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Abstract

The precision control of linear feed axes in machine tools isexamined in this thesis. Al-

though high precision in machining has been a focal point forengineers for over 200 years,

the traditional solutions have often been based on complex mechanical designs. In this

thesis, two aspects of feed axis controller design are examined: i) the use of appropriate

mathematical models and ii) the significance of three of the most common performance

limiting factors that have traditionally affected precision in linear feed axes. The three

particular performance limiting factors considered are: i) dynamic stiffness, ii) torsional

vibrations and iii) backlash.

The most effective way of obtaining knowledge about a control system is through appro-

priate mathematical modelling. A new two-body model for a simple motor-transmission-

load system is presented in this thesis. This new model is shown to provide a more

accurate representation of both the total inertia and lowest natural frequency of a system,

when compared with the two-body model that is traditionallyused by researchers and

system designers. A new model to represent backlash in a two-body system is also pre-

sented. These new models are then extended to provide accurate mathematical models

of four common linear feed axis drive configurations: i) a rotary motor driving a rack

and pinion transmission, ii) a rotary motor directly driving a ballscrew transmission, iii)

a rotary motor driving a ballscrew transmission via a synchronous belt, and iv) a linear

motor directly driving the axis.

Different control solutions to the problems of dynamic stiffness, torsional vibrations and

backlash are examined in this thesis, with each controller implemented on specially con-

structed test-beds. An approach using Quantitative Feedback Theory (QFT) is presented
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for systems with inherently low dynamic stiffness. This QFTapproach is shown to pro-

vide a transparent design process, which results in high dynamic stiffness. Different

controllers for torsional vibrations are compared both theoretically and experimentally,

with many previously published solutions shown to be theoretically equivalent. A new

backlash controller is also presented, which is shown experimentally to provide dynamic

stability and good tracking performance at both high and lowvelocities.

The importance of treating these performance limiting factors simultaneously is also ad-

dressed in this thesis, with the control solutions developed to address some factors shown

to also affect the other factors. The QFT approach is shown toprovide a suitable inte-

grated design process, where the implications of any compromises, on the control of each

factor, are clearly visible.
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Chapter1
Introduction

1.1 Background

The research presented in this thesis is concerned with precision in machine tools. In

particular, the research focuses on the control of linear feed axes in machine tools. Two

specific aspects of controller design for linear feed axes are studied: i) the use of appropri-

ate mathematical models to improve performance and ii) the significance of three of the

most common performance limiting factors that have traditionally affected precision in

linear feed axes. The three performance limiting factors considered are: i) dynamic stiff-

ness, ii) torsional vibrations and iii) backlash. Four different drive train configurations,

which are commonly used in linear feed axes, are also considered in the research. The

first three configurations all consist of a rotary electric motor coupled with a mechanical

transmission mechanism. The three mechanical transmission mechanisms considered are

the rack and pinion, the direct driven ballscrew and the beltdriven ballscrew. The fourth

drive train configuration consists of a linear motor directly driving the axis.

High precision in machining has been a focal point for engineers ever since the industrial

revolution of the 18th century. For instance, James Watt’s steam engine design of 1765

(with patent granted in 1769 [1]) was dependent on a steam-tight piston and hence, on the

accuracy of the cylinder bore. Since that period there has been a great deal of research

undertaken in many areas relating to both productivity and precision in machining. Such
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research has directly led to the machine tool becoming the most important industrial tool

in existence. While it is difficult to think of any product that does not depend in some

way upon the use of machine tools [2], there are a number of well known inventions,

such as the automobile, which would simply never have existed without them [3]. Mod-

ern Computer Numerical Control (CNC) machine tools offer far greater productivity and

precision than would be possible with any human operated machine. However, tolerances

on machined products continue to be tightened, resulting inconstant pressure on machine

tool manufacturers to improve machine precision without increasing costs or lowering

productivity.

The ever-increasing demands placed on precision in machining have ensured that machine

tool design has maintained the interest of researchers. In particular, the ongoing computer

revolution along with the development of improved sensor and actuator technologies has

introduced the potential of economically meeting these increasing demands through new

approaches in machine tool design. Some notable areas of machine tool design that cur-

rently attract research attention are:

• Machine Structure — From the perspective of precision it is essential that the

machine structure has high rigidity. Modern computer processing power has en-

abled researchers to use advanced analysis methods, such asFinite Element Meth-

ods (FEM), to study rigidity in machine structures. This research has directly led

to newer machine structures, such as Parallel Link Manipulators (PLM), gaining

favour in some multi-degree of freedom machine designs.

• Spindles — With the increasing demands of precision often coupled with increasing

demands on productivity, high speed machining has become anactive research area.

In particular, various chatter suppression techniques along with improved actuator

and bearing technologies have been examined to reduce the effects of high spindle

speeds on work-piece quality. Also, since optimal spindle speeds can vary between

machining operations and work piece materials, research into various high power

variable-speed spindle alternatives has become quite active.
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• Feed Axes — Since machine tool feed axes often include complex mechanical

transmission mechanisms, there are a number of linear and nonlinear performance

limiting factors that can adversely affect the precision ofthese axes. As such, there

has been substantial research attention given to both the make-up and control of

feed axes. In particular, alternative drive train configurations have been examined,

along with advanced control techniques designed to compensate for the various

performance limiting factors.

• CNC Axes Control — When considering any machine tool, it is desirable to achieve

a constant material removal rate. In most machining operations, a constant material

removal rate is achieved when the spindle and feed axes of themachine are co-

ordinated such that the spindle has constant power and the feed has constant torque

(or linear force). Over recent years there has been considerable research attention

given to the overall Computer Numerical Control and co-ordination of machine tool

axes. This research has focused particularly on software packages for the simulation

and optimisation of tool paths, along with overall co-ordinated control to implement

optimised trajectories at machine level.

• Measuring Systems — In order to achieve precise axis controland optimisation of

tool paths, accurate measuring systems are required. Alongwith the development

of improved position sensors for axis control, there has been significant research

undertaken in the area of machine tool error measurement. Measuring equipment

such as ball-bars, probe-balls and laser interferometers have been extensively used

for studying machine tool thermal errors, deformations andvibrations. Such re-

search has helped in improving overall axes control and in the development of error

compensation techniques.

• Process and Materials Research — In addition to the extensive research attention

given to various aspects of machine design, there have been significant recent stud-

ies performed on individual machining processes and the machining of specific ma-

terials. This research has focused on process and material dependent requirements
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and has directly influenced many of the aforementioned areasof machine design

research.

While it is acknowledged that each of these research areas are vital to the continued devel-

opment of precision machine tools, the research presented in this thesis focuses directly

on one particular area – linear feed axes. This chapter provides an introduction to the

research undertaken, along with an outline of the remainderof the thesis. Section 1.2

presents a brief account of the history of machine tools and precision in machining. Al-

though there have been numerous significant contributions made throughout the long his-

tory of machine tools, the focus of this account is on the major events that have directly

led to the high precision CNC machine tools that both dominate the modern industrial

world and are the subject of interest to this thesis.

Section 1.3 presents an introduction to linear feed axes. Inparticular, an overview of the

common make-up of a linear feed axis is given, with a major focus on how the drive train

design is dependent upon the particular machining operation.

The motivation behind this research is presented in Section1.4. Included is a brief dis-

cussion on appropriate modelling and control techniques, along with a description of the

associated control problems inherent in the particular mechanical drive trains considered.

Section 1.5 provides an outline to the remainder of the thesis.

1.2 Machine Tools and Precision in Machining

It can be said that a tool is any device a human may use to extendthe power of his or her

hands and aid in doing work [4]. If such a device requires the user to provide the power,

hand-skills and intelligence in order to do the work, the device is usually referred to as a

‘hand tool’. If a tool device still requires hand-skills andintelligence to do the work but is

driven by an external power source, it is usually referred toas a ‘power tool’. In contrast,
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the term ‘machine tool’ is applied to an elite class of tool devices that incorporate the

power, skills and intelligence required to do the work in thetool itself.

The Encyclopedia of Britannica [5] defines a machine tool as astationary power-driven

machine that either shapes or forms parts made of metal or some other material. Al-

though the definition of a machine tool has undoubtedly evolved with time, it is generally

accepted that the modern term describes a tool consisting ofa heavy and rigid support

structure, a source of power, devices for both work-holdingand tool-holding and a means

for accurately controlling the desired process [4, 5]. While a large number of machines

would satisfy this description, the term ‘machine tool’ is predominately used with refer-

ence to precision metal-cutting machines.

It appears that the earliest advancements in machining camethrough the work of clock-

makers in the 15th century [3]; most notably, it is from theirwork that the first recorded

mechanical means of producing screw threads is found. Some of the earliest references

to many more modern machine tool features come from the famous Italian Renaissance

artist, Leonardo Da Vinci (1452-1519). Da Vinci’s illustrations show a number of screw-

cutting lathes, boring mills and grinding machines. As wellas displaying improvements

to the machines of his era, Da Vinci’s illustrations reveal the earliest recorded ideas of

such things as the self-centering chuck, the fabricated grinding wheel and the internal

grinding machine [3].

In both Europe and America it was the production of war weapons that became the major

influence in the early development of machine tools and machining. In Europe the first

machine tools to undertake the defining role of heavy metal-cutting were the machines

used for cannon boring [3]. It was also these boring machinesthat influenced the pro-

duction of the first steam engines, which (as mentioned in Section 1.1) became the first

great catalyst in the development of precision in metal-cutting machines. The success

of the steam engine resulted in the formation of a number of engine building businesses

in the early 19th century and it is through these businesses that the respective works of

Maudslay, Clement, Roberts, Nasmyth and Whitworth became recognised as the first ma-
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jor advancements in machine precision [3, 5]. During this period there were three main

areas identified as being important to machine precision: i)accurate screw threads (result-

ing in the development of the lead-screw), ii) true plane surfaces in machine construction

(resulting in the development of the planing machine) and iii) rigidity. Other notable de-

velopments during the 19th century include the birth of the milling machine in America (a

result of the requirement for part uniformity in arms manufacture), and although alluded

to many years earlier by Leonardo Da Vinci, the production offabricated abrasives and

grinding machines [3, 5].

A major milestone in the history of precision machining occurred in 1906 when Frederick

Taylor published the results of an extensive study into metal cutting: “On the Art of

Cutting Metals” [6]. Metal cutting had now become a science,as Taylor’s work marked

the beginning of machine tool research. The research attention that followed, in the early

20th century, focused on increasing the machining capacityof machine tools. The major

results of this early research were improvements in cuttingmaterials, cutting techniques,

machine rigidity and consequently, machine output [3]. What followed throughout the

mid to late 20th century was increased research into both productivity and precision in

machining, with the most important results being the development of powered control

systems and machine automation.

Although some early engineers employed feedback control mechanisms (one example

being Watt’s flyball governor of 1788), Hazen’s 1934 paper “Theory of Servomecha-

nisms” was possibly the first major milestone in automatic control for machine tools. It

is from this paper that the term ‘servomechanism’ originated (servant mechanism) [7].

Servomechanisms have since become an essential component in all modern machine tool

axes. While the inherently variable-speed DC motor was at the heart of many early ma-

chine tool servomechanisms, brushless servomotors have since become widespread in

most modern machines. Brushless servomotors are based on permanent magnet syn-

chronous motors and are characterised by their very high torque to inertia ratios [8].

The first numerically controlled machine tool was developedat the Massachusetts Insti-
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tute of Technology in 1952 [9]. Numerical Control (NC) can bedefined as a means for

sequencing machine tool operation (ie cutting rates, tool positioning, coolant control etc.)

by coded numeric information. The earliest numerically controlled machines usually had

this coded information recorded on perforated cards, papertapes or magnetic tapes [9, 10].

However, as advancements began to take place in mini and micro computer technologies

throughout the early 1970s, numerical control of machine tools was replaced with Com-

puter Numerical Control (CNC). On a CNC machine tool the numeric information for

machine sequencing is programmed directly into the controlling computer. Although

CNC systems were originally considered during the initial 1950s development of numer-

ical control, it was not until the cost of computers reduced that this option became viable

in industry [9, 10]. In the 21st century, CNC machine tools dominate the industrial world.

1.3 Linear Feed Axes

In general, there are two basic types of axes found in modern machine tools: spindles and

feed axes. For most machining operations the spindle axis provides high-speed rotation of

the machining tool, while the feed axes are used to ‘feed’ themachining process. As men-

tioned in Section 1.1, it is desirable for any machine tool toachieve a constant material

removal rate. In general, this equates to a desire for the spindle to provide constant power

and for the feed axes to provide constant ‘feed’. Since feed axes can be either rotational

or linear, a constant ‘feed’ is usually achieved through constant torque on rotational axes

and constant force on linear axes.

In Section 1.2, it was stated that accurate screw threads were identified by the early 19th

century engineers as being one of the three main areas of importance in machine preci-

sion. In identifying the importance of accurate screw threads, these 19th century engineers

showed an early understanding of the importance of constantlinear feed in machine pre-

cision. This understanding directly led to the developmentof machines with lead-screws

[5]. Since this period there has been extensive research undertaken to continually improve
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the performance of lead-screws. Some of the major research attention has been focused

on performance limitations caused by friction and backlash, with mechanical solutions

such as the use of recirculating ball bearings (to reduce friction) and preloaded double

nuts (to eliminate backlash) resulting.

In the modern machine tool there are a number of drive train configurations that are com-

monly used to provide linear feed. The most common configurations consist of a rotary

servomotor coupled with some type of mechanical transmission mechanism, which con-

verts the motor torque into a linear force. Ballscrews, the modern derivative of the early

lead-screws, remain the most commonly used mechanical transmission mechanism. How-

ever, the drive train configuration largely depends on the machining operation being un-

dertaken. For instance, while all linear feed axes would require a constant feed capability,

accurate positioning capability (typically linear accuracy down to 1 or 2µm is required)

and high acceleration rates (for quick transient responsesand contour accuracy), there are

other considerations that depend on the particular machining operation (such as length

of travel, speed requirements and magnitude of machining forces) that can influence the

make-up of a machine tool drive train.

While there are hundreds of varieties of metal-cutting machines used in modern industry,

there are only six basic operations by which machines are generally classified [5]:

• Drilling – the operation where the tool (usually a twist drill) cuts holes in solid

metal,

• Turning – the operation of cutting or removing metal from a spinning workpiece.

The most common turning machines are lathes and boring mills,

• Milling – the operation of cutting metal through the workpiece beingfed against a

rotating multiple-edge cutting tool, called a milling cutter,

• Grinding – the operation of removing metal through the workpiece being brought

into contact with a rotating abrasive (grinding) wheel,

• Shaping and Planing – involve the machining of flat surfaces, grooves or slots using

a single-point cutting tool. The tool in a shaper moves back and forth over the
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work-piece, cutting on the forward stroke while the workpiece is fed against the

cutting tool on the return stroke. A planer performs the sameoperation; however,

the motions of the cutting-tool and work-piece are reversed,

• Power Sawing – the operation of cutting shapes in metal plate.

Figure 1.1: Ball Screw Configurations

The common ballscrew configurations consist of a ballscrew coupled to a rotary servo-

motor either directly or via a belt (as a space-saving measure). Figure 1.1 illustrates

the two common ballscrew configurations. The inherent gearing of a ballscrew provides

very good dynamic stiffness, which makes ballscrew configurations particularly suited

to machining operations with high machining forces, such asgrinding, milling and turn-

ing. However, although the rotary servomotors are capable of providing constant torque

and high accelerations rates, when coupled to a ballscrew the drive can suffer from high

friction, torsional flexing and speed limitations.

The flexing and speed limitations of ballscrew configurations make them unsuitable for

machining operations where high speed and/or long travels are required, such as many
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power sawing operations. Modern sawing machines include plasma and laser cutters,

which are characterised by very low (or even zero) machiningforces and long travels. In

these machines the mechanical transmission mechanism is usually a rack and pinion (as

illustrated in Figure 1.2). In a rack and pinion drive the servomotor is normally mounted

very close to the pinion, to limit any torsional flexing. Although this drive configuration

can provide much higher speeds and reduced flexing when compared to a ballscrew drive,

rack and pinions suffer from poor dynamic stiffness and increased backlash. Hence, rack

and pinions are normally only used on machines with long travels.

Figure 1.2: Rack and Pinion Mechanism

As an alternative to the common rotary driven linear feed axes, linear motors offer a me-

chanically simpler solution that eliminates the mechanical transmission mechanism along

with any associated flexing, backlash, friction and component wear. Although the very

first linear motor was built in the early 1840s (by Wheatstone) [11], the use of linear mo-

tors in precision machine tools has only come under study relatively recently [12, 13, 14].

The attraction of linear motors is not limited to the elimination of the mechanical trans-

mission mechanism, as linear motors also offer a linear feedsolution capable of extremely

high speeds and long travel. However, elimination of the mechanical transmission mech-

anism reduces the friction and dynamic stiffness of the system and as such, linear motor

driven axes are often the most sensitive to load variations and external disturbances (such

as machining forces).

With the linear brushless servomotor ‘inheriting’ many of the desirable attributes of its
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rotary counterpart it has become the most popular linear motor for precision applications.

A typical linear brushless servomotor is illustrated in Figure 1.3 and consists of a motor

block (containing the motor windings) that travels linearly along a stationary permanent-

magnet track. At this stage linear motors have become most popular in replacing rack and

pinions in machines with low machining forces, such as lasercutters, due to their inherent

advantages in eliminating the mechanical transmission mechanism while providing im-

proved high speed performance. For machining operations with high machining forces,

such as grinding machines, linear motors are less suitable due to their low dynamic stiff-

ness and the fact that the most common linear motors have magnetic material along their

entire length of travel (thus attracting metallic waste, such as grinding swarf). However,

the fact that linear motor driven axes have less wearing components has meant that there

remains a potential advantage in the use of linear motors in any machining operation.

Figure 1.3: Linear Motor

1.4 Research Motivation

The main focus of the research presented in this thesis is precision control of linear feed

axes in machine tools. Some of the factors that are known to affect the precision of linear

feed axes include friction, torsional vibrations, bearingvibration, motor cogging, back-

lash and dynamic stiffness. Although engineers have been examining these performance

limitations for many years, the traditional solutions haveoften been attained through im-

proved mechanical designs. One of the results of such mechanical solutions is the variety
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of different drive configurations that are now available to modern machine tool designers.

As mentioned in Section 1.3, the actual choice of drive configuration is usually dependent

on the particular requirements of the machining operation.However, complex mechanical

solutions are often very expensive.

This thesis explores the hypothesis that improved precision in linear feed axes can be

achieved through the use of fast computer control algorithms, alternative actuator tech-

nologies and non-ideal mechanical components. Thus, the thesis proposes that the choice

of actuator and mechanical drive components need not be so dependent on the machining

operation and can be made from an economical perspective. The work that is presented

studies the development of precise control algorithms and in particular covers two specific

aspects of controller design: i) the use of appropriate mathematical models and ii) the sig-

nificance of three of the most common performance limiting factors that have traditionally

affected linear feed axes in machine tools.

1.4.1 Appropriate Mathematical Modelling

It can be said that feedback in control systems is only necessary when there is plant

parameter uncertainty and/or disturbances acting on the system [15]. In other words: if a

perfect mathematical model of a plant could be developed, the control system would only

need to be open-loop as it would be possible to achieve a desired output through careful

construction of the input signal. The use of feedback has allowed engineers to develop

reliable control systems without developing particularlyaccurate mathematical models.

However, the design of a precise feedback control system benefits from sound knowledge

of the parameter variation likely to occur and the disturbances likely to act on the system.

The most effective way of obtaining this knowledge is through appropriate mathematical

modelling.

Since the major elements of machine tool feed axes are non-rigid (flexible or elastic)

they are most accurately described by continuous models, where both mass and stiffness
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are distributed continuously over the entire system. It canhowever be very difficult to

derive continuous models and even more difficult to analyse and design control systems

for them. Hence, approximate discrete models are usually preferred by control system

designers. Discrete models consist of a discrete number of rigid masses connected by

springs that are assumed to be flexible but massless. When very precise position and

velocity control are required though, there remains a question as to what discrete model

offers the ‘best approximation’ of a machine tool feed axis.This thesis looks into the

appropriate level of mathematical modelling required for precise control of linear feed

axes in machine tools. A number of different models are developed from simple ‘single

degree of freedom’ models to continuous models, with comparisons made between the

models under a wide range of motor, transmission and load conditions.

1.4.2 Significance of Performance Limiting Factors

Although there are a large number of performance limiting factors that can affect linear

feed axes, this thesis concentrates on three particular factors: i) dynamic stiffness, ii)

torsional vibrations and iii) backlash. With increased useof linear motors and other direct

drive actuators, dynamic stiffness has become a major issuein precision machine tools

relatively recently [16]. In contrast, torsional vibrations and backlash have concerned

machine tool designers for decades [17]. What is common between all three of these

factors is that the degree of performance limitation associated with each factor is very

dependent on the drive configuration and consequently, eachof these factors continues to

challenge control system designers. While it is acknowledged that other factors, such as

friction and motor cogging, are also very significant, such factors form large independent

areas of academic study and are not the main focus of this thesis.

As discussed in Section 1.3, linear motors and other direct drive actuators offer many

advantages in machine tool drives due to reduced friction and a reduction in wearing

components. However, the reduced mechanical transmissionalso results in a system that

is more sensitive to load variations and external disturbances. Dynamic stiffness is a
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measure of the sensitivity of a system to disturbances at allfrequencies and has only

become of major interest to researchers since the mid 1990s.Although there has been

some effort by control system researchers to improve the dynamic stiffness of direct drive

actuators, the issue of dynamic stiffness has become more important with the increasingly

widespread use of linear motors in machine tools.

Torsional vibrations in machine tool axes are introduced through an interaction between

the motor to load inertia ratio, flexing of the motor-load coupling and positioning of the

feedback elements. These vibrations can result in visible scoring of the machined mate-

rial and in extreme cases even result in absolute stability problems. The precise reasons

behind these stability problems often remain unclear to many system designers, with (for

example) a commonly used “rule of thumb” resulting in the costly recommendation of

re-sizing the motor to maintain a 1:1 motor-load inertia ratio. Unfortunately, such recom-

mendations fail to take into account the other drive train components and promote a poor

understanding of the interacting factors behind the stability problems. While the stabilis-

ing of torsional vibrations has received a lot of attention from control systems researchers,

this research has not yet resulted in a single “standard” approach to the problem.

Backlash is present in all mechanical systems where the driving member is not directly

coupled to the load. The inherent difficulties in controlling a system in the presence

of backlash are clear, especially when very high precision is required. For instance, if

the driving member in a high precision control system reverses direction, the backlash

gap becomes open and two separate systems exist. During thisperiod the transmission

members on the motor side of the backlash are the only membersunder direct control.

This often results in lost motion on the load side and impact oscillations when the driving

member and load come back into contact. Since the control of systems with backlash

has been a subject of study since the 1940s, there have been a great number of solutions

proposed. However, as with the torsional vibration problem, the research undertaken in

controlling systems with backlash has not yet resulted in a single “standard” approach to

the problem.
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In this thesis, precise control algorithms are developed for each of the three limiting fac-

tors discussed in this section. The mathematical modellingpresented in this thesis is used

as a basis for controller development and the controllers are tested over a wide range of

motor, transmission and load conditions. The impact of the drive configuration, on the

overall control strategy, is also discussed.

1.5 Thesis Outline

This first chapter of the thesis presents an introduction to the research undertaken, in-

cluding the historical background of the research area and impetus for the particular work

undertaken.

Chapter 2 presents a review of key literature published in the area of interest to this thesis.

The chapter is divided into sections that individually review literature relevant to dynamic

stiffness, torsional vibrations and backlash. Appropriate mathematical modelling and the

overall control of linear feed axes, in light of these performance limiting factors, are also

covered.

Chapter 3 presents details of the mathematical modelling developed throughout this work.

