y has a little larger autocorrelation. For data
set 2, variables X and Y have medium autocorrelation and the increasing trend of
the correlation is observed but this time the increase is not as fast as the increase
that is observed from data set 1. Data set 3, the variables have high autocorrelation
displayed patterns similar to data set 2 but the increase is slower. Table 4.52 shows
the theoretical values of the mean of the correlation and the corresponding standard
deviation computed using Equations (4.2) and (4.3) assuming no autocorrelation.
For the different levels of aggregation, the number of groups were substituted into
the equations. The results shows that the expected mean correlation depends on
the initial correlation at the individual level. Looking at the results, even the re-
duction of the number of groups does not have much effect except when the data
are aggregated to 4 groups, in which case there is a small but sudden increase of the

mean correlation.

Table 4.53 shows the results computed from the simulated data. Compared with
the corresponding theoretical results, the mean of the correlations is affected by the
level of autocorrelation of the variables. The percentage loss of variance of the vari-
ables and the corresponding percentage loss of covariance cause the correlation to

increase with aggregation. The increase depends on the difference between the per-
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Data Set 1 Data Set 2 Data Set 3

Correlation | Mean (Std. Dev.) | Mean (Std. Dewv.) | Mean(Std. Dev.)
Individual | 0.2989 (0.0091) 0.3154 (0.0090) | 0.3043 (0.0090)

2500 0.2990 (0.0182) 0.3155 (0.0180) | 0.3044 (0.0182)

625 0.2991 (0.0565) 0.3156 (0.0561) | 0.3045 (0.0363)

400 0.2992 (0.0456) 0.3158 (0.0451) | 0.3046 (0.0455)

100 0.3004 (0.0918) 0.3169 (0.0908) | 0.3057 (0.0914)

25 0.3059 (0.1879) 0.3227 (0.1860) | 0.3098 (0.1873)

4 0.3954 (0.5710) 0.4134 (0.5683) | 0.3388 (0.5701)

Table 4.52: Theoretical Expected Value and Standard Deviation of Correlation of Data
sets 1, 2, and 3

centage loss of variance and the percentage loss of covariance. When both variables
have low autocorrelation, the difference between percentage loss of variance and the
covariance is larger compare with the other cases, that is, when the variables have

medium and high autocorrelation. These will contribute to the increase (or decrease)

in the correlation.

Data Set 1 Data Set 2 Data Set 3

Correlation | Mean (Stan Dev.) | Mean (Stan Dev.) | Mean(Stan Dev.)
Individual 0.2929 (0.0107) 0.3154 (0.0208) 0.3043 (0.0507)
2500 0.4322 (0.0185) 0.3686 (0.0268) | 0.3203 (0.0342)
625 0.5413 (0.0288) | 0.4040 (0.0369) | 0.3372 (0.0425)
400 0.5544 (0.0344) 0.4148 (0.0439) 0.3429 (0.0486)
100 0.5746 (0.0683) 0.4291 (0.083/) 0.3542 (0.0893)

25 0.5790 (0.1427) | 0.4304 (0.168]) | 0.3553 (0.1762)

4 0.5279 (0.4756) | 0.4013 (0.5207) | 0.3306 (0.5392)

Table 4.53: Summary of Correlation of Data sets 1, 2, and 3

Except for the cases of the individual level and 2500 groups with medium or high

autocorrelation, the theoretical standard deviation provides a reasonable indication

of the actual standard deviation.

The mean of the correlations and their standard deviation increase as the scale

increases, except when there are 4 zones in the case of the mean. The rate of increase

of the mean correlation is reduced as the autocorrelation increases.

The regression coefficient is also affected by aggregation. The effects are similar

to the correlation. Regression will be dealt with later in the chapter.
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Table 4.54 is the summary of the level 2 and level 1 pure correlations for the
three data sets. The mean correlation of data set 1 (both variables have low auto-
correlation) is not affected by aggregation except when the data are aggregated into
4 zones, in which case there is a big jump of the average correlation but these values
are much larger than the initial average correlation of around 0.3. When both vari-
ables have medium autocorrelation, the level 2 pure correlation increases slowly with
aggregation but starts with a little larger correlation when the data are aggregated
into 2500 zones. When both variables have high autocorrelation, the level 2 pure
correlation increases slowly with aggregation and the mean correlation when the
data are aggregated into 2500 groups is near the initial individual level correlation.
Level 1 pure correlations, in all cases considered, display a similar pattern; as the

number of groups decreases, the mean correlation approaches the initial correlation.

Level 2
Pure Correlation

Data Set 1
Mean (Stan Dev.)

Data Set 2
Mean (Stan Dev.)

Data Set 3
Mean(Stan Dev.)

2500 0.7080 (0.0591) 0.4012 (0.0508) 0.3271 (0.05357)

625 0.7093 (0.0415) 0.4212 (0.0404) 0.3412 (0.0441)

400 0.7071 (0.0468) 0.4308 (0.0480) 0.3467 (0.0507)

100 0.7036 (0.0903) 0.4423 (0.0912) 0.3574 (0.0937)

25 0.7084 (0.2008) 0.4425 (0.1853) 0.3580 (0.1855)

4 0.7871 (1.2505) 0.4270 (0.6770) 0.3421 (0.6084)
Level 1 Data Set 1 Data Set 2 Data Set 3

Pure Correlation

Mean (Stan Dev.)

Mean (Stan Dev.)

Mean(Stan Dev.)

2500 0.2076 (0.0110) | 0.2079 (0.0163) | 0.2224 (0.0206)
625 0.2465 (0.0103) | 0.2573 (0.0180) | 0.2602 (0.0258)
400 0.2605 (0.0102) | 0.2735 (0.0189) | 0.2719 (0.0280)
100 0.2834 (0.0105) | 0.3032 (0.0204) | 0.2941 (0.0504)
25 0.2904 (0.0105) | 0.3119 (0.0206) | 0.3015 (0.0506)
4 0.2925 (0.0106) | 0.3151 (0.0207) | 0.3038 (0.0506)

Table 4.54: Summary of Pure Correlation of Data sets 1, 2, and 3

Table 4.55 shows the summary for pure regression coefficient.
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Level 2
Pure Regression

Data Set 1
Mean (Stan Dev.)

Data Set 2
Mean (Stan Dev.)

Data Set 3
Mean(Stan Dev.)

Pure Regression

Mean (Stan Dev.)

Mean (Stan Dev.)

2500 0.5018 (0.0556) 0.3027 (0.0239) 0.2699 (0.0295)

625 0.5033 (0.0579) 0.3086 (0.0510) 0.2738 (0.0356)

400 0.5009 (0.0428) 0.3106 (0.0563) 0.2741 (0.0406)

100 0.5006 (0.0789) 0.3122 (0.0686) 0.2750 (0.0739)

25 0.5010 (0.1772) 0.3082 (0.1419) 0.2718 (0.1528)

4 0.5662 (4.9090) 0.2827 (1.5818) 0.2525 (1.2087)
Level 1 Data Set 1 Data Set 2 Data Set 3

Mean(Stan Dev.)

2500 0.1876 (0.0101) | 0.2172 (0.0175) | 0.2322 (0.0225)
625 0.2184 (0.0092) | 0.2465 (0.0177) | 0.2482 (0.0257)
400 0.2293 (0.0090) | 0.2546 (0.0180) | 0.2535 (0.0269)
100 0.2466 (0.0091) | 0.2681 (0.0184) | 0.2608 (0.0277)
25 0.2518 (0.0092) | 0.2719 (0.0181) | 0.2629 (0.0269)
4 0.2534 (0.0092) | 0.2730 (0.0179) | 0.2634 (0.0265)

Table 4.55: Summary of Pure Regression of Data sets 1, 2, and 3

Since level 2 pure correlation is estimated using

and the level 2 pure regression is estimated using

A (2
o AYX
YX T 4 (2

A%y

the way the correlations and cross correlations change relative to each other is a

factor in determining how the pure coefficients change as we aggregate.

4.3 Experiment 2: Scale effects when both vari-
ables are not autocorrelated

This experiment is done to investigate the aggregation effect when the data are

randomly spatially distributed, that is, the measure of spatial autocorrelation is
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zero. In comparison with the other experiments, the data generation is done in such
a way that both the variables have no spatial autocorrelation.

Two variables (X and Y) are generated using R, using the multivariate normal
function. This case was considered by Steel et. al. (1996). To help compare it with
the other experiments, the variables are generated such that the means are 0.005
and 10.0 for X and Y, respectively. The variance are 6 and 8, respectively for X and
Y and the individual level correlation is 0.3.

Table 4.56 shows the Moran’s I using RookCase, an add-on software for Excel,

the proximity matrix used is ”queen’s move”.

Level I L, L
Individual | 0.00135 | 0.0010 | -0.0011
72500 -0.0159 | -0.0025 | -0.0084
7625 -0.0221 | -0.0191 | 0.0144
7400 0.0098 | 0.0626 | 0.0360
7100 -0.0124 | 0.0370 | 0.0279
725 -0.4136 | 0.0563 | 0.2397
74 - - -

Table 4.56: Moran’s I

As before, one realization of the data generation is examined initially. Table 4.57
shows the unweighted variance and covariance for the two variables X and Y. The
rate of decrease from the initial variance of the two variables is large compared with

the case when the variables are autocorrelated.

X | v | S | Sy | Sy

Individual | 0.005 | 10.000 | 6.0000 | 8.0000 | 2.0648
72500 0.005 | 10.000 | 1.6009 | 2.0422 | 0.5616
7625 0.005 | 10.000 | 0.3872 | 0.5091 | 0.1231
7400 0.005 | 10.000 | 0.2210 | 0.3387 | 0.0918
7100 0.005 | 10.000 | 0.0559 | 0.0895 | 0.0319
225 0.005 | 10.000 | 0.0180 | 0.0247 | 0.0115

74 0.005 | 10.000 | 0.0031 | 0.0077 | 0.0042

not autocorre-

Table 4.57: Unweighted Variance and Covariance, X and Y both are
lated

Table 4.58 shows the weighted variance and covariance for the two variables X

and Y. The values appear to be approximately constant until the number of groups
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is 25 and 4.

X | v | S | Sy | Sh
Individual | 0.005 | 10.000 | 6.0000 | 8.0000 | 2.0259
22500 0.005 | 10.000 | 6.4037 | 8.1688 | 2.2464
2625 0.005 | 10.000 | 6.1945 | 8.1449 | 1.9696
2400 0.005 | 10.000 | 5.5254 | 8.4668 | 2.2951
2100 0.005 | 10.000 | 5.5947 | 8.9459 | 3.1864
725 0.005 | 10.000 | 7.2012 | 9.8850 | 4.5833
74 0.005 | 10.000 | 7.7141 | 19.3487 | 10.5313

Table 4.58: Weighted Variance and Covariance, X and Y both are not autocorrelated

Table 4.59 shows the correlation and regression coefficients at different scales. An
increase of the correlation coefficients is observed. Steel et al (1996) suggested that
there should be no aggregation effect on this statistics in this case. The reason for
the increase may be that it was just one randomly selected realization of the data set
generation. The regression coefficients also displayed the increasing pattern. Results

for repeated generation of the population are given later in this section.

Correlation | Regression
Coefficient | Coefficient
Individual Data 0.2980 0.3441
Number of Zones
2500 0.3106 0.3508
625 0.2773 0.3180
400 0.3356 0.4154
100 0.4504 0.5695
25 0.5432 0.6365
4 0.8620 1.3652

Table 4.59: Correlation and regression coefficients at different scales, X and Y both
are not autocorrelated

Tables 4.60 shows the estimated variance components and intra-area correlations
of the variable X at different levels of aggregation. Looking at the level 2 variance
components at different levels of aggregation, it can be noticed that some values are
negative. Recall that the initial variance of variable X is 6.0, when the estimated level
2 variance component is negative, the level 1 variance component will be more than

6.0 and thus, the resulting intra-area correlation is negative. The moment approach
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gives unbiased estimates, but allows negative estimates of variance components.
Looking at the values of dxx they are all close to zero which is consistent with

Moran’s I being approximately equal to zero.

Level 1 Level 2 AS?)X A%( Oxx
Individual | Z2500 | 0.1345 | 5.8650 | 0.0224
7625 | 0.0129 | 5.9871 | 0.0022
7400 | -0.0197 | 6.0197 | -0.0033
Z100 | -0.0041 | 6.0041 | -0.0007
725 0.0029 | 5.9971 | 0.0005

74 0.0005 | 5.9995 | 0.0001

Table 4.60: Intra-Area correlations and variance components of X, X not autocorre-
lated

Table 4.61 displays the estimated variance components of variable Y. In this
particular realization of the data set generator, no negative level 2 variance compo-
nent is observed but this is not the general case. The level 2 variance component
is small in relation to the level 1 variance component resulting in small intra-area

correlation.

~

Level 1 Level 2 /A\gg/ Ag/lg/ 5yy
Individual | Z2500 | 0.0562 | 7.9438 | 0.0070
7625 | 0.0096 | 7.9904 | 0.0012
7400 | 0.0194 | 7.9806 | 0.0024
7100 | 0.0095 | 7.9905 | 0.0012
725 0.0045 | 7.9955 | 0.0006

74 0.0036 | 7.9964 | 0.0005

Table 4.61: Intra-Area correlations and variance components of Y, Y both not auto-
correlation

Tables 4.62 shows the Intra-Area Cross Correlation. It can be noted that level
1 covariance component seems to be not affected by aggregation.

Table 4.63 displays level 2 and level 1 pure correlation components. It can be seen
that the level 2 pure correlation is severely affected by aggregation, from negative
value to positive value, values more than 1 and worse, with entries in the table la-
belled NA. The last case happened because either level 2 variance component of X or

Y is negative. This phenomenon will be examined later. The level 1 pure correlation
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Level 1 Level 2 /A\%( A%( Oy x
Individual | Z2500 | 0.0605 | 2.0043 | 0.0087
7625 | -0.0063 | 2.0710 | -0.0009
7400 | 0.0096 | 2.0552 | 0.0014
Z100 | 0.0112 | 2.0536 | 0.0016
725 0.0061 | 2.0587 | 0.0009

74 0.0027 | 2.0621 | 0.0004

Table 4.62: Intra-Area Cross-Correlation, X and Y both are not autocorrelated

seems to be not affected by aggregation. Notice that column 3 of Table 4.63 have
rows without an entry, this is because the level 2 variance components on these two
levels of aggregation is negative.

Recall that pure correlation is computed using

AL

== (4.7)
Ayy Axx

so that level 2 pure correlation is computed using

~

R A(2)
/@ = - (;’)L; = (4.8)
AVyAxx
The level 2 variance components when aggregated into 400 and 100 zones have
negative values. This will result in an operation of taking the square-root of a

negative number.

Level 1 | Level 2 ,6%,2;( ﬁg};(

Individual | 72500 | 0.6957 | 0.2936
2625 | -0.5672 | 0.2994
7400 NA 0.2965
2100 NA 0.2965
725 1.6737 | 0.2973

74 1.9200 | 0.2977

Table 4.63: Pure correlations at two levels, X and Y both are not autocorrelated

Table 4.64 shows the level 2 and level 1 pure regression. The level 2 pure regression
does not display a predictable aggregation effect. Level 1 pure regression seems to
be not affected by aggregation but the values are lower than the initial regression

coefficient.
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Level 1 | Level 2 b%( bg};(
Individual | Z2500 | 1.0759 | 0.2523
7625 | -0.6572 | 0.2592
7400 | 0.4934 | 0.2575
Z100 | 1.8580 | 0.2570
725 1.5395 | 0.2575

74 1.3361 | 0.2579

Table 4.64: Pure Regressions at two levels, X and Y both are not autocorrelated

Analysis of distributions of statistics when both variables are not auto-

correlated

The data generation is then repeated 500 times to investigate the distributions.
Figure 4.27 shows the distribution of the Pearson correlation at the individual

level and the different levels of aggregation. The mean of the correlation coefficients

is not affected by aggregation as predicted by Steel and Holt (1996). The standard

deviation of the Pearson correlation increase with aggregation.

Pearson Correlation Coefficient
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Figure 4.27: Pearson Correlation, X and Y both are not autocorrelated
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| Description [ Mean | Median | Minimum | Maximum | Std. Dev. |

Individual
2500
625
400
100
25
4

0.2996
0.2986
0.2970
0.2996
0.2994
0.2850
0.2600

0.2993
0.2989
0.2980
0.2978
0.3019
0.2980
0.3630

0.2722
0.2360
0.1750
0.1648
0.0669
-0.2910
-0.9980

0.3321
0.3558
0.4138
0.4356
0.5354
0.7090
0.9990

0.0095
0.0203
0.0378
0.0458
0.0863
0.1780
0.5351

Table 4.65: Description of Pearson Correlation, X and Y both are not autocorrelated

Steel and Holt (1996) derived some theoretical results on group-level analysis

procedures for random aggregation. One of the results is that the expectation of the

group-level correlation is p (1 — 1_—]\/fz> and the variance is % (1 + %) where

M is the number of groups. Table 4.66 shows the theoretical values of the mean,

standard deviation, and 95% interval of the group-level correlation for the different

values of M. The results are very similar to those observed in table 4.67.

| Description | Mean | Lower Limit | Upper Limit | Std. Dev. |

Individual | 0.2999 0.2899 0.3418 0.0091
2500 0.2999 0.2771 0.3639 0.0181
625 0.2997 0.2349 0.4092 0.0364
400 0.2993 0.2140 0.4326 0.0456
100 0.2973 0.1094 0.5587 0.0917
25 0.2891 -0.1151 0.7241 0.1876

Table 4.66: Theoretical Mean, Standard deviation, Lower and Upper Limits of group-
level correlation

Figure 4.28 shows the distribution of the estimated variance components of vari-
able X. Looking at the figure, we can notice the that the mean or median of the
level 2 variance components seems to be not affected by aggregation and they are
all slightly less than zero. The moment based estimates that are being used are
unbiased and since the level 2 variance is zero, they will give negative estimates.
The level 1 variance is also estimated unbiasedly. The standard deviations of these
values decrease with aggregation. Looking at the right side of the figure, the distri-
bution of the level 1 variance components displays a similar pattern. The mean (or

median) seems to be not affected by aggregation but some of the values are more
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Figure 4.28: Variance Components of X, X not autocorrelated

than the initial variance because of the negative level 2 variance component.

Table 4.67 summarizes of the distribution of the level 2 and level 1 variance com-

ponent of X. Level 2 variance component have negative values. As mentioned earlier,

this is because of the method used in the computation of the variance components.

Figure 4.29 shows the estimated intra-area correlation of X where it can be noted

that the standard deviation of the values decreases with aggregation. The mean (or
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Level 2
Variance Component X | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 -0.0050 | -0.0066 | -0.1452 0.1345 0.0505
625 -0.0006 | -0.0021 | -0.0719 0.0873 0.0225
400 -0.0014 | -0.0027 | -0.0452 0.0512 0.0169
100 -0.0005 | -0.0011 | -0.0237 0.0248 0.0083
25 -0.0004 | -0.0009 | -0.0108 0.0172 0.0042
4 -0.00009 | -0.0004 | -0.0019 0.0069 0.0015
Level 1
Variance Component X | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 6.0050 | 6.0066 5.8655 6.1452 0.0505
625 6.0006 | 6.0021 5.9128 6.0719 0.0225
400 6.0014 | 6.0027 5.9488 6.0452 0.0169
100 6.0005 | 6.0011 5.9752 6.0237 0.0083
25 6.0004 | 6.0009 5.9828 6.0108 0.0042
4 6.0000 | 6.0004 5.9931 6.0019 0.0015

Table 4.67: Description of the Level 2 and Level 1 Variance Component of X, X not

autocorrelated

median) of the values seems to be not affected by aggregation and the values are

almost equal to zero but negative.

| Description | Mean | Median | Minimum | Maximum | Std. Dev. |
Individual - - - - -

2500 -0.00083 | -0.00111 | -0.02421 0.02242 0.00842
625 -0.00009 | -0.00034 | -0.01198 0.01454 0.00376
400 -0.00024 | -0.00045 | -0.00754 0.00854 0.00282
100 -0.00008 | -0.00018 | -0.00400 0.00410 0.00140

25 -0.00007 | -0.00016 | -0.00180 0.00290 0.00070

4 -0.00002 | -0.00007 | -0.00032 0.00120 0.00024

Table 4.68: Description of Intra-Area Correlation of X, X not autocorrelated

Figure 4.30 show the estimated intra-area correlation of Y, which is similar to

intra-area correlation of X. The standard deviation of the values decrease with ag-

gregation.

Figure 4.31 displays the distributions of the estimated level 2 and level 1 pure correlations.

The boxplot of the level 2 pure correlations ended up with a very different appear-

ance because there are many entries which end up with NA’s because the estimated

variance component at this level is negative. Actually at every aggregation level,
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Figure 4.29: Intra-Area Correlation X, X not autocorrelated
| Description [ Mean | Median | Minimum | Maximum | Std. Dev. |
Individual - - - - -
2500 -0.00024 | -0.00020 | -0.02658 0.02211 0.00852
625 -0.00016 | -0.00040 | -0.01010 0.01005 0.00359
400 0.00013 | 0.00003 -0.00710 0.00094 0.00290
100 0.00004 | -0.000001 | -0.00290 0.00570 0.00140
25 -0.00003 | -0.00010 | -0.00150 0.00260 0.00066
4 0.000004 | -0.00007 | -0.00032 0.00140 0.00026

Table 4.69: Description of Intra-Area Correlation of Y, Y not autocorrelated

the number of NA’s is almost 50 percent because of the level 2 variance component
is estimated unbiasedly and has mean 0, so approximately half will give negative
estimated level 2 variance components. These values can be set to zero. These
results suggest that estimated level 2 coefficients will be unstable when there is no
autocorrelation present. This is reflected in the relatively high standard deviations
in Table 4.70. In practice it would be important to examine confidence intervals on
the level 2 variance components before attempting to calculate level 2 pure corre-

lation or regression coefficients. Methods for testing whether variance components
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Figure 4.30: Intra-Area Correlation Y, Y not autocorrelated

are zero are given in Snijders and Bosker (1999). The mean (or median) of the

level 2 pure correlation is not affected by aggregation. The estimated level 2 pure

correlation coefficients are not well behaved when autocorrelation is zero.

Figure 4.32 shows the distributions of level 2 and level 1 pure regression coeffi-

cients at different levels of aggregation. The mean of the level 2 pure regression is

affected by aggregation. The mean of the level 1 pure regression seems to be not

affected by aggregation and the standard deviation of values seems to be constant

except when there are 2500 zones. Although, the mean (or median) is not affected

by aggregation, the value is smaller than the mean (or median) of the initial regres-

sion coefficient. Similar to the level 2 pure correlation, the estimated level 2 pure

regression coefficients are not well behaved when autocorrelation is zero.

When the variables are both not spatially autocorrelated, the level 1 pure correlations

and the level 1 pure regression coefficients seem to be not affected by aggregation.

