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Abstract

In many instances data are available as aggregated measurements for a set of areal

units that are arbitrarily defined in terms of number and boundaries. Analysis using

spatial data is a multi-disciplinary subject attracting the attention of statisticians,

geographers, physical and social scientists. The Modifiable Areal Unit Problem

(MAUP) is the sensitivity of results of statistical analysis to the definition of areal

units for which the data are available. The results vary with the level of aggregation

and the configuration of the zoning system. Multilevel models offer an approach to

the MAUP. Multilevel modeling is potentially subject to the MAUP, since different

estimates of the variance components can be obtained if boundaries are changed or

a different scale is used.

This thesis presents results of experiments conducted to look into the scale effects

of statistics calculated directly from aggregated data and statistics derived from a

simple multilevel under different initial conditions. The analysis of spatial data is

usually affected by the complex relationships between variables and the existence of

spatial autocorrelation. A reason for multilevel models being subject to the MAUP

is that, while the data available may be hierarchical, the population structure may be

more complex. Theoretical and empirical investigations to link a simple multilevel

model and spatial autocorrelation and the implications for the MAUP are conducted.
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Chapter 1

Introduction

This chapter introduces some definitions of key terms and the Modifiable Areal Unit

Problem (MAUP), spatial autocorrelation, and multilevel model. Also the chapter

describes the problems to be tackled in the thesis and the flow of presentation.

1.1 The Modifiable Areal Unit Problem

Analysis using spatial data is a multi-disciplinary subject attracting the attention of

statisticians, geographers, physical and social scientists. A geographical region may

be completely covered by a number of mutually exclusive zones referred to as areal

units. In many instances data are available as aggregated measurements for a set

of areal units that are arbitrarily defined in terms of number and boundaries. The

areal units can be partitioned into smaller subareas or grouped into larger areas in a

hierarchical manner (Wong, 1996), or boundaries can be changed for some reason. In

Australia an example of a hierarchical geographical structure is, from smallest areal

unit to a larger unit; Census Collectors Districts (CDs), Local Government Areas

(LGAs), Statistical Divisions (SDs) and States/Teritories. In the United Kingdom

an example of an hierarchical structure is; Enumeration Districts (EDs), Wards, and

Districts.

1
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The results of statistical analyses based on the data available for areal units vary

according to the definition of the areal units. Any statistical relationship may be

manipulated by the choice of areal units (Openshaw, 1984b). This phenomenon is

referred to as the modifiable areal unit problem (MAUP). The term was first used

and defined by Openshaw and Taylor (1979) (see Fotheringham and Wong, 1991).

The modifiable areal unit problem reflects not only the properties of the variables

under consideration but also the properties of the zoning system itself (Yule and

Kendal, 1950). Statistical analysis based on data aggregated over spatial units

often produce results that are very different from those obtained from analyzing

corresponding individual or household level data (Steel, Holt and Tranmer, 1996).

One approach would then seem to be to only use data at the lowest possible level

of aggregation (Goodchild, 1992), which may be the individual level. There are

often reasons that it is necessary to aggregate data. One reason is to reduce the

volume of data to be processed. Another reason is that it protects the confidentiality

of personal data (Openshaw and Alvanides, 1996). A further reason is that there

may be no interest in purely individual level relationships, but in relationships at

some higher level of aggregation. Many analyses are tied to arbitrarily defined areal

units and the results apply only for the particular areal units that have been used.

Methods that eliminate or minimize the impact of the MAUP or have predictable

qualities when areal units are changed will be of enormous value.

The MAUP is the sensitivity of results to the definition of the areal units for

which the data are available. These results may vary with the level of aggrega-

tion and the configuration of the zoning system. The MAUP consists of two sub-

problems: the scale problem and the zoning problem (Openshaw and Taylor, 1979).

The scale problem refers to the variation in results that may be obtained when the

same areal units are combined into sets of increasingly larger areal units for analysis

(Openshaw and Taylor, 1979). It is the change in results that occurs as the number

of areal units into which the population is partitioned changes. The zoning problem

refers to the variability in results when different boundaries are used at the same

scale, that is, for the same number of areal units (see Wrigley, Holt, Steel, and Tran-
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mer, 1996). The term ”modifiable” is used because the choice of area boundaries

and the number of areas used to cover the population are often not fundamental and

other choices could have been made (Holt, Steel and Tranmer, 1996a). Usually the

areal units used to identify the geographical location of the objects being studied

have no special significance having been constructed for reasons of cost, operational

or administrative convenience (Steel, Holt and Tranmer, 1996a).

Another issue that is related to the MAUP is the ecological fallacy. It occurs

when spatially aggregated data are analyzed and the results are assumed to apply

to relationships at the individual level. It arises when group or area level data are

the only source of information available to the researcher but the objective of the

study are individual level characteristics and relationships (Wrigley et al., 1996).

In ecological analysis, the main data available consist of group or area level means

or totals from a census or sample but the targets of inference are at the unit level

(Holt, Steel, and Tranmer, 1997).

Socio-economic differences between arbitrarily defined areal units contribute to

the effects of the MAUP on statistical analysis. In practice, individuals who live in

the same area tend to be more alike in terms of a variety of socio-economic variables

than individuals in different areas. This is referred to as positive clustering and

is characterized by positive intra-area correlation, a statistic which measures the

homogeneity of individuals within areas or groups (Holt et al., 1996a). Choices of

areal unit boundaries may create areas that are relatively homogeneous, whereas

other choices of boundaries may result in areas that are less homogeneous and thus

the MAUP occurs. The MAUP will usually affect different variables to varying

degrees, leading to the unpredictable scale and zoning effects on the relationships

between variables (Holt, et. al., 1996a). The analysis of spatial data is usually

complicated by the complex relationship between variables, the spatial pattern of

variables and the existence of spatial autocorrelation. There are three kinds of effects

that can lead to spatial clustering being important. One is the tendency for people

with similar attributes to choose to live near each other. Another is that people in

the same area experience the same effects of characteristics of the area. Lastly, the
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tendency for people living nearby to interact and develop common characteristics

(Steel et al., 1994).

1.2 Spatial Autocorrelation

Spatial autocorrelation is a measure of the correlation between values of a variable

with regard to spatial location. It measures the level of spatial interdependence

of the characteristic and strength of the dependence. Spatial autocorrelation can

be categorized as either positive or negative. A positive spatial autocorrelation

implies that similar values appear close together and a negative autocorrelation

has dissimilar values appearing close together. Spatial autocorrelation basically

measures correlation of a single variable for all pairs of points at a particular distance

or some other category. Standard global and some new local spatial statistics have

been developed to detect spatial autocorrelation and spatial association. These

measures include: Moran’s I, Geary C, G Statistic, LISA (Anselin, 1995), GLISA

(Bao and Henry, 1996).

The analysis of spatial data is usually complicated by the complex relationships

between variables and the existence of spatial autocorrelation. The smoothing effect

that results from averaging is a contribution to the scale problem in the MAUP.

As heterogeneity among units is reduced through aggregation the similarity among

units is also reduced. Another factor is spatial autocorrelation. The decrease in the

variance is moderated by the positive autocorrelation of the original observations

and is worsened by negative autocorrelation (Gotway and Young, 2002). This means

that the more the variable is positively autocorrelated, the more the chance that

similar values are grouped together when aggregated so that less variance is lost

at the aggregate level. As the level of autocorrelation decreases and approaches a

negative autocorrelation, the chances increase that non-similar values are grouped

together resulting in a greater loss of variance in the aggregate level.

In this thesis Moran’s I will be used to describe the spatial autocorrelation of a

given variable. Moran’s I was the first measure of spatial autocorrelation and was
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introduced by Moran (1950) to study stochastic phenomena that are distributed in

space in two or more dimension. It has been used in almost all studies employ-

ing spatial autocorrelation. The value of Moran’s I range from 1 indicating strong

positive correlation, to 0 indicating a random pattern, to -1 which implies strong

negative spatial autocorrelation. This statistic can be used to measure spatial auto-

correlation of ordinal, interval or ratio data. The Moran’s I provides a one number

overall measure of spatial autocorrelation.

1.3 Multilevel Modeling

Over the past 20 years multilevel modeling has been used in many applications.

Researchers in social, geographical, education and medical sciences utilize multilevel

modeling when the data have a heirarchical structure. Examples are school/children,

grouped into schools which may then be grouped into districts. In spatial analysis,

data may be collected for areal such as EDs and Wards. In this case the lowest level

maybe the household unit and the possible next level will be EDs and then Wards.

The fundamental principle of multilevel modeling is the existence of different

levels of variation. The methodology is an extension of multivariate regression in

which lower level (say, level-1) and higher level (say, level-2) effects are combined

in a model so that both lower level and higher level variation can be investigated.

Multilevel modeling can be used to isolate variation resulting from the variability

in the lower level from variation resulting from differences between zones. If one is

interested in examining lower level data, variation of a particular variable is not only

a function of attributes at that level but also that of higher level factors. Goldstein

(1998) noted that the application of multilevel modeling has begun to produce new

insights in several areas because relevant software has become more widely avail-

able. He described multilevel approaches to research in education and other areas

of applications. Goldstein (1998) introduced some of the more recent extensions

of multilevel modeling and illustrated their potential for analysing social processes.

Multilevel modeling is another approach that allows for across unit correlations.
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In a series of papers Steel and Tranmer (1998) have developed an approach that

tackles the MAUP and ecological fallacy using a multilevel modeling framework.

They applied the approach to investigate scale effects. The basic model they used

involves assuming that individuals within an areal unit are all equally correlated with

each other and that there is no correlation between individuals in different areal

units. Basically, the approach considers the average within areal unit correlation

between individuals and ignores the association across areal units. A more general

approach can be developed which allows correlation between different individuals to

depend on their spatial location.

Multilevel modeling was originally developed in situations when the levels cor-

respond to non-spatial groups such as schools and hospitals. It has also become a

popular approach for analysing geographic data (Jones and Duncan, 1996). For ge-

ographical data the levels in a multilevel model can correspond to individual, neigh-

bourhoods, and other higher level of geographic units such as administrative areas,

regions or provinces. The effects at a particular level may reflect many influences

that operate at that level such as local policies, physical features, or interactions

between people. The impact of such factors may not be so clear cut. Therefore a

basic issue is how multilevel modelling itself is affected by the MAUP.

1.4 The Problem

This thesis is going to address some issues on how a simple multilevel model is

affected by the MAUP. In Chapter 2 a review of research on the MAUP, including

empirical investigations, theoretical studies, and some methods previously employed,

will be conducted.

In Chapter 3 some theoretical background will be discussed to investigate the

causes of the MAUP. Definitions of some statistics that are relevant to the study

will be presented in this chapter as well as relationships between pertinent statistics.

Initial investigation of the possibility of multilevel modeling as a solution to one

aspect of MAUP, the scale effect, will be presented in Chapter 4. Several experiments
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injecting some specified conditions such as spatial autocorrelations in simulated data

sets in a square grid will be conducted to look into the scale effects on pertinent

statistics.

In Chapter 5 real data from the 1991 UK Census will be used to investigate

the scale effect of pertinent statistics. Several scenarios will be investigated when

individual level data are available and when no individual level data are available.

In Chapter 6 an actual region divided into Enumeration Districts (EDs) and

Wards will be used to generate data sets with different initial conditions. The

behaviors of various statistics, including statistics derived from the simple multilevel

model will be examined in this chapter. The actual region used in Chapter 6 will

be used to generate some arbitrary boundaries to examine the other aspect of the

MAUP, the zonation effect.

Chapter 7 provides a summary and conclusions.

To sum it up, the thesis will look into the MAUP effects of some statistics derived

from the simple multilevel model using real data and simulated data sets. This thesis

will give insight into how simple multilevel modeling and other pertinent statistics

are affected by the MAUP under various conditions.

In particular, the experiments in these thesis investigate a number of questions

concerning scale effects.



Chapter 2

Review of Research into the

MAUP

The research described in this thesis builds on some previous results in the study

of the MAUP. This chapter briefly reviews some previous research relevant to this

thesis.

2.1 Introduction

After the initial discovery of the MAUP, several lines of research have been followed.

A large amount of the research on the MAUP focused on revealing the problem and

was devoted to assessing the magnitude and impact on standard statistics such as

correlation and regression coefficients. Various researchers have conducted studies

to examine the effect of varying scale and aggregation on correlation and regression

coefficients. However, the approaches were mainly empirical and there was little

effort to provide a theoretical explanation or solution.

8
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2.2 Research on the MAUP

Aspects of the MAUP were first raised by Gehlke and Biehl (1934) when they con-

ducted an empirical study that was motivated by an issue pointed out by Dr. Henry

Sheldon in 1931 that stated: ” a tendency for the correlation coefficient to increase

in size as the units of census tract areas increase in size from one tract to several,

and decrease in number of tracts from 188 to 23” (page 169, Gehlke and Biehl,

1934). There are three parts of the study and one concerned the grouping effects in

census tract data. The 252 census tracts of Cleveland were successively grouped into

areas in such a way, that as much as possible, they had approximately the same size

and were made up of contiguous territory. They grouped the 252 census tracts into

200, 175, 125, 100, 50, and 25 areas. They found that the correlation coefficients

between median monthly rental payment and juvenile delinquency increased when

areal units became larger. One of their conclusions was that the magnitude of the

correlation coefficient seems to be affected by the changes of the size of the unit

used in such a way that a smaller value was associated with the use of the smaller

areal units.

Robinson (1950) provides empirical evidence that an ecological correlation is

not equal to its corresponding individual correlation in his studies of illiteracy and

colour and illiteracy and foreign birth. Yule and Kendal (1950) noted the values of

correlation coefficients depended on the size of the unit and the tendency for the

correlations to increase with the size of groups. Blalock (1964) assessed the impact

on the correlation and slope estimates of a bivariate linear model under four dif-

ferent aggregation criteria; random, by the dependent variable, by the independent

variable, and by proximity. There are originally 150 counties in Blalock’s study. He

then formed artificial groupings of 75, 30, 15, and 10 groups. The results showed

that random grouping had no impact on the correlation coefficients and regression

coefficient. The counties are then ranked according to scores of the independent

variable and then grouped so that the first group had the first n lowest scores, the

next group had the next n lowest scores, and so on, where n is the number of coun-
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ties in a group. The correlation and regression coefficients are then computed for

the different groupings. The correlation coefficient was observed to increase with

scale but no effect on the slope coefficient was observed. For grouping by the de-

pendent variable, both the correlation coefficients and the slope coefficient increased

with scale. The increase in the magnitude of the correlation coefficient was of the

same magnitude as for grouping by the dependent variable. Grouping by proxim-

ity resulted in increases in the correlation coefficient and the slope coefficient and

the result was closer to the results of grouping by the independent variable than

grouping by the dependent variable. He commented that grouping by proximity

may in some degree involve units being put together to maximize variation in either

variables and will affect the correlation and regression coefficients (Blalock, 1964).

Clark and Avery (1976) conducted investigations into bivariate relationships by

examining the scale effect in a simple regression model. Part of their study was

to compare correlation and regression coefficients at individual level and the census

tract groupings of the data. The independent variable was a measure of the level of

education of the head of the household and the dependent variable was a measure of

family income. Individual level household data (952 households) were obtained from

the Los Angeles Metropolitan Area Survey (LAMAS) conducted in 1972. They were

able to use 1556 Census tract units in Los Angeles County for 1970. In addition, they

used two government groupings as aggregate units: 134 Welfare Planning Council

Study areas and 35 Regional Planning Commission Statistical Areas. They found

that the correlation coefficient and regression coefficient of the spatially aggregated

data tends to increase in comparison with the individual household level and that

the coefficients tended to vary at different levels of aggregation. To investigate ag-

gregation effects they used the data derived from LAMAS. The groups were formed

using the criterion of spatial proximity and made as spatially compact as possible

and include the following; 136 groups of 7 individuals, 68 groups of 14 individuals,

34 groups of 28 individuals, and 17 groups of 56 individuals. The correlation and the

regression coefficient between the two variables considered tended to increase with

the level of aggregation, but irregularity happened in the fifth level when both coeffi-
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cients decreased below their corresponding values at the fourth level. In conclusion,

they claimed that ”from the empirical evidence of their study, spatial aggregation of

data has significant consequences in the correlation and regression analysis of are-

ally distributed phenomena” (Clark and Avery, 1976, p 436). They also suggested

”that the deviations of the observed from the expected behavior of the coefficients are

related directly to the manner in which the covariation between the independent and

dependent variables changes with increased aggregation, and indirectly to the way

in which spatial autocorrelation is exhibited among the micro- and macrolevel data”

(Clark and Avery, 1976, p 436).

Taylor (1977) reviewed the work of Blalock (1964) and suggested that the effect

of rising correlation with rising scale was related to spatial autocorrelation. Open-

shaw and Taylor (1979) reported the results from three closely related experiments

on the variation in the correlation coefficients under different spatial and statistical

conditions. The purpose of the experiments was to increase the understanding of

the MAUP from both geographical and statistical perspectives. The first exper-

iment was carried out with the use of a set of data describing Iowa, USA. They

used the 99 counties of Iowa as the basic areal units and for each unit they used

two measures: the percentage vote for Republican candidates in the congressional

election of 1968 as the dependent variable and the percentage of population over

sixty-years old recorded in the 1970 US census as the independent variable. The 99

counties were combined into five different areal arrangements with six areal units.

Correlation coefficients for the five areal arrangements were computed and only one

of the five coefficients is below the correlation coefficient computed from the basic

areal units. To identify the limits of the scale and aggregation problem they apply

an automatic zoning algorithm that identifies zonings or groupings of data that ap-

proximately optimize any general function defined in terms of the aggregated data.

To produce zoning and grouping distributions of correlation coefficients they used

a random zoning and grouping system generator. One of the main observations of

the first experiment was ”There seems to be very distinct differences between zon-

ing and grouping systems in many situations and these seem to be caused by the
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interaction of the contiguity in the zoning with the spatial autocorrelation in the

data.” (Openshaw and Taylor, 1979, page 137). The second experiment was to in-

vestigate the effects of spatial autocorrelation on the correlation coefficient and the

sum-of-squares terms. They used a data set generator based on the quadratic loss

function to construct artificial data. The data set generator was used to produce

new variables with the known properties of the 99 Iowa counties. Two sets of data

were generated in their simulation with the properties of the Iowa data and were

designed in such a way that they differed only in terms of autocorrelation. One data

set having maximum positive spatial autocorrelation and the other normally dis-

tributed. The conclusion drawn from the second experiment was ”that zoning and

spatial autocorrelation do interact in quite predictable ways and that this interaction

explains much of the variety of results previously obtained from the original autocor-

related Iowa data.”(Openshaw and Taylor, 1979, page 140). The third experiment’s

objective was to obtain a more thorough understanding of the relationship between

sum-of-squares and correlations that can be obtained from random arrangements.

The third experiment resulted in their claim ”the expected relationship between the

sum-of-squares term and the correlation coefficient was found to be more illusive

than initially expected.” (Openshaw and Taylor, 1979, page 142). They felt that the

MAUP is much more complex than had been previously believed.

Arbia (1989) considered the relationship between the MAUP and the spatial

configuration of the data for both univariate and bivariate statistical analysis. He

looked at a framework that not only takes into account the size of the area but also

the interconnectedness and dependence of areal units.

The effects of the MAUP on multivariate statistical analysis were investigated

by Fotheringham and Wong (1991), who examined the impact of scale and zoning

effects on two multivariate models, a multiple linear regression model and a multiple

logit regression model. Data were from 871 block groups in the Buffalo Metropolitan

Area for the 1980 US census. For the scale investigation, the 871 block groups were

aggregated randomly and contiguously to scales of 800, 400, 200, 100, 50 and 25

areal units and 20 different aggregations were used at each scale. Several statistics
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were examined, including the regression parameters, the standard errors of these

parameters, confidence intervals, Moran’s Coefficients, t values, and r2. For both

models when scale was varied, the regression parameters increased or decreased with

scale. The increase or decrease depending on the relationship (negative or positive)

between dependent and independent variables and the model. The standard errors

of parameter estimates increased as the number of zones is decreased. There was no

obvious relationship between the level of spatial autocorrelation and the severity of

the MAUP. To investigate the zoning problem, the 871 block groups were randomly

aggregated 150 different ways using contiguity constraints, at the same scale of 218

zones. Regression coefficients values varied according to the zoning system so that

values ranged from positive to negative values. They claimed that it is important

for the multivariate analysis that further analysis of the MAUP be presented to

uncover insights into the sensitivity of the analytical results to both scale and zoning

variations (Fotheringham and Wong 1991).

Amrhein (1995) explored the nature and extent of the scale effect and zonation

effect and to challenge the notion in the literature that aggregation effects are per-

vasive and unpredictable. The paper focused on the following question: ”Are the

effects currently described as aggregation effect at least partly a result of method-

ological considerations relating to the appropriateness of the statistics chosen and

their application?”(page 108, Amrhein, 1995). He used simulated data from pre-

determined distributions. Values for locations on a continuous region containing

10,000 locations, which represent addresses for individuals, were generated. The

addresses were generated using a uniform distribution for the variables x and y and

then a normal N(0,1) distribution. Each location was then given values from ran-

domly generated values from a uniform distribution and then a normal distribution.

This resulted in four sets of data based on the selected distribution for addresses

and values of the variables. The 10,000 observations were taken as the population.

To investigate the scale effect, the individuals were aggregated into 100, 49, and 9

square areal units. He also investigated the zonation effect, the effect when different

definition of the boundaries are used while holding the scale constant. From the
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result of the experiments Amrhein (1998) came up with some ”aggregation rules”:

1. The mean does not display any pronounced aggregation effects (scale or

zonation) at any level of aggregation used in the study.

2. The variance does not display any pronounced scale effect beyond those ex-

pected from the decrease in the number of observations. However, it was noted that

scale-specific variance values cannot be imputed to other scales without adjusting

for the change in the number of reporting units.

3. Populations with high variances tend to exhibit more pronounced zonation

effects than populations with smaller variance.

4. The regression coefficient does not display scale effects that increase system-

atically with decreasing number of zones.

5. The standard deviations of the regression coefficient display pronounced zona-

tion effects. The standard deviations of the regression coefficient increases to a point

at which it fails to provide reliable information (based on the expectation).

6. The Pearson correlation coefficient exhibits systematically increasing aggrega-

tion effects as the number of groups decreases. The range and standard deviations of

coefficients calculated in the experiment ultimately span the range of the statistics.

Steel and Holt (1996) presented both theoretical and empirical results on random

aggregation. They used the term aggregation effect as the effects observed when

individuals are allocated into spatial groups and the group means are used. They

derived aggregation effects on some common statistics when the individuals are

randomly grouped and the variate values are independent of the group membership.

To investigate aggregation effects, a population of N individuals with the associated

variables X and Y was divided into M random groups. To look deeper into their

theoretical results, they used the same simulation design used by Amrhein (1995).

They generated 10000 locations by using uniform and normal distributions and

values for the variables. The region was then divided into 100, 49, and 9 zones.

From the results, both theoretical and empirical, they formulated rules for random

aggregation and some of them are presented below:

1. The expected value of weighted group-level statistics are not affected by
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aggregation and that any observed change is due to random variation.

2. The variance of the weighted group-level statistics are affected mainly by the

number of groups in the analysis. The variation will be high when the number of

groups is small.

3. The weighted correlation and regression coefficients calculated using m areas

have the same properties as coefficients calculated from m individuals.

Green and Flowerdew (1996) investigated the effects of aggregation on correla-

tion and regression analysis of spatially correlated data generated using three types

of aggregation; random, systematic, and spatial. The effects of aggregation on the

correlation coefficient and regression coefficient were recorded. In comparison to

results obtained from raw data, random aggregation did not change the values of

the correlation and regression coefficients but the standard errors increased. Sys-

tematic aggregation caused a large increase in the correlation coefficient but did not

affect the regression coefficient or the standard error. Spatial aggregation caused a

large increase in the correlation coefficient and smaller increases in the regression

coefficient and standard error. They concluded from the results that if X was spatial

autocorrelated, the correlation coefficient displayed the scale effect but the regres-

sion coefficient was not affected. They also conducted another experiment where

the data were simulated with spatial autocorrelation in Y and not in X. The corre-

lation coefficient decreased for the aggregated data while the regression coefficient

was unchanged. The experiment was continued using an extension to the standard

regression equation to incorporate regional and local effects. The result from this

experiment showed that in the presence of autocorrelation, the correlation coeffi-

cients demonstrated the MAUP effects. The regression coefficients do not exhibit

the MAUP unless there is spatial cross-correlation between the independent and the

dependent variables. From their simulation results and theoretical considerations,

the sum of the two coefficients b(local) and b(regional) displayed no inconsistency

between analyses at different levels of aggregation (Green and Flowerdew, 1996).

They then applied the ideas in real data. They used data from 5 counties from the

1991 Census for Great Britain. The variables considered in their empirical study
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were male unemployment rate and ethnicity.

Amrhein (1995) used simulated data to show the effects of the MAUP on var-

ious statistics including weighted statistics, means, standard deviations, variances,

regression and Pearson correlation coefficients. Amrhein (1995) discussed the con-

cept of an ideal number of aggregates that would reduce computational burden but

would not incur too high aggregation effects. Amrhein and Reynolds (1996) used

data from the British Census for the county of Lancashire to demonstrate the abil-

ity of a modified G (Getis) statistic to predict the effects of aggregation on several

variables. They extended this study and confirmed results by using a much larger

data set from Toronto Census Metropolitan Area (Amrhein and Reynolds, 1997).

The study by Flowerdew et al.(2001) concerned the relevance of the MAUP

to multiple regression. They claimed that the effect of the MAUP on regression

coefficients when the response variable is regressed on a set of explanatory variables

is dependent on the spatial distribution of all variable involved. Some results of

their research are:

1. The MAUP effects on regression results may be generated when there is cross-

correlation between the values Y in one zone and the values of X in the zones in the

immediate vicinity.

2. From the results of their study they suggested, not unreasonably, that compact

zones capture the regional effect better than less compact zones.

3. They also claimed that the results suggested that defining regions individu-

ally for each enumeration districts (ED) by taking the average overall its neighbors

excluding the ED itself might be better at capturing the regional effect than defining

a complete coverage of wards or pseudo-wards for the whole study area.

The paper by Fotheringham and Wong (1991) was the starting point of the study

by Flowerdew et al.(2001)
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2.3 Some Methods Employed to Solve the MAUP

Most of the studies of the MAUP concentrated on identifying parts of the problem

rather than providing an overall solution. Fotheringham (1989) suggested methods

to get around the MAUP which include: ”(i) the derivation of the ”optimal” zon-

ing systems; (ii) the identification of basic entities; (iii) sensitivity analysis; (iv)

abandonment of traditional statistical analysis; (v) shifting the emphasis of spatial

analysis towards relationships that focus on rates of change” (page 222, Fothering-

ham, 1989). Wong (1996) summarized the suggested methods into three categories:

(i) data manipulation approach; (ii) technique-oriented approach and (iii) error-

modeling approach.

The following subsections contain reviews of some papers that try to find a

solution to the MAUP as categorized by Wong (1996).

2.3.1 Data Manipulation Approach

The data manipulation approach is based on the belief that if the selected zoning

system can be justified in some way instead for administrative convenience, the

MAUP would vanish (Wong, 1996).

Molering and Tobler (1972) used analysis of variance techniques to partition

the total variation between the lowest level of geographic areas into components

attributable to various aggregation levels in situations where they had nested hier-

archical geographic data. The paper presented a method for examining geographical

scale effects in data available from sources such as the census. They claimed that

the most disaggregated level data are a linear combination of the mean at the dis-

aggregate level and the effects from the different levels of aggregation and that the

variance can be partitioned into parts attributable to the different aggregation levels.

The method can assign variances to different levels of aggregation starting from the

most disaggregate level. The variances can then indicate at which scale the action

is taking place and thus isolate the most important level or levels of aggregation.

This method is not a complete solution to the MAUP because the technique is not
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capable of accommodating multivariate situations and it fails to deal with zoning

or aggregation effects as it requires an a priori definition of the hierarchy to identify

the aggregation level with the most action (Wong, 1996).

Another approach to deal with the MAUP is the concept of optimal zoning first

proposed by Openshaw (1977). In this empirical approach, an ideal or optimal

zonal configuration could be achieved. Basic areal units should be aggregated to

maximize or minimize whatever criteria are used to evaluate the performance of the

model (Openshaw, 1977a, 1977b).

2.3.2 Technique-Oriented Approaches

The technique-oriented approach is based on the belief that the MAUP effects might

have been caused by using inappropriate models or techniques and thus new tech-

niques should be developed (Wong, 1996).

One of the first proposed solutions to the MAUP was suggested by Robinson in

1956. He proposed that weighting areal units by the areas of the units when comput-

ing the regression coefficient is necessary. He claimed that significant discrepancies

in size of areal units should be taken into account and this can be accomplished by

using the actual areas of the statistical units. The simple weighing scheme proposed

by Robinson (1956) fails to correct for the errors propagated by aggregation (Wong,

1996).

Goodman (1959) was the first to seriously consider a model under which eco-

logical inference could validly be used to make inferences considering relationships

at an individual level. He considered regression analysis with separate and different

regression slopes and intercepts for each group ( Holt and Steel, 1996a).

Amrhein and Flowerdew (1989) used Poisson regression model to describe mi-

gration flows in Canada. ”The model failed to capture the aggregation effect typical

of the MAUP, perhaps because the data were not subject to the MAUP” (Amrhein

and Flowerdew, 1989, p 237).

Tobler (1989) argued that there is no MAUP when the correct analysis procedure
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is used and there should be a technique which does not depend on the areal units

resulting in frame independent spatial analysis. He also cast doubt on the correlation

coefficient as an appropriate measure of association between spatial units.

Several other methods had been used to try to deal with scale and zoning prob-

lems. The list of models enumerated by Openshaw (1977a) includes; spatial variate

differencing (Curry, 1971), spectral analysis (Rayner, 1971), space-time versions of

Box-Jenkins model (Cliff and Ord, 1975).

2.3.3 Error Modeling Approaches

Error modeling approaches are based on the idea that ”when analysis moves from

one spatial scale to another, relationships among variables and among spatial entities

also change”(Wong, 1996, page 100,). Thus it is necessary to document explicitly

these changes and include them in the modeling and analyses.

Steel et al., (1994) attempted to model the error created by the aggregation pro-

cess so that individual information can be estimated from regional data. This model

depends on decomposing the conditional expectation of the variance-covariance ma-

trix at the regional level into a variance-covariance matrix at the individual level, a

bias component accounting for aggregation effect on a set of variables called grouping

variables, and the residuals from within-group correlation. The grouping variables

are a set of variables that characterize the way in which the individuals are clustered

within a population of interest. According to Steel et al.(1996a), this model is based

on the concept of positive clustering, that is, individuals within areas or groups

are usually more alike than between areas. Wong (1996) is unconvinced about this

model because it seems ”to apply only classical statistical concepts while failing to

deal with the spatial aspect of the MAUP, except in the process of deriving regional

level data” (page 102, Wong, 1996).
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2.3.4 Some comments and recommendations on how to find

a solution of the MAUP

”The MAUP was regarded as the most stubborn problem in geography and spatial

science” (page 104, Wong, 1996). Wong (1996) stated that the role of spatial au-

tocorrelation in producing the MAUP is evident and that it is expected that the

solution of the MAUP is probably ”to depend on how to model the multivariate

spatial autocorrelation effect in the multi-scale situations” (page 105, Wong, 1996).

The early research on the MAUP focused on empirical demonstrations of its

existence. Later research has identified the potential role of population structure

tied to the areal units and spatial autocorrelation. One popular approach to handling

the hierarchical nature of geographical data is multilevel modeling.

Multilevel modeling is used in many projects and most of them look into the

variation at different levels. In a series of papers Steel and Tranmer developed an

approach to tackle the MAUP using a multilevel framework. This framework reflects

a very simple spatial autocorrelation structure, with equal autocorrelation structure,

within groups and zero autocorrelation across groups. However, the impacts of more

complex spatial autocorrelation were not included in their analysis. This thesis will

try to fill that gap. This thesis will look into the impact of spatial autocorrelation

on the scale effect of statistics derived from a simple multilevel model.



Chapter 3

The Causes of the MAUP

This chapter describe some definitions and theoretical relationships between relevant

statistics that are keys to explaining the causes of the MAUP.

3.1 Basic Theory

3.1.1 Spatial Aggregation

Suppose we have a region R with N individuals and associated with the individuals

are two variable Y and X. The region is divided into M groups or areas by some

process. An individual can only belong to one group. The number of individuals in

the gth group is Ng, where g = 1, 2, ...,M .

Given the situation above, we can define some statistics. The means of Y and X

are

Ȳ =
1

N

N
∑

i=1

Yi (3.1)

and

21
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X̄ =
1

N

N
∑

i=1

Xi. (3.2)

The corresponding population variances are

S
(1)
Y Y =

1

N − 1

N
∑

i=1

(Yi − Ȳ )2 (3.3)

and

S
(1)
XX =

1

N − 1

N
∑

i=1

(Xi − X̄)2. (3.4)

The population covariance between Y and X is

S
(1)
Y X =

1

N − 1

N
∑

i=1

(Yi − Ȳ )(Xi − X̄). (3.5)

When the data are aggregated across the groups, the data available are (Ȳg, X̄g),

for g = 1, 2, ...,M , where,

Ȳg =
1

Ng

∑

i∈g

Yi (3.6)

and

X̄g =
1

Ng

∑

i∈g

Xi (3.7)

are the group means. From these aggregated data, we can define some unweighted

statistics. The means are

Ỹ =
1

M

M
∑

g=1

Ȳg (3.8)

and

X̃ =
1

M

M
∑

g=1

X̄g. (3.9)

The corresponding variances are
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S̃Y Y =
1

M − 1

M
∑

g=1

(Ȳg−Ỹ )2 (3.10)

and

S̃XX =
1

M − 1

M
∑

g=1

(X̄g−Ỹ )2. (3.11)

The covariance between the groups is

S̃Y X =
1

M − 1

M
∑

g=1

(Ȳg−Ỹ )(X̄g − X̃). (3.12)

The aggregated data can also be analyzed using weighted statistics where the

weights are the corresponding group populations sizes Ng. For the weighted statis-

tics, we have,

Ȳ =
1

N

M
∑

g=1

NgȲg (3.13)

and

X̄ =
1

N

M
∑

g=1

NgX̄g (3.14)

are the weighted means at group level. These are exactly the same as the individual

level means defined by (3.1) and (3.2) respectively.

The corresponding weighted variances are,

S
(2)
Y Y =

1

M − 1

M
∑

g=1

Ng(Ȳg−Ȳ )2 (3.15)

and

S
(2)
XX =

1

M − 1

M
∑

g=1

Ng(X̄g−X̄)2. (3.16)

The weighted covariance for the group means is

S
(2)
Y X =

1

M − 1

M
∑

g=1

Ng(Ȳg−Ȳ )(X̄g − X̄). (3.17)
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Given the statistics above further analytical statistics can be produced. The

correlation of the two variable at the individual level can be computed using

r
(1)
Y X =

S
(1)
Y X

√

S
(1)
Y Y S

(1)
XX

. (3.18)

The regression coefficients can also be computed. The slope of the regression of

Y on X is

b
(1)
Y X =

S
(1)
Y X

S
(1)
XX

(3.19)

and the intercept of the regression of Y on X is

a
(1)
Y X = Ȳ − b

(1)
Y XX̄. (3.20)

Further statistics can also be computed from aggregated data. The unweighted

correlation is

r̃
(2)
Y X =

S̃
(2)
Y X

√

S̃
(2)
Y Y S̃

(2)
XX

. (3.21)

The slope of the regression of Ỹ on X̃ is

b̃
(2)
Y X =

S̃
(2)
Y X

S̃
(2)
XX

(3.22)

and the intercept is

ã
(2)
Y X = Ỹ − b̃(2)

yx X̃. (3.23)

Corresponding population weighted statistics can be calculated from the group

means, giving r
(2)
Y X , b

(2)
Y X , a

(2)
Y X .

3.1.2 Intra-Area Correlation and Cross Correlation

Tobler’s First Law of Geography (Tobler, 1970) states: ”Everything is related to

everything else, but near things are more related than distance things”. In a similar
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way, Tranmer and Steel (2001) claimed that individuals in the same area tend to be

a little more alike than individuals in different areas and used the term ’with-area

homogeneity’ to describe this phenomenon. A measure of within-area homogeneity

of a single variable is the intra-area correlation as described by Holt et. al.(1996).

”The higher the value of the intra-area correlation, the more similar the values of

the variable are for different individuals within the same areas”. Consider the model

for a single variable of interest Y:

Yi = µY + αYg
+ ǫYi

for i ∈ g (3.24)

where

Yi represents the value of Y for the ith individual in area g

µY is the expectation of Y across the region of interest

αYg
is a random variable representing the area effect for the gth area

ǫYi
is a random variable representing the pure individual effect.

Similarly for another variable X, we have:

Xi = µX + αXg
+ ǫXi

for i ∈ g (3.25)

where

Xi represents the value of X for the ith individual in area g

µX is the expectation of X across the region of interest

αXg
is a random variable representing the area effect for the gth area

ǫXi
is a random variable representing the pure individual effect.

Assumptions:

(i) The random variables have population means equal to zero and variance-

covariance matrix

Λ(l) =





Λ
(l)
XX Λ

(l)
Y X

Λ
(l)
Y X Λ

(l)
Y Y



 (3.26)

where l=1,2 indicates the level. Individuals are level 1 and areas that are groups

are the level 2 units.
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(ii) The random effects are not correlated between levels.

Thus, for variables Y and X the overall variance-covariance matrix is:

Σ =





ΣXX ΣY X

ΣY X ΣY Y



 =





Λ
(2)
XX Λ

(2)
Y X

Λ
(2)
Y X Λ

(2)
Y Y



 +





Λ
(1)
XX Λ

(1)
Y X

Λ
(1)
Y X Λ

(1)
Y Y



 (3.27)

From the model above, important statistics can be formulated.

By considering the expectation of S
(1)
Y Y and S

(2)
Y Y under model (3.24) Tranmer

and Steel (1998) show that the group level variance component, which we shall call

level 2 variance component, can be approximately unbiasedly estimated by

Λ̂
(2)
Y Y =

S
(2)
Y Y − S

(1)
Y Y

N̄∗ − 1
(3.28)

where

N̄∗ = N̄ +
N̄ − N̄0

M − 1
, N̄0 =

1

N

M
∑

g=1

N2
g , N̄ =

N

M
.

Proof:

Tranmer and Steel (1998 ) show

E
[

S
(1)
Y Y

]

= Λ
(1)
Y Y +

(

1 − N̄ o − 1

N − 1

)

Λ
(2)
Y Y (3.29)

E
[

S
(2)
Y Y

]

= Λ
(1)
Y Y + N̄∗Λ

(2)
Y Y (3.30)

where N̄ o = 1
N

∑

g

N2
g = N̄(1 − C2

N) , C2
N =

d2
N

N̄2 and d2
N = 1

M

∑

g

(

Ng − N̄
)2

Hence

N̄ o − 1

N̄ − 1
=

N̄(1 − C2
N) − 1

MN̄

≈ 1

M

(

1 + C2
N

)

− 1

MN̄
if N is large

=
1

M

(

1 + C2
N − 1

N̄

)

≈ 1

M
unless C2

N is large and N̄ is small
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Rearranging (3.29) and (3.30) gives an unbiased estimate of Λ̂
(2)
Y Y ,

Λ̂
(2)
Y Y =

S
(2)
Y Y − S

(1)
Y Y

N̄∗ − 1 + N̄o−1
N−1

≈ S
(2)
Y Y − S

(1)
Y Y

N̄∗ − 1
provided

1

M
<< N̄∗.