The chapter looks at modelling from a control perspective, with each of the performance

limiting factors considered. Detailed mathematical models are then developed for each of

the four drive configurations introduced in Section 1.1. Some basic rules for appropriate

levels of modelling are also presented.

Chapter 4 details the experimental equipment used throughout the research presented in

this thesis. There are three individual test-beds that havebeen considered in the research:

i) a simple rotary motor-transmission-load system, ii) a single linear feed axis that can be

driven by either a ballscrew or a rack and pinion and iii) a high precision linear motor

driven single axis test-bed.
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Chapter 5 presents a study on dynamic stiffness in linear feed axes. The inherent dynamic

stiffness and periodic disturbances of each of the four drive configurations, introduced in

Section 1.1, are discussed in this chapter. A robust controlsolution that includes dynamic

stiffness in the design process is also presented and testedon the single axis linear motor

driven test-bed.

Chapter 6 presents the results of the work undertaken in drive train flexing and torsional

vibration suppression. Each of the four drive configurations are considered in this study.

The work presented in Chapter 6 highlights the interacting factors that influence torsional

vibrations and also examines various control solutions forvibration suppression. The

most effective vibration suppression techniques are highlighted in this chapter.

In Chapter 7 a new approach to the non-linear control of machine tool servo systems with

backlash is presented. This control approach takes both backlash and torsional vibrations

into account during the design stage, and addresses both dynamic stability and the tracking

performance of systems with backlash. The control approachalso includes a new method

for identifying whether a system is in the backlash phase or contact phase.

Chapter 8 is a summary of the relevant conclusions from each of the research areas pre-

sented in this thesis. Comments are made regarding the overall (drive dependent) control

strategy for linear feed axes. The original hypothesis that‘improved precision in linear

feed axes can be achieved through the use of fast computer control algorithms, alternative

actuator technologies and non-ideal mechanical components’ is examined in light of the

research presented throughout this thesis. Suggestions for future work in this area are also

identified.
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Chapter2
Literature Review

2.1 Introduction

As discussed in Chapter 1, the concept of precision in machine tools is not new. Fur-

ther, the general concept of precise control of electrically driven mechanical systems is

not new. For example, it was as early as 1896 when Harry Ward Leonard first discussed

the fundamental desire to operate electric motors, used in applications such as elevators

and printing presses, ‘under perfect and economical control’ [8]. Such a statement is still

valid some 100 years or so later and, for the machining industry in particular, the tighten-

ing of tolerances on machined products continues to apply pressure on manufacturers to

improve the control and accuracy of machine tool feed axes. Just like the notion of pre-

cise control, the study of factors known to limit the performance of machine axes is not

by any means new. In 1969, Carter [17] noted that the more significant characteristics of a

driven mechanical system are torsional vibrations, cyclicrotational disturbances (ie bent

shafts, mechanical misalignment etc.) and backlash. The true significance of these fac-

tors remains evident in that they all continue to limit the performance of modern machine

axes.

In this thesis, three of the major performance limiting factors that are known to affect

linear feed axes are studied: i) dynamic stiffness, ii) torsional vibrations and iii) backlash.

This chapter critically reviews the prominent literature relating to each of these three
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factors, identifying key advancements in the study of each factor along with the most sig-

nificant methods that have been used to improve control and overall system performance

in the presence of each factor. Issues relating to appropriate modelling for controller de-

velopment are discussed for each individual factor and presented in the relevant sections.

Section 2.2 discusses dynamic stiffness in servo systems and covers material that has been

published on improving dynamic stiffness through control methods. Section 2.3 discusses

research relevant to torsional vibrations and techniques used for vibration suppression.

Section 2.4 discusses backlash and in particular, the material that has been published

in the areas of backlash avoidance, backlash modelling and the control of systems with

backlash. Finally, Section 2.5 summarises the key points and conclusions that can be

drawn from this literature review.

2.2 Dynamic Stiffness

2.2.1 General Background

Dynamic stiffness is a measure of the sensitivity of a systemto disturbances at all fre-

quencies. Systems with low dynamic stiffness are hence characterised by poor distur-

bance rejection and can be unsuitable in operations with high machining forces. Due to

the elimination of any gearing and additional friction associated with mechanical trans-

mission mechanisms, linear motors and other direct drive actuators are the most common

sources of low dynamic stiffness in machine tools.

In the early 1990s there were only two manufacturers who had successfully used linear

motors for precision positioning of machine tools; namely,the Ingersoll Milling Machine

Company in the U.S.A. and the Ex-Cell-O Company in Germany [18]. Less than a decade

later, at the 20th Japan International Machine Tool Fair in 2000, there were some 17

exhibitors of machine tools using linear motor technologies [19]. The advantages of linear

motors in eliminating mechanical transmission mechanismsare seen as very attractive by
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many machine tool manufacturers, especially in machines where high linear speeds and

accelerations are required.

The major disadvantage that is often associated with linearmotor driven axes is high cost

[20, 21]. However, as the demand for linear motors has been increasing the capital costs

have reduced. Also, with less wearing components, the overall life cycle cost of a linear

motor driven system can actually be less when the high maintenance costs of other options

are taken into account. As an example, a linear motor used in avehicle crash test facility

at the UK Motor Industry Research Association was describedin 1993 by Aston [22] as

providing 25 years of completely trouble-free operation.

In terms of performance, it is the inherently low dynamic stiffness of linear motor driven

axes that is seen as the main disadvantage. In 1994 Alter and Tsao [16] examined the

stability of linear brushless servomotor feed drives in precision turning applications, con-

cluding that stability was not a problem and that attention should be focused on the impor-

tant performance issues of disturbance rejection and trajectory tracking. Since that time

the issue of dynamic stiffness has become a major area of interest to researchers with the

increasingly widespread use of linear motors in precision machine tools.

Consider the response of a general positioning axis to a disturbance force. For a sinusoidal

response at a particular frequency (f ), the position displacement (x) can be described by:

x(t) = Ef sin(2π f t) (2.1)

where Ef is the maximum position displacement atf. It follows that:

ẋ(t) = 2π f Ef cos(2π f t) (2.2)

andẍ(t) = −(2π f )2Ef sin(2π f t) (2.3)

For a general linear axis with negligible friction and no motor or mechanical transmission

connected, the disturbance force required to produce the response of Equation (2.1) is
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governed by Newton’s second law of motion:

Fd = M
(

−(2π f )2Ef sin(2π f t)
)

(2.4)

Hence, the magnitude of this disturbance force is:

|Fd| = M(2π f )2Ef (2.5)

Defining Em as the maximum allowable position error at any frequency, itcan be seen

that the magnitude of the force required to exceed Em increases with frequency (|Fd| is

proportional to frequency squared). The magnitude of dynamic stiffness (DS) for the gen-

eral case is thus defined by Equation (2.6). Dynamic stiffness in a practical machine tool

axis varies with the mechanical transmission parameters, bearing friction and the control

system. However, it is clear that with the elimination of mechanical transmission, the

inherent dynamic stiffness of a linear motor driven axis canbe approximated by Equation

(2.6).

DS=
|Fd |
Em

= M(2π f )2 (2.6)

2.2.2 Control of Dynamic Stiffness

With the absence of a mechanical transmission mechanism, the control system of a linear

motor (or any direct drive axis) is the primary means of disturbance rejection (particu-

larly in applications with high machining forces). However, with the reduced mechanical

system, the overall controller bandwidth of a linear motor is essentially only limited by

the peak force of the motor, the resolution of the feedback mechanism and the servo drive

electronics [20, 23, 24]. As a result, the research effort inimproving dynamic stiffness has

been applied at all levels of the overall control system, including the current, flux linkage,

velocity, position and overall path-planning levels.

Weigel and Mutschler [25, 26] studied deadbeat control of dynamic stiffness in a lin-

ear brushless servomotor at both the current and flux linkagelevels. It was found that
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deadbeat flux linkage control met the demand for a high bandwidth low level controller;

however, the flux linkage feedback required an observer and avery accurate model of

the system to avoid nonlinear oscillations. Finite elementmethods coupled with direct

system measurements were recommended to produce a detailedsystem model. Cui et al

[27] also studied the use of finite element methods to developan accurate model for direct

thrust control of a linear brushless servomotor. It was concluded, through simulation, that

direct thrust control could be effective for low level control of linear motors. In a related

piece of work, Zhao et al [28] studied the use of wavelet analysis to identify the primary

resistance of a brushless linear motor system. It was concluded, again through simulation,

that wavelet analysis produced a higher resolution for the primary resistance identifica-

tion and could be used to improve the flux linkage observationin a direct thrust controller.

Interestingly, in [26] Weigel and Mutschler concluded thatalthough a standard PI current

loop had inferior dynamic performance it was more robust andeasier to implement than

the thrust control methods.

Alter and Tsao [29] examined the effects of an optimalH∞ controller, in the position

loop, on the dynamic stiffness of a practical linear motor. It was found from experimen-

tal analysis that theH∞ controller provided a 27-46% improvement in dynamic stiffness

when compared with a conventional Proportional plus Derivative (PD) position controller.

With the addition of machining force feedback, the optimalH∞ method was found to pro-

vide a further 70-100% improvement in dynamic stiffness when compared with position

feedback alone. In a further work [12], Alter and Tsao investigated the use of optimal

l1 and H∞ feedforward control to enhance the tracking performance ofa linear motor

system. Although parameter uncertainty limited the practical effectiveness of the feed-

forward control, a 50% reduction in the rms tracking error was still achieved. Alter and

Tsao concluded that the combination ofl1 andH∞ optimal feedforward and feedback con-

trol represented a viable control approach for linear motorsystems, resulting in both high

dynamic stiffness and optimal tracking performance.

Shen and Tsai [30] also investigated the use ofH∞ to enhance the dynamic stiffness of a
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linear motor controlled via a pseudo derivative feedback with feedforward (PDFF) control

scheme. It was found that with the addition ofH∞ the dynamic stiffness of an experimental

linear motor system showed an 85% improvement when comparedwith standard PDFF

control.

As an alternative toH∞, sliding mode control was examined by Van Brussel and Van den

Braembussche [31] for robust tracking performance of linear motors. It was found that

sliding mode control achieved the desired robust performance, as long as the control law

contained no discontinuous terms (which were said to lead topossible high frequency

errors). Sliding mode techniques were also combined with adaptive control techniques

by Xu and Yao [32, 33, 34] to improve both dynamic stiffness and tracking performance

of linear motors. The combined control scheme, termed Adaptive Robust Control (ARC),

was tested for both velocity feedback [32, 33] and position only feedback (using a velocity

observer) [34]. For both the velocity and position feedbackcases, it was concluded that

the ARC control scheme showed good transient performance and final tracking accuracy

in the presence of parametric uncertainties and bounded disturbances. In a related piece

of work, Hong and Yao [35] added actuator saturation information to the ARC design

process to improve the experimental realisation of theoretically guaranteed tracking and

dynamic stiffness performance.

Other control approaches that have used a nonlinear actuator model to improve dynamic

stiffness in linear motor systems include the Auto-Disturbance Rejection Controller (ADRC)

and the input-output linearisation technique. Yang et al [36] claim, through simulation,

that the ADRC approach (which uses a nonlinear state error feedback control law) when

applied to both the current and velocity loops of a linear motor system can provide im-

proved dynamic stiffness and tracking performance. Dolinar and Štumberger [37] used

the input-output linearisation technique (which involvedthe exact cancellation of system

nonlinearities in an overall position feedback loop) on a linear synchronous reluctance

motor model. Simulation and experimental results demonstrated good tracking perfor-

mance; however, no disturbance rejection results were given.
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One of the most comprehensive approaches to the control of dynamic stiffness was pre-

sented by Renton and Elbestawi [38] and involves improved control effort at both the

low servo and high path-planning levels of a linear motor feed drive. The approach

uses Minimum-Time Path Optimisation (MTPO) to address feed-rate scheduling at the

path-planning level and Minimum-Time Tracking Control (MTTC) to address the pri-

mary sources of path error at the servo level. The focus of this approach is on the actual

capabilities of an axis and all primary sources of path errorare included in the overall

design. Renton and Elbestawi found that the disturbance rejection properties of this ap-

proach were superior to both standard PD andH∞. They also found that the dynamic

stiffness could be further improved through the use of a periodic disturbance observer

that is synchronised to the spindle axis.

In this thesis the control of dynamic stiffness is examined from the perspective of practical

implementation. In many cases a linear motor can only be incorporated into a multiple

axis machine tool if it is compatible with the drive system used on the other axes. Al-

though there are clear advantages in addressing dynamic stiffness at the lower current or

flux levels [25, 26, 27, 28, 38], access to these lower servo-level control loops is often

limited in standard servo drives. However, it is sometimes possible to take advantage of

the information contained in lower level feedback (currentor torque/force) in higher level

control algorithms. Another important practical issue is computational efficiency of the

control algorithms. Although processor speeds are continually increasing, many standard

servo drives still only have a small window (within the sampling interval) for the imple-

mentation of control algorithms. For this reason artificialintelligence methods, such as

Fuzzy Logic [39], are often not a practical solution.

When considering the control approaches that have been examined for the velocity and

position loops of direct drive systems, the various robust techniques, such asH∞ and

sliding mode control, were shown throughout the literatureto provide improved dynamic

stiffness [12, 29, 32, 33, 34]. One robust control techniquethat was absent from the

available literature is Quantitative Feedback Theory (QFT). QFT offers a general design
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approach based on stability bounds, loop shaping and uncertainty in the system. In the

benchmark control session of the 1995 European Control Conference, both the winning

entry and the runner up used QFT. Further, the winning QFT design was the only entry that

fulfilled all of the design specifications [40]. For these reasons, a QFT design approach to

the control of dynamic stiffness is presented in this thesis.

2.3 Drive Train Flexing and Vibration Suppression

2.3.1 General Background

The most basic elements of any drive train are the motor, the load and any devices used

to couple the motor to the load. It is therefore no surprise that the three most significant

performance limiting factors, as discussed by Carter [17],are related to the interaction

between these basic drive elements. Consider the very simple drive train shown in Figure

2.1. This system consists only of a motor and load coupled through a single transmission

element. As there is no ‘free-play’ in the system, backlash has been avoided. Also, it

is assumed that the transmission element is perfectly straight and perfectly aligned, thus

avoiding any alignment related cyclic disturbances. Transmission flexing and torsional

vibrations cannot be considered negligible however, as allreal transmission devices (used

to form the motor-load coupling) are non-rigid by nature.

Figure 2.1: Simple Motor-Transmission-Load System
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As discussed in Section 1.4.2, torsional vibrations are introduced through an interaction

between the motor and load inertias, flexing of the motor-load coupling and positioning

of the feedback elements. However, Industry has traditionally only concentrated on the

relative sizes of the motor and load inertias. From the control systems perspective, a low

total inertia is particularly desirable as the resulting high torque to inertia ratio results

in faster accelerations and faster transient responses. The claims from many servo mo-

tor manufacturers though, are that motor-load inertia ratios close to 1:1 should always

be maintained in order to avoid vibrations and related stability problems. As a result,

manufacturer “rules of thumb” are often used to define acceptable inertia ratios. For in-

stance, Baldor (a servo motor manufacturer) state in their product catalogues that inertia

matching is a critical motor selection criteria and although motor-load inertia ratios of

higher than 1:5 may be possible, they are not recommended because of possible stability

problems [41]. Such recommendations neglect the impact of other drive train components

and these “rules of thumb” can also often vary between manufacturers [42]. This thesis

provides an analysis that overcomes these shortcomings.

One of the most important issues overlooked by such widely used “rules of thumb” is

the fact that practical devices used to form motor-load couplings are non-rigid by nature.

Designers tend to traditionally treat motor and load inertias as a single ‘lumped’ inertia.

Along with this, the feedback element is usually attached tothe motor. In treating a system

in this manner there is an inherent assumption that the coupling device connecting motor

and load is infinitely stiff. In reality, all coupling devices have finite stiffness and the load

response is not identical to that of the motor [43]. This becomes a particularly critical

issue when attempting to design controllers for highly ‘flexible’ systems, where feedback

is only available from the motor and the variables of interest are load velocity and position.

Such highly ‘flexible’ systems often arise in industry when designers choose low inertia

coupling devices in order to improve system transient responses. When reducing the

inertia of the coupling devices, the rigidity of the transmission is also often reduced.

While there is some advantage to matching motor and load inertias as a solution, the

practice of re-sizing motors in order to maintain unity motor-load inertia ratios can be a
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far more costly solution when compared with choosing a more rigid transmission.

The importance of high rigidity in motor-load couplings is not new knowledge, as Carter

[17] described torsional vibrations as occurring due to springiness of shafts and couplings

interacting with load inertias. Despite this, infinitely stiff couplings are still often as-

sumed in the analysis and design of servo systems. For example, Armstrong [42] (from

Kollmorgen Motion Technologies) even used an infinitely stiff coupling while discussing

why motor and load inertias should be ‘matched’. It should beclear that an infinitely stiff

coupling results in one single inertia and as such, an inertia mismatch cannot exist. One

of the major points in [42], is that inertias should be matched for maximum power trans-

fer. While the notion of maximum power transfer is valid, anyattempts to analyse the

stability problems associated with motor-load inertia ratios cannot be undertaken using

an infinitely stiff coupling.

2.3.2 Modelling and Analysis of Torsional Vibrations

The analysis and control of torsional vibrations has received considerable research at-

tention. However, while most published material has acknowledged the importance of

treating motor-load couplings as non-rigid, the standard model used by researchers is an

approximate two-body model based on the system shown in Figure 2.1 [40, 43, 44, 45,

46, 47, 48]. With this system, backlash, friction and other factors that would normally

affect servo system performance are generally regarded as negligible. It is also assumed

that the relationship between the flexing of the transmission element and the resulting

‘spring’ force can be completely described by Hooke’s Law and as such, any nonlinear

spring characteristics are negligible.

With reference to Figure 2.1:

• Jm is the motor inertia,

• Jl is the load inertia,

• Js is the inertia of the transmission element,
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• Tm is the torque produced by the driving motor,

• Ks is the torsional stiffness of the transmission element,

• Cs is the coefficient of internal damping that is inherent in thetransmission element,

and

• ωm andωl are the radial velocities (̇θm and θ̇l) at the motor and load ends of the

transmission element respectively.

In the two-body model of the system shown in Figure 2.1 the inertia of the transmis-

sion element is assumed to be zero. Hence, the system is completely described by two

equations of motion, with two generalised coordinatesθm andθl:

Jmθ̈m = Tm −Ks (θm −θl)−Cs
(

θ̇m − θ̇l
)

(2.7)

Jlθ̈l = Ks (θm −θl)+Cs
(

θ̇m − θ̇l
)

(2.8)

Through further analysis of Equations (2.7) and (2.8), expressions can also be obtained for

the undamped natural frequencies of this system. Equation (2.9) represents the undamped

natural frequency due to the zeros in the frequency responseof the system, while Equa-

tion (2.10) represents the undamped natural frequency due to the poles in the frequency

response of the system.

ωz =

√

Ks

Jl
(2.9)

ωp =

√

Ks(Jm +Jl)

JmJl
(2.10)

Many papers focus predominately on the control of vibrations rather than on how the var-

ious factors interact to introduce these vibrations. This fact has resulted in the publication

of many apparently different control solutions, which turnout to be mathematically based

on the same approach. While the undamped natural frequency equations (Equations (2.9)

and (2.10)) are derived in many of the reviewed articles [40,43, 44, 48, 49], only Welch
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[43] and Vukosavíc et al [44] go on to discuss the importance of considering allof the

interacting factors (including the positioning of feedback elements).

Apart from the limited analyses performed in many of the above articles, there are also

problems with the standard use of the ‘traditional’ two-body model, represented by Equa-

tions (2.7) and (2.8). The major problem is that any inertia associated with the motor-load

coupling device is considered negligible, whereas in many drive trains the mass or inertia

of the coupling device can be quite significant and often larger than the inertia of the load

itself (as seen by the motor). Some examples of this are in many of the power sawing

operations where feed axes transmissions can be over 10m in length. Also, in general

ballscrew axes the load inertia is reflected to the motor sidethrough the inherent gearing

of the ballscrew, which can reduce it to a value less than the inertia of the ballscrew itself.

Another important aspect when considering ballscrew driven axes is the fact that torsional

stiffness and the transmission inertia both vary with the load position.

Nordin [40] deals with the issues discussed in the precedingparagraph by claiming that

the realism of the two-body model can be increased through treating some parameters as

uncertain. While this is a good approach for ensuring a robust control solution, designing

a controller at all can be difficult if the bounds of uncertainty are unknown. For all of these

reasons the ‘traditional’ two-body model can be greatly improved upon when modelling

motor-transmission-load systems.

2.3.3 Control Solutions

Traditionally, the velocity control of servo systems has been based on some form of sim-

ple Proportional (P), Proportional plus Integral (PI) or Proportional plus Integral plus

Derivative (PID) regulator, with PI being the most common. The early methods used to

improve system performance, in the presence of torsional vibrations, focused on reduc-

ing the gains of such regulators to ensure any resonant frequencies occurred outside the

system bandwidth. Of course such remedies also resulted in sluggish transient responses.
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Some alternatives suggested in 1969 by Carter [17], included the introduction of low-

pass or notch filtering to suppress resonances and allow an increase in system bandwidth.

Carter also suggested that improvements could be achieved by moving the feedback ele-

ment to a nodal point (a point along the transmission where oscillations do not occur), or

at least as close as possible to a nodal point. However, in many machine tool feed axes

the only practical position for a feedback sensor is at the motor. It is also worth noting

that caution is required when using a single feedback deviceplaced at (or near) the load

as the system can quickly become unstable.

The early methods of using simple P, PI or PID regulators, coupled with vibration sup-

pression filtering, have remained among the most common control approaches used in

modern servo systems. In fact, with the ongoing computer revolution and increasing pref-

erence towards digital control, software tunable filters have become a standard feature

in many industrial servo controllers. The continual advancement of digital controllers

has also allowed for much more flexibility in the control of servo systems, leading to an

increase in the research of higher order control schemes andcomplex filtering techniques.

A number of different approaches for controlling torsionalvibrations in servo systems

have been published since the mid 1980s. In general though, these solutions can all be

classified as belonging to one of three fundamental groups:

1. Conventional control, with vibration suppression filtering and a single feedback

device (usually attached to the motor),

2. Higher order control, with multiple feedback devices (attached to both the motor

and load) and

3. Higher order control, with a single feedback device (usually attached to the motor).

The first of these groups represents all variations of the traditional approach, which con-

sists of a simple regulator and vibration suppression filtering. However, significant work

in digital signal processing and filtering has recently beenapplied to servo systems. In

particular, both Finite Impulse Response (FIR) filtering and Infinite Impulse Response

29



(IIR) filtering have been successfully used for the suppression of various types of me-

chanical vibrations in machine axes [44, 50].

The second and third groups both focus on using higher order controllers. The most

common approaches in both of these groups are based on using state feedback with either

pole placement or linear quadratic design techniques [46, 47, 48, 49, 51, 52]. In [51]

the author of this thesis used state feedback sensors at the motor and load to stabilise a

two-mass experimental system; the same controller was successfully adjusted to use a

single motor sensor and full order state observation in [52]. Similarly, [46, 47, 48, 49] all

report success using state feedback with a single motor sensor and estimation techniques

(such as state observers) to provide feedback of the other states. Due to practical concerns

in most mechatronic systems (such as mounting constraints,expense and noise) a single

feedback device at the motor is generally preferred over theinclusion of a load sensor.

While most high order servo controllers are based on generalstate feedback, some au-

thors have also reported success with controller designs based around specific flex-related

feedback quantities. In [52], the author of this thesis useda ‘shaft-flex’ inner feedback

loop in conjunction with a standard PI controller to successfully stabilise oscillations in

a simple two-mass system. Brandenburg et al [45], reported similar success with the use

of a ‘shaft-torque’ inner feedback loop. Other feedback quantities that have also report-

edly delivered success in stabilising such systems includeload torque (Ji et al [46]), load

acceleration (Hori et al [49]) and motor acceleration (Welch [43]). Of particular interest

among these solutions is the motor acceleration feedback system proposed by Welch [43],

as it does not require any load feedback (either direct or estimated).