The level 1 intra-area cross-correlations have values almost equal to the correla-

tion coefficient at the individual level. This is because there is not much change of
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Figure 4.31: Pure Correlation, X and Y both are not autocorrelated

the values of the level 2 covariance components and are much larger than the level

1 covariance components.
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Figure 4.32: Level 2 and Level 1 Pure Regression, X and Y both are not autocorrelated
4.4 Comments on Experiments 1 and 2

Figure 4.33 shows the distributions of the correlation coefficients at different levels
of aggregation and different degrees of autocorrelation. The data generation process
cannot precisely control the specific degree of autocorrelation. The autocorrelation

is described categorically as very low, low, medium and high. The Very low autocor-



Level 2
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2440 | 0.2820 | -187.695 187.704 15.149
625 0.3892 | 0.2512 | -35.0007 48.7674 4.2018
400 0.7725 | 0.2587 | -29.9521 | 154.3832 9.1065
100 0.0191 | 0.2107 | -52.4610 16.1126 3.4556
25 0.0715 | 0.2072 | -89.9981 61.0558 7.3015
4 0.5170 | 0.1650 | -88.937 173.5570 12.686
Level 1
Pure Regression | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2598 | 0.2602 0.2297 0.2887 0.0094
625 0.2596 | 0.2596 0.2340 0.2858 0.0084
400 0.2595 | 0.2595 0.2353 0.2863 0.0083
100 0.2595 | 0.2594 0.2350 0.2874 0.0083
25 0.2595 | 0.2595 0.2356 0.2874 0.0082
4 0.2595 | 0.2592 0.2359 0.2876 0.0082
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Level 2
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.1020 | -0.1950 | -11.549 44.1040 3.6360
625 -0.1110 | -0.0709 | -8.6598 4.7934 1.5719
400 0.5392 | -0.0391 | -5.0850 36.0027 3.7218
100 0.1710 | 0.0903 | -18.6183 17.8646 2.3040
25 -0.2440 | -0.197 | -32.3930 22.6810 2.9840
4 0.0307 | -0.2538 | -16.7514 28.5288 3.3820
Level 1
Pure Correlation | Mean | Median | Minimum | Maximum | Std. Dev.
Individual - - - - -
2500 0.2999 | 0.3005 0.2668 0.3326 0.0107
625 0.2998 | 0.2995 0.2701 0.32926 0.0097
400 0.2996 | 0.2995 0.2728 0.3301 0.0095
100 0.2996 | 0.2995 0.2718 0.3320 0.0095
25 0.2996 | 0.2996 0.2721 0.3319 0.0095
4 0.2996 | 0.2994 0.2724 0.3322 0.0095

Table 4.70: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
are not autocorrelated

Table 4.71: Description of the Level 2 and Level 1 Pure Regression, X and Y both are
not autocorrelated

relation category has auto correlations almost equal to zero at the individual level
as measured by Moran’s I. The Low autocorrelation category has measures approx-

imately equal to 0.2 at the individual level. The Medium autocorrelation and High



CHAPTER 4: Multilevel Modeling and the MAUP 110

i - e - - - N Bk

@ M =Very Low M =Low 3 M =Medium M, =High
[l o . m
: = m . m
© | = I —
a . =
- = E H _ A ‘
3 R j = T
_ o = R = T
;’ el = - =] = = I "
o o - h
oL

[(NIx

ISR

F1E

Average Individual’
Level Correlation

-0.2

[ A YRR

2500 625 400 100 25 2500 625 400 100 25 2500 625 400 100 25 2500 625 400 100 25

Figure 4.33: Correlations at different levels of aggregation and degrees of autocorre-

lation

autocorrelation categories have measures 0.6 and 0.8, respectively at the individual

level.

Table 4.72 supports figure 4.33. When the autocorrelation of both variables
(X and Y) initially are very low, the mean and median seems to be not affected
by aggregation but the standard deviation increases with aggregation. When both
variables have low autocorrelation, the mean and median and the standard devi-
ations increase with aggregation. The values of the mean and median are larger
than the corresponding Pearson correlation when the variables both have very low
autocorrelation. From the same figure, the mean and median when both variables
have medium degree of autocorrelation increase with aggregation but this time the
increase is slower than when the variables have low autocorrelation. When both
variables have high autocorrelation, the mean and median increase with aggrega-
tion in a very slow manner and the range and standard deviation increase with

aggregation.
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For a given scale there is an initial increase in the mean correlation as the au-

tocorrelation goes from zero to a low level. Then, as the autocorrelation increases,

the mean correlation decreases and the standard deviation increases.

M, = Very Low M, = Low M, = Medium M, = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)
# of Zones

2500 0.2989(0.0203) | 0.4322(0.0185) | 0.3686(0.0268) | 0.3203(0.0342)
625 0.2980(0.0378) | 0.5413(0.0288) | 0.4040(0.0370) | 0.3372(0.0425)
400 0.2978(0.0458) | 0.5544(0.0843) | 0.4148(0.0439) | 0.3430(0.0486)
100 0.3019(0.0863) | 0.5746(0.0682) | 0.4291(0.0834) | 0.3542(0.0893)
25 0.2980(0.1780) | 0.5790(0.1426) | 0.4304(0.1684) | 0.3553(0.1762)
4 0.3630(0.5350) | 0.5279(0.4756) | 0.4013(0.5207) | 0.3306(0.5392)

Table 4.72: Summary of Correlations at Different Degrees of Autocorrelation and
Levels of Aggregation

Figure 4.34 shows the distribution of the regression coefficients at different lev-

els of aggregation and different degrees of spatial autocorrelation.

The figure is

supported by Table 4.73. Looking at the table it is noted that the mean regres-
sion coefficient is not affected by aggregation when the level of autocorrelation is

very low. Also it can be noted the there is an increasing effect for other levels of

autocorrelation but a slower increase as the level of autocorrelation increase.

M, = Very Low M, = Low M, = Medium M, = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)
# of Zones

2500 0.3452(0.0244) | 0.5371(0.0288) | 0.4646(0.0338) | 0.3826(0.0409)
625 0.3430(0.0450) | 0.7090(0.0478) | 0.5377(0.0502) | 0.4169(0.0532)
400 0.3479(0.0558) | 0.7325(0.0583) | 0.5623(0.0626) | 0.4307(0.0626)
100 0.3495(0.1069) | 0.7692(0.1174) | 0.5997(0.1288) | 0.4600(0.1241)
25 0.3360(0.2230) | 0.7944(0.2375) | 0.6238(0.2712) | 0.4795(0.2538)
4 0.3340(1.1570) | 0.7750(1.0290) | 0.6640(1.2784) | 0.4880(1.1234)

Table 4.73: Summary of Regression Coefficient at Different Degrees of Autocorrelation
and Levels of Aggregation

Figure 4.35 shows the distributions of unweighted covariance of variables X and

Y with different degrees of autocorrelation. Recall that the variance at the indi-

vidual level for the two variables X and Y are 6.0 and 8.0, respectively. The mean
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Figure 4.34: Regression Coefficient at Different Levels of Aggregation and Degrees of

Autocorrelation

covariance for the different degrees of autocorrelation varies: for a very low degree of
autocorrelation, the mean covariance is 0.5165, for low, medium, and high, the mean
covariance are 1.1413, 1.7367, and 1.8728, respectively. The standard deviation of
the covariance at each degree of autocorrelation decreases with aggregation. If we
look at the standard deviation at each level of aggregation, the standard deviation

increase as the degree of autocorrelation increases.

The unweighted variance of X and Y display a similar pattern. Because of these
pattern, the standard deviation of the Pearson correlation as reflected in Figure 4.72

decrease with aggregation.

Figure 4.36 shows the distribution of the estimated level 2 pure correlation at
low, medium and high autocorrelation. The results for data generated with very low
autocorrelation are omitted because there are values that are not a characteristics of
a correlation coefficient. For example, when the grid was aggregated to 2500 groups,

the maximum value from the generated data of the level 2 pure correlation is 44.100
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Figure 4.35: Unweighted Covariance at Different Levels of Aggregation and Autocor-

relation
M, = Very Low M, = Low M, = Mediun M, = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)
# of Zones

2500 0.5165(0.0391) | 1.1644(0.0800) | 1.7367(0.1337) | 1.8728(0.2050)
625 0.1284(0.0184) | 0.6070(0.0556) | 1.1323(0.1177) | 1.3644(0.1810)
400 0.0830(0.0144) | 0.4368(0.0476) | 0.8797(0.1085) | 1.1116(0.1693)
100 0.0207(0.0067) | 0.1351(0.0274) | 0.3064(0.0765) | 0.4280(0.1256)
25 0.0049(0.0034) | 0.0369(0.0151) | 0.0880(0.0445) | 0.1277(0.0750)
4 0.0007(0.0015) | 0.0061(0.0066) | 0.0151(0.0199) | 0.0224(0.0352)

Table 4.74: Summary of Covariance of X and Y at Different Degrees of Autocorrelation
and Levels of Aggregation

while the minimum is -11.550. Thus, in this particular case, that is, when both
variables have very low autocorrelation, the level 2 pure correlation is not useful, as

noted before.

When both variables have low autocorrelation, the mean (or median) of the level

2 pure correlation is not affected by aggregation but the value is higher than the
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Figure 4.36: Level 2 Pure Correlation at Different levels of Aggregation and Degrees

of Autocorrelation

M, =Very Low

M, = Low

M, = Mediun

M, = High

Mean(SD)

Mean(SD)

Mean(SD)

Mean(SD)

# of Zones
2500
625
400
100
25
4

0.1020(3.636)
-0.1110(1.5719)
0.5392(5.7218)
0.1710(2.3040)
-0.2440/(2.9840)
0.0307(5.3820)

0.7080(0.0391)
0.7093(0.0415)
0.7071(0.0468)
0.7036(0.0903)
0.7084(0.2008)
0.7871(1.2305)

0.4012(0.0308)
0.4212(0.0404)
0.4308(0.0480)
0.4423(0.0912)
0.4425(0.1855)
0.4270(0.6770)

0.3271(0.0357)
0.3412(0.0441)
0.3467(0.0507)
0.3574(0.0937 )
0.3580(0.1855)
0.3421(0.6084)

Table 4.75: Summary of Level 2 Pure Correlation at Different Degrees of Autocorre-

lation and Levels of Aggregation

initial Pearson correlation and the standard deviation increases with aggregation.

When both variables have medium autocorrelation, the mean (or median) increase

slowly but the values are still higher than the initial Pearson correlation. When both

the variables have high autocorrelation, the increase of the mean (or median) of the

level 2 pure correlation is very slow and the values are near to the initial Pearson
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Figure 4.37: Level 1 Pure Correlation at Different levels of Aggregation and Degrees

of Autocorrelation

Figure 4.37 shows the distribution of the level 1 pure correlation. When both
the variables have very low autocorrelation, the mean (or median) seems to be not
affected by aggregation and the standard deviations decrease slightly with aggre-
gation. When both variables have low autocorrelation, the mean (or median) of
the level 1 pure correlation increases with aggregation and the standard deviation
seems to be constant. The initial value of the mean is lower than the initial Pearson
correlation and approaches the initial Pearson correlation as the number of zones
decreases.

When both the variables have medium autocorrelation, the mean (or median)
level 1 pure correlation displays a similar pattern, starting with a value less than the
initial Pearson correlation and approaches the mean of the initial value. However, the
standard deviation seems to be constant but is larger than when the both variables

have low autocorrelation. When both variables have high autocorrelation, the same
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pattern is displayed, that is, the mean increases with aggregation and approaches

the initial mean Pearson correlation. The standard deviation seems to be constant

but larger than when both variables have low and medium autocorrelation.

M, = Very Low M, = Low M, = Mediun M, = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)
# of Zones

2500 0.2999(0.0107) | 0.2076(0.0111) | 0.2076(0.0163) | 0.2224(0.0206)
625 0.2998(0.0097) | 0.2465(0.0103) | 0.2583(0.0180) | 0.2602(0.0259)
400 0.2996(0.0095) | 0.2605(0.0102) | 0.2739(0.0189) | 0.2719(0.0281)
100 0.2996(0.0095) | 0.2834(0.0105) | 0.3030(0.0204) | 0.2941(0.0305)
25 0.2996(0.0095) | 0.2904(0.0105) | 0.3121(0.0206) | 0.3015(0.0307)
4 0.2996(0.0095) | 0.2925(0.0106) | 0.3149(0.0207) | 0.3038(0.0306)

Table 4.76: Summary of Level 1 Pure Correlation at Different Degrees of Autocorre-

lation and Levels of Aggregation
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Figure 4.38: Level 2 Pure Regression at Different levels of Aggregation and Degrees

of Autocorrelation

Figure 4.38 shows the distribution of level 2 pure regression coefficients at dif-

ferent levels of aggregation and different degrees of spatial autocorrelation. The
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distribution of the variables with very low spatial autocorrelation was not included

because of the issues with this coefficient in this case discussed previously.

M, = Very Low

M, = Low

M, = Mediun

M, = High

Mean(SD)

Mean(SD)

Mean(SD)

Mean(SD)

# of Zones
2500
625
400
100
25
4

0.2440(15.149)
0.3892(4.2018)
0.7725(9.1065)
0.0191(5.4556)
0.0715(7.3015)
0.5170(12.686)

0.5018(0.0356)
0.5033(0.0379)
0.5009(0.0428)
0.5006(0.0790)
0.5010(0.1772)
0.5662(4.9090)

0.3027(0.0239)
0.3086(0.0311)
0.3106(0.036)
0.3122(0.0687)
0.3082(0.1419)
0.2827(1.3818)

0.2699(0.0295)
0.2738(0.0356)
0.2741(0.0406)
0.2750(0.0759)
0.2718(0.1528)
0.2525(1.2087)

Table 4.77: Summary of Level 2 Pure Regression at Different Degrees of Autocorre-

lation and Levels of Aggregation

0.35
1

0.30
1

0.25
|

0.20
|

0.15
|

Average Individual Level
Regression Coefficient

am

e --

n ]

o
=

[~ SO I
i O

ne--

g ---
nc

n

M =Very Low IE-

Ic

M =Low

M =Medium

31

IGeeeennes

o

M =High

2500 625 400 100 25 2500 625400 100 25

2500 625 400 100 25

2500625 400 100 25

Figure 4.39: Level 1 Pure Regression at Different levels of Aggregation and Degrees

of Autocorrelation

Table 4.77 shows the standard deviation at the different levels of aggregation.

These values are large, in fact, when the individual level data is grouped into 2500

groups, the minimum level 2 pure regression is -187.6950 while the maximum is
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187.704. When the variables both have low spatial autocorrelation, the mean of the
level 2 pure regression at different levels of aggregation seems to be constant except
when the data is grouped into 4 zones, where the value rises. However, the means are
larger than the average individual level regression coefficient. When both variables
have medium autocorrelation, the mean of the level 2 pure regression seems to be
constant but this time the value is slightly less than the average individual level
regression coefficient. Similar effects were observed when the variables have high
autocorrelation, the means at different levels of aggregation seem to be constant
but the values are less than when the variables have medium autocorrelation. In all

cases, the standard deviation increases with aggregation.

Figure 4.39 shows the distribution of level 1 pure regression at different levels of
aggregation and different degrees of autocorrelation. When both variables have low
autocorrelations, the mean of the level 1 pure regression seems to be constant for
all levels of aggregation. However, the values are below the average individual level
regression coefficient. When both variables have low autocorrelation, the mean of the
level 1 pure regression coefficients increases with aggregation. A similar trend was
observed when both variables have medium autocorrelation but this time the values
are slightly higher at each level of aggregation compared with the case when both
variables have low autocorrelation. When both variables have high autocorrelation,
the mean of the level 1 pure regression increases with aggregation except when the

data is aggregated into 4 groups where the mean decreases slightly.

M, = Very Low M, = Low M, = Mediun M, = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)
# of Zones

2500 0.2598(0.0094) | 0.1876(0.0101) | 0.2172(0.0175) | 0.2322(0.0225)
625 0.2596(0.0084) | 0.2184(0.0092) | 0.2465(0.0177) | 0.2482(0.0257)
400 0.2595(0.0083) | 0.2293(0.0090) | 0.2546(0.0180) | 0.2535(0.0269)
100 0.2595(0.0083) | 0.2466(0.0091) | 0.2681(0.0184) | 0.2608(0.0277)
25 0.2595(0.0082) | 0.2518(0.0092) | 0.2719(0.0181) | 0.2629(0.0269)
4 0.2595(0.0082) | 0.2534(0.0092) | 0.2730(0.0179) | 0.2634(0.0265)

Table 4.78: Summary of Level 1 Pure Regression at Different Degrees of Autocorre-

lation and Levels of Aggregation
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In all cases, the standard deviation at each level of aggregation and degree of
autocorrelation (that is, very low, low, medium, and high) seems to be approximately
constant but increases as the degree of autocorrelation increases as shown in the

Figure 4.39 and Table 4.78.

Relationship between Intra-Area Correlation and N
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Figure 4.40: Relationship between Intra-Area Correlation and N-Bar at different de-
grees of autocorrelation for the two variable: (a) very low, (b) low, (¢) medium, and

(d) high

As we aggregate into larger groups, that is as M decreases, we would expect the
intra-area correlation to decrease as we are including more units and increasing the
average distance between units within a group. Figure 4.40 shows the relationship
between the intra-area correlation and N at different degrees of autocorrelation.
When the variable has very low autocorrelation the standard deviation decreases as
N increases and the mean intra-area correlation was zero. When the autocorrelations

of the variables increase there is a non-linear relationship between the intra-area



CHAPTER 4: Multilevel Modeling and the MAUP 120

correlation and N with it decreasing as the N increases.
Figure 4.41 shows the mean of the intra-area correlation against N at different
degrees of autocorrelation. There is a non-linear trend that decreases and approaches

zero as N increases. The decrease depends on the degree of autocorrelation.
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Figure 4.41: Relationship between the mean of Intra-Area Correlation and N-Bar at

different degrees of autocorrelation for the two variable

Relationship between Intra-Area Cross-Correlation and N

Figure 4.42 shows the relationship between the intra-area cross-correlation and N
at different degrees of autocorrelation. The relationship is similar to the relation-
ship between the intra-area correlation and N. When both variable have very low
autocorrelation the standard deviation decreases as N increases and the median
seems to be constant. When the autocorrelations of the variables increase there is
a non-linear relationship between the intra-area correlation and N and it decreases

as the N increases.
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Figure 4.42: Relationship between Intra-Area Cross-Correlation and N-Bar at differ-
ent degrees of autocorrelation for the two variable: (a) very low, (b) low, (c) medium,

and (d) high

Figure 4.43 shows the mean of the intra-area cross-correlation against N at
different degrees of autocorrelation. Similar to the relationship between the mean
of intra-area correlation there is a non-linear trend that decreases and approaches
zero as N increases. The decrease depends on the degree of autocorrelation. The
decrease of high autocorrelation of the two variables is steeper because the initial

mean is a higher value.
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Figure 4.43: Relationship between the mean of Intra-Area Cross-Correlation and N-

Bar at different degrees of autocorrelation for the two variable

4.5 Experiment 3: Scale effects when the vari-
ables do not have the same levels of autocor-

relation

In experiment 1 the degree of autocorrelation for each variable was similar. In this
experiment data are generated so that variable X will have low autocorrelation and
the autocorrelation of variable Y varies from low to medium and to high autocor-
relation. We tried to make the other properties of the initial individual level data
consistent with the other data sets. When X has low autocorrelation and Y also
has low autocorrelated, the mean initial correlation is 0.29, with mean 0.005 and 10,
variance 6.0 and 8.0 for variables X and Y, respectively. The mean initial correlation
when X has low autocorrelation and Y has medium autocorrelation is 0.31 and when

variable X has low autocorrelated and variable Y is high autocorrelated, the mean
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initial Pearson correlation is 0.28.
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Figure 4.44: Pearson Correlation variable X (low autocorrelation) and variables Y

(different autocorrelation)

Figure 4.44 shows the distributions of the estimated correlations for the three
cases described above based on 500 simulations. One apparent pattern is the mean
and the median and the standard deviation increase with aggregation in all cases.
Most of the correlations are greater than the average initial correlation. There
are some cases in which the correlations are less than the average initial correlation,
especially when the data are aggregated into 25 groups. These are the cases in which
the percentage loss of covariance is greater than the percentage loss of variance of
the two variables X and Y, resulting in a decrease in the correlations.

For a given scale the standard deviation is little affected as the degree of autocor-
relation in Y increases. The mean of the correlation increases at the autocorrelation
goes from low to medium and then decreases as the autocorrelation becomes high

Figure 4.45 shows the distribution of estimated regression coefficients for the

three cases being considered. The mean values of the regression coefficient at differ-
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M,X = Low M,X = Low M, X = Mediun
MY = Low | MY = Medium M,Y = High
Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500
625
400
100
25
4

0.4321(0.0185)
0.5413(0.0288)
0.5544(0.0343)
0.5746(0.0682)
0.5790(0.1426)
0.5279(0.4756)

0.5732(0.0185)
0.6187(0.0255)
0.6265(0.0309)
0.6395(0.0609)
0.6413(0.1310)
0.5903(0.4521)

0.4062(0.0158)
0.5038(0.0258)
0.5209(0.0318)
0.5144(0.0639)
0.5160(0.1292)
0.4194(0.5292)

Table 4.79: Summary of correlations when X have low autocorrelation and Y have
different levels of autocorrelation at different levels of aggregation
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Figure 4.45: Regression Coefficient variable X (low autocorrelation) and variables Y

(different autocorrelation)

ent levels of aggregation are all greater than the average initial regression coefficient.

In fact, except for few regression coefficients when the data are aggregated into 25

zones, they are all greater than the average initial regression coefficient.

Figure 4.46 shows the distribution of the level 2 pure correlation. The mean

when variable X has a low autocorrelation and variable Y have low but slightly
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Level 2 Pure Correlation
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Figure 4.46: Level 2 Pure Correlation, variable X (low autocorrelation) and variables

Y (different autocorrelation)

higher autocorrelation seems to be not affected by aggregation, the mean of pure
correlation coefficients are 0.70803, 0.70934, 0.70710, 0.70360, 0.70836, 0.7871 when
the data are aggregated into 2500, 625, 400, 100, 25, and 4 zones respectively. When
variable X has Low autocorrelated and variable Y has medium autocorrelation,
the mean also seems to be not affected by aggregation, except when the data are
aggregated into 2500 and 4 zones, the mean of the pure coeflicients are 0.775570,
0.699358, 0.69723, 0.69617, 0.69617, 0.7736, respectively. The mean and median of
the levels 2 pure correlation coefficient of the last case also seems to be not affected
by aggregation except when the data are aggregated into 4 zones, the mean are
respective, 0.63239, 0.64831, 0.65488, 0.64272, 0.65487, 0.5552. In all cases, the
standard deviation increases with aggregation and the mean and median is larger

than the initial correlations.

Figure 4.47 shows the distribution of the level 1 pure correlation. The mean in

all cases increases with aggregation and tends to approach the initial correlation as
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Level 1 Pure Correlation
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Figure 4.47: Level 1 Pure Correlation, variable X (low autocorrelation) and variables

Y (different autocorrelation)

the number of zones decrease to 4 zones. The standard deviation of the values seems
to be constant in each case. One unusual result is the case when the variable Y has
medium autocorrelation and aggregated into 2500 groups, not only the mean but
all of the level 1 pure coefficient is negative. This happens because all the level 1
covariance components have negative values, this is possible, but the way the level
1 and level 2 covariance component were computed, means that the level 2 vari-
ance component is greater than the initial covariance. This means that covariances

increase when the data is aggregated into 2500 groups.