From (3.29) an estimate of Λ
(1)
Y Y is

Λ̂
(1)
Y Y = S

(1)
Y Y −

(

1 − N̄ o − 1

N − 1

)

Λ̂
(2)
Y Y ≈ S

(1)
Y Y −Λ̂

(2)
Y Y provided

N̄ o − 1

N − 1
≈ 1

M
is negligible.

Thus an approximately unbiased estimate of the level 1 variance component is

Λ̂
(1)
Y Y = S

(1)
Y Y − Λ̂

(2)
Y Y . (3.31)

Similarly, for X,

Λ̂
(2)
XX =

S
(2)
XX − S

(1)
XX

N̄∗ − 1
and Λ̂

(1)
XX = S

(1)
XX − Λ̂

(2)
XX . (3.32)

The estimate of the level 2 and level 1 covariance are, respectively,

Λ̂
(2)
Y X =

S
(2)
Y X − S

(1)
Y X

N̄∗ − 1
, and Λ̂

(1)
Y X = S

(1)
Y X − Λ̂

(2)
Y X (3.33)

Also to O
(

1
M

)

, S
(1)
Y Y is unbiased for Λ

(1)
Y Y + Λ

(2)
Y Y = ΣY Y .

The intra-area correlation for a variable Y is the correlation between the value

of Y for two different units within the same group. For the model defined by (3.24),

this is equal to

δY Y =
Λ

(2)
Y Y

ΣY Y

(3.34)

and can be estimated by

δ̂Y Y =
Λ̂

(2)
Y Y

S
(1)
Y Y

. (3.35)

Similarly, for variable X,

δXX =
Λ

(2)
XX

ΣXX

and can be estimated by δ̂XX =
Λ̂

(2)
XX

S
(1)
XX

. (3.36)

These estimates are method of moments estimates. Alternatively, Maximum

Likelihood (ML) estimates can also be used if the random variable have a Normal
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distribution. From initial empirical results there is not much difference between the

results obtained from the multilevel modeling software MLWiN (Goldstein, 1998)

that utilized ML and those obtained from the moments approach used by Tranmer

and Steel (1998) as described above for areal unit data. In this thesis we focus on

the moments approach for convenience.

A measure of the within-area homogeneity for a pair of variables is the intra-

area cross-correlation. Similarity of the values of two different variables within areas

can be measured using the intra-area cross-correlation. For the model described by

(3.24) and (3.25), the intra-area cross correlation, δY X is:

δY X =
Λ

(2)
Y X√

ΣXXΣY Y

(3.37)

and can be estimated by

δ̂Y X =
Λ̂

(2)
Y X

√

S
(1)
XXS

(1)
Y Y

. (3.38)

There was not much difference when the moments approach and ML aproach was

used for the type of data considered in this thesis. The computation of the intra-

area-cross correlation was done using the method by Tranmer and Steel(1998).

3.1.3 Pure Correlation

The term pure correlation coefficient is used to describe the correlation of two vari-

ables where the effect of the other level is removed and thus reflect effects at a

pertinent level (Tranmer and Steel, 2001). Based on the models given by (3.24) to

(3.27), for levels l=1,2.

ρ
(l)
Y X =

Λ
(l)
Y X

√

Λ
(l)
XXΛ

(l)
Y Y

(3.39)

Estimates of the pure correlation coefficient are obtained by using Λ̂
(l)
Y X , Λ̂

(l)
XX and

Λ̂
(l)
Y Y . Thus,
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ρ̂
(l)
Y X =

Λ̂
(l)
Y X

√

Λ̂
(l)
XXΛ̂

(l)
Y Y

, l = 1, 2. (3.40)

3.1.4 Pure Regression

Similarly, a pure regression coefficient refers to the regression coefficient when the

effect of the other level is removed. For level l=1,2 the pure regression coefficient is

defined as:

β
(l)
Y Y =

Λ
(l)
Y X

Λ
(l)
XX

(3.41)

The estimates are computed using Λ̂
(l)
Y X and Λ̂

(l)
XX . Thus,

β̂
(l)
Y X =

Λ̂
(l)
Y X

Λ̂
(l)
XX

, l = 1, 2. (3.42)

3.1.5 Moran’s I

Spatial autocorrelation basically measures correlation of a single variable for all pairs

of points at a particular distance or some other category. Spatial autocorrelation

can be categorized as either positive or negative. A positive spatial autocorrela-

tion implies that similar values appear close together and a negative autocorrelation

has dissimilar values appearing close together. Standard global and some new local

spatial statistics have been developed to detect spatial autocorrelation and spa-

tial association. The global spatial autocorrelation measure most often used is the

Moran’s I coefficient.

The Moran’s I is defined:

I
(1)
Y Y =

N
∑

i

N
∑

i6=j

wij(Yi − Ȳ )(Yj − Ȳ )

(

N−1
N

)

S
(1)
Y Y

N
∑

i

N
∑

i6=j

wij

(3.43)

where
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1

N

N
∑

i

(Yi − Ȳ )2 =
N − 1

N
S

(1)
Y Y

Yi denotes the observed value at location i

Ȳ is the average of Yi over N locations

wij is the spatial weight measure.

The definition of wij, the spatial weight is an important issue. Different def-

initions of the spatial weight result in different values of the Moran’s I aimed at

detecting different types of spatial relationships and resulting in different conclu-

sions. Weights can be based on contiguity; if say, location i is adjacent to location

j, it is given a weight of 1, otherwise it is given a weight of 0. Weights can also be

based on distance using distance between points or between centroids of polygons.

Another way of defining the spatial weight is based on lagged contiguity. Thus,

different choices of wij are possible, depending on what type of feature of the spatial

relationships we are attempting to assess. There are software that can be used to

calculate the weight matrix W with elements wij. In this thesis the Moran’s I was

computed using SPLUS and S+Spatial and R.

3.1.6 Cross-Moran’s I

Suppose we let,

Zi = Yi + Xi (3.44)

I
(1)
ZZ =

N
∑

i

N
∑

i6=j

wij(Yi + Xi − Ȳ − X̄)(Yj + Xj − Ȳ − X̄)

(

N−1
N

)

S
(1)
ZZ

N
∑

i

N
∑

i6=j

wij

(3.45)

Note that

S
(1)
ZZ = S

(1)
Y Y + S

(1)
XX + 2S

(1)
Y X
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thus,

I
(1)
ZZ =

N
∑

i

N
∑

i6=j

wij[(Yi − Ȳ ) + (Xi − X̄)][(Yj − Ȳ ) + (Xj − X̄)]

(

N−1
N

)

S
(1)
ZZ

N
∑

i

N
∑

i6=j

wij

=

N
∑

i

N
∑

i6=j

wij

[

(Yi − Ȳ )(Yj − Ȳ ) + (Xi − X̄)(Xj − X̄) + 2(Yi − Ȳ )(Xj − X̄)
]

(

N−1
N

)

S
(1)
ZZ

N
∑

i

N
∑

i6=j

wij

=

N
∑

i

N
∑

i6=j

wij(Yi − Ȳ )(Yj − Ȳ )

(

N−1
N

)

S
(1)
ZZ

N
∑

i

N
∑

i6=j

wij

+

N
∑

i

N
∑

i6=j

wij(Xi − X̄)(Xj − X̄)

(

N−1
N

)

S
(1)
ZZ

N
∑

i

N
∑

i6=j

wij

+2

N
∑

i

N
∑

i6=j

wij(Yi − Ȳ )(Xj − X̄)

(

N−1
N

)

S
(1)
ZZ

N
∑

i

N
∑

i6=j

wij

So we have,

S
(1)
ZZI

(1)
ZZ = I

(1)
Y Y S

(1)
Y Y + I

(1)
XXS

(1)
XX + 2I

(1)
Y X

√

S
(1)
Y Y S

(1)
XX .

Solving for IY X , which is Cross-Moran’s I,

I
(1)
Y X =

(

S
(1)
Y Y + S

(1)
XX + 2S

(1)
Y X

)

I
(1)
ZZ − S

(1)
Y Y I

(1)
Y Y − S

(1)
XXI

(1)
XX

2

√

S
(1)
Y Y S

(1)
XX

(3.46)

Hence, we can calculate IY X using any method that calculates Moran’s I for a

variable by creating Zi and using (3.46).

3.1.7 Relationships Between Pure Coefficients and the Intra-

area Correlation

The overall correlation, ρY X can be expressed in terms of the intra-area correlation

and the pure correlations,
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ρY X =
ΣY X√

ΣY Y ΣXX

=
Λ

(1)
Y X + Λ

(2)
Y X√

ΣY Y ΣXX

= ρ
(1)
Y X

√

Λ
(1)
Y Y Λ

(1)
XX

ΣY Y ΣXX

+ ρ
(2)
Y X

√

Λ
(2)
Y Y Λ

(2)
XX

ΣY Y ΣXX

= ρ
(1)
Y X

√

(1 − δY Y ) (1 − δXX) + ρ
(2)
Y X

√

δY Y δXX

this shows that

ρY X = ρ
(1)
Y X

√

(1 − δY Y ) (1 − δXX) + ρ
(2)
Y X

√

δY Y δXX . (3.47)

Thus from (3.47) the level 2 pure correlation coefficient ρ
(2)
Y X is:

ρ
(2)
Y X =

ρY X − ρ
(1)
Y X

√

(1 − δY Y ) (1 − δXX)√
δY Y δXX

. (3.48)

The level 1 pure correlation coefficients is:

ρ
(1)
Y X =

ρY X − ρ
(2)
Y X

√
δY Y δXX

√

(1 − δY Y )(1 − δXX)
(3.49)

Similarly, the regression coefficient βY X can be expressed in terms of intra-area

correlation and pure regression coefficients.

βY X =
ΣY X

ΣXX

=
Λ

(1)
Y X + Λ

(2)
Y X

ΣXX

=
β

(1)
Y XΛ

(1)
XX

ΣXX

+
β

(2)
Y XΛ

(2)
XX

ΣXX

=
β

(1)
Y X (ΣXX − δXXΣXX)

ΣXX

+
β

(2)
Y XδXXΣXX

ΣXX

= β
(1)
Y X (1 − δXX) + β

(2)
Y XδXX
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Thus, we have

βY X = β
(1)
Y X (1 − δXX) + β

(2)
Y XδXX . (3.50)

From 3.50 the level 2 pure regression is

β
(2)
Y X =

βY X − β
(1)
Y X (1 − δXX)

δXX

(3.51)

and the level 1 pure regression is

β
(1)
Y X =

βY X − β
(2)
Y XδXX

(1 − δXX)
. (3.52)

The relationships described above will be used later to look into the behavior of

the pure coefficients given the initial correlation or regression coefficients and the

initial intra-area correlation (or the Moran’s I at level 1).

3.1.8 The relationship between intra-area correlation and

the Moran’s I

Assume that Ng = N̄ , so N̄∗ = N̄ . Since N is large, N-1 ≈ N. Also since M is large,

M-1 ≈ M. The definition of Moran’s I is:

I
(1)
Y Y =

N
∑

i

N
∑

j 6=i

wij(Yi − Ȳ )(Yj − Ȳ )

(

N−1
N

)

S
(1)
Y Y

N
∑

i

N
∑

j 6=i

wij

(3.53)

Here wij is the spatial weight measure that is equal to 1 if i and j ∈ g and 0

otherwise.

Since we assume that Ng = N̄ , we have,

N
∑

i

N
∑

j 6=i

wij =
M

∑

g

Ng(Ng − 1) = MN̄(N̄ − 1) (3.54)



CHAPTER 3: The Causes of the MAUP 34

I
(1)
Y Y =

N
∑

i

N
∑

j 6=i

wij(Yi − Ȳ )(Yj − Ȳ )

(

N−1
N

)

S
(1)
Y Y MN̄(N̄ − 1)

=

M
∑

g

∑

i∈g

[

∑

j 6=i∈g

(Yi − Ȳ )(Yj − Ȳ )

]

(

N−1
N

)

S
(1)
Y Y MN̄(N̄ − 1)

=

M
∑

g

∑

i∈g

[

∑

j∈g

(Yi − Ȳ )(Yj − Ȳ ) − (Yi − Ȳ )2

]

(

N−1
N

)

S
(1)
Y Y MN̄(N̄ − 1)

=

M
∑

g

∑

i∈g

[

(Yi − Ȳ )Ng(Ȳg − Ȳ )
]

−
M
∑

g

∑

i∈g

(Yi − Ȳ )2

(

N−1
N

)

S
(1)
Y Y MN̄(N̄ − 1)

=

M
∑

g

N2
g (Ȳg − Ȳ )2 −

M
∑

g

∑

i∈g

(Yi − Ȳ )2

(

N−1
N

)

S
(1)
Y Y MN̄(N̄ − 1)

=

N̄
M
∑

g

Ng(Ȳg − Ȳ )2 −
M
∑

g

∑

i∈g

(Yi − Ȳ )2

(

N−1
N

)

S
(1)
Y Y MN̄(N̄ − 1)

=
N̄(M − 1)S

(2)
Y Y − (N − 1)S

(1)
Y Y

(

N−1
N

)

S
(1)
Y Y MN̄(N̄ − 1)

=
(N − 1)S

(2)
Y Y − (N − 1)S

(1)
Y Y

(N − 1)(N̄ − 1)S
(1)
Y Y

=
S

(2)
Y Y − S

(1)
Y Y

(N̄ − 1)S
(1)
Y Y

.

Thus, we have,

I
(1)
Y Y =

(N̄∗ − 1)Λ̂
(2)
Y Y

(N̄ − 1)S
(1)
Y Y

=
Λ̂

(2)
Y Y

S
(1)
Y Y

= δ̂Y Y
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This shows that we can regard the intraclass correlation as a measure of the

average spatial correlation within groups. A similar relationship hold for the intra-

area cross correlations and the cross-Moran’s I.

Equation (3.30) is the key to explaining the MAUP under a simple multilevel

model. Comparing (3.30) with (3.29) we see that in aggregating the data and

calculating a weighted variance the contribution of the level 1 variance component is

unchanged, whereas the contribution of the level 2, an area level, variance component

from approximately 1 to N̄∗. Similar results hold for S
(2)
XX and S

(2)
Y X leading to the

scale effect. Examining (3.30), we see that even if the spatial correlation produces

quite small intra-area correlation, the presence of N̄∗, which is effectively the average

number of people per areal units, implies that aggregation may have substantial

effects on the variances and covariances and coefficients calculated from them. ‘



Chapter 4

Multilevel Modeling and the

MAUP

This chapter describes the first of a series of experiments and results on the scale

effects of relevant statistics derived from a simple multilevel model, as well as the

standard statistics. Different degrees of spatial autocorrelations are considered in

the experiments.

4.1 Is Multilevel modeling a possible solution to

the MAUP?

Multilevel models offer an approach to a number of issues, including the MAUP.

It can provide estimates of both the average effects of a variable over a number of

settings, and the extent to which that effect varies over settings (Jones and Duncan,

1996). Multilevel modeling allows for effects at different levels.

Multilevel Modeling has been suggested for use with hierarchical data. An ex-

ample of the consequence if a hierarchy is ignored in analysis is given by Aitkin et al

36
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(1981) who reanalyzed the study of Bennet (1976) on primary school children. Ben-

net (1976) claimed that formal styles of teaching reading produced greater progress

among pupils than any other methods. In this study, the grouping of pupils within

teachers and classes were ignored. Aitkin et al. (1981) took these groupings into ac-

count and the statistically significant difference between teachers’ styles disappeared

and they concluded that the formally taught pupils could not be shown to differ from

others (Gleave et al, 2000). When applied to areal data, multilevel modeling is still

potentially subject to the MAUP, since different estimates of the variance compo-

nents can be obtained if boundaries are changed or a different scale is used. A

possible reason for multilevel models still being subject to the MAUP, is that while

the data available may be hierarchical, the population correlation structure may

be more complex. In particular the spatial pattern of correlations between units

may be more complex than that implied by a standard multilevel model. Multilevel

modeling provides an approach to analysing spatially aggregated data but itself may

be affected by the MAUP. We will examine how the results of multilevel modeling

are affected by the MAUP and whether it can produce results that are less affected

than standard analysis methods.

To evaluate the potential effectiveness of multilevel modeling as a possible solu-

tion or approach to the MAUP several experiments were conducted. As an initial

investigation of this possibility, the scale effects of some statistics that can be derived

from multilevel models were computed. These include the intra-area correlation,

intra-area cross correlation, pure correlation and pure regression coefficients.

The following experiments also include single level analyses of the data sets at

different levels of aggregation.

It is well known that the results of individual level analyses are different from

those conducted using group level data. The usual result for correlation coefficients

is that they increase as the level of aggregation increases. If the individuals are

grouped together in a non-random way, the correlation coefficient at the individual

level is usually less than the correlation at group level. The population mean using

the appropriate population weights is not affected by aggregation. The sample
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variance in general is affected by aggregation (Holt, Steel and Tranmer, 1996).

To examine aggregation effects say between individual level and group level anal-

ysis, Holt, Steel and Tranmer (1996) proposed a sample variance components model

wherein the variance can be partitioned into the area and individual level covariance

matrices. Recall the model in Chapter 3. Consider the model for a single variable

of interest Y:

Yi = µY + αYg
+ ǫYi

(4.1)

where

µY is the expectation of Y across the region of interest

αYg
is a random variable representing the area effect for the gth area

ǫYi
is a random variable representing the pure individual effect.

Assumptions:

E(αYg
)=0 , E(ǫYi

)=0 , and var(αYg
)=Λ

(2)
Y Y , var(ǫYi

)=Λ
(1)
Y Y ,

cov(αYg
,ǫYi

)=0 , cov(ǫYi
,ǫYi′

)=0 , for i 6= i′.

Properties:

E(Yi)=µY

var(Yi)=Λ
(1)
Y Y +Λ

(2)
Y Y

cov(Yi, Yj) = Λ
(2)
Y Y if i ∈ g , j ∈ g

= 0 otherwise.

The following section will will investigate the scale effects of some standard statis-

tics and some statistics derived from the multilevel model described by (4.1) when

there are different degrees of spatial autocorrelation present. The aim is to see if

statistics and analyses associated with a simple multilevel model are less affected

than the standard statistics and if the effects are more predictable as scale changes.

Three experiments are conducted. In experiment 1, each variable has the same level

of autocorrelation, which is set to high, medium and low. In experiment 2 neither

variables is autocorrelated. Experiment 3 considers the case when the level of au-

tocorrelation is different for the two variables. A summary of results is provided in

section 4.6.
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4.2 Experiment 1: Scale effects of some statistics

from simulated data

To initially investigate the MAUP effects on analysis based on the multilevel model

described above, various sets of data are generated.

The first three data sets are generated in such a way that both variables, Y and

X are autocorrelated but with different degree of autocorrelation. The degree of

autocorrelation will be categorized as ‘low ’, ‘medium’, and ‘high’. In section 4.3 we

look at the case when both variables have no autocorrelation. In section 4.5 we look

into the effects when two variables have different degrees of autocorrelations then

two more data sets were generated, one variable ‘low ’ autocorrelated and one ‘high’

autocorrelated. Table 4.1 shows ranges of the categories used in the experiments.

The measure of autocorrelation used in this study is the Moran’s I described in

equation (3.42). The connectivity matrix used in determining the Moran’s I is the

queen’s case. In a square grid, queen contiguity implies that adjacent cell with

common borders and common vertex are considered neighbors. The queen’s case is

used as we start at the individual level and this case creates local neighborhoods

of individuals at a similar distance apart. It also correspond to a rational way to

form larger scale areal units from individuals on smaller scale areal units with both

simulated and real data. The computation of the Moran’s I was done using GeoDa

(Anselin, 1996) and Rookcase (Sawada, M., 1999).

Moran’s I
Low 0.1 - 0.3

Medium 0.4 - 0.63
High 0.7 - 0.83

Table 4.1: Range of values for the categories

Data Set 1: Y is ’low’ autocorrelated and X is ’low’ autocorrelated

Data Set 2: Y is ’medium’ autocorrelated and X is ’medium’ autocorrelated

Data Set 3: Y is ’high’ autocorrelated and X is ’high’ autocorrelated
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4.2.1 Data Set 1: Both variables have low autocorrelation

The data generation process is similar to that used by Green and Flowerdew (1996)

to generate data with a known pattern of spatial autocorrelation.

Values for two variables Y and X are assigned to each cell of a 100x100 square

grid. Two cells are neighbors if they have one common side or common vertex.

Initially, a set of normally distributed random numbers with mean 0 and variance

16, denoted by ∼ N(0,16) are generated and are assigned to the spatial locations.

These values are transformed into autocorrelated data by taking the average of

the neighboring values for each data points, an error is then introduced that is

independent and identically distributed (iid )∼ N(0,4). The results are the values

of variable X.

The values of variable Y are then generated using a similar procedure. Data are

generated using { 10 + (original set of random numbers) + error}, the error is iid

∼ N(0,4). The results are then transformed into autocorrelated data by taking the

average of the neighboring values for each data point. The results are the values of

the variable Y.

To summarize the data generation,

1. Generate A ∼ iid N(0,16).

2. Let A∗ be the average of the neighbors of A as described above.

3. Let B = 10 + A + e, where e∼ iid N(0,16).

4. Let B∗ be the average of the neighbors of B as described above.

5. Variables X and Y has values, X = A∗ + e1 and Y = B∗ + e2,

where e1∼ iid N(0,4) and e2∼ iid N(0,4) and e1 and e2 are independent.

6. The mean and variance of X and Y are then changed to desired values.

To change the mean of a variable, add (m2 − m1) for each observation where m1

is current mean and m2 is the desired mean. The variance of a variable can be

changed by multiplying each observation by (δ2/δ1) where δ2 is the desired standard

deviation and δ1 is the current standard deviation.

The means for variables X and Y were set at 0.005 and 10, respectively. The

desired variances were set at 6 and 8 for X and Y respectively.
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We have now a set of data (Y,X) with corresponding locations and a certain level

of spatial autocorrelation.

The data sets are then aggregated spatially by contiguous blocks of mxm cells

being grouped together, where m = 2, 5, 10, 20, 25, 50. Thus, the number of zones

are 2500, 625, 400, 100, 25, 4, respectively. This means that when m=2 the 100x100

grid is divided into 2500 zones each containing 4 of the original cells. When m=5,

the 100x100 grid is divided into 625 zones each containing 25 of the original units,

and so on.

Analysis of one realization:

Initially one realization of the data set generation will be used to examine pertinent

statistics. Table 4.2 shows the Moran’s I and the cross-Moran at individual level

and different levels of aggregation of one realization. The connectivity matrix used

in determining the Moran’s I is the queen’s case. In a square grid, queen contiguity

implies that units with common borders and common vertex are considered neigh-

bors. The computation of the Moran’s I was done using GeoDa (Anselin, 1996) and

Rookcase (Sawada, M., 1999). Because of the way the data are generated, variable Y

has higher autocorrelation than variable X as shown in Table 4.2. The cross-Moran

is computed using Equation (3.44) in Chapter 3 sub-section (3.1.6).

Level I l
XX I l

Y Y I l
Y X

Individual 0.1222 0.2051 0.1102
Z2500 0.1608 0.2292 0.1348
Z625 0.0493 0.0675 0.0459
Z400 0.0171 0.0455 0.0342
Z100 0.0054 0.0612 0.0657
Z25 -0.0125 0.0698 -0.0432
Z4 - - -

Table 4.2: Moran’s I

The unweighted variances and the covariances decrease with scale. The weighted

variances and covariances increased with scale. It can be noted that for the case of

equal group population sizes the unweighted variance can be obtained using

V ariance(unweighted) =
V ariance(weighted)

nzone
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where nzone is the number of elements in each zone.

Table 4.3 shows the unweighted correlation and regression coefficients. Note that

the weighted and unweighted coefficient are the same because of the equal cell sizes

used. The increase of the coefficients with scale can be attributed to the aggregation

effects of the variances and the covariance of the two variables.

Correlation Regression
Coefficient Coefficient

Individual Data 0.2944 0.3399
Number of Zones

2500 0.4280 0.5398
625 0.5157 0.6813
400 0.5558 0.7586
100 0.6051 0.9084
25 0.7768 1.1115
4 0.7437 1.4561

Table 4.3: Correlation and regression coefficients at different scales, X and Y both
have low autocorrelation

The aggregation effects of the weighted variance of Y (S
(l)
Y Y /S

(1)
Y Y ) is greater than

the aggregation effect of the weighted variance of X (S
(l)
XX/S

(1)
XX) because of the way

the data are generated. Variable Y will have greater autocorrelation than variable X.

The unweighted covariance decreases as the number of zones decreases. Reynolds

(1998) suggested that the unweighted covariance tend to decrease when the data

are aggregated because the change in spatial arrangements of the two variables

is more likely make the association random than it is to make it more related.

The aggregation effect of the weighted covariance (S
(l)
Y X/S

(1)
Y X) is greater than the

aggregation effects of variables X and Y in all levels of aggregation except the last

one. Because of this, the correlations as the data are aggregated are as shown in

Table 4.3. The correlation increases with scale except for the last correlation.

Correlation and regression analysis was conducted using ordinary least squares

(OLS) at each scale. From this point we call statistics calculated from the data

directly at any scale as direct coefficients (or statistics). Thus, the results in Table

4.3 are direct coefficients. It can be observed that both the correlation and regression

coefficients display scale effects. They tend to increase with scale, that is, the
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estimated coefficient increases as the number of zones decreases and therefore the

number of observations increases in each zone.

To look at some statistics that can be derived from the multilevel model de-

scribed in section (3.1.2), further statistics were computed. One purpose of using

the multilevel model is to use the components of the model for further computations

of some useful statistics. Table 4.4 shows the estimated intra-area correlation and

the variance components using the moments approach (Tranmer and Steel(1998)

method) and using MLWiN, respectively for the variable X. The estimates of level

2 variance components derived from MLWiN are larger than the corresponding es-

timates using the moments estimation approach, resulting in larger estimates of the

intra-area correlation. However, the descending trend as the number of groups de-

crease are similar. In this study the moments approach is used because it can easily

be used when individual unit level data with group indicators are not available,

provided data for group means and a unit level sample without group indicators are

available (see Tranmer and Steel, 1998).

A. Moments

Level 1 Level 2 Λ̂
(2)
XX Λ̂

(1)
XX δ̂XX

Individual Z2500 0.8476 5.1524 0.1413
Z625 0.5170 5.4830 0.0862
Z400 0.3871 5.6128 0.0654
Z100 0.0906 5.9094 0.0151
Z25 0.0300 5.9700 0.0050
Z4 0.0034 5.9966 0.0006

B. MLWiN

Level 1 Level 2 Λ̂
(2)
XX Λ̂

(1)
XX δ̂XX

Individual Z2500 0.8787 5.1213 0.1465
Z625 0.7174 5.2826 0.1196
Z400 0.4228 5.5772 0.0705
Z100 0.1387 5.8613 0.0231
Z25 0.0487 5.9513 0.0081
Z4 0.0046 5.9954 0.0007

Table 4.4: Intra-Area correlations and variance components of X, X have low auto-
correlation

Table 4.5 shows the intra-area (IAC) correlation of the Y variable and the esti-

mated level 1 and level 2 variance components. The results presented are obtained
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using the Tranmer and Steel method(1998). For both variables the intra-area cor-

relations decreases with scale. The level 2 variance components decrease with scale

and approach zero. The level 1 variance components increase as the number of

zones decrease and approaches the individual level variance. Generally, as groups

become larger, more dissimilar units are included leading to the average within-area

homogeneity, which is what δ̂ measures, to decrease.

Level 1 Level 2 Λ̂
(2)
Y Y Λ̂

(1)
Y Y δ̂Y Y

Individual Z2500 1.8632 6.1337 0.2328
Z625 1.0670 6.9330 0.1334
Z400 0.8533 7.1467 0.1067
Z100 0.2593 7.7407 0.0324
Z25 0.0718 7.9282 0.0090
Z4 0.0180 7.9820 0.0023

Table 4.5: Intra-Area correlations and variance components of Y using moments, Y
have low autocorrelation

The estimated intra-area cross-correlation (IACC) of the two variables, denoted

by δ̂Y X is shown in Table 4.6. The estimated level 2 covariance components de-

crease with scale, the level 1 covariance components increase and intra-area cross

correlation decrease with scale.

Level 1 Level 2 Λ̂
(2)
Y X Λ̂

(1)
Y X δ̂Y X

Individual Z2500 0.8570 1.1824 0.1237
Z625 0.4885 1.5509 0.0705
Z400 0.3981 1.6413 0.0575
Z100 0.1164 1.9231 0.0168
Z25 0.0445 1.9949 0.0064
Z4 0.0072 2.0323 0.0010

Table 4.6: Intra-Area cross-correlations and covariance components at two levels, X
and Y both have low autocorrelation

Table 4.7 shows the estimated pure correlation and regression coefficients based

on a simple multilevel model. Pure correlation, as defined in Chapter 3 equation

(3.38), is the correlation of two variables where the effect of the other level is re-

moved reflecting the correlation at the pertinent level. The level 1 pure correlation
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(denoted by ρ̂
(1)
Y X) increases with scale, starting with a value lower than the corre-

lation coefficient (0.2944) at the individual level but approaches that value as the

number of zones decreases. The change of the pure correlation as the scale changes

is slow compared with the direct correlation shown in Table 4.3. This is a sign of

more stability or being less affected by the MAUP. Estimated pure regressions at

two levels and different scales are also shown in Table 4.7. Pure regression coef-

ficients are the regression coefficient when the effect of the other level is removed.

Pure regression at level 1 (denoted by b̂
(1)
Y X) approaches the regression coefficient at

the individual level (0.3399) as the number of zones decreases. Level 2 pure coeffi-

cients, while different from the individual level, show less scale effect than the direct

coefficients and a general tendency to increase with scale, except when m=4 where

they may be affected by the small number of groups.

Level 1 Level 2 ρ̂
(2)
Y X ρ̂

(1)
Y X b̂

(2)
Y X b̂

(1)
Y X

Individual Z2500 0.6821 0.2103 0.4602 0.1926
Z625 0.6578 0.2515 0.4578 0.2237
Z400 0.6926 0.2592 0.4665 0.2297
Z100 0.7594 0.2843 0.4487 0.2484
Z25 0.9290 0.2900 0.6202 0.2516
Z4 0.9088 0.2937 0.3976 0.2546

Table 4.7: Pure correlations and regressions, X and Y both have low autocorrelation

Analysis of Distribution of Statistics

The results above arise from just one realization of the data generation. To examine

the distribution of the statistics derived from the MLM, the data generation is

repeated 500 times. In each repetition, the mean of X and mean of Y is scaled to

0.005 and 10, respectively and the variance of X and Y are also scaled to 6 and 8,

respectively. This makes the different realizations directly comparable. Although

we cannot completely control or change the initial Pearson correlation, the standard

deviation of the initial individual level correlation is not large, the values ranging

from 0.2599 to 0.3247 with mean equal to 0.2929.

Figure 4.1 shows the ranges of the values of the unweighted variance at dif-
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ferent levels of aggregation when the data generation is repeated 500 times. The

unweighted variance and covariance are observed to decrease as the number of zones

decreases. Note that the horizontal axis shows the number of zones in the square

grid, 2500 means that the original 100x100 square grid was made into a 50x50 square

grid giving 2500 square zones; 625 means that the original 100x100 was made into

a 25x25 square grid with 625 square zones; and so on. Recall that the initial vari-

ance for X is 6. For the rest of the thesis, this notations applies. The effect on the

variance of Y is similar to that of the variable X. Thus, given data set 1, we can say

that when a variable has low autocorrelation, the mean of the unweighted variance

decreases with the decrease in the number of zones.

The standard deviation of the variance decreases with the decrease of the number

of zones as shown in the last column of the upper portion of Table 4.8. At this point

the claim of Reynolds that ”When significantly positive autocorrelated variables are

aggregated, increasing the number of regions per cell increases the likelihood that

more widely differing values will be included in each cell, so one would expect the

variability of possible aggregate variance values to increase with the decrease in the

number of cells.”(page 23, Reynolds, 1998) is observed in Figure 4.1. The standard

deviation of the variance increases as the number of individuals included in the

group decreases. In other words, the standard deviation decrease as the number of

groups decreases.

Figure 4.2 shows the distribution of the weighted variance of X and weighted

covariance of X and Y. The boxplots for the variance of variable Y is not shown

because it is similar to the boxplots of the variance of X. The scale effect of the

weighted covariance is similar to that of the effect of the variance. Recall that

all zones have equal number of units include in each group so that the (weighted

variance)= (number of units per group)x(unweighted variance). Thus, the weighted

variance includes the factors of the number of units per group nunits and unweighted

variance. The variability of the unweighted variance decreases with aggregation but

in Figure 4.2 the standard deviation increases with aggregation. This is because

of the factor nunits. Recall that the different levels of aggregations have 2500, 625,
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Figure 4.1: Unweighted Variance of X and Covariance(X,Y), X and Y both have low

autocorrelation

400, 100, 25, and 4 groups, which means that the number of units per group for the

different levels of aggregation are 4, 16, 25, 100, 400, and 2500 respectively. Thus,

the standard deviation of the weighted variance is expected to rise because of the

increasing values of nunits.

Table 4.9 summarizes the distribution of the weighted variance of X and the
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Unweighted
Variance of X Mean Median Minimum Maximum Std. Dev.

Individual 6.0000 6.0000 6.0000 6.0000 0.0000
2500 2.1682 2.1622 1.8998 2.5105 0.1007
625 0.8565 0.8539 0.7220 1.0474 0.0580
400 0.5964 0.5949 0.4750 0.7335 0.0451
100 0.1757 0.1744 0.1103 0.2732 0.0237
25 0.0464 0.0454 0.0129 0.0838 0.0130
4 0.0076 0.0063 0.0001 0.0361 0.0056

Unweighted
Covariance of X and Y Mean Median Minimum Maximum Std. Dev.

Individual 2.0292 2.0298 1.8007 2.2493 0.0738
2500 1.1644 1.1671 0.9712 1.4121 0.0800
625 0.6070 0.6052 0.4452 0.8060 0.0556
400 0.4368 0.4311 0.3083 0.5921 0.0476
100 0.1351 0.1329 0.0663 0.2369 0.0274
25 0.0369 0.0352 -0.0001 0.0862 0.0151
4 0.0061 0.0049 -0.0010 0.0380 0.0066

Table 4.8: Description of Unweighted Variance of X and Covariance of X and Y, X
and Y both have low autocorrelation

weighted covariance of X and Y and shows the mean and the median increases with

aggregation. In both the weighted variance and weighted covariance, the standard

deviation increase with aggregation.

Weighted
Variance of X Mean Median Minimum Maximum Std. Dev.

2500 8.5416 8.5474 7.9298 9.1371 0.2004
625 13.4936 13.4804 11.4946 15.5029 0.6857
400 14.6797 14.6807 12.2834 17.0218 0.8635
100 17.3023 17.2079 10.8643 25.2772 2.2145
25 18.2766 17.9044 4.9363 33.1333 5.0246
4 18.6786 15.5848 0.3227 87.0727 13.6853

Weighted
Covariance of X and Y Mean Median Minimum Maximum Std. Dev.

Individual 2.0292 2.0298 1.8007 2.2493 0.0738
2500 4.5654 4.5653 3.8670 5.3221 0.2380
625 9.5185 9.5159 7.2845 12.3398 0.7401
400 10.7004 10.6384 7.6858 13.6834 1.0274
100 13.2360 13.1340 6.6786 22.4103 2.6029
25 14.4596 13.6990 -0.0417 32.7256 5.8346
4 15.0037 12.1987 -23.7587 91.2361 15.9994

Table 4.9: Description of Weighted Variance of X and Covariance of X and Y, X and
Y both have low autocorrelation
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Figure 4.2: Weighted Variance of X and Covariance(X,Y), X and Y both have low

autocorrelation

The effect of aggregation of the variance and covariance influence the effect on

the correlation. Figure 4.3 shows the distribution of the correlation coefficient when

the data are aggregated into smaller number of zones. The figures shows that the

mean and median of the correlation coefficient increases with the level of aggregation,

which is supported by Table 4.10, although the increase is small once we reach 625



CHAPTER 4: Multilevel Modeling and the MAUP 50

zones. It can be noted also that the standard deviation of the values of the Pearson

correlation increases with aggregation, due to the reduction in the number of groups

in the analysis. The range of values when the data are aggregated to 4 zones almost

have the range of possible values of the Pearson correlation, that is, -1 to +1.
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Figure 4.3: Pearson Correlation, X and Y both have low autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual 0.2929 0.2930 0.2599 0.3247 0.0107
2500 0.4322 0.4328 0.3815 0.4830 0.0185
625 0.5413 0.5427 0.4590 0.6382 0.0288
400 0.5544 0.5555 0.4290 0.6428 0.0343
100 0.5746 0.5761 0.3637 0.7237 0.0682
25 0.5790 0.5972 -0.0022 0.8563 0.1426
4 0.5279 0.7056 -0.9882 0.9998 0.4756

Table 4.10: Description of the Pearson Correlation, X and Y both have low autocor-
relation

To examine this behavior theoretically, it is known that when the distribution

is bivariate normal, then the sample correlation calculated from N independent
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observations has the following properties (Steel and Holt, 1996):

E(rY X) = ρ

(

1 +
1 − ρ2

2N

)

+ O
(

N−2
)

(4.2)

and

V (rY X) =
(1 − ρ2)

2

N − 1

(

1 +
11ρ2

2N

)

+ O
(

N−3
)

. (4.3)

Steel and Holt (1996) show that a weighted aggregated correlation calculated

from M randomly formed groups behaves the same as that calculated from M points.

Hence (4.2) and (4.3) apply with N replaced by M. Equations 4.2 and 4.3 are used

to look at the expected behavior of the correlation coefficient. For different levels of

aggregation, Equations 4.2 and 4.3 are used to estimate the expected values of the

correlations and variances by using M instead of N, where M is the corresponding

number of groups and the results are shown in Table 4.11. Notice that even for

randomly formed groups the expected value of the correlation increases when the

number of groups is quite small. For the individual level and 2500 zones the standard

deviation of the correlation coefficient is approximately equal to the theoretical

value. For smaller number of zones the standard deviation is smaller than the

theoretical values, although it decreases at a similar rate. However, the average

of the correlation does not behave as in the random aggregation, because of the

autocorrelation. Theoretically, the expected value of the correlations seems to be

approximately constant at different levels of aggregations with some increase as M

becomes small. However, this behavior is not observed in this experiment.