Almost all of the higher order control approaches that use a single feedback device (Group

3), require some form of feedback estimation. There are however some notable exceptions

to this generalisation including the aforementioned approach by Welch [43] (using motor

acceleration feedback), along with single feedback designs based on QFT. Although esti-

mation techniques can be used with QFT, they are in conflict with the fundamental basis

of the theory [15]. As mentioned in Section 2.2.2, both the winning entry and the runner
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up in the benchmark control session of the 1995 European Control Conference used QFT.

It is interesting to note that this benchmark control session involved competing designs

for control of a three mass flexible system [40].

The choice between vibration suppression filtering and the use of higher order controllers

has become very subjective; however, previous results havegenerally shown that simple

PI regulators tend to only achieve comparable performance when the current loop has a

low bandwidth. If the current loop is fast enough to damp the resonance, higher order

control schemes generally offer superior performance [40,53, 54].

The most interesting of the higher order control approachesare the various solutions that

use specific flex-related feedback quantities. All of these solutions claim to successfully

stabilise torsional vibrations and each one of them can be used in conjunction with a

standard PI velocity loop, an outer state feedback loop or incorporated into QFT designs.

However, while each of these solutions appears to offer a unique approach to the problem,

a quick analysis of system flexing (under such feedback) reveals many of them to be fun-

damentally equivalent. Although some articles have compared various control approaches

[40, 47], these comparisons have not been comprehensive, have not been performed over

a wide range of motor-transmission-load conditions and have not recognised the equiva-

lence of many of the feedback solutions. Hence, a standard approach to the problem has

yet to be adopted.

In this thesis a comprehensive comparison of the various approaches to controlling tor-

sional vibrations is presented. This comparison is performed over a wide range of motor-

transmission-load conditions and uses an experimental test-bed that was specifically de-

signed to analyse torsional flexing and vibrations. The comparison also includes control

approaches that were developed as part of this thesis. The importance of using an accu-

rate system model in the controller design process is studied and a two-body model with

improved accuracy (when compared with the ‘traditional’ two-body model) is developed.
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2.4 Backlash

2.4.1 General Background

According to the Oxford English Dictionary, the term backlash was originally used to

describe the ‘jarring reaction or striking back of a wheel orset of connected wheels in a

piece of mechanism, when the motion is not uniform or when sudden pressure is applied’

[55]. The same term was later used to describe ‘the play between adjacent movable parts

(as in a series of gears)’, along with ‘the jar caused by this when the parts are put into

action’ [56]. Some other simple definitions of backlash include: ‘the lost motion in a gear

train’ [57] and ‘the amount by which a tooth space exceeds thethickness of an engaging

tooth’ (again with reference to a gear train) [58]. For the purposes of this thesis, back-

lash can be thought of as the whole phenomenon resulting fromplay between movable

mechanical parts. This includes both lost motion (when the parts are not in contact) and

the system reaction when such parts come back into contact. The term “backlash gap” is

used to describe the actual play itself.

As discussed in Section 1.4.2, the inherent difficulties of controlling a system with back-

lash are clear. During any period when the backlash gap is open two separate systems

exist with only the transmission members on the motor side ofthe backlash gap being

driven, while the load is in a sense ‘uncontrolled’. When thebacklash gap closes, the

resulting collision can cause severe system oscillation. Control systems can often exhibit

steady state errors in the presence of backlash. Further, limit cycles with irregular oscil-

lation and peak-peak amplitudes greater than the total backlash gap can be experienced

[40]. For these reasons, backlash has historically been considered as one of the most

serious problems associated with precision control of machine tool drive trains [40, 59].

Since the precise control of systems with backlash has been an enduring engineering

problem for over 60 years, the traditional (and still the most common) approach to over-

coming the effects of backlash is to minimise it through improved mechanical design and
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manufacture [17, 60]. Precise manufacturing techniques and accurate assembly allow for

a reduction in the clearance between gearbox teeth and hence, a reduction in the width

of any backlash gap. However, there are limitations with this method in that a certain

amount of space between gearbox teeth is necessary for lubrication and assembly. The

most common mechanical approach used in modern precision machine tools is to provide

a preload to ensure persistent contact of gear teeth. There are a number of preload meth-

ods commonly used, including the use of a second inverse motor and the use of spring

loaded gearboxes to ensure there is always gear contact in both directions. One exam-

ple of a preloaded anti-backlash configuration, which is often found in modern precision

machine tools, is the double nut ballscrew system.

In general, the mechanical techniques for reducing the effects of backlash are expensive

and can also result in higher friction and increased energy consumption. These disadvan-

tages have traditionally been compared with the projected costs of allowing a mechanism

to function in the presence of backlash (ie the cost of reduced dynamic performance, in-

creased wear, service failures, noise etc.) [60]. For thesereasons, the research of more

cost-effective control solutions to backlash has remainedof interest to engineers.

2.4.2 Backlash Modelling

Like the torsional vibration problem, all analyses on the effects of backlash, along with

any associated controller development, require an accurate mathematical description of

backlash in the system. The appropriate representation of backlash in a system model

is very dependent on the actual configuration of the mechanical transmission elements

surrounding the backlash. However, the common approaches to backlash modelling

are generally defined in terms of a two-body system. Figure 2.2 illustrates the motor-

transmission-load system of Figure 2.1, with the addition of a backlash element in the

transmission shaft. If this is treated as a ‘traditional’ two-body system, the transmission

shaft is considered to have an inertia of zero, along with torsional stiffness Ks and an

inherent internal damping coefficient of Cs.
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Figure 2.2: Transmission Backlash

With reference to Figure 2.2:

• θm is the absolute position of the motor inertia (Jm),

• θl is the absolute position of the load inertia (Jl) and

• θb is the absolute position of the transmission shaft at the backlash.

Defining θBL as the backlash angle:θBL(t) = θb(t)− θl(t). Also, since the backlash

angle is usually defined symmetrically within the backlash gap, a total backlash gap of

2α results in: |θBL| ≤ α. If the shaft flex is then defined asθs(t) = θm(t)− θb(t), the

overall displacement between motor and load (θd(t) = θm(t)−θl(t)) is equivalent to the

addition of the shaft flex (θs) and the backlash angle (θBL).

Recall that Equations (2.7) and (2.8) are the equations of motion for the two-body model

of the system shown in Figure 2.1. In these equations, the transmission torque (the torque

delivered to the load) is given by Ks(θm −θl)+ Cs(θ̇m − θ̇l). If backlash is included in

this system (as shown in Figure 2.2), the transmission torque becomes:

Ttrans = Ks(θs)+Cs(θ̇s) = Ks(θd −θBL)+Cs(θ̇d − θ̇BL) (2.11)

Equation (2.11) is the exact expression for the transmission torque of the two-body system

with backlash, shown in Figure 2.2. The difficulty with Equation (2.11) is that it contains

a third degree of freedom, represented byθb. The relationship betweenθb and the load

position (θl) is expressed by the backlash angle (θBL), which saturates at±α. Due to
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obvious difficulties in dealing with a third degree of freedom in a two-body model, the

most common backlash models are approximate models that do not include the coordinate

θb.

0 α−α θ
b

θ
l

(a) Hysteresis Model

0 α−α θ
d

D(θ
d
)

(b) Dead Zone Model

Figure 2.3: Common Backlash Models

In introductory control texts, a hysteresis model is often used as the basic method for

describing the effects of backlash [61, 62, 63]. This modelling approach can be described

with reference to Figure 2.3 (a). Consider initially that the input and output positions at

the backlash are zero (θb is the input position at the backlash andθl is the output position).

If the transmission shaft begins to move in a positive direction, contact is not established

with the load untilθb = α. While there is continual positive contact, the load position

is θl = θb −α. If contact is lost (through a reversal of direction) the output is no longer

driven by the input and output position is no longer a function of the input. If the reversal

of direction continues, contact is not established again until the backlash gap is traversed.

If continual contact is established in the negative direction, the load position becomes

θl = θb +α. The two diagonal lines of Figure 2.3 (a), describe the relationships between

input and output positions during the two contact phases. The horizontal lines of Figure

2.3 (a), illustrate the uncontrolled state of output position during the non-contact phase.

The problem with the hysteresis model is that it only describes the relationship between

the input and output positions of a backlash element. It is clear, from the fundamental
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laws of dynamics, that the effect of backlash on transmission torque is the most important

element when modelling backlash. Unfortunately, the hysteresis model does not account

for the fact that the transmission torque is zero during the non-contact phase. For this

reason, the hysteresis model can only be applied to either the input or output positions

of a system (depending on the location of the backlash) and cannot be included in an

expression for transmission torque. Although the hysteresis model has been used by some

researchers [64, 65, 66, 67, 68], it is clear that this model does not effectively represent

the complete dynamics of backlash.

A common and more accurate alternative to the hysteresis model is to use a dead zone in

the expression for transmission torque. The input to this dead zone is the overall displace-

ment between motor and load (θd) and the output (D(θd)) represents the actual shaft flex

(θs). An example of this common dead zone model can be seen in Figure 2.3 (b), where

the output of the dead zone is:

D(θd) =























θd −α θd > α

0 |θd| < α

θd +α θd < −α

(2.12)

The transmission torque for the dead zone model is:

Ttrans = KsD(θd) (2.13)

When comparing Equations (2.12) and (2.13) with Equation (2.11), it can be seen that the

dead zone model accurately describes the torque component due to transmission flexing;

however, the torque component due to damping in the transmission is neglected. Hence,

this dead zone model is only valid when the internal damping coefficient (Cs) of the

transmission is zero. A slight modification of the dead zone model is shown in Equation

(2.14), where internal damping is taken into account. Together, the standard and modified

dead zone models represent the most common modelling approach found in the literature
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on backlash control [45, 54, 69, 70, 71, 72, 73, 74].

Ttrans =























Ks(θd −α)+Csθ̇d θd > α

0 |θd | < α

Ks(θd +α)+Csθ̇d θd < −α

(2.14)

Although the modified dead zone model of Equation (2.14) doestake internal damping

into account, Nordin [40] has shown (through a phase plane analysis) that this model does

not accurately predict when contact is lost. Hence, the modified dead zone model remains

inaccurate if the internal damping of the transmission is significant and can actually pre-

dict a sign change in the transmission torque without the backlash gap being traversed. As

an alternative, Nordin presents a phase plane backlash model that is intended to provide

a much more accurate prediction of when contact is established and lost. The Nordin

phase plane model is represented by Equations (2.15) to (2.18) [40]. When the internal

damping of the transmission is zero, this model reduces to the form of the standard dead

zone model.

Ttrans =























Ks(θd −α)+Csθ̇d (θd, θ̇d) ∈ A+

0 (θd, θ̇d) ∈ A0

Ks(θd +α)+Csθ̇d (θd, θ̇d) ∈ A−

(2.15)

where:

A+ = (θd, θ̇d) :











(θd +α)+(Csθ̇d
Ks

)e

(

−Ks(θd+α)

Csθ̇d
−1

)

≥ 2α θ̇d > 0

Ks(θd −α)+Csθ̇d ≥ 0 ∀θ̇d

(2.16)

A− = (θd, θ̇d) :











(θd −α)+(Csθ̇d
Ks

)e

(

−Ks(θd−α)

Csθ̇d
−1

)

≤−2α θ̇d < 0

Ks(θd +α)+Csθ̇d ≤ 0 ∀θ̇d

(2.17)

A0 = (θd, θ̇d)\(A+∪A−) (2.18)

In this thesis, the physical implications of the phase planeanalysis presented in [40] are

investigated. As a result, a new backlash model is presentedthat is shown to appropriately

address the shortcomings of the common dead zone model through a very clear and simple
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extension of the dead zone model.

2.4.3 Control of Backlash

Since researchers have been studying backlash for over 60 years, many different ap-

proaches to controlling servo systems in the presence of backlash have been investigated

and published. With a very high number of publications, it isdifficult to provide an ex-

haustive literature survey on this topic. For this reason, the literature survey presented in

this thesis is specifically aimed at identifying all of the major, and essentially unique, con-

tributions to the advancement of backlash control. The fundamental differences between

the large number of published approaches are highlighted, with the approaches classified

according to these differences. Since many of the publishedcontrol approaches are both

theoretically and mathematically complex, this survey also addresses the practical issues

of implementing backlash controllers in real servo systems.

The traditional methods for reducing limit cycles and associated vibrations in systems

with backlash involve reducing the bandwidth of standard linear controllers. Generally,

a linear approximation of the backlash non-linearity is determined and then used in the

linear design process to avoid limit cycles. The most commontechnique used to find a

linear approximation of a non-linearity is the describing function technique, which was

developed independently in England, Russia, Germany, France and the United States dur-

ing the late 1940s and early 1950s [75]. Describing functions that specifically represent

the backlash non-linearity were developed by Tustin [76], Chestnut [77] and Thomas

[78]. Some examples of using describing functions in the design of linear controllers

for systems with backlash can be found in [57, 58, 61, 65, 79].Although the describ-

ing function technique is by far the most common, other more rigorous methods based

on absolute stability criteria have also been used to describe backlash in linear controller

designs [68, 80].

Linear approximation methods, such as describing functions, have also been used in the
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design of more complex backlash controllers. Brandenburg et al [81] used describing

functions to show that the limit cycle amplitude in systems with backlash can depend

on the size of the load disturbance torque. Hence, a linear controller that incorporated a

load torque observer was shown to reduce limit cycles in suchsystems. Brandenburg also

claimed further improvements in limit cycle avoidance through the application of adaptive

control on the disturbance model gains [45]. Nordin [40, 82]used dual-input describing

functions and the QFT design technique to develop a switchednon-linear controller for

systems with backlash. Nordin’s controller switched between two linear controllers, one

tuned optimally for the contact phase and another with reduced gains for the backlash

phase. Boneh and Yaniv [70] also used the concept of a switched non-linear controller,

with the backlash phase controller designed via the QFT technique with an upper bound

placed on the limit cycle amplitude.

All of the approaches discussed so far, whether linear or non-linear, are based upon the

concept of reducing the speed at which the system traverses the backlash gap. The main

reason for doing this is to limit the severity of any collisions that may result when the

backlash gap closes. This group of approaches is sometimes referred to as having ‘weak’

action in the backlash gap [40]. An alternative group of approaches use ‘strong’ action in

the backlash gap. These approaches are based upon the concept of increasing the speed

at which the system traverses the backlash gap, so that regular contact between the motor

and load is resumed as quickly as possible. While the weak action control approaches

are predominately concerned with the dynamic stability of the system, the strong action

approaches are more concerned with lost motion at the load.

The work of Tao et al [62, 67, 69, 83, 84, 85, 86, 87] is the most prominent in the area

of strong action backlash controllers. Tao’s early publications in this area [62, 67, 83, 84]

focused on backlash at either the input or output of a system,and involved the use of

an adaptive inverse controller to effectively cancel the backlash. The adaptive approach

theoretically allows for the control of systems with unknown backlash gap and unknown

plant parameters. Although adaptive inverse controllers were successfully simulated by
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Tao, there are serious practical issues in implementing these controllers. Firstly, backlash

is rarely located at the input or output of practical dynamicsystems, with the transmis-

sion between the motor and load the most common source of backlash. Secondly, inverse

compensation at the input of a system implies that the backlash gap will be traversed in-

stantaneously, which is not possible. In [88], Dean et al implemented an inverse controller

on a practical system and actually found that the inverse controller degraded the system

performance when compared with a traditional linear controller.

In more recent publications by Tao [69, 85, 86, 87] switched non-linear controllers are

proposed, which use traditional linear controllers duringthe contact phase and controllers

based on optimal open-loop compensation laws during the backlash phase. Each of these

controllers could again be classified as using a strong action during the backlash phase.

Although the switched controllers address some of the drawbacks of the inverse control

approach, the control laws applied during the backlash phase are mathematically complex

and only simulation results could be found in the available publications.

Other approaches that can be classified as using a strong action during the backlash phase

include controllers proposed by Yang et al. [89], Mata-Jiménez et al. [90] and Schöling

et al. [91]. Yang used an adaptive switched nonlinear controller. The control objective in

Yang’s approach was to traverse the backlash gap as quickly as possible, although the im-

portance of “unacceptable collisions” was noted. Good tracking performance was claimed

by Yang through simulation; however, no practical results were given. Mata-Jiménez pro-

posed a constant-impulsive hybrid control structure, where appropriately timed impulses

were used during the backlash phase. The work by Mata-Jiménez was essentially theo-

retical and the controller required position and velocity feedback from both sides of the

backlash, which limits the practical value of this approach. Schöling used a state feedback

approach with input-output linearisation. The controllerproposed by Schöling showed

good dynamic behaviour and steady-state accuracy for a particular experimental set-up.

However, feedback from all of the states, or alternative estimation methods, are required

with this approach, which may also limit its practical application on many machine tools.
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A lot of the more recent research in controlling backlash hasconcentrated on artificial

intelligence methods such as fuzzy logic and neural networks. The use of fuzzy logic has

generally been in the area of controlling systems with inputor output backlash [92, 93].

With the fuzzy logic approach, an inverse controller is not required; however, the problem

that backlash is rarely located at the input or output of a dynamic system still remains.

The neural network approaches generally complement traditional linear control structures,

with the neural networks used in the application of strong action during the backlash phase

[94, 95]; however, neural networks have also been used to complement inverse controllers

[66]. As noted in Section 2.2.2, one of the major difficultieswith both neural networks and

fuzzy logic is the additional computational power requiredby these methods. Although

there is potential in these approaches, the additional computational requirements would

still be excessive for many practical servo systems.

The many different approaches to controlling backlash can be classified in a number of

different ways. Some of the important classifications include linear or non-linear, weak

or strong action in the backlash phase, classical/modern orartificially intelligent based,

feedback sensed from motor or load (or both) and velocity or position controlled. How-

ever, the most important classification is whether the controller is designed to provide

good tracking performance or to guarantee dynamic stability (or both). In [40] Nordin

claims that strong action in the backlash phase does not workvery well and that weak

action is more advantageous. However, Nordin was looking atthe problem from the per-

spective of dynamic stability, where weak action is indeed advantageous. In most of the

papers where strong action is proposed, good tracking performance is the main design

specification. One of the claimed advantages in implementing weak action approaches

is that the width of the backlash gap does not need to be known.However, if feedback

from the load is not available and the design specifications require good position tracking,

it is essential that the backlash gap is known. The main issuewith many of the strong

action approaches is that they are not practical to implement on real servo systems, either

because of unrealistic system modelling or a requirement for excessive computational

power.
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A new approach to controlling backlash that combines both weak and strong action is

proposed in this thesis. Through this approach both dynamicstability and tracking per-

formance is addressed. Further, the proposed controller isdesigned for practical imple-

mentation on standard servo drives, requiring feedback from the motor side only and

minimal computational power.

2.5 Conclusions

The literature review presented in this chapter has coveredthree performance limiting

factors that are known to affect linear feed axes in machine tools: i) dynamic stiffness,

ii) torsional vibrations and iii) backlash. Although some of these factors have attracted

research attention for more than 50 years, areas for furtherstudy were clearly identified

throughout the literature review.

Dynamic stiffness was described in Section 2.2 as a measure of the sensitivity of a sys-

tem to disturbances at all frequencies. In machine tool feedaxes, low dynamic stiffness

has become a more prominent issue with the increasingly widespread use of linear mo-

tors. The literature review indicated that research effortin improving dynamic stiffness

has been applied at all levels of the overall machine tool control system, including the

current, flux linkage, velocity, position and path-planning levels. However, with access to

the lower current and flux levels limited in standard servo drives, the velocity and posi-

tion loop levels were identified as the most practical for implementing control strategies

designed to improve dynamic stiffness.

Various robust techniques applied at the velocity and position loop levels, such asH∞

and sliding mode control, were found throughout the review to provide improved dy-

namic stiffness. One robust technique that was absent from the available literature was

Quantitative Feedback Theory. In this thesis the theoretical aspects of dynamic stiffness

are studied, with a method for including dynamic stiffness in a QFT design process pre-
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sented. The advantages of using a QFT approach to designing velocity and position loops

for improved dynamic stiffness are also examined.

Literature relevant to the analysis and control of torsional vibrations was reviewed in

Section 2.3. It was found that this particular performance limitation had received consid-

erable research attention over the past 50 years. Although most of the reviewed literature

acknowledged the importance of treating motor-load couplings as non-rigid, the impact

of other drive train components was often neglected in the analyses presented. Also, the

standard model used by researchers was found to be an approximate two-body model. It

was shown that this ‘traditional’ two-body model had a majorlimitation in that the inertia

of the motor-load coupling device is considered negligible. In contrast, the coupling in-

ertia in practical machine tool drive trains can actually bequite significant and, for some

drive configurations, can also vary with the load position.

Although many different approaches to controlling torsional vibrations have been pub-

lished, particularly since the 1980s, these approaches were found to fall into three funda-

mental categories: 1. Conventional Control, 2. Higher order control with feedback from

both the motor and load, and 3. Higher order control with a single feedback device (usu-

ally attached to the motor). It was also found that existing comparisons between these

control approaches were very limited and had not been performed over a wide range of

motor-transmission-load conditions. In this thesis a thorough analysis of torsional vibra-

tions in machine tool feed drives is presented, along with a comprehensive comparison of

the various approaches to controlling torsional vibrations. This comparison includes con-

trol approaches that were developed as a part of this thesis.Limitations in the modelling

of machine tool drive trains are also addressed in this thesis, with a new two-body model

that takes the inertia of the motor-load coupling device into account developed.

In Section 2.4, improved mechanical design was identified asthe most common technique

for reducing the effects of backlash. However, it was also found that a large amount of

research into more cost-effective control solutions had taken place over the past 60 years.

The different control solutions identified throughout the literature review can be classified
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as providing either ‘weak’ or ‘strong’ action during the backlash phase. It was generally

found that the control solutions with a strong action were difficult to implement practi-

cally, due to either requiring excessive computational power or being based on unrealistic

system modelling. One important issue that was also identified as being overlooked by

many researchers, is the fact that weak and strong control actions address different sys-

tem design specifications. While weak control action can only address the problem of

dynamic stability, strong control action is used to improvethe tracking performance of

systems with backlash.

The most common models for representing backlash in a systemwere found to be the

hysteresis model and the dead zone model. It was shown that both of these models had

significant shortcomings in accurately describing backlash in real systems. The hysteresis

model can only describe the relationship between the input and output positions of a back-

lash element and not the transmission torque. While the deadzone model does describe

the transmission torque, it is only accurate when the inherent damping of the transmission

is zero. In this thesis a very clear and simple extension to the dead zone model is pre-

sented and shown to appropriately address the shortcomingsof these common backlash

models. Further to this modelling contribution, a new approach to controlling backlash

that combines both weak and strong action is presented. Thiscontrol approach is shown,

through both simulation and experimental application, to effectively address both the dy-

namic stability problems and the tracking performance of systems with backlash.

The interaction between dynamic stiffness, torsional vibrations and backlash is also ad-

dressed in this thesis, with the final control solutions for each of these factors shown to be

affected by the others.
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Chapter3
Modelling of Machine Tool Drive Trains

3.1 Introduction

In general, there are two classes of mathematical model thatcan be used to describe a

non-rigid machine tool drive train: lumped parameter (discrete) and distributed-parameter

(continuous) models. Discrete models consist of a discretenumber of masses and springs,

where the masses are assumed to be rigid and the springs assumed to be flexible but mass-

less. The number of masses in a system coincides with the number of degrees of freedom

of the system. In a continuous model there is both mass and stiffness at each point and

these are distributed over the entire system. The interior points of such a system define

a domain (D), while the points on the exterior of D define the boundary (S). Since there

are an infinite number of points in D, a continuous system can be regarded as having an

infinite number of degrees of freedom [96].