Figure 4.48 shows the distribution of level 2 pure regression. Except in the case
when the two variables have almost the same degree of autocorrelation and in this
experiment when variables X and Y have low autocorrelation, the mean and median
correlation is not affected by aggregation although the values are higher than the
initial average regression coefficient. When variable Y has medium autocorrelation,

the mean correlation decreases with aggregation and approaches the average initial
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Level 2 Pure Regression
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Figure 4.48: Level 2 Pure Regression, variable X (low autocorrelation) and variables

Y (different autocorrelation)

regression coefficient. When variable Y has high autocorrelation, there is a slow
decrease of the mean and median of the level 2 pure regression but these values
are less than the average initial regression coefficients. In all cases the standard
deviation increases with aggregation.

Figure 4.49 shows the distribution of the level 1 pure regression coefficient. The
first two cases have similar patterns, that is, increasing and approaching the average
initial regression coefficient as the number of groups is decreased but the third case
has decreasing mean. In terms of the standard deviation, the first two cases seems to
have constant standard deviation but in the third case, that is, variable Y is highly

autocorrelated the standard deviation decreases with aggregation.

Summary of Experiment 3

The Pearson correlation coefficient is affected by aggregation in all three cases.

When the data are aggregated to 2500 zones, the minimum value of the correlation
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Level 1 Pure Regression
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Figure 4.49: Level 1 Pure Regression, variable X (low autocorrelation) and variables

Y (different autocorrelation)

is less than the initial correlation coefficient and the maximum is greater in all three
cases. When the data are aggregated into 625, 400, and 100 zones, the standard
deviation of the values of the Pearson correlation does not include the initial Pearson

correlation coefficient, in all three cases the values are greater than the initial value.

The mean of the level 2 pure correlation seems to be not affected by aggrega-
tion except for cases when the data are aggregated into 2500 and 4 zones. In all
three cases, the standard deviation of values of the pure correlation increases with

aggregation.

The mean of the level 1 pure correlation increase with aggregation and ap-
proaches the initial correlation as the number of zones decreases and the standard

deviation seems to be constant, in all three cases.
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4.6 Summary

Statistics derived from a simple multilevel model such as pure correlation and pure
regression coefficients were investigated. Their corresponding direct statistics were
also examined and compared. Other statistics derived from the simple multilevel
model were also investigated. All the statistics being investigated were affected by

the initial degree of autocorrelation and scale.

Regardless of the initial degree of autocorrelation of the variables the weighted
and unweighted variances, correlation and regression coefficients were affected by

aggregation.

Based on the results of the experiments we see that when the autocorrelation is
very low the mean of the direct correlation is close to the individual level correlation.
When autocorrelation is present the mean of the direct correlation increases with
the degree of aggregation, that is, as the scale decreases to 625 and thereafter the
increase is minimal. For a given scale the degree of autocorrelation affects the direct
correlation, initially increasing as the autocorrelation increases, but then decreases
when one or both of the variables has high autocorrelation. As the level of aggrega-
tion increases the dispersion of the distribution of the direct correlation increases,
which is reflected in the standard deviation. When there are only 25 groups there
are some values of the direct correlation less than the individual level correlation.
The standard deviation is only moderately affected by the degree of autocorrelation.
In going from very low to low autocorrelation the standard deviation decreases, but

increases as the autocorrelation increase further.

The standard deviation of level 1 pure correlation seems to be stable regardless
of the initial degree of autocorrelation and level of aggregation. The mean when the
initial autocorrelation is very low also shows stability. However, when the initial
autocorrelation of the variables were low, medium, and high the mean started with
a low correlation (less than 0.3) when aggregated to 2500 groups and approaches

the initial correlation of 0.3 as the aggregation increases to 25 groups.

For the level 2 pure correlation, the standard deviations increases with aggre-
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gation except when the initial autocorrelation is very low. The mean level 2 pure
correlation did not show stability when the initial correlations of the variables were
very low. When the initial autocorrelation of the variables were low, medium and
high, the mean level 2 pure correlation shows stability but the values are higher
than the initial correlation of 0.3 and approaches 0.3 as the degree of autocorrela-
tion increased.

Relationships between N and the intra-area correlation, where N = % shows
what was expected when the variable had autocorrelation, that is, the intra-area
correlation decreases as N increased. When the autocorrelations of the variables
increases there is a non-linear relationship between the intra-area correlation and N
and it decreases as N increases. However, when the variable have very low auto-
correlation the mean of the intra-area correlation is constant. Similar relationships

were observed between the intra-area cross-correlation and V.

The mean and the weighted mean is not affected by aggregation and autocorre-
lation. The distribution of the weighted group level variance becomes more disperse
as the scale increases and the number of groups becomes small and the small number
of degrees of freedom involved in calculating the variance, which is M-1, where M
is the number of groups. The change in standard deviation with scale is more than
would be expected through the change in M. If the weighted variance behaved as
proportional to a x3, ; random variable the ratio of its standard deviation to the
mean, which is its coefficient of variation (CV), would be 1/2/(M — 1), which would
be the case for no autocorrelation. Results in table 4.11 table 4.29 , and table 4.45

give values a little less than these theoretical values.

When there is no spatial autocorrelation equation 4.2 suggests that the group
level correlation will be close to the individual level correlation, although there is
a tendency to increase in absolute value when the number of groups is quite small.
Equation 4.3 gives a theoretical formula for the standard deviation of the group level
correlation when no spatial correlation is present and predicts that it increases as
the number of groups decreases, i.e. as scale increases. These results are confirmed

empirically in table 4.67.
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As the level of aggregation increases the dispersion of the distribution of the
direct correlation increases, which is reflected in the standard deviation.

For of the pure coefficients, as the scale increases we should expect the estimated
level 1 variance component to increase when there is spatial autocorrelation because
more dissimilar units are included in each group and hence the estimated level 2
variance decreases. This is seen in tables 4.15, 4.32 and 4.48. The rate of the
increase in the level 1 variance component estimates and the decrease in the level
2 estimates depends on the level of the autocorrelation, being greater with higher
levels of autocorrelation.

The means of the level 1 correlation, when there is spatial autocorrelation, are
affected by aggregation, starting below the individual level correlation but approach-
ing it as the number of groups decreases. This is because, as the number of groups
becomes smaller, the groups become larger and the individuals within them become
more like the whole population. Spatial autocorrelation has little effect on the mean

of the level 1 correlations.



Chapter 5

Analysis of Real Data from UK

Census

This chapter describes the results of analyses of scale effects on relevant statistics
being considered in this thesis based on real data from the UK Census. Directly
calculated statistics, such as correlation and regression coefficients are considered
and statistics associated with a simple multilevel model. Using real data provides
results for groups that vary in population size and are arranged in a less regular
spatial manner than in the simulated data. The previous chapter relied entirely on

simulated data.

5.1 Data from two sources

To further investigate the behavior of common statistics when the data are aggre-
gated, actual data from the 1991 UK Census are used. Three levels of data are
considered in this analysis; individual level, Enumeration District (ED) level, and
the Ward level.

The individual level data are taken the 1991 SARs (Samples of Anonymised
Records). The 1991 SARs correspond to a two percent sample of individuals counted
in households and communal establishments of Great Britain. Several variable are

included in the 2% SARs, some of them will be used in this experiment. The lowest

132
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geographical indicator available is the SAR District, which is an area of at least
120000 people, to protect the confidentiality of information. The SAR Districts
considered in the study are Camden, Hackney, Haringey, and Islington and are part
of London boroughs. This will provide individual level data from the UK Census.
The data are used to provide an estimate of the individual level covariance between

variables. Figure 5.1 shows the location of the four districts considered in this study.

London Boroughs

Figure 5.1: Location of the four districts

Figure 5.2 shows the boundaries of the districts, Ward, and Enumeration Dis-
tricts (EDs). An enumeration district (ED) is the lowest geographical level in the
1991 UK population census for which aggregate data are released. These EDs are
grouped into larger geographical areas called Wards. The Wards are also grouped

into larger geographical areas called districts. The Census data from both ED level



CHAPTER 5: Analysis of Real Data from UK Census 134

and Ward level of the UK population census are extracted from Small Area Statistics
(SAS) data base. Figure 5.2 shows the region composed of the districts Camden,
Hackney, Haringey, and Islington. It comprises 1904 EDs nested into 92 Wards and

4 districts.
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Figure 5.2: The region with its boundaries

Table 5.1 shows the number of individuals from the SAR and SAS and the
number of Enumeration Districts and Wards for the districts being considered in
this study. Although the SAR does not contain ED and Ward indicators, it is
possible to estimate variance components at these level by combining the SAR and
SAS data as shown by Tranmer and Steel (2001).

Based on Table 5.1, the average number of individuals in the districts Camden,
Hackney, Haringey, and Islington per ED are 307,429, 386, and 398 respectively and

the overall average number of individuals per ED is 380. The average number of
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Number of Population | Number of | Number of
District | Individuals (SAR) | Counts (SAS) EDs Wards
Camden 3508 165877 540 26
Hackney 3378 180540 421 24
Haringey 3832 201620 522 23
Islington 3249 163500 411 19
Total 13967 711537 1904 92

Table 5.1: Individuals counts from SAR and SAS and number of EDs and Wards for
each district

individuals per Ward for the districts are 6380, 7523, 8766, and 8605 respectively

and the overall average number of individuals per Ward is 7818.

Variables to be investigated:
In this study the following variables were considered.
age: percentage of individuals between 16 and 65, inclusive
ftw: percentage of full-time workers
uemp: percentage of unemployed
11ti: percentage of individuals with limiting long term illness

nocar: percentage of individuals with no car

Both the percentages of full-time workers and percentage of unemployed are in-
cluded as they reflect different aspects of the labor force. We shall see later that
these variables are not particularly highly correlated at any of the levels considered,
since people may also be part-time workers or economically inactive. Besides their
direct measurement of the labor force, these variables reflect socio-economic char-
acteristics. The percentage of individuals with no car is included as it is often used
as an indicator of lower socio-economic areas. The chosen variables cover a range of

measures (see table (5.2)).

For each of the M EDs, the total population in the region being considered is
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M
N%ZM
g=1

The average number of individuals per ED is

N
N=Z
M

We will use the following model from Tranmer and Steel (1998):

Y, = iy + oy + e (5.1)

where
Y; represent the value of Y for the ith individual in area g (ED)
[ty is the population mean of Y
o is a random variable representing the area effect for the gth ED
g; is a random variable representing pure individual effect
Assumptions:
1. E(ay)=0, E(¢;)=0 , and var(a,)=02 , var(e;)=02

2. The area effect and individual effects are uncorrelated.
cov(agy,e;) =0
3. The effects for different individuals are uncorrelated, for i#j

cov(ej,g;) =0

Properties under Model specified by (5.1) are:

E(Y) = py
var(;) = 02 + 02 = 0,

0.2

cov(Y;, Y;) = o
0 otherwise.

if v and j are from the same ED
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For a second variable, say X, similar variance components can be specified.
To be able to compute other statistics later, we need the following: the covariance

between the area effects between two variables Y and X can be described as,

cov((y)g, U(x)g) = O(ya)a

The individual level covariance for the two variables is

cov(Ewyin €(X)i) = Oy X)e

The covariance between the two variables is

cov(Yi, Xi) = oy x)a + O(vx)e = Ovx
and the values of the two variables for two different individuals in the same group(ED)
is
o x)as tf ©and j are from the same ED

cov(Y;, X;) =
0 otherwise.

5.1.1 Case 1: Individual level from SAR and second level is
Enumeration District (ED)

The individual level data used are from the SAR in which the variables have value
1 or 0. The total number of individuals in the sample is 13967. The variables were
converted into dichotomous variables. The value of the variable is 1 if the description
of the variable is satisfied, otherwise it is 0. For example, for variable age, age=1 if
the age of the individual is between 16 and 64, inclusive otherwise age=0.

To compute the individual level statistics for variable Y from the SAR the fol-

lowing are used:

p=—
n

where f; is the number of observations with value=1, n is the number of individuals

and the variance is
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Syy = (1=p)p.
The individual level mean and variance can be computed from the Census SAS

data using:

(5.2)

where [ is the number of individuals with a specific characteristics and Ny is the
total number of individuals in group g.

The unweighted group mean is defined as

1
M

WE

]5 = Pg (5-3)

1

g
where M is the number of groups used in the census (ED, Ward, District)

The Unweighted group level variance is defined as

1 M
S P —#)? 4
Syy M1 (Py = D) (5.4)
g=1
The weighted mean is
M
231 Ny Py

R— g:

P=— (5.5)
> Ny
g=2

The weighted group level variance is defined by

M
1
S = U1 >  Ny(P,— P)’ (5.6)
g=1

Note that the data from the Census are dichotomous at the individual level. The

individual level variance can be can be computed using

Syy=p(1—p) (5.7)
or

s =P(1-P) (5.8)
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from the SAR and SAS respectively.

Weighted variance and covariance are used in this study because the number of
individuals in each ED or Ward differs. Also, if there is no within area correlation
they give unbiased estimate for the individual level variance and covariance.

To be able to investigate some components of a simple multilevel model we need
estimates for the variance and covariance components. From Tranmer and Steel
(1998) group-level (eg ED-level) variance components for variables Y and X can be

estimated using

2 1
Yy N*—1 '
and
) 5(2) _ S(l)
AR, = 2xX — Pxx 5.10
XX N _1 (5.10)
where
. o N-N 1 & . N
N*=N+4+—— N = — N? N=—.
MV N2 M
Similarly the ED level covariance component can be estimated using:
) 5(2) . S(l)
AP, = X ovx 5.11
P = 2o (511)

The SAR provides data to estimate the level 1 variance and the SAS provides
the data to estimate the level 2 variances. Tranmer and Steel (1998) show that the
variance and covariance estimates given by (5.9), (5.10) and (5.11) are unbiased for

the model given by (5.1).

Some statistics from SAR (Individual level)

Computations for the individual level statistics from the SAR are done using SPSS
and R. Table 5.2 shows the mean and variance computed from the SAR and different
levels from the Census SAS. Notice the small differences of the means and variances
from the SAR and the means and variances of the variables computed from the

Census, which are due to the SAR being a sample.
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SAR Census(SAS)
ED Ward District
Variables | mean var mean var mean var mean var
age 0.6738 | 0.2198 | 0.6818 | 0.2169 | 0.6761 | 0.2190 | 0.6745 | 0.2196
ftw 0.2941 | 0.2076 | 0.3042 | 0.2117 | 0.3722 | 0.2337 | 0.3721 | 0.2336
unemp 0.0907 | 0.0825 | 0.0860 | 0.0786 | 0.1092 | 0.0973 | 0.1104 | 0.0982
11ti 0.1322 | 0.1147 | 0.1254 | 0.1096 | 0.1258 | 0.1100 | 0.1264 | 0.1104
nocar 0.4657 | 0.2488 | 0.4806 | 0.2496 | 0.4923 | 0.2499 | 0.4925 | 0.2499

Table 5.2: Mean and Individual Level Variances from SAR and different levels from
Census

Table 5.3 shows the variance-covariance matrix calculated from the SAR to be
used in the computations of some multilevel components. These statistics will be
used later in the computation of the estimates of the variance and covariance com-

ponents. The computations are done using SPSS.

age ftw unemp 11ti nocar
age 0.2198 | 0.0931 | 0.0291 | -0.0214 | -0.0310
ftw 0.0931 | 0.2076 | -0.0267 | -0.0276 | -0.0330
unemp | 0.0291 | -0.0267 | 0.0825 |-0.0039 | 0.01219
11ti -0.0210 | -0.0276 | -0.0030 | 0.1147 | 0.0213
nocar | -0.0310 | -0.0330 | 0.0121 | 0.0213 | 0.24882

Table 5.3: Variance-Covariance matrix Individual Level: SAR

Table 5.4 shows the correlation at the individual level computed from the SAR
using SPSS.

age ftw unemp 11ti nocar
age 1.0000 | 0.4360 | 0.2160 |-0.1350 |-0.1326
ftw 0.4360 | 1.00000 | -0.2040 | -0.1791 | -0.1442
unemp | 0.2160 | -0.2040 | 1.0000 | -0.0400 | 0.0838
11ti -0.1350 | -0.1791 | -0.0400 | 1.0000 | 0.1261
nocar |-0.1326 | -0.1442 | 0.0838 | 0.1261 | 1.0000

Table 5.4: Correlations at Individual level
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Some statistics from ED level

From the Census, there are a total of 711537 individuals in 1904 enumeration dis-
tricts, so that N=373.71 and N*=373.69. Table 5.5 shows the weighted means and
variances calculated from the SAS at Enumeration District (ED) level using equa-
tions ( 5.5) and (5.6), respectively. These statistics will be used to compute the
estimates of some statistics that are relevant to the present study. The table also
shows the aggregation effect defined as S?/S™). The aggregation effect on the vari-
ance is a simple measure of the strength of the within-group autocorrelation. From
(3.28) we see that the aggregation effect for variable Y is 1 + (N* — 1)A§,22/ We
have also seen in section 3.1.8, how the intra-area correlation is related to spatial
autocorrelation within groups as measured by Moran’s I with appropriate spatial
proximity weights. In an applied context, examination of the aggregation effect indi-
cates which variables have greater scale effects. The aggregation effect will be equal
to 1 if there is no aggregation effect, which will occur if there is no within group au-
tocorrelation. From the results, it is evident that there are substantial aggregation
effects, but they vary considerably between the variable. In particular the variable

"nocar” has much longer aggregation effect than any of the other variables.

weighted | weighted aggregation
Variables | mean | variance | effect (S /S(M1)
age 0.6729 2.2213 10.1060
ftw 0.2948 2.0320 9.7881
unemp 0.0876 0.4022 4.8751
11ti 0.1273 0.8544 7.4490
nocar 0.4832 8.3418 33.5281

Table 5.5: Weighted Mean and Variances from SAS (ED level)

Table 5.6 shows the variance-covariance matrix at ED level. Compared with the
individual level variance-covariance matrix, the table shows increase in the absolute
values in all cases. However, the covariance between the variables [lt: and unemp
changes from negative at the individual level to positive at the ED level and all the

other combinations of the variables retain their sign.
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age ftw unemp 11ti nocar
age 2.2213 | 1.6986 | 0.0603 | -0.7641 | -1.5430
ftw 1.6986 | 2.0320 | -0.1790 | -0.5726 | -1.5625
unemp | 0.0603 | -0.1790 | 0.4022 | 0.0934 | 0.9295
11ti -0.7641 | -0.5726 | 0.0934 | 0.8544 | 1.5872
nocar |-1.5430 | -1.5625 | 0.9295 | 1.5872 | 8.3218

Table 5.6: Variance-Covariance matrix ED Level

Table 5.7 shows the correlation at ED level. Comparing with the individual

correlation matrix, we see that not all the correlations increase with aggregation.

age ftw unemp 11t nocar

age 1.0000 | 0.7995 | 0.0638 | -0.5547 | -0.3586
ftw 0.7795 | 1.0000 | -0.1979 | -0.4346 | -0.3795
unemp | 0.0638 |-0.1979 | 1.0000 | 0.1593 | 0.5075
11ti -0.5547 | -0.1358 | 0.1593 | 1.0000 | 0.5945
nocar | -0.3586 | -0.3795 | 0.5075 | 0.5945 | 1.0000

Table 5.7: Correlations at ED level

There are five variables being considered in this study, so there are ten possible
correlations calculated from all possible pairs of variables. Table 5.8 shows the cor-
relations for these pairs of variables, where the second column shows the correlations
at the individual level and the third column the correlation at ED level. For six of
the combinations of the variables the absolute values of the correlation increases
from individual level to ED level and were of the same sign, while the rest decreased
or changed sign. The correlation between variables age and unemp decreased to
0.0638 at the ED level from 0.2160 at the individual level. This can be explained by
the aggregation effects of the variances of the variables and the percentage increase
in the covariance. The aggregation effects of the variances of both variables is rel-
atively large compared with the aggregation effect of the covariance which is equal
to 1.072, resulting in a decrease in the correlation coefficient.

Figure 5.3 shows the behavior of the correlation in going from the individual

level to ED level. The figure shows that there are five pairs of variables with greater
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Table 5.8:

Variable Correlations | Correlations
Combination Individual ED level
1. age-ftw 0.4360 0.7795
2. age-unemp 0.2160 0.0638
3. age-llti -0.1350 -0.5547
4. age-nocar -0.1326 -0.3586
5. ftw-unemp -0.2040 -0.1979
6. ftw-11ti -0.1791 -0.1358
7. ftw-nocar -0.1442 -0.3795
8. unemp-llti -0.0400 0.1593
9. unemp-nocar 0.0838 0.5075
10. llti-nocar 0.1261 0.5945

Variable combinations and correlations at different levels

correlations and five below the individual level correlations when aggregated to ED

level.

Table 5.9 shows the estimated variance components and the intra-area (intra-

ED) correlations for the five variables. The table shows that the level 2 variance

components is very small compared with the corresponding level 1 variance compo-

nents resulting in small but typical values of the intra-ED correlations. There were

no problems associated with negative estimates of variance components.

The

Variable | levell variance | level2 variance | intra-area correlation
age 0.21442 0.00537 0.02443
ftw 0.20271 0.00490 0.02358
unemp 0.08162 0.00086 0.01040
11ti 0.11274 0.00198 0.01730
nocar 0.22711 0.02172 0.08727

Table 5.9: Variance components and Intra-area correlation

aggregation effect can be defined as the ratio 53(33),/51(/12/ (Steel, et. al.

(1996)). Table 5.10 shows the aggregation effect and the corresponding intra-area

correlation of the variables being considered. Note that even though the esti-

mate of intra-area correlation is small, aggregation effects are substantial because

51(/2% R 53(/1;)/ (1+ (N* —1)dyy) and N* is large.
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Figure 5.3: Correlations: Individual level (SAR) and ED level (SAR)

Variables | Aggregation | Intra-area
Effect Correlation
age 10.1060 0.0244
ftw 9.7881 0.0236
unemp 4.6767 0.0104
11ti 7.4490 0.0173
nocar 33.5281 0.0873

Table 5.10: Aggregation Effect and Intra-Area Correlation

Table 5.11 shows the intra-area cross-correlations. The signs of the intra-area
cross correlations are the same as the signs of the correlations at the ED level. Recall
that the intra-area cross-correlation is a measure of the within group homogeneity
of a pair of variables and that similarity of the values of two variables within areas

can be measured using this statistic. Looking at the values, there seems to be low
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age ftw unemp 11ti nocar
age * 0.0202 | 0.0006 |-0.0126 | -0.0174
ftw 0.0202 * -0.0003 | -0.0095 | -0.0181
unemp | 0.0006 | -0.0003 * 0.0027 | 0.0172
ti | -0.0126 | -0.0095 | 0.0027 * 0.0249
nocar |-0.0174 | -0.0181 | 0.0172 | 0.0255 *

Table 5.11: Intra-area Cross-correlation

similarity within areas for the values of the pairs of variables being considered here.

Pure correlation

Table 5.12 shows the estimated level 1 pure correlation coefficients for each of the
pairs of variables. The level 1 pure correlations are similar to the corresponding
values of the correlations computed from the SAR. The signs are the same as the

signs of the corresponding correlations at the individual level computed from the

SAR.

age | ftw | unemp 11ti nocar
age x| 0.4266 | 0.2192 | -0.1251 | -0.1226
ftw * -0.2044 | -0.1731 | -0.1344
unemp * -0.0433 | 0.0703
11ti * 0.1068
nocar *

Table 5.12: Level 1 Pure correlation

Figure 5.4 shows level 1 pure correlations plotted against the corresponding in-
dividual level correlations computed from SAR. The level 1 pure correlations are
either higher or lower than the corresponding individuals level correlations but the
differences are very small. The individual level, the direct correlation and pure
correlation are effectively the same.