E(rY X) V (rY X)
√

V (rY X)
Individual 0.3000 0.00008 0.0091

Z2500 0.3000 0.00033 0.0182
Z625 0.3018 0.00133 0.0364
Z400 0.3028 0.00208 0.0456
Z100 0.3113 0.00838 0.0915
Z25 0.3454 0.03477 0.1865
Z4 0.5841 0.30191 0.5492

Table 4.11: Expected correlation and the variance and SD at different levels of aggre-
gation assuming no autocorrelation

The percentage loss of variance (plv) of the variance of variables X and Y and
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so with the percentage loss of covariance (plc) of the covariance at different levels

of aggregation has something to do with this behaviour.

First let us define percentage loss of variance (plv). For a variable X, the piv of

X is

plvXX =

(

S
(2)
XX − S

(1)
XX

)

S
(1)
XX

(4.4)

where S
(1)
XX is the variance at individual level and S

(2)
XX is the weighted aggregated

variance.

Similarly, for variable Y, the plv is

plvYY =

(

S
(2)
Y Y − S

(1)
Y Y

)

S
(1)
Y Y

. (4.5)

The percentage loss of covariance (plc) is

plcYX =

(

S
(2)
Y X − S

(1)
Y X

)

S
(1)
Y X

. (4.6)

where S
(1)
Y X is the covariance at individual level and S

(2)
Y X is the weighted aggregated

covariance.

The percentage loss of variances of the variables X and Y with respect to the

levels of aggregation are almost the same. Although the corresponding percentage

loss of the covariance with respect to the levels of aggregation have similar trend,

they are smaller compared with the percentage loss of variances of both X and Y.

This results in the tendency for the correlation to increase with aggregation.

Figure 4.4 shows the distribution of the estimated regression coefficient. The

standard deviation increases with aggregation. The distribution when the data are

aggregated into 4 zones is not included to allow a clearer picture of the distribution

for the other levels of aggregation. However, the necessary information for this

level of aggregation can be seen in Table 4.12. A trend similar to that observed for

the distribution of the correlation coefficient in terms of the increasing mean and

increasing standard deviation of the estimates is observed.
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Figure 4.4: Regression Coefficient, X and Y both have low autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual 0.3382 0.3383 0.3001 0.3749 0.0123
2500 0.5344 0.5343 0.4644 0.5989 0.0239
625 0.7055 0.7037 0.5803 0.8418 0.0422
400 0.7288 0.7290 0.5627 0.8750 0.0535
100 0.7654 0.7653 0.4507 1.1826 0.1148
25 0.7904 0.7950 -0.0037 1.4869 0.2354
4 0.7750 0.8681 -6.8700 5.2190 1.0292

Table 4.12: Description of Regression Coefficient,X and Y both have low autocorrela-
tion

Statistics associated with the multilevel model

We now examine some of the statistics associated with the multilevel model pre-

sented above (4.1). Some of the derived statistics display interesting patterns, which

may be affected by the level 1 and level 2 variance components. Figure 4.5 shows

the estimated level 2 and level 1 variance components of variable X.

Note that the level 1 plus level 2 variance components equal the initial variance

of X. Looking at the figure, the mean and median of the level 2 variance components
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Figure 4.5: Variance Components of X, X have low autocorrelation

decrease with aggregation. Recall that the estimated level 2 variance components

have numerator equal to S
(2)
XX − S

(1)
XX and denominator equal to N̄∗ − 1 where N̄∗

is equal to N/M=nunits with values 4, 16, 25, 100, 400, and 2500. Both the numer-

ator and denominator increase with aggregation. The variability of the numerator

increase with aggregation but is divided by an increasing nunits thus resulting in a

decreasing standard deviation of the level 2 variance component. The mean and me-
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dian of the level 1 variance component increases with aggregation. However, in both

cases, the standard deviation decreases with aggregation for the level 2 component

and increases for the level 1 component.

Table (4.13) summarizes the distribution of the level 2 and level 1 variance

components. The mean and the median have similar values and decrease with scale.

Level 2
Variance Component(X) Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.8467 0.8487 0.6429 1.0452 0.0668
625 0.4987 0.4978 0.3657 0.6324 0.0456
400 0.3607 0.3608 0.2611 0.4581 0.0359
100 0.1130 0.1121 0.0486 0.1928 0.0222
25 0.0296 0.0287 -0.0026 0.0654 0.0121
4 0.0041 0.0031 -0.0018 0.0260 0.0044

Level 1
Variance Component(X) Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 5.1533 5.1513 4.9548 5.3571 0.0668
625 5.5013 5.5022 5.3676 5.6343 0.0456
400 5.6393 5.6392 5.5420 5.7389 0.0359
100 5.8870 5.8879 5.8072 5.9514 0.0222
25 5.9704 5.9713 5.9346 6.0026 0.0121
4 5.9959 5.9969 5.9740 6.0018 0.0044

Table 4.13: Description of the Level 2 and Level 1 Variance Components, X and Y
both have low autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.1411 0.1414 0.1071 0.1742 0.0111
625 0.0831 0.0830 0.0609 0.1054 0.0076
400 0.0601 0.0601 0.0435 0.0763 0.0060
100 0.0188 0.0187 0.0081 0.0321 0.0037
25 0.0049 0.0048 -0.0004 0.0109 0.0020
4 0.0007 0.0005 -0.0003 0.0043 0.0007

Table 4.14: Description of the Intra-Area Correlation, X have low autocorrelation

Figure 4.6 shows the distribution of the IAC at different levels of aggregation.

The mean and median and the standard deviation decrease with aggregation. Notice

that the behavior of the standard deviation of the IAC is similar to that of the level

2 variance component. This is because the numerator of the estimate of intra-area
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Figure 4.6: Intra-area correlation X, X have low autocorrelation

correlation is the level 2 variance component while the denominator is the variance

of unit level data, which remains constant for the different levels aggregation.

Figure 4.7 shows the behavior of the intra-area cross-correlation (IACC). The

mean and the standard deviation of the mean decrease with the level of aggregation.

Description Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.1220 0.1219 0.0914 0.1502 0.0091
625 0.0719 0.0721 0.0514 0.0982 0.0067
400 0.0520 0.0518 0.0346 0.0689 0.0059
100 0.0162 0.0161 0.0067 0.0293 0.0037
25 0.0043 0.0041 -0.0007 0.0107 0.0020
4 0.0006 0.0005 -0.0012 0.0041 0.0007

Table 4.15: Description of the Intra-Area Cross-Correlation, X and Y both have low
autocorrelation

Figure 4.8 shows both the estimated level 1 and level 2 pure correlations. Looking

at the figure the mean and median of the level 2 pure correlation is not affected by

aggregation but the value is much higher than the initial Pearson correlation that
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Figure 4.7: Intra-area cross-correlation of X and Y, X and Y both have low autocor-

relation

ranges from 0.2599 to 0.3247 with mean 0.2929 (Table 4.10). Note that z4(4 groups)

is excluded because values ranges from -8.7860 to 7.3132 and inclusion would make

examining the distribution for other groupings difficult, see Table 4.16. Note also

that some level 2 pure coefficients when the data are aggregated into 25 zones are

more than 1 or less than -1 which is not a characteristic of a correlation coefficient.

This phenomenon will be examined latter in the chapter. Level 1 pure correlations

seems to have a predictable pattern, with the mean and median increasing with

aggregation and approaching the initial Pearson correlation of the generated data.

Table 4.16 shows the descriptive statistics of the pure coefficients. The standard

deviation of the level 1 pure correlations seems to be constant and from Table 4.16

it can be seen that the standard deviation at different levels of aggregation is the

same.

The behavior of the distributions of the pure regression coefficient is shown in

Figure 4.9 and is similar to that of the distributions of the pure correlation. Again
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Figure 4.8: Pure Correlation, X and Y both have low autocorrelation

z4 is not included because the values ranges from -66.3356 to 67.9241. The mean

and median of level 2 pure regression, except when the number of groups is 4, are not

affected by different levels of aggregation but are a little higher that the mean of the

initial regression coefficient. The standard deviation increases with aggregation, the

increase is slow at the first three levels of aggregation but gets larger as the number

of groups decrease. Similar to the level 1 pure correlation, the level 1 pure regression
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Level 2
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.7080 0.7071 0.5948 0.8079 0.03907
625 0.7093 0.7115 0.5942 0.8609 0.04145
400 0.7071 0.7086 0.5177 0.8312 0.04682
100 0.7036 0.7065 0.4241 0.9439 0.09026
25 0.7084 0.7345 -0.1928 1.1732 0.20077
4 0.7871 0.9861 -8.7860 7.3132 1.2305

Level 1
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2076 0.2070 0.1695 0.2391 0.0110
625 0.2465 0.2461 0.2163 0.2789 0.0103
400 0.2605 0.2607 0.2332 0.2869 0.0102
100 0.2834 0.2835 0.2542 0.3115 0.0105
25 0.2904 0.2904 0.2594 0.3225 0.0105
4 0.2925 0.2928 0.2605 0.3241 0.0106

Table 4.16: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
have low autocorrelation

increases as the number of groups decreases. The standard deviation seems to be

constant as depicted by Figure 4.9.

Table 4.17 shows descriptive statistics of level 2 and level 1 pure regression co-

efficients.

4.2.2 Data Set 2: Both variables have medium autocorrela-

tion

To look into the effects of aggregation on variables with higher autocorrelation the

simulations are repeated but with higher levels of autocorrelations for both variable.

To generate a new set of data with a higher autocorrelation, the smoothing process

used to generate data set 1 is repeated for the two variables. This is done by taking

the average of the neighbors of each of the data points for the previously generated

data. We initially examine results for one realization.

The resulting values of Moran’s I are shown in Table 4.18. The contiguity matrix

used is the queen’s case. Note that this time the initial value, that is, the Moran’s I

at individual level is higher than that of the first data set. The values decrease with
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Figure 4.9: Pure Regression, X and Y both have low autocorrelation

aggregation.

The unweighted and weighted variance are affected by scale as shown in Table

4.19 and Table 4.20, respectively. Looking at the decrease of the unweighted variance

on both variables, it can be seen that the change is somewhat slow compared with

the data set 1 (Tables 4.8 and 4.9). The covariance of the new set of data is smaller

than the first one. The decrease of the covariance is slower compared with the
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Level 2
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.5018 0.5020 0.3943 0.5863 0.0336
625 0.5033 0.5028 0.4052 0.5992 0.0379
400 0.5009 0.4996 0.3631 0.6221 0.0428
100 0.5006 0.4964 0.2280 0.7019 0.0789
25 0.5010 0.4891 -0.1289 1.2025 0.1772
4 0.5662 0.5002 -66.3356 67.9241 4.9090

Level 1
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.1876 0.1868 0.1541 0.2149 0.0101
625 0.2184 0.2182 0.1907 0.2457 0.0092
400 0.2293 0.2295 0.2048 0.2526 0.0090
100 0.2466 0.2465 0.2206 0.2718 0.0091
25 0.2518 0.2520 0.2251 0.2801 0.0092
4 0.2534 0.2536 0.2255 0.2809 0.0092

Table 4.17: Description of the Level 2 and Level 1 Pure Regression, X and Y both
have low autocorrelation

Level I l
XX I l

Y Y I l
Y X

Individual 0.4549 0.6223 0.1847
Z2500 0.3740 0.4602 0.1582
Z625 0.1278 0.1797 0.0881
Z400 0.1169 0.1326 0.0745
Z100 0.0259 0.1400 0.0383
Z25 -0.0676 0.1202 0.0160
Z4 - - -

Table 4.18: Moran’s I

decrease of the covariance of the first data set.

X̄ Ȳ S̃
(l)
XX S̃

(l)
Y Y S̃

(l)
XY

Individual 0.005 10.000 6.0000 8.0000 1.9382
Z2500 0.005 10.000 3.7314 5.9828 1.4873
Z625 0.005 10.000 2.0727 3.7572 0.9722
Z400 0.005 10.000 1.5626 2.9484 0.8254
Z100 0.005 10.000 0.5814 1.0004 0.3306
Z25 0.005 10.000 0.1600 0.3550 0.1336
Z4 0.005 10.000 0.0214 0.2051 0.0247

Table 4.19: Unweighted variance and covariance, X and Y both have medium auto-
correlation

Table 4.21 shows that the correlation and regression coefficients tend to increase
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X̄ Ȳ S
(l)
XX S

(l)
Y Y S

(l)
XY

Individual 0.005 10.000 6.0000 8.0000 1.9382
Z2500 0.005 10.000 14.9256 23.9312 5.9493
Z625 0.005 10.000 33.1628 60.1147 15.5557
Z400 0.005 10.000 39.0645 73.7104 20.6348
Z100 0.005 10.000 58.1737 100.0409 33.0574
Z25 0.005 10.000 64.0128 141.9836 53.4285
Z4 0.005 10.000 53.4122 512.7969 61.6289

Table 4.20: Weighted variance and covariance, X and Y both have medium autocor-
relation

with scale, with the exception of the correlation coefficient for 4 zones. Comparing

the initial correlation and the correlation at different levels of aggregation with that

of the first data ( Table 4.3) it can noted that the increase from initial correlation

up to the different levels of aggregation seems to be slower. There is even a de-

crease when there are only 4 zones. A similar trend is observed with the regression

coefficient.

Correlation Regression
Coefficient Coefficient

Individual Data 0.2798 0.3230
Number of Zones

2500 0.3148 0.3986
625 0.3484 0.4691
400 0.3845 0.5282
100 0.4356 0.5685
25 0.5604 0.8347
4 0.3724 1.1538

Table 4.21: Correlation and regression coefficients at different scales, X and Y both
have medium autocorrelation

The estimated variance components and the intra-area correlations are shown

in Table 4.22 and Table 4.23. The values decrease as the level of aggregation is

increased and approach zero as the number of zones is decreased. This is because

when there are few zones, the population within them will be almost as heteroge-

neous as the whole population. The level 2 variance component is larger than the

level 1 variance component for both variables initially. The level 1 variance compo-

nent approaches the individual level variance as the number of zones decreases. This
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time the Level 2 variance component is larger at each aggregation level compared

with the previous data set (Tables 4.4 and 4.23), probably due to the higher level

of autocorrelation.

Level 1 Level 2 Λ̂
(2)
XX Λ̂

(1)
XX δ̂XX

Individual Z2500 2.9736 3.0264 0.4956
Z625 1.8078 4.1922 0.3013
Z400 1.3741 4.6259 0.2290
Z100 0.5214 5.4786 0.0869
Z25 0.1398 5.8602 0.0233
Z4 0.0152 5.9848 0.0025

Table 4.22: Intra-Area correlations and variance components of X, X have medium
autocorrelation

Level 1 Level 2 Λ̂
(2)
Y Y Λ̂

(1)
Y Y δ̂Y Y

Individual Z2500 5.3076 2.6924 0.6634
Z625 3.4684 4.5316 0.4335
Z400 2.7308 5.2692 0.3414
Z100 0.9204 7.0796 0.1151
Z25 0.3229 7.6771 0.0404
Z4 0.1616 7.8384 0.0202

Table 4.23: Intra-Area correlations and variance components of Y, Y have medium
autocorrelation

Looking at the results shown in Table 4.24 the intra-area cross-correlation have

values greater than the previous data set at each level of aggregation. This time

the level 2 covariance component when the data are aggregated into 2500 zones is

larger than the level 1 covariance component and decreases as the number of zones

decreases.

Level 1 Level 2 Λ̂
(2)
Y X Λ̂

(1)
Y X δ̂Y X

Individual Z2500 1.3363 0.6019 0.1929
Z625 0.9063 1.0320 0.1308
Z400 0.7770 1.1612 0.1122
Z100 0.3112 1.1637 0.0450
Z25 0.1241 1.8142 0.0179
Z4 0.0191 1.9191 0.0028

Table 4.24: Intra-Area cross-correlations at two levels, X and Y both have medium
autocorrelation
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Pure correlations for the second data set are shown in Table 4.25. The level

2 pure correlation increases with the level of aggregation and begins with a value

not far from the individual level Pearson correlation. In comparison with the first

data set, the corresponding values of the correlation are smaller. The level 1 pure

correlation increases with the level of aggregation where the values are smaller than

the initial Pearson correlation and seems to approach the individual(or initial) level

Pearson correlation. Level 2 pure regression increases with aggregation except when

the number of zones is 4 where it suddenly decreases. The level 2 pure regression

seems to be not affected by aggregation.

Level 1 Level 2 ρ̂
(2)
Y X ρ̂

(1)
Y X b̂

(2)
Y X b̂

(1)
Y X

Individual Z2500 0.3364 0.2108 0.2518 0.2236
Z625 0.3619 0.2368 0.2613 0.2277
Z400 0.4011 0.2352 0.2845 0.2204
Z100 0.4492 0.2612 0.3381 0.2298
Z25 0.5840 0.2705 0.3942 0.2363
Z4 0.3858 0.2802 0.1182 0.2448

Table 4.25: Pure correlations and pure regression at two levels, X and Y both have
medium autocorrelation

Analysis of Distribution of Statistics When both Variables have Medium

Autocorrelation

As with data set 1 the simulation is repeated 500 times to investigate the distribu-

tions of pertinent statistics.

Figure 4.10 shows the distributions of the unweighted variance of X and un-

weighted covariance of X and Y. The decreasing mean and median of the variance

of X is similar to the results of the previous data set but the values are greater than

the corresponding mean and median of data set 1. Aside from the first aggregation

level (2500 groups) the standard deviation of the variance of X at different levels

of aggregation decreases with aggregation. The decreasing trend of the mean of

the covariance is observed but this time the change from unit level to the different

levels of aggregation is slower than the corresponding values from data set 1. The
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Figure 4.10: Unweighted Variance of X and Covariance(X,Y), X and Y both have

medium autocorrelation

standard deviation also decreases with aggregation but is larger compared with the

corresponding standard deviation of data set 1.

Table 4.26 summarizes the distribution of the estimated unweighted variance and

covariance.

Figure 4.11 shows the distribution of the weighted variance of X. The mean of
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Figure 4.11: Weighted Variance of X and Covariance(X,Y), X and Y both have

medium autocorrelation

the weighted variances is larger than the corresponding values for the results from

data set 1 at different levels of aggregation. The standard deviation increases with

aggregation and is larger in magnitude than the corresponding standard deviation for

different levels of aggregation in data set 1. The mean of the covariance also increases

with aggregation. Looking at Table 4.27, there are values of the weighted covariance



CHAPTER 4: Multilevel Modeling and the MAUP 67

Unweighted
Variance of X Mean Median Minimum Maximum Std. Dev.

Individual 6.0000 6.0000 6.0000 6.0000 0.0000
2500 3.7375 3.7380 3.5637 3.9013 0.0590
625 2.1053 2.1007 1.8597 2.3878 0.0812
400 1.5645 1.5673 1.3380 1.7714 0.0795
100 0.5110 0.5105 0.3150 0.7384 0.0650
25 0.1415 0.1403 0.0521 0.2929 0.0381
4 0.0234 0.0188 0.0002 0.0847 0.0171

Unweighted
Covariance of X and Y Mean Median Minimum Maximum Std. Dev.

Individual 2.1852 2.1844 1.8108 2.6272 0.1440
2500 1.7367 1.7370 1.3278 2.1716 0.1337
625 1.1323 1.1291 0.7690 1.6072 0.1177
400 0.8797 0.8777 0.5012 1.2284 0.1085
100 0.3064 0.3033 0.0715 0.5913 0.0765
25 0.0880 0.0811 -0.0432 0.2186 0.0445
4 0.0151 0.0129 -0.0592 0.0928 0.0199

Table 4.26: Description of Unweighted Variance of X and Covariance of X and Y, X
and Y both have medium autocorrelation

that are less than the mean weighted covariance at unit level when the data are

aggregated to 25 and 4 zones. The standard deviation increase with aggregation.

Figure 4.12 shows the correlation at different levels of aggregation. The figure

shows that the mean and median of the correlation increases with the level of aggre-

gation but the increase is slower than the corresponding increase of the correlation

of data set 1. The increase is not as much as in data set 1 because of the decrease

of both the variances X and Y and the covariance of X and Y is lesser when the

data are aggregated into smaller number of groups, thus resulting in a lesser aggre-

gation effect on the correlation. The standard deviation in each level of aggregation

increases with aggregation and is similar to the first data set but with slightly larger

values. In comparison with the standard deviation of data set 1, data set 2 has

slightly higher standard deviations at each level but the trend is similar-they are in-

creasing. The results show increasing correlation with aggregation but the increase

is not as much as the increase of the correlation in data set 1. Similar behavior of

the standard deviation is observed but slightly larger in magnitude compared with

that of data set 1.
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Weighted

Variance of X Mean Median Minimum Maximum Std. Dev.

2500 14.9501 14.9518 14.2550 15.6053 0.2359

625 33.6851 33.6105 29.7553 38.2041 1.2985

400 39.1126 39.1834 33.4487 44.2848 1.9880

100 51.0970 51.0469 31.4948 73.8388 6.4979

25 56.6032 56.0990 20.8290 117.1530 15.2350

4 58.4922 46.9210 0.3910 211.6970 42.8460

Weighted

Covariance of X and Y Mean Median Minimum Maximum Std. Dev.

Individual 2.1852 2.1844 1.8108 2.6272 0.1439

2500 6.9469 6.9481 5.3110 8.6865 0.5348

625 18.1165 18.0657 12.3041 25.7149 1.8827

400 21.9924 21.9431 12.5299 30.7100 2.7131

100 30.6420 30.3340 7.1480 59.1280 7.6460

25 35.1790 32.4560 -17.2970 87.4560 17.7870

4 37.7311 32.2700 -147.9700 231.9100 49.8300

Table 4.27: Description of Weighted Variance of X and Covariance of X and Y, X and

Y both have medium autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual 0.3154 0.3153 0.2614 0.3792 0.0208
2500 0.3688 0.3696 0.2879 0.4529 0.0268
625 0.4040 0.4052 0.2900 0.5217 0.0369
400 0.4148 0.4183 0.2522 0.5486 0.0439
100 0.4291 0.4343 0.1196 0.6421 0.0834
25 0.4304 0.4385 -0.2234 0.8142 0.1684
4 0.4013 0.5377 -0.9950 0.9991 0.5207

Table 4.28: Description of Pearson Correlation, X and Y both have medium autocor-
relation

Figure 4.13 shows the distribution of the regression coefficient. Note that results

for aggregation to 4 zones are not included so that the distribution of regression

coefficients for the other levels of aggregation can be displayed more clearly. A sum-

mary of the distribution of the regression coefficient when the data are aggregated

into 4 groups is shown in Table 4.29.

Figure 4.14 shows the estimated variance components of variable X. The mean

and median of the level 2 variance component decrease with aggregation. In com-
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Figure 4.12: Pearson Correlation (The horizontal axis denotes number of groups), X

and Y both have medium autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual 0.3642 0.3641 0.3018 0.4379 0.0240
2500 0.4646 0.4650 0.3610 0.5681 0.0338
625 0.5377 0.5382 0.3802 0.6922 0.0502
400 0.5623 0.5635 0.3537 0.7523 0.0626
100 0.5997 0.5999 0.1947 0.9330 0.1288
25 0.6238 0.6321 -0.3324 1.5398 0.2712
4 0.6640 0.7130 -6.1942 14.3151 1.2784

Table 4.29: Description of Regression Coefficient, X and Y both have medium auto-
correlation

parison with data set 1, the level 2 variance component of X is larger in all levels

of aggregation. Looking at Table 4.22, the means of the level 2 variance compo-

nent of X at different levels of aggregation are as follows; 2.9818, 1.8425, 1.3761,

0.4510, 0.1219, and 0.0168, respectively. In data set 1, the means of the level 2

variance component of X at different levels of aggregation are as follows; 0.8467,

0.4987, 0.3607, 0.1130, 0.0296, and 0.0041, respectively. Thus, as the degree of au-

tocorrelation increases, the level 2 variance component at each level of aggregation



CHAPTER 4: Multilevel Modeling and the MAUP 70

0.
0

0.
5

1.
0

1.
5

M=10000 M=2500 M=625 M=400 M=100 M=25

Regression Coefficient

Figure 4.13: Regression Coefficient, X and Y both have medium autocorrelation

also increases. Like the unweighted variance, the standard deviation of the level 2

variance component decreases, starting from the second level of aggregation to the

last. The ranges of the values from unit level to the last level of aggregation are a

little larger than the corresponding ranges of data set 1. The values of the level 1

variance component are also affected by these results. The standard deviation of

the values seems to decrease with aggregation but not as much as the decrease of

the previous data set.

Figure 4.15 shows the distribution of the estimated intra-area correlation of vari-

able X. The mean decreases with aggregation. The values are larger at all levels of

aggregation compared with the results of data set 1. This is because in all levels of

aggregation the level 2 variance component of data set 1 is smaller than the level

variance component of data set 1. The standard deviation of the intra-area corre-

lation decreases with aggregation. The magnitude of the standard deviations are a

little larger than the corresponding standard deviations of data set 1.

Figure 4.16 shows both the level 2 and level 1 pure correlation coefficients. The
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Figure 4.14: Variance Components of X, X have medium autocorrelation

mean and median of the level 2 pure correlation coefficients seem to change very

slowly except when the number of groups is 4 for the median. The mean is greater

than the initial correlation (3.154) and the standard deviation of these values in-

creases with aggregation but these values are much lower than the corresponding

values from data set 1 and are nearer to the initial correlation. Looking at the upper

part of Table 4.32, the standard deviation of the level 2 pure correlation increases
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Level 2
Variance Component(X) Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 2.9818 2.9824 2.7502 3.2001 0.0786
625 1.8425 1.8376 1.5810 2.1433 0.0864
400 1.3761 1.3791 1.1407 1.5911 0.0826
100 0.4510 0.4505 0.2550 0.6784 0.0650
25 0.1219 0.1207 0.0357 0.2678 0.0367
4 0.0168 0.0131 -0.0018 0.0658 0.0137

Level 1
Variance Component(X) Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 3.0182 3.0176 2.7999 3.2498 0.0786
625 4.1575 4.1624 3.8567 4.4190 0.0864
400 4.6239 4.6210 4.4089 4.8593 0.0826
100 5.5490 5.5495 5.3216 5.7451 0.0650
25 5.8781 5.8793 5.7322 5.9643 0.0367
4 5.9832 5.9870 5.9342 6.0018 0.0137

Table 4.30: Description of the Level 2 and Level 1 Variance Components, X and Y
both have medium autocorrelation
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Figure 4.15: Intra-Area Correlation X, X have medium autocorrelation
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Description Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.4970 0.4971 0.4584 0.5333 0.0131
625 0.3071 0.3063 0.2635 0.3572 0.0144
400 0.2296 0.2298 0.1901 0.2652 0.0138
100 0.0752 0.0751 0.0425 0.1131 0.0108
25 0.0203 0.0201 0.0060 0.0446 0.0061
4 0.0028 0.0022 -0.0003 0.0110 0.0023

Table 4.31: Description of Intra-Area Correlation (X), X both have medium autocor-
relation

with aggregation as depicted by Figure 4.16. These values are very similar to the

corresponding values of data set 1 except for the last level of aggregation. The mean

and median of the level 1 pure correlation, start with a smaller value and approaches

the initial correlation as the number of groups decrease. These values are very sim-

ilar to the corresponding values from data set 1. The standard deviation of these

values seems to be approximately constant as depicted by Figure 4.16 and Table

4.32 but a little larger in magnitude compared with the results from data set 1.

Level 2
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.4012 0.4027 0.3019 0.4960 0.0308
625 0.4212 0.4234 0.2962 0.5487 0.0404
400 0.4308 0.4342 0.2489 0.5737 0.0480
100 0.4423 0.4491 0.0961 0.6665 0.0912
25 0.4425 0.4541 -0.2762 0.8531 0.1853
4 0.4270 0.6170 -2.6191 2.6062 0.6770

Level 1
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2073 0.2075 0.1609 0.2535 0.0163
625 0.2573 0.2573 0.2134 0.3058 0.0180
400 0.2735 0.2735 0.2221 0.3225 0.0189
100 0.3032 0.3032 0.2427 0.3700 0.0204
25 0.3119 0.3119 0.2572 0.3765 0.0206
4 0.3151 0.3151 0.2603 0.3787 0.0207

Table 4.32: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
have medium autocorrelation

Figure 4.17 shows the distribution of level 2 and level 1 pure regression coeffi-
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Figure 4.16: Pure Correlation, X and Y both have medium autocorrelation

cients. The mean of the level 2 pure regression coefficient seems to be not affected

by aggregation but the standard deviation of the values increases with aggregation

as depicted by Figure 4.17 and the last column of the upper part of Table 4.33.

These values are smaller than the corresponding values from data set 1 and a bit

lower than the mean initial regression. The mean of the level 1 pure regression

started with a value less than the initial regression coefficient at the individual level
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Figure 4.17: Pure Regression, X and Y both have medium autocorrelation

and slowly approaches that value as the number of groups decrease. The standard

deviation in each level of aggregation seems to be constant just as the results from

data set 1 but a bit larger.
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Level 2
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.3027 0.3041 0.2291 0.3772 0.0239
625 0.3086 0.3089 0.2204 0.4176 0.0310
400 0.3106 0.3108 0.1719 0.4224 0.0363
100 0.3122 0.3118 0.0564 0.5155 0.0686
25 0.3082 0.3055 -0.1810 0.7925 0.1419
4 0.2827 0.3308 -20.5394 12.2534 1.3818

Level 1
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2172 0.2173 0.1674 0.2688 0.0175
625 0.2465 0.2459 0.2010 0.2965 0.0177
400 0.2546 0.2540 0.2021 0.3048 0.0180
100 0.2681 0.2675 0.2119 0.3291 0.0184
25 0.2719 0.2717 0.2248 0.3284 0.0181
4 0.2730 0.2731 0.2258 0.3283 0.0179

Table 4.33: Description of the Level 2 and Level 1 Pure Regression, X and Y both
have medium autocorrelation

4.2.3 Data Set 3: Both variables have high autocorrelation

To be able to observe the behavior of pertinent statistics when two variables both

have high autocorrelation, another set of data is generated. Data set 2 is again

subjected to the smoothing process. The average of the neighbors of each of the

data points of data Set 2 is recorded and becomes the new data set. The process

was able to generate a data set that is more autocorrelated than the data set 2. As

before, the following initial results are from one realization of the data generation.

Table 4.34 shows the Moran’s I at different levels of aggregation, which are higher

than in data set 2.

Level I l
XX I l

Y Y I l
Y X

Individual 0.7138 0.8033 0.2370
Z2500 0.5037 0.5757 0.1709
Z625 0.1621 0.2207 0.0754
Z400 0.1040 0.1361 0.0608
Z100 -0.0403 0.0378 0.0266
Z25 0.0155 0.2076 0.1155
Z4 - - -

Table 4.34: Moran’s I
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Table 4.35 shows the variances and covariances of the variables at different levels.

The unweighted variance decreases as the number of zones decreases and the values

are a little larger than the corresponding value in each level from the results from

data set 2. The decrease is slower compared with data set 2 and data set 1. Except

for the first aggregation, that is when the number of groups is 2500, the covariance

at all levels of aggregation is larger than the corresponding covariances of data set

2 and data set 1.

X̄ Ȳ S̃
(l)
XX S̃

(l)
Y Y S̃

(l)
XY

Individual 0.005 10.000 6.0000 8.0000 2.0259
Z2500 0.005 10.000 4.8461 6.9693 1.7602
Z625 0.005 10.000 3.1691 4.8816 1.1971
Z400 0.005 10.000 2.5333 4.1442 1.0289
Z100 0.005 10.000 0.9373 1.7078 0.4645
Z25 0.005 10.000 0.2598 0.5333 0.1836
Z4 0.005 10.000 0.0360 0.1399 0.0684

Table 4.35: Unweighted variance and covariance, X and Y both have high autocorre-
lation

Table 4.36 shows the weighted variance and covariance of the two variables.

Both the variances of X and Y and the covariance increase with aggregation except

for the variance of X when m=4. The values of these statistics are larger than

the corresponding statistics computed from data set 2 in all levels of aggregation,

reflecting the higher level of autocorrelation.

X̄ Ȳ S
(l)
XX S

(l)
Y Y S

(l)
XY

Individual 0.005 10.000 6.0000 8.0000 2.0259
Z2500 0.005 10.000 19.3844 27.8773 7.0409
Z625 0.005 10.000 50.7071 78.1063 19.1530
Z400 0.005 10.000 63.3335 103.6046 25.7221
Z100 0.005 10.000 93.7345 170.7823 46.4457
Z25 0.005 10.000 103.9118 213.3024 73.4217
Z4 0.005 10.000 90.0712 349.8199 171.0138

Table 4.36: Weighted variance and covariance, X and Y both have high autocorrelation

Table 4.37 shows the correlation and regression coefficients at different levels.

Again, the pattern of increasing correlation and regression coefficients as the number

of zones is decreased is evident. The increase of the correlation with aggregation
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except when the aggregated to 25 and 4 groups seems to be slow in comparison with

the increase of the correlation of data set 1 and data set 2. The same pattern is

observed with the regression coefficient, that is the increase is slow as the data are

aggregated into smaller number of groups.

Correlation Regression
Coefficient Coefficient

Individual Data 0.2924 0.3376
Number of Zones

2500 0.3029 0.3642
625 0.3043 0.3777
400 0.3175 0.4061
100 0.3671 0.4955
25 0.4932 0.7067
4 0.9634 1.8987

Table 4.37: Correlation and regression coefficients at different scales, X and Y both
have high autocorrelation

The intra area correlations of variable X is shown in Table 4.38. The values are

larger than the previous data set because the data generation will generate data

with higher autocorrelation. The value of the intra-area correlation is almost equal

to Moran’s I at the individual level when the data are aggregated into 2500 groups.

The level 2 variance component is initially much larger than the level 1 variance

component, and decreases and seems to approach zero as the number of zones is

decreased. The level 1 variance component approaches the individual level variance

as the number of zones is decreased.

Level 1 Level 2 Λ̂
(2)
XX Λ̂

(1)
XX δ̂XX

Individual Z2500 4.4591 1.5409 0.7432
Z625 2.9754 3.0246 0.4959
Z400 2.3827 3.6173 0.3971
Z100 0.8873 5.1227 0.1462
Z25 0.2359 5.7641 0.0393
Z4 0.0269 5.9731 0.0045

Table 4.38: Intra-Area correlations and variance components of X, X have high auto-
correlation

Table 4.39 shows the intra-area correlation of variable Y. The behavior of the

scale effect is similar to the intra-area correlation of variable X but larger in value
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at each level of aggregation, this is because of the way the data are generated. The

level 2 and level 1 variance components have behavior similar to that of the variable

X.

Level 1 Level 2 Λ̂
(2)
Y Y Λ̂

(1)
Y Y δ̂Y Y

Individual Z2500 6.6222 1.3778 0.8278
Z625 4.6658 3.3342 0.5832
Z400 3.9732 4.0268 0.4946
Z100 1.6278 6.3722 0.2035
Z25 0.4947 7.5053 0.0618
Z4 0.0269 7.8906 0.0137

Table 4.39: Intra-Area correlations and variance components of Y, Y have high auto-
correlation

Table 4.40 displays the covariance components that are used in the estimation

of the intra-area cross-correlation. The intra-area cross correlation decreases with

aggregation.

Level 1 Level 2 Λ̂
(2)
Y X Λ̂

(1)
Y X δ̂Y X

Individual Z2500 1.6708 0.3551 0.2412
Z625 1.1398 0.8860 0.1645
Z400 0.9848 1.0411 0.1421
Z100 0.4442 1.5817 0.0641
Z25 0.1721 1.8538 0.0248
Z4 0.0541 1.9718 0.0078

Table 4.40: Intra-Area cross-correlations at two levels, X and Y both have high auto-
correlation

Table 4.41 shows level 2 and level 1 pure correlations. Both the level 2 and level 1

pure correlation increases with aggregation. The level 1 pure correlation approaches

the initial correlation and the increase is slow in comparison with the increase in

the previous two data sets. The level 2 pure correlation increase very slowly for the

first three levels of aggregation.

The level 1 pure regression seems to have only a slight increase when the number

of zones is 625 and decreases slightly at 400 zones and becomes stable for the rest

of the levels of aggregation including 4 zones. The level 2 pure regression increases

with aggregation except when the data are aggregated into 4 zones, in which case

there is a sudden increase.
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Level 1 Level 2 ρ̂
(2)
Y X ρ̂

(1)
Y X b̂

(2)
Y X b̂

(1)
Y X

Individual Z2500 0.3075 0.2437 0.2523 0.2578
Z625 0.3059 0.2790 0.2443 0.2657
Z400 0.3200 0.2728 0.2479 0.2585
Z100 0.3717 0.2768 0.2729 0.2482
Z25 0.5036 0.2818 0.3478 0.2470
Z4 0.9968 0.2876 0.4944 0.2499

Table 4.41: Pure coefficients at two levels, X and Y both have high autocorrelation

Analysis of Distribution of Statistics when both Variables have High Au-

tocorrelation

As in the previous sub-sections, the data generation is repeated 500 times to investi-

gate the distributions of some pertinent statistics. Figure 4.18 shows the distribution

of the variance of variable X and the covariance of X and Y.

Unweighted
Variance (X) Mean Median Minimum Maximum Std. Dev.
Individual 6.0000 6.0000 6.0000 6.0000 0.0000

2500 4.8941 4.8943 4.7439 5.00635 0.0428
625 3.2719 3.2674 2.9694 3.58812 0.0915
400 2.5808 2.5828 2.2233 2.90657 0.1088
100 0.9305 0.9342 0.5834 1.28437 0.1125
25 0.2684 0.2625 0.0928 0.55646 0.0720
4 0.0454 0.0374 0.0005 0.171253 0.0336

Unweighted
Covariance of X and Y Mean Median Minimum Maximum Std. Dev.

Individual 2.1081 2.1098 1.4813 2.7771 0.2124
2500 1.8728 1.8819 1.2525 2.5238 0.2030
625 1.3644 1.3713 0.8132 2.0952 0.1809
400 1.1116 1.1077 0.5210 1.7280 0.1693
100 0.4280 0.4227 -0.0088 0.8833 0.1256
25 0.1277 0.1180 -0.1019 0.3436 0.0750
4 0.0224 0.0185 -0.1218 0.1651 0.0352

Table 4.42: Description of the Unweighted Variance(X) and Covariance(X,Y), X and
Y both have high autocorrelation

Only the distributions of the variance of X is shown because the distributions of

the variance of Y have similar pattern. The mean of the unweighted variance of X

decreases with aggregation and the change of the mean of unweighted variance of

variable X is slow compared with that of data set 2 and 1. The standard deviation
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Figure 4.18: Unweighted Variance of X and Covariance (X,Y)

of the unweighted variance seems to be in agreement with the claim of Reynolds

that ”When significantly positive autocorrelated variables are aggregated, ... expect

the variability of possible aggregate variance values to increase with a decrease in the

number of cells.”( page 23, Reynolds, 1988). Looking at Figure 4.18 and Table 4.42

the standard deviation of the unweighted variance displayed the same pattern. The

result is very different when the variable have low autocorrelation(data set 1) and
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similar to when the variable have medium autocorrelation(data set 2). The mean of

the covariance at different levels of aggregation decreases with aggregation and the

values are larger than the results from data set 2. The standard deviation decrease

with aggregation and the magnitude are larger than the corresponding value from

data set 2.