One commonly used approach for the modelling of dynamical systems is the Lagrangian

approach. The Lagrangian approach holds true across different coordinate systems and

provides a systematic method for handling a broad class of physical systems, regardless

of their complexity [97]. Lagrange’s equations can be derived from any one of a number

of formulations of the fundamental laws of dynamics and although they are most com-

monly used for discrete system modelling, Lagrange’s equations can also be extended to
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continuous systems [96, 98].

d
dt

[

∂L
∂ q̇r

]

− ∂L
∂qr

= Fqr (3.1)

where: L = T−V

Equation (3.1) is the standard form of Lagrange’s equation for discrete systems. In Equa-

tion (3.1),qr represents a generalised coordinate and L represents the Lagrangian. The

Lagrangian is a function of all the generalised coordinatesand generalised velocities of

the system and is equivalent to the difference between the total kinetic energy (T) and the

total potential energy (V) of the system. Ann-degree-of-freedom discrete system contains

n generalised coordinates. Lagrange’s equation must be applied for each of these coor-

dinates, resulting inn ordinary differential equations of motion that completelydescribe

the system.

As would be expected, the mathematical formalism for continuous systems is different

from that of discrete systems. Where the motion of ann-degree-of-freedom discrete sys-

tem is described byn ordinary differential equations, the motion of continuoussystems

is governed by boundary-value problems consisting of partial differential equations to be

satisfied over D and appropriate boundary conditions to be satisfied at every point of S

[96]. When using the Lagrangian approach for continuous systems, the partial differ-

ential equations to be satisfied over D are formulated through application of Lagrange’s

differential equation of motion (Equation (3.2)).

∂ L̂
∂q

− ∂
∂x

(

∂ L̂
∂q′

)

+
∂ 2

∂x2

(

∂ L̂
∂q′′

)

− ∂
∂ t

(

∂ L̂
∂ q̇

)

+
∂ 2

∂x∂ t

(

∂ L̂
∂ q̇′

)

+Fq = 0 (3.2)

In Equation (3.2),q represents a generalised coordinate andL̂ represents the Lagrangian

Density. The generalised coordinate(q) in a distributed system is a function of both the

spatial variable(x) and time(t). As such, the equations of motion for a continuous system

consist of partial-derivatives with respect to bothx andt. In Equation (3.2), derivatives

with respect tox are denoted by primes (q′) and derivatives with respect tot by over-
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dots (q̇). As with the discrete case, the Lagrangian in a continuous system is equivalent

to the difference between the total kinetic energy and totalpotential energy. However,

the Lagrangian for distributed systems consists of both boundary Lagrangians and the

Lagrangian density.

As discussed in Section 1.4.1, the major elements of machinetool feed axes are most ac-

curately described by continuous models. However, while there has been a great deal of

recent research on the topics of simulation and controller design for continuous systems,

these solutions are still regarded as complex and would not be the most appropriate for

the systems considered in this thesis. In fact, in terms of accurately predicting the per-

formance of most machine tool feed axes, it is generally onlythe total system inertia and

the lower natural frequencies that are of practical concern(along with any nonlinearities

such as friction and backlash). For this reason, a two-body model would generally be

an acceptable approximation for many systems, as long as themodel accounted for all

significant inertias and provided an accurate estimate of the lowest natural frequency of

the system. The problem with the traditional models used by servo system designers is

that they often do not meet either of these criteria.

In this chapter, the Lagrangian approach has been used to develop models for linear feed

axes based on each of the four mechanical transmission mechanisms introduced in Chap-

ter 1. Using the basic motor-transmission-load system as a starting point (Figure 2.1),

various discrete models have been derived and then comparedwith the continuous model

of the system. As a result of these comparisons, a new approximate two-body model has

been defined, which provides far greater accuracy over a widerange of realistic motor-

transmission-load conditions than the ‘traditional’ two-body model. In addition to the de-

velopment of the new approximate two-body model, this chapter also discusses the impact

of friction and damping in machine tool feed axes along with addressing the non-linear

modelling of backlash. The modelling approaches presentedhave also been extended to

provide accurate models for each of the four mechanical transmission mechanisms un-

der consideration. The final models take into account all significant system inertias and

47



lowest natural frequencies, along with friction, damping and backlash.

In Section 3.2 the continuous model and various discrete models for a simple motor-

transmission-load system are derived. The discrete modelsare then compared with the

continuous model, with the most accurate approximate models identified and the most

appropriate model for controller design defined.

Section 3.3 discusses the impact of damping, friction and other torque disturbances on

the system and the best ways of taking these factors into account in any system modelling

and simulation.

A new backlash model is defined in Section 3.4. This new backlash model addresses the

shortcomings of the common dead zone model and is shown to be easily incorporated into

the approximate two-body models discussed in Section 3.2.

In Section 3.5 the basic approximate model, including any backlash, damping, friction

and disturbance considerations, is extended to provide accurate approximate models of

the four most common mechanical transmissions currently used in linear machine tool

feed axes. Sections 3.5.1, 3.5.2, 3.5.3 and 3.5.4 detail theextended models for direct

driven ballscrew, belt driven ballscrew, rack and pinion and linear motor driven systems

respectively.

Finally, Section 3.6 summarises the key points and conclusions that can be drawn from

this chapter.

3.2 Basic Motor-Transmission-Load Models

3.2.1 Initial System Models

Recall the simple motor-transmission-load system illustrated in Figure 2.1 and described

in Section 2.3. This simple system is used to develop the basic system models and forms
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the basis for all of the extended modelling presented in thischapter. The equations of mo-

tion for the ‘traditional’ two-body model of this system aregiven in Section 2.3 (Equations

(2.7) and (2.8)). If damping is considered negligible, these equations become:

Jmθ̈m = Tm −Ks (θm −θl) (3.3)

Jl θ̈l = Ks (θm −θl) (3.4)

Figure 3.1 illustrates the system of Figure 2.1, with the transmission shaft split into 4

equal sections. If the transmission shaft is uniform, each of the 4 sections have identical

inertia (Js1 = Js2 = Js3 = Js4 = Js
4 ).

Figure 3.1: Motor-Load System with a Multi-Inertia Transmission Shaft

For analysis, consider the shaft inertias to be lumped at thecentre of each section (as

indicated in Figure 3.1) and that all of the inertias in the system are coupled by inertia-

less flexible elements. This system is described by six generalised coordinates,θm, θs1,

θs2, θs3, θs4 andθl, whereθsn is the absolute angular position of shaft inertia Jsn. The

Lagrangian of this system is formulated as follows:

L = T−V

=
1
2

Jmθ̇2
m +

1
2

Js

4
θ̇2

s1+
1
2

Js

4
θ̇2

s2+
1
2

Js

4
θ̇2

s3+
1
2

Js

4
θ̇2

s4 +
1
2

Jl θ̇2
l

−4Ks(θm−θs1)
2−2Ks(θs1−θs2)

2−2Ks(θs2−θs3)
2

−2Ks(θs3−θs4)
2−4Ks(θs4−θl)

2

Applying Lagrange’s Equation (Equation (3.1)), withqr = θs1:
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∂L

∂ θ̇s1
=

Js

4
θ̇s1

d
dt

[

∂L

∂ θ̇s1

]

=
Js

4
θ̈s1

∂L
∂θs1

= 8Ks(θm−θs1)−4Ks(θs1−θs2)

Fθs1 = 0

thus:

Js

4
θ̈s1−8Ks(θm −θs1)+4Ks(θs1−θs2) = 0

⇒ Jsθ̈s1 = 32Ks(θm−θs1)−16Ks(θs1−θs2)

Through a similar application of Lagrange’s Equation to theother 5 generalised coor-

dinates, the dynamics of this ‘multi-body’ system can be completely described by six

equations of motion:

Jmθ̈m = Tm −8Ks(θm−θs1) (3.5)

Jsθ̈s1 = 32Ks(θm −θs1)−16Ks(θs1−θs2) (3.6)

Jsθ̈s2 = 16Ks(θs1−θs2)−16Ks(θs2−θs3) (3.7)

Jsθ̈s3 = 16Ks(θs2−θs3)−16Ks(θs3−θs4) (3.8)

Jsθ̈s4 = 16Ks(θs3−θs4)−32Ks(θs4−θl) (3.9)

Jlθ̈l = 8Ks(θs4−θl) (3.10)

The equations of motion represented by Equations (3.5) to (3.10) can be generalised for

similar systems with the transmission shaft split inton sections:

Jmθ̈m = Tm −2nKs(θm −θs1)

Jsθ̈s1 = 2n2Ks(θm −θs1)−n2Ks(θs1−θs2)

Jsθ̈s2 = n2K(θs1−θs2)−n2Ks(θs2−θs3)

:

Jsθ̈sn = n2Ks(θs(n−1)−θsn)−2n2Ks(θsn −θl)

Jl θ̈l = 2nKs(θsn −θl)

50



For ann-sectioned transmission shaft, there aren+2 equations of motion and the inertia

of each section isJs
n . A more detailed derivation of the six equations of motion for the

4-sectioned transmission shaft of Figure 3.1 is given in Appendix B.

Figure 3.2: Motor-Load System with a Distributed Inertia Transmission Shaft

Consider once more the simple motor-transmission-load system of Figure 2.1. In order

to derive a continuous model of this system, the transmission shaft must be treated with

distributed inertia (as shown in Figure 3.2). In Figure 3.2,the shaft flex (θ ) is a function

of both the position (x) along the length of the shaft and time (t). The inertia and torsional

stiffness of the shaft are also functions ofx, with I(x) being the mass moment of inertia

density and GJ(x) the product of the shear modulus (G) and the area polar moment of

inertia of the cross section J(x). It should also be noted that L in Figure 3.2 is the overall

length of the transmission shaft.

If L 0 and LL are the boundary Lagrangians atx=0 andx=L respectively, the Lagrangian

of the continuous system is:

L = L0+LL +
∫ L

0
L̂dx

where

L0 = T0−V0

=
1
2

Jmθ̇2(0, t)

LL = TL −VL

=
1
2

Jl θ̇2(L, t)

L̂ = T̂− V̂
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=
1
2

I(x)θ̇2(x, t)− 1
2

GJ(x)θ ′2(x, t)

thus

L =
1
2

Jmθ̇2(0, t)+
1
2

Jl θ̇2(L, t)+
1
2

∫ L

0

(

I(x)θ̇2(x, t)−GJ(x)θ ′2(x, t)
)

dx

Applying Lagrange’s equation for distributed systems (Equation (3.2)), withq = θ :

∂ L̂
∂θ

= 0

∂ L̂
∂θ ′ = −GJ(x)θ ′(x, t)

∂
∂x

(

∂ L̂
∂θ ′

)

= − ∂
∂x

(

GJ(x)θ ′(x, t)
)

∂ L̂
∂θ ′′ = 0

∂ 2

∂x2

(

∂ L̂
∂θ ′′

)

= 0

∂ L̂

∂ θ̇
= I(x)θ̇ (x, t)

∂
∂ t

(

∂ L̂

∂ θ̇

)

= I(x)θ̈ (x, t)

∂ L̂

∂ θ̇ ′ = 0

∂ 2

∂x∂ t

(

∂ L̂

∂ θ̇ ′

)

= 0

thus:

∂
∂x

(

GJ(x)θ ′(x, t)
)

− I(x)θ̈(x, t)+Fθ = 0 (3.11)

(where Fθ is a distributed Torque)

The Boundary Conditions atx=0 andx=L are:

GJ(x)θ ′(0, t) = Jmθ̈(0, t) (3.12)

GJ(x)θ ′(L, t) = −Jl θ̈(L, t) (3.13)

Equation (3.11) is the partial differential equation of motion for the continuous model of

the system shown in Figure 2.1. Equations (3.12) and (3.13) are the boundary conditions

at x=0 and x=L respectively. Equations (3.11), (3.12) and (3.13) together represent the
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boundary value problem for the continuous model of the system shown in Figure 2.1.

3.2.2 Natural Frequencies of Oscillation

When considering a simple motor-transmission-load system, the total system inertia and

lowest natural frequencies are two of the highest practicalconcerns for control system

designers. Hence, any approximate model should take into account all significant system

inertias and give an accurate prediction of the lowest natural frequency of the system.

Although the ‘traditional’ two-body model does not take thetransmission inertia into

account, it is a fairly trivial task to slightly modify the model and include any significant

transmission inertia. Such modifications however, will affect the natural frequency of the

model. For this reason, the accuracy of the natural frequency of any approximate model

can be considered to be one of the most important qualities ofthe model.

The first step in analysing the accuracy of any approximate model is to compare the

natural frequencies of the approximate model with that of the continuous model. In order

to determine the natural frequencies of the continuous model, the boundary-value problem

represented by Equations (3.11), (3.12) and (3.13) must be solved. The solution of such

a boundary-value problem requires the solution of an associated differential eigenvalue

problem consisting of an infinite set of eigenvalues and eigenfunctions. However, the

eigenvalue problem of the continuous model must first be derived before it can be solved.

To derive the eigenvalue problem, first let the distributed torque Fθ in Equation (3.11)

equal zero – so that the transmission shaft is in free vibration:

∂
∂x

(

GJ(x)θ ′(x, t)
)

= I(x)θ̈(x, t), 0 < x < L (3.14)

Hence, the free vibration of the transmission shaft is described by Equation (3.14) and the

boundary conditions of Equations (3.12) and (3.13). If a solution in the form of Equation

(3.15) is assumed, Equations (3.15), (3.16) and (3.17) can be substituted into Equations
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(3.11), (3.12) and (3.13) to determine the characteristic equation of the continuous model.

θ(x, t) = Θ(x)F(t) (3.15)

where F(t) satisfies:

F̈(t) = −λF(t) (3.16)

and:λ = ω2 (ω is the frequency of oscillation)

= β 2GJ
I

(3.17)

Equation (3.18) is the resulting characteristic equation of the continuous model and must

be solved numerically forβ . A complete mathematical description of the boundary value

problem and the derived solution is given in Appendix B.

tanβL +
β (Jm +Jl)

I− β 2JmJl

I

= 0 (3.18)

x

y

r

x3 x1x2

f(x1)

f’(x1)

f(x2)

f’(x2)

x2 = x1 −

x3 = x2 −

Figure 3.3: Illustration of the Newton-Raphson Numerical Method

One common numerical method that can be used to find values ofβ is the ‘Newton-

Raphson’ method. The underlying principle of the ‘Newton-Raphson’ method is that

tangent lines can be used to approximate the graph of a function f(x). For instance, if

r is a root of f(x) = 0 andx1 is an initial approximation ofr, the x-intercept (x2) of the

tangent line f′(x1) is a closer approximation ofr (as shown in Figure 3.3). Similarly, the x-
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intercept of the tangent line f′(x2) is an even closer approximation ofr. The continuation

of this process generates successive approximations, which converge atr itself.

As there are an infinite number of roots to Equation (3.18), aninitial approximation of

the root corresponding to the lowest natural frequency (β1) can best be chosen through

an inspection of the graph of Equation (3.18). Once an accurate approximation ofβ1 is

determined, the lowest natural frequency of the continuousmodel can be calculated using

Equation (3.17).

For approximate models, the number of natural frequencies is dependent on the number of

bodies in the system. One of the most common methods used to determine the natural fre-

quencies of such discrete systems is an approximate method due to Holzer. This method

is based on the fact that an undamped vibrational system requires no external torque to

vibrate at a natural frequency. For a multiple-body system,such as the 4 body system of

Figure 3.1, an approximate two-body model can be used to makean initial estimate of

the lowest natural frequency. Holzer’s method would then involve an assumption that the

system is oscillating at the estimated frequency and that the load end of the system has

an angular amplitude of 1 radian. Since the torque necessaryto vibrate the load has to

come from the inertial body that is immediately to the left ofthe load (referring to Figure

3.1), the value of the torque and the angular amplitude of this inertial body can be calcu-

lated. This process would then be repeated for each body of the system, until the input

torque of the motor is determined. If the input torque of the motor is zero, the estimated

frequency is a natural frequency. If the torque is non-zero,the value of the torque can be

used to make a more refined estimate of the natural frequency and the process repeated

until an acceptably accurate estimation is determined. Fora more thorough description of

Holzer’s method the reader is referred to [99].

A particular case of discrete model is the simple two-body model, which has two degrees

of freedom and only one natural frequency. Although Holzer’s method is still valid for

the two-body model, the simplicity of the model allows for anexact determination of the

natural frequency. One way of determining the exact naturalfrequency of a two-body
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model is to determine the transfer function of the system with transmission flex (θs) as

output and equate this with the standard form of a second order transfer function. This

method of equating the system flex transfer function with thestandard second order form

was used when determining the natural frequencies of all of the two-body approximate

models presented in Section 3.2.3, while Holzer’s method was used for all of the higher

order multiple-body models.

3.2.3 A Comparison of Approximate Models

As the continuous model is considered to be the ‘benchmark’ in terms of accuracy, the

lowest natural frequencies of various approximate models (of the simple motor-transmission-

load system of Figure 2.1) have been compared in terms of their percentage error from

that of the lowest natural frequency of the continuous model. This comparison has been

performed over a wide range of realistic motor-transmission-load conditions, with a total

of 11 approximate models considered. Of these 11 approximate models, 4 are multiple-

body models, while the remaining 7 represent different possible variations of distributing

the transmission shaft inertia between the motor and load sides of a two-body model. The

natural frequencies for the continuous model and all of the approximate models were de-

termined using the methods outlined in Section 3.2.2. The mathematics package ‘Matlab’

was used to automate the numerical methods and calculate thevarious natural frequencies.

The Matlab functions developed for this task are given in Appendix C.

The first four models considered are multiple-body models (as described in Section 3.2.1):

1. A ‘multiple body’ model with the transmission shaft splitinto 4 equal sections.

2. A ‘multiple body’ model with the transmission shaft splitinto 8 equal sections.

3. A ‘multiple body’ model with the transmission shaft splitinto 16 equal sections.

4. A multiple-body model with the transmission shaft split into 100 equal sections.
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Figure 3.4: Inertias and Compliance of Simple Motor-Transmission-Load System

Each of the seven two-body models considered can be described in terms of Figure 3.4.

In this figure the simple motor-transmission-load system isshown with a line indicat-

ing the centre of the transmission shaft. The transmission shaft has been split into two

equal sections with half of the shaft inertia ‘lumped’ mid-way between the centre of the

transmission shaft and the motor. The other half of the shaftinertia is ‘lumped’ mid-way

between the centre of the transmission shaft and the load. For each of the four inertias

shown in Figure 3.4, ex represents the compliance between the particular inertia and the

centre of the transmission shaft.

The two-body models considered are:

1. The ‘traditional’ two-body model. The inertia on the motor side is Jm and the inertia

on the load side is Jl. The transmission shaft is considered to have zero inertia (Js1

= Js2 = 0). The compliance between motor and load inertias is em+ el.

2. Two-body model with transmission inertia equally distributed between the motor

and load. The inertia on the motor side is JM = Jm + Js1, while the inertia on the

load side is JL = Jl + Js2 and the compliance between the motor and load side inertias

is em + el.

3. Two-body model with transmission inertia lumped at the motor. The inertia on the

motor side is JM = Jm + Js1 + Js2, the inertia on the load side is Jl and the compliance

between the motor and load side inertias is em + el.
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4. Two-body model with transmission inertia lumped at the load. The inertia on the

motor side is Jm, the inertia on the load side is JL = Jl + Js1 + Js2 and the compliance

between the motor and load side inertias is em + el.

5. Two-body model with transmission inertia lumped at both the motor and load, but

distributed so that original motor-load inertia ratio is retained. The inertias on the

motor and load sides respectively are:

JM = Jm

(

1+
Js1+Js2

Jm +Jl

)

and JL = Jl

(

1+
Js1+Js2

Jm +Jl

)

The compliance between motor and load side inertias is em +el.

6. Two-body model with transmission inertia equally distributed between the motor

and load sides. In this model however, the total inertia of the motor side is lumped

at an effective position along the transmission shaft basedon the relative sizes of the

motor and motor-side transmission inertias. The compliance between the new po-

sition of the motor-side inertia and the centre of the transmission shaft is described

by:

eM =
emJm +es1Js1

Jm +Js1
.

Similarly, the total inertia of the load side is lumped at an effective position along

the transmission shaft based on the relative sizes of the load and load-side transmis-

sion inertias. The compliance between the new position of the load-side inertia and

the centre of the transmission shaft is described by:

eL =
elJl +es2Js2

Jl +Js2
.

Thus, the resulting inertia on the motor side is JM = Jm +Js1, the resulting inertia

on the load side is JL = Jl + Js2 and the compliance between the motor and load

side inertias is eM +eL.

7. Two-body model with transmission inertia distributed sothat original motor-load
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inertia ratio is retained. However, like model 6, the total motor and load side inertias

are lumped at effective positions along the transmission shaft based on the relative

sizes of the inertias involved. The compliance between the new position of the

motor-side inertia and the centre of the transmission shaftis described by:

eM =
emJm +eS1JS1

Jm +JS1
where, JS1 =

Jm (Js1+Js2)

Jm +Jl

The compliance between the new position of the load-side inertia and the centre of

the transmission shaft is described by:

eL =
elJl +eS2JS2

Jl +J2
where, JS2 =

Jl (Js1+Js2)

Jm +Jl

The resulting inertias on the motor and load sides respectively are:

JM = Jm

(

1+
Js1 +Js2

Jm +Jl

)

and JL = Jl

(

1+
Js1 +Js2

Jm +Jl

)

The compliance between motor and load side inertias is eM +eL.

A total of 6 different transmission elements have been included in this comparison, with

the load:motor inertia ratio varied between 3 different values (0.05,1,12) for each trans-

mission element. The particular transmission elements included in this comparison were

chosen to illustrate extremes in possible drive-train configurations. The first 2 were cho-

sen to represent both a very flexible transmission and a quitestiff transmission. The last

4 were chosen to represent realistic ballscrew configurations that are commonly used in

machine tool feed drives. It is important to realise that lowload:motor inertia ratios are

often likely in ballscrew configurations due to the inherentgearing of the ballscrew. It

should also be noted that with torsional stiffness of ballscrews being variable, the cases

considered in this comparison are the most demanding as theyall assume the lowest pos-

sible torsional stiffness for each individual configuration (ie these comparisons are valid

for cases where the position of the load along each ballscrewis furthest away from the

motor).
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The chosen transmissions are:

• A long thin transmission shaft (6mm diameter, 0.5m length),

• A shorter and thicker transmission shaft (20mm diameter, 0.1m length),

• A 16mm diameter ballscrew, 1m in length,

• A 25mm diameter ballscrew, 1m in length,

• A 25mm diameter ballscrew, 3m in length and

• A 50mm diameter ballscrew, 3m in length.
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Figure 3.5: Model Comparison

The results of the approximate model comparison are shown inFigure 3.5. In this figure

the percentage error of the lowest natural frequency, for each motor-transmission-load

condition, has been graphed for each of the approximate models. The continuous model

has been used as the benchmark when calculating the percentage errors. Although the

percentage errors for some cases were much greater than 50%,the vertical (y) axis in

Figure 3.5 was limited to 50% to allow for an easy comparison between the models.
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From the results shown in Figure 3.5, it can be seen that the multiple-body models show

a consistent improvement in accuracy with the increased number of sections used (as ex-

pected). However, it was not until the number of sections wasincreased to 100 that a

percentage error of less than 1% was achieved under all motor-transmission-load condi-

tions. Of course, an approximate model with over 100 sections can be as difficult for

control system designers as the continuous model itself.

The ‘traditional’ two-body model (Two-Body 1) showed high accuracy when the inertia

of the transmission element was very small, while the accuracy reduced as the inertia of

the transmission element became more significant. In fact, each of the two-body models

showed reduced accuracy as the inertia of the transmission element became more signif-

icant, particularly in the important ballscrew cases wherethe load inertia was relatively

small. In some cases the percentage errors were much more than the axis limit of 50%,

with errors of up to an order of magnitude higher recorded.