Table 5.13 shows the estimated level 2 pure correlations. The level 2 pure corre-

lations are not similar to the individual level correlations; the values are either larger

or smaller in absolute values and one even changed sign, that is, from negative to
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Figure 5.4: Individual level Correlations(SAR) versus Level 1 Pure Correlation

positive. The level 2 pure correlations have the same sign as the corresponding
correlations at ED level computed from SAS. Except for one pair of variables (age
and unemp), the pure correlations are larger in absolute values compared with the

corresponding correlations at ED level.

age | ftw | unemp 11ti nocar
age x| 0.8401 | 0.0390 | -.6104 | -0.3757
ftw * -0.1993 | -0.4691 | -0.3981
unemp * 0.2001 | 0.5703
11ti * 0.6400
nocar *

Table 5.13: Level 2(ED level) Pure correlation

Figure 5.5 shows the relationship when the ED level correlations are plotted
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Figure 5.5: ED Level Correlations versus Level 2 Pure Correlation

against the corresponding level 2 pure correlations. It shows that r?) ~ p(3), that is,
the ED correlations are essentially estimating the level 2 pure correlation in general
except for two cases. Hence in general, correlations calculated at the ED level are
almost entirely determined by relationships at ED level, and have very little to do

with individual level relationships.

The study of the regression and pure regression will be considered in the later

part of this chapter.
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5.1.2 Case 2: Individual level from SAR and second level is
Ward

A similar study is conducted, this time the Ward level serves as level 2. However,
there is discrepancy in terms of the total number of individuals reported at the Ward
level and the total number of individuals reported at ED level. This is because
confidentiality was protected by “adding +1 or -1 to the census counts in a quasi-
random manner” (Blake and Openshaw, 1994, page 2). The ED level has 711537
total individuals reported while the Ward level has a total of 718614, a difference of
7077. In this subsection Ward level data are created by summing the relevant ED
level data. For these data, we have N=7811.02 and N*=7806.01. Table 5.14 shows
the weighted mean and variance from the SAS (Ward level) and the aggregation
effect defined as S /S for the variables being considered. The aggregation effect
will be equal to 1 if there is no aggregation effect. From the results, it is evident that
the aggregation effects that are much larger than the corresponding effects when the

analysis is done at ED level.

weighted | weighted aggregation
Variables | mean | variance | effect (S /S(M1)
age 0.6729 2.2213 59.3735
ftw 0.2948 2.0320 65.0882
unemp 0.0876 0.4022 39.5261
11ti 0.1273 0.8544 35.5850
nocar 0.4832 8.3418 288.9365

Table 5.14: Weighted Mean and Variances from SAS (Ward level)

Table 5.15, shows the variance-covariance matrix at Ward level. The values are
larger than the individual level and the ED level counterparts. There are covariances
that change sign; the covariance of age and unemp have positive sign at individual
level, positive at ED level but negative in Ward level. Another pair of variables is
unemp and [ltr; negative at individual level, positive at ED level and Ward level.
These changes affect all the statistics computed involving these pairs of variables.

Table 5.16 shows the correlations at Ward level. The absolute values of the



CHAPTER 5: Analysis of Real Data from UK Census

149

age ftw unemp 11ti nocar
age | 13.0502 | 12.0819 | -0.8334 | -5.0064 | -12.6456
ftw 13.5123 | -2.3247 | -4.9404 | -15.8028
unemp 3.2609 | 1.4193 | 8.2889
11ti 4.0816 | 13.5355
nocar 71.8874

Table 5.15: Variance-Covariance matrix Ward Level

correlations of all pairs of variables are larger than the corresponding correlations
at individual level except for one. This is the correlation of the pair age and unemp,
where the sign changes.

Figure 5.6 shows the graph for the Ward level correlations plotted against the
individual level correlations. There are four correlations at Ward level that are
greater than the corresponding individual level correlations, the rest are below the

corresponding individual level. All of the Ward level correlations differ appreciably

from their corresponding individual level correlations.

age ftw | unemp 11ti nocar
age | 1.0000 | 0.9098 | -0.1278 | -0.6860 | -0.4129
ftw 1.0000 | -0.3502 | -0.6652 | -0.5070
unemp 1.0000 | 0.3890 | 0.5414
11ti 1.0000 | 0.7902
nocar 1.0000

Table 5.16: Correlations at Ward level

Table 5.17 displays the variance components and the intra-Ward correlations.
The level 1 variance component is much larger than the corresponding level 2 vari-
ance component for each variable, resulting in a very small intra-area correlations.
The intra-area correlations are smaller than the corresponding ED level intra-area
correlations as Wards are larger. However, the aggregation effect is larger because
N is larger.

Tables 5.18 shows the intra-Ward cross-correlations. As noted in the ED analysis,

the intra-area cross-correlation is a measure of the within group homogeneity of a
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Figure 5.6: Individual Level Correlations versus Ward Level Correlation

Variable | levell variance | level2 variance | intra-area correlation
age 0.2181 0.0017 0.0076
ftw 0.2059 0.0017 0.0083
unemp 0.0821 0.0004 0.0050
11ti 0.1142 0.0005 0.0045
nocar 0.2396 0.0093 0.0373

Table 5.17: Variance components and Intra-area correlation

pair of variables and that similarity of the values of two variables within areas can
be measured using this statistic. The results shows that similarity within areas for

the values of the pairs of variables are small.

Level 1 pure correlations are shown in Table 5.19. Note the similarity of the level

1 pure correlations to the corresponding individual level correlations. The signs of
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age | ftw | unemp 11ti nocar
age * | 0.0073 | -0.0008 | -0.0040 | -0.0070
ftw * -0.0023 | -0.0041 | -0.0090
unemp * 0.0019 | 0.0075
11ti * 0.0104
nocar *

Table 5.18: Intra-Ward Cross-Correlations

the correlations coincide. This is due to the similarity of the values of the level 1
variance components, which is part of the computation of the pure correlation. Fig-
ure 5.6 shows the individual level correlation plotted against the corresponding level
1 pure correlations. The figure shows the similarity of the individual correlations
computed from the SAR and the level 1 pure correlation from the simple multi-level

model being considered.

age | ftw | unemp 11ti nocar

age * | 0.4322 | 0.2182 | -0.1317 | -0.1289

ftw * -0.2031 | -0.1760 | -0.1382

unemp * -0.0421 | 0.0845

11ti * 0.1276
nocar *

Table 5.19: Level 1 Pure correlation

age | ftw | unemp 11ti nocar

age * | 0.9176 | -0.1351 | -0.6987 | -0.4161

ftw * -0.3534 | -0.6762 | -0.5108

unemp * 0.4008 | 0.5485

11ti * 0.8016
nocar *

Table 5.20: Level 2 (Ward level) Pure correlation

As before, the regression analysis will be in the latter part of the chapter.
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Figure 5.7: Ward Level Correlations versus Level 2 Pure Correlations

Summary

Figure 5.8 shows the plot of individual level correlations versus the ED and Ward
correlations together. The figure shows aggregation effects of the correlations at
different levels of aggregation. The aggregation effects of the correlations at dif-
ferent levels do not display a predictable pattern. Some correlation increase with
aggregation in both ED and Ward levels and in the aggregate levels others decrease.

Table 5.21 shows the correlation coefficients at different levels. Notice that not all
of the correlations increase with aggregation. This shows again that correlation does
not necessarily increase with aggregation. Some even change signs. The individual
level correlations were computed from the SAR. The ED level and the Ward level
correlations were computed from other source of data, the SAS. The computations

are weighted according to the number of individuals included in each ED and Ward.
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Figure 5.8: Individual level correlations vs Ward and ED level correlations

As mentioned earlier, to have consistency in the number of individuals for ED and
Ward levels, the Ward level data are based on the ED level data. Comparing the
correlations from ED level to Ward level, all the corresponding correlations increase
in absolute values but one changes sign. The pair age and unemp have positive

correlation at ED level, but negative at Ward level.

Figure 5.9 shows the individual level correlations plotted against the level 1
pure correlations for the simple two-level model where the level 2 is Ward and ED
levels respectively. The figure shows that there is not much change for level 1 pure

correlations and for both cases the aggregation effects are minimal.

Table 5.22 shows the level 1 pure correlation at different levels. In almost all
cases the level 1 pure correlation are very similar to the correlation at individual level

when ED and Ward levels are used as level 2. Figure 5.8 shows the individual level
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age ftw | unemp 11ti nocar
Individual (SAR)
age 1.0000 | 0.4356 | 0.2160 | -0.1350 | -0.1326
ftw 1.0000 | -0.2040 | -0.1791 | -0.1442
unemp 1.0000 | -0.0400 | 0.0838
11t1 1.0000 | 0.1261
nocar 1.0000
ED Level (SAS)
age 1.0000 | 0.7795 | 0.0638 | -0.5547 | -0.3586
ftw 1.0000 | -0.1979 | -0.4346 | -0.3795
unemp 1.0000 | 0.1593 | 0.5075
11t 1.0000 | 0.5945
nocar 1.0000
Ward Level (SAS)
age 1.0000 | 0.9098 | -0.1276 | -0.6860 | -0.4129
ftw 1.0000 | -0.3502 | -0.6652 | -0.5070
unemp 1.0000 | 0.3890 | 0.5414
11t 1.0000 | 0.7902
nocar 1.0000

Table 5.21: Correlations at Different Levels
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Figure 5.9: Individual level correlations vs Ward and ED Level 1 Pure correlations
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correlations plotted against the corresponding Ward level and ED level correlations.

age ftw | unemp 11ti nocar
a. Correlation(SAR)
age 1.0000 | 0.4356 | 0.2160 | -0.1350 | -0.1326
ftw 1.0000 | -0.2040 | -0.1791 | -0.1442
unemp 1.0000 | -0.0400 | 0.0838
11ti 1.0000 | 0.1261
nocar 1.0000
b. Level 1
Pure Correlation(ED)
age * 0.4261 | 0.2192 | -0.1251 | -0.1226
ftw -0.2044 | -0.1731 | -0.1344
unemp -0.0433 | 0.0703
11ti 0.1068
nocar
c. Level 1
Pure Correlation Ward
age 0.4322 | 0.2182 | -0.1317 | -0.1289
ftw -0.2031 | -0.1760 | -0.1382
unemp -0.0421 | 0.0845
11ti 0.1276
nocar

Table 5.22: Correlations at Individual Level (from SAR) and Level 1 Pure Correlations

when level 2 are ED and Ward Levels (fromSAS)

Figure 5.10 shows the individual level correlations plotted against both the level

2 pure correlations. The figure clearly shows the aggregation effects on level 2 pure

correlations which in both cases are far from the individual level correlations.

Table 5.23 shows the level 2 pure correlations.

The level 2 pure correlation

differ greatly in values in both ED and Ward Levels compared to the individual

level correlation coefficient. Even sign of the correlations changed for one pair of

variables.
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Figure 5.10: Individual level correlations vs Ward and ED Level 2 Pure correlations

5.1.3 Linear Regressions and Pure Regressions of Percent-

age of Full-Time Workers and Other variables

To look into the regression coefficients and the pure regression coefficients derived
from the simple two-level model, the variable ftw is paired with the other variables
namely: age, [lti, and nocar. Thus, our dependent variable will be Y=ftw and the

independent variables X will be the variables age, [lti, and nocar.

1. Ftw-Age

Table 5.24 shows the correlation and regression coefficients when the analysis is done
at each level. An increase in the correlation and regression coefficients is observed

as the number of zones is decreased.
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age ftw | unemp 11ti nocar
a. Correlations
Ward Level
age 1.0000 | 0.9098 | -0.1278 | -0.6860 | -0.4129
ftw 1.0000 | -0.3502 | -0.6652 | -0.5070
unemp 1.0000 | 0.3890 | 0.5414
11ti 1.0000 | 0.7902
nocar 1.0000
b. Level 2
Pure Correlations
WardLevel
age * 0.9176 | -0.1351 | -0.6987 | -0.4161
ftw * -0.3020 | -0.6762 | -0.5108
unemp * 0.4008 | 0.5485
11ti * 0.8016
nocar *

Table 5.23: Correlations at Ward Level (from SAS) and Level 2 Pure Correlations
when level 2 is Ward (from SAS) and level 1 is Individual (from SAR)

age ~ ftw | correlation | regression
Individual 0.4356 0.4237
ED 0.7795 0.7647
Ward 0.9098 0.9257

Table 5.24: Correlation and regression coefficients at different scales

Table 5.25 displays some statistics derived from the simple multilevel model.
Notice that the level 1 pure correlation, when ED level is considered as level 2 in the
model, is almost equal to the Pearson correlation at the individual level and that
the value goes nearer to the individual level when Ward is considered as the level 2
in the model. The level 2 pure correlation is larger than the individual level Pearson
correlation. The level 1 and level 2 pure regression coefficient display characteristics
similar to the level 1 and level 2 pure correlation. Less aggregation effect are observed
for pure coefficient when going from ED to Ward but an aggregation effect is still

present.
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ftw ~ age Pure Correlation | Pure Regression
Level 1 (Individual) 0.4266 0.4143
Level 2 (ED Level) 0.8401 0.8021
Level 1 (Individual) 0.4322 0.4198
Level 2 (Ward Level) 0.9176 0.9344

Table 5.25: Some Statistics derived from multilevel model

2. Ftw-Llti

Table 5.26 shows the correlation and regression coefficients at different levels of anal-
ysis. The values increase in absolute values. Again, looking at the results in Table
5.27, the level 1 pure correlation and pure regression coefficients have values almost
equal to the initial Pearson correlation and the regression coefficients, respectively.
Level 2 pure correlation and pure regression coeflicients have values different from
the initial Pearson correlation and the regression coefficients, respectively. When the
Ward level is considered a level 2 in the model being considered, the value is nearer
to the initial characteristics of the individual level data. The level 2 pure coefficient
correlations have values similar to the corresponding aggregate level correlations

and the level 2 pure regression have values not far from the aggregate regression

coefficients.
ftw ~ 1lti | correlation | regression
Individual | -0.1791 -0.2408
ED -0.4346 -0.6702
Ward -0.6652 -1.2104

Table 5.26: Correlation and regression coefficients at different scales

ftw ~ 11ti Pure Correlation | Pure Regression
Level 1 (Individual) -0.1731 -0.2321
Level 2 (ED Level) -0.4691 -0.7378
Level 1 (Individual) -0.1760 -0.2363
Level 2 (Ward Level) -0.6762 -1.2384

Table 5.27: Some Statistics derived from multilevel model
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3. Ftw-Nocar

Table 5.28 shows the correlation and regression coefficients at different levels. The
Pearson correlation and regression coefficient increase in absolute values. Table 5.29
shows statistics derived from the simple two-level multilevel model.

The level 1 pure correlations and regressions are similar to the individual level
correlations and regressions, respectively. The level 2 pure correlations and regres-
sions are similar to the values of the ED level and Ward level Pearson correlation

and regression coefficients, respectively.

ftw ~ nocar | correlation | regression
Individual -0.1442 -0.1315
ED -0.3795 -0.1878
Ward -0.5070 -0.2089

Table 5.28: Correlation and regression coefficients at different scales

ftw ~ nocar Pure Correlation | Pure Regression
Level 1 (Individual) -0.1334 -0.1260
Level 2 (ED Level) -0.3981 -0.1890
Level 1 (Individual) -0.1382 -0.1281
Level 2 (Ward Level) -0.5108 -0.2201

Table 5.29: Some Statistics derived from multilevel model

Summary

Level 1 pure correlations and regressions have values similar to the direct coefficient
obtained from individual level data. The values differ by a small fraction and in
all cases, it seems that the values go nearer to the individual level statistics as the
number of zones is decreased.

The level 2 pure correlations and regressions coefficient have values similar to
the correlation and regression coefficients at the aggregate level.

The Pearson correlation and the regression coefficients increase in absolute value

as the number of zones is decreased.
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5.2 Data from one source (SAS)

5.2.1 Some Statistics from 1991 UK Census

To further examine the behavior of the simple multilevel model under aggregation
another experiment is conducted. This time the data involves no individual level
data. The same variables as those used in the analysis of the previous section
were analyzed. The same districts were considered. This time the percentages of
the variables as defined previously are from enumeration districts (EDs) and are
considered as the level 1 data and for level 2 the percentage from the Ward level are

used. The Ward level data are derived from the original ED level data.

age ftw unemp 11ti nocar
ED Level
age 1.0000 | 0.7995 | 0.0638 | -0.5547 | -0.3586
ftw 1.0000 | -0.1979 | -0.4661 | -0.3589
unemp 1.00000 | 0.1649 | 0.4862
111 1.0000 | 0.6005
nocar 1.0000
Ward Level

age 1.0000 | 0.9098 | -0.1278 | -0.6860 | -0.4129
ftw 1.0000 | -0.3502 | -0.6652 | -0.5070
unemp 1.0000 | 0.3890 | 0.5414
11t1 1.0000 | 0.7902
nocar 1.0000

Table 5.30: Pearson Correlations at ED and Ward Levels

Table 5.30 shows the Pearson correlation coefficients at ED and Ward levels. All
correlation coefficients either increase when the values are positive and increase in
absolute values when the correlations are negative except for correlation between
Age and Unemp where the value change from positive at ED level and negative
at Ward level. Figure 5.11 shows the plot of ED level correlations against the
Ward level correlations. The plot shows that the ED level correlations changes with
aggregation, some increase and some decrease, but they are of the same sign and
greater in absolute value.

Table 5.31 shows the level 1 and level 2 pure correlation. The values of the
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Figure 5.11: ED level correlations vs. Ward level correlations

entries in the table are similar to the corresponding Pearson correlations at each
level. All except one of the level 1 pure correlations is less in absolute value than
the corresponding ED level Pearson correlation. This is the case when variables Age
and Unemp is analyzed. All the level 2 pure correlation are greater in absolute value
than the corresponding Ward level correlations. Figure 5.12 shows the plot of ED

level correlations against level 1 and level 2 pure correlations.

Table 5.32 shows the aggregation effects on the variances and the covariances of
the pairs of variables. The positive sign of a covariance means that the sign of a

covariance is the same at the ED level and Ward level. There is one negative aggre-
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age ftw | unemp 1lti nocar

Level 1
age 1.0000 | 0.7526 | 0.1613 | -0.5108 | -0.3351
ftw 1.0000 | -0.1145 | -0.3507 | -0.3082
unemp 1.0000 | 0.0618 | 0.4848
11t 1.0000 | 0.5216
nocar 1.0000

Level 2
age 1.0000 | 0.9312 | -0.1606 | -0.7176 | -0.4232
ftw 1.0000 | -0.3746 | -0.7176 | -0.5272
unemp 1.0000 | 0.4365 | 0.5460
11t 1.0000 | 0.8343
nocar 1.0000

Table 5.31: Pure Correlations

gation effect, which means that the sign of the covariance changes. In this particular
case, it is the pair age and unemp; the covariance changes from positive at ED level
to negative at Ward level. Looking at the table and disregarding the sign of the
aggregation effects on the variances and covariance, in most cases, the aggregation
effect of the variances of the pairs of variables are lesser than the corresponding
covariances, in effect, the corresponding correlations increase with aggregation. In
some cases, one of the aggregation effects of the variance is smaller than the corre-
sponding covariance, but the aggregation effect on the variance of the other variable
is greater than the corresponding covariance resulting in increase of the correlation

at Ward level.

age ftw unemp 11t nocar

age | 5.8751 | 7.1130 | -13.8206 | 6.5514 | 8.1921
ftw 6.6498 | 12.9937 | 8.6273 | 10.1142
unemp 8.1077 | 15.1986 | 8.9168
11ti 4.7772 | 8.5283
nocar 8.6177

Table 5.32: Aggregation effects on the variances (diagonal, bold) and covariances (off-
diagonal)

The intra-area correlation was computed using the Tranmer and Steel (1998)
method. Table 5.33 shows the variance component and the intra-area (intra-Ward)

correlation. The level 1 variance component is less than the level 2 variance com-
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Figure 5.12: ED level correlations vs. Level 1 and Level Pure Correlations

ponents for each of the variables. The intra-area correlation of the variable varies

between 0.19 and 0.39.

Variables | Level 1 | Level 2 | Lev 2 Var Com | Level 1 Var Com | TAC
Age ED Ward 1.6710 0.5503 0.2477
Ftw ED Ward 1.4486 0.5835 0.2871

Unemp ED Ward 0.2569 0.1453 0.3611
Llti ED Ward 0.6904 0.1640 0.1919
Nocar ED Ward 5.1128 3.2300 0.3871

Table 5.33: Variance component and Intra-Ward Correlation

Table 5.34 shows the intra-area cross-correlation of the variables. The values on
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the diagonal are equivalent to the intra-area correlations of the variables. Intra-area
cross-correlation is a measure of within-area homogeneity for a pair of variables.
These values represent the similarities of the values of two different variables within
areas. The values ranges from -0.0480 to 0.2483. By (3.40) the pure level 2 corre-
lation is the intra-area cross correlation divided by the square root of the relevant

intra-area correlations.

age ftw unemp 11ti nocar
age | 0.2477 | 0.2483 | -0.0480 | -0.1565 | -0.1311
ftw 0.2871 | -0.1206 | -0.1684 | -0.1758
unemp 0.3612 | 0.1149 | 0.2042
11ti 0.1919 | 0.2274
nocar 0.3871

Table 5.34: Intra-Area Cross Correlation

5.2.2 Regression Analysis of Variable Ftw and Other vari-

ables

Similar to subsection (5.1.3) the variable ftw was paired with the other variables
in bivariate regression analyses; ftw is the dependent variable and the independent
variables are age, llti, and nocar. Table 5.35 shows the estimates of the regression
coefficients computed at each level. In all pairs of variables, the values increase in
absolute values from ED level to Ward level.

Table 5.36 shows pure regression coefficients when ED level is the level 1 and
Ward level is the level 2 for the model. There level 1 pure regression coefficients
are of the same sign and smaller than the ED level regression coefficient, whereas
the level 2 pure regression coefficients are slightly larger in absolute values than the

Ward level regression coefficients.

5.2.3 Spatial autocorrelation of the Variables

The role of autocorrelation is evident from the results based on simulated data in

chapter 4. Here we examine the evidence on spatial autocorrelation in the real data
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Regression Coefficient

Ftw ~ Age

ED Level 0.7647

Ward Level 0.9258

Ftw ~ Llti

ED Level -0.6702

Ward Level -1.2104

Ftw ~ Nocar

ED Level -0.1873

Ward Level -0.2198

Table 5.35: Regression coefficients at ED and Ward levels

Pure regression

Ftw ~ Age
Level 1 0.7007
Level 2 0.9588
Ftw ~ Llti
Level 1 -0.5080
Level 2 -1.3534

Ftw ~ Nocar
Level 1 -0.1641
level 2 -0.2241

Table 5.36: Level 1 and Level 2 Pure Regression Coefficients

used in this chapter. As the SAR does not give geographic indicators below the
ED level, it is not possible to analyze spatial autocorrelation within ED in detail,
although it is possible to asses the average level of within ED spatial autocorrelation
using the intra-area correlation, which in effect equivalent to Moran’s I with block
proximity weights. Spatial autocorrelation at ED and Ward levels can be directly

analyzed since the geographic location of these units are available.

Table 5.37 shows the degree of autocorrelation as measured using Moran’s I
statistic for the ED level. Several types of proximity weights were used. Lag 1

denotes that each ED is a neighbor to each immediate surrounding EDs. Lag 2
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means that each ED is a neighbor to each immediate surrounding EDs and the
next immediate surrounding EDs, and so on. The results in column 6 of Table 5.37
are done using a ‘block’ proximity matrix in which EDs within a Ward are con-
sidered neighbors. The computations are done using GeoDa, a freeware developed
by Luc Anselin and co-workers. The software ‘is designed implement techniques

for exploratory spatial data analysis (ESDA) on latice data (points and polygons)’
(http://sal.agecon.uiuc.edu/cssi/geoda.html).

Variable | lag1 | lag2 | lag3 | lag4 | ED w/in Ward
age 0.3425 | 0.2262 | 0.1681 | 0.0764 0.2270
ftw 0.3640 | 0.2589 | 0.2074 | 0.1251 0.2614
unemp | 0.4326 | 0.3771 | 0.3374 | 0.2679 0.3586
11ti 0.2659 | 0.1872 | 0.1441 | 0.0877 0.1782
nocar | 0.5288 | 0.4175 | 0.3607 | 0.2591 0.3967

Table 5.37: Moran’s I at different weight definition

matrices.
Variable | Lag 1 | Lag 2
Age 0.2192 | 0.1006
Ftw 0.3872 | 0.2013
Unemp | 0.6650 | 0.4574
Llti 0.3817 | 0.2330
Nocar | 0.5711 | 0.3336

Table 5.38 show the Moran’s I at Ward level with different definitions of proximity

Table 5.38: Moran’s I with different proximity matrices Ward level

Tables 5.39 shows the bivariate Moran’s I with block proximity. The values in
the diagonal are Moran’s I for the variables and the off-diagonals are the bivariate
Moran’s I for the pairs of variable. The Bivariate Moran’s I measures the degree of
spatial association of two variables. The values are very similar to the correspond-
ing intra-area cross-correlations. In fact, there is almost perfect linear correlations
between the statistics (0.999) as shown in figure 5.13.

When the block proximity matrix used: (1) The Intra-area correlation is equal to

the Moran’s I and (2) Intra-Area Cross-Correlation is equal to the Bivariate Moran.
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age ftw | unemp 11ti nocar

age 0.2270 | 0.2292 | -0.0540 | -0.1459 | -0.1228
ftw 0.2614 | -0.1148 | -0.1571 | -0.1617
unemp 0.3586 | 0.1141 | 0.1992
11ti 0.1782 | 0.2227
nocar 0.3967

Table 5.39: Bivariate Moran using GeoDa (EDs within Ward)
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Figure 5.13: Bivariate Moran vs. Intra-area Cross-correlation
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The intra-area -correlation is a special type of measure of spatial autocorrelation

using the block proximity matrix.
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Pictorial Representation of the 5 Variables
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Figure 5.14: Graphical representation of the variable AGE at different levels
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Figure 5.15: Graphical representation of the variable FTW at different levels
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Figure 5.16: Graphical representation of the variable UNEMP at different levels



CHAPTER 5: Analysis of Real Data from UK Census 171

LLTI ED Level

7
&

N
>

LLTI ED Level

| ]0.016 -0.079
0.079 - 0.115
0.115-0.153
I 0.153 - 0.204
I 0.204 - 0.521

LLTI Ward Level

LLTI Ward Level

0.069 - 0.098
0.098 - 0.118
0.118 - 0.135
I 0.135 - 0.151
I 0.151 - 0.178
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5.3 Summary

To investigate the aggregation effects of common statistics actual data from the 1991
UK Census is used. Three levels of data are considered in this analysis; individual
level, Enumeration District (ED) level, and the Ward level. The individual level
data are taken from the 1991 SARs (Samples of Anonymised Records) that corre-
spond to a two percent sample of individuals counted in households and communal
establishments in Great Britain. The geographical indicator available is only the
district level to protect the confidentiality of information. The SAR Districts con-
sidered in the study are Camden, Hackney, Haringey, and Islington and are part of
London boroughs. For the aggregate level data, both the ED level and the Ward
level of the UK population census are extracted from the Small Area Statistics (SAS)
data base. Five variables were considered: age (percentage of individuals between
16 and 65, inclusive), ftw (percentage of full-time workers), uemp (percentage of
unemployed), 11ti (percentage of individuals with limiting long term illness), nocar

(percentage of individuals with no car).

There are three cases considered in this chapter, namely: Case 1 the individual
level data are from the SARs and second level data are from the ED level obtained
from the SAS; Case 2 the individual level data are from the SARs and the second
level data are from Ward the level obtained from the SAS; and Case 3 the ED level
and Ward level aggregate data both from the SAS.

Since there are five variables, there are ten possible correlations calculated from
all possible pairs of variables. The correlations increased in absolute values in going
from individual level to ED level except the correlation between age and unemp. The
decrease of the correlation between two variables can be explained by the aggregation
effects of the variances and covariance. The variance aggregation effect can be
defined as the ratio Sg))/ / S&)/ and the covariance aggregation effect is Sg))( / Sg;(
(Steel, et. al. (1996)). If the aggregation effects of the variances of both variables
is smaller than the aggregation effect on the covariance, the result is an increase in

the correlation coefficient.
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The aggregation effects of the correlations at different levels do not display a
predictable pattern. Some correlations increase with aggregation in both ED and
Ward levels and at the aggregate levels others decrease. Not all of the correlations
increase with aggregation. This shows again that correlation does not necessarily
increase with aggregation. Some even change signs. However, if we look at the ab-
solute values and signs we see a different picture. Generally the correlation increase

in absolute value, but can change sign.

In both Case 1 and Case 2 level 1 pure correlations and regressions have values
similar to the correlations from individual level. Also the level 2 pure correlations
and regressions have values similar to the correlation and regression coefficients at
the aggregate level. The Pearson correlation and the regression coefficients increase

in absolute value as the number of zones is decreased.

In the third case when the data are from one source, all correlation coefficients
either increase when the values are positive and increase in absolute values when
the correlations are negative, except for correlation between age and 1lti where the

value change from positive at ED level and negative at Ward level.

The level 1 and level 2 pure correlation were similar to the corresponding Pearson
correlations at each level. All except one of the level 1 pure correlation are greater
in absolute value than the corresponding ED level Pearson correlation. This is the

case when variables age and unemp is analyzed.

In terms of the relationship between the intra-area correlation an the spatial
autocorrelation, the results shows that the Moran’s I with block proximity equal the

corresponding in intra-area correlation at one decimal point.

These results suggest that in applied setting it is important to calculate the
aggregation effects for the set of variables of interest for the scales of analysis being
considered. Even if individual level data are not available to calculate covariances
at the individual level, it is often possible to calculate estimates of the individual
level variances. The aggregation effects can be used to obtain estimates of the
intra-area correlation for each variable at each scale. The results here emphasize

that even small intra-area correlations can lead to major aggregation effects when
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the population sizes of the areal units are large. The results demonstrate that in
practice level 2 correlations need to be interpreted as reflecting relationships at that
level and have almost nothing to do with individual level relationships. They also
suggest that correlation should be calculated at the level of substantive interest, as
they are specific to the level used in the calculation. In an application the spatial
autocorrelation of the variables can be analyzed using the estimates of the intra-area
correlation, which reflect the average with-in areal unit spatial autocorrelation. The

spatial autocorrelation at the aggregate level can be analyzed directly.



Chapter 6

Data generation based on actual

boundaries

This chapter describes a second series of simulation experiments to look into the
characteristics of the relevant statistics considered in this thesis. While the values
of the variable are simulated, the areal units are real and so reflect at least some of
the complexity of the real world. The ED is used as the lowest level unit, effectively

acting as the individual level in the experiments.

6.1 Data Set Generator

To look deeper into the behavior of the distribution of pure statistics and other
common statistics, data sets are constructed with pre-determined characteristics
based on the ED and Ward boundaries used in Chapter 5. The data set generator
used in this study is based on Reynolds (1998). One desirable property of the data
set generator is that ‘it allows the user to create a set of variables with specific
levels of spatial autocorrelation (as measured by the Moran Coefficient) and Pearson
correlations’ (Reynolds, 1998, pp.10).

Aside from creating data sets with specified autocorrelation, means, and vari-
ances of variables, Reynold’s data set generator can also generate ‘the entire matriz

of correlations between the variables (Reynolds and Amrhein, 1997). However, there

176
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are certain combinations of Moran’s I and Pearson correlations that are not possible.
For a more detailed description of the data set generator, refer to Reynolds (1998,
pp. 10-17) and Reynolds and Amrhein(1997).

The principles behind the Reynolds’ data generator are used to generate data
based on an actual region that is divided into enumeration districts (ED), the lowest
geographical level in the 1991 UK population census for which aggregate data are
released. These EDs are grouped into larger geographical areas called Wards. The
data generator is used to produce the values of the variables and the areal units are
the EDs and the Wards of the real data set described in Chapter 5. This enables
us to examine the properties of various statistics and analyses using more realistic
spatial structures than the data considered in Chapter 4. The region in Figure 6.1 is
composed of the districts; Camden, Hackney, Haringey, and Islington. It comprises
1904 EDs nested into 92 Wards, so that the average number of EDs per Ward is
20.7.
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Figure 6.1: The region with its boundaries

Based on the boundaries of the EDs sets of data are generated with some specified

properties. Figure 6.2 presents some realizations of variable X using the data set
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generator. Light colors indicate small values and, as values become larger the color
approaches black. The Moran’s I is denoted by M, at ED level and uses the weight
matrix corresponding to ‘block’ proximity, that is, w;;=1 if ED 7 and ED j are in
the same Ward, and 0 otherwise. Looking at the figure, when the M, at ED level
is 0.002, it seems that the distribution is random. A pattern emerged when the
Moran’s I is 0.1 as it seems that clusters form, especially the larger values. As the
degree of autocorrelation increases, clustering of values is observed. This clustering
is not unique, given a specific degree of autocorrelation different patterns emerged.
Figure 6.3 shows different clustering at autocorrelation equal to 0.8 as measured
by the Moran’s I (Mo). We will examine the distributions of some statistics for
different degrees of autocorrelation. Holding a specific degree of autocorrelation
constant, as well as some other properties such as the mean, variance, and initial
Pearson correlation will enable us to observe the aggregation effects of statistics such
as intra-area correlation, intra-area-cross correlation, pure regression, pure correla-

tion and some other statistics.

6.2 Case 1: Variables have the same spatial auto-

correlation

A set of data is generated with the same mean and variances, and specific Pearson
correlation for different degrees of autocorrelation. The first data set generated is
composed of two variables X an Y and to make the analysis simple, the variables
have the same mean (40) and the same variance (16) at the ED level. The variables
also have a fixed Pearson correlation equal to 0.3 but they are generated in such
a way that the autocorrelation of the variables are equal but varies (0.02, 0.1, 0.2,
0.3,0.4, 0.5, 0.6, 0.7, 0.8) as measured by Moran’s I and uses the weight matrix cor-
responding queen’s case lag 1, ie w;;=1 if ED 7 and ED j are immediate neighbors
and 0 otherwise. To look at the distribution of the direct and pure statistics and
other statistics, the generation of the data is repeated 3000 times for each degree

of autocorrelation. The data sets are then filtered to select those data sets that
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Figure 6.2: Some realizations of the data generator

satisfied the specified population parameter values. Most of the data sets generated
are able to generate between 1090 to 2050 out of 3000 repetitions of the data set
generator that satisfy the required properties. Some combinations of Moran’s I and
the required Pearson correlation generated data for which only a few repetitions
satisfy the required properties. An example is when the required Moran’s I is 0.02
and the Pearson correlation is 0.3, out of 3000 repetitions, 2046 satisfied the require-
ment. When the required Moran’s I is 0.5 there are 1094 out of 3000 that satisfy the
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Figure 6.3: Some realizations of the data generator the same degree of autocorrelation

Mo=0.8

required values. The number of data points that satisfied the respective requirement
decreases as the required Moran’s I is increased. For each degree of autocorrelation
described above, 1000 data points were selected at random from those that satisfy
the required statistics and are analyzed in this subsection. All analyses are made

with 1000 data points for each level of autocorrelation.

6.2.1 Behavior of Some Statistics

Figure 6.4 shows the distributions of the unweighted variances of variable X and
covariances of variables X and Y at the Ward level for different degrees of autocor-
relations. The variance of Y have characteristics similar to the variance of X. These
statistics are not used in the computations of the statistics derived from the simple
multilevel model. They are used to show that the variance is affected by the degree

of autocorrelation of the variable. Recall that the initial variance of the variable
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Variances X at Different Levels of Autocorrelation
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Figure 6.4: Unweighted Variance of X and Covariance of X and Y at Ward level

X is 16.0. When the data are aggregated into Wards, the mean or median of the
variance reduce and the reduction is dependent on the degree of autocorrelation
of the variable as depicted by the figure. It can be noted also that the standard
deviation of the variance decreases as the autocorrelation of the variable decreases.

The distribution of the covariance of variables X and Y display similar pattern.

Figure 6.5 shows the distribution of the weighted variance of variable X at Ward
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level. Recall that the variance of variables X and Y is 16. The horizontal axis
displays the degree of autocorrelation denoted by (Mo) at ED level and the values

of the Moran’s I using the weight matrix corresponding to queen’s case lag 1.

Weighted Variances of X at Different Levels of Autocorrelation
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Figure 6.5: Weighted Variance X at Ward level

[MoranT [ 0.02 [ 01 | 02 [ 03 [ 04 | 05 [ 06 | 07 | 08

Mean 9.27 |10.00 | 12.56 | 21.72 | 35.38 | 42.90 | 78.85 | 122.27 | 185.29

Median 6.67 | 826 | 10.75 | 18.45 | 31.77 | 37.53 | 75.36 | 125.60 | 185.22

Minimum | 3.06 | 4.26 | 5.29 | 7.32 | 13.04 | 15.26 | 39.66 | 52.10 | 150.88

Maximum | 33.90 | 28.79 | 37.11 | 58.02 | 79.34 | 105.10 | 138.72 | 165.44 | 219.25

Stan Dev | 6.40 | 5.05 | 5.99 | 11.19 | 15.72 | 18.74 | 22.49 | 24.317 | 17.48

Table 6.1: Description of the distribution of Weighted Variances of X at Ward level

From here on, the Moran’s I denoted by (Mo) found in the horizontal axis of the
figures will mean that the proximity or weight matrix used corresponds to queen’s
case lag 1. The figure shows a non-linear trend in the increase of the weighted
variance as the level of autocorrelation increases. Beginning when (Mo0)0=.02, the

standard deviation increase with the increase of the degree of autocorrelation up to

(Mo0)=0.7 and decrease when (Mo)=0.8.
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Figure 6.6 shows the distribution of the weighted covariance of variables X and Y.
Similar to the weighted variance of X and weighted variance of Y (not shown), there
is a non-linear increase of the covariance as the level of autocorrelations increase. The
differences between the means and the medians are small. The standard deviations
of the weighted covariances increase with the levels of autocorrelations except when

Moran’s I is 0.8.

Weighted Covariances of X,Y at Different Levels of Autocorrelation
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Figure 6.6: Weighted Covariance at Ward level

[Moran T [ 0.02 ] 0.1 | 02 | 03 | 04 | 05 | 06 | 0.7 | 0.8 |
Mean 276 | 3.10 | 3.68 | 6.57 | 10.90 | 12.74 | 23.67 | 36.94 | 54.94
Median | 2.07 | 2.81 | 3.62 | 553 | 9.45 | 11.66 | 23.94 | 37.76 | 54.96
Minimum | -0.82 | -0.03 | -1.77 | -0.51 | -0.66 | -0.82 | 0.42 | 15.24 | 27.21
Maximum | 10.22 | 9.35 | 9.17 | 22.88 | 24.02 | 31.73 | 46.70 | 59.34 | 76.81
Stan Dev | 2.09 | 1.84 | 2.01 | 452 | 5.60 | 6.70 | 9.75 | 9.96 | 8.85

Table 6.2: Description of the Weighted Covariances at Ward level

Recall that the initial correlations of the variables at the ED level is 0.3. Figure
6.7 shows the distribution of the correlations at Ward level at different degrees of

autocorrelation. Not much differences are observed in the means and medians of
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Correlations at Different Levels of Autocorrelation
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Figure 6.7: Correlations at Ward level

[Moran I [ 0.02 [ 0.1 ] 0.2 [ 03 | 04 [ 05 | 06 | 0.7 [ 0.8 |
Mean 032 [0.31 ] 0.32 [ 0.31 [ 0.32 | 0.32 | 0.32 | 0.30 | 0.30
Median | 0.32 [ 0.31 | 0.33 [ 0.32 | 0.32 | 0.32 | 0.33 | 0.31 | 0.29
Minimum_| -0.07 | 0.00 | -0.07 | -0.04 | -0.02 | -0.03 | 0.01 | 0.15 | 0.17
Maximum | 0.65 | 0.66 | 0.56 | 0.62 | 0.61 | 0.64 | 0.56 | 0.45 | 0.46
Stan Dev | 0.13 | 0.14 | 0.14 | 0.15 | 0.13 | 0.12 | 0.11 | 0.062 | 0.05

Table 6.3: Description of the direct correlations at different levels of autocorrelations

the Ward level correlations at different levels of autocorrelations which are all close
to or equal to the initial correlation of 0.3. There is not much difference in the
standard deviation when the Moran’s I of the variables are from 0.02 to 0.5 but it
starts to decrease starting when Moran’s I equals 0.6. These standard deviations
are higher than those given in Table 6.4, suggesting that variation in the number of
units within each zone may increase the standard deviation of the direct correlation

coeflicient.

Figure 6.8 shows the distributions of the level 1 (ED level) and level 2 (Ward
level) variance components of variable X. When the degree of autocorrelations are

0.02, 0.1,0.2, and 0.3 then 85%, 85%, and 78% and 41% respectively have weighted
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variances at Ward level that are less than the initial variance of 16.0. From Chapter
SEx Sk

3, the estimate for the level 2 variance component denoted by Ag?))( s XXX

where Sg?x is the weighted variance at Ward level and Sg(l_)x is the variance at ED

level and is equal to 16.0. This explains why the same percentages in each degree

Level 1 Variance Component at Different Levels of Autocorrelation

16

=

Ie-m

(H1C-ID
-l
1

L

.
=

14

10
i
e
If

—

Mo=0.0 Mo=0.1 Mo=0.2 Mo=0.3 Mo0=0.4 Mo=0.5 Mo=0.6 Mo=0.7 Mo=0.8

Level 2 Variance Component at Different Levels of Autocorrelation

10
1

]
1

!
i —

Mo=0.0 Mo=0.1 Mo=0.2 Mo=0.3 Mo=0.4 Mo=0.5 Mo=0.6 Mo=0.7 Mo=0.8

11 R
§ 1 BNl

E

m-Jn

Figure 6.8: Level 1 and Level 2 Variance components of X

of autocorrelation will have negative level 2 variance components. A similar phe-

nomenon is also observed in variable Y. When the degree of autocorrelations are 0.4
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and 0.5, there are 7% and 2% level 1 variances greater than the initial variance of
16.0. When the degree of autocorrelation is 0.6, 0.7, and 0.8, the variances are all
less than the initial variance. The negative estimated level 2 variance component
phenomenon will be examined later in the chapter. The mean and median of the
level 1 variance component decrease in a non-linear way as the degree of autocorre-
lation increases. It can be seen from the figure that the standard deviations increase
with the degree of autocorrelation. In terms of the mean and median, the level 2
variance components behaves in the opposite way from that of the level 1 variance
component. However, the standard deviations of the level 2 variance component
behave in the same way as that of the level 1 variance component. These results
are due to the result (3,31) in which the estimated variance components equal the

original variance calculated using level 1 data.

Figure 6.9 shows the distribution of the level 1 and level 2 pure correlation
coefficients. The mean level 1 pure correlation at different degrees of autocorrelation
is not far from the Pearson correlation at ED level but the standard deviation
becomes larger as the degree of autocorrelation increases. This means that this
statistic has less chance of having a value far from the initial correlation when
aggregated when the degree of autocorrelation is low and this chance increases as
the degree of autocorrelation increases. For level 2 pure correlations, only three
cases are presented since the rest do not make sense because, as stated before,
there are level 2 variance components for either or both variables X and Y having
negative results. There are even cases in which the estimated correlation at Ward
level have values greater than 1.0 or less than -1.0 which is not a characteristic of
a correlation coefficient. From these three cases level 2 pure correlation we see the
reverse pattern when it comes to the standard deviation, namely it decreases as the
degree of autocorrelation increases. The standard deviation of values of the statistics

decrease as the degree of autocorrelation increase.

Figure 6.10 shows the distribution of level 1 and level 2 pure regression coefficient.

A pattern similar to the pure correlation coefficients is observed.
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Level 1 Pure Correlations at Different Levels of Autocorrelation
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Figure 6.9: Level 1 and Level 2 Pure correlations

6.2.2 Aggregation Effects

Figure 6.11(a) shows the distributions of the variance aggregation effects (S @ v/ S&l;()
for the weighted variances of X at different degrees of autocorrelations. Here S%(
is the weighted variance at Ward level and S§§}( the variance at ED level. Figure
6.11(b) shows the covariance aggregation effects (Sy- 52 </ SY X) at different degrees of

autocorrelations, where S}(,Q))( and SQ))( are the covariances at Ward level and ED



CHAPTER 6: Data generation based on actual boundaries 188

[Moran T | 0.02 | 0.1 [ 0.2 [ 0.3 [ 04 [ 05 ] 0.6 | 0.7 [ 08 |
Mean 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30
Median | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30
Minimum | 29 | 0.29 | 0.29 | 0.27 | 0.27 | 0.25 | 0.23 | 0.22 | 0.15
Maximum | 0.32 | 0.31 | 0.33 | 0.33 | 0.35 | 0.34 | 0.36 | 0.39 | 0.43
Stan Dev | 0.004 | 0.005 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 | 0.05

Table 6.4: Description of the Level 1 Pure Correlation at different levels of autocor-
relations

[Moran1 [0.02] 01 ] 0.2 | 03 | 04 | 05 | 0.6 | 0.7 | 08 |
Mean -0.24 [ -0.27 | -0.19 | 0.15 | 0.50 | 0.43 | 0.34 | 0.32 | 0.30
Median | -0.30 | -0.28 | -0.20 | 0.08 | 0.46 | 0.36 | 0.34 | 0.31 | 0.30
Minimum | -0.63 | -1.27 | -2.64 | -3.62 | -0.69 | -0.36 | -0.10 | 0.12 | 0.16
Maximum | 1.06 | 0.69 | 6.00 | 4.68 | 3.90 | 6.21 | 0.67 | 0.46 | 0.45
Stan Dev | 0.23 | 0.25 | 0.88 | 0.97 | 0.60 | 0.66 | 0.16 | 0.07 | 0.05

Table 6.5: Description of the Level 2 Pure Correlation at different levels of autocor-
relations

level respectively.

[Moran I [ 0.02 | 01 [ 02 [ 0.3 | 0.4 | 05 | 0.6 | 0.7 | 08 |

Var(X)
Mean 0.58 | 0.63 | 0.78 | 1.36 | 2.21 | 2.68 | 493 | 7.64 | 11.58
Median 042 | 0.52 | 0.67 | 1.15 | 1.98 | 2.35 | 4.71 | 7.85 | 11.58

Minimum 0.19 | 0.27 | 0.33 | 0.46 | 0.81 | 0.95 | 248 | 3.26 | 9.43
Maximum | 2.12 | 1.80 | 2.32 | 3.63 | 4.96 | 6.57 | 8.67 | 10.34 | 13.70
Stan Dev 0.40 | 0.32 | 0.37 | 0.70 | 0.98 | 1.17 | 1.41 | 1.52 | 1.09

Cov(Y,X)
Mean 0.57 | 0.65 | 0.77 | 1.37 | 2.27 | 2.66 | 4.93 | 7.70 | 11.45
Median 043 | 059 | 0.75 | 1.15 | 1.97 | 243 | 499 | 7.87 | 11.45

Minimum | -0.17 | -0.01 | -0.37 | -0.11 | -0.14 | -0.17 | 0.09 | 3.18 | 5.67
Maximum | 2.13 | 1.95 | 1.91 | 4.77 | 5.00 | 6.61 | 9.73 | 12.36 | 16.00
Stan Dev 044 | 038 | 042 | 094 | 1.17 | 1.40 | 2.03 | 2.08 | 1.84

Table 6.6: Description of Variance of X and Covariance (Y,X) at different degrees of
autocorrelations

Both Figure 6.11 and Table 6.6 show a non-linear increasing trend in the variance
and covariance aggregation effects as the degree of autocorrelation increases. As
before the proximity matrix used in the computation of the Moran’s I is the queen
lag 1.

Figure 6.12 shows the aggregation effects of the variances of variable X at different
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Level 1 Pure Regressions at Different Levels of Autocorrelation
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Figure 6.10: Level 1 and Level 2 Pure Regression Coefficients

levels of autocorrelations with two different proximity matrices used in computing
the Moran’s I. The group on the left shows the relationship between the variance
effects of X with Moran’s I calculated using a proximity matrix of queen lag 1. There
are low negative linear correlations between aggregation effects and the correspond-
ing Moran’s I. The right group shows the relationship between the aggregation effect

and the Moran’s I with block proximity. This time there are very strong positive
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Variance Aggregation Effects of X at Different Degrees of Autocorrelation
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Figure 6.11: Variance and Covariance Aggregation Effects at Different degrees of Au-

tocorrelations

linear associations between the aggregation effects and Moran’s I. In fact, the first

three on the top of the groups in the right have correlations of 0.99 and the rest

have perfect positive linear correlations of 1.0.

Similar results were observed with the covariance aggregation effect.

Figure 6.13 shows the relationship between aggregation effects on the variances
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Figure 6.12: Variance Aggregation Effects versus Moran’s I with Proximity matrix (a)

Lagl (b) ”block”

and the corresponding Moran’s I on the full range of autocorrelations. Figure 6.13(a)
shows the plots of the aggregation effects on the variances against the Moran’s I with
lag 1 proximity. Figure 6.13(b) shows the aggregation effects on the variances of X
against Moran’s I with block proximity and displays a perfect positive correlation.

These results show that it is the average autocorrelation within an areal unit

that determines the aggregation effect on variances.

6.2.3 Intra-Area Correlations and Intra-Area Cross-Correlations

Figure 6.14 shows the relationship between intra-area correlations of variable X and
the Moran’s I using block proximity at different levels of autocorrelations. The
correlations ranges from 0.992 to 1.00 which supports the relationship between the
intra-area correlations and the Moran’s I using block proximity matrix.

Figure 6.15 shows the relationship between the intra-area cross-correlations and

the bivariate Moran’s I. This shows the almost perfect positive correlations between
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Figure 6.13: Combined Variance Effects versus Moran’s I with Proximity matrix (a)

Lagl (b) ”block”

the two statistics of the pairs of variables with low degrees of autocorrelations, and
in the cases where the pairs of variables have high degree of autocorrelations, there

is a perfect positive linear relationships.

Summary

In this section data are generated with the same mean and variances, and specific
Pearson correlation for different degrees of autocorrelation. The first data set is
composed of two variables X an Y and to make the analysis simple, the variables
have the same mean (40) and the same variance (16) at the ED level. The variables
also have a fixed Pearson correlation equal to 0.3 but they are generated in such
a way that the autocorrelation of the variables are equal but varies (0.02, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8) as measured by Moran’s I that uses the weight matrix
corresponding queen’s case lag 1, ie w;;=1 it ED 4 and ED j are immediate neighbors

and 0 otherwise. The following were observed:
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Figure 6.14: Intra-area correlations versus Moran’s I with block proximity

The mean level 1 pure correlation at different degrees of autocorrelation is not far
from the Pearson correlation at ED level but the standard deviation becomes larger
as the degree of autocorrelation increase.This means that the level 1 pure correlation
has less chance of having a value far from the initial correlation when aggregated
when the degree of autocorrelation is low and this chance increases as the degree
of autocorrelation increases. In the case of the level 2 pure correlation, when both
variables have low to medium autocorrelations some cases are observed in which
the estimated correlation at Ward level have values greater than 1.0 or less than
-1.0, which is not a characteristic of a correlation coefficient. However, the standard
deviation of the level 2 pure correlations decrease as the degree of autocorrelation

increase.

There is a very strong positive relationships between the variance aggregation

effects defined by (Sg?;( / Sg&) and the intra-area correlation with ”block” proximity.
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Figure 6.15: Intra-area cross-correlations versus Bivariate Moran’s I with block prox-

imity

There is almost perfect positive correlations between the intra-area cross-correlations
and the bivariate Moran’s I with low degrees of autocorrelations, and in the cases
where the pairs of variables have high degree of autocorrelations, there is a perfect

positive linear relationships.

6.3 Different Initial correlations

Data sets are generated in such a way that the variables X and Y have the same mean
(40) and the same variance (16) at the ED level, the same degrees of autocorrelations
but the initial correlations differ. The values on the initial correlations are 0.1, 0.3,
0.5, 0.7,and 0.9.

For the next figures, the following numbers in the horizontal axis of the the figure
means: 0 implies Mo=0.0, 1 implies Mo=0.1, 2 implies Mo=0.2, 3 implies Mo=0.3,
4 implies Mo=0.4, 5 implies Mo=0.5, 6 implies Mo=0.6, 7 implies Mo=0.7, 8 implies
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Mo=0.8.

Unweighted Ward Level Variance at Different Initial
Correlation and Different Degrees of Autocorrelation
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Figure 6.16: Unweighted Variance of X at Ward level with different initial correlations

at different degrees of autocorrelations

Figure 6.16 shows the distributions of the unweighted variances of variable X at
Ward level with different initial correlation and different degrees of autocorrelation.
The variance is not affected by the initial correlation. In all cases the unweighted
variance at ward level, regardless of the initial correlation at ED level, depends on
the degree of autocorrelation. As the degree of autocorrelation increases, the change
of the variance decreases but the standard deviation increase with the degree of
autocorrelation.

Figure 6.17 shows the distributions of the unweighted covariances of variables
X and Y at Ward level with different initial correlation and different degrees of
autocorrelation. Unlike the variance, the Ward level covariance is affected by the
initial correlation. Figure 6.18 shows the distributions of the covariance at Ward
level at different initial correlations at different degrees of autocorrelations. The
distributions have the same trend as the unweighted covariance at Ward level.

Figure 6.19 shows the behavior of the aggregated correlations (Ward level corre-
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Unweighted Ward Level Covariance at Different Initial
Correlation and Different Degrees of Autocorrelation
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Figure 6.17: Unweighted Covariance of X and Y at Ward level with different initial

correlations at different degrees of autocorrelations

Weighted Ward Level Covariance at Different Initial
Correlation and Different Degrees of Autocorrelation
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Figure 6.18: Aggregated weighted covariance with different initial correlations at dif-

ferent degrees of autocorrelations
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Weighted Ward Level Correlation at Different Initial
Correlation and Different Degrees of Autocorrelation
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Figure 6.19: Weighted Correlations at Ward level with at different initial correlations

and different degrees of autocorrelations

Level 1 Pure Correlation at Different Initial

Correlation and Different Degrees of Autocorrelation

Initial r=0.1
@« |
o
© |
o
<
o
N
o

=n"?

eBdgpgao

o

o H
o

(=28 - RE-1]

IR

o3

RN - 1
[ - ]

Initial r=0.3

o

coa

co

o

]

Initial r=0.5

nn

n?
[N}

Initial r=0.7
n
npn it
sbfoongp!
”a&::
i

]

nnnoN0nn
neB8Bgoo0o
vy

Initial r=0.9

012345678012345678012345678012345678012345678

Figure 6.20: Level 1 Pure Correlations at different initial correlations at different

degrees of autocorrelations
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lations) with different initial correlations at the ED level. In terms of the standard
deviations of the different groups (different initial correlations), the patterns are sim-
ilar, the standard deviations tend to decrease when the autocorrelations get larger.
When the data have high initial correlation (0.9), the magnitude of the correspond-
ing standard deviations is a smaller than the rest of the group. The mean and
median for each group fluctuate around their corresponding initial correlation.
Figure 6.20 shows the distribution of level 1 pure correlations with different initial
correlations at different levels of autocorrelations. The figure is grouped according
to the initial correlations given by the values of r in the figure. The boxplots in
each group represents the distributions at different levels of autocorrelation of 0.02,
0.1,...,0.8 respectively. Looking at the figure, each group of the groups have similar
characteristics, one of which is that the variation of the level 1 pure correlations
increases as the degree of autocorrelation increases. It can also be observed that
as the initial correlation gets bigger, the corresponding variation in each degree of

autocorrelation of the level 1 pure correlations decrease.

Level 2 Pure Correlation at Different Initial
Correlation and Different Degrees of Autocorrelation
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Figure 6.21: Level 2 Pure Correlations at different initial correlations at different

degrees of autocorrelations
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Level 1 Pure Regression at Different Initial
Correlation and Different Degrees of Autocorrelation
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Figure 6.22: Level 1 Pure Regression at different initial correlations at different de-

grees of autocorrelations

Figure 6.21 shows the distributions of level 2 pure correlations for data with initial
correlations equal to the values of r statistics in the figure. There are only three
boxplots in each group, corresponding to autocorrelation measures of 0.6, 0.7, and
0.8, respectively. They are the ones shown because the variables with autocorrelation
measure of below 0.6, have several undefined level 2 pure correlations and values
more than 1 and less than 1 which is not a characteristic of a correlation coefficient.
It can be observed that regardless of the initial correlations of the variables, the

variation decreases as the degree of autocorrelation increases.

Figure 6.22 shows the distribution of level 1 pure regressions with different initial
correlations at different levels of autocorrelations. Looking at the figure, each group
has similar characteristics, one of which is that the variation of the level 1 pure cor-
relations increases as the degree of autocorrelation increases. It can also be observed
that as the initial regression gets bigger, the corresponding variations in each degree
of autocorrelation of the level 1 pure correlations decreases. The behavior is very

similar to the behavior of level 1 pure correlation
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Level 2 Pure Regression at Different Initial
Correlation and Different Degrees of Autocorrelation
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Figure 6.23: Level 2 Pure Regression at different initial correlations at different de-

grees of autocorrelations

Figure 6.23 shows the distributions of level 1 pure regression for data with initial
correlations equal to the values of r statistics in the figure. Looking at the figure,
each group has similar characteristics, one of which is that the variation of the level
1 pure correlations increase as the degree of autocorrelation increase. It can also be
observed that as the initial correlation gets bigger, the corresponding variations in

each degree of autocorrelation of the level 1 pure regression decreases.

To compare the behavior of correlation at Ward level, level 1 pure correlation,
and level 2 pure correlation, the thee statistics were combined in one graph. Figure
6.24 shows the distributions of the three statistics for the data sets where the initial
correlation at ED level is 0.3 at different degrees of autocorrelation. The first group
of boxplots is the distribution of the correlations at Ward level with measures of
autocorrelations 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. Simi-
larly, the second group are the boxplots for level 1 pure correlation at corresponding
degrees of autocorrelations. The third group consists of the plots of level 2 pure

correlation. Only the variables with measures of autocorrelation equal to 0.6,0.7,
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Boxplots for Correlations at Ward Level,Pure Correlation 1

and Pure Correlation 2 with initial correlation of 0.3
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Figure 6.24: Distributions of the three statistics at initial correlations of 0.3 at different

degrees of autocorrelations

and 0.8 are included.

Figure 6.25 shows the distributions of aggregation effects of the weighted covari-

ances at different initial correlations and different degrees of autocorrelation. The

mean or the median have similar nonlinear increasing trend even if the data sets

have different initial correlations. The corresponding standard deviations as the de-

gree of autocorrelation increase seems to increase with aggregation except when the

degree of autocorrelation is 0.9 at different initial correlations.

To look deeper the behavior of the generated data, the graph for the aggregation

effect was revised so that the boxplots are categorized in terms of the Moran’s I.

Figure 6.26 shows the behavior of the generated data. The standard deviations

decrease as the initial correlations becomes bigger but the corresponding magnitude

of the standard deviations become bigger as the degree of autocorrelation increase.
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Aggregation Effects of the Covariance of X and Y at Different Initial
Correlation and Different Degrees of Autocorrelation

20

10

Initial r=0.1

ERE- TR

XNy~ TRE-TAT)

[ -]

.2

coee

Coinn
coomi

Initial r=0.3

n
OI

v

caa
cEm-an

OI
n

IO

4
4 8

@om

Initial r=0.5

Lo

N - TR
R - )

o™
@en
= I

Initial r=0.7

aomi
cemm
=
=

cem. -2

Initial r=0.9

012345678012345678012345678012345678012345678

Figure 6.25: Aggregation Effects at different initial correlations at different degrees of

autocorrelations

Aggregation Effects of the Covariance of X and Y at Different
Degrees of Autocorrelation and Different Initial Correlation
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Figure 6.26: Aggregation Effects at different degrees of autocorrelations at different

initial correlations
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6.3.1 Relationship between some statistics and the Moran’s

I with different proximity matrices:

Figure 6.27 shows the unweighted variance plotted against Moran’s 1. The upper
portion of the figure shows the relationship between the unweighted variance and
Moran’s I with Lag! proximity at different initial correlations at ED level while the
lower portion the relationship between the unweighted variance and the Moran’s
I with Block proximity. Recall that ‘block’ proximity corresponds to proximity
weights, w;j=1 if ED ¢ and ED j are in the same Ward, and 0 otherwise.
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Figure 6.27: Relationship between Unweighted Variance and the Moran’s I with Lag 1
and Block Proximity at different initial correlations at different degrees of autocorre-
lations. Note: The labels at the top of the top of the boxes are the initial correlations:
from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes are the vari-
ances and the horizontal axes are the Moran’s I with values ranges from 0.0 to 0.8

and the upper boxes with Lagl Proximity and the lower boxes with Block Proximity

Figure 6.28 shows the relationship between weighted variances plotted against the
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Figure 6.28: Relationship between Weighted Variance and the Moran’s I with Lag
1 and Block Proximity at different initial correlations at different degrees of auto-

correlations. Note: The labels at the top of the top of the boxes are the initial

correlations: from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes
are the Weighted Variance and the horizontal axes are the Moran’s I with values
ranges from 0.0 to 0.8 and the upper boxes with Lagl Proximity and the lower boxes

with Block Proximity

Moran’s I at different proximity matrices. In both cases of the proximity matrices,
there is a relationship. The big difference is that when the proximity matrix used
is Block proximity, there is a perfect correlation between the weighted variance and

the Moran’s I regardless of the initial correlation at ED level.

Figure 6.29 shows the relationship between the unweighted covariance and the
Moran’s I. When the proximity matrix is Lag 1 there is a non-linear relationship
between the two statistics. When the proximity matrix is Block proximity a strong

linear relationship is displayed.
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Figure 6.29: Relationship between Unweighted Covariance and the Moran’s I with
Lag 1 and Block Proximity at different initial correlations at different degrees of
autocorrelations. Note: The labels at the top of the top of the boxes are the initial
correlations: from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes
are the Unweighted Covariance and the horizontal axes are the Moran’s I with values
ranges from 0.0 to 0.8 and the upper boxes with Lagl Proximity and the lower boxes

with Block Proximity

Figure 6.30 shows the relationship between the weighted covariance and the

Morans’l with different proximity matrices.

Figure 6.31 shows the relationship between the Ward level correlation and the
Morans’l with different proximity matrices. We see that the Ward level correlation is
affected by the ED level correlation. For a given ED level correlation the relationship
with Moran’s I with Lag 1 proximity is evident in the SD which decreases as the
Moran’s I increases. This effect is more pronounced in the Block proximity case.

There does not appear to be a relationship between the mean of the Ward level
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Figure 6.30: Relationship between Weighted Covariance and the Moran’s I with Lag
1 and Block Proximity at different initial correlations at different degrees of auto-
correlations. Note: The labels at the top of the top of the boxes are the initial
correlations: from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes
are the Weighted Covariance and the horizontal axes are the Moran’s I with values
ranges from 0.0 to 0.8 and the upper boxes with Lagl Proximity and the lower boxes

with Block Proximity

correlation and the Moran’s I for either of the choices of proximity matrices.
Summary

A set of data is generated in such a way that variables X an Y have the same
mean (40) and the same variance (16) at the ED level. The autocorrelation of the
variables are equal but vary (0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) as measured
by Moran’s I using Lag 1. This time the initial Pearson correlations are varied (0.1,

0.3, 0.5, 0.7,and 0.9).

The weighted variance is not affected by the initial correlation, regardless of the
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Figure 6.31: Relationship between Correlations and the Moran’s I with Lag 1 and
Block Proximity at different initial correlations at different degrees of autocorrela-
tions. Note: The labels at the top of the top of the boxes are the initial correlations:
from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes are the Corre-
lations and the horizontal axes are the Moran’s I with values ranges from 0.0 to 0.8

and the upper boxes with Lagl Proximity and the lower boxes with Block Proximity

initial correlation at ED level, but depends on the degree of autocorrelation. As
the degree of autocorrelation increases, the change of the variance decreases but the

standard deviation increase with the degree of autocorrelation.

The mean and median of the direct correlation for each group fluctuate around
their corresponding initial correlation. In terms of the standard deviations of the
different categories corresponding to different initial correlations, the patterns are
similar, that is the standard deviations tends to decrease when the autocorrelations
get larger. When the data have high initial correlation (0.9), the magnitude of the

corresponding standard deviations is smaller than the rest of the cases.
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The mean of the level 1 pure correlation is not affected by the initial correla-
tion of the two variables and the initial degree of autocorrelation as long as the
autocorrelations of the two variables are almost equal. The variation of the level 1
pure correlations increase as the degree of autocorrelation increases. It can also be
observed that as the initial correlation gets bigger, the corresponding variation in
each degree of autocorrelation of the level 1 pure correlations decreases.

In terms of the aggregation effect, the standard deviations decrease as the ini-
tial correlations becomes bigger but the corresponding magnitude of the standard

deviations become bigger as the degree of autocorrelation increases.

6.4 Case 2: Variables have different spatial auto-

correlation

This experiment examines the behavior of statistics when the degree of autocorre-
lation of one variable is different from the other. The data are generated in such a
way that variable X has autocorrelation of 0.4 as measured by Moran’s I with Lag 1
proximity matrix and variable Y with Moran’s I at 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, and 0.8. The initial correlation in all cases is 0.3 and both variables have mean
40 and variance 16 in all cases.

Figure 6.32 shows the distribution of the unweighted variance of variable Y and
the covariance of variables X and Y at Ward level with Y having different degrees
of autocorrelation as described above. The figure support the claim that the change
in variance is moderated by the level of autocorrelation (Gotway and Young, 2002).
The mean of the covariance of variables X and Y seems to be constant and the
standard deviation seems to increase as the degree of autocorrelation increases.
These will have some effects on the other statistics. The change of the variance of
variable X is not shown but the mean variance of X is 3.8653.

Similar behaviors were observed for the corresponding weighted variance and
covariance at Ward level.

Figure 6.33 shows the distribution of the correlation at Ward level with differ-
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Unweighted Variance of Y at Ward level
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Figure 6.32: Unweighted Variance of Y and Covariance of X and Y at Ward level

ent degrees of autocorrelation in variable Y. The mean decreases as the level of

autocorrelation of Y increase and the standard deviation in general decrease.

Figure 6.34 shows the distributions of level 1 and level 2 variance components
for variable Y. The mean of the level 1 variance component decrease with the degree
of autocorrelation. The standard deviation also decrease with the degree of auto-

correlation. The mean of the level 2 variance component increases as the degree
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Figure 6.33: Correlation at Ward level with different autocorrelation

of autocorrelation increases. When the Moran’s 1 is 0.02, there are values of the
variance components at level 2 that are negative including the mean, in fact there
are more than 61% of the values that are negative. When the Moran’s T is 0.1, 5%
have negative values. This is observed because this case corresponds to effectively
zero within Ward correlation. When the degree of autocorrelation is above 0.2, no
negative values are observed. The mean and the standard deviation increase with

the degree of autocorrelation increase.

Figure 6.35 shows the distribution of level 1 pure correlation. The mean of the
level 1 pure correlation increases with the increase in the autocorrelation of variable
Y. The mean, which is a bit lower than the initial Pearson correlation, approaches 0.3
but has a sudden nonlinear increase when the degree of autocorrelation of variable Y
goes from 0.6 to 0.8. The standard deviation of the level 1 pure coefficient increase

with the degree of autocorrelation of the variable Y.
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Figure 6.34: Level 1 and Level 2 Variance component of variable Y

Level 2 pure coefficients have unusual values when the degree of autocorrelation
of variable Y are M,=0.02, 0.1, 0.2. As noted before, when the autocorrelation
is low the level 2 variance component is close to zero and negative estimates can
be obtained using the moments approach. When the variable Y has M,=0.02 to
M,=0.04 the mean fluctuates around 0.5 and the values range from -1.369 to 6.748.
When variable Y has M,=0.5 to M,=0.8 the mean decreases as the degree of au-
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Figure 6.35: Level 1 Pure Correlation at different degrees of autocorrelation in Y

tocorrelation increase and the values are respectively, 0.32682, 0.19400, 0.13209,
0.07860.

Figure 6.36 shows the distribution of level 1 and level 2 pure regression. The
pattern as shown in the figure is similar to the previous figure.

Relationship between some statistics and the Moran’s I with different
proximity matrices:

Figure 6.37 shows the scatter plot between the different Moran’s I with ‘block’
proximity of variable Y and the corresponding intra-area correlation. There is a
very strong correlation between the IAC and the Moran’s I with ‘block’ proximity.

Summary

This experiment examines the behavior of pertinent statistics when the degree of
autocorrelation of one variable is different from the other. The data are generated

in such a way that variable X has autocorrelation of 0.4 as measured by Moran’s I
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Figure 6.36: Level 1 and Level Pure Regression

with Lag 1 proximity matrix and variable Y with Moran’s I at 0.02, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, and 0.8. The initial correlation in all cases is 0.3 and both variables

have mean 40 and variance 16 in all cases.

The mean of the direct correlations decreases as the level of autocorrelation of

Y increases and the standard deviation in general decreases.

The mean of the level 1 pure correlation increases with the increasing degree of
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Figure 6.37: Scatter Plot of the Different Moran’s I and the Corresponding IAC

autocorrelation of variable Y. The mean which is a bit lower than the initial Pearson
correlation approaches 0.3 but has a sudden nonlinear increase when the degree of
autocorrelation of variable Y goes from 0.6 to 0.8. The standard deviation of the
level 1 pure coefficient increases with the degree of autocorrelation of the variable

Y.

Similar patterns are observed with the level 1 and level 2 pure regressions.

6.5 Summary

To look deeper into the behavior of the pure statistics and other common statistics,
data sets are constructed with pre-determined characteristics using a data set gen-
erator based on Reynolds (1999). For more detailed description of the data set gen-
erator, refer to Reynolds (1999, pp. 10-17) and Reynolds and Amrhein(1997). The

principles behind this data generator are used to generate data based on an actual
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region that was divided into enumeration districts (EDs), the lowest geographical
level in the 1991 UK population census for which aggregate data are released. These
EDs are grouped into larger geographical areas called Wards. The region consid-
ered in this study is composed of the districts; Camden, Hackney, Haringey, and

Islington. It comprises 1904 EDs nested into 92 Wards.

There were two general cases considered in this study, namely: Case 1, in which
the variables have the same spatial autocorrelations; and Case 2 in which the vari-
ables have different spatial autocorrelations. For the first case, the data set being
generated is composed of two variables X an Y and to make the analysis simple, the
variables have the same mean(40) and the same variance (16) at the ED level. The
variables also have a fixed Pearson correlation equal to 0.3 but they are generated
in such a way that the autocorrelation of the variables are almost equal but varies
(0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) as measured by Morans I and uses the
weight matrix corresponding to queens case lag 1, ie wij=1 if ED i and ED j are
immediate neighbors and 0 otherwise. The generation of the data is repeated 3000
times for each degree of autocorrelation to generate the distributions of the pure
statistics and other statistics. For each degree of autocorrelation described above,
1000 data points were selected at random from those that satisfy the required statis-
tics and were analyzed. All analyses are made with 1000 data points in each level

of autocorrelation.
Case 1: The variables have the same spatial autocorrelation

The mean level 1 pure correlation at different degrees of autocorrelation is not
far from the Pearson correlation at ED level but the standard deviation becomes
larger as the degree of autocorrelation increases. This means that the level 1 pure
correlation has less chance of having a value far from the initial correlation when ag-
gregated for cases when the degree of autocorrelation is low and this chance increases
as the degree of autocorrelation increases. In the case of level 2 pure correlation,
when both variables have low to medium autocorrelations, some cases are observed
in which the estimated correlations at Ward level have values greater than 1.0, or

less than -1.0 which is not a characteristic of a correlation coefficient. However,
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the standard deviation of the level 2 pure correlations decreases as the degree of
autocorrelation increases.

Similar patterns are observed with the pure regression coefficients. However, the
mean level 1 pure regression is below the initial regression coefficient of 0.3. Extreme
values were observed when the degree of autocorrelations of both variables are low.

There is a very strong positive relationships between the variance aggregation
effects defined by (Sg?;( / Sﬁé}() and the intra-area correlation with ”block” proximity.

There is almost perfect positive correlations between the intra-area cross-correlations
and the bivariate Moran’s I with low degrees of autocorrelations, and in the cases
where the pairs of variables have high degree of autocorrelations, there is a perfect
positive linear relationships.

Case 2: The variables have different spatial autocorrelation

The mean of the direct correlations decrease as the level of autocorrelation of Y
increases and the standard deviation in general decrease.

The mean of the level 1 pure correlation increases with the increase in the degree
of autocorrelation of variable Y. The mean is a bit lower than the initial Pearson
correlation and approaches 0.3, but has a sudden nonlinear increase when the degree
of autocorrelation of variable Y goes from 0.6 to 0.8. The standard deviation of the
level 1 pure coefficient increases with the degree of autocorrelation of the variable
Y.

A Similar pattern is observed with the level 1 and level 2 pure regressions.



Chapter 7

Conclusion

Analysis using spatial data is a multi-disciplinary subject attracting the attention
of statisticians, geographers, physical and social scientists. The results of statistical
analyses on the data available for areal units vary according to the definition of the
areal units. This phenomenon is referred to as the modifiable areal unit problem
(MAUP). The MAUP reflects the the effects of scale and zoning. The scale effect
refers to the changes in statistics that occur as the number of areal units into which
the region is divided changes, whereas the zoning effects refers to the variation in
results as the boundaries of the areal units change for a fixed scale. This study
focuses on on the scale effect, although some limited exploration of the zoning issue
is conducted.

Statistical analysis based on data aggregated over spatial units often produce
results that are very different from those obtained from analyzing corresponding
individual or household level data (Steel, Holt and Tranmer, 1996). One of the
reasons that it is necessary to aggregate data is to reduce the volume of data to
be processed. Another reason is to protect the confidentiality of personal data
(Openshaw and Alvanides, 1996). A further reason is that there may be no interest
in purely individual level relationships, but in relationships at some higher level or
scale.

A large amount of the research on the MAUP has focused on revealing the

problem and has been devoted to assessing the magnitude and impact on standard
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statistics such as correlation and regression coefficients. The MAUP is due to the
lack of independence or the presence of spatial correlation between different units
in the population. Multilevel modeling is now a popular approach to reflect the
association between different population units. This thesis examines some statistics
derived from a simple multilevel model to clarify the causes of one aspect of the
MAUP, the scale or aggregation effect. The thesis also look into the behavior of the
the so called ”pure statistics”, that can be calculated from the results of a simple
multilevel model and attempts to provide information about effects at a particular
level after removing effects from the other levels.

The thesis is novel in that pure coefficients and variance components are inves-
tigated using artificially-generated data as well as real data. Also, pure statistics
are compared with direct statistics and connection between the MAUP, multilevel

model and spatial autocorrelation are formulated.

7.1 Summary and Conclusions

Issues associated with scale effects in a simple multilevel model are considered in
this thesis. The thesis focuses on the relationship between a simple multilevel model
and a key aspect of the MAUP; the scale effect, and spatial autocorrelation. The
flow of the thesis includes an introduction followed by chapters giving a review of
the literature on the MAUP and then theoretical aspects of the possible causes of
the MAUP from a multilevel perspective. Three empirical chapters then follow.
Several experiments using a number of data sets are conducted in this thesis to
analyze the behaviors of the direct statistics and pure statistics. The experiments
are based on simulated data, real data and simulations based on real data. The first
of the three experiments examines the results for direct statistics and pure statis-
tics derived from a simple multilevel model using artificially-generated data sets in
a 100x100 square grid. The next chapter examines the results on direct and pure
statistics using real data drawn from two districts of London Boroughs. The sources

of data used are the 1991 UK Census and 1991 Sample of Anonimized Records
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(SARs). The analytical approach is then repeated using artificially-generated data
based on the work of Reynolds (1998). Several situations are considered, involving
varying the spatial autocorrelation and initial correlations of variables. These ex-
periments examine the impact of varying scale and the degree of autocorrelation on
the distribution of the statistics, including the mean and median of the distribution
and the dispersion as reflected standard deviations and the boxplots.

The experiments in this thesis enable us to investigate a number of questions

concerning scale effects.

e What is the impact of spatial autocorrelation on the scale effect on standard,
or direct, correlation and regression coefficients? In particular we investigate
how the level of spatial autocorrelation impacts the distribution of correlation
and regression coefficients including the mean and median of the distribution
and the dispersion as reflected in the standard deviations and boxplots. These

results add to the evidence concerning the MAUP.

e Are the so-called pure correlation and regression coefficients obtained from the

simple multilevel model affected by the MAUP?

e What is the impact of spatial autocorrelation on the scale effect of estimated
pure correlation and regression coefficients? In particular we investigated how
the level of spatial autocorrelation impacts the distribution of correlation and
regression coefficients including the impact on the mean and median of the
distribution and the dispersion as reflected in the standard deviation and box-

plots.

e Is the impact of the MAUP on the pure correlation and regression coefficients

less than, or different from, that on the direct coefficients?

e Can we predict the impacts of scale and zoning on features of the distribution of
the direct or pure coefficients? This question included finding some indicators

may include intra-class correlation.

Here we summarize how the results have provided evidence on the questions.
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From Chapter 2 we have the first two aggregation rules (Amrhein, 1995) are:

e The mean does not display any pronounced aggregation effects (scale or zona-

tion) at any level of aggregation used in the study.

e The variance does not display any pronounced scale effect beyond those ex-
pected from the decrease in the number of observations. However, it was noted
that scale-specific variance values cannot be imputed to other scales without

adjusting for the change in the number of reporting units.
Also, from Chapter 2 we have Steel and Holt (1996) rules of random aggregation:

e The expected value of weighted group-level statistics are not affected by ag-

gregation and that any observed change is due to random variation.

e The variance of the weighted group-level statistics are affected mainly by the
number of groups in the analysis. The variation will be high when the number

of groups is small.

The above rules correspond to situations where there is no spatial autocorrelation
present. The following results will extend the above results, by considering situations

in which there is spatial autocorrelation present.

7.1.1 The Mean and the variance

The population weighted group level mean is identical to the mean calculated at
the individual level (see equation 3.13, p23) and is not affected by aggregation and
the degree of autocorrelation. This is confirmed empirically. Consequently and
population weighted mean and its variance are not affected by aggregation.

The scale effect on the population weighted variance arises because as scale
increases the contribution of the level 2 variance component increases from 1 to
approximately N*, whereas the contribution of the level 1 variance component is
virtually unchanged (see equation 3.29 and 3.30, p26). For equal size groups the

intraclass correlation is equal to the Moran I statistics with spatial proximity weight
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equal to 1 if a pair of individuals is within the same group. Thus the intraclass
correlation can be regarded as a measure of average spatial autocorrelation within
a group. Even when the group sizes vary the relationship between the intraclass
correlation and Moran 1 is still very strong, as shown in figures 6.14, 6.15, and 6.37
(p193, 194 and 214 respectively). As we aggregate we would expect the intra-area
correlation to decrease as we are including more units and increasing the average
distance between units within a group. Figure 4.41 (p120) shows that the intraclass
correlation decrease non-linearly as N increases and, for fixed NV, increases with the
level of autocorrelation at the individual level. Hence, for a fixed autocorrelation
the weighted variance will increase with /N but not linearly and the rate of increase

slows as the number of groups become small.

The distribution of the weighted group level variance becomes more disperse
as the scale increases and the number of groups become small, particularly for 24
and 4 groups. This is due to the small number of degrees of freedom involved in
calculating the variance, which is M-1, where M is the number of groups. The
dispersion is reflected in the standard deviations of the weighted variances, which
also increases with the degree of spatial autocorrelation. The change in standard
deviation with scale is more than would be expected through the change in M. If the
weighted variance behaved as proportional to a x%, ; random variable the ratio of
its standard deviation to the mean, which is its coefficient of variation (CV), would
be \/m , which would be the case for no autocorrelation. Results in table
4.8 (p48), table 4.27 (p68), and table 4.43 (p82) give values a little less than these
theoretical values. Further evidence in given in table 6.1 on page 162, although the

CV of the weighted variance is a little larger than in the case of no autocorrelation.

The unweighted variances are approximately N2 times the corresponding weighted
variance. Consequently they decrease with scale, but increase, for a given scale,
with an increase in autocorrelation. If there is no autocorrelation their mean will
be the individual level variance divided by N2. Again the CV is a little less than
\/m. Relevant results are given in tables 4.10, 4.28 and 4.44 on pages 50,
68, and 84 respectively.
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7.1.2 The direct correlation and regression coefficients

When there is no spatial autocorrelation equation 4.2 (p51) suggest that the group
level correlation will be close to the individual level correlation, although there will
be a tendency to increase in absolute value when the number of groups is quite
small. Equation 4.3 (p51) gives a theoretical formula for the standard deviation of
the group level correlation when no spatial correlation is present and predicts that
it increases as the number of groups decreases, i.e. as scale increases. These results
are confirmed empirically in table 4.65 and 4.66 on page 101 and 102 respectively.

Tables 4.72 and 4.79 on pages 111 and 124 respectively summarize the results
of the experiments for the direct correlations with varying autocorrelations. Based
on the results of these experiments we see that when the autocorrelation is very
low the mean of the direct correlation is close to the individual level correlation.
When autocorrelation is present the mean of the direct correlation increases with
the degree of aggregation, that is as the scale increases. The main increase was
evident as the number of groups decreased to 625 and thereafter the increase was
minimal.

For a given scale the degree of autocorrelation affects the mean of the direct cor-
relation, initially increasing as the autocorrelation increased, but then it decreases
when one or both of the variables has high autocorrelation. As the level of aggrega-
tion increases the dispersion of the distribution of the direct correlation increases,
which is reflected in the standard deviation. When there are only 25 groups there are
some values of the direct correlation less than the individual level correlation. The
standard deviation of the direct correlation is only moderately affected by the de-
gree of autocorrelation. In going from very low to low autocorrelation the standard
deviation decreases, but then increases as the autocorrelation increases further.

Analysis of real data confirms the general pattern of correlation increasing in
absolute value with aggregation, although there are exceptions, see table 5.21 (p154).

Simulations based actual boundaries for varying individual level correlation and
autocorrelation show that the Ward level correlation fluctuate around the corre-

sponding unit level correlations, see figure 6.19 on page 197. The lack of any scale
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effect may be due to the average number of EDs per ward being only 21. The
dispersion tends to decrease as the autocorrelation increases.

The effects for direct correlation are similar to those of the direct correlations.

7.1.3 The pure coefficients

One esults of the experiments tackle the basic issue of how multilevel model is
affected by one aspect of the MAUP, the scale effect. This is an important issue
from an applied perspective, since multilevel modeling is sometimes suggested as an
approach to handling spatial aggregated data that comprise different levels.

The calculation of estimates of variance components associated with a simple
multilevel model enables the calculation of 'pure’ correlation and regression coeffi-
cient that attempt to separate effects occurring at the individual and group level.

When there is no spatial autocorrelation the mean and median of the estimated
level 1 and level 2 variance components are very close to the true values and the stan-
dard deviation of the estimates at both levels decreases as aggregation is increased
(see table 4.67, p104). As expected, negative estimates of the level 2 variance com-
ponents occur as they are unbiased estimates of a true parameter that is zero.

When there is no spatial autocorrelation the mean and median of the estimated
level 1 variance components are not affected by aggregation (see table 4.67 on page
104). The estimates of the level 2 variance components are very unstable, with very
large standard deviations, which affects their mean, but the medians are close to
zero. The level 1 variance component estimates have standard deviation close to
those of the individual level and are not affected appreciably by aggregation.

When there is no spatial autocorrelation the mean of the level 1 correlation is
the same as the individual level correlation and the level 1 regression is smaller that
the individual level.

In general the estimated level 1 and level 2 variance components will add to the
individual level variance as shown by equation 3.31 (p27). As the scale increases
we should expect the estimated level 1 variance component to increase when there

is spatial autocorrelation, as more dissimilar units are included in each group and
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hence the estimated level 2 variance decreases. This is seen in tables 4.13, 4.30 and
4.46 on pages b5, 72, 87 respectively. The rate of the increase in the level 1 variance
component estimates and the decrease in the level 2 estimates depends on the level

of the autocorrelation, being greater with higher levels of autocorrelation.

The results of the experiments show little or no scale effect in the mean of the
estimated level 2 correlation and regression coefficients, with very small increases
as the scale increases, as shown in tables 4.54, 4.55 and figures 4.46 and 4.48 on
pages 96, 96, 125 and 126 respectively. However, the means of these coefficients are

affected by the degree of autocorrelation, decreasing as the autocorrelation increases.

The standard deviation of the estimated level 2 correlation and regression coef-
ficients increase as scale increases, but is reasonably stable once the autocorrelation

is higher than the direct correlation.

The means of the level 1 correlation, when there is spatial autocorrelation, are
affected by aggregation, starting below the individual level correlation but approach-
ing it as the number of groups decreases. This is because, as the number of groups
becomes smaller, the groups become larger and the individuals within them become
more like the whole population. Spatial autocorrelation has little effect on the mean

of the level 1 correlations.

The standard deviation of the estimated level 1 correlation is relatively stable
and increases only slightly with scale and autocorrelation. The standard deviation
tends to be less than that of the individual level correlation, but approaches it as the
number of group becomes less. The standard deviation for the level 1 correlation
coefficients is much less than for the level 2 coefficients. Similar results are obtained

for the regression coefficient.

Decisions based on a study using aggregated data need to be considered care-
fully. It has been shown in this thesis and other research that relationships between
variables in one scale may be different from those found in other scales. Our re-
search suggests the one possible initial step in the investigation is to consider the
intra-area correlation which is a measure of the average spatial autocorrelation of

the variables. The results of this thesis can be used as a basis for the decision on
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which statistics to use in the decision making.

7.1.4 Approach to Aggregation

The results of the analyses in this thesis suggest that there is not necessarily an
individual level of aggregation. Direct analyses of aggregated data are affected by
relationships operating at the individual level and higher geographic levels. Use
of a multilevel modelling approach allows some separation of the effects at each
level and attempts to eliminate the contamination of any level on another. Which
levels of pure coefficient are relevant depends on the particular application. In some
applications the focus may be on individual relationships, having removed the effect
of higher levels. However, in many geographical applications the interest will be
in relationships that are specifically at the aggregation level remaining the purely
individual level effect. There may be interest in both individual and area level
effects, but they need to be separated for proper analysis. It is therefore important

that a researchers clearly specifies the relevant level or levels for their analysis.

7.2 Further Research and Development

Scale effects of pure coefficients derived from a simple multilevel model were inves-
tigated in this thesis. Further research can be done on pure coefficients for more
complex multilevel models. The experiments in this thesis show that the result of
a simple multilevel model are affected by the MAUP but not in the same way as
standard correlation and regression coefficients. They also confirm previous studies
that demonstrate that the MAUP affects standard analytical statistics. The role
of spatial autocorrelation is important and the simple multilevel model will usually
be an approximation to a more complex pattern of autocorrelation that applies in
a real population. Hence, a further step would be to investigate the MAUP when
correlations across areal units are incorporated in the model underpinning the anal-
ysis.

In Chapter 4 a number of combinations of variables in terms of the level of



CHAPTER 7: Conclusion 226

autocorrelation were considered, which give a good picture of the impact of different
degrees of autocorrelation. Further research can be carried out to look into the
effects of pure coefficients for more combinations of variables in terms of their spatial
autocorrelation.

The role of spatial autocorrelation has been demonstrated. More work on the
how the values of the individual level correlation and the spatial autocorrelation
interact in the MAUP on the direct and pure coefficients is desirable. The methods
used in this thesis in the analyses of pure coefficient can be used to analyze multiple
regressions and other multivariate techniques. The data generator can be utilized

to generate variables with different initial conditions.



Appendix A

Dataset Simulation Codes

A.1 Data Set Generator for a square grid

This program is to generate data sets on a square grid having a
dimension of 100x100.
FHHHHEE
# data generation based Moving average #
# method #
# Individual level (10000 areal units #
# in a square grid #
S s s s
module (spatial)
a77<-1
n<-10000
r<-100
c<-100
#initialisation of matrices

The initialization of the variables was omitted to save space

p<-1
repeat
{ if (p>c0) break
set.seed(12+p)
AAl1<-matrix(rnorm(r*c,0,4) ,ncol=c)

j<-1

227
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k<-1
AA2[§,k1<-(1/3)*(AAL[j,k+11+AA1[§+1,k+1]+AAL [j+1,k])
j<-1
k<-r
AA2[§,k]<-(1/3)*( AA1[j+1,k]+AA1[j+1,k-1]1+AA1[],k-1])
j<-c
k<-1
AA2[5j,k1<-(1/3)*( AA1[j,k+1]1+AA1[j-1,k+1]1+AA1[j-1,k])
j<-c
k<-r
AA2[j,k]1<-(1/3)*(AAL[j-1,k]+AAL1[j-1,k-1]+AAL[],k-1]1)
j<-1
for(k in 2:(c-1))
AA2[j,k]1<-(1/5)*( AA1[j,k+11+AA1[§+1,k+1]+AA1[j+1,k]1+AAL[j+1,k-1]+AA1[],k-1])
j<-c
for(k in 2:(c-1))
AA2([5,k]1<-(1/5)*( AA1[j,k+1]+AA1[j-1,k+1]+AA1[j-1,k]+AAL1[j-1,k-1]+AA1[j,k-1])
k<-1
for(j in 2:(c-1))
AA2(j,k]1<-(1/5)*( AA1[j+1,k]+AA1[j+1,k+1]+AAL[j,k+1]+AAL[j-1,k+1]+AA1[j-1,k])
k<-r
for(j in 2:(c-1))
AA2[j,k1<-(1/5)*( AA1[j+1,k]1+AA1[j+1,k-1]1+AA1[j,k-1]1+AA1[j-1,k-1]+AA1[j-1,k-1])
for(j in 2:(r-1))
for(k in 2:(c-1))
AA2[j,k]1<-(1/8)*(AA1[j-1,k]+AAL1[j+1,k]+AAL[j,k-1]+AAL[j, k+1]+
AM1[j-1,k-11+AA2[§+1,k-1]+AAL[j+1,k+1]+AA1[j-1,k+1])
1j100<-expand.grid(i=seq(1,100,1len=100), j=seq(1,100,1en=100))
set.seed(5+p)
r<-100
c<-100
K<-1
EijX<-matrix(rnorm(r*c,0,2), ncol=c)
EeijX<-K*c(EijX)
Xij1<-c(AA2)+c (EeijX)

Xijl.matrix<-matrix(Xijl, ncol=100)
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A1<-c(AA1)
A2<-c(AA2)
ErrX<-c(EeijX)

X2<-Xij1
test10000X2<-cbind(ij100,A1,A2,ErrX,Xij1)
set.seed(28+p)

r<-100

c<-100

e<- matrix(rnorm(r*c,0,4),ncol=c)

BB1<-matrix(10+c(AAl+e) ,ncol=c)
j<-1
k<-1

BB2[j,k]<-(1/3)*(BB1[j,k+1]1+BB1[j+1,k+1]+BB1[j+1,k])

j<-1

k<-r

BB2[j,k]<-(1/3)*( BB1[j+1,k]+BB1[j+1,k-1]1+BB1[j,k-1])

j<-c

k<-1
BB2[j,k]<-(1/3)*(BB1[j,k+1]+BB1[j-1,k+1]+BB1[j-1,k])

j<-c

k<-r

BB2[j,k]<-(1/3)*( BB1[j-1,k]+BB1[j-1,k-1]+BB1[j,k-1])

je-1
for(k in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j,k+1]1+BB1[j+1,k+1]+BB1[j+1,k]+BB1[j+1,k-1]+BB1[j,k-1])

j<-c

for(k in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j,k+1]1+BB1[j-1,k+1]+BB1[j-1,k]+BB1[j-1,k-1]+BB1[j,k-1])

k<-1
for(j in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j+1,k]+BB1[j+1,k+1]+BB1[j,k+1]1+BB1[j-1,k+1]+BB1[j-1,k])

k<-r

for(j in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j+1,k]+BB1[j+1,k-1]+BB1[j,k-1]+BB1[j-1,k-1]1+BB1[j-1,k-1])

for(j in 2:(r-1))
for(k in 2:(c-1))



CHAPTER A: Dataset Simulation Codes 230

BB2[j,k]<-(1/8)*(BB1[j-1,k]+BB1[j+1,k]+BB1[j,k-1]+BB1[j,k+1]+
BB1[j-1,k-11+BB1[j+1,k-1]+BB1[j+1,k+1]+BB1[j-1,k+1])
1j100<-expand.grid(i=seq(1,100,1len=100), j=seq(1,100,1en=100))
set.seed(10+p)
K<-1
EijY<-matrix(rnorm(r*c,0,2),ncol=c)
EeijY<-K*c(EijY)
Yiji<-c(BB2)+c(EeijY)
Yijl.matrix<-matrix(Yijl, ncol=100)
Bi<-c(BB1)
B2<-c(BB2)
ErrY<-c(EeijY)
Y2<-Yij1
m<-1:10000
X1<-X2%((sqrt(6))/ sqrt(var(X2)))
Y1<-Y2x( (sqrt(8))/ sqrt(var(Y¥2)))
X<-X1+(0.005-mean(X1))
Y<-Y1+(10-mean(Y1))
Z<-X+Y
test10000XY<-cbind(ij100,m, X, Y,Z)
test10000Y1<-cbind(ij100,A1,A2,ErrY,Yijl)
nobs<-10000
nzone<-2500
zonesize<-ceiling(nobs/nzone)
zfi12500<-matrix (rep(0, (nobs/ (nzone/ (sqrt(nobs)/sqrt (zonesize))))
*(nzone/ (sqrt (nobs) /sqrt (zonesize)))) ,ncol=(nzone/ (sqrt (nobs) /sqrt(zonesize))))
zfi12500[,1]<-rep(rep(1: (sqrt(nobs)/sqrt(zonesize)) ,each=ceiling(sqrt(zonesize)))
,ceiling(sqrt(zonesize)))
for (i in 2:(nzone/max(zfil2500[,1])))
{ zfil2500([,i]<-zfi12500[,1]+(i-1)*max(zfi12500[,1]) }
£10000withzone2500a<-cbind (m,test10000XY,c(z£i12500))
zonemean <- function(spat)
{out<-matrix(rep(0,length(spat[,4])) ,ncol=max(spat[,4]))
for (i in 1:max(spatl[,4]))
{out[,il<-spat[spat[,4]==1] [1: (length(spat[,4])/max(spat[,4]1))] }

return(colMeans(out)) }
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test2500x<-cbind (X,Y,Y,c(zfil2500))
spat<-test2500x
z2500x<-zonemean (test2500x)
test2500y<-cbind (Y,X,X,c(z£i12500))
spat<-test2500y
z2500y<-zonemean (test2500y)
test2500z<-cbind(Z,X,X,c(z£i12500))
spat<-test2500z
z2500z<-zonemean (test2500z)
x1<-X
yi<-Y
vvx<-var(x1)
vvy<-var (y1)
cxy<-cov(xl,yl)
x11<-22500x
y11<-z2500y
wgt<-nobs/nzone
z2500x1<- (sum(wgt*z2500x)) /n
z2500y1<- (sum(wgt*z2500y)) /n
m<-2500

vz2500x<- (sum(wgt* ((z2500x-22500x1) “2))) / (m-1)

vz2500y<- (sum(wgt* ((z2500y-22500y1) "2))) / (m-1)
€z2500xz2500y<~ (sum(wgt* (z2500x-z2500x1) * (z2500y-z2500y1)) ) / (m-1)

12cor11<-cz2500x2z2500y/ ((vz2500x*vz2500y) ~.5)

cvaf<-cov(xll,y11)
bli<-cvaf/(var(x11))
unwr<-cor(x11,y11)
mi<-mean (x1)
m2<-mean (y1)
vi<-var(x1)
v2<-var(y1)
corl<-cor(xl,yl)
af<-corl*((vi*v2)~.5)
bi<-af/v1
nbar<-n/m

nobar<-(sum(wgt~2))/n
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nastbar<-nbar+((nbar-nobar)/(m-1))
1lev2z2500x<-(vz2500x-vvx) / (nastbar-1)
lev2z2500y<-(vz2500y-vvy) / (nastbar-1)
lev1z2500x<-vvx-1ev2z2500x
lev1z2500y<-vvy-1lev2z2500y
iacz2500x<-1ev2z2500%/ (1ev2z2500x+1ev1z2500x)
iacz2500y<-1ev2z2500y/ (1ev2z2500y+1ev1z2500y)
lev2cov1<-(cz2500xz2500y-af)/(nastbar-1)
levicovi<-af-lev2covl
iacclii<-(levicovl)/((v1*v2)~.5)
iaccl21<-(lev2covl)/((v1*v2)~.5)
levirholi<-levicovl/((lev1z2500x*1ev1z2500y) ~.5)
lev2rholi<-lev2covl/((1lev2z2500x*1ev2z2500y) ~.5)
bl12<-lev2covl/1ev2z2500y
blii<-levicovl/1lev1z2500y
sxxedlev[p]<-vvx
syyedlev [p]l<-vvy
sxyedlev [p]<-cxy
sxxwardlev[p]<-var(x11)
syywardlev [p]l<-var(y11)
sxywardlev [p]l<-cov(yl1l,x11)
rwardlev[p] <-cz2500xz2500y/vz2500x
rUnWtdward [p]<-bl1
cwardlev[p]<-12coril
cUnWtdward [p] <-unwr
redlev[pl<- cxy/vvx
cedlev[p]<- cxy/(sqrt(vvx* vvy))
bl1led<-cz2500xz2500y/vz2500x
12cor11<-cz2500xz2500y/ ((vz2500x*vz2500y) = .5)
sx2wardlev [p]<-1ev2z2500x
sy2wardlev [p]<-1ev2z2500y
sxy2wardlev [p]<-lev2covl
sxlwardlev[p]<-lev1z2500x
sylwardlev [p]<-1lev1z2500y
sxylwardlev[p]l<-levicovl

iacwardlevx [p]<-iacz2500x
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iacwardlevy [p]<-iacz2500y
iacc2wardlev[p]<-iaccl21
iacclwardlev[p]<-iacclii
pc2wardlev[p]l<-lev2rholl
pclwardlev[p]<-levirholl
pr2wardlev[p]<-bl12
priwardlev[p]l<-bl11l
vz2500xwtd [p] <-vz2500x
vz2500ytd [p] <-vz2500y
cz2500xz2500ytd [p]<- ¢cz2500xz2500y
m10000x [p] <-mean (X)
m10000y [p] <-mean (Y)
m2500% [p] <-mean (z2500x%)
m2500y [p] <-mean (z2500y)
datarz2500<-cbind(sxxedlev,syyedlev,sxyedlev,redlev,cedlev,sxxwardlev,
syywardlev,sxywardlev,rwardlev,rUnWtdward, cwardlev,
cUnWtdward, sx2wardlev,sy2wardlev,sxy2wardlev,sxlwardlev,
sylwardlev,sxylwardlev,iacwardlevx,iacwardlevy,iacc2wardlev,
iacclwardlev,pc2wardlev,pclwardlev,pr2wardlev,priwardlev,
vz2500xwtd, vz2500ytd, cz2500xz2500ytd

p<-p+1

The program will then be run again for m=625,400,100,25, and 4
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A.2 Data sets for a region

The following R code was designed to create data sets with two variables X and Y
with specific mean, variance, initial correlation, initial autocorrelation (Moran’s I),
and number of iterations. The code applies to the region being defined in the study.
Other computations of pertinent statistics are also included in the code.

Required inputs are as follows:

numiter: The number of iteration

e dmx: The initial mean of X

e dmy: The initial mean of Y

e vvx: The initial variance of X

e vvy: The initial variance of Y

e dcr: The initial correlation of X and Y
e mox: The initial autocorrelation of X
e moy: The initial autocorrelation of Y

Also needed are (1)proximity tables created using GeoDa as a .txt file (WtED-
Lag01Queen.txt) (2) Number of EDs per Ward (NumEdPerWard.txt), (3)weight to
be used in the computation of Moran’s I (EDWARD333.txt)

Data Set Generator

iden2<-diag(1,1904,1904)
r<-1904
c<-1904
onel<-matrix(1, ncol=c, nrow=r)
onediv<-onel*(1/r)
onedivbyn<-matrix(onediv, ncol=c)
M<-iden2-onedivbyn

ww<- scan( "WtEDLagOiQueen.txt")
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spw<- function(ww)
{wil<-matrix (0, ncol=ww([1], nrow=ww[1])
nwo<-3
nw<-ww [3]
for(i in 1:ww([1])
{
if (nw>0)
{ for(k in 1:nw)
{ wili,wwlnwo+k]]<-1
}
}
nwo<-nwo+nw+2
nw<-ww [nwo]
}

wl

w<- spw(ww)
C<- spw(ww)
one<-matrix (1, ncol=1, nrow=r)
onetrans<-matrix(1, ncol=r, nrow=1)
csn<-onetrans*jone
csd<-onetrans*}Cl*%one
csl<-csn/csd
rm(one, onetrans)
cs2<- cs1[1]
Cs<-cs2*C
MCs<-MJ*%Cs
MCsM<-MCs%*%M
ev<-eigen(MCsM)
evalO<-ev$val
evall<-matrix(evalO, nrow=1)
EVAL<-evall
evecO<-ev$vec
evecl<-matrix(evecO, nrow=r)

EVEC<-evecl
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zz<-read.table ("NumEdPerWard.txt")
xx<-cbind(zz[,1], zz[,2], zz[,3])
x11<-c(rep(0,92))
y11<-c(rep(0,92))
xxx<- scan("EDWARD333.txt")
WWW<—XXX

wwl<- spw(www)

cO<-numiter
p<-1
# Initialization of Variables ( Omitted to save space)#
repeat
{if (p>c0) break
el<-EVEC[,1]
e2<-EVEC[, 2]
e6<-cbind(el,e2)
V<-e6
bb<-cov(e6)
# The Desired variance-covariance #
# let the var(e2) be the diagonal of the matrix #
dmx<-dmx
dmy<-dmy
VVX<-VVX
VVy<-vvy
dcr<-dcr
dli<-vvx
d12<-dcr* ((vvx*vvy) ~.5)
d21<-dcr*((vvxvvy)~.5)
d22<-vvy
d<-c(d11,d21,d12,d22)
dm<-matrix(d, ncol=2)
dd<-matrix(d, ncol=2)
B<-chol (bb)
D<-chol(dd)
A<-solve(B,D)

#the desire MC’s
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mcd0<-c (mox ,moy)
mcdl<-matrix(mcdO, nrow=1)
MC<-mcd1l
mi<-MC[,1]
m2<-(((A[1,2]"2)*MC[,1]1)+((A[2,2]"2)*MC[,2]1))/((A[1,2]"2)+(A[2,2]"2))
11<-m1
12<-((m2*% ((A[1,2]°2)+(A[2,2]172)))-((A[1,2]172)*11))/((A[2,2]"2))
rmc0<-c(11,12)
RMC<-matrix(rmcO, nrow=1)
set.seed(19+p)
bO<-runif (2,min=0, max=1)
bi<-matrix (b0, nrow=1)
lamli<-as.integer (runif(1,1,440))
laml2<-as.integer (runif (1,1,440))
lam21<-as.integer (runif (1,625,1100))
lam22<-as.integer (runif (1,750,1200))
al<-(((EVAL[,lam11]-RMC[,11)/(RMC[,1]1-EVAL[,1am21]))*(b1[,1172))"(.5)
a2<-(((EVAL[,lam12]-RMC[,2]1)/(RMC[,2]-EVAL[,1am22]))*(b1[,2]1"2))"(.5)
v1<-al*EVEC[,lam21]+b1[,1]*EVEC[,lam11]
v2<-a2*EVEC[,lam22]+b1[,2] *EVEC[,lam12]
Vj<-cbind(v1,v2)
s1<-sqrt(var(vl))
s2<-sqrt(var(v2))
sd1<-sqrt (vvx)
sd2<-sqrt (vvy)
v1i1i1<-vix(sd1l/s1)
v222<-v2x(sd2/s2)
VV<- cbind(vi11,v222)
XX<-VVy*%A
XXX1<-XX[,1]1*(sd1/sqrt (var (XX[,11)))
XXX2<-XX[,2]*(sd2/sqrt (var (XX[,2])))
x11<-XXX1+(dmx-mean (XXX1))
y11<-XXX2+ (dmy-mean (XXX2))
HEHBHHAH B HBHHAHBRHBHH
# The generated data #
HEHHHBHFHH AR HHBRHHHARS
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x1<-x11
yi<-y11
z1<-x1+y1
# Computation of the Moran’s I
morani<-
function(x, w, k = 0, rescale = T, rescalepart = T)
{
n <- length(x)
s2 <- 0
if (rescale) {

for(i in 1:n)

{
if(sum(wl[i, 1) > 0)
{
wli, 1 <= wli, 1/(um(wli, 1))
}
}
}
for(i in 1:n)
{
s2 <- s2 + (sum(w[i, 1) + sum(w[, i]))"2
}

sumw <- sum(w)
mx <- mean(x)
z <- X - mx
m <- t(2) %% w hxh oz
sumz2 <- sum(z"2)
m<- (n * m)/(sumw * sumz2)
pn <- (n * pm)/(sumw * sumz2)
sl <= 0.5 * sum((w + t(w))"2)
Ei <- -1/(n - 1)
Eitwon <- (n"2 * s1 - n * s2 + 3 * sumw"2)/(sumw”2 * (n"2 - 1))
sdn <- sqrt(Eitwon - Ei~2)
b2 <- n * (sum(z"4)/(sum(z"2)"2))

Eitwor <- n * ((n"2 - 3 *n + 3) * s1 - n * s2 + 3 *x sumw™2)

Eitwor <- Eitwor - b2 * ((n"2 - n) * s1 - 2 * n * 82 + 6 * sumw"2)
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Eitwor <- Eitwor/((n - 1) * (n - 2) * (n - 3) * sumw™2)
sdr <- sqrt(Eitwor - Ei~2)
cat("\n UNDER NORMAL APPROXIMATION \n")

cat("\n Moran’s I is =", round(m, 6))

cat("\n Mean of I is ", round(Ei, 6))
cat("\n St. Dev of I = ", round(sdn, 6))
z1 <- (m - Ei)/sdn

" round(zl, 6))

cat("\n Z-Value

cat("\n P-Value(2-side)
)
cat ("\n\n UNDER RANDOMIZATION ASSUMPTION\n")

", round(2 * (1 - pnorm(abs(z1))), 6)

cat("\n Moran’s I is = ", round(m, 6))

", round(-1/(n - 1), 6))

cat("\n Mean of I is
cat("\n St. Dev of I = ", round(sdr, 6))

z2 <- (m - Ei)/sdr

cat("\n Z-Value ", round(z2, 6))
cat("\n P-Value(2-side) = ", round(2 * (1 - pnorm(abs(z2))), 6),"\n")
if (rescalepart)
{
pm <- pm * n
}
if(k > 0)
{
cat("\n (Computing Permutation Distribution)\n")
msim <- rep(0, k)
for(j in 1:k)
{
y <- sample(n)
x <= x[yl
z <- X - mx
msim[j1 <- t(2) %x% w %x) z/sumz2
}
probl <- length(msim[msim > m])/k
prob2 <- 1 - probl
prob <- 2 * min(probl, prob2)

cat("\n Results based on ", k, "permutations")
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cat("\n Moran’s I = ", round(m, 6))

cat("\n Mean of I stat = ", round(mean(msim), 6))
cat("\n Std Deviation = ", round(sqrt(var(msim)), 6))
cat("\n P-value(2-side) = ", round(prob, 6), "\n")

invisible (msim)
}
else invisible(list(m = m, partial = pm))

mixl<-morani(xl, w, k = 0, rescale = T, rescalepart = T)

mixlil<-morani(xl, wwl, k = 0, rescale = T, rescalepart = T)

I
o

miyl<-morani(yl, w, k , rescale = T, rescalepart = T)

miyli<-morani(yl, wwl, k = 0, rescale = T, rescalepart = T)
mizl<-morani(zl, w, k = 0, rescale = T, rescalepart = T)
mizlil<-morani(zl, wwl, k = 0, rescale = T, rescalepart = T)

wgt<-xx[,1]
n<-sum(wgt)
nc<-1
for ( cn in 0:91)
{
x11[cn+1]<- mean(xl[nc: (nctwgtlcn+1]-1)1)
nc<-nc+wgt [cn+1]
}
nc<-1
for ( cn in 0: (91))
{
y11[cn+1]<- mean(yl[nc: (nctwgtlcnt+1]-1)]1)

nc<-nc+wgt [cn+1]

age<-x11
ftw<-y11
agel<-(sum(wgt*age))/n
ftwi<-(sum(wgt*ftw))/n
mwtdmeed<-c(agel, ftwl)
m<-92
vage<- (sum(wgt* ((age-agel) ~2)))/(m-1)
vitw<-(sum(ugt* ((ftw-ftwl)"2)))/(m-1)

cageftw<-(sum(wgt*(age-agel) * (ftw-ftwl)))/(m-1)
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12corli<-cageftw/((vagexvftw)~.5)
mi<-mean(x1)
m2<-mean (y1)
mindivid<-c(ml,m2)
vi<-var(xl)
v2<-var (y1)
vindivid<-c(v1,v2)
corl<-cor(xl,yl)
af<-corl*((v1*v2)~.5)
vesl<-c(vl,af)
bi<-af/v1
nbar<-n/m
nobar<-(sum(wgt~2))/n
nastbar<-nbar+((nbar-nobar)/(m-1))
lev2age<-(vage-vvx)/(nastbar-1)
lev2ftw<-(vitw-vvy)/(nastbar-1)
levlage<-vvx-lev2age
leviftw<-vvy-lev2ftw
iacage<-lev2age/(lev2age+levlage)
iacftw<-lev2ftw/(lev2ftw+leviftw)
iac<-c(iacage, iacftw )
lev2covi<-(cageftw-af)/(nastbar-1)
levicovi<-af-lev2covl
iacclii<-(levicovl)/((v1*v2)~.5)
iaccl21<-(lev2covl)/((v1*v2)~.5)
meindivid<-c(mi1,m2)
vaindivid<-c(v1,v2)
mevaindividual<-cbind(meindividual,vaindividual)
meed<-c(agel,ftwl)
vaed<-c(vage,vftw)
mevaed<-cbind(meed,vaed)
levivarcom<-c(levlage,leviftw)
lev2varcom<-c(lev2age,lev2ftw)
intraareacor<-cbind(levivarcom,lev2varcom)
levirholi<-levicovl/((levliagexleviftw)~.5)
lev2rholi<-lev2covl/((lev2age*lev2ftw) ~.5)
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bl12<-lev2covl/lev2ftw
blii<-levicovl/leviftw
sxxedlev [p]<-vvx
syyedlev [p]l<-vvy
sxyedlev[p]<-af
redlev[pl<-af/vvx
cedlev[p]<-corl
medlevx [p]l<-mix1$m[1]
medlevy [p]l<-miy1$m[1]
medlevz[p]<-mizi1$m[1]
medlevxl[pl<-mix11$m[1]
medlevyl [pl<-miy11$m[1]
medlevzl [pl<-miz11$m[1]
sxxwardlev[p]<-var(x11)
syywardlev[p]<-var(y11)
sxywardlev[pl<-cov(y1l1l,x11)
rwardlev[p]l<-cageftw/vage
rUnWtdward [p]<-bl1l
cwardlev[p]l<-12coril
cUnWtdward [p] <-unwr
sx2wardlev[p]<-lev2age
sy2wardlev[p]<-lev2ftw
sxy2wardlev[p]<-lev2covl
sxlwardlev[p]l<-levlage
sylwardlev[p]<-leviftw
sxylwardlev[p]<-levicovl
iacwardlevx[p]l<-iacage
iacwardlevy[p]l<-iacftw
iacc2wardlev[p]<-iaccl21
iacclwardlev[p]<-iacclil
pc2wardlev [p]l<-lev2rholl
pclwardlev[p]l<-levirholl
pr2wardlev[p]<-bl12
priwardlev[p]l<-bl11
vagewtd [p]<-vage

vitwtd [pl<-vitw
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cageftwtd[p]<- cageftw
#Computation of the cross-Moran I
cmor [p]<-(((sxxedlev[p]+syyedlev[p]+2*sxyedlev [p])*medlevz[p])-
(medlevy [pl*syyedlev[pl)-(medlevx[p]*sxxedlev[p]l))/
(2% ((sxxedlev[p] *syyedlev[p])~.5))

cmorl [p]<-(((sxxedlev[p]+syyedlev[p]+2*sxyedlev[p])*medlevzl[p])-
(medlevyl[p]*syyedlev[p])-(medlevxl [p]*sxxedlev[p]))/
(2% ((sxxedlev[p]*syyedlev([p])~.5))
p<-p+1
}
datal<-cbind(medlevx,medlevxl,medlevy,medlevyl,medlevz,medlevzl,
sxxedlev,syyedlev,sxyedlev,redlev,cedlev,sxxwardlev,syywardlev,
sxywardlev,rwardlev,rUnWtdward, cwardlev, cUnWtdward, sx2wardlev,
sy2wardlev,sxy2wardlev,sxlwardlev,sylwardlev,sxylwardlev,iacwardlevx,
iacwardlevy,iacc2wardlev,iacclwardlev,pc2wardlev,pclwardlev,pr2wardlev,
priwardlev,cmor,cmorl,vagewtd,vitwtd, cageftwtd)

write.table(datal,file="datal.dbf", col.names = NA)

A.3 Proximity Weights (WtEDLag01Queen.txt)

Note:
Only the first 3 and the last 3 wards were described to save space.

The rest of the file is stored as WtEDLagOlQueen.txt

1904

18

513 498 61 9 2 10 19 18
27

63 61 6 11 10 3 1

37

64 63 52 6 53 7 2
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1904 1606 1903 1897 1896 1608

1903 7

1605 1900 1606 1899 1898 1902 1897

1904 5

1608 1902 1896 1901 1862

A.4 Weight (NumEdPerWard.txt)

Note: Only the first 3 and the last 3 wards were described to save space. The rest

of the file is stored as NumEdPerWard.txt

28
38
25

21
14
16
25

40

40.

41

38
39
39
41

.471

166

.05

.357
.701
.609
.05

40.

40
40

39.
39.

39
40

141

.05
.315

507
91

.883
.315

40.
40.
40.

39.
39.
39.
40.

141
05
315

507
91

883
315

A.5 Proximity Weights used in the computation

of Morans I (Block Proximity)

Note: Only the first 3 and the last 3 wards were described to save space. The rest

of the file is stored as EDWARD333.txt



CHAPTER A: Dataset Simulation

Codes

245

1904

27

3456

13456

3 27

12456

1902
1880
1895
1903
1880
1895
1904
1880
1895

24
1881
1896
24
1881
1896
24
1881
1896

789 10 11 12

789 10 11 12

789 10 11 12

1882 1883 1884

1897 1898 1899

1882 1883 1884

1897 1898 1899

1882 1883 1884

1897 1898 1899

13 14 15 16 17

13 14 15 16 17

13 14 15 16 17

1885 1886 1887

1900 1901 1903

1885 1886 1887

1900 1901 1902

1885 1886 1887

1900 1901 1902

18 19 20 21 22

18 19 20 21 22

18 19 20 21 22

1888 1889 1890
1904

1888 1889 1890
1904

1888 1889 1890
1903

23 24 25 26 27

23 24 25 26 27

23 24 25 26 27

1891 1892 1893

1891 1892 1893

1891 1892 1893

28

28

28

1894

1894

1894
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Glossary of Terms

ED
GIS
IAC
IACC
ICC
MAUP
MLE
NA
OLS
SARs

Enumeration District

Geographical Information Systems

Intra-area Correlation Coefficient, also indicated by p
Intra-area Cross-Correlation Coefficient, also indicated by p
Intra-class Correlation Coefficient, also indicated by p
Modifiable Areal Unit Problem

Maximum Likelihood Estimation

Not Available, used to indicate missing values

Ordinary Least Squares

Samples of Anonymised Records)
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