Figure 4.19 shows the details of the weighted variance of X and weighted co-

variance of X and Y. The weighted variances increase with aggregation and have

values greater than the corresponding values from data set 2. Table 4.43 shows the

description of the distribution. Looking at the results of Figure 4.19 and Table 4.43,

the standard deviation increases with aggregation. The magnitude of the standard

deviations are larger than the corresponding results from data set 1 at different

levels of aggregation. The mean weighted covariance increases with aggregation.

Weighted
Variance (X) Mean Median Minimum Maximum Std. Dev.
Individual 6.0000 6.0000 6.0000 6.0000 0.0000

2500 27.9407 27.9489 27.4546 28.4352 0.1707
625 79.9964 80.1087 75.1792 84.9025 1.8018
400 101.6260 101.6700 91.1970 111.2201 3.8030
100 155.5266 154.9506 107.2980 208.5658 18.1176
25 186.2580 184.1820 71.3480 351.8320 49.0450
4 199.8920 164.8220 0.8660 1155.2280 154.0120

Weighted
Covariance of X and Y Mean Median Minimum Maximum Std. Dev.

Individual 2.1081 2.1098 1.4813 2.7771 0.2124
2500 7.4914 7.5277 5.0098 10.0951 0.8121
625 21.8300 21.9410 13.0100 33.5230 2.8940
400 27.7894 27.6920 13.0243 43.2011 4.2328
100 42.8040 42.2730 -0.8770 88.3270 12.5600
25 51.0650 47.2130 -40.7540 137.4190 29.9950
4 56.0200 46.1580 -304.6190 412.7350 87.9640

Table 4.43: Description of the Weighted Variance(X) and Covariance(X,Y), X and Y
both have high autocorrelation

Figure 4.20 shows the distribution of correlations at different levels of aggrega-

tion. The mean and median of the correlation increase in a very slow manner and

decrease slightly when the data are aggregated to 4 zones. The slow decrease of

the variances of variable X and Y and the covariance cause the slow increase of the

mean of the correlations. The standard deviation increases with aggregation and
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Figure 4.19: Weighted Variance of X and Covariance(X,Y), X and Y both have high

autocorrelation

the magnitudes of the standard deviations are a little higher than the corresponding

standard deviations from data set 2. The results show a very slow increase of the

mean correlation as the data are aggregated into smaller number of groups.

Figure 4.21 shows the distribution of regression coefficients when the variables X

and Y both have high autocorrelation. The trend is similar to that of the behavior
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Figure 4.20: Pearson Correlation, X and Y both have high autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual 0.3043 0.3045 0.2138 0.4009 0.0307
2500 0.3203 0.3218 0.2145 0.4260 0.0342
625 0.3372 0.3395 0.2031 0.4802 0.0425
400 0.3429 0.3442 0.1682 0.5003 0.0486
100 0.3542 0.3585 -0.0082 0.5958 0.0893
25 0.3553 0.3549 -0.2679 0.7604 0.1762
4 0.3306 0.4556 -0.9971 0.9994 0.5392

Table 4.44: Description of Pearson Correlation, X and Y both have high autocorrela-
tion

of the correlation coefficient, with a low increase of the mean regression coefficient

as the data are aggregated to smaller number of groups. The standard deviation

increases with the level of aggregation.

Figure 4.22 shows the distribution of the estimated variance components of vari-

able X. The mean of the level 2 variance component of X decrease with aggregation

and the values are larger than the corresponding results from data set 1. The stan-

dard deviation increases up to when data are aggregated to 400 groups and decrease
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Figure 4.21: Regression Coefficient, X and Y both have high autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual 0.3514 0.3516 0.2469 0.4629 0.0354
2500 0.3826 0.3846 0.2559 0.5124 0.0409
625 0.4169 0.4179 0.2461 0.5839 0.0532
400 0.4307 0.4333 0.2184 0.6387 0.0626
100 0.4600 0.4598 -0.0119 0.8120 0.1241
25 0.4795 0.4823 -0.3411 1.2732 0.2538
4 0.4880 0.5456 -6.5081 7.1885 1.1234

Table 4.45: Description of Regression Coefficient, X and Y both have high autocorre-
lation

then on. The mean of the level 1 variance component increases with aggregation.

The distribution of the variance components of Y is not shown since the behavior is

similar to the behavior of the distributions of variable X.

Figure 4.23 displays the distribution of the intra-area correlation of variable X.

The mean (or median) of level 2 variance component decrease with aggregation The

mean intra-area correlation at different levels of aggregation are larger than the

corresponding results from data set 2.



CHAPTER 4: Multilevel Modeling and the MAUP 86

0
1

2
3

4

2500 625 400 100 25 4

Variance Component X (Level 2)

2
3

4
5

6

2500 625 400 100 25 4

Variance Component X (Level 1)

Figure 4.22: Variance Components of X, X have high autocorrelation

Figure 4.24 shows the distribution of intra-area cross-correlation. Similar to the

results of the previous data set, the mean decreases with aggregation, although the

values are greater that the previous two data sets.

Figure 4.25 shows the distribution of the estimated level 2 and level 1 pure correlations.

Note that the figure shows only aggregation up to 25 zones, this is because when the

data are aggregated to 4 zones, there are some values that are not a characteristic
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Level 2
Variance Component X Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 4.5230 4.5233 4.3229 4.6726 0.0571
625 3.0847 3.0799 2.7627 3.4215 0.0974
400 2.4320 2.4341 2.0605 2.7705 0.1130
100 0.8705 0.8742 0.5234 1.2244 0.1125
25 0.2442 0.2386 0.0749 0.5219 0.0694
4 0.0344 0.0280 -0.0015 0.1351 0.0269

Level 1
Variance Component X Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 1.4770 1.4767 1.3274 1.6771 0.0571
625 2.9153 2.9201 2.5785 3.2373 0.0974
400 3.5681 3.5660 3.2295 3.9395 0.1130
100 5.1295 5.1258 4.7756 5.4767 0.1125
25 5.7558 5.7614 5.4781 5.9251 0.0694
4 5.9656 5.9720 5.8649 6.0015 0.0269

Table 4.46: Description of the Level 2 and Level 1 Variance Component X, X have
high autocorrelation
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Figure 4.23: Intra-Area correlation of X, X have high autocorrelation

of a correlation coefficient. In this particular case there are values that exceed 1

and less than -1. This phenomenon will be investigated later. The increase of the
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Description Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.7538 0.7539 0.7205 0.7788 0.0095
625 0.5141 0.5133 0.4604 0.5702 0.0162
400 0.4053 0.4057 0.3434 0.4617 0.0188
100 0.1451 0.1457 0.0872 0.2041 0.0188
25 0.0407 0.0398 0.0125 0.0870 0.0116
4 0.0057 0.0047 -0.0003 0.0225 0.0045

Table 4.47: Description of Intra-Area Correlation of X, X have high autocorrelation
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Figure 4.24: Intra-Area Cross-Correlation, X and Y both have high autocorrelation

Description Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2589 0.2604 0.1697 0.3539 0.0289
625 0.1895 0.1898 0.1108 0.2958 0.0259
400 0.1541 0.1536 0.0684 0.2427 0.0243
100 0.0587 0.0580 -0.0040 0.1235 0.0180
25 0.0170 0.0157 -0.0148 0.0470 0.0104
4 0.0025 0.0020 -0.0141 0.0190 0.0041

Table 4.48: Description of Intra-Area Cross-Correlation, X and Y both have high
autocorrelation
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Figure 4.25: Pure Correlation, X and Y both have high autocorrelation

mean level 2 pure correlation is very slow and the values are near to the initial

correlation coefficient of 0.3. The variability of the level 1 pure correlation for each

level of aggregation is very similar to the results from data set 2 but slightly larger.

Level 1 pure correlations also have results similar to the results from data set 2 and

again are a bit larger. The variability of the level 1 pure correlation start with a

smaller value and stabilizes when the level of aggregation reaches 400 groups and
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stay constant up to the last level of aggregation.

Level 2
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.3271 0.3295 0.2148 0.4369 0.0357
625 0.3412 0.3439 0.2018 0.4897 0.0441
400 0.3467 0.3478 0.1618 0.5098 0.0507
100 0.3574 0.3624 -0.0275 0.6061 0.0937
25 0.3580 0.3583 -0.2936 0.7775 0.1855
4 0.3421 0.5040 -1.4352 2.4131 0.6084

Level 1
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2224 0.2225 0.1641 0.2867 0.0206
625 0.2602 0.2602 0.1876 0.3314 0.0258
400 0.2719 0.2719 0.1902 0.3472 0.0280
100 0.2941 0.2941 0.2107 0.4046 0.0304
25 0.3015 0.3014 0.2251 0.4014 0.0306
4 0.3038 0.3042 0.2126 0.4002 0.0306

Table 4.49: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
have high autocorrelation

Figure 4.26 displays the distributions of level 2 and level 1 pure regressions.

The mean of level 2 pure regression seems to be not affected by aggregation and

the values are very near but smaller than the initial regression coefficient. The

standard deviation increase with aggregation. The level 1 pure regression increase

with aggregation but this time in a very slow manner, the standard deviation of the

values seems to be constant.

4.2.4 Discussion of Experiment 1

The mean is not affected by aggregation in both the weighted and unweighted anal-

ysis. The unweighted variance always decreases with aggregation regardless of the

level of autocorrelation. However, the decrease depends on the level of autocorrela-

tion as measured using the Moran’s I statistic. The decrease for the variables with

high positive autocorrelation seems to be small compared with variables with lower

positive autocorrelation. The reason is that the variable with high positive auto-

correlation have neighboring values that are likely to be similar and when they are
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Figure 4.26: Pure Regression, X and Y both have high autocorrelation

aggregated, a relatively smaller variation is lost compared with a lower positively

autocorrelated variable. Reynolds (1998) stated that when a variable is spatially

located, the variance can be partitioned into sums of variances within various sub-

regions and the variance of the average values of all subregions. He further stated

that the process of aggregation removes the sum of the variances within subregions

so that a variable with positive autocorrelation will have on the average smaller
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Level 2
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2699 0.2717 0.1776 0.36016 0.0295
625 0.2738 0.2756 0.1656 0.4003 0.0356
400 0.2741 0.2740 0.1232 0.4111 0.0406
100 0.2750 0.2757 -0.0187 0.4756 0.0739
25 0.2718 0.2685 -0.2295 0.7680 0.1528
4 0.2525 0.2962 -14.841 13.8764 1.2087

Level 1
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2322 0.2315 0.1759 0.3006 0.0225
625 0.2482 0.2472 0.1767 0.3218 0.0257
400 0.2535 0.2533 0.1720 0.3261 0.0269
100 0.2608 0.2609 0.1831 0.3625 0.0277
25 0.2629 0.2634 0.1954 0.3514 0.0269
4 0.2634 0.2638 0.1846 0.3471 0.0265

Table 4.50: Description of the Level 2 and Level 1 Pure Regression, X and Y both
have high autocorrelation

variance within each subregion so, less variance is lost. Looking at a particular

result from the experiments above, Table 4.51 shows three variables with different

levels of autocorrelation as measured using the Moran’s I with queen’s connectivity

matrix and their corresponding individual level variances. It also shows the variance

when the individual level data are aggregated into smaller number of zones. Looking

at the values, we can see that the more autocorrelated the variable, the lesser the

change in the variance when the data are aggregated compared with the variables

with lower autocorrelation.

Variable X1 X2 X3
Moran’s I (Individual) 0.1222 0.4549 0.7138

Variance (Individual) 6.000 6.000 6.000
Variance (2500 Zones) 2.1361 3.7314 4.8461
Variance (625 Zones) 0.8065 2.0727 3.1691
Variance (400 Zones) 0.6126 1.5626 2.5333
Variance (100 Zones) 0.1516 0.5814 0.9373
Variance (25 Zones) 0.0462 0.1600 0.2598
Variance (4 Zones) 0.0067 0.0214 0.0360

Table 4.51: Moran’s I and Unweighted Variance
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Note that from for the simple multi-level model given by 5.1 we have, V
(

X̄g

)

=

σXX

Ng

[

1 + (Ng − 1)Λ
(2)
XX

]

and the unweighted variance reflects the variances of these

means. In subsection 3.1.8 we saw that larger Moran’s I will result in larger Λ(2)

leading to the larger variances. Also, as zones get bigger Ng increases and Λ(2)

decreases, so the variance goes down and thus explains the behavior of the decrease

of the variance.

A connection between Moran’s I and Λ(2) with appropriate choice of connectivity

was derived in section 3.1.8 and will be examined more closely in Chapter 6.

The correlation coefficient is affected by the level of aggregation and tends to

increase as the number of zones decrease regardless of the level of autocorrelation.

The mean correlation increases with aggregation. The increase however, depends on

the level of autocorrelation. Data set 1 consist of variables X and Y that are both

low autocorrelated although variable Y has a little larger autocorrelation. For data

set 2, variables X and Y have medium autocorrelation and the increasing trend of

the correlation is observed but this time the increase is not as fast as the increase

that is observed from data set 1. Data set 3, the variables have high autocorrelation

displayed patterns similar to data set 2 but the increase is slower. Table 4.52 shows

the theoretical values of the mean of the correlation and the corresponding standard

deviation computed using Equations (4.2) and (4.3) assuming no autocorrelation.

For the different levels of aggregation, the number of groups were substituted into

the equations. The results shows that the expected mean correlation depends on

the initial correlation at the individual level. Looking at the results, even the re-

duction of the number of groups does not have much effect except when the data

are aggregated to 4 groups, in which case there is a small but sudden increase of the

mean correlation.

Table 4.53 shows the results computed from the simulated data. Compared with

the corresponding theoretical results, the mean of the correlations is affected by the

level of autocorrelation of the variables. The percentage loss of variance of the vari-

ables and the corresponding percentage loss of covariance cause the correlation to

increase with aggregation. The increase depends on the difference between the per-
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Data Set 1 Data Set 2 Data Set 3
Correlation Mean (Std. Dev.) Mean (Std. Dev.) Mean(Std. Dev.)
Individual 0.2989 (0.0091) 0.3154 (0.0090) 0.3043 (0.0090)

2500 0.2990 (0.0182) 0.3155 (0.0180) 0.3044 (0.0182)
625 0.2991 (0.0365) 0.3156 (0.0361) 0.3045 (0.0363)
400 0.2992 (0.0456) 0.3158 (0.0451) 0.3046 (0.0455)
100 0.3004 (0.0918) 0.3169 (0.0908) 0.3057 (0.0914)
25 0.3059 (0.1879) 0.3227 (0.1860) 0.3098 (0.1873)
4 0.3954 (0.5710) 0.4134 (0.5683) 0.3388 (0.5701)

Table 4.52: Theoretical Expected Value and Standard Deviation of Correlation of Data
sets 1, 2, and 3

centage loss of variance and the percentage loss of covariance. When both variables

have low autocorrelation, the difference between percentage loss of variance and the

covariance is larger compare with the other cases, that is, when the variables have

medium and high autocorrelation. These will contribute to the increase (or decrease)

in the correlation.

Data Set 1 Data Set 2 Data Set 3
Correlation Mean (Stan Dev.) Mean (Stan Dev.) Mean(Stan Dev.)
Individual 0.2929 (0.0107) 0.3154 (0.0208) 0.3043 (0.0307)

2500 0.4322 (0.0185) 0.3686 (0.0268) 0.3203 (0.0342)
625 0.5413 (0.0288) 0.4040 (0.0369) 0.3372 (0.0425)
400 0.5544 (0.0344) 0.4148 (0.0439) 0.3429 (0.0486)
100 0.5746 (0.0683) 0.4291 (0.0834) 0.3542 (0.0893)
25 0.5790 (0.1427) 0.4304 (0.1684) 0.3553 (0.1762)
4 0.5279 (0.4756) 0.4013 (0.5207) 0.3306 (0.5392)

Table 4.53: Summary of Correlation of Data sets 1, 2, and 3

Except for the cases of the individual level and 2500 groups with medium or high

autocorrelation, the theoretical standard deviation provides a reasonable indication

of the actual standard deviation.

The mean of the correlations and their standard deviation increase as the scale

increases, except when there are 4 zones in the case of the mean. The rate of increase

of the mean correlation is reduced as the autocorrelation increases.

The regression coefficient is also affected by aggregation. The effects are similar

to the correlation. Regression will be dealt with later in the chapter.
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Table 4.54 is the summary of the level 2 and level 1 pure correlations for the

three data sets. The mean correlation of data set 1 (both variables have low auto-

correlation) is not affected by aggregation except when the data are aggregated into

4 zones, in which case there is a big jump of the average correlation but these values

are much larger than the initial average correlation of around 0.3. When both vari-

ables have medium autocorrelation, the level 2 pure correlation increases slowly with

aggregation but starts with a little larger correlation when the data are aggregated

into 2500 zones. When both variables have high autocorrelation, the level 2 pure

correlation increases slowly with aggregation and the mean correlation when the

data are aggregated into 2500 groups is near the initial individual level correlation.

Level 1 pure correlations, in all cases considered, display a similar pattern; as the

number of groups decreases, the mean correlation approaches the initial correlation.

Level 2 Data Set 1 Data Set 2 Data Set 3
Pure Correlation Mean (Stan Dev.) Mean (Stan Dev.) Mean(Stan Dev.)

2500 0.7080 (0.0391) 0.4012 (0.0308) 0.3271 (0.0357)
625 0.7093 (0.0415) 0.4212 (0.0404) 0.3412 (0.0441)
400 0.7071 (0.0468) 0.4308 (0.0480) 0.3467 (0.0507)
100 0.7036 (0.0903) 0.4423 (0.0912) 0.3574 (0.0937)
25 0.7084 (0.2008) 0.4425 (0.1853) 0.3580 (0.1855)
4 0.7871 (1.2305) 0.4270 (0.6770) 0.3421 (0.6084)

Level 1 Data Set 1 Data Set 2 Data Set 3
Pure Correlation Mean (Stan Dev.) Mean (Stan Dev.) Mean(Stan Dev.)

2500 0.2076 (0.0110) 0.2079 (0.0163) 0.2224 (0.0206)
625 0.2465 (0.0103) 0.2573 (0.0180) 0.2602 (0.0258)
400 0.2605 (0.0102) 0.2735 (0.0189) 0.2719 (0.0280)
100 0.2834 (0.0105) 0.3032 (0.0204) 0.2941 (0.0304)
25 0.2904 (0.0105) 0.3119 (0.0206) 0.3015 (0.0306)
4 0.2925 (0.0106) 0.3151 (0.0207) 0.3038 (0.0306)

Table 4.54: Summary of Pure Correlation of Data sets 1, 2, and 3

Table 4.55 shows the summary for pure regression coefficient.
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Level 2 Data Set 1 Data Set 2 Data Set 3
Pure Regression Mean (Stan Dev.) Mean (Stan Dev.) Mean(Stan Dev.)

2500 0.5018 (0.0336) 0.3027 (0.0239) 0.2699 (0.0295)
625 0.5033 (0.0379) 0.3086 (0.0310) 0.2738 (0.0356)
400 0.5009 (0.0428) 0.3106 (0.0363) 0.2741 (0.0406)
100 0.5006 (0.0789) 0.3122 (0.0686) 0.2750 (0.0739)
25 0.5010 (0.1772) 0.3082 (0.1419) 0.2718 (0.1528)
4 0.5662 (4.9090) 0.2827 (1.3818) 0.2525 (1.2087)

Level 1 Data Set 1 Data Set 2 Data Set 3
Pure Regression Mean (Stan Dev.) Mean (Stan Dev.) Mean(Stan Dev.)

2500 0.1876 (0.0101) 0.2172 (0.0175) 0.2322 (0.0225)
625 0.2184 (0.0092) 0.2465 (0.0177) 0.2482 (0.0257)
400 0.2293 (0.0090) 0.2546 (0.0180) 0.2535 (0.0269)
100 0.2466 (0.0091) 0.2681 (0.0184) 0.2608 (0.0277)
25 0.2518 (0.0092) 0.2719 (0.0181) 0.2629 (0.0269)
4 0.2534 (0.0092) 0.2730 (0.0179) 0.2634 (0.0265)

Table 4.55: Summary of Pure Regression of Data sets 1, 2, and 3

Since level 2 pure correlation is estimated using

ρ̂
(2)
Y X =

Λ̂
(2)
Y X

√

Λ̂
(2)
Y Y Λ̂

(2)
XX

and the level 2 pure regression is estimated using

β̂
(2)
Y X =

Λ̂
(2)
Y X

Λ̂
(2)
XX

the way the correlations and cross correlations change relative to each other is a

factor in determining how the pure coefficients change as we aggregate.

4.3 Experiment 2: Scale effects when both vari-

ables are not autocorrelated

This experiment is done to investigate the aggregation effect when the data are

randomly spatially distributed, that is, the measure of spatial autocorrelation is
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zero. In comparison with the other experiments, the data generation is done in such

a way that both the variables have no spatial autocorrelation.

Two variables (X and Y) are generated using R, using the multivariate normal

function. This case was considered by Steel et. al. (1996). To help compare it with

the other experiments, the variables are generated such that the means are 0.005

and 10.0 for X and Y, respectively. The variance are 6 and 8, respectively for X and

Y and the individual level correlation is 0.3.

Table 4.56 shows the Moran’s I using RookCase, an add-on software for Excel,

the proximity matrix used is ”queen’s move”.

Level I l
XX I l

Y Y I l
Y X

Individual 0.00135 0.0010 -0.0011
Z2500 -0.0159 -0.0025 -0.0084
Z625 -0.0221 -0.0191 0.0144
Z400 0.0098 0.0626 0.0360
Z100 -0.0124 0.0370 0.0279
Z25 -0.4136 0.0563 0.2397
Z4 - - -

Table 4.56: Moran’s I

As before, one realization of the data generation is examined initially. Table 4.57

shows the unweighted variance and covariance for the two variables X and Y. The

rate of decrease from the initial variance of the two variables is large compared with

the case when the variables are autocorrelated.

X̄ Ȳ S̃
(l)
XX S̃

(l)
Y Y S̃

(l)
Y X

Individual 0.005 10.000 6.0000 8.0000 2.0648
Z2500 0.005 10.000 1.6009 2.0422 0.5616
Z625 0.005 10.000 0.3872 0.5091 0.1231
Z400 0.005 10.000 0.2210 0.3387 0.0918
Z100 0.005 10.000 0.0559 0.0895 0.0319
Z25 0.005 10.000 0.0180 0.0247 0.0115
Z4 0.005 10.000 0.0031 0.0077 0.0042

Table 4.57: Unweighted Variance and Covariance, X and Y both are not autocorre-
lated

Table 4.58 shows the weighted variance and covariance for the two variables X

and Y. The values appear to be approximately constant until the number of groups
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is 25 and 4.

X̄ Ȳ S
(l)
XX S

(l)
Y Y S

(l)
XY

Individual 0.005 10.000 6.0000 8.0000 2.0259
Z2500 0.005 10.000 6.4037 8.1688 2.2464
Z625 0.005 10.000 6.1945 8.1449 1.9696
Z400 0.005 10.000 5.5254 8.4668 2.2951
Z100 0.005 10.000 5.5947 8.9459 3.1864
Z25 0.005 10.000 7.2012 9.8850 4.5833
Z4 0.005 10.000 7.7141 19.3487 10.5313

Table 4.58: Weighted Variance and Covariance, X and Y both are not autocorrelated

Table 4.59 shows the correlation and regression coefficients at different scales. An

increase of the correlation coefficients is observed. Steel et al (1996) suggested that

there should be no aggregation effect on this statistics in this case. The reason for

the increase may be that it was just one randomly selected realization of the data set

generation. The regression coefficients also displayed the increasing pattern. Results

for repeated generation of the population are given later in this section.

Correlation Regression
Coefficient Coefficient

Individual Data 0.2980 0.3441
Number of Zones

2500 0.3106 0.3508
625 0.2773 0.3180
400 0.3356 0.4154
100 0.4504 0.5695
25 0.5432 0.6365
4 0.8620 1.3652

Table 4.59: Correlation and regression coefficients at different scales, X and Y both
are not autocorrelated

Tables 4.60 shows the estimated variance components and intra-area correlations

of the variable X at different levels of aggregation. Looking at the level 2 variance

components at different levels of aggregation, it can be noticed that some values are

negative. Recall that the initial variance of variable X is 6.0, when the estimated level

2 variance component is negative, the level 1 variance component will be more than

6.0 and thus, the resulting intra-area correlation is negative. The moment approach
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gives unbiased estimates, but allows negative estimates of variance components.

Looking at the values of δ̂XX they are all close to zero which is consistent with

Moran’s I being approximately equal to zero.

Level 1 Level 2 Λ̂
(2)
XX Λ̂

(1)
XX δ̂XX

Individual Z2500 0.1345 5.8650 0.0224
Z625 0.0129 5.9871 0.0022
Z400 -0.0197 6.0197 -0.0033
Z100 -0.0041 6.0041 -0.0007
Z25 0.0029 5.9971 0.0005
Z4 0.0005 5.9995 0.0001

Table 4.60: Intra-Area correlations and variance components of X, X not autocorre-
lated

Table 4.61 displays the estimated variance components of variable Y. In this

particular realization of the data set generator, no negative level 2 variance compo-

nent is observed but this is not the general case. The level 2 variance component

is small in relation to the level 1 variance component resulting in small intra-area

correlation.

Level 1 Level 2 Λ̂
(2)
Y Y Λ̂

(1)
Y Y δ̂Y Y

Individual Z2500 0.0562 7.9438 0.0070
Z625 0.0096 7.9904 0.0012
Z400 0.0194 7.9806 0.0024
Z100 0.0095 7.9905 0.0012
Z25 0.0045 7.9955 0.0006
Z4 0.0036 7.9964 0.0005

Table 4.61: Intra-Area correlations and variance components of Y, Y both not auto-
correlation

Tables 4.62 shows the Intra-Area Cross Correlation. It can be noted that level

1 covariance component seems to be not affected by aggregation.

Table 4.63 displays level 2 and level 1 pure correlation components. It can be seen

that the level 2 pure correlation is severely affected by aggregation, from negative

value to positive value, values more than 1 and worse, with entries in the table la-

belled NA. The last case happened because either level 2 variance component of X or

Y is negative. This phenomenon will be examined later. The level 1 pure correlation
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Level 1 Level 2 Λ̂
(2)
Y X Λ̂

(1)
Y X δ̂Y X

Individual Z2500 0.0605 2.0043 0.0087
Z625 -0.0063 2.0710 -0.0009
Z400 0.0096 2.0552 0.0014
Z100 0.0112 2.0536 0.0016
Z25 0.0061 2.0587 0.0009
Z4 0.0027 2.0621 0.0004

Table 4.62: Intra-Area Cross-Correlation, X and Y both are not autocorrelated

seems to be not affected by aggregation. Notice that column 3 of Table 4.63 have

rows without an entry, this is because the level 2 variance components on these two

levels of aggregation is negative.

Recall that pure correlation is computed using

ρ̂(l) =
Λ̂

(l)
Y X

√

Λ̂
(l)
Y Y Λ̂

(l)
XX

(4.7)

so that level 2 pure correlation is computed using

ρ̂(2) =
Λ̂

(2)
Y X

√

Λ̂
(2)
Y Y Λ̂

(2)
XX

. (4.8)

The level 2 variance components when aggregated into 400 and 100 zones have

negative values. This will result in an operation of taking the square-root of a

negative number.

Level 1 Level 2 ρ̂
(2)
Y X ρ̂

(1)
Y X

Individual Z2500 0.6957 0.2936
Z625 -0.5672 0.2994
Z400 NA 0.2965
Z100 NA 0.2965
Z25 1.6737 0.2973
Z4 1.9200 0.2977

Table 4.63: Pure correlations at two levels, X and Y both are not autocorrelated

Table 4.64 shows the level 2 and level 1 pure regression. The level 2 pure regression

does not display a predictable aggregation effect. Level 1 pure regression seems to

be not affected by aggregation but the values are lower than the initial regression

coefficient.
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Level 1 Level 2 b̂
(2)
Y X b̂

(1)
Y X

Individual Z2500 1.0759 0.2523
Z625 -0.6572 0.2592
Z400 0.4934 0.2575
Z100 1.8580 0.2570
Z25 1.5395 0.2575
Z4 1.3361 0.2579

Table 4.64: Pure Regressions at two levels, X and Y both are not autocorrelated

Analysis of distributions of statistics when both variables are not auto-

correlated

The data generation is then repeated 500 times to investigate the distributions.

Figure 4.27 shows the distribution of the Pearson correlation at the individual

level and the different levels of aggregation. The mean of the correlation coefficients

is not affected by aggregation as predicted by Steel and Holt (1996). The standard

deviation of the Pearson correlation increase with aggregation.
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Figure 4.27: Pearson Correlation, X and Y both are not autocorrelated
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Description Mean Median Minimum Maximum Std. Dev.

Individual 0.2996 0.2993 0.2722 0.3321 0.0095
2500 0.2986 0.2989 0.2360 0.3558 0.0203
625 0.2970 0.2980 0.1750 0.4138 0.0378
400 0.2996 0.2978 0.1648 0.4356 0.0458
100 0.2994 0.3019 0.0669 0.5354 0.0863
25 0.2850 0.2980 -0.2910 0.7090 0.1780
4 0.2600 0.3630 -0.9980 0.9990 0.5351

Table 4.65: Description of Pearson Correlation, X and Y both are not autocorrelated

Steel and Holt (1996) derived some theoretical results on group-level analysis

procedures for random aggregation. One of the results is that the expectation of the

group-level correlation is ρ
(

1 − 1−ρ2

M

)

and the variance is (1−ρ2)2

M−1

(

1 + 11ρ2

2M

)

where

M is the number of groups. Table 4.66 shows the theoretical values of the mean,

standard deviation, and 95% interval of the group-level correlation for the different

values of M. The results are very similar to those observed in table 4.67.

Description Mean Lower Limit Upper Limit Std. Dev.

Individual 0.2999 0.2899 0.3418 0.0091
2500 0.2999 0.2771 0.3639 0.0181
625 0.2997 0.2349 0.4092 0.0364
400 0.2993 0.2140 0.4326 0.0456
100 0.2973 0.1094 0.5587 0.0917
25 0.2891 -0.1151 0.7241 0.1876

Table 4.66: Theoretical Mean, Standard deviation, Lower and Upper Limits of group-
level correlation

Figure 4.28 shows the distribution of the estimated variance components of vari-

able X. Looking at the figure, we can notice the that the mean or median of the

level 2 variance components seems to be not affected by aggregation and they are

all slightly less than zero. The moment based estimates that are being used are

unbiased and since the level 2 variance is zero, they will give negative estimates.

The level 1 variance is also estimated unbiasedly. The standard deviations of these

values decrease with aggregation. Looking at the right side of the figure, the distri-

bution of the level 1 variance components displays a similar pattern. The mean (or

median) seems to be not affected by aggregation but some of the values are more



CHAPTER 4: Multilevel Modeling and the MAUP 103

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10

2500 625 400 100 25 4

 Variance Component X (Level 2)  

5.
90

5.
95

6.
00

6.
05

6.
10

6.
15

2500 625 400 100 25 4

 Variance Component X (Level 1)  

Figure 4.28: Variance Components of X, X not autocorrelated

than the initial variance because of the negative level 2 variance component.

Table 4.67 summarizes of the distribution of the level 2 and level 1 variance com-

ponent of X. Level 2 variance component have negative values. As mentioned earlier,

this is because of the method used in the computation of the variance components.

Figure 4.29 shows the estimated intra-area correlation of X where it can be noted

that the standard deviation of the values decreases with aggregation. The mean (or
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Level 2
Variance Component X Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 -0.0050 -0.0066 -0.1452 0.1345 0.0505
625 -0.0006 -0.0021 -0.0719 0.0873 0.0225
400 -0.0014 -0.0027 -0.0452 0.0512 0.0169
100 -0.0005 -0.0011 -0.0237 0.0248 0.0083
25 -0.0004 -0.0009 -0.0108 0.0172 0.0042
4 -0.00009 -0.0004 -0.0019 0.0069 0.0015

Level 1
Variance Component X Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 6.0050 6.0066 5.8655 6.1452 0.0505
625 6.0006 6.0021 5.9128 6.0719 0.0225
400 6.0014 6.0027 5.9488 6.0452 0.0169
100 6.0005 6.0011 5.9752 6.0237 0.0083
25 6.0004 6.0009 5.9828 6.0108 0.0042
4 6.0000 6.0004 5.9931 6.0019 0.0015

Table 4.67: Description of the Level 2 and Level 1 Variance Component of X, X not
autocorrelated

median) of the values seems to be not affected by aggregation and the values are

almost equal to zero but negative.

Description Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 -0.00083 -0.00111 -0.02421 0.02242 0.00842
625 -0.00009 -0.00034 -0.01198 0.01454 0.00376
400 -0.00024 -0.00045 -0.00754 0.00854 0.00282
100 -0.00008 -0.00018 -0.00400 0.00410 0.00140
25 -0.00007 -0.00016 -0.00180 0.00290 0.00070
4 -0.00002 -0.00007 -0.00032 0.00120 0.00024

Table 4.68: Description of Intra-Area Correlation of X, X not autocorrelated

Figure 4.30 show the estimated intra-area correlation of Y, which is similar to

intra-area correlation of X. The standard deviation of the values decrease with ag-

gregation.

Figure 4.31 displays the distributions of the estimated level 2 and level 1 pure correlations.

The boxplot of the level 2 pure correlations ended up with a very different appear-

ance because there are many entries which end up with NA’s because the estimated

variance component at this level is negative. Actually at every aggregation level,
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Figure 4.29: Intra-Area Correlation X, X not autocorrelated

Description Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 -0.00024 -0.00020 -0.02658 0.02211 0.00852
625 -0.00016 -0.00040 -0.01010 0.01005 0.00359
400 0.00013 0.00003 -0.00710 0.00094 0.00290
100 0.00004 -0.000001 -0.00290 0.00570 0.00140
25 -0.00003 -0.00010 -0.00150 0.00260 0.00066
4 0.000004 -0.00007 -0.00032 0.00140 0.00026

Table 4.69: Description of Intra-Area Correlation of Y, Y not autocorrelated

the number of NA’s is almost 50 percent because of the level 2 variance component

is estimated unbiasedly and has mean 0, so approximately half will give negative

estimated level 2 variance components. These values can be set to zero. These

results suggest that estimated level 2 coefficients will be unstable when there is no

autocorrelation present. This is reflected in the relatively high standard deviations

in Table 4.70. In practice it would be important to examine confidence intervals on

the level 2 variance components before attempting to calculate level 2 pure corre-

lation or regression coefficients. Methods for testing whether variance components
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Figure 4.30: Intra-Area Correlation Y, Y not autocorrelated

are zero are given in Snijders and Bosker (1999). The mean (or median) of the

level 2 pure correlation is not affected by aggregation. The estimated level 2 pure

correlation coefficients are not well behaved when autocorrelation is zero.

Figure 4.32 shows the distributions of level 2 and level 1 pure regression coeffi-

cients at different levels of aggregation. The mean of the level 2 pure regression is

affected by aggregation. The mean of the level 1 pure regression seems to be not

affected by aggregation and the standard deviation of values seems to be constant

except when there are 2500 zones. Although, the mean (or median) is not affected

by aggregation, the value is smaller than the mean (or median) of the initial regres-

sion coefficient. Similar to the level 2 pure correlation, the estimated level 2 pure

regression coefficients are not well behaved when autocorrelation is zero.

When the variables are both not spatially autocorrelated, the level 1 pure correlations

and the level 1 pure regression coefficients seem to be not affected by aggregation.

The level 1 intra-area cross-correlations have values almost equal to the correla-

tion coefficient at the individual level. This is because there is not much change of



CHAPTER 4: Multilevel Modeling and the MAUP 107

-2
0

0
20

40

2500 625 400 100 25

 Pure Correlation (Level 2)

0.
28

0.
30

0.
32

2500 625 400 100 25 4

 Pure Correlation (Level 1)

Figure 4.31: Pure Correlation, X and Y both are not autocorrelated

the values of the level 2 covariance components and are much larger than the level

1 covariance components.
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Figure 4.32: Level 2 and Level 1 Pure Regression, X and Y both are not autocorrelated

4.4 Comments on Experiments 1 and 2

Figure 4.33 shows the distributions of the correlation coefficients at different levels

of aggregation and different degrees of autocorrelation. The data generation process

cannot precisely control the specific degree of autocorrelation. The autocorrelation

is described categorically as very low, low, medium and high. The Very low autocor-
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Level 2
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.1020 -0.1950 -11.549 44.1040 3.6360
625 -0.1110 -0.0709 -8.6598 4.7934 1.5719
400 0.5392 -0.0391 -5.0850 36.0027 3.7218
100 0.1710 0.0903 -18.6183 17.8646 2.3040
25 -0.2440 -0.197 -32.3930 22.6810 2.9840
4 0.0307 -0.2538 -16.7514 28.5288 3.3820

Level 1
Pure Correlation Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2999 0.3005 0.2668 0.3326 0.0107
625 0.2998 0.2995 0.2701 0.32926 0.0097
400 0.2996 0.2995 0.2728 0.3301 0.0095
100 0.2996 0.2995 0.2718 0.3320 0.0095
25 0.2996 0.2996 0.2721 0.3319 0.0095
4 0.2996 0.2994 0.2724 0.3322 0.0095

Table 4.70: Description of the Level 2 and Level 1 Pure Correlation, X and Y both
are not autocorrelated

Level 2
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2440 0.2820 -187.695 187.704 15.149
625 0.3892 0.2512 -35.0007 48.7674 4.2018
400 0.7725 0.2587 -29.9521 154.3832 9.1065
100 0.0191 0.2107 -52.4610 16.1126 3.4556
25 0.0715 0.2072 -89.9981 61.0558 7.3015
4 0.5170 0.1650 -88.937 173.5570 12.686

Level 1
Pure Regression Mean Median Minimum Maximum Std. Dev.

Individual - - - - -
2500 0.2598 0.2602 0.2297 0.2887 0.0094
625 0.2596 0.2596 0.2340 0.2858 0.0084
400 0.2595 0.2595 0.2353 0.2863 0.0083
100 0.2595 0.2594 0.2350 0.2874 0.0083
25 0.2595 0.2595 0.2356 0.2874 0.0082
4 0.2595 0.2592 0.2359 0.2876 0.0082

Table 4.71: Description of the Level 2 and Level 1 Pure Regression, X and Y both are
not autocorrelated

relation category has auto correlations almost equal to zero at the individual level

as measured by Moran’s I. The Low autocorrelation category has measures approx-

imately equal to 0.2 at the individual level. The Medium autocorrelation and High
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Figure 4.33: Correlations at different levels of aggregation and degrees of autocorre-

lation

autocorrelation categories have measures 0.6 and 0.8, respectively at the individual

level.

Table 4.72 supports figure 4.33. When the autocorrelation of both variables

(X and Y) initially are very low, the mean and median seems to be not affected

by aggregation but the standard deviation increases with aggregation. When both

variables have low autocorrelation, the mean and median and the standard devi-

ations increase with aggregation. The values of the mean and median are larger

than the corresponding Pearson correlation when the variables both have very low

autocorrelation. From the same figure, the mean and median when both variables

have medium degree of autocorrelation increase with aggregation but this time the

increase is slower than when the variables have low autocorrelation. When both

variables have high autocorrelation, the mean and median increase with aggrega-

tion in a very slow manner and the range and standard deviation increase with

aggregation.
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For a given scale there is an initial increase in the mean correlation as the au-

tocorrelation goes from zero to a low level. Then, as the autocorrelation increases,

the mean correlation decreases and the standard deviation increases.

Mo = V ery Low Mo = Low Mo = Medium Mo = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.2989(0.0203) 0.4322(0.0185) 0.3686(0.0268) 0.3203(0.0342)
625 0.2980(0.0378) 0.5413(0.0288) 0.4040(0.0370) 0.3372(0.0425)
400 0.2978(0.0458) 0.5544(0.0343) 0.4148(0.0439) 0.3430(0.0486)
100 0.3019(0.0863) 0.5746(0.0682) 0.4291(0.0834) 0.3542(0.0893)
25 0.2980(0.1780) 0.5790(0.1426) 0.4304(0.1684) 0.3553(0.1762)
4 0.3630(0.5350) 0.5279(0.4756) 0.4013(0.5207) 0.3306(0.5392)

Table 4.72: Summary of Correlations at Different Degrees of Autocorrelation and
Levels of Aggregation

Figure 4.34 shows the distribution of the regression coefficients at different lev-

els of aggregation and different degrees of spatial autocorrelation. The figure is

supported by Table 4.73. Looking at the table it is noted that the mean regres-

sion coefficient is not affected by aggregation when the level of autocorrelation is

very low. Also it can be noted the there is an increasing effect for other levels of

autocorrelation but a slower increase as the level of autocorrelation increase.

Mo = V ery Low Mo = Low Mo = Medium Mo = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.3452(0.0244) 0.5371(0.0288) 0.4646(0.0338) 0.3826(0.0409)
625 0.3430(0.0450) 0.7090(0.0478) 0.5377(0.0502) 0.4169(0.0532)
400 0.3479(0.0558) 0.7325(0.0583) 0.5623(0.0626) 0.4307(0.0626)
100 0.3495(0.1069) 0.7692(0.1174) 0.5997(0.1288) 0.4600(0.1241)
25 0.3360(0.2230) 0.7944(0.2375) 0.6238(0.2712) 0.4795(0.2538)
4 0.3340(1.1570) 0.7750(1.0290) 0.6640(1.2784) 0.4880(1.1234)

Table 4.73: Summary of Regression Coefficient at Different Degrees of Autocorrelation
and Levels of Aggregation

Figure 4.35 shows the distributions of unweighted covariance of variables X and

Y with different degrees of autocorrelation. Recall that the variance at the indi-

vidual level for the two variables X and Y are 6.0 and 8.0, respectively. The mean
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Figure 4.34: Regression Coefficient at Different Levels of Aggregation and Degrees of

Autocorrelation

covariance for the different degrees of autocorrelation varies: for a very low degree of

autocorrelation, the mean covariance is 0.5165, for low, medium, and high, the mean

covariance are 1.1413, 1.7367, and 1.8728, respectively. The standard deviation of

the covariance at each degree of autocorrelation decreases with aggregation. If we

look at the standard deviation at each level of aggregation, the standard deviation

increase as the degree of autocorrelation increases.

The unweighted variance of X and Y display a similar pattern. Because of these

pattern, the standard deviation of the Pearson correlation as reflected in Figure 4.72

decrease with aggregation.

Figure 4.36 shows the distribution of the estimated level 2 pure correlation at

low, medium and high autocorrelation. The results for data generated with very low

autocorrelation are omitted because there are values that are not a characteristics of

a correlation coefficient. For example, when the grid was aggregated to 2500 groups,

the maximum value from the generated data of the level 2 pure correlation is 44.100
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Figure 4.35: Unweighted Covariance at Different Levels of Aggregation and Autocor-

relation

Mo = V ery Low Mo = Low Mo = Mediun Mo = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.5165(0.0391) 1.1644(0.0800) 1.7367(0.1337) 1.8728(0.2030)
625 0.1284(0.0184) 0.6070(0.0556) 1.1323(0.1177) 1.3644(0.1810)
400 0.0830(0.0144) 0.4368(0.0476) 0.8797(0.1085) 1.1116(0.1693)
100 0.0207(0.0067) 0.1351(0.0274) 0.3064(0.0765) 0.4280(0.1256)
25 0.0049(0.0034) 0.0369(0.0151) 0.0880(0.0445) 0.1277(0.0750)
4 0.0007(0.0015) 0.0061(0.0066) 0.0151(0.0199) 0.0224(0.0352)

Table 4.74: Summary of Covariance of X and Y at Different Degrees of Autocorrelation
and Levels of Aggregation

while the minimum is -11.550. Thus, in this particular case, that is, when both

variables have very low autocorrelation, the level 2 pure correlation is not useful, as

noted before.

When both variables have low autocorrelation, the mean (or median) of the level

2 pure correlation is not affected by aggregation but the value is higher than the
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Figure 4.36: Level 2 Pure Correlation at Different levels of Aggregation and Degrees

of Autocorrelation

Mo = V ery Low Mo = Low Mo = Mediun Mo = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.1020(3.636) 0.7080(0.0391) 0.4012(0.0308) 0.3271(0.0357)
625 -0.1110(1.5719) 0.7093(0.0415) 0.4212(0.0404) 0.3412(0.0441)
400 0.5392(3.7218) 0.7071(0.0468) 0.4308(0.0480) 0.3467(0.0507)
100 0.1710(2.3040) 0.7036(0.0903) 0.4423(0.0912) 0.3574(0.0937 )
25 -0.2440(2.9840) 0.7084(0.2008) 0.4425(0.1853) 0.3580(0.1855)
4 0.0307(3.3820) 0.7871(1.2305) 0.4270(0.6770) 0.3421(0.6084)

Table 4.75: Summary of Level 2 Pure Correlation at Different Degrees of Autocorre-
lation and Levels of Aggregation

initial Pearson correlation and the standard deviation increases with aggregation.

When both variables have medium autocorrelation, the mean (or median) increase

slowly but the values are still higher than the initial Pearson correlation. When both

the variables have high autocorrelation, the increase of the mean (or median) of the

level 2 pure correlation is very slow and the values are near to the initial Pearson
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Figure 4.37: Level 1 Pure Correlation at Different levels of Aggregation and Degrees

of Autocorrelation

Figure 4.37 shows the distribution of the level 1 pure correlation. When both

the variables have very low autocorrelation, the mean (or median) seems to be not

affected by aggregation and the standard deviations decrease slightly with aggre-

gation. When both variables have low autocorrelation, the mean (or median) of

the level 1 pure correlation increases with aggregation and the standard deviation

seems to be constant. The initial value of the mean is lower than the initial Pearson

correlation and approaches the initial Pearson correlation as the number of zones

decreases.

When both the variables have medium autocorrelation, the mean (or median)

level 1 pure correlation displays a similar pattern, starting with a value less than the

initial Pearson correlation and approaches the mean of the initial value. However, the

standard deviation seems to be constant but is larger than when the both variables

have low autocorrelation. When both variables have high autocorrelation, the same
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pattern is displayed, that is, the mean increases with aggregation and approaches

the initial mean Pearson correlation. The standard deviation seems to be constant

but larger than when both variables have low and medium autocorrelation.

Mo = V ery Low Mo = Low Mo = Mediun Mo = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.2999(0.0107) 0.2076(0.0111) 0.2076(0.0163) 0.2224(0.0206)
625 0.2998(0.0097) 0.2465(0.0103) 0.2583(0.0180) 0.2602(0.0259)
400 0.2996(0.0095) 0.2605(0.0102) 0.2739(0.0189) 0.2719(0.0281)
100 0.2996(0.0095) 0.2834(0.0105) 0.3030(0.0204) 0.2941(0.0305)
25 0.2996(0.0095) 0.2904(0.0105) 0.3121(0.0206) 0.3015(0.0307)
4 0.2996(0.0095) 0.2925(0.0106) 0.3149(0.0207) 0.3038(0.0306)

Table 4.76: Summary of Level 1 Pure Correlation at Different Degrees of Autocorre-
lation and Levels of Aggregation
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Figure 4.38: Level 2 Pure Regression at Different levels of Aggregation and Degrees

of Autocorrelation

Figure 4.38 shows the distribution of level 2 pure regression coefficients at dif-

ferent levels of aggregation and different degrees of spatial autocorrelation. The
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distribution of the variables with very low spatial autocorrelation was not included

because of the issues with this coefficient in this case discussed previously.

Mo = V ery Low Mo = Low Mo = Mediun Mo = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.2440(15.149) 0.5018(0.0336) 0.3027(0.0239) 0.2699(0.0295)
625 0.3892(4.2018) 0.5033(0.0379) 0.3086(0.0311) 0.2738(0.0356)
400 0.7725(9.1065) 0.5009(0.0428) 0.3106(0.0364) 0.2741(0.0406)
100 0.0191(3.4556) 0.5006(0.0790) 0.3122(0.0687) 0.2750(0.0739)
25 0.0715(7.3015) 0.5010(0.1772) 0.3082(0.1419) 0.2718(0.1528)
4 0.5170(12.686) 0.5662(4.9090) 0.2827(1.3818) 0.2525(1.2087)

Table 4.77: Summary of Level 2 Pure Regression at Different Degrees of Autocorre-
lation and Levels of Aggregation
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Figure 4.39: Level 1 Pure Regression at Different levels of Aggregation and Degrees

of Autocorrelation

Table 4.77 shows the standard deviation at the different levels of aggregation.

These values are large, in fact, when the individual level data is grouped into 2500

groups, the minimum level 2 pure regression is -187.6950 while the maximum is
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187.704. When the variables both have low spatial autocorrelation, the mean of the

level 2 pure regression at different levels of aggregation seems to be constant except

when the data is grouped into 4 zones, where the value rises. However, the means are

larger than the average individual level regression coefficient. When both variables

have medium autocorrelation, the mean of the level 2 pure regression seems to be

constant but this time the value is slightly less than the average individual level

regression coefficient. Similar effects were observed when the variables have high

autocorrelation, the means at different levels of aggregation seem to be constant

but the values are less than when the variables have medium autocorrelation. In all

cases, the standard deviation increases with aggregation.

Figure 4.39 shows the distribution of level 1 pure regression at different levels of

aggregation and different degrees of autocorrelation. When both variables have low

autocorrelations, the mean of the level 1 pure regression seems to be constant for

all levels of aggregation. However, the values are below the average individual level

regression coefficient. When both variables have low autocorrelation, the mean of the

level 1 pure regression coefficients increases with aggregation. A similar trend was

observed when both variables have medium autocorrelation but this time the values

are slightly higher at each level of aggregation compared with the case when both

variables have low autocorrelation. When both variables have high autocorrelation,

the mean of the level 1 pure regression increases with aggregation except when the

data is aggregated into 4 groups where the mean decreases slightly.

Mo = V ery Low Mo = Low Mo = Mediun Mo = High
Mean(SD) Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.2598(0.0094) 0.1876(0.0101) 0.2172(0.0175) 0.2322(0.0225)
625 0.2596(0.0084) 0.2184(0.0092) 0.2465(0.0177) 0.2482(0.0257)
400 0.2595(0.0083) 0.2293(0.0090) 0.2546(0.0180) 0.2535(0.0269)
100 0.2595(0.0083) 0.2466(0.0091) 0.2681(0.0184) 0.2608(0.0277)
25 0.2595(0.0082) 0.2518(0.0092) 0.2719(0.0181) 0.2629(0.0269)
4 0.2595(0.0082) 0.2534(0.0092) 0.2730(0.0179) 0.2634(0.0265)

Table 4.78: Summary of Level 1 Pure Regression at Different Degrees of Autocorre-
lation and Levels of Aggregation
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In all cases, the standard deviation at each level of aggregation and degree of

autocorrelation (that is, very low, low, medium, and high) seems to be approximately

constant but increases as the degree of autocorrelation increases as shown in the

Figure 4.39 and Table 4.78.
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Figure 4.40: Relationship between Intra-Area Correlation and N-Bar at different de-

grees of autocorrelation for the two variable: (a) very low, (b) low, (c) medium, and

(d) high

As we aggregate into larger groups, that is as M decreases, we would expect the

intra-area correlation to decrease as we are including more units and increasing the

average distance between units within a group. Figure 4.40 shows the relationship

between the intra-area correlation and N̄ at different degrees of autocorrelation.

When the variable has very low autocorrelation the standard deviation decreases as

N̄ increases and the mean intra-area correlation was zero. When the autocorrelations

of the variables increase there is a non-linear relationship between the intra-area
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correlation and N̄ with it decreasing as the N̄ increases.

Figure 4.41 shows the mean of the intra-area correlation against N̄ at different

degrees of autocorrelation. There is a non-linear trend that decreases and approaches

zero as N̄ increases. The decrease depends on the degree of autocorrelation.
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Figure 4.41: Relationship between the mean of Intra-Area Correlation and N-Bar at

different degrees of autocorrelation for the two variable

Relationship between Intra-Area Cross-Correlation and N̄

Figure 4.42 shows the relationship between the intra-area cross-correlation and N̄

at different degrees of autocorrelation. The relationship is similar to the relation-

ship between the intra-area correlation and N̄ . When both variable have very low

autocorrelation the standard deviation decreases as N̄ increases and the median

seems to be constant. When the autocorrelations of the variables increase there is

a non-linear relationship between the intra-area correlation and N̄ and it decreases

as the N̄ increases.
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Figure 4.42: Relationship between Intra-Area Cross-Correlation and N-Bar at differ-

ent degrees of autocorrelation for the two variable: (a) very low, (b) low, (c) medium,

and (d) high

Figure 4.43 shows the mean of the intra-area cross-correlation against N̄ at

different degrees of autocorrelation. Similar to the relationship between the mean

of intra-area correlation there is a non-linear trend that decreases and approaches

zero as N̄ increases. The decrease depends on the degree of autocorrelation. The

decrease of high autocorrelation of the two variables is steeper because the initial

mean is a higher value.
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Figure 4.43: Relationship between the mean of Intra-Area Cross-Correlation and N-

Bar at different degrees of autocorrelation for the two variable

4.5 Experiment 3: Scale effects when the vari-

ables do not have the same levels of autocor-

relation

In experiment 1 the degree of autocorrelation for each variable was similar. In this

experiment data are generated so that variable X will have low autocorrelation and

the autocorrelation of variable Y varies from low to medium and to high autocor-

relation. We tried to make the other properties of the initial individual level data

consistent with the other data sets. When X has low autocorrelation and Y also

has low autocorrelated, the mean initial correlation is 0.29, with mean 0.005 and 10,

variance 6.0 and 8.0 for variables X and Y, respectively. The mean initial correlation

when X has low autocorrelation and Y has medium autocorrelation is 0.31 and when

variable X has low autocorrelated and variable Y is high autocorrelated, the mean
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initial Pearson correlation is 0.28.
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Figure 4.44: Pearson Correlation variable X (low autocorrelation) and variables Y

(different autocorrelation)

Figure 4.44 shows the distributions of the estimated correlations for the three

cases described above based on 500 simulations. One apparent pattern is the mean

and the median and the standard deviation increase with aggregation in all cases.

Most of the correlations are greater than the average initial correlation. There

are some cases in which the correlations are less than the average initial correlation,

especially when the data are aggregated into 25 groups. These are the cases in which

the percentage loss of covariance is greater than the percentage loss of variance of

the two variables X and Y, resulting in a decrease in the correlations.

For a given scale the standard deviation is little affected as the degree of autocor-

relation in Y increases. The mean of the correlation increases at the autocorrelation

goes from low to medium and then decreases as the autocorrelation becomes high

Figure 4.45 shows the distribution of estimated regression coefficients for the

three cases being considered. The mean values of the regression coefficient at differ-
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MoX = Low MoX = Low MoX = Mediun
MoY = Low MoY = Medium MoY = High
Mean(SD) Mean(SD) Mean(SD)

# of Zones
2500 0.4321(0.0185) 0.5732(0.0185) 0.4062(0.0158)
625 0.5413(0.0288) 0.6187(0.0255) 0.5038(0.0258)
400 0.5544(0.0343) 0.6265(0.0309) 0.5209(0.0318)
100 0.5746(0.0682) 0.6395(0.0609) 0.5144(0.0639)
25 0.5790(0.1426) 0.6413(0.1310) 0.5160(0.1292)
4 0.5279(0.4756) 0.5903(0.4321) 0.4194(0.5292)

Table 4.79: Summary of correlations when X have low autocorrelation and Y have
different levels of autocorrelation at different levels of aggregation
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Figure 4.45: Regression Coefficient variable X (low autocorrelation) and variables Y

(different autocorrelation)

ent levels of aggregation are all greater than the average initial regression coefficient.

In fact, except for few regression coefficients when the data are aggregated into 25

zones, they are all greater than the average initial regression coefficient.

Figure 4.46 shows the distribution of the level 2 pure correlation. The mean

when variable X has a low autocorrelation and variable Y have low but slightly
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Figure 4.46: Level 2 Pure Correlation, variable X (low autocorrelation) and variables

Y (different autocorrelation)

higher autocorrelation seems to be not affected by aggregation, the mean of pure

correlation coefficients are 0.70803, 0.70934, 0.70710, 0.70360, 0.70836, 0.7871 when

the data are aggregated into 2500, 625, 400, 100, 25, and 4 zones respectively. When

variable X has Low autocorrelated and variable Y has medium autocorrelation,

the mean also seems to be not affected by aggregation, except when the data are

aggregated into 2500 and 4 zones, the mean of the pure coefficients are 0.775570,

0.699358, 0.69723, 0.69617, 0.69617, 0.7736, respectively. The mean and median of

the levels 2 pure correlation coefficient of the last case also seems to be not affected

by aggregation except when the data are aggregated into 4 zones, the mean are

respective, 0.63239, 0.64831, 0.65488, 0.64272, 0.65487, 0.5552. In all cases, the

standard deviation increases with aggregation and the mean and median is larger

than the initial correlations.

Figure 4.47 shows the distribution of the level 1 pure correlation. The mean in

all cases increases with aggregation and tends to approach the initial correlation as
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Figure 4.47: Level 1 Pure Correlation, variable X (low autocorrelation) and variables

Y (different autocorrelation)

the number of zones decrease to 4 zones. The standard deviation of the values seems

to be constant in each case. One unusual result is the case when the variable Y has

medium autocorrelation and aggregated into 2500 groups, not only the mean but

all of the level 1 pure coefficient is negative. This happens because all the level 1

covariance components have negative values, this is possible, but the way the level

1 and level 2 covariance component were computed, means that the level 2 vari-

ance component is greater than the initial covariance. This means that covariances

increase when the data is aggregated into 2500 groups.

Figure 4.48 shows the distribution of level 2 pure regression. Except in the case

when the two variables have almost the same degree of autocorrelation and in this

experiment when variables X and Y have low autocorrelation, the mean and median

correlation is not affected by aggregation although the values are higher than the

initial average regression coefficient. When variable Y has medium autocorrelation,

the mean correlation decreases with aggregation and approaches the average initial
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Figure 4.48: Level 2 Pure Regression, variable X (low autocorrelation) and variables

Y (different autocorrelation)

regression coefficient. When variable Y has high autocorrelation, there is a slow

decrease of the mean and median of the level 2 pure regression but these values

are less than the average initial regression coefficients. In all cases the standard

deviation increases with aggregation.

Figure 4.49 shows the distribution of the level 1 pure regression coefficient. The

first two cases have similar patterns, that is, increasing and approaching the average

initial regression coefficient as the number of groups is decreased but the third case

has decreasing mean. In terms of the standard deviation, the first two cases seems to

have constant standard deviation but in the third case, that is, variable Y is highly

autocorrelated the standard deviation decreases with aggregation.

Summary of Experiment 3

The Pearson correlation coefficient is affected by aggregation in all three cases.

When the data are aggregated to 2500 zones, the minimum value of the correlation
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Figure 4.49: Level 1 Pure Regression, variable X (low autocorrelation) and variables

Y (different autocorrelation)

is less than the initial correlation coefficient and the maximum is greater in all three

cases. When the data are aggregated into 625, 400, and 100 zones, the standard

deviation of the values of the Pearson correlation does not include the initial Pearson

correlation coefficient, in all three cases the values are greater than the initial value.

The mean of the level 2 pure correlation seems to be not affected by aggrega-

tion except for cases when the data are aggregated into 2500 and 4 zones. In all

three cases, the standard deviation of values of the pure correlation increases with

aggregation.

The mean of the level 1 pure correlation increase with aggregation and ap-

proaches the initial correlation as the number of zones decreases and the standard

deviation seems to be constant, in all three cases.
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4.6 Summary

Statistics derived from a simple multilevel model such as pure correlation and pure

regression coefficients were investigated. Their corresponding direct statistics were

also examined and compared. Other statistics derived from the simple multilevel

model were also investigated. All the statistics being investigated were affected by

the initial degree of autocorrelation and scale.

Regardless of the initial degree of autocorrelation of the variables the weighted

and unweighted variances, correlation and regression coefficients were affected by

aggregation.

Based on the results of the experiments we see that when the autocorrelation is

very low the mean of the direct correlation is close to the individual level correlation.

When autocorrelation is present the mean of the direct correlation increases with

the degree of aggregation, that is, as the scale decreases to 625 and thereafter the

increase is minimal. For a given scale the degree of autocorrelation affects the direct

correlation, initially increasing as the autocorrelation increases, but then decreases

when one or both of the variables has high autocorrelation. As the level of aggrega-

tion increases the dispersion of the distribution of the direct correlation increases,

which is reflected in the standard deviation. When there are only 25 groups there

are some values of the direct correlation less than the individual level correlation.

The standard deviation is only moderately affected by the degree of autocorrelation.

In going from very low to low autocorrelation the standard deviation decreases, but

increases as the autocorrelation increase further.

The standard deviation of level 1 pure correlation seems to be stable regardless

of the initial degree of autocorrelation and level of aggregation. The mean when the

initial autocorrelation is very low also shows stability. However, when the initial

autocorrelation of the variables were low, medium, and high the mean started with

a low correlation (less than 0.3) when aggregated to 2500 groups and approaches

the initial correlation of 0.3 as the aggregation increases to 25 groups.

For the level 2 pure correlation, the standard deviations increases with aggre-
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gation except when the initial autocorrelation is very low. The mean level 2 pure

correlation did not show stability when the initial correlations of the variables were

very low. When the initial autocorrelation of the variables were low, medium and

high, the mean level 2 pure correlation shows stability but the values are higher

than the initial correlation of 0.3 and approaches 0.3 as the degree of autocorrela-

tion increased.

Relationships between N̄ and the intra-area correlation, where N̄ = N
M

shows

what was expected when the variable had autocorrelation, that is, the intra-area

correlation decreases as N̄ increased. When the autocorrelations of the variables

increases there is a non-linear relationship between the intra-area correlation and N̄

and it decreases as N̄ increases. However, when the variable have very low auto-

correlation the mean of the intra-area correlation is constant. Similar relationships

were observed between the intra-area cross-correlation and N̄ .

The mean and the weighted mean is not affected by aggregation and autocorre-

lation. The distribution of the weighted group level variance becomes more disperse

as the scale increases and the number of groups becomes small and the small number

of degrees of freedom involved in calculating the variance, which is M-1, where M

is the number of groups. The change in standard deviation with scale is more than

would be expected through the change in M. If the weighted variance behaved as

proportional to a χ2
M−1 random variable the ratio of its standard deviation to the

mean, which is its coefficient of variation (CV), would be
√

2/(M − 1), which would

be the case for no autocorrelation. Results in table 4.11 table 4.29 , and table 4.45

give values a little less than these theoretical values.

When there is no spatial autocorrelation equation 4.2 suggests that the group

level correlation will be close to the individual level correlation, although there is

a tendency to increase in absolute value when the number of groups is quite small.

Equation 4.3 gives a theoretical formula for the standard deviation of the group level

correlation when no spatial correlation is present and predicts that it increases as

the number of groups decreases, i.e. as scale increases. These results are confirmed

empirically in table 4.67.
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As the level of aggregation increases the dispersion of the distribution of the

direct correlation increases, which is reflected in the standard deviation.

For of the pure coefficients, as the scale increases we should expect the estimated

level 1 variance component to increase when there is spatial autocorrelation because

more dissimilar units are included in each group and hence the estimated level 2

variance decreases. This is seen in tables 4.15, 4.32 and 4.48. The rate of the

increase in the level 1 variance component estimates and the decrease in the level

2 estimates depends on the level of the autocorrelation, being greater with higher

levels of autocorrelation.

The means of the level 1 correlation, when there is spatial autocorrelation, are

affected by aggregation, starting below the individual level correlation but approach-

ing it as the number of groups decreases. This is because, as the number of groups

becomes smaller, the groups become larger and the individuals within them become

more like the whole population. Spatial autocorrelation has little effect on the mean

of the level 1 correlations.



Chapter 5

Analysis of Real Data from UK

Census

This chapter describes the results of analyses of scale effects on relevant statistics

being considered in this thesis based on real data from the UK Census. Directly

calculated statistics, such as correlation and regression coefficients are considered

and statistics associated with a simple multilevel model. Using real data provides

results for groups that vary in population size and are arranged in a less regular

spatial manner than in the simulated data. The previous chapter relied entirely on

simulated data.

5.1 Data from two sources

To further investigate the behavior of common statistics when the data are aggre-

gated, actual data from the 1991 UK Census are used. Three levels of data are

considered in this analysis; individual level, Enumeration District (ED) level, and

the Ward level.

The individual level data are taken the 1991 SARs (Samples of Anonymised

Records). The 1991 SARs correspond to a two percent sample of individuals counted

in households and communal establishments of Great Britain. Several variable are

included in the 2% SARs, some of them will be used in this experiment. The lowest

132
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geographical indicator available is the SAR District, which is an area of at least

120000 people, to protect the confidentiality of information. The SAR Districts

considered in the study are Camden, Hackney, Haringey, and Islington and are part

of London boroughs. This will provide individual level data from the UK Census.

The data are used to provide an estimate of the individual level covariance between

variables. Figure 5.1 shows the location of the four districts considered in this study.

Haringey
Hackney

IslingtonCamden

#

#
##

N

EW

S

London Boroughs

Figure 5.1: Location of the four districts

Figure 5.2 shows the boundaries of the districts, Ward, and Enumeration Dis-

tricts (EDs). An enumeration district (ED) is the lowest geographical level in the

1991 UK population census for which aggregate data are released. These EDs are

grouped into larger geographical areas called Wards. The Wards are also grouped

into larger geographical areas called districts. The Census data from both ED level
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and Ward level of the UK population census are extracted from Small Area Statistics

(SAS) data base. Figure 5.2 shows the region composed of the districts Camden,

Hackney, Haringey, and Islington. It comprises 1904 EDs nested into 92 Wards and

4 districts.

District Boundaries
Ward Boundaries
EDBoundaries

N

EW

S

Figure 5.2: The region with its boundaries

Table 5.1 shows the number of individuals from the SAR and SAS and the

number of Enumeration Districts and Wards for the districts being considered in

this study. Although the SAR does not contain ED and Ward indicators, it is

possible to estimate variance components at these level by combining the SAR and

SAS data as shown by Tranmer and Steel (2001).

Based on Table 5.1, the average number of individuals in the districts Camden,

Hackney, Haringey, and Islington per ED are 307,429, 386, and 398 respectively and

the overall average number of individuals per ED is 380. The average number of
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Number of Population Number of Number of

District Individuals (SAR) Counts (SAS) EDs Wards

Camden 3508 165877 540 26

Hackney 3378 180540 421 24

Haringey 3832 201620 522 23

Islington 3249 163500 411 19

Total 13967 711537 1904 92

Table 5.1: Individuals counts from SAR and SAS and number of EDs and Wards for

each district

individuals per Ward for the districts are 6380, 7523, 8766, and 8605 respectively

and the overall average number of individuals per Ward is 7818.

Variables to be investigated:

In this study the following variables were considered.

age: percentage of individuals between 16 and 65, inclusive

ftw: percentage of full-time workers

uemp: percentage of unemployed

llti: percentage of individuals with limiting long term illness

nocar: percentage of individuals with no car

Both the percentages of full-time workers and percentage of unemployed are in-

cluded as they reflect different aspects of the labor force. We shall see later that

these variables are not particularly highly correlated at any of the levels considered,

since people may also be part-time workers or economically inactive. Besides their

direct measurement of the labor force, these variables reflect socio-economic char-

acteristics. The percentage of individuals with no car is included as it is often used

as an indicator of lower socio-economic areas. The chosen variables cover a range of

measures (see table (5.2)).

For each of the M EDs, the total population in the region being considered is



CHAPTER 5: Analysis of Real Data from UK Census 136

N =
M

∑

g=1

Ng

The average number of individuals per ED is

N̄ =
N

M

We will use the following model from Tranmer and Steel (1998):

Yi = µy + αg + εi (5.1)

where

Yi represent the value of Y for the ith individual in area g (ED)

µy is the population mean of Y

αg is a random variable representing the area effect for the gth ED

εi is a random variable representing pure individual effect

Assumptions:

1. E(αg)=0 , E(ǫi)=0 , and var(αg)=σ2
α , var(ǫi)=σ2

ǫ

2. The area effect and individual effects are uncorrelated.

cov(αg, εi) = 0

3. The effects for different individuals are uncorrelated, for i6=j

cov(εj, εi) = 0

Properties under Model specified by (5.1) are:

E(Yi) = µy

var(Yi) = σ2
α + σ2

ε = σ2
y

cov(Yi, Yj) =







σ2
α, if i and j are from the same ED

0 otherwise.
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For a second variable, say X, similar variance components can be specified.

To be able to compute other statistics later, we need the following: the covariance

between the area effects between two variables Y and X can be described as,

cov(α(Y )g, α(X)g) = σ(yx)α

The individual level covariance for the two variables is

cov(ε(Y )i, ε(X)i) = σ(Y X)ε

The covariance between the two variables is

cov(Yi, Xi) = σ(Y X)α + σ(Y X)ε = σY X

and the values of the two variables for two different individuals in the same group(ED)

is

cov(Yi, Xj) =







σ(Y X)α, if i and j are from the same ED

0 otherwise.

5.1.1 Case 1: Individual level from SAR and second level is

Enumeration District (ED)

The individual level data used are from the SAR in which the variables have value

1 or 0. The total number of individuals in the sample is 13967. The variables were

converted into dichotomous variables. The value of the variable is 1 if the description

of the variable is satisfied, otherwise it is 0. For example, for variable age, age=1 if

the age of the individual is between 16 and 64, inclusive otherwise age=0.

To compute the individual level statistics for variable Y from the SAR the fol-

lowing are used:

p =
f1

n

where f1 is the number of observations with value=1, n is the number of individuals

and the variance is
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S
(1)
Y Y = (1 − p)p.

The individual level mean and variance can be computed from the Census SAS

data using:

Pg =
Fg

Ng

(5.2)

where Fg is the number of individuals with a specific characteristics and Ng is the

total number of individuals in group g.

The unweighted group mean is defined as

p̃ =
1

M

M
∑

g=1

Pg (5.3)

where M is the number of groups used in the census (ED, Ward, District)

The Unweighted group level variance is defined as

S̃Y Y =
1

M − 1

M
∑

g=1

(Pg − p̃)2 (5.4)

The weighted mean is

P =

M
∑

g=1

NgPg

M
∑

g=2

Ng

(5.5)

The weighted group level variance is defined by

S
(2)
Y Y =

1

M − 1

M
∑

g=1

Ng(Pg − P )2 (5.6)

Note that the data from the Census are dichotomous at the individual level. The

individual level variance can be can be computed using

S
(1)
Y Y = p (1 − p) (5.7)

or

S
(1)
Y Y = P (1 − P ) (5.8)
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from the SAR and SAS respectively.

Weighted variance and covariance are used in this study because the number of

individuals in each ED or Ward differs. Also, if there is no within area correlation

they give unbiased estimate for the individual level variance and covariance.

To be able to investigate some components of a simple multilevel model we need

estimates for the variance and covariance components. From Tranmer and Steel

(1998) group-level (eg ED-level) variance components for variables Y and X can be

estimated using

Λ̂
(2)
Y Y =

S
(2)
Y Y − S

(1)
Y Y

N̄∗ − 1
(5.9)

and

Λ̂
(2)
XX =

S
(2)
XX − S

(1)
XX

N̄∗ − 1
(5.10)

where

N̄∗ = N̄ +
N̄ − N̄0

M − 1
, N̄0 =

1

N

M
∑

g=1

N2
g , N̄ =

N

M
.

Similarly the ED level covariance component can be estimated using:

Λ̂
(2)
Y X =

S
(2)
Y X − S

(1)
Y X

N̄∗ − 1
(5.11)

The SAR provides data to estimate the level 1 variance and the SAS provides

the data to estimate the level 2 variances. Tranmer and Steel (1998) show that the

variance and covariance estimates given by (5.9), (5.10) and (5.11) are unbiased for

the model given by (5.1).

Some statistics from SAR (Individual level)

Computations for the individual level statistics from the SAR are done using SPSS

and R. Table 5.2 shows the mean and variance computed from the SAR and different

levels from the Census SAS. Notice the small differences of the means and variances

from the SAR and the means and variances of the variables computed from the

Census, which are due to the SAR being a sample.
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SAR Census(SAS)

ED Ward District

Variables mean var mean var mean var mean var

age 0.6738 0.2198 0.6818 0.2169 0.6761 0.2190 0.6745 0.2196

ftw 0.2941 0.2076 0.3042 0.2117 0.3722 0.2337 0.3721 0.2336

unemp 0.0907 0.0825 0.0860 0.0786 0.1092 0.0973 0.1104 0.0982

llti 0.1322 0.1147 0.1254 0.1096 0.1258 0.1100 0.1264 0.1104

nocar 0.4657 0.2488 0.4806 0.2496 0.4923 0.2499 0.4925 0.2499

Table 5.2: Mean and Individual Level Variances from SAR and different levels from

Census

Table 5.3 shows the variance-covariance matrix calculated from the SAR to be

used in the computations of some multilevel components. These statistics will be

used later in the computation of the estimates of the variance and covariance com-

ponents. The computations are done using SPSS.

age ftw unemp llti nocar

age 0.2198 0.0931 0.0291 -0.0214 -0.0310

ftw 0.0931 0.2076 -0.0267 -0.0276 -0.0330

unemp 0.0291 -0.0267 0.0825 -0.0039 0.01219

llti -0.0210 -0.0276 -0.0030 0.1147 0.0213

nocar -0.0310 -0.0330 0.0121 0.0213 0.24882

Table 5.3: Variance-Covariance matrix Individual Level: SAR

Table 5.4 shows the correlation at the individual level computed from the SAR

using SPSS.

age ftw unemp llti nocar

age 1.0000 0.4360 0.2160 -0.1350 -0.1326

ftw 0.4360 1.00000 -0.2040 -0.1791 -0.1442

unemp 0.2160 -0.2040 1.0000 -0.0400 0.0838

llti -0.1350 -0.1791 -0.0400 1.0000 0.1261

nocar -0.1326 -0.1442 0.0838 0.1261 1.0000

Table 5.4: Correlations at Individual level
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Some statistics from ED level

From the Census, there are a total of 711537 individuals in 1904 enumeration dis-

tricts, so that N̄=373.71 and N̄∗=373.69. Table 5.5 shows the weighted means and

variances calculated from the SAS at Enumeration District (ED) level using equa-

tions ( 5.5) and (5.6), respectively. These statistics will be used to compute the

estimates of some statistics that are relevant to the present study. The table also

shows the aggregation effect defined as S(2)/S(1). The aggregation effect on the vari-

ance is a simple measure of the strength of the within-group autocorrelation. From

(3.28) we see that the aggregation effect for variable Y is 1 + (N
∗ − 1)∆̂

(2)
Y Y . We

have also seen in section 3.1.8, how the intra-area correlation is related to spatial

autocorrelation within groups as measured by Moran’s I with appropriate spatial

proximity weights. In an applied context, examination of the aggregation effect indi-

cates which variables have greater scale effects. The aggregation effect will be equal

to 1 if there is no aggregation effect, which will occur if there is no within group au-

tocorrelation. From the results, it is evident that there are substantial aggregation

effects, but they vary considerably between the variable. In particular the variable

”nocar” has much longer aggregation effect than any of the other variables.

weighted weighted aggregation

Variables mean variance effect (S(2)/S(1))

age 0.6729 2.2213 10.1060

ftw 0.2948 2.0320 9.7881

unemp 0.0876 0.4022 4.8751

llti 0.1273 0.8544 7.4490

nocar 0.4832 8.3418 33.5281

Table 5.5: Weighted Mean and Variances from SAS (ED level)

Table 5.6 shows the variance-covariance matrix at ED level. Compared with the

individual level variance-covariance matrix, the table shows increase in the absolute

values in all cases. However, the covariance between the variables llti and unemp

changes from negative at the individual level to positive at the ED level and all the

other combinations of the variables retain their sign.
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age ftw unemp llti nocar

age 2.2213 1.6986 0.0603 -0.7641 -1.5430

ftw 1.6986 2.0320 -0.1790 -0.5726 -1.5625

unemp 0.0603 -0.1790 0.4022 0.0934 0.9295

llti -0.7641 -0.5726 0.0934 0.8544 1.5872

nocar -1.5430 -1.5625 0.9295 1.5872 8.3218

Table 5.6: Variance-Covariance matrix ED Level

Table 5.7 shows the correlation at ED level. Comparing with the individual

correlation matrix, we see that not all the correlations increase with aggregation.

age ftw unemp llti nocar

age 1.0000 0.7995 0.0638 -0.5547 -0.3586

ftw 0.7795 1.0000 -0.1979 -0.4346 -0.3795

unemp 0.0638 -0.1979 1.0000 0.1593 0.5075

llti -0.5547 -0.1358 0.1593 1.0000 0.5945

nocar -0.3586 -0.3795 0.5075 0.5945 1.0000

Table 5.7: Correlations at ED level

There are five variables being considered in this study, so there are ten possible

correlations calculated from all possible pairs of variables. Table 5.8 shows the cor-

relations for these pairs of variables, where the second column shows the correlations

at the individual level and the third column the correlation at ED level. For six of

the combinations of the variables the absolute values of the correlation increases

from individual level to ED level and were of the same sign, while the rest decreased

or changed sign. The correlation between variables age and unemp decreased to

0.0638 at the ED level from 0.2160 at the individual level. This can be explained by

the aggregation effects of the variances of the variables and the percentage increase

in the covariance. The aggregation effects of the variances of both variables is rel-

atively large compared with the aggregation effect of the covariance which is equal

to 1.072, resulting in a decrease in the correlation coefficient.

Figure 5.3 shows the behavior of the correlation in going from the individual

level to ED level. The figure shows that there are five pairs of variables with greater
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Variable Correlations Correlations

Combination Individual ED level

1. age-ftw 0.4360 0.7795

2. age-unemp 0.2160 0.0638

3. age-llti -0.1350 -0.5547

4. age-nocar -0.1326 -0.3586

5. ftw-unemp -0.2040 -0.1979

6. ftw-llti -0.1791 -0.1358

7. ftw-nocar -0.1442 -0.3795

8. unemp-llti -0.0400 0.1593

9. unemp-nocar 0.0838 0.5075

10. llti-nocar 0.1261 0.5945

Table 5.8: Variable combinations and correlations at different levels

correlations and five below the individual level correlations when aggregated to ED

level.

Table 5.9 shows the estimated variance components and the intra-area (intra-

ED) correlations for the five variables. The table shows that the level 2 variance

components is very small compared with the corresponding level 1 variance compo-

nents resulting in small but typical values of the intra-ED correlations. There were

no problems associated with negative estimates of variance components.

Variable level1 variance level2 variance intra-area correlation

age 0.21442 0.00537 0.02443

ftw 0.20271 0.00490 0.02358

unemp 0.08162 0.00086 0.01040

llti 0.11274 0.00198 0.01730

nocar 0.22711 0.02172 0.08727

Table 5.9: Variance components and Intra-area correlation

The aggregation effect can be defined as the ratio S
(2)
Y Y /S

(1)
Y Y (Steel, et. al.

(1996)). Table 5.10 shows the aggregation effect and the corresponding intra-area

correlation of the variables being considered. Note that even though the esti-

mate of intra-area correlation is small, aggregation effects are substantial because

S
(2)
Y Y ≈ S

(1)
Y Y

(

1 + (N̄∗ − 1)δY Y

)

and N̄∗ is large.
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Individual Level Correlations (SAR)
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Figure 5.3: Correlations: Individual level (SAR) and ED level (SAR)

Variables Aggregation Intra-area

Effect Correlation

age 10.1060 0.0244

ftw 9.7881 0.0236

unemp 4.6767 0.0104

llti 7.4490 0.0173

nocar 33.5281 0.0873

Table 5.10: Aggregation Effect and Intra-Area Correlation

Table 5.11 shows the intra-area cross-correlations. The signs of the intra-area

cross correlations are the same as the signs of the correlations at the ED level. Recall

that the intra-area cross-correlation is a measure of the within group homogeneity

of a pair of variables and that similarity of the values of two variables within areas

can be measured using this statistic. Looking at the values, there seems to be low



CHAPTER 5: Analysis of Real Data from UK Census 145

age ftw unemp llti nocar

age ∗ 0.0202 0.0006 -0.0126 -0.0174

ftw 0.0202 ∗ -0.0003 -0.0095 -0.0181

unemp 0.0006 -0.0003 ∗ 0.0027 0.0172

llti -0.0126 -0.0095 0.0027 ∗ 0.0249

nocar -0.0174 -0.0181 0.0172 0.0255 ∗

Table 5.11: Intra-area Cross-correlation

similarity within areas for the values of the pairs of variables being considered here.

Pure correlation

Table 5.12 shows the estimated level 1 pure correlation coefficients for each of the

pairs of variables. The level 1 pure correlations are similar to the corresponding

values of the correlations computed from the SAR. The signs are the same as the

signs of the corresponding correlations at the individual level computed from the

SAR.

age ftw unemp llti nocar

age ∗ 0.4266 0.2192 -0.1251 -0.1226

ftw ∗ -0.2044 -0.1731 -0.1344

unemp ∗ -0.0433 0.0703

llti ∗ 0.1068

nocar ∗

Table 5.12: Level 1 Pure correlation

Figure 5.4 shows level 1 pure correlations plotted against the corresponding in-

dividual level correlations computed from SAR. The level 1 pure correlations are

either higher or lower than the corresponding individuals level correlations but the

differences are very small. The individual level, the direct correlation and pure

correlation are effectively the same.

Table 5.13 shows the estimated level 2 pure correlations. The level 2 pure corre-

lations are not similar to the individual level correlations; the values are either larger

or smaller in absolute values and one even changed sign, that is, from negative to
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Individual Level Correlations (SAR)
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Figure 5.4: Individual level Correlations(SAR) versus Level 1 Pure Correlation

positive. The level 2 pure correlations have the same sign as the corresponding

correlations at ED level computed from SAS. Except for one pair of variables (age

and unemp), the pure correlations are larger in absolute values compared with the

corresponding correlations at ED level.

age ftw unemp llti nocar

age ∗ 0.8401 0.0390 -.6104 -0.3757

ftw ∗ -0.1993 -0.4691 -0.3981

unemp ∗ 0.2001 0.5703

llti ∗ 0.6400

nocar ∗

Table 5.13: Level 2(ED level) Pure correlation

Figure 5.5 shows the relationship when the ED level correlations are plotted
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Correlations ED Level
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Figure 5.5: ED Level Correlations versus Level 2 Pure Correlation

against the corresponding level 2 pure correlations. It shows that r(2) ≈ ρ(2), that is,

the ED correlations are essentially estimating the level 2 pure correlation in general

except for two cases. Hence in general, correlations calculated at the ED level are

almost entirely determined by relationships at ED level, and have very little to do

with individual level relationships.

The study of the regression and pure regression will be considered in the later

part of this chapter.
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5.1.2 Case 2: Individual level from SAR and second level is

Ward

A similar study is conducted, this time the Ward level serves as level 2. However,

there is discrepancy in terms of the total number of individuals reported at the Ward

level and the total number of individuals reported at ED level. This is because

confidentiality was protected by ”adding +1 or -1 to the census counts in a quasi-

random manner” (Blake and Openshaw, 1994, page 2). The ED level has 711537

total individuals reported while the Ward level has a total of 718614, a difference of

7077. In this subsection Ward level data are created by summing the relevant ED

level data. For these data, we have N̄=7811.02 and N̄∗=7806.01. Table 5.14 shows

the weighted mean and variance from the SAS (Ward level) and the aggregation

effect defined as S(2)/S(1) for the variables being considered. The aggregation effect

will be equal to 1 if there is no aggregation effect. From the results, it is evident that

the aggregation effects that are much larger than the corresponding effects when the

analysis is done at ED level.

weighted weighted aggregation

Variables mean variance effect (S(2)/S(1))

age 0.6729 2.2213 59.3735

ftw 0.2948 2.0320 65.0882

unemp 0.0876 0.4022 39.5261

llti 0.1273 0.8544 35.5850

nocar 0.4832 8.3418 288.9365

Table 5.14: Weighted Mean and Variances from SAS (Ward level)

Table 5.15, shows the variance-covariance matrix at Ward level. The values are

larger than the individual level and the ED level counterparts. There are covariances

that change sign; the covariance of age and unemp have positive sign at individual

level, positive at ED level but negative in Ward level. Another pair of variables is

unemp and llti ; negative at individual level, positive at ED level and Ward level.

These changes affect all the statistics computed involving these pairs of variables.

Table 5.16 shows the correlations at Ward level. The absolute values of the
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age ftw unemp llti nocar

age 13.0502 12.0819 -0.8334 -5.0064 -12.6456

ftw 13.5123 -2.3247 -4.9404 -15.8028

unemp 3.2609 1.4193 8.2889

llti 4.0816 13.5355

nocar 71.8874

Table 5.15: Variance-Covariance matrix Ward Level

correlations of all pairs of variables are larger than the corresponding correlations

at individual level except for one. This is the correlation of the pair age and unemp,

where the sign changes.

Figure 5.6 shows the graph for the Ward level correlations plotted against the

individual level correlations. There are four correlations at Ward level that are

greater than the corresponding individual level correlations, the rest are below the

corresponding individual level. All of the Ward level correlations differ appreciably

from their corresponding individual level correlations.

age ftw unemp llti nocar

age 1.0000 0.9098 -0.1278 -0.6860 -0.4129

ftw 1.0000 -0.3502 -0.6652 -0.5070

unemp 1.0000 0.3890 0.5414

llti 1.0000 0.7902

nocar 1.0000

Table 5.16: Correlations at Ward level

Table 5.17 displays the variance components and the intra-Ward correlations.

The level 1 variance component is much larger than the corresponding level 2 vari-

ance component for each variable, resulting in a very small intra-area correlations.

The intra-area correlations are smaller than the corresponding ED level intra-area

correlations as Wards are larger. However, the aggregation effect is larger because

N̄ is larger.

Tables 5.18 shows the intra-Ward cross-correlations. As noted in the ED analysis,

the intra-area cross-correlation is a measure of the within group homogeneity of a
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Individual Level Correlations (SAR)
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Figure 5.6: Individual Level Correlations versus Ward Level Correlation

Variable level1 variance level2 variance intra-area correlation

age 0.2181 0.0017 0.0076

ftw 0.2059 0.0017 0.0083

unemp 0.0821 0.0004 0.0050

llti 0.1142 0.0005 0.0045

nocar 0.2396 0.0093 0.0373

Table 5.17: Variance components and Intra-area correlation

pair of variables and that similarity of the values of two variables within areas can

be measured using this statistic. The results shows that similarity within areas for

the values of the pairs of variables are small.

Level 1 pure correlations are shown in Table 5.19. Note the similarity of the level

1 pure correlations to the corresponding individual level correlations. The signs of
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age ftw unemp llti nocar

age ∗ 0.0073 -0.0008 -0.0040 -0.0070

ftw ∗ -0.0023 -0.0041 -0.0090

unemp ∗ 0.0019 0.0075

llti ∗ 0.0104

nocar ∗

Table 5.18: Intra-Ward Cross-Correlations

the correlations coincide. This is due to the similarity of the values of the level 1

variance components, which is part of the computation of the pure correlation. Fig-

ure 5.6 shows the individual level correlation plotted against the corresponding level

1 pure correlations. The figure shows the similarity of the individual correlations

computed from the SAR and the level 1 pure correlation from the simple multi-level

model being considered.

age ftw unemp llti nocar

age ∗ 0.4322 0.2182 -0.1317 -0.1289

ftw ∗ -0.2031 -0.1760 -0.1382

unemp ∗ -0.0421 0.0845

llti ∗ 0.1276

nocar ∗

Table 5.19: Level 1 Pure correlation

age ftw unemp llti nocar

age ∗ 0.9176 -0.1351 -0.6987 -0.4161

ftw ∗ -0.3534 -0.6762 -0.5108

unemp ∗ 0.4008 0.5485

llti ∗ 0.8016

nocar ∗

Table 5.20: Level 2 (Ward level) Pure correlation

As before, the regression analysis will be in the latter part of the chapter.
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Ward Level Correlations
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Figure 5.7: Ward Level Correlations versus Level 2 Pure Correlations

Summary

Figure 5.8 shows the plot of individual level correlations versus the ED and Ward

correlations together. The figure shows aggregation effects of the correlations at

different levels of aggregation. The aggregation effects of the correlations at dif-

ferent levels do not display a predictable pattern. Some correlation increase with

aggregation in both ED and Ward levels and in the aggregate levels others decrease.

Table 5.21 shows the correlation coefficients at different levels. Notice that not all

of the correlations increase with aggregation. This shows again that correlation does

not necessarily increase with aggregation. Some even change signs. The individual

level correlations were computed from the SAR. The ED level and the Ward level

correlations were computed from other source of data, the SAS. The computations

are weighted according to the number of individuals included in each ED and Ward.
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Individual Correlations
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Figure 5.8: Individual level correlations vs Ward and ED level correlations

As mentioned earlier, to have consistency in the number of individuals for ED and

Ward levels, the Ward level data are based on the ED level data. Comparing the

correlations from ED level to Ward level, all the corresponding correlations increase

in absolute values but one changes sign. The pair age and unemp have positive

correlation at ED level, but negative at Ward level.

Figure 5.9 shows the individual level correlations plotted against the level 1

pure correlations for the simple two-level model where the level 2 is Ward and ED

levels respectively. The figure shows that there is not much change for level 1 pure

correlations and for both cases the aggregation effects are minimal.

Table 5.22 shows the level 1 pure correlation at different levels. In almost all

cases the level 1 pure correlation are very similar to the correlation at individual level

when ED and Ward levels are used as level 2. Figure 5.8 shows the individual level
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age ftw unemp llti nocar
Individual (SAR)

age 1.0000 0.4356 0.2160 -0.1350 -0.1326
ftw 1.0000 -0.2040 -0.1791 -0.1442
unemp 1.0000 -0.0400 0.0838
llti 1.0000 0.1261
nocar 1.0000

ED Level (SAS)
age 1.0000 0.7795 0.0638 -0.5547 -0.3586
ftw 1.0000 -0.1979 -0.4346 -0.3795
unemp 1.0000 0.1593 0.5075
llti 1.0000 0.5945
nocar 1.0000

Ward Level (SAS)
age 1.0000 0.9098 -0.1276 -0.6860 -0.4129
ftw 1.0000 -0.3502 -0.6652 -0.5070
unemp 1.0000 0.3890 0.5414
llti 1.0000 0.7902
nocar 1.0000

Table 5.21: Correlations at Different Levels
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Figure 5.9: Individual level correlations vs Ward and ED Level 1 Pure correlations
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correlations plotted against the corresponding Ward level and ED level correlations.

age ftw unemp llti nocar
a. Correlation(SAR)

age 1.0000 0.4356 0.2160 -0.1350 -0.1326
ftw 1.0000 -0.2040 -0.1791 -0.1442
unemp 1.0000 -0.0400 0.0838
llti 1.0000 0.1261
nocar 1.0000

b. Level 1
Pure Correlation(ED)

age ∗ 0.4261 0.2192 -0.1251 -0.1226
ftw -0.2044 -0.1731 -0.1344
unemp -0.0433 0.0703
llti 0.1068
nocar

c. Level 1
Pure Correlation Ward

age 0.4322 0.2182 -0.1317 -0.1289
ftw -0.2031 -0.1760 -0.1382
unemp -0.0421 0.0845
llti 0.1276
nocar

Table 5.22: Correlations at Individual Level (from SAR) and Level 1 Pure Correlations
when level 2 are ED and Ward Levels (fromSAS)

Figure 5.10 shows the individual level correlations plotted against both the level

2 pure correlations. The figure clearly shows the aggregation effects on level 2 pure

correlations which in both cases are far from the individual level correlations.

Table 5.23 shows the level 2 pure correlations. The level 2 pure correlation

differ greatly in values in both ED and Ward Levels compared to the individual

level correlation coefficient. Even sign of the correlations changed for one pair of

variables.
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Individual Correlations
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Figure 5.10: Individual level correlations vs Ward and ED Level 2 Pure correlations

5.1.3 Linear Regressions and Pure Regressions of Percent-

age of Full-Time Workers and Other variables

To look into the regression coefficients and the pure regression coefficients derived

from the simple two-level model, the variable ftw is paired with the other variables

namely: age, llti, and nocar. Thus, our dependent variable will be Y=ftw and the

independent variables X will be the variables age, llti, and nocar.

1. Ftw-Age

Table 5.24 shows the correlation and regression coefficients when the analysis is done

at each level. An increase in the correlation and regression coefficients is observed

as the number of zones is decreased.
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age ftw unemp llti nocar
a. Correlations

Ward Level
age 1.0000 0.9098 -0.1278 -0.6860 -0.4129
ftw 1.0000 -0.3502 -0.6652 -0.5070
unemp 1.0000 0.3890 0.5414
llti 1.0000 0.7902
nocar 1.0000

b. Level 2
Pure Correlations

WardLevel
age ∗ 0.9176 -0.1351 -0.6987 -0.4161
ftw ∗ -0.3020 -0.6762 -0.5108
unemp ∗ 0.4008 0.5485
llti ∗ 0.8016
nocar ∗

Table 5.23: Correlations at Ward Level (from SAS) and Level 2 Pure Correlations
when level 2 is Ward (from SAS) and level 1 is Individual (from SAR)

age ∼ ftw correlation regression
Individual 0.4356 0.4237

ED 0.7795 0.7647
Ward 0.9098 0.9257

Table 5.24: Correlation and regression coefficients at different scales

Table 5.25 displays some statistics derived from the simple multilevel model.

Notice that the level 1 pure correlation, when ED level is considered as level 2 in the

model, is almost equal to the Pearson correlation at the individual level and that

the value goes nearer to the individual level when Ward is considered as the level 2

in the model. The level 2 pure correlation is larger than the individual level Pearson

correlation. The level 1 and level 2 pure regression coefficient display characteristics

similar to the level 1 and level 2 pure correlation. Less aggregation effect are observed

for pure coefficient when going from ED to Ward but an aggregation effect is still

present.



CHAPTER 5: Analysis of Real Data from UK Census 158

ftw ∼ age Pure Correlation Pure Regression
Level 1 (Individual) 0.4266 0.4143
Level 2 (ED Level) 0.8401 0.8021
Level 1 (Individual) 0.4322 0.4198
Level 2 (Ward Level) 0.9176 0.9344

Table 5.25: Some Statistics derived from multilevel model

2. Ftw-Llti

Table 5.26 shows the correlation and regression coefficients at different levels of anal-

ysis. The values increase in absolute values. Again, looking at the results in Table

5.27, the level 1 pure correlation and pure regression coefficients have values almost

equal to the initial Pearson correlation and the regression coefficients, respectively.

Level 2 pure correlation and pure regression coefficients have values different from

the initial Pearson correlation and the regression coefficients, respectively. When the

Ward level is considered a level 2 in the model being considered, the value is nearer

to the initial characteristics of the individual level data. The level 2 pure coefficient

correlations have values similar to the corresponding aggregate level correlations

and the level 2 pure regression have values not far from the aggregate regression

coefficients.

ftw ∼ llti correlation regression
Individual -0.1791 -0.2408

ED -0.4346 -0.6702
Ward -0.6652 -1.2104

Table 5.26: Correlation and regression coefficients at different scales

ftw ∼ llti Pure Correlation Pure Regression
Level 1 (Individual) -0.1731 -0.2321
Level 2 (ED Level) -0.4691 -0.7378
Level 1 (Individual) -0.1760 -0.2363
Level 2 (Ward Level) -0.6762 -1.2384

Table 5.27: Some Statistics derived from multilevel model
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3. Ftw-Nocar

Table 5.28 shows the correlation and regression coefficients at different levels. The

Pearson correlation and regression coefficient increase in absolute values. Table 5.29

shows statistics derived from the simple two-level multilevel model.

The level 1 pure correlations and regressions are similar to the individual level

correlations and regressions, respectively. The level 2 pure correlations and regres-

sions are similar to the values of the ED level and Ward level Pearson correlation

and regression coefficients, respectively.

ftw ∼ nocar correlation regression
Individual -0.1442 -0.1315

ED -0.3795 -0.1878
Ward -0.5070 -0.2089

Table 5.28: Correlation and regression coefficients at different scales

ftw ∼ nocar Pure Correlation Pure Regression
Level 1 (Individual) -0.1334 -0.1260
Level 2 (ED Level) -0.3981 -0.1890
Level 1 (Individual) -0.1382 -0.1281
Level 2 (Ward Level) -0.5108 -0.2201

Table 5.29: Some Statistics derived from multilevel model

Summary

Level 1 pure correlations and regressions have values similar to the direct coefficient

obtained from individual level data. The values differ by a small fraction and in

all cases, it seems that the values go nearer to the individual level statistics as the

number of zones is decreased.

The level 2 pure correlations and regressions coefficient have values similar to

the correlation and regression coefficients at the aggregate level.

The Pearson correlation and the regression coefficients increase in absolute value

as the number of zones is decreased.
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5.2 Data from one source (SAS)

5.2.1 Some Statistics from 1991 UK Census

To further examine the behavior of the simple multilevel model under aggregation

another experiment is conducted. This time the data involves no individual level

data. The same variables as those used in the analysis of the previous section

were analyzed. The same districts were considered. This time the percentages of

the variables as defined previously are from enumeration districts (EDs) and are

considered as the level 1 data and for level 2 the percentage from the Ward level are

used. The Ward level data are derived from the original ED level data.

age ftw unemp llti nocar
ED Level

age 1.0000 0.7995 0.0638 -0.5547 -0.3586
ftw 1.0000 -0.1979 -0.4661 -0.3589

unemp 1.00000 0.1649 0.4862
llti 1.0000 0.6005

nocar 1.0000
Ward Level

age 1.0000 0.9098 -0.1278 -0.6860 -0.4129
ftw 1.0000 -0.3502 -0.6652 -0.5070

unemp 1.0000 0.3890 0.5414
llti 1.0000 0.7902

nocar 1.0000

Table 5.30: Pearson Correlations at ED and Ward Levels

Table 5.30 shows the Pearson correlation coefficients at ED and Ward levels. All

correlation coefficients either increase when the values are positive and increase in

absolute values when the correlations are negative except for correlation between

Age and Unemp where the value change from positive at ED level and negative

at Ward level. Figure 5.11 shows the plot of ED level correlations against the

Ward level correlations. The plot shows that the ED level correlations changes with

aggregation, some increase and some decrease, but they are of the same sign and

greater in absolute value.

Table 5.31 shows the level 1 and level 2 pure correlation. The values of the
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Figure 5.11: ED level correlations vs. Ward level correlations

entries in the table are similar to the corresponding Pearson correlations at each

level. All except one of the level 1 pure correlations is less in absolute value than

the corresponding ED level Pearson correlation. This is the case when variables Age

and Unemp is analyzed. All the level 2 pure correlation are greater in absolute value

than the corresponding Ward level correlations. Figure 5.12 shows the plot of ED

level correlations against level 1 and level 2 pure correlations.

Table 5.32 shows the aggregation effects on the variances and the covariances of

the pairs of variables. The positive sign of a covariance means that the sign of a

covariance is the same at the ED level and Ward level. There is one negative aggre-
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age ftw unemp llti nocar
Level 1

age 1.0000 0.7526 0.1613 -0.5108 -0.3351
ftw 1.0000 -0.1145 -0.3507 -0.3082

unemp 1.0000 0.0618 0.4848
llti 1.0000 0.5216

nocar 1.0000
Level 2

age 1.0000 0.9312 -0.1606 -0.7176 -0.4232
ftw 1.0000 -0.3746 -0.7176 -0.5272

unemp 1.0000 0.4365 0.5460
llti 1.0000 0.8343

nocar 1.0000

Table 5.31: Pure Correlations

gation effect, which means that the sign of the covariance changes. In this particular

case, it is the pair age and unemp; the covariance changes from positive at ED level

to negative at Ward level. Looking at the table and disregarding the sign of the

aggregation effects on the variances and covariance, in most cases, the aggregation

effect of the variances of the pairs of variables are lesser than the corresponding

covariances, in effect, the corresponding correlations increase with aggregation. In

some cases, one of the aggregation effects of the variance is smaller than the corre-

sponding covariance, but the aggregation effect on the variance of the other variable

is greater than the corresponding covariance resulting in increase of the correlation

at Ward level.

age ftw unemp llti nocar
age 5.8751 7.1130 -13.8206 6.5514 8.1921
ftw 6.6498 12.9937 8.6273 10.1142

unemp 8.1077 15.1986 8.9168
llti 4.7772 8.5283

nocar 8.6177

Table 5.32: Aggregation effects on the variances (diagonal, bold) and covariances (off-
diagonal)

The intra-area correlation was computed using the Tranmer and Steel (1998)

method. Table 5.33 shows the variance component and the intra-area (intra-Ward)

correlation. The level 1 variance component is less than the level 2 variance com-
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Figure 5.12: ED level correlations vs. Level 1 and Level Pure Correlations

ponents for each of the variables. The intra-area correlation of the variable varies

between 0.19 and 0.39.

Variables Level 1 Level 2 Lev 2 Var Com Level 1 Var Com IAC
Age ED Ward 1.6710 0.5503 0.2477
Ftw ED Ward 1.4486 0.5835 0.2871

Unemp ED Ward 0.2569 0.1453 0.3611
Llti ED Ward 0.6904 0.1640 0.1919

Nocar ED Ward 5.1128 3.2300 0.3871

Table 5.33: Variance component and Intra-Ward Correlation

Table 5.34 shows the intra-area cross-correlation of the variables. The values on
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the diagonal are equivalent to the intra-area correlations of the variables. Intra-area

cross-correlation is a measure of within-area homogeneity for a pair of variables.

These values represent the similarities of the values of two different variables within

areas. The values ranges from -0.0480 to 0.2483. By (3.40) the pure level 2 corre-

lation is the intra-area cross correlation divided by the square root of the relevant

intra-area correlations.

age ftw unemp llti nocar
age 0.2477 0.2483 -0.0480 -0.1565 -0.1311
ftw 0.2871 -0.1206 -0.1684 -0.1758

unemp 0.3612 0.1149 0.2042
llti 0.1919 0.2274

nocar 0.3871

Table 5.34: Intra-Area Cross Correlation

5.2.2 Regression Analysis of Variable Ftw and Other vari-

ables

Similar to subsection (5.1.3) the variable ftw was paired with the other variables

in bivariate regression analyses; ftw is the dependent variable and the independent

variables are age, llti, and nocar. Table 5.35 shows the estimates of the regression

coefficients computed at each level. In all pairs of variables, the values increase in

absolute values from ED level to Ward level.

Table 5.36 shows pure regression coefficients when ED level is the level 1 and

Ward level is the level 2 for the model. There level 1 pure regression coefficients

are of the same sign and smaller than the ED level regression coefficient, whereas

the level 2 pure regression coefficients are slightly larger in absolute values than the

Ward level regression coefficients.

5.2.3 Spatial autocorrelation of the Variables

The role of autocorrelation is evident from the results based on simulated data in

chapter 4. Here we examine the evidence on spatial autocorrelation in the real data
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Regression Coefficient
Ftw ∼ Age
ED Level 0.7647
Ward Level 0.9258

Ftw ∼ Llti
ED Level -0.6702
Ward Level -1.2104

Ftw ∼ Nocar
ED Level -0.1873
Ward Level -0.2198

Table 5.35: Regression coefficients at ED and Ward levels

Pure regression
Ftw ∼ Age
Level 1 0.7007
Level 2 0.9588

Ftw ∼ Llti
Level 1 -0.5080
Level 2 -1.3534

Ftw ∼ Nocar
Level 1 -0.1641
level 2 -0.2241

Table 5.36: Level 1 and Level 2 Pure Regression Coefficients

used in this chapter. As the SAR does not give geographic indicators below the

ED level, it is not possible to analyze spatial autocorrelation within ED in detail,

although it is possible to asses the average level of within ED spatial autocorrelation

using the intra-area correlation, which in effect equivalent to Moran’s I with block

proximity weights. Spatial autocorrelation at ED and Ward levels can be directly

analyzed since the geographic location of these units are available.

Table 5.37 shows the degree of autocorrelation as measured using Moran’s I

statistic for the ED level. Several types of proximity weights were used. Lag 1

denotes that each ED is a neighbor to each immediate surrounding EDs. Lag 2
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means that each ED is a neighbor to each immediate surrounding EDs and the

next immediate surrounding EDs, and so on. The results in column 6 of Table 5.37

are done using a ‘block ’ proximity matrix in which EDs within a Ward are con-

sidered neighbors. The computations are done using GeoDa, a freeware developed

by Luc Anselin and co-workers. The software ‘is designed implement techniques

for exploratory spatial data analysis (ESDA) on latice data (points and polygons)’

(http://sal.agecon.uiuc.edu/cssi/geoda.html).

Variable lag 1 lag 2 lag 3 lag 4 ED w/in Ward
age 0.3425 0.2262 0.1681 0.0764 0.2270
ftw 0.3640 0.2589 0.2074 0.1251 0.2614

unemp 0.4326 0.3771 0.3374 0.2679 0.3586
llti 0.2659 0.1872 0.1441 0.0877 0.1782

nocar 0.5288 0.4175 0.3607 0.2591 0.3967

Table 5.37: Moran’s I at different weight definition

Table 5.38 show the Moran’s I at Ward level with different definitions of proximity

matrices.

Variable Lag 1 Lag 2
Age 0.2192 0.1006
Ftw 0.3872 0.2013

Unemp 0.6650 0.4574
Llti 0.3817 0.2330

Nocar 0.5711 0.3336

Table 5.38: Moran’s I with different proximity matrices Ward level

Tables 5.39 shows the bivariate Moran’s I with block proximity. The values in

the diagonal are Moran’s I for the variables and the off-diagonals are the bivariate

Moran’s I for the pairs of variable. The Bivariate Moran’s I measures the degree of

spatial association of two variables. The values are very similar to the correspond-

ing intra-area cross-correlations. In fact, there is almost perfect linear correlations

between the statistics (0.999) as shown in figure 5.13.

When the block proximity matrix used: (1) The Intra-area correlation is equal to

the Moran’s I and (2) Intra-Area Cross-Correlation is equal to the Bivariate Moran.
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age ftw unemp llti nocar
age 0.2270 0.2292 -0.0540 -0.1459 -0.1228
ftw 0.2614 -0.1148 -0.1571 -0.1617

unemp 0.3586 0.1141 0.1992
llti 0.1782 0.2227

nocar 0.3967

Table 5.39: Bivariate Moran using GeoDa (EDs within Ward)
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Figure 5.13: Bivariate Moran vs. Intra-area Cross-correlation

The intra-area -correlation is a special type of measure of spatial autocorrelation

using the block proximity matrix.
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Pictorial Representation of the 5 Variables

AGEED Level
0.141 - 0.575
0.575 - 0.65
0.65 - 0.714
0.714 - 0.779
0.779 - 0.939

AGE ED Level

AGE Ward Level
0.564 - 0.603
0.603 - 0.655
0.655 - 0.686
0.686 - 0.723
0.723 - 0.777

AGE Ward Level

Figure 5.14: Graphical representation of the variable AGE at different levels



CHAPTER 5: Analysis of Real Data from UK Census 169

FTW ED Level
0.04 - 0.217
0.217 - 0.283
0.283 - 0.344
0.344 - 0.42
0.42 - 0.893

FTW ED Level

FTW Ward Level
0.185 - 0.238
0.238 - 0.276
0.276 - 0.303
0.303 - 0.339
0.339 - 0.417

FTW Ward Level

Figure 5.15: Graphical representation of the variable FTW at different levels
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UNEMP EdLevel
0 - 0.053
0.053 - 0.081
0.081 - 0.108
0.108 - 0.141
0.141 - 0.243

UNEMP ED Level

UNEMP Ward Level
0.035 - 0.057
0.057 - 0.078
0.078 - 0.094
0.094 - 0.11
0.11 - 0.131

UNEMP Ward Level

Figure 5.16: Graphical representation of the variable UNEMP at different levels
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LLTI ED Level
0.016 - 0.079
0.079 - 0.115
0.115 - 0.153
0.153 - 0.204
0.204 - 0.521

LLTI ED Level

LLTI Ward Level
0.069 - 0.098
0.098 - 0.118
0.118 - 0.135
0.135 - 0.151
0.151 - 0.178

LLTI Ward Level

Figure 5.17: Graphical representation of the variables at different levels



CHAPTER 5: Analysis of Real Data from UK Census 172

NOCAR ED Level
0.026 - 0.261
0.261 - 0.405
0.405 - 0.526
0.526 - 0.639
0.639 - 0.849

NOCAR ED Level

NOCAR Ward Level
0.2 - 0.354
0.354 - 0.465
0.465 - 0.516
0.516 - 0.578
0.578 - 0.638

NOCAR Ward Level

Figure 5.18: Graphical representation of the variable NOCAR at different levels
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5.3 Summary

To investigate the aggregation effects of common statistics actual data from the 1991

UK Census is used. Three levels of data are considered in this analysis; individual

level, Enumeration District (ED) level, and the Ward level. The individual level

data are taken from the 1991 SARs (Samples of Anonymised Records) that corre-

spond to a two percent sample of individuals counted in households and communal

establishments in Great Britain. The geographical indicator available is only the

district level to protect the confidentiality of information. The SAR Districts con-

sidered in the study are Camden, Hackney, Haringey, and Islington and are part of

London boroughs. For the aggregate level data, both the ED level and the Ward

level of the UK population census are extracted from the Small Area Statistics (SAS)

data base. Five variables were considered: age (percentage of individuals between

16 and 65, inclusive), ftw (percentage of full-time workers), uemp (percentage of

unemployed), llti (percentage of individuals with limiting long term illness), nocar

(percentage of individuals with no car).

There are three cases considered in this chapter, namely: Case 1 the individual

level data are from the SARs and second level data are from the ED level obtained

from the SAS; Case 2 the individual level data are from the SARs and the second

level data are from Ward the level obtained from the SAS; and Case 3 the ED level

and Ward level aggregate data both from the SAS.

Since there are five variables, there are ten possible correlations calculated from

all possible pairs of variables. The correlations increased in absolute values in going

from individual level to ED level except the correlation between age and unemp. The

decrease of the correlation between two variables can be explained by the aggregation

effects of the variances and covariance. The variance aggregation effect can be

defined as the ratio S
(2)
Y Y /S

(1)
Y Y and the covariance aggregation effect is S

(2)
Y X/S

(1)
Y X

(Steel, et. al. (1996)). If the aggregation effects of the variances of both variables

is smaller than the aggregation effect on the covariance, the result is an increase in

the correlation coefficient.
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The aggregation effects of the correlations at different levels do not display a

predictable pattern. Some correlations increase with aggregation in both ED and

Ward levels and at the aggregate levels others decrease. Not all of the correlations

increase with aggregation. This shows again that correlation does not necessarily

increase with aggregation. Some even change signs. However, if we look at the ab-

solute values and signs we see a different picture. Generally the correlation increase

in absolute value, but can change sign.

In both Case 1 and Case 2 level 1 pure correlations and regressions have values

similar to the correlations from individual level. Also the level 2 pure correlations

and regressions have values similar to the correlation and regression coefficients at

the aggregate level. The Pearson correlation and the regression coefficients increase

in absolute value as the number of zones is decreased.

In the third case when the data are from one source, all correlation coefficients

either increase when the values are positive and increase in absolute values when

the correlations are negative, except for correlation between age and llti where the

value change from positive at ED level and negative at Ward level.

The level 1 and level 2 pure correlation were similar to the corresponding Pearson

correlations at each level. All except one of the level 1 pure correlation are greater

in absolute value than the corresponding ED level Pearson correlation. This is the

case when variables age and unemp is analyzed.

In terms of the relationship between the intra-area correlation an the spatial

autocorrelation, the results shows that the Moran’s I with block proximity equal the

corresponding in intra-area correlation at one decimal point.

These results suggest that in applied setting it is important to calculate the

aggregation effects for the set of variables of interest for the scales of analysis being

considered. Even if individual level data are not available to calculate covariances

at the individual level, it is often possible to calculate estimates of the individual

level variances. The aggregation effects can be used to obtain estimates of the

intra-area correlation for each variable at each scale. The results here emphasize

that even small intra-area correlations can lead to major aggregation effects when
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the population sizes of the areal units are large. The results demonstrate that in

practice level 2 correlations need to be interpreted as reflecting relationships at that

level and have almost nothing to do with individual level relationships. They also

suggest that correlation should be calculated at the level of substantive interest, as

they are specific to the level used in the calculation. In an application the spatial

autocorrelation of the variables can be analyzed using the estimates of the intra-area

correlation, which reflect the average with-in areal unit spatial autocorrelation. The

spatial autocorrelation at the aggregate level can be analyzed directly.



Chapter 6

Data generation based on actual

boundaries

This chapter describes a second series of simulation experiments to look into the

characteristics of the relevant statistics considered in this thesis. While the values

of the variable are simulated, the areal units are real and so reflect at least some of

the complexity of the real world. The ED is used as the lowest level unit, effectively

acting as the individual level in the experiments.

6.1 Data Set Generator

To look deeper into the behavior of the distribution of pure statistics and other

common statistics, data sets are constructed with pre-determined characteristics

based on the ED and Ward boundaries used in Chapter 5. The data set generator

used in this study is based on Reynolds (1998). One desirable property of the data

set generator is that ‘it allows the user to create a set of variables with specific

levels of spatial autocorrelation (as measured by the Moran Coefficient) and Pearson

correlations ’ (Reynolds, 1998, pp.10).

Aside from creating data sets with specified autocorrelation, means, and vari-

ances of variables, Reynold’s data set generator can also generate ‘the entire matrix

of correlations between the variables (Reynolds and Amrhein, 1997). However, there

176
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are certain combinations of Moran’s I and Pearson correlations that are not possible.

For a more detailed description of the data set generator, refer to Reynolds (1998,

pp. 10-17) and Reynolds and Amrhein(1997).

The principles behind the Reynolds’ data generator are used to generate data

based on an actual region that is divided into enumeration districts (ED), the lowest

geographical level in the 1991 UK population census for which aggregate data are

released. These EDs are grouped into larger geographical areas called Wards. The

data generator is used to produce the values of the variables and the areal units are

the EDs and the Wards of the real data set described in Chapter 5. This enables

us to examine the properties of various statistics and analyses using more realistic

spatial structures than the data considered in Chapter 4. The region in Figure 6.1 is

composed of the districts; Camden, Hackney, Haringey, and Islington. It comprises

1904 EDs nested into 92 Wards, so that the average number of EDs per Ward is

20.7.

Ward boundaries
ED Boundaries

N

EW

S

The Region

Figure 6.1: The region with its boundaries

Based on the boundaries of the EDs sets of data are generated with some specified

properties. Figure 6.2 presents some realizations of variable X using the data set
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generator. Light colors indicate small values and, as values become larger the color

approaches black. The Moran’s I is denoted by Mo at ED level and uses the weight

matrix corresponding to ‘block ’ proximity, that is, wij=1 if ED i and ED j are in

the same Ward, and 0 otherwise. Looking at the figure, when the Mo at ED level

is 0.002, it seems that the distribution is random. A pattern emerged when the

Moran’s I is 0.1 as it seems that clusters form, especially the larger values. As the

degree of autocorrelation increases, clustering of values is observed. This clustering

is not unique, given a specific degree of autocorrelation different patterns emerged.

Figure 6.3 shows different clustering at autocorrelation equal to 0.8 as measured

by the Moran’s I (Mo). We will examine the distributions of some statistics for

different degrees of autocorrelation. Holding a specific degree of autocorrelation

constant, as well as some other properties such as the mean, variance, and initial

Pearson correlation will enable us to observe the aggregation effects of statistics such

as intra-area correlation, intra-area-cross correlation, pure regression, pure correla-

tion and some other statistics.

6.2 Case 1: Variables have the same spatial auto-

correlation

A set of data is generated with the same mean and variances, and specific Pearson

correlation for different degrees of autocorrelation. The first data set generated is

composed of two variables X an Y and to make the analysis simple, the variables

have the same mean (40) and the same variance (16) at the ED level. The variables

also have a fixed Pearson correlation equal to 0.3 but they are generated in such

a way that the autocorrelation of the variables are equal but varies (0.02, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8) as measured by Moran’s I and uses the weight matrix cor-

responding queen’s case lag 1, ie wij=1 if ED i and ED j are immediate neighbors

and 0 otherwise. To look at the distribution of the direct and pure statistics and

other statistics, the generation of the data is repeated 3000 times for each degree

of autocorrelation. The data sets are then filtered to select those data sets that
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Mo=0.002 Mo=0.3

Mo=0.1 Mo=0.4

Mo=0.2 Mo=0.5

Figure 6.2: Some realizations of the data generator

satisfied the specified population parameter values. Most of the data sets generated

are able to generate between 1090 to 2050 out of 3000 repetitions of the data set

generator that satisfy the required properties. Some combinations of Moran’s I and

the required Pearson correlation generated data for which only a few repetitions

satisfy the required properties. An example is when the required Moran’s I is 0.02

and the Pearson correlation is 0.3, out of 3000 repetitions, 2046 satisfied the require-

ment. When the required Moran’s I is 0.5 there are 1094 out of 3000 that satisfy the
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Mapwithdatar03m06p122.shp
24.56 - 33.268
33.268 - 37.367
37.367 - 40.692
40.692 - 44.45
44.45 - 52.903

Mapwithdatar03m06p168.shp
22.605 - 34.727
34.727 - 38.482
38.482 - 41.528
41.528 - 44.943
44.943 - 53.421

Mapwithdatar03m06p47.shp
21.409 - 34.113
34.113 - 37.959
37.959 - 41.189
41.189 - 44.669
44.669 - 53.411

Mapwithdatar03m06p54.shp
23.857 - 34.976
34.976 - 38.436
38.436 - 41.493
41.493 - 44.653
44.653 - 54.6

Figure 6.3: Some realizations of the data generator the same degree of autocorrelation

Mo=0.8

required values. The number of data points that satisfied the respective requirement

decreases as the required Moran’s I is increased. For each degree of autocorrelation

described above, 1000 data points were selected at random from those that satisfy

the required statistics and are analyzed in this subsection. All analyses are made

with 1000 data points for each level of autocorrelation.

6.2.1 Behavior of Some Statistics

Figure 6.4 shows the distributions of the unweighted variances of variable X and

covariances of variables X and Y at the Ward level for different degrees of autocor-

relations. The variance of Y have characteristics similar to the variance of X. These

statistics are not used in the computations of the statistics derived from the simple

multilevel model. They are used to show that the variance is affected by the degree

of autocorrelation of the variable. Recall that the initial variance of the variable
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Figure 6.4: Unweighted Variance of X and Covariance of X and Y at Ward level

X is 16.0. When the data are aggregated into Wards, the mean or median of the

variance reduce and the reduction is dependent on the degree of autocorrelation

of the variable as depicted by the figure. It can be noted also that the standard

deviation of the variance decreases as the autocorrelation of the variable decreases.

The distribution of the covariance of variables X and Y display similar pattern.

Figure 6.5 shows the distribution of the weighted variance of variable X at Ward
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level. Recall that the variance of variables X and Y is 16. The horizontal axis

displays the degree of autocorrelation denoted by (Mo) at ED level and the values

of the Moran’s I using the weight matrix corresponding to queen’s case lag 1.
0

50
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Mo=0.0 Mo=0.1 Mo=0.2 Mo=0.3 Mo=0.4 Mo=0.5 Mo=0.6 Mo=0.7 Mo=0.8

Weighted Variances of X at Different Levels of Autocorrelation

Figure 6.5: Weighted Variance X at Ward level

Moran I 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean 9.27 10.00 12.56 21.72 35.38 42.90 78.85 122.27 185.29
Median 6.67 8.26 10.75 18.45 31.77 37.53 75.36 125.60 185.22
Minimum 3.06 4.26 5.29 7.32 13.04 15.26 39.66 52.10 150.88
Maximum 33.90 28.79 37.11 58.02 79.34 105.10 138.72 165.44 219.25
Stan Dev 6.40 5.05 5.99 11.19 15.72 18.74 22.49 24.317 17.48

Table 6.1: Description of the distribution of Weighted Variances of X at Ward level

From here on, the Moran’s I denoted by (Mo) found in the horizontal axis of the

figures will mean that the proximity or weight matrix used corresponds to queen’s

case lag 1. The figure shows a non-linear trend in the increase of the weighted

variance as the level of autocorrelation increases. Beginning when (Mo)0=.02, the

standard deviation increase with the increase of the degree of autocorrelation up to

(Mo)=0.7 and decrease when (Mo)=0.8.
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Figure 6.6 shows the distribution of the weighted covariance of variables X and Y.

Similar to the weighted variance of X and weighted variance of Y (not shown), there

is a non-linear increase of the covariance as the level of autocorrelations increase. The

differences between the means and the medians are small. The standard deviations

of the weighted covariances increase with the levels of autocorrelations except when

Moran’s I is 0.8.
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Figure 6.6: Weighted Covariance at Ward level

Moran I 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean 2.76 3.10 3.68 6.57 10.90 12.74 23.67 36.94 54.94
Median 2.07 2.81 3.62 5.53 9.45 11.66 23.94 37.76 54.96
Minimum -0.82 -0.03 -1.77 -0.51 -0.66 -0.82 0.42 15.24 27.21
Maximum 10.22 9.35 9.17 22.88 24.02 31.73 46.70 59.34 76.81
Stan Dev 2.09 1.84 2.01 4.52 5.60 6.70 9.75 9.96 8.85

Table 6.2: Description of the Weighted Covariances at Ward level

Recall that the initial correlations of the variables at the ED level is 0.3. Figure

6.7 shows the distribution of the correlations at Ward level at different degrees of

autocorrelation. Not much differences are observed in the means and medians of
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Figure 6.7: Correlations at Ward level

Moran I 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.30 0.30
Median 0.32 0.31 0.33 0.32 0.32 0.32 0.33 0.31 0.29
Minimum -0.07 0.00 -0.07 -0.04 -0.02 -0.03 0.01 0.15 0.17
Maximum 0.65 0.66 0.56 0.62 0.61 0.64 0.56 0.45 0.46
Stan Dev 0.13 0.14 0.14 0.15 0.13 0.12 0.11 0.062 0.05

Table 6.3: Description of the direct correlations at different levels of autocorrelations

the Ward level correlations at different levels of autocorrelations which are all close

to or equal to the initial correlation of 0.3. There is not much difference in the

standard deviation when the Moran’s I of the variables are from 0.02 to 0.5 but it

starts to decrease starting when Moran’s I equals 0.6. These standard deviations

are higher than those given in Table 6.4, suggesting that variation in the number of

units within each zone may increase the standard deviation of the direct correlation

coefficient.

Figure 6.8 shows the distributions of the level 1 (ED level) and level 2 (Ward

level) variance components of variable X. When the degree of autocorrelations are

0.02, 0.1,0.2, and 0.3 then 85%, 85%, and 78% and 41% respectively have weighted
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variances at Ward level that are less than the initial variance of 16.0. From Chapter

3, the estimate for the level 2 variance component denoted by Λ̂
(2)
XX is

S
(2)
XX

−S
(1)
XX

N̄∗−1
,

where S
(2)
XX is the weighted variance at Ward level and S

(1)
XX is the variance at ED

level and is equal to 16.0. This explains why the same percentages in each degree
6
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Figure 6.8: Level 1 and Level 2 Variance components of X

of autocorrelation will have negative level 2 variance components. A similar phe-

nomenon is also observed in variable Y. When the degree of autocorrelations are 0.4
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and 0.5, there are 7% and 2% level 1 variances greater than the initial variance of

16.0. When the degree of autocorrelation is 0.6, 0.7, and 0.8, the variances are all

less than the initial variance. The negative estimated level 2 variance component

phenomenon will be examined later in the chapter. The mean and median of the

level 1 variance component decrease in a non-linear way as the degree of autocorre-

lation increases. It can be seen from the figure that the standard deviations increase

with the degree of autocorrelation. In terms of the mean and median, the level 2

variance components behaves in the opposite way from that of the level 1 variance

component. However, the standard deviations of the level 2 variance component

behave in the same way as that of the level 1 variance component. These results

are due to the result (3,31) in which the estimated variance components equal the

original variance calculated using level 1 data.

Figure 6.9 shows the distribution of the level 1 and level 2 pure correlation

coefficients. The mean level 1 pure correlation at different degrees of autocorrelation

is not far from the Pearson correlation at ED level but the standard deviation

becomes larger as the degree of autocorrelation increases. This means that this

statistic has less chance of having a value far from the initial correlation when

aggregated when the degree of autocorrelation is low and this chance increases as

the degree of autocorrelation increases. For level 2 pure correlations, only three

cases are presented since the rest do not make sense because, as stated before,

there are level 2 variance components for either or both variables X and Y having

negative results. There are even cases in which the estimated correlation at Ward

level have values greater than 1.0 or less than -1.0 which is not a characteristic of

a correlation coefficient. From these three cases level 2 pure correlation we see the

reverse pattern when it comes to the standard deviation, namely it decreases as the

degree of autocorrelation increases. The standard deviation of values of the statistics

decrease as the degree of autocorrelation increase.

Figure 6.10 shows the distribution of level 1 and level 2 pure regression coefficient.

A pattern similar to the pure correlation coefficients is observed.
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Figure 6.9: Level 1 and Level 2 Pure correlations

6.2.2 Aggregation Effects

Figure 6.11(a) shows the distributions of the variance aggregation effects (S
(2)
XX/S

(1)
XX)

for the weighted variances of X at different degrees of autocorrelations. Here S
(2)
XX

is the weighted variance at Ward level and S
(1)
XX the variance at ED level. Figure

6.11(b) shows the covariance aggregation effects (S
(2)
Y X/S

(1)
Y X) at different degrees of

autocorrelations, where S
(2)
Y X and S

(1)
Y X are the covariances at Ward level and ED
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Moran I 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Median 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Minimum .29 0.29 0.29 0.27 0.27 0.25 0.23 0.22 0.15
Maximum 0.32 0.31 0.33 0.33 0.35 0.34 0.36 0.39 0.43
Stan Dev 0.004 0.005 0.01 0.01 0.01 0.02 0.03 0.03 0.05

Table 6.4: Description of the Level 1 Pure Correlation at different levels of autocor-
relations

Moran I 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean -0.24 -0.27 -0.19 0.15 0.50 0.43 0.34 0.32 0.30
Median -0.30 -0.28 -0.20 0.08 0.46 0.36 0.34 0.31 0.30
Minimum -0.63 -1.27 -2.64 -3.62 -0.69 -0.36 -0.10 0.12 0.16
Maximum 1.06 0.69 6.00 4.68 3.90 6.21 0.67 0.46 0.45
Stan Dev 0.23 0.25 0.88 0.97 0.60 0.66 0.16 0.07 0.05

Table 6.5: Description of the Level 2 Pure Correlation at different levels of autocor-
relations

level respectively.

Moran I 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Var(X)
Mean 0.58 0.63 0.78 1.36 2.21 2.68 4.93 7.64 11.58
Median 0.42 0.52 0.67 1.15 1.98 2.35 4.71 7.85 11.58
Minimum 0.19 0.27 0.33 0.46 0.81 0.95 2.48 3.26 9.43
Maximum 2.12 1.80 2.32 3.63 4.96 6.57 8.67 10.34 13.70
Stan Dev 0.40 0.32 0.37 0.70 0.98 1.17 1.41 1.52 1.09

Cov(Y,X)
Mean 0.57 0.65 0.77 1.37 2.27 2.66 4.93 7.70 11.45
Median 0.43 0.59 0.75 1.15 1.97 2.43 4.99 7.87 11.45
Minimum -0.17 -0.01 -0.37 -0.11 -0.14 -0.17 0.09 3.18 5.67
Maximum 2.13 1.95 1.91 4.77 5.00 6.61 9.73 12.36 16.00
Stan Dev 0.44 0.38 0.42 0.94 1.17 1.40 2.03 2.08 1.84

Table 6.6: Description of Variance of X and Covariance (Y,X) at different degrees of
autocorrelations

Both Figure 6.11 and Table 6.6 show a non-linear increasing trend in the variance

and covariance aggregation effects as the degree of autocorrelation increases. As

before the proximity matrix used in the computation of the Moran’s I is the queen

lag 1.

Figure 6.12 shows the aggregation effects of the variances of variable X at different



CHAPTER 6: Data generation based on actual boundaries 189

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Mo=0.0 Mo=0.1 Mo=0.2 Mo=0.3 Mo=0.4 Mo=0.5 Mo=0.6 Mo=0.7 Mo=0.8

Level 1 Pure Regressions at Different Levels of Autocorrelation

Initial Regression 0.3

0.
0

0.
5

1.
0

1.
5

Mo=0.6 Mo=0.7 Mo=0.8

Level 2 Pure Regressions at Different Levels of Autocorrelation

Initial Regression 0.3

Figure 6.10: Level 1 and Level 2 Pure Regression Coefficients

levels of autocorrelations with two different proximity matrices used in computing

the Moran’s I. The group on the left shows the relationship between the variance

effects of X with Moran’s I calculated using a proximity matrix of queen lag 1. There

are low negative linear correlations between aggregation effects and the correspond-

ing Moran’s I. The right group shows the relationship between the aggregation effect

and the Moran’s I with block proximity. This time there are very strong positive



CHAPTER 6: Data generation based on actual boundaries 190

(a)

0
2

4
6

8
10

12
14

Mo=0.0 Mo=0.1 Mo=0.2 Mo=0.3 Mo=0.4 Mo=0.5 Mo=0.6 Mo=0.7 Mo=0.8

Variance Aggregation Effects of X at Different Degrees of Autocorrelation

(b)

0
5

10
15

Mo=0.0 Mo=0.1 Mo=0.2 Mo=0.3 Mo=0.4 Mo=0.5 Mo=0.6 Mo=0.7 Mo=0.8

Covariance Aggregation Effects at Different Degrees of Autocorrelation

Figure 6.11: Variance and Covariance Aggregation Effects at Different degrees of Au-

tocorrelations

linear associations between the aggregation effects and Moran’s I. In fact, the first

three on the top of the groups in the right have correlations of 0.99 and the rest

have perfect positive linear correlations of 1.0.

Similar results were observed with the covariance aggregation effect.

Figure 6.13 shows the relationship between aggregation effects on the variances
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Figure 6.12: Variance Aggregation Effects versus Moran’s I with Proximity matrix (a)

Lag1 (b) ”block”

and the corresponding Moran’s I on the full range of autocorrelations. Figure 6.13(a)

shows the plots of the aggregation effects on the variances against the Moran’s I with

lag 1 proximity. Figure 6.13(b) shows the aggregation effects on the variances of X

against Moran’s I with block proximity and displays a perfect positive correlation.

These results show that it is the average autocorrelation within an areal unit

that determines the aggregation effect on variances.

6.2.3 Intra-Area Correlations and Intra-Area Cross-Correlations

Figure 6.14 shows the relationship between intra-area correlations of variable X and

the Moran’s I using block proximity at different levels of autocorrelations. The

correlations ranges from 0.992 to 1.00 which supports the relationship between the

intra-area correlations and the Moran’s I using block proximity matrix.

Figure 6.15 shows the relationship between the intra-area cross-correlations and

the bivariate Moran’s I. This shows the almost perfect positive correlations between
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Figure 6.13: Combined Variance Effects versus Moran’s I with Proximity matrix (a)

Lag1 (b) ”block”

the two statistics of the pairs of variables with low degrees of autocorrelations, and

in the cases where the pairs of variables have high degree of autocorrelations, there

is a perfect positive linear relationships.

Summary

In this section data are generated with the same mean and variances, and specific

Pearson correlation for different degrees of autocorrelation. The first data set is

composed of two variables X an Y and to make the analysis simple, the variables

have the same mean (40) and the same variance (16) at the ED level. The variables

also have a fixed Pearson correlation equal to 0.3 but they are generated in such

a way that the autocorrelation of the variables are equal but varies (0.02, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8) as measured by Moran’s I that uses the weight matrix

corresponding queen’s case lag 1, ie wij=1 if ED i and ED j are immediate neighbors

and 0 otherwise. The following were observed:
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Figure 6.14: Intra-area correlations versus Moran’s I with block proximity

The mean level 1 pure correlation at different degrees of autocorrelation is not far

from the Pearson correlation at ED level but the standard deviation becomes larger

as the degree of autocorrelation increase.This means that the level 1 pure correlation

has less chance of having a value far from the initial correlation when aggregated

when the degree of autocorrelation is low and this chance increases as the degree

of autocorrelation increases. In the case of the level 2 pure correlation, when both

variables have low to medium autocorrelations some cases are observed in which

the estimated correlation at Ward level have values greater than 1.0 or less than

-1.0, which is not a characteristic of a correlation coefficient. However, the standard

deviation of the level 2 pure correlations decrease as the degree of autocorrelation

increase.

There is a very strong positive relationships between the variance aggregation

effects defined by (S
(2)
XX/S

(1)
XX) and the intra-area correlation with ”block” proximity.
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Figure 6.15: Intra-area cross-correlations versus Bivariate Moran’s I with block prox-

imity

There is almost perfect positive correlations between the intra-area cross-correlations

and the bivariate Moran’s I with low degrees of autocorrelations, and in the cases

where the pairs of variables have high degree of autocorrelations, there is a perfect

positive linear relationships.

6.3 Different Initial correlations

Data sets are generated in such a way that the variables X and Y have the same mean

(40) and the same variance (16) at the ED level, the same degrees of autocorrelations

but the initial correlations differ. The values on the initial correlations are 0.1, 0.3,

0.5, 0.7,and 0.9.

For the next figures, the following numbers in the horizontal axis of the the figure

means: 0 implies Mo=0.0, 1 implies Mo=0.1, 2 implies Mo=0.2, 3 implies Mo=0.3,

4 implies Mo=0.4, 5 implies Mo=0.5, 6 implies Mo=0.6, 7 implies Mo=0.7, 8 implies
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Mo=0.8.
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Figure 6.16: Unweighted Variance of X at Ward level with different initial correlations

at different degrees of autocorrelations

Figure 6.16 shows the distributions of the unweighted variances of variable X at

Ward level with different initial correlation and different degrees of autocorrelation.

The variance is not affected by the initial correlation. In all cases the unweighted

variance at ward level, regardless of the initial correlation at ED level, depends on

the degree of autocorrelation. As the degree of autocorrelation increases, the change

of the variance decreases but the standard deviation increase with the degree of

autocorrelation.

Figure 6.17 shows the distributions of the unweighted covariances of variables

X and Y at Ward level with different initial correlation and different degrees of

autocorrelation. Unlike the variance, the Ward level covariance is affected by the

initial correlation. Figure 6.18 shows the distributions of the covariance at Ward

level at different initial correlations at different degrees of autocorrelations. The

distributions have the same trend as the unweighted covariance at Ward level.

Figure 6.19 shows the behavior of the aggregated correlations (Ward level corre-
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Figure 6.17: Unweighted Covariance of X and Y at Ward level with different initial

correlations at different degrees of autocorrelations
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Figure 6.18: Aggregated weighted covariance with different initial correlations at dif-

ferent degrees of autocorrelations
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Figure 6.19: Weighted Correlations at Ward level with at different initial correlations

and different degrees of autocorrelations
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Figure 6.20: Level 1 Pure Correlations at different initial correlations at different

degrees of autocorrelations
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lations) with different initial correlations at the ED level. In terms of the standard

deviations of the different groups (different initial correlations), the patterns are sim-

ilar, the standard deviations tend to decrease when the autocorrelations get larger.

When the data have high initial correlation (0.9), the magnitude of the correspond-

ing standard deviations is a smaller than the rest of the group. The mean and

median for each group fluctuate around their corresponding initial correlation.

Figure 6.20 shows the distribution of level 1 pure correlations with different initial

correlations at different levels of autocorrelations. The figure is grouped according

to the initial correlations given by the values of r in the figure. The boxplots in

each group represents the distributions at different levels of autocorrelation of 0.02,

0.1,...,0.8 respectively. Looking at the figure, each group of the groups have similar

characteristics, one of which is that the variation of the level 1 pure correlations

increases as the degree of autocorrelation increases. It can also be observed that

as the initial correlation gets bigger, the corresponding variation in each degree of

autocorrelation of the level 1 pure correlations decrease.
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Figure 6.21: Level 2 Pure Correlations at different initial correlations at different

degrees of autocorrelations
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Figure 6.22: Level 1 Pure Regression at different initial correlations at different de-

grees of autocorrelations

Figure 6.21 shows the distributions of level 2 pure correlations for data with initial

correlations equal to the values of r statistics in the figure. There are only three

boxplots in each group, corresponding to autocorrelation measures of 0.6, 0.7, and

0.8, respectively. They are the ones shown because the variables with autocorrelation

measure of below 0.6, have several undefined level 2 pure correlations and values

more than 1 and less than 1 which is not a characteristic of a correlation coefficient.

It can be observed that regardless of the initial correlations of the variables, the

variation decreases as the degree of autocorrelation increases.

Figure 6.22 shows the distribution of level 1 pure regressions with different initial

correlations at different levels of autocorrelations. Looking at the figure, each group

has similar characteristics, one of which is that the variation of the level 1 pure cor-

relations increases as the degree of autocorrelation increases. It can also be observed

that as the initial regression gets bigger, the corresponding variations in each degree

of autocorrelation of the level 1 pure correlations decreases. The behavior is very

similar to the behavior of level 1 pure correlation
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Figure 6.23: Level 2 Pure Regression at different initial correlations at different de-

grees of autocorrelations

Figure 6.23 shows the distributions of level 1 pure regression for data with initial

correlations equal to the values of r statistics in the figure. Looking at the figure,

each group has similar characteristics, one of which is that the variation of the level

1 pure correlations increase as the degree of autocorrelation increase. It can also be

observed that as the initial correlation gets bigger, the corresponding variations in

each degree of autocorrelation of the level 1 pure regression decreases.

To compare the behavior of correlation at Ward level, level 1 pure correlation,

and level 2 pure correlation, the thee statistics were combined in one graph. Figure

6.24 shows the distributions of the three statistics for the data sets where the initial

correlation at ED level is 0.3 at different degrees of autocorrelation. The first group

of boxplots is the distribution of the correlations at Ward level with measures of

autocorrelations 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. Simi-

larly, the second group are the boxplots for level 1 pure correlation at corresponding

degrees of autocorrelations. The third group consists of the plots of level 2 pure

correlation. Only the variables with measures of autocorrelation equal to 0.6,0.7,
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Figure 6.24: Distributions of the three statistics at initial correlations of 0.3 at different

degrees of autocorrelations

and 0.8 are included.

Figure 6.25 shows the distributions of aggregation effects of the weighted covari-

ances at different initial correlations and different degrees of autocorrelation. The

mean or the median have similar nonlinear increasing trend even if the data sets

have different initial correlations. The corresponding standard deviations as the de-

gree of autocorrelation increase seems to increase with aggregation except when the

degree of autocorrelation is 0.9 at different initial correlations.

To look deeper the behavior of the generated data, the graph for the aggregation

effect was revised so that the boxplots are categorized in terms of the Moran’s I.

Figure 6.26 shows the behavior of the generated data. The standard deviations

decrease as the initial correlations becomes bigger but the corresponding magnitude

of the standard deviations become bigger as the degree of autocorrelation increase.
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Figure 6.25: Aggregation Effects at different initial correlations at different degrees of

autocorrelations
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Figure 6.26: Aggregation Effects at different degrees of autocorrelations at different

initial correlations
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6.3.1 Relationship between some statistics and the Moran’s

I with different proximity matrices:

Figure 6.27 shows the unweighted variance plotted against Moran’s I. The upper

portion of the figure shows the relationship between the unweighted variance and

Moran’s I with Lag1 proximity at different initial correlations at ED level while the

lower portion the relationship between the unweighted variance and the Moran’s

I with Block proximity. Recall that ‘block ’ proximity corresponds to proximity

weights, wij=1 if ED i and ED j are in the same Ward, and 0 otherwise.
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Figure 6.27: Relationship between Unweighted Variance and the Moran’s I with Lag 1

and Block Proximity at different initial correlations at different degrees of autocorre-

lations. Note: The labels at the top of the top of the boxes are the initial correlations:

from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes are the vari-

ances and the horizontal axes are the Moran’s I with values ranges from 0.0 to 0.8

and the upper boxes with Lag1 Proximity and the lower boxes with Block Proximity

Figure 6.28 shows the relationship between weighted variances plotted against the
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Figure 6.28: Relationship between Weighted Variance and the Moran’s I with Lag

1 and Block Proximity at different initial correlations at different degrees of auto-

correlations. Note: The labels at the top of the top of the boxes are the initial

correlations: from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes

are the Weighted Variance and the horizontal axes are the Moran’s I with values

ranges from 0.0 to 0.8 and the upper boxes with Lag1 Proximity and the lower boxes

with Block Proximity

Moran’s I at different proximity matrices. In both cases of the proximity matrices,

there is a relationship. The big difference is that when the proximity matrix used

is Block proximity, there is a perfect correlation between the weighted variance and

the Moran’s I regardless of the initial correlation at ED level.

Figure 6.29 shows the relationship between the unweighted covariance and the

Moran’s I. When the proximity matrix is Lag 1 there is a non-linear relationship

between the two statistics. When the proximity matrix is Block proximity a strong

linear relationship is displayed.
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Figure 6.29: Relationship between Unweighted Covariance and the Moran’s I with

Lag 1 and Block Proximity at different initial correlations at different degrees of

autocorrelations. Note: The labels at the top of the top of the boxes are the initial

correlations: from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes

are the Unweighted Covariance and the horizontal axes are the Moran’s I with values

ranges from 0.0 to 0.8 and the upper boxes with Lag1 Proximity and the lower boxes

with Block Proximity

Figure 6.30 shows the relationship between the weighted covariance and the

Morans’I with different proximity matrices.

Figure 6.31 shows the relationship between the Ward level correlation and the

Morans’I with different proximity matrices. We see that the Ward level correlation is

affected by the ED level correlation. For a given ED level correlation the relationship

with Moran’s I with Lag 1 proximity is evident in the SD which decreases as the

Moran’s I increases. This effect is more pronounced in the Block proximity case.

There does not appear to be a relationship between the mean of the Ward level
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Figure 6.30: Relationship between Weighted Covariance and the Moran’s I with Lag

1 and Block Proximity at different initial correlations at different degrees of auto-

correlations. Note: The labels at the top of the top of the boxes are the initial

correlations: from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes

are the Weighted Covariance and the horizontal axes are the Moran’s I with values

ranges from 0.0 to 0.8 and the upper boxes with Lag1 Proximity and the lower boxes

with Block Proximity

correlation and the Moran’s I for either of the choices of proximity matrices.

Summary

A set of data is generated in such a way that variables X an Y have the same

mean (40) and the same variance (16) at the ED level. The autocorrelation of the

variables are equal but vary (0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) as measured

by Moran’s I using Lag 1. This time the initial Pearson correlations are varied (0.1,

0.3, 0.5, 0.7,and 0.9).

The weighted variance is not affected by the initial correlation, regardless of the
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Figure 6.31: Relationship between Correlations and the Moran’s I with Lag 1 and

Block Proximity at different initial correlations at different degrees of autocorrela-

tions. Note: The labels at the top of the top of the boxes are the initial correlations:

from left to right r=0.1, r=0.3, r=0.5, r=0.7, r=0.9; The vertical axes are the Corre-

lations and the horizontal axes are the Moran’s I with values ranges from 0.0 to 0.8

and the upper boxes with Lag1 Proximity and the lower boxes with Block Proximity

initial correlation at ED level, but depends on the degree of autocorrelation. As

the degree of autocorrelation increases, the change of the variance decreases but the

standard deviation increase with the degree of autocorrelation.

The mean and median of the direct correlation for each group fluctuate around

their corresponding initial correlation. In terms of the standard deviations of the

different categories corresponding to different initial correlations, the patterns are

similar, that is the standard deviations tends to decrease when the autocorrelations

get larger. When the data have high initial correlation (0.9), the magnitude of the

corresponding standard deviations is smaller than the rest of the cases.
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The mean of the level 1 pure correlation is not affected by the initial correla-

tion of the two variables and the initial degree of autocorrelation as long as the

autocorrelations of the two variables are almost equal. The variation of the level 1

pure correlations increase as the degree of autocorrelation increases. It can also be

observed that as the initial correlation gets bigger, the corresponding variation in

each degree of autocorrelation of the level 1 pure correlations decreases.

In terms of the aggregation effect, the standard deviations decrease as the ini-

tial correlations becomes bigger but the corresponding magnitude of the standard

deviations become bigger as the degree of autocorrelation increases.

6.4 Case 2: Variables have different spatial auto-

correlation

This experiment examines the behavior of statistics when the degree of autocorre-

lation of one variable is different from the other. The data are generated in such a

way that variable X has autocorrelation of 0.4 as measured by Moran’s I with Lag 1

proximity matrix and variable Y with Moran’s I at 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, and 0.8. The initial correlation in all cases is 0.3 and both variables have mean

40 and variance 16 in all cases.

Figure 6.32 shows the distribution of the unweighted variance of variable Y and

the covariance of variables X and Y at Ward level with Y having different degrees

of autocorrelation as described above. The figure support the claim that the change

in variance is moderated by the level of autocorrelation (Gotway and Young, 2002).

The mean of the covariance of variables X and Y seems to be constant and the

standard deviation seems to increase as the degree of autocorrelation increases.

These will have some effects on the other statistics. The change of the variance of

variable X is not shown but the mean variance of X is 3.8653.

Similar behaviors were observed for the corresponding weighted variance and

covariance at Ward level.

Figure 6.33 shows the distribution of the correlation at Ward level with differ-
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Figure 6.32: Unweighted Variance of Y and Covariance of X and Y at Ward level

ent degrees of autocorrelation in variable Y. The mean decreases as the level of

autocorrelation of Y increase and the standard deviation in general decrease.

Figure 6.34 shows the distributions of level 1 and level 2 variance components

for variable Y. The mean of the level 1 variance component decrease with the degree

of autocorrelation. The standard deviation also decrease with the degree of auto-

correlation. The mean of the level 2 variance component increases as the degree



CHAPTER 6: Data generation based on actual boundaries 210

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Mo=0.02 Mo=0.1 Mo=0.2 Mo=0.3 Mo=0.4 Mo=0.5 Mo=0.6 Mo=0.7 Mo=0.8

Weighted Correlations at Ward level 

Initial Correlation (0.3)

Figure 6.33: Correlation at Ward level with different autocorrelation

of autocorrelation increases. When the Moran’s I is 0.02, there are values of the

variance components at level 2 that are negative including the mean, in fact there

are more than 61% of the values that are negative. When the Moran’s I is 0.1, 5%

have negative values. This is observed because this case corresponds to effectively

zero within Ward correlation. When the degree of autocorrelation is above 0.2, no

negative values are observed. The mean and the standard deviation increase with

the degree of autocorrelation increase.

Figure 6.35 shows the distribution of level 1 pure correlation. The mean of the

level 1 pure correlation increases with the increase in the autocorrelation of variable

Y. The mean, which is a bit lower than the initial Pearson correlation, approaches 0.3

but has a sudden nonlinear increase when the degree of autocorrelation of variable Y

goes from 0.6 to 0.8. The standard deviation of the level 1 pure coefficient increase

with the degree of autocorrelation of the variable Y.
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Figure 6.34: Level 1 and Level 2 Variance component of variable Y

Level 2 pure coefficients have unusual values when the degree of autocorrelation

of variable Y are Mo=0.02, 0.1, 0.2. As noted before, when the autocorrelation

is low the level 2 variance component is close to zero and negative estimates can

be obtained using the moments approach. When the variable Y has Mo=0.02 to

Mo=0.04 the mean fluctuates around 0.5 and the values range from -1.369 to 6.748.

When variable Y has Mo=0.5 to Mo=0.8 the mean decreases as the degree of au-
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Figure 6.35: Level 1 Pure Correlation at different degrees of autocorrelation in Y

tocorrelation increase and the values are respectively, 0.32682, 0.19400, 0.13209,

0.07860.

Figure 6.36 shows the distribution of level 1 and level 2 pure regression. The

pattern as shown in the figure is similar to the previous figure.

Relationship between some statistics and the Moran’s I with different

proximity matrices:

Figure 6.37 shows the scatter plot between the different Moran’s I with ‘block ’

proximity of variable Y and the corresponding intra-area correlation. There is a

very strong correlation between the IAC and the Moran’s I with ‘block ’ proximity.

Summary

This experiment examines the behavior of pertinent statistics when the degree of

autocorrelation of one variable is different from the other. The data are generated

in such a way that variable X has autocorrelation of 0.4 as measured by Moran’s I
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Figure 6.36: Level 1 and Level Pure Regression

with Lag 1 proximity matrix and variable Y with Moran’s I at 0.02, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, and 0.8. The initial correlation in all cases is 0.3 and both variables

have mean 40 and variance 16 in all cases.

The mean of the direct correlations decreases as the level of autocorrelation of

Y increases and the standard deviation in general decreases.

The mean of the level 1 pure correlation increases with the increasing degree of
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Figure 6.37: Scatter Plot of the Different Moran’s I and the Corresponding IAC

autocorrelation of variable Y. The mean which is a bit lower than the initial Pearson

correlation approaches 0.3 but has a sudden nonlinear increase when the degree of

autocorrelation of variable Y goes from 0.6 to 0.8. The standard deviation of the

level 1 pure coefficient increases with the degree of autocorrelation of the variable

Y.

Similar patterns are observed with the level 1 and level 2 pure regressions.

6.5 Summary

To look deeper into the behavior of the pure statistics and other common statistics,

data sets are constructed with pre-determined characteristics using a data set gen-

erator based on Reynolds (1999). For more detailed description of the data set gen-

erator, refer to Reynolds (1999, pp. 10-17) and Reynolds and Amrhein(1997). The

principles behind this data generator are used to generate data based on an actual



CHAPTER 6: Data generation based on actual boundaries 215

region that was divided into enumeration districts (EDs), the lowest geographical

level in the 1991 UK population census for which aggregate data are released. These

EDs are grouped into larger geographical areas called Wards. The region consid-

ered in this study is composed of the districts; Camden, Hackney, Haringey, and

Islington. It comprises 1904 EDs nested into 92 Wards.

There were two general cases considered in this study, namely: Case 1, in which

the variables have the same spatial autocorrelations; and Case 2 in which the vari-

ables have different spatial autocorrelations. For the first case, the data set being

generated is composed of two variables X an Y and to make the analysis simple, the

variables have the same mean(40) and the same variance (16) at the ED level. The

variables also have a fixed Pearson correlation equal to 0.3 but they are generated

in such a way that the autocorrelation of the variables are almost equal but varies

(0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) as measured by Morans I and uses the

weight matrix corresponding to queens case lag 1, ie wij=1 if ED i and ED j are

immediate neighbors and 0 otherwise. The generation of the data is repeated 3000

times for each degree of autocorrelation to generate the distributions of the pure

statistics and other statistics. For each degree of autocorrelation described above,

1000 data points were selected at random from those that satisfy the required statis-

tics and were analyzed. All analyses are made with 1000 data points in each level

of autocorrelation.

Case 1: The variables have the same spatial autocorrelation

The mean level 1 pure correlation at different degrees of autocorrelation is not

far from the Pearson correlation at ED level but the standard deviation becomes

larger as the degree of autocorrelation increases. This means that the level 1 pure

correlation has less chance of having a value far from the initial correlation when ag-

gregated for cases when the degree of autocorrelation is low and this chance increases

as the degree of autocorrelation increases. In the case of level 2 pure correlation,

when both variables have low to medium autocorrelations, some cases are observed

in which the estimated correlations at Ward level have values greater than 1.0, or

less than -1.0 which is not a characteristic of a correlation coefficient. However,
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the standard deviation of the level 2 pure correlations decreases as the degree of

autocorrelation increases.

Similar patterns are observed with the pure regression coefficients. However, the

mean level 1 pure regression is below the initial regression coefficient of 0.3. Extreme

values were observed when the degree of autocorrelations of both variables are low.

There is a very strong positive relationships between the variance aggregation

effects defined by (S
(2)
XX/S

(1)
XX) and the intra-area correlation with ”block” proximity.

There is almost perfect positive correlations between the intra-area cross-correlations

and the bivariate Moran’s I with low degrees of autocorrelations, and in the cases

where the pairs of variables have high degree of autocorrelations, there is a perfect

positive linear relationships.

Case 2: The variables have different spatial autocorrelation

The mean of the direct correlations decrease as the level of autocorrelation of Y

increases and the standard deviation in general decrease.

The mean of the level 1 pure correlation increases with the increase in the degree

of autocorrelation of variable Y. The mean is a bit lower than the initial Pearson

correlation and approaches 0.3, but has a sudden nonlinear increase when the degree

of autocorrelation of variable Y goes from 0.6 to 0.8. The standard deviation of the

level 1 pure coefficient increases with the degree of autocorrelation of the variable

Y.

A Similar pattern is observed with the level 1 and level 2 pure regressions.
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Conclusion

Analysis using spatial data is a multi-disciplinary subject attracting the attention

of statisticians, geographers, physical and social scientists. The results of statistical

analyses on the data available for areal units vary according to the definition of the

areal units. This phenomenon is referred to as the modifiable areal unit problem

(MAUP). The MAUP reflects the the effects of scale and zoning. The scale effect

refers to the changes in statistics that occur as the number of areal units into which

the region is divided changes, whereas the zoning effects refers to the variation in

results as the boundaries of the areal units change for a fixed scale. This study

focuses on on the scale effect, although some limited exploration of the zoning issue

is conducted.

Statistical analysis based on data aggregated over spatial units often produce

results that are very different from those obtained from analyzing corresponding

individual or household level data (Steel, Holt and Tranmer, 1996). One of the

reasons that it is necessary to aggregate data is to reduce the volume of data to

be processed. Another reason is to protect the confidentiality of personal data

(Openshaw and Alvanides, 1996). A further reason is that there may be no interest

in purely individual level relationships, but in relationships at some higher level or

scale.

A large amount of the research on the MAUP has focused on revealing the

problem and has been devoted to assessing the magnitude and impact on standard

217
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statistics such as correlation and regression coefficients. The MAUP is due to the

lack of independence or the presence of spatial correlation between different units

in the population. Multilevel modeling is now a popular approach to reflect the

association between different population units. This thesis examines some statistics

derived from a simple multilevel model to clarify the causes of one aspect of the

MAUP, the scale or aggregation effect. The thesis also look into the behavior of the

the so called ”pure statistics”, that can be calculated from the results of a simple

multilevel model and attempts to provide information about effects at a particular

level after removing effects from the other levels.

The thesis is novel in that pure coefficients and variance components are inves-

tigated using artificially-generated data as well as real data. Also, pure statistics

are compared with direct statistics and connection between the MAUP, multilevel

model and spatial autocorrelation are formulated.

7.1 Summary and Conclusions

Issues associated with scale effects in a simple multilevel model are considered in

this thesis. The thesis focuses on the relationship between a simple multilevel model

and a key aspect of the MAUP; the scale effect, and spatial autocorrelation. The

flow of the thesis includes an introduction followed by chapters giving a review of

the literature on the MAUP and then theoretical aspects of the possible causes of

the MAUP from a multilevel perspective. Three empirical chapters then follow.

Several experiments using a number of data sets are conducted in this thesis to

analyze the behaviors of the direct statistics and pure statistics. The experiments

are based on simulated data, real data and simulations based on real data. The first

of the three experiments examines the results for direct statistics and pure statis-

tics derived from a simple multilevel model using artificially-generated data sets in

a 100x100 square grid. The next chapter examines the results on direct and pure

statistics using real data drawn from two districts of London Boroughs. The sources

of data used are the 1991 UK Census and 1991 Sample of Anonimized Records
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(SARs). The analytical approach is then repeated using artificially-generated data

based on the work of Reynolds (1998). Several situations are considered, involving

varying the spatial autocorrelation and initial correlations of variables. These ex-

periments examine the impact of varying scale and the degree of autocorrelation on

the distribution of the statistics, including the mean and median of the distribution

and the dispersion as reflected standard deviations and the boxplots.

The experiments in this thesis enable us to investigate a number of questions

concerning scale effects.

• What is the impact of spatial autocorrelation on the scale effect on standard,

or direct, correlation and regression coefficients? In particular we investigate

how the level of spatial autocorrelation impacts the distribution of correlation

and regression coefficients including the mean and median of the distribution

and the dispersion as reflected in the standard deviations and boxplots. These

results add to the evidence concerning the MAUP.

• Are the so-called pure correlation and regression coefficients obtained from the

simple multilevel model affected by the MAUP?

• What is the impact of spatial autocorrelation on the scale effect of estimated

pure correlation and regression coefficients? In particular we investigated how

the level of spatial autocorrelation impacts the distribution of correlation and

regression coefficients including the impact on the mean and median of the

distribution and the dispersion as reflected in the standard deviation and box-

plots.

• Is the impact of the MAUP on the pure correlation and regression coefficients

less than, or different from, that on the direct coefficients?

• Can we predict the impacts of scale and zoning on features of the distribution of

the direct or pure coefficients? This question included finding some indicators

may include intra-class correlation.

Here we summarize how the results have provided evidence on the questions.
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From Chapter 2 we have the first two aggregation rules (Amrhein, 1995) are:

• The mean does not display any pronounced aggregation effects (scale or zona-

tion) at any level of aggregation used in the study.

• The variance does not display any pronounced scale effect beyond those ex-

pected from the decrease in the number of observations. However, it was noted

that scale-specific variance values cannot be imputed to other scales without

adjusting for the change in the number of reporting units.

Also, from Chapter 2 we have Steel and Holt (1996) rules of random aggregation:

• The expected value of weighted group-level statistics are not affected by ag-

gregation and that any observed change is due to random variation.

• The variance of the weighted group-level statistics are affected mainly by the

number of groups in the analysis. The variation will be high when the number

of groups is small.

The above rules correspond to situations where there is no spatial autocorrelation

present. The following results will extend the above results, by considering situations

in which there is spatial autocorrelation present.

7.1.1 The Mean and the variance

The population weighted group level mean is identical to the mean calculated at

the individual level (see equation 3.13, p23) and is not affected by aggregation and

the degree of autocorrelation. This is confirmed empirically. Consequently and

population weighted mean and its variance are not affected by aggregation.

The scale effect on the population weighted variance arises because as scale

increases the contribution of the level 2 variance component increases from 1 to

approximately N̄∗, whereas the contribution of the level 1 variance component is

virtually unchanged (see equation 3.29 and 3.30, p26). For equal size groups the

intraclass correlation is equal to the Moran I statistics with spatial proximity weight
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equal to 1 if a pair of individuals is within the same group. Thus the intraclass

correlation can be regarded as a measure of average spatial autocorrelation within

a group. Even when the group sizes vary the relationship between the intraclass

correlation and Moran I is still very strong, as shown in figures 6.14, 6.15, and 6.37

(p193, 194 and 214 respectively). As we aggregate we would expect the intra-area

correlation to decrease as we are including more units and increasing the average

distance between units within a group. Figure 4.41 (p120) shows that the intraclass

correlation decrease non-linearly as N̄ increases and, for fixed N̄ , increases with the

level of autocorrelation at the individual level. Hence, for a fixed autocorrelation

the weighted variance will increase with N̄ but not linearly and the rate of increase

slows as the number of groups become small.

The distribution of the weighted group level variance becomes more disperse

as the scale increases and the number of groups become small, particularly for 24

and 4 groups. This is due to the small number of degrees of freedom involved in

calculating the variance, which is M-1, where M is the number of groups. The

dispersion is reflected in the standard deviations of the weighted variances, which

also increases with the degree of spatial autocorrelation. The change in standard

deviation with scale is more than would be expected through the change in M. If the

weighted variance behaved as proportional to a χ2
M−1 random variable the ratio of

its standard deviation to the mean, which is its coefficient of variation (CV), would

be
√

2/(M − 1), which would be the case for no autocorrelation. Results in table

4.8 (p48), table 4.27 (p68), and table 4.43 (p82) give values a little less than these

theoretical values. Further evidence in given in table 6.1 on page 162, although the

CV of the weighted variance is a little larger than in the case of no autocorrelation.

The unweighted variances are approximately N̄−2 times the corresponding weighted

variance. Consequently they decrease with scale, but increase, for a given scale,

with an increase in autocorrelation. If there is no autocorrelation their mean will

be the individual level variance divided by N̄2. Again the CV is a little less than
√

2/(M − 1). Relevant results are given in tables 4.10, 4.28 and 4.44 on pages 50,

68, and 84 respectively.
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7.1.2 The direct correlation and regression coefficients

When there is no spatial autocorrelation equation 4.2 (p51) suggest that the group

level correlation will be close to the individual level correlation, although there will

be a tendency to increase in absolute value when the number of groups is quite

small. Equation 4.3 (p51) gives a theoretical formula for the standard deviation of

the group level correlation when no spatial correlation is present and predicts that

it increases as the number of groups decreases, i.e. as scale increases. These results

are confirmed empirically in table 4.65 and 4.66 on page 101 and 102 respectively.

Tables 4.72 and 4.79 on pages 111 and 124 respectively summarize the results

of the experiments for the direct correlations with varying autocorrelations. Based

on the results of these experiments we see that when the autocorrelation is very

low the mean of the direct correlation is close to the individual level correlation.

When autocorrelation is present the mean of the direct correlation increases with

the degree of aggregation, that is as the scale increases. The main increase was

evident as the number of groups decreased to 625 and thereafter the increase was

minimal.

For a given scale the degree of autocorrelation affects the mean of the direct cor-

relation, initially increasing as the autocorrelation increased, but then it decreases

when one or both of the variables has high autocorrelation. As the level of aggrega-

tion increases the dispersion of the distribution of the direct correlation increases,

which is reflected in the standard deviation. When there are only 25 groups there are

some values of the direct correlation less than the individual level correlation. The

standard deviation of the direct correlation is only moderately affected by the de-

gree of autocorrelation. In going from very low to low autocorrelation the standard

deviation decreases, but then increases as the autocorrelation increases further.

Analysis of real data confirms the general pattern of correlation increasing in

absolute value with aggregation, although there are exceptions, see table 5.21 (p154).

Simulations based actual boundaries for varying individual level correlation and

autocorrelation show that the Ward level correlation fluctuate around the corre-

sponding unit level correlations, see figure 6.19 on page 197. The lack of any scale



CHAPTER 7: Conclusion 223

effect may be due to the average number of EDs per ward being only 21. The

dispersion tends to decrease as the autocorrelation increases.

The effects for direct correlation are similar to those of the direct correlations.

7.1.3 The pure coefficients

One esults of the experiments tackle the basic issue of how multilevel model is

affected by one aspect of the MAUP, the scale effect. This is an important issue

from an applied perspective, since multilevel modeling is sometimes suggested as an

approach to handling spatial aggregated data that comprise different levels.

The calculation of estimates of variance components associated with a simple

multilevel model enables the calculation of ’pure’ correlation and regression coeffi-

cient that attempt to separate effects occurring at the individual and group level.

When there is no spatial autocorrelation the mean and median of the estimated

level 1 and level 2 variance components are very close to the true values and the stan-

dard deviation of the estimates at both levels decreases as aggregation is increased

(see table 4.67, p104). As expected, negative estimates of the level 2 variance com-

ponents occur as they are unbiased estimates of a true parameter that is zero.

When there is no spatial autocorrelation the mean and median of the estimated

level 1 variance components are not affected by aggregation (see table 4.67 on page

104). The estimates of the level 2 variance components are very unstable, with very

large standard deviations, which affects their mean, but the medians are close to

zero. The level 1 variance component estimates have standard deviation close to

those of the individual level and are not affected appreciably by aggregation.

When there is no spatial autocorrelation the mean of the level 1 correlation is

the same as the individual level correlation and the level 1 regression is smaller that

the individual level.

In general the estimated level 1 and level 2 variance components will add to the

individual level variance as shown by equation 3.31 (p27). As the scale increases

we should expect the estimated level 1 variance component to increase when there

is spatial autocorrelation, as more dissimilar units are included in each group and
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hence the estimated level 2 variance decreases. This is seen in tables 4.13, 4.30 and

4.46 on pages 55, 72, 87 respectively. The rate of the increase in the level 1 variance

component estimates and the decrease in the level 2 estimates depends on the level

of the autocorrelation, being greater with higher levels of autocorrelation.

The results of the experiments show little or no scale effect in the mean of the

estimated level 2 correlation and regression coefficients, with very small increases

as the scale increases, as shown in tables 4.54, 4.55 and figures 4.46 and 4.48 on

pages 96, 96, 125 and 126 respectively. However, the means of these coefficients are

affected by the degree of autocorrelation, decreasing as the autocorrelation increases.

The standard deviation of the estimated level 2 correlation and regression coef-

ficients increase as scale increases, but is reasonably stable once the autocorrelation

is higher than the direct correlation.

The means of the level 1 correlation, when there is spatial autocorrelation, are

affected by aggregation, starting below the individual level correlation but approach-

ing it as the number of groups decreases. This is because, as the number of groups

becomes smaller, the groups become larger and the individuals within them become

more like the whole population. Spatial autocorrelation has little effect on the mean

of the level 1 correlations.

The standard deviation of the estimated level 1 correlation is relatively stable

and increases only slightly with scale and autocorrelation. The standard deviation

tends to be less than that of the individual level correlation, but approaches it as the

number of group becomes less. The standard deviation for the level 1 correlation

coefficients is much less than for the level 2 coefficients. Similar results are obtained

for the regression coefficient.

Decisions based on a study using aggregated data need to be considered care-

fully. It has been shown in this thesis and other research that relationships between

variables in one scale may be different from those found in other scales. Our re-

search suggests the one possible initial step in the investigation is to consider the

intra-area correlation which is a measure of the average spatial autocorrelation of

the variables. The results of this thesis can be used as a basis for the decision on
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which statistics to use in the decision making.

7.1.4 Approach to Aggregation

The results of the analyses in this thesis suggest that there is not necessarily an

individual level of aggregation. Direct analyses of aggregated data are affected by

relationships operating at the individual level and higher geographic levels. Use

of a multilevel modelling approach allows some separation of the effects at each

level and attempts to eliminate the contamination of any level on another. Which

levels of pure coefficient are relevant depends on the particular application. In some

applications the focus may be on individual relationships, having removed the effect

of higher levels. However, in many geographical applications the interest will be

in relationships that are specifically at the aggregation level remaining the purely

individual level effect. There may be interest in both individual and area level

effects, but they need to be separated for proper analysis. It is therefore important

that a researchers clearly specifies the relevant level or levels for their analysis.

7.2 Further Research and Development

Scale effects of pure coefficients derived from a simple multilevel model were inves-

tigated in this thesis. Further research can be done on pure coefficients for more

complex multilevel models. The experiments in this thesis show that the result of

a simple multilevel model are affected by the MAUP but not in the same way as

standard correlation and regression coefficients. They also confirm previous studies

that demonstrate that the MAUP affects standard analytical statistics. The role

of spatial autocorrelation is important and the simple multilevel model will usually

be an approximation to a more complex pattern of autocorrelation that applies in

a real population. Hence, a further step would be to investigate the MAUP when

correlations across areal units are incorporated in the model underpinning the anal-

ysis.

In Chapter 4 a number of combinations of variables in terms of the level of
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autocorrelation were considered, which give a good picture of the impact of different

degrees of autocorrelation. Further research can be carried out to look into the

effects of pure coefficients for more combinations of variables in terms of their spatial

autocorrelation.

The role of spatial autocorrelation has been demonstrated. More work on the

how the values of the individual level correlation and the spatial autocorrelation

interact in the MAUP on the direct and pure coefficients is desirable. The methods

used in this thesis in the analyses of pure coefficient can be used to analyze multiple

regressions and other multivariate techniques. The data generator can be utilized

to generate variables with different initial conditions.



Appendix A

Dataset Simulation Codes

A.1 Data Set Generator for a square grid

This program is to generate data sets on a square grid having a

dimension of 100x100.

########################################

# data generation based Moving average #

# method #

# Individual level (10000 areal units #

# in a square grid #

########################################

module(spatial)

a77<-1

n<-10000

r<-100

c<-100

#initialisation of matrices

The initialization of the variables was omitted to save space

p<-1

repeat

{ if (p>c0) break

set.seed(12+p)

AA1<-matrix(rnorm(r*c,0,4),ncol=c)

j<-1

227
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k<-1

AA2[j,k]<-(1/3)*(AA1[j,k+1]+AA1[j+1,k+1]+AA1[j+1,k])

j<-1

k<-r

AA2[j,k]<-(1/3)*( AA1[j+1,k]+AA1[j+1,k-1]+AA1[j,k-1])

j<-c

k<-1

AA2[j,k]<-(1/3)*( AA1[j,k+1]+AA1[j-1,k+1]+AA1[j-1,k])

j<-c

k<-r

AA2[j,k]<-(1/3)*(AA1[j-1,k]+AA1[j-1,k-1]+AA1[j,k-1])

j<-1

for(k in 2:(c-1))

AA2[j,k]<-(1/5)*( AA1[j,k+1]+AA1[j+1,k+1]+AA1[j+1,k]+AA1[j+1,k-1]+AA1[j,k-1])

j<-c

for(k in 2:(c-1))

AA2[j,k]<-(1/5)*( AA1[j,k+1]+AA1[j-1,k+1]+AA1[j-1,k]+AA1[j-1,k-1]+AA1[j,k-1])

k<-1

for(j in 2:(c-1))

AA2[j,k]<-(1/5)*( AA1[j+1,k]+AA1[j+1,k+1]+AA1[j,k+1]+AA1[j-1,k+1]+AA1[j-1,k])

k<-r

for(j in 2:(c-1))

AA2[j,k]<-(1/5)*( AA1[j+1,k]+AA1[j+1,k-1]+AA1[j,k-1]+AA1[j-1,k-1]+AA1[j-1,k-1])

for(j in 2:(r-1))

for(k in 2:(c-1))

AA2[j,k]<-(1/8)*(AA1[j-1,k]+AA1[j+1,k]+AA1[j,k-1]+AA1[j,k+1]+

AA1[j-1,k-1]+AA1[j+1,k-1]+AA1[j+1,k+1]+AA1[j-1,k+1])

ij100<-expand.grid(i=seq(1,100,len=100),j=seq(1,100,len=100))

set.seed(5+p)

r<-100

c<-100

K<-1

EijX<-matrix(rnorm(r*c,0,2), ncol=c)

EeijX<-K*c(EijX)

Xij1<-c(AA2)+c(EeijX)

Xij1.matrix<-matrix(Xij1, ncol=100)
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A1<-c(AA1)

A2<-c(AA2)

ErrX<-c(EeijX)

X2<-Xij1

test10000X2<-cbind(ij100,A1,A2,ErrX,Xij1)

set.seed(28+p)

r<-100

c<-100

e<- matrix(rnorm(r*c,0,4),ncol=c)

BB1<-matrix(10+c(AA1+e),ncol=c)

j<-1

k<-1

BB2[j,k]<-(1/3)*(BB1[j,k+1]+BB1[j+1,k+1]+BB1[j+1,k])

j<-1

k<-r

BB2[j,k]<-(1/3)*( BB1[j+1,k]+BB1[j+1,k-1]+BB1[j,k-1])

j<-c

k<-1

BB2[j,k]<-(1/3)*(BB1[j,k+1]+BB1[j-1,k+1]+BB1[j-1,k])

j<-c

k<-r

BB2[j,k]<-(1/3)*( BB1[j-1,k]+BB1[j-1,k-1]+BB1[j,k-1])

j<-1

for(k in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j,k+1]+BB1[j+1,k+1]+BB1[j+1,k]+BB1[j+1,k-1]+BB1[j,k-1])

j<-c

for(k in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j,k+1]+BB1[j-1,k+1]+BB1[j-1,k]+BB1[j-1,k-1]+BB1[j,k-1])

k<-1

for(j in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j+1,k]+BB1[j+1,k+1]+BB1[j,k+1]+BB1[j-1,k+1]+BB1[j-1,k])

k<-r

for(j in 2:(c-1))

BB2[j,k]<-(1/5)*( BB1[j+1,k]+BB1[j+1,k-1]+BB1[j,k-1]+BB1[j-1,k-1]+BB1[j-1,k-1])

for(j in 2:(r-1))

for(k in 2:(c-1))
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BB2[j,k]<-(1/8)*(BB1[j-1,k]+BB1[j+1,k]+BB1[j,k-1]+BB1[j,k+1]+

BB1[j-1,k-1]+BB1[j+1,k-1]+BB1[j+1,k+1]+BB1[j-1,k+1])

ij100<-expand.grid(i=seq(1,100,len=100),j=seq(1,100,len=100))

set.seed(10+p)

K<-1

EijY<-matrix(rnorm(r*c,0,2),ncol=c)

EeijY<-K*c(EijY)

Yij1<-c(BB2)+c(EeijY)

Yij1.matrix<-matrix(Yij1, ncol=100)

B1<-c(BB1)

B2<-c(BB2)

ErrY<-c(EeijY)

Y2<-Yij1

m<-1:10000

X1<-X2*((sqrt(6))/ sqrt(var(X2)))

Y1<-Y2*( (sqrt(8))/ sqrt(var(Y2)))

X<-X1+(0.005-mean(X1))

Y<-Y1+(10-mean(Y1))

Z<-X+Y

test10000XY<-cbind(ij100,m, X, Y,Z)

test10000Y1<-cbind(ij100,A1,A2,ErrY,Yij1)

nobs<-10000

nzone<-2500

zonesize<-ceiling(nobs/nzone)

zfil2500<-matrix(rep(0,(nobs/(nzone/(sqrt(nobs)/sqrt(zonesize))))

*(nzone/(sqrt(nobs)/sqrt(zonesize)))),ncol=(nzone/(sqrt(nobs)/sqrt(zonesize))))

zfil2500[,1]<-rep(rep(1:(sqrt(nobs)/sqrt(zonesize)),each=ceiling(sqrt(zonesize)))

,ceiling(sqrt(zonesize)))

for (i in 2:(nzone/max(zfil2500[,1])))

{ zfil2500[,i]<-zfil2500[,1]+(i-1)*max(zfil2500[,1]) }

t10000withzone2500a<-cbind(m,test10000XY,c(zfil2500))

zonemean <- function(spat)

{out<-matrix(rep(0,length(spat[,4])),ncol=max(spat[,4]))

for (i in 1:max(spat[,4]))

{out[,i]<-spat[spat[,4]==i][1:(length(spat[,4])/max(spat[,4]))] }

return(colMeans(out)) }
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test2500x<-cbind(X,Y,Y,c(zfil2500))

spat<-test2500x

z2500x<-zonemean(test2500x)

test2500y<-cbind(Y,X,X,c(zfil2500))

spat<-test2500y

z2500y<-zonemean(test2500y)

test2500z<-cbind(Z,X,X,c(zfil2500))

spat<-test2500z

z2500z<-zonemean(test2500z)

x1<-X

y1<-Y

vvx<-var(x1)

vvy<-var(y1)

cxy<-cov(x1,y1)

x11<-z2500x

y11<-z2500y

wgt<-nobs/nzone

z2500x1<-(sum(wgt*z2500x))/n

z2500y1<-(sum(wgt*z2500y))/n

m<-2500

vz2500x<-(sum(wgt*((z2500x-z2500x1)^2)))/(m-1)

vz2500y<-(sum(wgt*((z2500y-z2500y1)^2)))/(m-1)

cz2500xz2500y<-(sum(wgt*(z2500x-z2500x1)*(z2500y-z2500y1)))/(m-1)

l2cor11<-cz2500xz2500y/((vz2500x*vz2500y)^.5)

cvaf<-cov(x11,y11)

bl1<-cvaf/(var(x11))

unwr<-cor(x11,y11)

m1<-mean(x1)

m2<-mean(y1)

v1<-var(x1)

v2<-var(y1)

cor1<-cor(x1,y1)

af<-cor1*((v1*v2)^.5)

b1<-af/v1

nbar<-n/m

nobar<-(sum(wgt^2))/n
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nastbar<-nbar+((nbar-nobar)/(m-1))

lev2z2500x<-(vz2500x-vvx)/(nastbar-1)

lev2z2500y<-(vz2500y-vvy)/(nastbar-1)

lev1z2500x<-vvx-lev2z2500x

lev1z2500y<-vvy-lev2z2500y

iacz2500x<-lev2z2500x/(lev2z2500x+lev1z2500x)

iacz2500y<-lev2z2500y/(lev2z2500y+lev1z2500y)

lev2cov1<-(cz2500xz2500y-af)/(nastbar-1)

lev1cov1<-af-lev2cov1

iaccl11<-(lev1cov1)/((v1*v2)^.5)

iaccl21<-(lev2cov1)/((v1*v2)^.5)

lev1rho11<-lev1cov1/((lev1z2500x*lev1z2500y)^.5)

lev2rho11<-lev2cov1/((lev2z2500x*lev2z2500y)^.5)

bl12<-lev2cov1/lev2z2500y

bl11<-lev1cov1/lev1z2500y

sxxedlev[p]<-vvx

syyedlev[p]<-vvy

sxyedlev[p]<-cxy

sxxwardlev[p]<-var(x11)

syywardlev[p]<-var(y11)

sxywardlev[p]<-cov(y11,x11)

rwardlev[p]<-cz2500xz2500y/vz2500x

rUnWtdward[p]<-bl1

cwardlev[p]<-l2cor11

cUnWtdward[p]<-unwr

redlev[p]<- cxy/vvx

cedlev[p]<- cxy/(sqrt(vvx* vvy))

b11ed<-cz2500xz2500y/vz2500x

l2cor11<-cz2500xz2500y/((vz2500x*vz2500y)^.5)

sx2wardlev[p]<-lev2z2500x

sy2wardlev[p]<-lev2z2500y

sxy2wardlev[p]<-lev2cov1

sx1wardlev[p]<-lev1z2500x

sy1wardlev[p]<-lev1z2500y

sxy1wardlev[p]<-lev1cov1

iacwardlevx[p]<-iacz2500x
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iacwardlevy[p]<-iacz2500y

iacc2wardlev[p]<-iaccl21

iacc1wardlev[p]<-iaccl11

pc2wardlev[p]<-lev2rho11

pc1wardlev[p]<-lev1rho11

pr2wardlev[p]<-bl12

pr1wardlev[p]<-bl11

vz2500xwtd[p]<-vz2500x

vz2500ytd[p]<-vz2500y

cz2500xz2500ytd[p]<- cz2500xz2500y

m10000x[p]<-mean(X)

m10000y[p]<-mean(Y)

m2500x[p]<-mean(z2500x)

m2500y[p]<-mean(z2500y)

datarz2500<-cbind(sxxedlev,syyedlev,sxyedlev,redlev,cedlev,sxxwardlev,

syywardlev,sxywardlev,rwardlev,rUnWtdward,cwardlev,

cUnWtdward,sx2wardlev,sy2wardlev,sxy2wardlev,sx1wardlev,

sy1wardlev,sxy1wardlev,iacwardlevx,iacwardlevy,iacc2wardlev,

iacc1wardlev,pc2wardlev,pc1wardlev,pr2wardlev,pr1wardlev,

vz2500xwtd,vz2500ytd,cz2500xz2500ytd

p<-p+1

}

The program will then be run again for m=625,400,100,25, and 4
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A.2 Data sets for a region

The following R code was designed to create data sets with two variables X and Y

with specific mean, variance, initial correlation, initial autocorrelation (Moran’s I),

and number of iterations. The code applies to the region being defined in the study.

Other computations of pertinent statistics are also included in the code.

Required inputs are as follows:

• numiter: The number of iteration

• dmx: The initial mean of X

• dmy: The initial mean of Y

• vvx: The initial variance of X

• vvy: The initial variance of Y

• dcr: The initial correlation of X and Y

• mox: The initial autocorrelation of X

• moy: The initial autocorrelation of Y

Also needed are (1)proximity tables created using GeoDa as a .txt file (WtED-

Lag01Queen.txt) (2) Number of EDs per Ward (NumEdPerWard.txt), (3)weight to

be used in the computation of Moran’s I (EDWARD333.txt)

Data Set Generator

iden2<-diag(1,1904,1904)

r<-1904

c<-1904

one1<-matrix(1, ncol=c, nrow=r)

onediv<-one1*(1/r)

onedivbyn<-matrix(onediv, ncol=c)

M<-iden2-onedivbyn

ww<- scan( "WtEDLag01Queen.txt")
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spw<- function(ww)

{w1<-matrix(0, ncol=ww[1], nrow=ww[1])

nwo<-3

nw<-ww[3]

for(i in 1:ww[1])

{

if (nw>0)

{ for(k in 1:nw)

{ w1[i,ww[nwo+k]]<-1

}

}

nwo<-nwo+nw+2

nw<-ww[nwo]

}

w1

}

w<- spw(ww)

C<- spw(ww)

one<-matrix(1, ncol=1, nrow=r)

onetrans<-matrix(1, ncol=r, nrow=1)

csn<-onetrans%*%one

csd<-onetrans%*%C%*%one

cs1<-csn/csd

rm(one, onetrans)

cs2<- cs1[1]

Cs<-cs2*C

MCs<-M%*%Cs

MCsM<-MCs%*%M

ev<-eigen(MCsM)

eval0<-ev$val

eval1<-matrix(eval0, nrow=1)

EVAL<-eval1

evec0<-ev$vec

evec1<-matrix(evec0, nrow=r)

EVEC<-evec1
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zz<-read.table("NumEdPerWard.txt")

xx<-cbind(zz[,1], zz[,2], zz[,3])

x11<-c(rep(0,92))

y11<-c(rep(0,92))

xxx<- scan("EDWARD333.txt")

www<-xxx

ww1<- spw(www)

c0<-numiter

p<-1

# Initialization of Variables ( Omitted to save space)#

repeat

{if(p>c0) break

e1<-EVEC[,1]

e2<-EVEC[,2]

e6<-cbind(e1,e2)

V<-e6

bb<-cov(e6)

# The Desired variance-covariance #

# let the var(e2) be the diagonal of the matrix #

dmx<-dmx

dmy<-dmy

vvx<-vvx

vvy<-vvy

dcr<-dcr

d11<-vvx

d12<-dcr*((vvx*vvy)^.5)

d21<-dcr*((vvx*vvy)^.5)

d22<-vvy

d<-c(d11,d21,d12,d22)

dm<-matrix(d, ncol=2)

dd<-matrix(d, ncol=2)

B<-chol(bb)

D<-chol(dd)

A<-solve(B,D)

#the desire MC’s
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mcd0<-c(mox,moy)

mcd1<-matrix(mcd0, nrow=1)

MC<-mcd1

m1<-MC[,1]

m2<-(((A[1,2]^2)*MC[,1])+((A[2,2]^2)*MC[,2]))/((A[1,2]^2)+(A[2,2]^2))

l1<-m1

l2<-((m2*((A[1,2]^2)+(A[2,2]^2)))-((A[1,2]^2)*l1))/((A[2,2]^2))

rmc0<-c(l1,l2)

RMC<-matrix(rmc0, nrow=1)

set.seed(19+p)

b0<-runif(2,min=0, max=1)

b1<-matrix(b0, nrow=1)

lam11<-as.integer(runif(1,1,440))

lam12<-as.integer(runif(1,1,440))

lam21<-as.integer(runif(1,625,1100))

lam22<-as.integer(runif(1,750,1200))

a1<-(((EVAL[,lam11]-RMC[,1])/(RMC[,1]-EVAL[,lam21]))*(b1[,1]^2))^(.5)

a2<-(((EVAL[,lam12]-RMC[,2])/(RMC[,2]-EVAL[,lam22]))*(b1[,2]^2))^(.5)

v1<-a1*EVEC[,lam21]+b1[,1]*EVEC[,lam11]

v2<-a2*EVEC[,lam22]+b1[,2]*EVEC[,lam12]

Vj<-cbind(v1,v2)

s1<-sqrt(var(v1))

s2<-sqrt(var(v2))

sd1<-sqrt(vvx)

sd2<-sqrt(vvy)

v111<-v1*(sd1/s1)

v222<-v2*(sd2/s2)

VV<- cbind(v111,v222)

XX<-VV%*%A

XXX1<-XX[,1]*(sd1/sqrt(var(XX[,1])))

XXX2<-XX[,2]*(sd2/sqrt(var(XX[,2])))

x11<-XXX1+(dmx-mean(XXX1))

y11<-XXX2+(dmy-mean(XXX2))

######################

# The generated data #

######################
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x1<-x11

y1<-y11

z1<-x1+y1

# Computation of the Moran’s I

morani<-

function(x, w, k = 0, rescale = T, rescalepart = T)

{

n <- length(x)

s2 <- 0

if(rescale) {

for(i in 1:n)

{

if(sum(w[i, ]) > 0)

{

w[i, ] <- w[i, ]/(sum(w[i, ]))

}

}

}

for(i in 1:n)

{

s2 <- s2 + (sum(w[i, ]) + sum(w[, i]))^2

}

sumw <- sum(w)

mx <- mean(x)

z <- x - mx

m <- t(z) %*% w %*% z

sumz2 <- sum(z^2)

m <- (n * m)/(sumw * sumz2)

pm <- (n * pm)/(sumw * sumz2)

s1 <- 0.5 * sum((w + t(w))^2)

Ei <- -1/(n - 1)

Eitwon <- (n^2 * s1 - n * s2 + 3 * sumw^2)/(sumw^2 * (n^2 - 1))

sdn <- sqrt(Eitwon - Ei^2)

b2 <- n * (sum(z^4)/(sum(z^2)^2))

Eitwor <- n * ((n^2 - 3 * n + 3) * s1 - n * s2 + 3 * sumw^2)

Eitwor <- Eitwor - b2 * ((n^2 - n) * s1 - 2 * n * s2 + 6 * sumw^2)
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Eitwor <- Eitwor/((n - 1) * (n - 2) * (n - 3) * sumw^2)

sdr <- sqrt(Eitwor - Ei^2)

cat("\n UNDER NORMAL APPROXIMATION \n")

cat("\n Moran’s I is = ", round(m, 6))

cat("\n Mean of I is =", round(Ei, 6))

cat("\n St. Dev of I = ", round(sdn, 6))

z1 <- (m - Ei)/sdn

cat("\n Z-Value = ", round(z1, 6))

cat("\n P-Value(2-side) = ", round(2 * (1 - pnorm(abs(z1))), 6)

)

cat("\n\n UNDER RANDOMIZATION ASSUMPTION\n")

cat("\n Moran’s I is = ", round(m, 6))

cat("\n Mean of I is =", round(-1/(n - 1), 6))

cat("\n St. Dev of I = ", round(sdr, 6))

z2 <- (m - Ei)/sdr

cat("\n Z-Value = ", round(z2, 6))

cat("\n P-Value(2-side) = ", round(2 * (1 - pnorm(abs(z2))), 6),"\n")

if(rescalepart)

{

pm <- pm * n

}

if(k > 0)

{

cat("\n (Computing Permutation Distribution)\n")

msim <- rep(0, k)

for(j in 1:k)

{

y <- sample(n)

x <- x[y]

z <- x - mx

msim[j] <- t(z) %*% w %*% z/sumz2

}

prob1 <- length(msim[msim > m])/k

prob2 <- 1 - prob1

prob <- 2 * min(prob1, prob2)

cat("\n Results based on ", k, "permutations")
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cat("\n Moran’s I = ", round(m, 6))

cat("\n Mean of I stat = ", round(mean(msim), 6))

cat("\n Std Deviation = ", round(sqrt(var(msim)), 6))

cat("\n P-value(2-side) = ", round(prob, 6), "\n")

invisible(msim)

}

else invisible(list(m = m, partial = pm))

mix1<-morani(x1, w, k = 0, rescale = T, rescalepart = T)

mix11<-morani(x1, ww1, k = 0, rescale = T, rescalepart = T)

miy1<-morani(y1, w, k = 0, rescale = T, rescalepart = T)

miy11<-morani(y1, ww1, k = 0, rescale = T, rescalepart = T)

miz1<-morani(z1, w, k = 0, rescale = T, rescalepart = T)

miz11<-morani(z1, ww1, k = 0, rescale = T, rescalepart = T)

wgt<-xx[,1]

n<-sum(wgt)

nc<-1

for ( cn in 0:91)

{

x11[cn+1]<- mean(x1[nc: (nc+wgt[cn+1]-1)])

nc<-nc+wgt[cn+1]

}

nc<-1

for ( cn in 0: (91))

{

y11[cn+1]<- mean(y1[nc: (nc+wgt[cn+1]-1)])

nc<-nc+wgt[cn+1]

}

age<-x11

ftw<-y11

age1<-(sum(wgt*age))/n

ftw1<-(sum(wgt*ftw))/n

mwtdmeed<-c(age1, ftw1)

m<-92

vage<-(sum(wgt*((age-age1)^2)))/(m-1)

vftw<-(sum(wgt*((ftw-ftw1)^2)))/(m-1)

cageftw<-(sum(wgt*(age-age1)*(ftw-ftw1)))/(m-1)
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l2cor11<-cageftw/((vage*vftw)^.5)

m1<-mean(x1)

m2<-mean(y1)

mindivid<-c(m1,m2)

v1<-var(x1)

v2<-var(y1)

vindivid<-c(v1,v2)

cor1<-cor(x1,y1)

af<-cor1*((v1*v2)^.5)

vcs1<-c(v1,af)

b1<-af/v1

nbar<-n/m

nobar<-(sum(wgt^2))/n

nastbar<-nbar+((nbar-nobar)/(m-1))

lev2age<-(vage-vvx)/(nastbar-1)

lev2ftw<-(vftw-vvy)/(nastbar-1)

lev1age<-vvx-lev2age

lev1ftw<-vvy-lev2ftw

iacage<-lev2age/(lev2age+lev1age)

iacftw<-lev2ftw/(lev2ftw+lev1ftw)

iac<-c(iacage, iacftw )

lev2cov1<-(cageftw-af)/(nastbar-1)

lev1cov1<-af-lev2cov1

iaccl11<-(lev1cov1)/((v1*v2)^.5)

iaccl21<-(lev2cov1)/((v1*v2)^.5)

meindivid<-c(m1,m2)

vaindivid<-c(v1,v2)

mevaindividual<-cbind(meindividual,vaindividual)

meed<-c(age1,ftw1)

vaed<-c(vage,vftw)

mevaed<-cbind(meed,vaed)

lev1varcom<-c(lev1age,lev1ftw)

lev2varcom<-c(lev2age,lev2ftw)

intraareacor<-cbind(lev1varcom,lev2varcom)

lev1rho11<-lev1cov1/((lev1age*lev1ftw)^.5)

lev2rho11<-lev2cov1/((lev2age*lev2ftw)^.5)
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bl12<-lev2cov1/lev2ftw

bl11<-lev1cov1/lev1ftw

sxxedlev[p]<-vvx

syyedlev[p]<-vvy

sxyedlev[p]<-af

redlev[p]<-af/vvx

cedlev[p]<-cor1

medlevx[p]<-mix1$m[1]

medlevy[p]<-miy1$m[1]

medlevz[p]<-miz1$m[1]

medlevx1[p]<-mix11$m[1]

medlevy1[p]<-miy11$m[1]

medlevz1[p]<-miz11$m[1]

sxxwardlev[p]<-var(x11)

syywardlev[p]<-var(y11)

sxywardlev[p]<-cov(y11,x11)

rwardlev[p]<-cageftw/vage

rUnWtdward[p]<-bl1

cwardlev[p]<-l2cor11

cUnWtdward[p]<-unwr

sx2wardlev[p]<-lev2age

sy2wardlev[p]<-lev2ftw

sxy2wardlev[p]<-lev2cov1

sx1wardlev[p]<-lev1age

sy1wardlev[p]<-lev1ftw

sxy1wardlev[p]<-lev1cov1

iacwardlevx[p]<-iacage

iacwardlevy[p]<-iacftw

iacc2wardlev[p]<-iaccl21

iacc1wardlev[p]<-iaccl11

pc2wardlev[p]<-lev2rho11

pc1wardlev[p]<-lev1rho11

pr2wardlev[p]<-bl12

pr1wardlev[p]<-bl11

vagewtd[p]<-vage

vftwtd[p]<-vftw
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cageftwtd[p]<- cageftw

#Computation of the cross-Moran I

cmor[p]<-(((sxxedlev[p]+syyedlev[p]+2*sxyedlev[p])*medlevz[p])-

(medlevy[p]*syyedlev[p])-(medlevx[p]*sxxedlev[p]))/

(2*((sxxedlev[p]*syyedlev[p])^.5))

cmor1[p]<-(((sxxedlev[p]+syyedlev[p]+2*sxyedlev[p])*medlevz1[p])-

(medlevy1[p]*syyedlev[p])-(medlevx1[p]*sxxedlev[p]))/

(2*((sxxedlev[p]*syyedlev[p])^.5))

p<-p+1

}

data1<-cbind(medlevx,medlevx1,medlevy,medlevy1,medlevz,medlevz1,

sxxedlev,syyedlev,sxyedlev,redlev,cedlev,sxxwardlev,syywardlev,

sxywardlev,rwardlev,rUnWtdward,cwardlev,cUnWtdward,sx2wardlev,

sy2wardlev,sxy2wardlev,sx1wardlev,sy1wardlev,sxy1wardlev,iacwardlevx,

iacwardlevy,iacc2wardlev,iacc1wardlev,pc2wardlev,pc1wardlev,pr2wardlev,

pr1wardlev,cmor,cmor1,vagewtd,vftwtd,cageftwtd)

write.table(data1,file="data1.dbf", col.names = NA)

A.3 Proximity Weights (WtEDLag01Queen.txt)

Note:

Only the first 3 and the last 3 wards were described to save space.

The rest of the file is stored as WtEDLag01Queen.txt

1904

1 8

513 498 61 9 2 10 19 18

2 7

63 61 6 11 10 3 1

3 7

64 63 52 6 53 7 2

.

.
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.

1904 1606 1903 1897 1896 1608

1903 7

1605 1900 1606 1899 1898 1902 1897

1904 5

1608 1902 1896 1901 1862

A.4 Weight (NumEdPerWard.txt)

Note: Only the first 3 and the last 3 wards were described to save space. The rest

of the file is stored as NumEdPerWard.txt

28 40.471 40.141 40.141

38 40.166 40.05 40.05

25 41.05 40.315 40.315

.

.

.

21 38.357 39.507 39.507

14 39.701 39.91 39.91

16 39.609 39.883 39.883

25 41.05 40.315 40.315

A.5 Proximity Weights used in the computation

of Morans I (Block Proximity)

Note: Only the first 3 and the last 3 wards were described to save space. The rest

of the file is stored as EDWARD333.txt
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1904

1 27

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

2 27

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

3 27

1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

.

.

.

1902 24

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

1895 1896 1897 1898 1899 1900 1901 1903 1904

1903 24

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

1895 1896 1897 1898 1899 1900 1901 1902 1904

1904 24

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

1895 1896 1897 1898 1899 1900 1901 1902 1903
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Glossary of Terms

ED Enumeration District

GIS Geographical Information Systems

IAC Intra-area Correlation Coefficient, also indicated by ρ

IACC Intra-area Cross-Correlation Coefficient, also indicated by ρ

ICC Intra-class Correlation Coefficient, also indicated by ρ

MAUP Modifiable Areal Unit Problem

MLE Maximum Likelihood Estimation

NA Not Available, used to indicate missing values

OLS Ordinary Least Squares

SARs Samples of Anonymised Records)
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