In general, it can be seen that ‘Two-Body 2’ and ‘Two-Body 6’ were the most accurate

two-body models over the entire range of motor-transmission-load conditions. In partic-

ular, ‘Two-Body 6’ was the only two-body model that had a percentage error of less than

10% under all motor-transmission-load conditions. Also, ‘Two-Body 6’ was the only

model that had percentage errors less than that of the ‘traditional’ two-body model un-

der all conditions (including all of the multiple-body models). When further comparing

‘Two-Body 6’ with the multiple-body models, it was found that under some conditions

‘Two-Body 6’ was more accurate than all of the multiple-bodymodels. However, like the

other two-body models, this accuracy reduced as the inertiaof the transmission element

became more significant.

For control system designers, the overall modelling goal isto minimise complexity while

still accurately accounting for any significant inertias and resonances in the system. From

the results presented in Figure 3.5, it can be seen that a wellconstructed two-body model

is the most appropriate choice in meeting this goal. If the transmission element has a

very low inertia (such as a belt), the traditional ‘two-body’ model with an inertia-less
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transmission is a simple and appropriate choice. However, if the transmission element

has significant inertia (such as many ballscrew cases), an alternative two-body model that

takes the inertia of the transmission element into account will always provide a better

representation of the total system inertia. The choice of where to ‘lump’ the transmission

inertia though, has a very significant influence on the accuracy of the natural frequency

estimates. The most accurate two-body model in terms of accounting for both significant

inertias and resonances in the system, was found to be ‘Two-Body 6’. This model equally

distributes the transmission inertia between the motor andload sides and uses an adjusted

system compliance based on the relative sizes of all inertial bodies. This model is a much

more accurate standard for modelling than the ‘traditional’ two-body model and can be

used for developing more complicated system models. Throughout the remainder of this

thesis, ‘Two-Body 6’ is referred to as the ‘adjusted’ two-body model. The equations of

motion for the ‘adjusted’ two-body model are given by Equations (3.19) and (3.20).

θ̈m =
2Tm

2Jm +Js

−
[

4Ks(2Jl +Js)

8JmJl +3Js(Jm +Jl)+J2
s

]

(θm −θl) (3.19)

θ̈l =

[

4Ks(2Jm +Js)

8JmJl +3Js(Jm +Jl)+J2
s

]

(θm−θl) (3.20)

3.3 Damping, Friction and General Torque Variations

The modelling presented in Section 3.2 assumed any frictionand internal damping in-

herent in the transmission element to be negligible. In reality, all machine tool drive

trains have internal damping in the transmission elements and quite significant friction.

In general, the friction in a drive train is much more significant than any internal damp-

ing associated with the drive train materials. However, accurate friction models are very

non-linear and make up a large independent area of academic study.

Since non-linear friction models are not the main topic of this thesis, only coulomb and
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viscous frictions are considered as specific frictional terms in the standard system models.

Internal damping of the transmission elements is also considered as a specific term in the

standard models; however, all other losses are treated as general torque disturbances. If

coulomb friction, viscous friction and internal damping ofthe transmission are included

in the ‘adjusted’ two-body model, the equations of motion become:

θ̈m =
2Tm

2Jm +Js

−
[

4Ks(2Jl +Js)

8JmJl +3Js(Jm +Jl)+J2
s

]

(θm−θl)

− 2Cs

2Jm +Js

(

θ̇m − θ̇l
)

− 2Bm

2Jm +Js
θ̇m − 2Tf cm

2Jm +Js
(3.21)

θ̈l =

[

4Ks(2Jm +Js)

8JmJl +3Js(Jm +Jl)+J2
s

]

(θm −θl)

+
2Cs

2Jl +Js

(

θ̇m − θ̇l
)

− 2Bl

2Jl +Js
θ̇l −

2Tf cl

2Jl +Js
(3.22)

In Equations (3.21) and (3.22), Cs is the internal damping coefficient of the transmis-

sion element, while Bm and Bl are the viscous friction coefficients and Tf cm and Tf cl are

coulomb friction constants at the motor and load ends of the transmission respectively.

Since friction, other than coulomb and viscous, and other torque (or force) disturbances

are also very significant in most machine tool feed axes, a complete model should take

these disturbances into account. Of particular significance are the cyclic rotational distur-

bances discussed in Section 2.1. It has been shown that many of these disturbances can

be quantified through a study of periodic torque/force variations on a machine tool axis

[100]. This useful information about a mechanical system can be obtained by recording

drive torque (or force) as a function of position (not time).A Fast Fourier Transform

(FFT) can be taken for torque/force values recorded at equally spaced position intervals,

transforming the signal from the position domain to the ‘position frequency domain’.

The resulting ‘position frequency’ spectrum will normallyhave a relationship to various

components in the machine tool drive train.
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If T pos(θ) is a general function for system torque disturbances andΩ0 is the fundamental

angular position frequency (in cycles/revolution), the Fourier series describing Tpos(θ) is:

Tpos(θ) =
a0

2
+

∞

∑
n=1

an cos(nΩ0θ)+
∞

∑
n=1

bn sin(nΩ0θ) =
∞

∑
n=−∞

cne jnΩ0θ (3.23)

Normally, the periodic torque/force data for an axis is recorded while the axis is running at

a constant velocity. Hence, the DC component of the FFT is equivalent to the combination

of coulomb and viscous frictions, while the remaining spectrum is associated with cyclic

torque disturbances. Through the recording of periodic torque/force data at a number

of different velocities, the viscous friction component can be determined and extracted

from the combined DC friction value. This process of determining the position frequency

spectrum of a machine tool axis is known as the study of Position Dependent Torque (or

Force) Variations (PDTV and PDFV). For a complete treatmentof PDTV and PDFV the

reader is referred to [101].

Equations (3.24) and (3.25) represent the new equations of motion when the ‘adjusted’

two-body model is extended to include general periodic torque disturbances (as described

by Equation (3.23)) at both the motor and load ends of the transmission.

θ̈m =
2Tm

2Jm +Js

−
[

4Ks(2Jl +Js)

8JmJl +3Js(Jm +Jl)+J2
s

]

(θm −θl)

− 2Cs

2Jm +Js

(

θ̇m − θ̇l
)

− 2Bm

2Jm +Js
θ̇m − 2Tf cm

2Jm +Js

− 2
2Jm +Js

∞

∑
n=−∞

cnme jnΩ0θm (3.24)

θ̈l =

[

4Ks(2Jm +Js)

8JmJl +3Js(Jm +Jl)+J2
s

]

(θm−θl)

+
2Cs

2Jl +Js

(

θ̇m − θ̇l
)

− 2Bl

2Jl +Js
θ̇l −

2Tf cl

2Jl +Js

− 2
2Jl +Js

∞

∑
n=−∞

cnle
jnΩ0θl (3.25)
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3.4 Backlash

In Section 2.4.2, several different methods for modelling backlash in a two-body system

(as depicted by Figure 2.2) were discussed. Of these methods, the standard dead zone

model was shown to provide an accurate representation of backlash when internal damp-

ing of the transmission element is negligible. However, when internal damping of the

transmission element is significant, the dead zone model does not accurately predict loss

of contact at the backlash element.

An alternative backlash model, for the two-body system depicted by Figure 2.2, was

suggested by Nordin [40] to address the shortcomings of the dead zone model. The Nordin

model is represented by Equations (2.15) to (2.18) and was developed using a phase plane

analysis based on the exact expression for transmission torque in a two-body system with

backlash (Equation 2.11). Nordin defines the case of ‘right contact’ as being whenθBL =

α andθ̇BL = 0. Similarly, the case of ‘left contact’ is defined as being whenθBL = −α

andθ̇BL = 0. These definitions, together with Equation (2.11) give:

For right contact: Ttrans > 0⇒ Ttrans = Ks(θd −α)+Csθ̇d > 0 (3.26)

For le f t contact: Ttrans < 0⇒ Ttrans = Ks(θd +α)+Csθ̇d < 0 (3.27)

The phase plane plot shown in Figure 3.6 (a) is claimed by Nordin to be an exact repre-

sentation of the physical model of the system and is based on Equations (3.26) and (3.27).

The areas in the phase plane plot of Figure 3.6 (a) are defined by Equations (3.28), (3.29)

and (3.30) [40]. The borders separating each area of Figure 3.6 (a) have a gradient of

-Ks/Cs. Hence, for the case where Cs is zero, the phase plane plot of the physical model

is equivalent to the phase plane plot of the dead zone model (shown in Figure 3.6 (b)).

A+ = {(θd, θ̇d) : Ksθd +Csθ̇d ≥ Ksα (3.28)

Ar = {(θd, θ̇d) :
∣

∣Ksθd +Csθ̇d
∣

∣< Ksα (3.29)

A− = {(θd, θ̇d) : Ksθd +Csθ̇d ≤−Ksα (3.30)
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Figure 3.6: Phase Plane Plots [40]

With reference to the phase plane plot shown in Figure 3.6 (a), Nordin states that there can

be persistent right contact only in A+ and persistent left contact only in A−. Also, when

an initial state (θd, θ̇d) lies within A+ right contact will remain until the state (θd(t), θ̇d(t))

leaves A+. Similarly, if an initial state (θd , θ̇d) lies within A− left contact will remain until

the state (θd(t), θ̇d(t)) leaves A−. Hence, contact (either left or right) is only released

when the state reaches the ‘release set’ Ar [40].

One important issue relating to the phase plane plot of Figure 3.6 (a) is that it appears to

be possible for a state to lie within the A+ area whenθd < α. Similarly, it appears to be

possible for a state to lie within the A− area whenθd > −α. The problem with these two

situations relates to Equations (3.26) and (3.27), which this phase plane plot is based on.

Recall from Section 2.4.2 thatθd is equivalent to the addition of the shaft flex (θs) and

the backlash angle (θBL). Equation (3.26) is only valid whenθBL = α andθ̇BL = 0, so if a

state lies within the A+ area whenθd < α: Equation (3.26) implies thatθs has to be less

than 0. However, it is not physically possible for the systemto be in right contact when

θs < 0. Similarly, Equation (3.27) is only valid whenθBL = −α andθ̇BL = 0, so if a state

lies within the A− area whenθd > −α: Equation (3.27) implies thatθs has to be greater

than 0. Again, it is not physically possible for the system tobe in left contact whenθs > 0.

The reality in both of these situations is thatθBL 6= ±α and hence, Equations (3.26) and
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(3.27) are not valid. For this reason the phase plane plot shown in Figure 3.6 (a) is not

actually an exact representation of the physical model of the system.
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Figure 3.7: Adjusted Phase Plane Plot

An adjusted phase plane plot that accounts for the physical limitations of Figure 3.6 (a)

is shown in Figure 3.7. In this plot, the backlash element is defined to be inright contact

whenever a state(θd, θ̇d) lies within the A+ area. Similarly, the backlash element is

defined to be inleft contact whenever a state(θd, θ̇d) lies within the A− area. Hence,

the backlash element is in non-contact whenever a state(θd, θ̇d) lies within the A0 area.

This adjusted phase plane plot can also be used to describe a new backlash model that

addresses the shortcomings of previous models, yet is a simple extension to the common

dead zone model. The new backlash model is represented by Equations (3.31) to (3.34)

and like the Nordin phase plane model, the new model reduces to the standard dead zone

model when internal damping of the transmission is zero.

Ttrans =























Ks(θd −α)+Csθ̇d (θd, θ̇d) ∈ A+

0 (θd, θ̇d) ∈ A0

Ks(θd +α)+Csθ̇d (θd, θ̇d) ∈ A−

(3.31)

where:

A+ = (θd, θ̇d) :











θd > α θ̇d ≥ 0

Ks(θd −α)+Csθ̇d ≥ 0 θ̇d < 0
(3.32)
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A− = (θd, θ̇d) :











θd < −α θ̇d ≤ 0

Ks(θd +α)+Csθ̇d ≤ 0 θ̇d > 0
(3.33)

A0 = (θd, θ̇d)\(A+∪A−) (3.34)

Since Equations (3.31) to (3.34) represent backlash in a two-body system, this new back-

lash model can easily be included in an extension to the ‘adjusted’ two-body model (de-

veloped in Section 3.2). Equations (3.35) to (3.41) represent the new equations of motion

when the ‘adjusted’ two-body model is extended to include both general periodic torque

disturbances and backlash.

θ̈m =
2

2Jm +Js

[

Tm −Ttrans −Bmθ̇m −T f cm −
∞

∑
n=−∞

cnme jnΩ0θm

]

(3.35)

θ̈l =
2

2Jl +Js

[

Ttrans −Bl θ̇l −T f cl −
∞

∑
n=−∞

cnle
jnΩ0θl

]

(3.36)

where:

Ttrans =























KSad j(θd −α)+Csθ̇d (θd, θ̇d) ∈ A+

0 (θd, θ̇d) ∈ A0

KSad j(θd +α)+Csθ̇d (θd, θ̇d) ∈ A−

(3.37)

and:

A+ = (θd, θ̇d) :











θd > α θ̇d ≥ 0

KSad j(θd −α)+Csθ̇d ≥ 0 θ̇d < 0
(3.38)

A− = (θd, θ̇d) :











θd < −α θ̇d ≤ 0

KSad j(θd +α)+Csθ̇d ≤ 0 θ̇d > 0
(3.39)

A0 = (θd, θ̇d)\(A+∪A−) (3.40)

KSad j =
2Ks(2Jm +Js)(2Jl +Js)

8JmJl +3Js(Jm +Jl)+J2
s

(3.41)
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3.5 Models for Common Drive Train Configurations

The simple motor-transmission-load systems shown in Figures 2.1 and 2.2, allow for con-

centrated analyses on the individual factors that are knownto limit the performance of a

machine tool axis. Although these systems are simplified, they do form the basis of many

common drive train configurations. Similarly, the ‘adjusted’ two-body model, in both its

standard and extended forms, can be used as a basic building block in developing accurate

models for many drive configurations. In this section, accurate approximate models of the

four most common drive train configurations currently used in linear machine tool feed

axes are developed.

3.5.1 Direct Drive Ballscrew Axes

Consider a directly driven ballscrew as shown in Figure 3.8.This configuration consists

of a rotary motor directly coupled to the ballscrew, producing linear motion at the load

end. It is clear to see that this configuration is almost identical to the simple motor-

transmission-load system with backlash (as shown in Figure2.2). The ballscrew forms

the transmission element and there is a source for possible backlash between the ballscrew

and the ballscrew nut (attached to the load). With this system the load inertia is dependent

on both the mass of the load and the gearing ratio of the ballscrew. Also, the torsional

stiffness of the transmission (Ks) is now a function of the load position (x).

Figure 3.8: Dynamics of a Directly Driven Ballscrew

For the directly driven ballscrew system of Figure 3.8, let LBS be the overall length of the

ballscrew, JBS the total inertia of the ballscrew, KsBS the torsional stiffness of the entire
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ballscrew, PBS the pitch of the ballscrew and ML the mass of the load. If it is assumed that

flexing of the ballscrew only occurs between the motor and load, the remaining ballscrew

inertia can be lumped with the load. For the case where friction, general torque distur-

bances and backlash are considered negligible, the ‘adjusted’ two-body model represented

by Equations (3.19) and (3.20) are valid with the following substitutions:

Ks =
KsBSLBS

x
(3.42)

Js =
JBSx
LBS

(3.43)

θl =
2π
PBS

x (3.44)

Jl =

(

PBS

2π

)2

ML +

(

JBS(LBS − x)
LBS

)

(3.45)

Since the torsional stiffness (Ks), the transmission inertia (Js) and load inertia (Jl) are

now functions of the load position, it is clear to see that, even with backlash considered

negligible, this system is non-linear and the resonant frequencies will vary with the load

position. This extended model, although non-linear, can beused to accurately simulate

the system and the given substitutions provide all necessary information to predict the

parameter variations likely to occur. Hence, this extendedsystem model provides accurate

information for developing a robust control solution.

Similarly, if friction, internal damping, general torque disturbances and backlash are con-

sidered to be significant, Equations (3.35) to (3.41) for thecomplete two-body model are

valid with the same substitutions given by Equations (3.42)to (3.45). In this complete

model any linear friction at the load needs to be translated into rotary terms and lumped

with Bl and Tf cl. The defined backlash gap of±α remains valid and refers to the angu-

lar displacement that is traversed by the ballscrew (in eachdirection) before coming into

contact with the ballscrew nut.
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3.5.2 Belt Driven Ballscrew Axes

The belt driven ballscrew is a slightly modified ballscrew configuration that consists of a

rotary motor coupled to the ballscrew via a belt, as shown in Figure 3.9. This configuration

is commonly used in machine tools as a space saving measure. While the characteristics

of the ballscrew are the same as the directly driven model, flexing of the coupling between

motor and ballscrew is now significant.

Figure 3.9: Dynamics of a Belt Driven Ballscrew

Since there are two non-rigid transmission elements in the system of Figure 3.9, three

equations of motion are required. Although the flexing and internal damping of the belt

are significant, the inertia of the belt can be considered negligible. Also, along with any

backlash associated with the ballscrew, there are extra sources of possible backlash at

both the motor and ballscrew ends of the belt. However, thesetwo backlash sources (at

each end of the belt) can be treated as a single backlash element and described by a single

backlash gap. The complete equations of motion for the belt driven ballscrew system,

including friction, internal damping, general torque disturbances and backlash, are:

θ̈m =
1
Jm

[

Tm −RmFblt −Bmθ̇m −T f cm −
∞

∑
n=−∞

cnme jnΩ0θm

]

(3.46)

θ̈p =
2

2Jp +Js

[

RpFblt −Tbs −Bpθ̇p −T f cp −
∞

∑
n=−∞

cnpe jnΩ0θp

]

(3.47)

θ̈l =
2

2Jl +Js

[

Tbs −Bl θ̇l −T f cl −
∞

∑
n=−∞

cnle
jnΩ0θl

]

(3.48)
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where:

• Jm is the combined inertia of the motor and the motor pulley,

• Jp is the inertia of the pulley driving the ballscrew,

• Rm is the radius of the motor pulley,

• Rp is the radius of the pulley driving the ballscrew,

• θp is the absolute angular position of the pulley driving the ballscrew,

• Fblt is the linear force transmitted through the belt and

• Tbs is the torque transmitted through the ballscrew.

In Equations (3.46), (3.47) and (3.48), the values Js, θl and Jl are subject to the same

substitutions as in the directly driven ballscrew case (described by Equations (3.43) to

(3.45)). Also, the torque transmitted through the ballscrew (Tbs) is defined by Equations

(3.37) to (3.41), where Ttrans = Tbs, α = αbs, Jm =Jp and Ks is subject to the substitution

described by Equation (3.42). Power is transmitted linearly through the belt, with the

belt stiffness coefficient (Ksblt ) and internal damping coefficient (Csblt ) both defined in

terms of linear force. Hence, if the backlash gap in the belt transmission (±αblt) refers to

the angular displacement that is traversed by the motor (in each direction) before the belt

comes into contact with the pulleys, the linear force transmitted through the belt can be

described by:

Fblt =























Ksblt(xd − xα)+Csblt ẋd (xd, ẋd) ∈ A+

0 (xd , ẋd) ∈ A0

Ksblt(xd + xα)+Csblt ẋd (xd, ẋd) ∈ A−

(3.49)

and:

A+ = (xd, ẋd) :











xd > xα ẋd ≥ 0

Ksblt(xd − xα)+Csblt ẋd ≥ 0 ẋd < 0
(3.50)

A− = (xd, ẋd) :











xd < −xα ẋd ≤ 0

Ksblt(xd + xα)+Csblt ẋd ≤ 0 ẋd > 0
(3.51)
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A0 = (xd , ẋd)\(A+∪A−) (3.52)

xd = Rmθm −Rpθp (3.53)

xα = Rmαblt (3.54)

3.5.3 Rack and Pinion Driven Axes

Consider the rack and pinion drive configuration shown in Figure 3.10. This configuration

usually consists of a rotary motor directly coupled to the pinion, producing linear motion

along the length of the rack. In this configuration torsionalstiffness of the motor/pinion

coupling is a constant. As such, it can easily be described interms of Equations (3.35) to

(3.41).

Figure 3.10: Dynamics of a Rack and Pinion

The most important point to note about this configuration is that the load inertia is depen-

dent on both the load mass and the gearing ratio of the rack andpinion. For the system

shown in Figure 3.10, letx be the absolute linear position of the pinion on the rack,r be

the radius of the pinion, JPIN be the inertia of the pinion and ML be the mass of the load.

Further, let the backlash gap (±α) refer to the angular displacement that is traversed by

the motor (in each direction) before the pinion comes into contact with the rack. Hence,
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for this system Equations (3.35) to (3.41) are valid with thefollowing substitutions:

θl =
x
r

(3.55)

Jl = JPIN +MLr2 (3.56)

Unlike the two ballscrew configurations, it can be seen that the flexing of the rack and

pinion can be described linearly if backlash is considered negligible. However, backlash

is often very significant in rack and pinion drives.

3.5.4 Linear Motor Driven Axes

Finally, consider the linear motor configuration shown in Figure 3.11. Unlike all of the

rotary motor driven configurations, the linear motor directly drives a linear machine tool

feed axis and does not require a mechanical transmission mechanism. The moving part

of the linear motor is always attached directly to the load and as such, the system can be

appropriately described as having only one degree of freedom. This direct drive approach

also eliminates any backlash in the system. For these reasons, the ‘adjusted’ two-body

model and new backlash model developed throughout this chapter are not required to

accurately describe the motion of a linear motor axis. However, friction and linear force

variations are still significant.

Figure 3.11: Dynamics of a Linear Motor Driven Axis

For the linear motor system of Figure 3.11, letx be the absolute linear position of the

motor and M be the combined mass of the motor and load. Hence, the equation of motion
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for this system including friction and general periodic force variations is:

ẍ =
1
M

[

Fm −Bẋ−Ff c −
∞

∑
n=−∞

cne jnΩ0x

]

(3.57)

In Equation (3.57), Ff c represents the constant coulomb frictional force andΩ0 represents

the fundamental position frequency. As with the rotary motor cases, the fundamental

position frequency is expressed in cycles per revolution. However, for the linear motor

one revolution is defined as the linear distance travelled during one electrical cycle of the

motor.

3.6 Conclusions

Mathematical models for linear feed axes of machine tools were developed in this chap-

ter. Initially, a model for a simple motor-transmission-load system was developed, with

descriptions for friction, damping and backlash subsequently added to improve the accu-

racy of the model. The complete motor-transmission-load model was then extended to

accurately describe the direct driven ballscrew, belt driven ballscrew, rack and pinion, and

linear motor driven axis configurations.

In Section 3.2 the Lagrangian approach to modelling was usedto determine both discrete

and continuous models of a simple motor-transmission-loadsystem. The lowest natural

frequencies of 11 approximate discrete models were then compared with that of the con-

tinuous model of this system, over a wide range of motor-transmission-load conditions.

It was found that the lowest natural frequency of the traditional two-body model, used

by most researchers, had a percentage error (with referenceto the continuous model) of

greater than 50% under some common motor-transmission-load conditions. Although

models with increased degrees of freedom were shown to improve the accuracy, it was

found that approximately 100 degrees of freedom were required to achieve a percentage

error of less than 1% over the entire range of motor-transmission-load conditions consid-

ered.
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A total of 7 different two-body model configurations were included in the comparison

presented in Section 3.2. In one of the two-body model configurations the inertia of the

transmission element was equally distributed between the motor and load sides, with the

system compliance adjusted with respect to the relative sizes of all inertial bodies. This

particular configuration was found to achieve a percentage error of less than 10% over the

entire range of motor-transmission-load conditions considered. The same configuration

was also found to be more accurate than the traditional two-body model under all of the

conditions considered, and even more accurate than all of the higher degree of freedom

models under some of the conditions. Since the modelling goal from a control perspective

is to minimise the complexity of the model, while accuratelyaccounting for significant

inertias and resonances in the system, this ‘adjusted’ two-body model was identified as

the most appropriate choice for modelling a simple motor-transmission-load system.

The ‘adjusted’ two-body model was extended in Section 3.3 toinclude simple expres-

sions for damping, coulomb friction, viscous friction and general torque disturbances. A

Fourier series was used to describe the general torque disturbances in this extended model.

Practical values for this Fourier series can be determined using the PDTV method, with

the resulting position frequency spectrum representing torque variations in the system.

In Section 3.4 a new model for accurately representing backlash in a two-body system was

developed. This new model was shown to provide a simple description of backlash, while

addressing the shortcomings of previous backlash models. It was also shown that the

‘adjusted’ two-body model from Section 3.2 could be easily extended to include this im-

proved description of backlash. This complete two-body model provides dual advantages

over previous descriptions of systems with backlash, with an improved representation of

the backlash element itself and a more accurate prediction of the resonant frequencies of

the system. This dual advantage is quite significant as the changes in inertia experienced

in a system with backlash can be a source of excitation for system resonances.

In Section 3.5, the complete approximate model for a simple motor-transmission-load

system was used to develop new models for common machine tooldrive configurations.
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The drive configurations modelled in this section were the direct driven ballscrew, belt

driven ballscrew, rack and pinion, and linear motor configurations. These complete drive

train models take into account each of the factors describedin this chapter, and are used

throughout the remainder of this thesis to accurately modelactual linear and rotary drive

axes.
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Chapter4
Experimental Equipment

4.1 Introduction

The control schemes developed and analysed in this thesis were tested on specially con-

structed experimental test-beds. In total there were threetest-beds used throughout the

research: i) a simple rotary motor-transmission-load test-bed, ii) a single linear axis test-

bed driven by a rotary motor that can be coupled with either a ballscrew or rack and

pinion, and iii) a high precision linear motor driven singleaxis test-bed. The combina-

tion of these four test-beds allowed for comprehensive testing of all four of the common

drive train configurations, along with the effects of each ofthe three performance limiting

factors considered in the research.

The overall automated control of each of the four test-beds was handled by a typical in-

dustry CNC system. The CNC system consists of a servo power supply, two digital servo

drives, an input output unit and safety stop unit. These components are all mounted on

a light steel frame, with castors for mobility. The CNC software is run on a standard

personal desktop computer. Communication between the digital servo drives, the input

output unit and the desktop computer is handled by SERCOS (SErial Real time COm-

munications System). SERCOS is based on the international standard IEC 1491 and

exchanges data via a fibre optic ring. This CNC system is easily configured and tuned
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for different test-beds via a database system, providing a flexible solution for testing the

same control schemes on the four different test-beds.

The specific details of each of the four test-beds and the drive-level control scheme of the

CNC system are discussed in this chapter. System parametersare determined in order

to describe each of the test-beds in terms of the drive train models developed in Chapter

3. Since the drive-level control scheme of the CNC system is common for all four test-

beds, an analysis of this control scheme is presented first inSection 4.2. In Section 4.3

the details of the simple rotary motor-transmission-load system (Motor-Transmission-

Load Test-Bed) are discussed, with the mechanical parameters of this test-bed presented.

Section 4.4 presents the details of the single linear axis that can be driven by either a

ballscrew or rack and pinion (Drive Comparison Test-Bed), while Section 4.5 describes

the single axis linear motor driven test-bed (Linear Motor Test-Bed). Finally, Section 4.6

summarises the key points and conclusions that can be drawn from the details presented

in this chapter.

4.2 CNC Control Scheme

As mentioned in Section 4.1, the control of each of the three test-beds used throughout this

research was handled by the same CNC system. Although individual gains and settings

need to be adjusted for each of the test-beds (easily handledvia a database system on the

CNC), the overall drive-level control strategy is common. With brushless servomotors

used to drive each of the different mechanical configurations, the digital servo drives of

the CNC system were configured to control the output torque (or force in the case of the

linear motor) of these servomotors. It is this motor torque (or force) that is the driving

input in all of the system equations developed in Chapter 3.

Although brushless servomotors are often labelled as ‘Brushless DC’ motors or ‘Brushless

AC’ motors, the standard construction of these motors is based on that of a permanent

magnet synchronous motor with continuous rotation obtained by controlling three-phase
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current flow in the stator coils. For a rotary brushless servomotor, maximum torque is

maintained by monitoring the rotor position and controlling the three-phase stator currents

to produce a resultant MagnetoMotive Force (MMF) that is always at a 90 degree angle to

the permanent magnet rotor MMF [8]. Ifβ is defined as the angle between the stator and

rotor MMFs, the three phase stator currents can be describedby a stator current phasor

referred to the rotor:

ĩe− jβ = id + jiq (4.1)

In Equation (4.1),id (direct axis current) is the component of the resulting stator current

phasor that is parallel to the rotor frame of reference andiq (quadrature axis current) is the

component of the resulting stator phasor current that is perpendicular to the rotor frame of

reference. It follows thatid must equal zero for maximum torque to be maintained (β =

90o). In the case whereid does equal zero, the torque of a rotary brushless servomotoris

described by [8]:

Tm =

(

Z
π

)

φ
iq
2

(4.2)

In Equation (4.2),Z is the total number of stator conductors,φ is the magnetic flux and

iq is the quadrature axis current. SinceZ never changes in a finished motor and the

magnetic flux is determined by the motor dimensions and the state of magnetisation, a

torque constant can be defined for brushless servomotors:

Kt =

(

Z
2π

)

φ

and hence: Tm = Kt iq (4.3)

From Equations (4.1) and (4.3) it can be seen that, as long as the direct axis current is

controlled with a set point of zero, the torque developed in arotary brushless servomotor

is proportional to the quadrature axis current. For a brushless linear motor the linear force

is developed in the same manner; however, in a linear motor itis the permanent magnets

that are often stationary while the motor coils move linearly along the axis. In this case,

it is the position of the moving coils that must be monitored to ensure that the two MMFs
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are always at 90 degrees. The overall drive-level control scheme of the CNC system is

illustrated in Figure 4.1.
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Figure 4.1: CNC Digital Servo Drive – Control Diagram

In Figure 4.1, the input is a stream of position and velocity commands from the CNC

motion control software and the output is the actual position and velocity of the overall

drive-train system sensed at the motor and/or load. The thicker blue arrows in Figure 4.1

represent the flow of multiple system signals, while the black arrows represent the flow

of individual system signals. The drive position and velocity controllers are embedded in

the CNC drive code and output a reference control current (Ire f ) representing the desired

motor torque. The current controller is a PI regulator with the output described (in Laplace

Transform notation) by Equation 4.4.

V(s) = K p

(

1+
1

Tis

)

(

Ire f (s)− I f b(s)
)

(4.4)

In Equation 4.4, If b is a function of both Iq and Id . However, since the set-point for Id

is zero (as shown in Figure 4.1), If b is approximately equivalent to Iq. The output of the

current controller is a voltage command that is applied to the three-phase Pulse Width

Modulated (PWM) supply, which feeds the servomotor. The resulting coil currents in

the motor are sensed, with the actual motor position and a commutation routine used to

determine the Iq and Id components. The output from the motor is a torque (Tm) used to

drive the mechanical transmission and load (drive train).

From Equation (4.3) it can be seen that the feedback system ofFigure 4.1 reduces to the
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simplified system illustrated in Figure 4.2, whereGc(s) =
Iq(s)

Ire f (s)
. Hence, if the closed loop

transfer function with Ire f as input and Iq as output is known, the entire current control

system including the PI regulator, drive electronics and internal motor components can be

represented by the single blockKtGc(s).
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Figure 4.2: CNC Digital Servo Drive – Reduced Control Diagram

In both of the rotary motor driven test-beds, which are discussed further in Sections 4.3

and 4.4, the same brushless servomotors (Siemens 1FK6042-6AF71) were used. For this

reason, the overall CNC drive/servomotor current responseis the same for both of these

test-beds. In order to model the current control system, a closed loop frequency response

of this system was measured on the CNC and is shown in Figure 4.3.
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Figure 4.3: Rotary CNC drive/servomotor Current Response

The solid blue line in Figure 4.3 is the measured response ofGc(s) when the CNC is

coupled to the rotary servomotors. The solid red line is the response of a simple second-

order filter that was used in this thesis to modelGc(s). It can be seen from Figure 4.3 that
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this simple filter provides a very close approximation of theactual system response. The

transfer function of the simple filter model is given by Equation (4.5).

Gc(s) =
56542

s2+4410s+56542 (4.5)

Given that the Siemens rotary brushless servomotors have a torque constantKt = 1.18,

the overall current control system can be described by Equation (4.6).

Tm

Ire f
= KtGc(s) =

1.18
(

56542
)

s2+4410s+56542 (4.6)

The linear motor test-bed was driven by a linear brushless servomotor (Linear Drives

LD3806). In order to model the linear CNC drive/servomotor current control system, a

closed loop frequency response of the system was again measured on the CNC and is

shown in Figure 4.4.
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Figure 4.4: Linear CNC drive/servomotor Current Response

The solid blue line in Figure 4.4 is the measured response ofGc(s) when the CNC is

coupled to the linear motor. The solid red line is the response of another simple second-

order filter that was used to modelGc(s) for the linear motor case. It can be seen from

Figure 4.4 that once again the simple filter provides a very close approximation of the
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actual system response. The transfer function of the simplefilter model used for the

linear motor case is given by Equation (4.7).

Gc(s) =
72252

s2 +5925s+72252 (4.7)

Given that the Linear Drives motor has a force constantK f = 75, the overall current

control system can be described by Equation (4.8).

Fm

Ire f
= K f Gc(s) =

75
(

72252
)

s2+5925s+72252 (4.8)

4.3 Motor-Transmission-Load Test-Bed

4.3.1 General Description

The Motor-Transmission-Load Test-Bed was constructed to resemble the basic two-body

model introduced in Section 2.3. The test-bed consists of two of the Siemens rotary

servomotors mounted on fabricated right angle brackets. The mounting brackets rest on

a sturdy base constructed from 16mm thick steel plate, and were machined such that they

were able to slide back and forth along the base while maintaining correct alignment.

Special couplings allow the two motors to be connected by a variety of shafts of varying

lengths and diameters. The couplings also act as a carrier for removable discs, which

allow the load inertia to be varied in steps. The motor at the load end was used only for

applying load disturbance torques. Figure 4.5 (a) shows thetest bed with motor mounts

and test shaft in their assembled positions. Figure 4.5 (b) shows a closer view of the

directly connected load coupling with removable inertia disc.

As can be seen, the constructed test-bed is consistent with the basic two-body system

illustrated in Figure 2.1. This simple test-bed allowed fora concentrated analysis of

drive-train flexing and torsional vibrations, while other important factors such as friction
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(a) Motor, Transmission and Load

(b) Load Inertia

Figure 4.5: Experimental Motor-Transmission-Load System

and backlash were minimised. The major difference between the experimental system

of Figure 4.5 and the ideal system of Figure 2.1 is that the difficulties in perfectly align-

ing a practical transmission element result in alignment related cyclic disturbances being

present in the experimental system.

Through the addition of backlash couplings between the transmission element and the

load, this simple test-bed can be varied to resemble the basic two-body model with back-

lash (as illustrated in Figure 2.2). To achieve this a numberof extra couplings were ma-

chined with known backlash gaps, allowing for an analysis that concentrated on the effects

of backlash and the inter-relating effects of backlash and torsional vibrations. A selection

of these backlash couplings is shown in Figure 4.6 (a), with Figure 4.6 (b) showing how

the couplings are mounted on the test-bed. Detailed drawings of the basic test-bed and

couplings are given in Appendix D.
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(a) Couplings (b) Couplings Mounted on Test-Bed

Figure 4.6: Backlash Couplings

Position feedback at both the motor and load ends of the test-bed is achieved through

rotary encoders embedded in the Siemens motors. These incremental optical encoders

produce two channels of differential sinusoids in quadrature, thus providing both position

and directional information. The CNC system interpolates using the basic period of the

encoders (3.068 mrad) along with instantaneous sine and cosine information to improve

the resolution of the position feedback. For additional acceleration feedback, a Hübner

rotary accelerometer (based on the Ferraris Principle) wasalso used during some of the

experimentation undertaken on the test-bed. The accelerometer can be attached to ei-

ther the motor or load end of the system. Additional data on these feedback elements is

included in Appendix D.

4.3.2 Mechanical System Parameters

In the control diagrams shown in Figures 4.1 and 4.2, the ‘Drive Train & Sensors’ block

represents the overall mechanical drive system including all relevant inertias, friction,

flexing and backlash etc.. The input to this block is a torque (Tm), while the output

represents all available motor and load feedback signals. All of the system equations

developed in Chapter 3 are in the appropriate form to describe the various mechanical

systems that can be represented by the ‘Drive Train & Sensors’ block.

Since the Motor-Transmission-Load Test-Bed was designed to be consistent with a basic

87



two-body system, Equations (3.24) and (3.25) were used to describe the mechanical drive

train of this test-bed when backlash was zero. For the cases where backlash was non-

zero, Equations (3.35) to (3.41) were used. The set of mechanical parameters used in

these system equations are given in Tables 4.1 to 4.4.

Table 4.1: System Parameters – Motor and Load
Parameter Symbol Value

Motor Inertia (kgm2) Jm 4.108x10−4

Load Inertia (kgm2) Jl 4.108x10−4

Viscous Friction at Motor (Nms/rad) Bm 2.62x10−3

Viscous Friction at Load (Nms/rad) Bl 3.65x10−3

Coulomb Friction at Motor (Nm) T f cm 0.08

Coulomb Friction at Load (Nm) T f cl 0.06

Table 4.1 lists the inertia and friction parameters for boththe motor and load ends of the

test-bed. The total inertia at each end consists of the rotorinertia and the inertia of the

transmission coupling. The rotor inertia of the motors was specified by the manufacturer

(3.47x10−4 kgm2), while the inertias of the transmission couplings were calculated using

Equation (4.9).

J=
M
(

R2
2 +R2

1

)

2
(4.9)

Equation (4.9) describes the moment of inertia of a uniform hollow cylinder (which is

a good approximation of the transmission couplings), whereM is the total mass of the

cylinder andR2 & R1 are the outer and inner radii of the cylinder respectively. For the

inertia values given in Table 4.1, the masses and radii of thecouplings were directly

measured. The viscous and coulomb friction values given in Table 4.1 were obtained

using the PDTV method described in Section 3.3. Since the DC component of the PDTV

spectrum represents the combination of viscous and coulombfrictions, these two friction

components can be separated by measuring the DC component ofthe PDTV spectrum at

several different velocities.

Table 4.2 lists the inertia and torsional stiffness parameters of the interchangeable trans-
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Table 4.2: System Parameters – Transmission Shafts
Parameter Symbol Shaft 1 Shaft 2 Shaft 3

Transmission Inertia (kgm2) Js 2.08x10−6 1.55x10−6 5.25x10−7

Torsional Stiffness (Nm/rad) Ks 402 70.35 23.6

mission shafts. There were three shafts that were used with this test-bed, one short and

reasonably stiff shaft (‘Shaft 1’) and two longer shafts that were machined to be deliber-

ately flexible (‘Shaft 2’ and ‘Shaft 3’). The values of inertia for each of these shafts were

again calculated using Equation (4.9) and directly measured values of mass and radii. The

torsional stiffness of each shaft was calculated using Equation (4.10).

Ks =
Gπd4

32l
(4.10)

Equation (4.10) describes the torsional stiffness constant of a uniform shaft, whereG is

the shear modulus (80x109 Pa for steel),d is the diameter of the shaft andl is the length of

the shaft. For the torsional stiffness values given in Table4.2, the diameters and lengths

of the shafts were directly measured. The internal damping coefficient (Cs) for each shaft

is not listed in Table 4.2. The reason for this is that Cs is very approximate and also

dependent on the total motor and load side inertias (which can be varied on this test-bed).

In this thesis Cs was determined individually for each experimental set-up using Equation

(4.11), whereη is the material loss factor (estimated at 0.05 for steel). The derivation of

Equation (4.11) is given in Appendix B.

Cs = η

√

JmJlKs

(Jm +Jl)
(4.11)

Table 4.3: System Parameters – Additive Components
Parameter Disc 1 Disc 2 Disc 3 Accelerometer

Inertia (kgm2) 1.544x10−3 5.02x10−3 1.417x10−3 2.98x10−4

Viscous Friction (Nms/rad) 0 0 0 2.71x10−3

There were three different additive discs used with the test-bed to vary the inertia at either
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the motor or load end. Table 4.3 lists the inertia of each of these discs, along with both

the inertia and added viscous friction of the rotary accelerometer (which could also be

mounted at either end of the test-bed). The inertias of theseadditive components were

again calculated using Equation (4.9) and directly measured values for the masses and

radii. The added viscous friction of the accelerometer was determined using the PDTV

method.

Table 4.4: System Parameters – Coupling Backlash Gaps
Coupling Backlash Gap (α)

Coupling 1 0.0873 rad

Coupling 2 0.1745 rad

Table 4.4 lists the backlash gaps of the additional couplings that were machined for the

test-bed. These gaps were directly measured.

4.4 Drive Comparison Test-Bed

4.4.1 General Description

The Drive Comparison Test-Bed is a single axis positioning system designed for testing

the relative performance of three common drive-train configurations under similar test

conditions. The three drive-train configurations incorporated into the test-bed are: 1. a

rotary motor directly coupled to a ballscrew, 2. a rotary motor coupled to a ballscrew

via a synchronous timing belt and 3. a rotary motor directly coupled to a rack and pin-

ion transmission. The main structure of the test-bed consists of a 1m length of 150mm

universal column, supported at each end by 16mm steel plate.The top surface of the uni-

versal column is machined to accurately support a rack and two linear guides in parallel.

A 10mm thick steel plate is mounted on the linear guides as a load carrying table. The

overall test-bed is shown in Figure 4.7.
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Figure 4.7: Drive Comparison Test-Bed in Direct Driven Ballscrew Configuration

It can be seen in Figure 4.7 that a rotary servomotor is mounted at one end of the main test-

bed structure and directly coupled to a ballscrew. The ballscrew itself is mounted to one

side of the universal column. Figure 4.8 shows how the alternative drive configurations

are achieved with the test-bed. In Figure 4.8 (a), the servomotor has been moved to the

other side of the steel end plate and coupled to the ballscrewvia a belt and pulley system.

Figure 4.8 (a) also clearly illustrates the space saving that is achieved through the belt

driven ballscrew configuration (when compared with the direct driven ballscrew of Figure

4.7). In Figure 4.8 (b), the rack and pinion configuration is illustrated. When using the

rack and pinion system, the ballscrew is detached from the load table and the pinion is

directly coupled to the servomotor, which is mounted on the load table.

In general, the mechanical components used in the drive trains of this test-bed were chosen

to emphasise the effects being studied. For instance, the ballscrew was deliberately chosen

to have a small diameter and only a single nut system so that torsional flexing and backlash

would be significant. Similarly, a coarse rack and pinion transmission with no inherent

anti-backlash mechanisms was chosen. The application of precision control algorithms

on this test-bed allowed for the testing to be undertaken under worst-case conditions.

Position feedback for each of the drive configurations on this test-bed is achieved through

the rotary encoders embedded in the Siemens servomotors. Additional load position feed-

back can be achieved by placing a rotary encoder at the other end of the ballscrew (when

the system is being driven by one of the ballscrew configurations). Detailed drawings of

91



(a) Belt Driven Ballscrew (b) Rack and Pinion

Figure 4.8: Drive Comparison Test-Bed in Alternative Configurations

the drive comparison test-bed are given in Appendix D.

4.4.2 Mechanical System Parameters

Since the Drive Comparison Test-Bed can be varied between three different drive config-

urations, there are three different sets of system equations that were used to describe the

mechanical drive train:

1. Direct Driven Ballscrew Configuration — the substitutions specified in Equations

(3.42) to (3.45) were applied to the non-zero backlash system equations (Equations

(3.35) to (3.41)).

2. Belt Driven Ballscrew Configuration — the substitutions specified in Equations

(3.42) to (3.45) were applied to Equations (3.46) to (3.48).In this case, the ballscrew

torque is described by Equations (3.37) to (3.41) and the belt force is described by

Equations (3.49) to (3.54).

3. Rack and Pinion Configuration — the substitutions specified in Equations (3.55)

and (3.56) were applied to the non-zero backlash system equations (Equations

(3.35) to (3.41)).
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A complete description of how each of these system equationsapply to the different con-

figurations is given in Chapter 3. The set of mechanical parameters used in all of the

system equations for the Drive Comparison Test-Bed is givenin Tables 4.5 to 4.7.

Table 4.5: Drive Comparison Test-Bed Parameters – Direct Driven Ballscrew
Parameter Symbol Value

Motor Inertia (kgm2) Jm 3.716x10−4

Ballscrew Inertia (kgm2) JBS 3.22x10−5

Load Mass (kg) ML 8.8

Length of Ballscrew (m) L 1

Pitch of Ballscrew (m) PBS 5x10−3

Viscous Friction at Motor (Nms/rad) Bm 3.05x10−3

Viscous Friction at Load (Nms/rad) Bl 1.75x10−3

Coulomb Friction at Motor (Nm) T f cm 0.175

Coulomb Friction at Load (Nm) T f cl 0.205

Torsional Stiffness of Overall Ballscrew (Nm/rad) KsBS 225

Internal Damping Coefficient of Ballscrew (Nms/rad) Cs
1.75×10−3√

x

Ballscrew Backlash Gap (rad) α 0.03

Table 4.5 lists the set of mechanical parameters for this test-bed when configured in direct

driven ballscrew mode. The total motor inertia in Table 4.5 is a combination of the rotor

inertia and the inertia of the motor/ballscrew coupling. The inertia of the ballscrew and

the inertia of the motor/ballscrew coupling were calculated using Equation (4.9), with

the masses and radii of each component directly measured. The total load mass is a

combination of the mass of the load carrying table, the mass of the linear bearings and

the mass of the ballscrew nut. The masses for each of these individual components were

directly measured.

The viscous and coulomb friction values given in Table 4.5 were obtained using the PDTV

method. The PDTV study was performed with and without the total load connected, so

that the motor and load friction components could be accurately separated from the total

system friction.
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The torsional stiffness of the overall ballscrew (KsBS) was calculated using Equation

(4.10) and directly measured values of ballscrew diameter and length. As mentioned

in Section 3.5.1, the actual torsional stiffness of the transmission is a function of both

KsBS and the load position (x). Likewise, the internal damping coefficient is dependent on

the load position. Equation (4.12) was used to determine theinternal damping coefficient

and is a modified version of Equation (4.11) taking the variable torsional stiffness of the

transmission into account.

Cs = η

√

JmP2
BSMLKsBSL

x
(

4π2Jm +P2
BSML

) (4.12)

The ballscrew backlash gap was measured by locking the ballscrew in place and measur-

ing the linear free-play of the table with a dial indicator. The linear free-play was then

translated into a rotary backlash gap (in radians).

Table 4.6 lists the set of mechanical parameters for this test-bed when configured in belt

driven ballscrew mode. The total motor inertia in this case is a combination of the rotor

inertia and the inertia of the motor pulley. The inertias of the motor and load pulleys were

both calculated using Equation (4.9), with the masses and radii of the pulleys directly

measured. The ballscrew inertia and total load mass are identical to the direct driven

ballscrew case.

The viscous and coulomb friction values given in Table 4.6 were again obtained using the

PDTV method. The PDTV study for this system was performed forthree different cases:

1. with the motor and motor pulley disconnected, 2. with the motor and motor pulley

connected to the load pulley, but with no load connected and 3. with the load connected.

This approach allowed for the friction components at the motor, load pulley and load to

be accurately separated from the total system friction.

The torsional stiffness of the ballscrew is identical to thedirect driven ballscrew case.

However, the internal damping coefficient of the ballscrew is slightly different due to the

fact that the ballscrew is now driven by the load pulley rather than the motor. The stiffness
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Table 4.6: Drive Comparison Test-Bed Parameters – Belt Driven Ballscrew
Parameter Symbol Value

Motor Inertia (kgm2) Jm 6.67x10−4

Load Pulley Inertia (kgm2) Jp 3.53x10−4

Ballscrew Inertia (kgm2) JBS 3.22x10−5

Load Mass (kg) ML 8.8

Length of Ballscrew (m) L 1

Pitch of Ballscrew (m) PBS 5x10−3

Radius of Motor Pulley (m) Rm 34.5x10−3

Radius of Load Pulley (m) Rp 34.5x10−3

Viscous Friction at Motor (Nms/rad) Bm 1.6x10−3

Viscous Friction at Load Pulley (Nms/rad) Bp 1.45x10−3

Viscous Friction at Load (Nms/rad) Bl 1.75x10−3

Coulomb Friction at Motor (Nm) T f cm 0.08

Coulomb Friction at Load Pulley (Nm) T f cp 0.145

Coulomb Friction at Load (Nm) T f cl 0.205

Stiffness of Belt (N/m) Ksblt 997

Torsional Stiffness of Overall Ballscrew (Nm/rad) KsBS 225

Internal Damping Coefficient of Belt (Ns/m) Csblt 0.048

Internal Damping Coefficient of Ballscrew (Nms/rad) Cs
1.75×10−3√

x

Belt Backlash Gap (rad) αblt ≈ 0

Ballscrew Backlash Gap (rad) αBS 0.03

of the belt was calculated using Equation (4.13).

Ksblt = 4Ksp
b
L

(4.13)

In Equation (4.13), Ksp is the belt specific stiffness (i.e. the stiffness of a unit long, unit

wide belt – from manufacturer testing this is estimated at 10,635 N/m for a 5mm pitch

synchronous timing belt),b is the belt width andL is the overall length of the belt. The

internal damping coefficient of the belt was calculated using Equation (4.11), with the

loss factor (η) estimated at 0.1 for a Neoprene based synchronous belt. Theballscrew

backlash gap is identical to the direct driven ballscrew case, while the belt backlash gap
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is approximately zero (as long as the belt is tensioned correctly).

Table 4.7: Drive Comparison Test-Bed Parameters – Rack and Pinion
Parameter Symbol Value

Motor Inertia (kgm2) Jm 3.43x10−4

Transmission Shaft Inertia (kgm2) Js 4x10−6

Pinion Inertia (kgm2) JPIN 4.4x10−5

Load Mass (kg) ML 13.2

Radius of Pinion (m) r 20x10−3

Viscous friction at Motor (Nms/rad) Bm 1.6x10−3

Viscous friction at Load (Nms/rad) Bl 32.8x10−3

Coulomb Friction at Motor (Nm) T f cm 0.08

Coulomb Friction at Load (Nm) T f cl 0.35

Torsional Stiffness of Transmission Shaft (Nm/rad) Ks 25,588

Internal Damping Coefficient of Transmission Shaft (Nms/rad) Cs 0.0499

Backlash Gap (rad) α 0.014

Table 4.7 lists the set of mechanical parameters for when thetest-bed is configured in

rack and pinion mode. The motor inertia in this case is simplythe rotor inertia. The

pinion inertia and transmission shaft inertia were calculated using Equation (4.9), with

the masses and radii of each component directly measured. The total load mass is a

combination of the mass of the load carrying table, the mass of the linear bearings and the

mass of the motor itself. All of these masses were directly measured.

The viscous and coulomb friction values given in Table 4.7 were once again obtained us-

ing the PDTV method. The PDTV study was performed with the motor/pinion mounted

on the table and again with the motor/pinion unmounted, so that the motor and load

friction components could be accurately separated from thetotal system friction. The

torsional stiffness of the transmission shaft was calculated using Equation (4.10) and di-

rectly measured values of shaft diameter and length. The internal damping coefficient

of the transmission shaft was calculated using Equation (4.11). The backlash gap in the

rack and pinion transmission was measured by locking the table in place and directly

measuring the angle of free-play of the pinion.
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4.5 Linear Motor Test-Bed

4.5.1 General Description

The ‘Linear Motor Test-Bed’ is a single axis positioning system designed to replicate

one axis of a laser cutting machine. The long travels, high speeds and zero machining

forces associated with the laser cutting process are commonly thought to be ideal for a

linear motor. The particular linear motor used in this test-bed (Linear Drives – LD3806)

is a ‘tubular’ style linear motor. This type of linear motor consists of a thrust block

containing three phase armature windings and a tube that houses the permanent magnets

for field excitation (the complete excitation rod passes through the centre of the thrust

block). Through a balancing of the forces, the tubular stylelinear motor eliminates the

magnetic attraction that exists between the separate armature and field components of

more common ‘flat’ style linear motors. This magnetic attraction can often be up to an

order of magnitude higher than the actual payload (affecting supporting rail requirements,

peak force requirements, cooling and cost), and is a particular problem in high force iron-

core motors. The overall test-bed is shown in Figure 4.9.

Figure 4.9: Linear Motor Test-Bed

As can be seen in Figure 4.9, the main test-bed structure consists of a rectangular welded

steel frame made from Rectangular Hollow Section (RHS – 4mm wall thickness) on the

axial sides and parallel flange channel at the ends. The linear guides are mounted on

machined 10mm flat bar, which is welded to the RHS along the axial sides of the frame.

A 15mm steel plate is mounted on the linear guides as a load carrying table. The field
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excitation rod is mounted in the centre of the test-bed and passes through the thrust block,

which is attached to the underside of the moving table. The complete test-bed structure

is mounted on a separate rigid support table. The Linear Motor Test-Bed represents a

state of the art machine tool positioning system and was usedthroughout this thesis for

performance comparisons with the other drive configurations studied. Detailed drawings

of the test-bed are given in Appendix D.

Position feedback on this test-bed is achieved through an incremental linear encoder (Ren-

ishaw – RGS-S/RGH22B) mounted on one side of the frame structure. The linear encoder

is an optical encoder and produces two channels of differential sinusoids in quadrature

(similar to the output of the rotary encoder embedded in the Siemens motors). The CNC

system interpolates using the basic period of the linear encoder (20µm) along with instan-

taneous sine and cosine information for improved resolution of position feedback. The

CNC system also uses this position feedback for commutationpurposes. Additional data

on the linear encoder is included in Appendix D.

4.5.2 Mechanical System Parameters

Since the Linear Motor Test-Bed has the simplest mechanicaldrive train of all of the test-

beds considered in this chapter, a single system equation (Equation (3.57)) was used to

describe the test-bed. The set of mechanical parameters used in Equation (3.57) for the

Linear Motor Test-Bed are given in Table 4.8.

Table 4.8: Linear Motor Test-Bed Parameters
Parameter Symbol Value

Load Mass (kg) M 23

Viscous Friction (Ns/m) B 1.56

Coulomb Friction (N) Ff c 0.41

In Table 4.8, the load mass is a combination of the mass of the load carrying table, the

masses of the linear bearings and the mass of the thrust block. Like the other test-beds,
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the viscous and coulomb friction values of the Linear Motor Test-Bed were determined

using the PDTV method.

4.6 Conclusions

The experimental equipment used throughout this research project has been described in

this chapter. In particular, three different test-beds were described: 1. Motor-Transmission-

Load Test-Bed, 2. Drive Comparison Test-Bed and 3. Linear Motor Test-Bed.

The drive-level control scheme of the CNC system (used on allof the test-beds) was dis-

cussed, along with the basic construction details and specific features of each of the three

individual test-beds. The response of the CNC system’s closed loop current controller

was analysed when driving both a rotary servomotor and the linear servomotor. It was

shown that simple second order filters provided a close approximation of the CNC sys-

tem’s closed loop current response for both types of motor and hence, simple transfer

functions that represent the drive-level control system were presented for both cases. The

output of the rotary servomotor transfer function is torque, while the output of the linear

servomotor transfer function is force. These torque and force outputs are equivalent to the

inputs of the system equations developed in Chapter 3.

For each test-bed axis configuration, the relevant system equations (as developed in Chap-

ter 3) were identified and the mechanical system parameters required by the equations

presented. The methods used for determining each mechanical parameter were described

for all of the test-beds and generally consisted of a combination of experimental measure-

ment, appropriate calculations and known component data. The resulting system models

are used in both simulation and controller design throughout Chapters 5, 6 and 7 of this

thesis.
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Chapter5
Dynamic Stiffness

5.1 Introduction

A study of the dynamic stiffness of linear feed axes in precision machine tools is presented

in this chapter. The term ‘dynamic stiffness’ can best be described as the frequency re-

sponse of a system’s sensitivity to force disturbances at the load. In precision machining

operations, the machining forces resulting from contact between the tool and workpiece

are often the major source of load disturbance. In some machining processes, such as

laser cutting, there is no direct contact between the tool and workpiece, which results in

very low (or even zero) machining forces. However, in most machining processes these

machining forces can be quite high.

The study presented in this chapter focuses particularly onthe dynamic stiffness of linear

motor driven axes. One of the advantages of a linear motor over a rotary driven linear axis

is a reduction in periodic torque/force disturbances, which is inherent through elimination

of the mechanical transmission mechanism. However, this also results in a system that

is more sensitive to load variations and external disturbances. Inherently low dynamic

stiffness is regarded as one of the major performance limitations of linear motor driven

axes. In this chapter the inherent dynamic stiffness and periodic disturbances of both
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linear motor and rotary driven axes are compared. A QFT approach that includes dynamic

stiffness in the design process is also examined.

In Section 5.2 measurements of the position dependent torque/force variations for a linear

motor driven axis, along with those for the common rotary motor driven configurations,

are presented. The Linear Motor Test-Bed (described in Section 4.5) and the Drive Com-

parison Test-Bed (described in Section 4.4) were used for the experimental measurements

presented in this section. The inherent periodic torque/force disturbances of the linear mo-

tor system and the rotary motor driven configurations are then quantitatively compared.

In Section 5.3 the inherent dynamic stiffness of a linear motor driven axis is compared

with that of the common rotary motor driven configurations. Initially, mathematical ex-

pressions for dynamic stiffness (based on Equation 2.6) aredeveloped for each axis con-

figuration. The system parameters for both the Linear Motor Test-Bed and the Drive

Comparison Test-Bed (presented in Chapter 4) are then used to quantify the inherent dy-

namic stiffness of each of the test-bed configurations.

In Section 5.4 experimental responses to an applied load disturbance are compared for the

Linear Motor Test-Bed and each configuration of the Drive Comparison Test-Bed. The

initial responses were recorded using the standard PI velocity and P position loops of the

existing servo drives, tuned using the manufacturer’s recommended method. A robust

QFT approach, that includes both dynamic stiffness and transient performance specifica-

tions, is then described and implemented on the Linear MotorTest-Bed, using the same

servo drives. As a comparison, experimental responses to the applied load disturbance are

also presented for the QFT designed controller.

Finally, Section 5.5 summaries all of the key points and conclusions that can be drawn

from this chapter.
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5.2 Torque/Force Variations in Feed Axes

Some of the performance limiting factors associated with machine tool feed axes can be

quantified through a study of periodic torque/force variations. As described in Section

3.3, a position frequency spectrum of torque or force can be constructed for machine tool

axes. As an example, consider a linear motor system represented by Equation (3.57). If

the system is moving at a constant velocity, the motor force can be described by:

Fm = Bẋ+Ff c +
∞

∑
n=−∞

cne jnΩ0x (5.1)

It can be seen from Equation (5.1) that the resulting motor force (at any position) is

equivalent to the addition of the constant frictional forces (Bẋ +Ff c) and the sum of the

forces required to overcome periodic disturbances. Hence,the frictional forces make up

the DC component of the position frequency spectrum, while the remaining spectrum is

associated with the position dependent force variations.

In order to compare the torque/force disturbances inherentto the common feed axis con-

figurations, position frequency spectra were determined for the Linear Motor Test-Bed

and all of the Drive Comparison Test-Bed configurations. Theposition frequency spec-

trum of the Linear Motor Test-Bed is shown in Figure 5.1.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

T
or

qu
e 

(N
.m

)

PDFV − Linear Motor

Position Frequency (cycles/revolution)

Figure 5.1: Position Frequency Spectrum - Linear Motor
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The position frequency spectrum of the Drive Comparison Test-Bed in the direct drive

ballscrew configuration is shown in Figure 5.2. Similarly, the position frequency spec-

tra of the Drive Comparison Test-Bed in the belt driven ballscrew and rack and pinion

configurations are shown in Figures 5.3 and 5.4 respectively. While collecting data for

the frequency spectra, each test-bed configuration was run at a constant linear velocity of

200mm/min.
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Figure 5.2: Position Frequency Spectrum - Direct Driven Ballscrew
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Figure 5.3: Position Frequency Spectrum - Belt Driven Ballscrew
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Figure 5.4: Position Frequency Spectrum - Rack and Pinion

The position frequency in Figures 5.1, 5.2, 5.3 and 5.4 is expressed in cycles per revolu-

tion. For the Linear Motor Test-Bed, one revolution is the linear distance traversed during

one electrical cycle of the linear motor. For the Drive Comparison Test-Bed, one revolu-

tion refers to one mechanical revolution of the rotary motor. The DC component in each

spectrum has been set to zero, in order to concentrate on the periodic disturbances.

The fundamental frequency in each spectrum corresponds to the actual length of travel

used during the testing procedure. There is a 25:1 ratio between the linear lengths tra-

versed by the rack and pinion and ballscrew configurations during one revolution of the

rotary motor. Hence, there is also a 25:1 ratio between the fundamental frequencies of the

rack and pinion and ballscrew spectra (as the same linear length of travel was used during

the testing procedure). As a result, the rack and pinion has amuch coarser spectrum than

the other cases.

A summary of the PDFV/PDTV results is given in Table 5.1, where both the DC com-

ponent and the most significant frequency components from Figures 5.1, 5.2, 5.3 and 5.4

are listed. The most likely causes of the frequency components are also included in Table

5.1.
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Table 5.1: Significant Components of Experimental PDFV/PDTV
Frequency Magnitude Cause
(Cyc/Rev)

DC 20N Friction
2 2.85N Motor Poling

Linear 0.05 1.9N Fundamental
Motor 4 1.67N Motor Poling

1 1.52N Electrical Cycle
DC 0.311Nm Friction
18 0.052Nm Stator Teeth

Direct Driven 1 0.031Nm Rotor Shaft Cycle
Ballscrew 36 0.012Nm Stator Teeth

54 0.011Nm Stator Teeth
0.03 0.011Nm Fundamental
39 0.009Nm Ballscrew Bearing Cycle
DC 0.319Nm Friction
18 0.057Nm Stator Teeth

Belt Driven 1 0.034Nm Rotor Shaft Cycle
Ballscrew 0.68 0.025Nm Belt Cycle

3 0.017Nm Motor Poling
36 0.015Nm Stator Teeth
39 0.009Nm Ballscrew Bearing Cycle
54 0.008Nm Stator Teeth
DC 0.238Nm Friction
18 0.053Nm Stator Teeth

Rack and 3 0.045Nm Motor Poling
Pinion 54 0.015Nm Stator Teeth

36 0.013Nm Stator Teeth
39 0.010Nm Pinion Teeth

As can be seen in Figure 5.1 and Table 5.1, the largest component in the linear motor

spectrum was found at 2 cycles/revolution. This component,along with the components

at 1 and 4 cycles/revolution, can be attributed to the motor’s electrical cycle and associated

cogging forces. The only other significant component in the linear motor spectrum is the

fundamental at 0.05 cycles/revolution, which does not represent a performance limitation.

In comparison to the linear motor, the spectra of the Drive Comparison Test-Bed con-

figurations have more significant components. From Table 5.1and Figures 5.2, 5.3 and

5.4, it can be seen that components at 18, 36 and 54 cycles/revolution are significant

in all three configurations of the Drive Comparison Test-Bed. These frequency com-

ponents have been attributed to the stator teeth of the rotary motor. The most signif-
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icant transmission-related frequency component in the ballscrew configurations is at 1

cycle/revolution, which is the shaft cycle and is related tothe alignment of the ballscrew

itself. Another significant transmission-related component is at 39 cycles/revolution in

the ballscrew configurations and has been attributed to the bearings of the ballscrew. The

rack and pinion configuration also has a significant component at 39 cycles/revolution;

however, this is related to the pinion teeth. The number of teeth of the pinion is identical

to the number of balls cycled through one revolution of the ballscrew. There is an ad-

ditional component at 0.68 cycles/revolution on the belt driven ballscrew configuration,

which is due to the belt cycle (the belt in this system has 128 teeth and the two pulleys

have 44 teeth – 88/128 = 0.68).

The DC components listed in Table 5.1 were used to determine the mechanical power

required by the motors to overcome friction at 200mm/min. Itwas found that 0.068W of

mechanical power was required from the linear motor to overcome friction. In compari-

son, the rotary motor supplied 1.3W, 1.34W and 0.04W to overcome friction in the direct

driven ballscrew, belt driven ballscrew and rack and pinionconfigurations respectively.

As expected, the mechanical power required to overcome friction was much more on the

ballscrew configurations. With reduced power required to overcome friction and the elim-

ination of all transmission-related periodic torque/force disturbances, linear motors offer

clear advantages when used in precision linear machine axes.

5.3 Inherent Dynamic Stiffness in Feed Axes

A mathematical expression for the dynamic stiffness of a general linear feed axis was

derived in Section 2.2.1 (Equation (2.6)). Using the same process, detailed expressions

for the inherent dynamic stiffness of individual axis configurations are presented in this

section. It should be noted that the transmission elements of each configuration have been

assumed to be infinitely stiff, in order to reduce the complexity of each expression and al-

low for a concentrated comparison of dynamic stiffness. Also, since both the disturbance
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force and the maximum position error are expressed linearly, all rotary system parameters

have been referred to the linear load side.

Consider first the equation of motion for a linear motor driven axis (Equation (3.57)). For

inherent dynamic stiffness the system is considered to be uncontrolled (ie Fm = 0). If

coulomb friction and the general periodic force variationsare assumed to be negligible,

the disturbance force required to produce the response of Equation (2.1) is described by:

Fd = M
(

−(2π f )2Ef sin(2π f t)
)

+B
(

2π f Ef cos(2π f t)
)

(5.2)

It can be seen that Equation (5.2) is identical to the generaldisturbance force expres-

sion (Equation (2.4)) with the addition of a viscous friction term. The resulting dynamic

stiffness expression for a linear motor driven axis is:

DS=
|Fd|
E

= 2π f
√

M2(2π f )2+B2 (5.3)

As a comparison, consider the dynamics of a direct driven ballscrew system (described

in Section 3.5.1). If the ballscrew in this system is considered to be infinitely stiff, with

coulomb friction and general periodic force variations considered negligible, the distur-

bance force required to produce the response of Equation (2.1) is described by:

Fd =

(

ML +

(

2π
PBS

)2

(Jm +JBS)

)

(

−(2π f )2Ef sin(2π f t)
)

+

(

2π
PBS

)2

(Bm +Bl)
(

2π f Ef cos(2π f t)
)

(5.4)

It is clear that Equation (5.4) has the same form as Equation (5.2), with the total mass (M)

described by Equation (5.5) and the viscous friction co-efficient described by Equation

(5.6). Hence, the dynamic stiffness expression of Equation(5.3) is also valid using the
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substitutions given in Equations (5.5) and (5.6).

M = ML +

(

2π
PBS

)2

(Jm +JBS) (5.5)

B =

(

2π
PBS

)2

(Bm +Bl) (5.6)

The disturbance force expressions for the belt driven ballscrew and rack and pinion con-

figurations (when the transmission elements are consideredto be infinitely stiff and both

coulomb friction and general periodic force variations areconsidered negligible) also have

the same form as Equation (5.2). Further, with the appropriate substitutions for mass and

viscous friction co-efficients, the dynamic stiffness expression of Equation (5.3) is again

valid for both of these configurations. For a belt driven ballscrew system (as described

in Section 3.5.2), the total mass is described by Equation (5.7) and the viscous friction

co-efficient is described by Equation (5.8).

M = ML +

(

2π
PBS

)2
(

JBS +Jp +

(

Rp

Rm

)2

Jm

)

(5.7)

B =

(

2π
PBS

)2
(

Bl +Bp +

(

Rp

Rm

)2

Bm

)

(5.8)

For a rack and pinion system (as described in Section 3.5.3),the total mass is described

by Equation (5.9) and the viscous friction co-efficient is described by Equation (5.10).

M = ML +
1
r2 (Jm +Js +JPIN) (5.9)

B =
1
r2 (Bm +Bl) (5.10)

For each of the rotary motor configurations, the total mass and viscous friction seen by

the load are very dependent on the gearing of the transmission system. In both of the

ballscrew configurations (Equations (5.5) to (5.8)), the total mass and viscous friction

increase as the pitch of the ballscrew becomes finer. Consequently, the inherent dynamic

stiffness of these configurations also increases as the ballscrew pitch becomes finer. For
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the belt driven ballscrew configuration (Equations (5.7) and (5.8)), the total mass and

viscous friction increase further as the ballscrew side pulley becomes larger than the motor

side pulley. In a rack and pinion configuration (Equations (5.9) and (5.10)), the mass and

viscous friction increase as the radius of the pinion decreases. Since the pitch of most

ballscrews (used in machine tool feed axes) is in the low mm range, the inherent dynamic

stiffness is generally much higher in ballscrew driven axeswhen compared with linear

motor or rack and pinion driven axes (although the stiffnessof rack and pinion driven

axes is often improved through the use of gearboxes).

To further compare the inherent dynamic stiffness of the common drive configurations, the

disturbance forces required to exceed position error tolerances of 10µm, 5µm and 1µm

were calculated for the Linear Motor Test-Bed and all three configurations of the Drive

Comparison Test-Bed. For an accurate comparison of the required disturbance forces,

actual system parameters (as detailed in Chapter 4) and detailed models of each test-bed

configuration (that included both stiffness and damping of the transmission elements)

were used in these calculations. Due to the added complexityof including stiffness and

damping, Matlab was used to calculate all of the disturbanceforces (the Matlab functions

used for these calculations are given in Appendix C).

Figure 5.5 shows the required disturbance forces (plotted against frequency) for the Linear

Motor Test-Bed. Similarly, Figures 5.6, 5.7 and 5.8 show therequired disturbance forces

(plotted against frequency) for the Drive Comparison Test-Bed in direct driven ballscrew,

belt driven ballscrew and rack and pinion configurations respectively. The disturbance

forces required to exceed the given position error tolerances when the load mass of each

configuration was increased to 200kg are also shown in Figures 5.5, 5.6, 5.7 and 5.8.

Consider the Linear Motor Test-Bed subject to a typical machining force of 60N. With the

standard load mass of 23kg and a position error tolerance of 10µm, Figure 5.5 shows that

the system will inherently provide the required stiffness for frequencies above 510rad/s

(approx.). When the position error tolerance is tightened to 1µm, the required stiffness

is only provided at frequencies much higher than the 1000rad/s limit of Figure 5.5. If
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Figure 5.5: Disturbance Forces vs Frequency - Linear Motor

the load mass is increased to 200kg though, the 10µm tolerance is inherently satisfied at

frequencies above 175 rad/s and the 1µm tolerance is inherently satisfied at frequencies

above 550rad/s.
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Figure 5.6: Disturbance Forces vs Frequency - Direct DrivenBallscrew
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Consider the same 60N machining force applied to the three Drive Comparison Test-Bed

configurations. Figure 5.6 shows that for the standard load mass of 8.8kg and a position

error tolerance of 10µm, the direct driven ballscrew configuration will inherentlyprovide

the required stiffness for frequencies above 95rad/s (approx.). When the position error

tolerance is tightened to 1µm, the required stiffness is still provided for frequencies above

295rad/s. As expected, the ballscrew driven system inherently provides the required stiff-

ness at much lower frequencies than the linear motor driven system, even though the Drive

Comparison Test-Bed has a lower standard load mass. In further contrast to the Linear

Motor Test-Bed, increasing the load mass to 200kg on the directly driven ballscrew con-

figuration only results in a marginal improvement to the dynamic stiffness of the system.
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Figure 5.7: Disturbance Forces vs Frequency - Belt Driven Ballscrew

In Figure 5.7 it can be seen that the belt driven ballscrew configuration has low frequency

peaks in the required disturbance forces, for all position error tolerances. These peaks are

due to the low stiffness of the belt. When comparing Figure 5.7 with Figure 5.6 though,

it can also be seen that the belt driven ballscrew configuration still provides the required

stiffness at very similar frequencies to the direct driven ballscrew configuration (again for

all position error tolerances). This is expected as the ballscrew and motor side pulleys are
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Figure 5.8: Disturbance Forces vs Frequency - Rack and Pinion

the same size on the Drive Comparison Test-Bed.

When comparing Figure 5.8 with Figure 5.5, it can be seen thatthe inherent dynamic

stiffness of the rack and pinion configuration is almost identical to that of the Linear

Motor Test-Bed, particularly when the load masses are identical (as in the 200kg cases).

Although the inherent dynamic stiffness of the rack and pinion configuration can be im-

proved through the use of an additional gearbox, this also introduces more sources of

backlash and component wear. In contrast, the inherent dynamic stiffness of the ballscrew

driven configurations was shown to be much higher than that ofthe Linear Motor Test-

Bed. The dynamic stiffness of the ballscrew configurations was also less affected by

changes in load mass.

5.4 Controller Design for High Dynamic Stiffness

Control systems are the primary means of increasing low dynamic stiffness in feed axes.

For this reason, research effort in increasing dynamic stiffness (of linear motor feed axes
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in particular) has been applied at many different levels of the overall machine tool control

system. However, as discussed in Section 2.2.2, the velocity and position control loops

are often the most practical levels at which dynamic stiffness can be addressed in standard

servo drives. In this section, the important aspects of designing velocity and position

control loops for high dynamic stiffness are studied.

The most common control schemes used for velocity and position loops in standard servo

drives consist of P, PI or PID regulators. Although it is possible to achieve quite high

dynamic stiffness with these control schemes, the common design approaches often con-

centrate solely on transient performance with respect to the velocity and position reference

commands. Hence, the degree of dynamic stiffness in such systems can become arbitrary.

In Section 5.4.1, the dynamic stiffness of the Linear Motor Test-Bed and all three con-

figurations of the Drive Comparison Test-Bed are compared using the standard control

schemes of the CNC system and the manufacturer’s tuning guidelines. In Section 5.4.2, a

QFT design approach that includes dynamic stiffness as one of the design specifications is

described, with an example design shown for the Linear MotorTest-Bed. The QFT based

design for the Linear Motor Test-Bed is then experimentallytested in Section 5.4.3.

5.4.1 Standard Control of the Experimental Systems

For the digital servo drives (of the CNC system) used in this thesis, the standard velocity

and position control consisted of cascaded PI velocity and Pposition loops. The manu-

facturer’s recommendations for machine tool feed axes are for the velocity and position

control loops to have the highest possible closed-loop bandwidth, whilst not exceeding

maximum closed-loop gains of 5dB for the velocity loop and 0dB for the position loop.

The recommended tuning method involves iteratively increasing the proportional gain of

the velocity loop until the maximum closed-loop gain is around 3dB. The integral action

of the velocity loop is then increased until the 5dB closed-loop limit is reached. The

position loop is subsequently tuned by iteratively increasing the proportional gain to the

highest possible value without exceeding 0dB. Although there are a number of other well
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recognised methods for tuning P and PI regulators, methods that involve increasing the

gains until sustained oscillation is achieved (such as Ziegler-Nichols second method) are

generally avoided on machine tool feed axes for safety reasons. Hence, the manufacturers

recommended tuning method was used in this section.

In order to compare the dynamic stiffness of different linear feed axis configurations un-

der the standard control structure (PI velocity, P position) and the manufacturer’s recom-

mended tuning, a 125N step disturbance force was applied to the load side of the Linear

Motor Test-Bed and all three configurations of the Drive Comparison Test-Bed. During

each of these tests the CNC system was in steady-state position control, with a reference

position of zero. The response of the Linear Motor Test-Bed is shown in Figure 5.9.
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Figure 5.9: Linear Motor Position (125N Disturbance)

A maximum position error of approximately 85µm can be seen in the linear motor re-

sponse of Figure 5.9. In an actual machine tool, a position error of this magnitude could

result in poor surface finish on the work piece. The responsesof the Drive Comparison

Test-Bed in the direct driven ballscrew and belt driven ballscrew configurations are shown

in Figures 5.10 and 5.11 respectively.
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Figure 5.10: Direct Driven Ballscrew Position (125N Disturbance)
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Figure 5.11: Belt Driven Ballscrew Position (125N Disturbance)

A maximum position error of 0.4µm can be seen in the direct driven ballscrew response

of Figure 5.10. The position error of the direct driven ballscrew can be seen to be very

close to the resolution of the CNC system’s data logger, which is 0.1µm. Further, the belt

driven ballscrew response of Figure 5.11 exhibits an even lower maximum position error
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Figure 5.12: Linear Motor and Ballscrew Positions (125N Disturbance)

of 0.2µm. For a direct comparison with the Linear Motor Test-Bed, thetwo ballscrew

responses are shown on the same graph as the linear motor response in Figure 5.12.
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Figure 5.13: Linear Motor and Rack and Pinion Positions (125N Disturbance)

In Figure 5.13, the response of the linear motor is shown on the same graph as the response

of the Drive Comparison Test-Bed in the rack and pinion configuration. Although the
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inherent dynamic stiffness of the rack and pinion configuration was shown to be almost

identical to that of the Linear Motor Test-Bed in Section 5.3, it can be seen in Figure

5.13 that the rack and pinion response exhibits a much highermaximum position error of

almost 1.5mm. The reason for such a high position error is that the standard tuning of the

control system is severely limited by the backlash in the rack and pinion configuration.

Along with the poor disturbance response exhibited by this configuration, the oscillations

introduced by the backlash are clearly visible in Figure 5.13.

The results presented throughout this section clearly showthat while the ballscrew driven

axes exhibited very high dynamic stiffness under the manufacturer’s standard velocity

and position control, the linear motor and rack and pinion driven axes exhibited poor dy-

namic stiffness. The poor performance of the rack and pinionconfiguration was primarily

due to the backlash in this system. However, the poor performance of the linear mo-

tor was primarily due to insufficient integral action in the controller design. The reason

for the low integral action was that the design approach concentrated on overall system

bandwidth and not disturbance rejection. The integral action in this design approach was

only iteratively added up to the point where the closed-loopgain reached the maximum

specification of 5db. In Section 5.4.2, a QFT design approachthat includes both system

bandwidth and disturbance rejection as design specifications is presented.

5.4.2 A QFT Design Approach for High Dynamic Stiffness

From the literature reviewed in Section 2.2.2, it was found that robust techniques, such

as H∞ and sliding mode control, had been successfully used to improve the dynamic

stiffness of linear motor driven axes. However, the QFT technique was completely absent

from the available literature. In this section, a QFT designapproach for high dynamic

stiffness is presented, along with an example design for theLinear Motor Test-Bed. The

Linear Motor Test-Bed was chosen due to its low inherent dynamic stiffness (as shown in

Section 5.3) and the fact that the reduced mechanical systemof this test-bed allowed for
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an analysis of dynamic stiffness that would not be affected by additional factors such as

backlash. The presented approach can be extended to other axis configurations.

The QFT design objective is to design and implement robust controllers that satisfy a

set of desired performance specifications for the system. This design process is usually

undertaken on systems with structured parametric uncertainty; however, it can also be

effective on plants with constant parameters. A block diagram representing the standard

QFT design problem is shown in Figure 5.14.
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(s)

Controller

P(s)

Plant Set

PF(s)

Pre Filter

Input Output

Figure 5.14: QFT Design Block Diagram

In Figure 5.14,P(s) represents the complete set of plants that describe the range of para-

metric uncertainty of an actual plant. The loop controllerGc(s) is designed, through loop

shaping on the Nichols Chart, such that the closed loop stability and disturbance bounds

are satisfied for the complete set of plants. The loop controller Gc(s) is also used to en-

sure that the closed loop uncertainty is within the range specified by any robust tracking

bounds. The Pre FilterPF(s), if required, is used to shape the complete closed loop

response to satisfy the upper and lower limits of the robust tracking bounds. A very thor-

ough survey of QFT and its applications is provided by Horowitz (the original author of

QFT) [15]. Another comprehensive treatment of QFT, including the detailed steps in-

volved in a complete design, is given by Houpis and Rasmussen[102]. The design steps

for all of the QFT designs developed in this thesis can be summarised by:

1. Determination of the desired set of closed loop performance specifications in the

frequency domain (the performance specifications may consist of stability, tracking

and disturbance specifications).

2. Determination of plant templates that can pictorially describe the region of open

loop plant parameter uncertainty on the Nichols Chart.
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3. Computation of bounds that can be plotted on the Nichols Chart to describe the

performance specifications at specified frequencies of interest. These bounds are

constraints that a nominal open loop plant transfer function must satisfy at each

frequency of interest, so that the complete set of plant templates satisfy the closed

loop performance specifications.

4. Design of the loop controllers (and Pre Filter if necessary) by manual loop shaping,

such that the controlled nominal plant satisfies all performance bounds.

5. Detailed analysis of the design, through simulation, to verify that the performance

specifications have been met.

Detailed procedures associated with each of these five stepsare presented in this section.

1. Determination of the closed loop performance specifications.

The cascaded velocity and position loop structure of the experimental CNC system was

maintained in the QFT design approach, since this structureis typical of that found in

industrial servo controllers. The complete velocity and position control structure for the

Linear Motor Test-Bed, subject to an external load disturbance, can be illustrated by the

block diagram of Figure 5.15, wherePlm(s) describes the complete set of plants (details

of the plant set for the example design are provided at Step 2).
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Figure 5.15: Block Diagram of Velocity and Position Loops

For the Linear Motor Test-Bed, the current controller (Gc(s)) is described by Equations

(4.7) and (4.8). The velocity and position controllers shown in Figure 5.15 (Gv(s) and

Gp(s)) are determined throughout the design process. Complete details of the final con-

trollers for the example design are given at each of the relevant steps in this section.
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In Step 1 the QFT technique requires all closed-loop performance specifications to be

described in the frequency domain. Hence, the frequency domain relationships between

each input and output of interest must be determined. For thesystem shown in Figure

5.15, the output velocity (Vel_out) for a given velocity reference (Vel_ref) and a zero

disturbance force (Dist_force = 0) is described by the transfer function given in Equation

(5.11). Similarly, the output position (Pos_out) for a given position reference (Pos_ref)

and a zero disturbance force (Dist_force = 0) is described bythe transfer function given

in Equation (5.12).
Vel_out
Vel_ref

=
Gv(s)Gc(s)Plm(s)

1+Gv(s)Gc(s)Plm(s)
(5.11)

Pos_out
Pos_ref

=
Gp(s)Gv(s)Gc(s)Plm(s)

s(1+Gv(s)Gc(s)Plm(s))+Gp(s)Gv(s)Gc(s)Plm(s)
(5.12)

Again for the system shown in Figure 5.15, the output velocity (Vel_out) for a given

disturbance force (Dist_force) and a zero velocity reference (Vel_ref = 0) is described by

the transfer function given in Equation (5.13). Similarly,the output position (Pos_out)

for a given disturbance force (Dist_force) and a zero position reference (Pos_ref = 0) is

described by the transfer function given in Equation (5.14).

Vel_out
Dist_force

=
Plm(s)

1+Gv(s)Gc(s)Plm(s)
(5.13)

Pos_out
Dist_force

=
Plm(s)

s(1+Gv(s)Gc(s)Plm(s))+Gp(s)Gv(s)Gc(s)Plm(s)
(5.14)

Since the velocity loop is faster than the outer position loop it is important that both track-

ing and dynamic stiffness are addressed at this level. Hence, velocity loop performance

specifications are determined for stability, robust tracking and disturbance rejection:

• Stability – the velocity loop stability specification consists of an upper bound on

the gain magnitude of the closed-loop velocity response (Equation (5.11)) for all

frequencies. For the example design, this specification wasset such that the closed-

loop velocity response of the Linear Motor Test-Bed did not exceed the CNC man-

ufacturer’s recommendation of 5dB.
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• Robust Tracking – the velocity loop tracking specification consists of upper and

lower bounds on the closed-loop velocity response (Equation (5.11)), which the

complete set of plantsPlm(s) must satisfy. Generally these bounds are based on

the desired closed-loop bandwidth, with the upper bound chosen to be a fast un-

derdamped response and the lower bound chosen to be a slower overdamped re-

sponse. For the example design, the desired closed-loop bandwidth of the Linear

Motor Test-Bed was chosen to be 1000 rad/s (which is equivalent to the bandwidth

achieved using the manufacturer’s standard tuning technique). The upper and lower

tracking bounds were then chosen to provide an allowable margin, for the entire set

of closed-loop velocity responses, about this bandwidth. The upper tracking bound

(Tru) and lower tracking bound (Trl) are given in Equations (5.15) and (5.16) re-

spectively. Figure 5.16 shows the frequency responses of these bounds.

Tru =
s

3000+1
s2

11002 + 0.7s
1100+1

(5.15)

Trl =
1

( s
1200+1

)

(

s2

9002 + 3s
900+1

) (5.16)
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Figure 5.16: Upper and Lower Robust Tracking Bounds
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• Disturbance Rejection – To ensure high dynamic stiffness, the closed-loop system

must have low sensitivity to force disturbances at the load.Hence, the velocity loop

disturbance specification consists of a bound on the velocity disturbance response

(Equation (5.13)), such that load force disturbances are attenuated to an acceptable

level at all frequencies. With reference to Equation (2.6),it can be seen that the

required level of attenuation at each frequency is determined by specifying an al-

lowable peak position error (E) for a particular disturbance force. If the velocity

loop was solely responsible for meeting this position errorspecification, the allow-

able peak velocity at each frequency would then beωE (Equation (2.2)). It can be

seen from Figure 5.15 and Equation (5.14) that the position loop also contributes

to the overall dynamic stiffness. However, since the velocity loop is faster than

the position loop, a limit ofωE on the peak velocity will guarantee the required

stiffness. Any additional contribution from the position loop will only improve the

overall dynamic stiffness. For the example design, a maximum peak position error

of 5µm was specified for a peak disturbance force of 125N at all frequencies. A

disturbance bound ofDbv(s) = 4×10−8s
(

5e−6

125 s
)

was hence set for the velocity

disturbance response of the Linear Motor Test-Bed.

The only position loop specification that is required in thisdesign is the stability spec-

ification, as the overall tracking and dynamic stiffness requirements have already been

addressed at the velocity loop level. Since dynamic stiffness is specified via a limit on the

peak position error, a position disturbance specification has however been included for

completeness. Hence, the position loop specifications in this design approach are:

• Stability – the position loop stability specification consists of an upper bound on

the gain magnitude of the closed-loop position response (Equation (5.12)) for all

frequencies. For the example design, this specification wasset such that the closed-

loop position response of the Linear Motor Test-Bed did not exceed the CNC man-

ufacturer’s recommendation of 0dB.

• Disturbance Rejection – The position loop disturbance specification consists of a

bound on the position disturbance response (Equation (5.14)), such that the allow-
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able peak position error (for a specified peak disturbance force) is not exceeded at

all frequencies. For the example design, the maximum peak position error of 5µm

(at 125N) results in a disturbance bound ofDbp(s) = 4× 10−8 (-148dB) on the

position disturbance response of the Linear Motor Test-Bed.

2. Determination of Plant Templates

SincePlm(s) in Figure 5.15 describes a set of plants with a range of parametric uncertainty,

there is a corresponding region of uncertainty in the response ofPlm(s) at any given fre-

quency. Equation (3.57) was used to describe the Linear Motor Test-Bed for the example

design, with the test-bed mass considered to be uncertain within the range 10kg to 100kg

and all other system parameters considered to be constant (as detailed in Table 4.8).
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Figure 5.17: Plant Templates - Linear Motor Test-Bed

The region of parametric uncertainty in the response ofPlm(s) is important in the QFT

design process as the complete set of plants must satisfy each performance specification.

Hence, plant templates are used to describe the region of uncertainty at each frequency of
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interest. Plant templates can generally be represented by their boundaries on the Nichols

Chart; however, a sufficient number of points on the boundarymust be selected so that

the contour of the template accurately reflects the region ofuncertainty.

The plant templates (at 0.1, 1, 10, 100 and 1000 rad/s) for theexample design are shown

in Figure 5.17. Each circle shown in Figure 5.17 represents an individual point on a

template boundary. It can be seen that the plant templates inthis case are described by

simple continuous curves, due to the single uncertain parameter.

3. Computation of the Nichols Chart Performance Bounds

Nichols Chart performance bounds are determined for each ofthe performance specifica-

tions detailed in Step 1 (with the exception of the position loop disturbance specification).

The bounds are determined using the plant templates at particular frequencies of inter-

est, such that if a nominal open-loop plant (Pnom) satisfies a bound on the Nichols Chart

then the complete set of controlled plants will meet the related closed-loop performance

specification. Although any plant belonging to the completeset of open-loop plants can

be chosen as the nominal plant, it is common practice to use the plant represented by the

bottom left corner of the template boundaries. Since the templates in the example design

are described by simple continuous curves, the plant represented by the lowest point on

the template boundaries was chosen as the nominal plant.

The final Nichols Chart bounds for the velocity loop are shownin Figure 5.18. These

bounds represent the most stringent of the design requirements and are a combination

of the individual stability, tracking and disturbance bounds. The bounds for the velocity

stability specification were determined at frequencies of 1, 10, 20, 50, 100, 200, 500,

1000, 2000 and 5000 rad/s. This set of frequencies was chosento cover the desired closed-

loop bandwidth, since the stability specification consisted of an upper limit of 5dB for all

frequencies. The stability bounds form an enclosed area at the centre of the Nichols Chart

shown in Figure 5.18. At each frequency of interest, the nominal plant must be outside

the area enclosed by the associated stability bound.
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Figure 5.18: Velocity Loop Combined Bounds - Linear Motor Test-Bed

Since the velocity loop tracking specification is based on the desired closed-loop band-

width, the Nichols Chart bounds for the tracking specification were determined at the

same frequencies as the stability bounds. The bounds for thevelocity loop disturbance

specification were determined at frequencies of 0.1, 1, 10, 100 and 1000 rad/s. This set

of frequencies was chosen after examining the inherent dynamic stiffness of the Linear

Motor Test-Bed. From Figure 5.5, it can be seen that the lowerfrequencies are of most

interest when designing a control system for high dynamic stiffness. As the frequency

increases above 1000 rad/s, the physical system becomes capable of inherently supplying

the required stiffness.

At each frequency of interest, the nominal plant must be above the associated tracking

and disturbance bounds on the Nichols Chart. Hence, only thehighest bounds at each

frequency, or the intersection that results in the highest overall bound, is required for loop

shaping. For example, the stability and tracking bounds at 1, 10 and 100 rad/s do not form

part of the critical bounds shown in Figure 5.18, as the associated disturbance bounds at

these frequencies placed a higher demand on the control system design. Further, the
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bounds at 500 and 1000 rad/s in Figure 5.18 were constructed from the upper intersection

of the individual performance bounds at those frequencies.

Position loop bounds are determined in the same manner as velocity loop bounds. How-

ever, the position loop bounds should not be determined until the velocity loop design has

been completed, as these bounds are dependent on the final velocity loop design.

4. Design of Loop Controllers and Pre Filter

The design of loop controllers in QFT involves a manual shaping process, such that the

nominal loop transmission function (Lnom) satisfies all of the Nichols Chart bounds. For

the velocity loop shown in Figure 5.15, the nominal loop transmission function is:

Lnom = Gv(s)Gc(s)Pnom (5.17)

For the example design, the final shape of the nominal velocity loop transmission function

is shown in Figure 5.19. It can be seen that this transmissionfunction satisfies all of the

final performance bounds. The associated velocity controller is given in Equation (5.18).

Gv(s) = 3.75×105

(

( s
315+1

)( s
5000+1

)

s

)

(5.18)

The closed-loop velocity frequency responses, for the complete set of plants, are shown in

Figure 5.20 (dark blue curves). Although the complete set ofcontrolled plant responses

can be seen to satisfy the stability bound, the responses areoutside the upper and lower

tracking bounds. The reason for this is that the loop controller Gc(s) only ensures that

the closed loop uncertainty is within the range specified by the robust tracking bounds. In

this case a simple Pre Filter is required to shape the complete set of controlled plants so

that they satisfy the upper and lower limits of the robust tracking bounds. In terms of the

overall control structure shown in Figure 5.15 the Pre Filter would be placed directly after

the Position Controller.
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Figure 5.19: Loop Shaping – Dynamic Stiffness Controller
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Figure 5.20: Velocity Loop Pre Filter Design - Dynamic Stiffness Controller
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The Pre Filter design for this system is given in Equation (5.19). The velocity loop fre-

quency responses with the Pre Filter are also shown in Figure5.20 (cyan curves). It can be

seen that with the addition of the Pre Filter, the complete set of controlled plant responses

satisfy the upper and lower tracking bounds.

Gvp f (s) =

( s
5000+1

)

(

s
450+1

)(

s
2000+1

) (5.19)

The position loop design is undertaken in the same manner as the velocity loop design.

The nominal loop transmission function for the position loop is:

Lnom = Gp(s)

(

Pv_nom(s)
s

)

(5.20)

where:

Pv_nom(s) = Gvp f (s)

(

Gv(s)Gc(s)Pnom(s)
1+Gv(s)Gc(s)Pnom(s)

)

(5.21)
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Figure 5.21: Position Loop Shaping - Dynamic Stiffness Controller
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The final shape of the nominal position loop transmission function is shown in Figure

5.21. Although there are four stability bounds that cross the loop transmission function,

these bounds are above the transmission function at the associated frequencies (500, 1000,

2000 and 5000 rad/s). Hence, the final transmission functionsatisfies all of the position

loop performance bounds. The associated position controller consists of a simple propor-

tional gain:

Gp(s) = 175 (5.22)

5. Analysis of the Design

The final step in the QFT approach is to analyse the design and verify that all of the

performance specifications have been met. For the velocity loop, the stability and robust

tracking specifications have already been verified through the responses shown in Figure

5.20. The velocity loop disturbance responses (Equation (5.13)), for the complete set of

controlled plants, are shown in Figure 5.22. It can be seen that all of the responses satisfy

the disturbance bound ofDbv(s) = 4×10−8s.
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Figure 5.22: Velocity Loop Disturbance Analysis - Dynamic Stiffness Controller
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The position loop frequency responses, for the complete setof controlled plants, are

shown in Figure 5.23 (dark blue curves). It can be seen that all of the responses sat-

isfy the stability performance specification (0dB upper limit). The position disturbance

responses, for the complete set of controlled plants, are also shown in Figure 5.23 (cyan

curves). Although the disturbance specification was addressed at the velocity loop design

stage, it can be seen that all of the position disturbance responses still satisfy the original

disturbance bound ofDbp(s) = 4×10−8.
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Figure 5.23: Position Loop Analysis - Dynamic Stiffness Controller

The responses shown in Figures 5.20, 5.22 and 5.23 verify that all of the performance

specifications were met in the example QFT design. It is however interesting to note that

the final structure of the velocity controller (Equation (5.18)) had no higher order than

that of a standard PID regulator and the final structure of theposition controller (Equation

(5.22)) was the same as a standard P regulator. Although there is no limit on the number

of poles and zeros in a QFT designed controller, it was found that all of the performance

specifications could be met with these conventional controlstructures.
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Higher order controllers were also examined during the velocity loop shaping step of

the example QFT design. It was found that for the Linear MotorTest-Bed, with a fixed

current controller, the higher order velocity controllersdid not provide any further ben-

efits. