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Abstract

ABSTRACT

Ground subsidence due to mining has been the subject of intensive research for several
decades, and it remains to be an important topic confronting the mining industry today.
In the Southern Coalfield of New South Wales, Australia, there is particular concern
about subsidence impacts on incised river valeys — valley closure, upsidence, and the
resulting localised loss of surface water under low flow conditions. Most of the reported
cases have occurred when the river valley is directly undermined. More importantly,
there are a number of cases where closure and upsidence have been reported above
unmined coal. These latter events are especialy significant as they influence decisions

regarding stand-off distances and hence mine layouts and reserve recovery.

The deformation of a valley indicates the onset of locally compressive stress conditions
concentrated at the base of the valley. Compressive conditions are anticipated when the
surface deforms in a sagging mode, for example directly above the longwall extraction;
but they are not expected when the surface deforms in a hogging mode at the edge of
the extraction as that areaistypically in tension. To date, explanations for valley closure
under the hogging mode have considered undefined compressive stress redistributions
in the horizontal plane, or lateral block movements and displacement aong
discontinuities generated in the sagging mode. This research is investigating the
possibilities of the block movement model and its role in generating compressive
stresses at the base of valleys, in the tensile portion of the subsidence profile.

The numerica modelling in this research project has demonstrated that the block
movement proposal is feasible provided that the curvatures developed are sufficient to
allow lateral block movement. Valley closure and the onset of valley base yield are able
to be quantified with the possibility of using analytical solutions. To achieve this, a
methodology of subsidence prediction using the Distinct Element code UDEC has been
developed as an dternative for subsidence modelling and prediction for isolated
longwall panels. The numerical models have been validated by comparison with
empirical results, observed caving behaviour and analytical solutions, al of which arein
good agreement. The techniques developed in the subsidence prediction UDEC models

have then been used to develop the conceptual block movement model.
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Abstract

The outcomes of this research have vast implications. Firstly, it is shown that valley
closure and upsidence is primarily a function of ground curvature. Since the magnitude
of curvature is directly related to the magnitude of vertical subsidence there is an
opportunity to consider changes in the mine layout as a strategy to reduce valley
closure. Secondly, with further research there is the possibility that mining companies
can assess potential damage to river valeys based on how close longwall panels
approach the river valley in question. This has the added advantage of optimising the

required stand off distancesto river valley and increasing coal recovery.
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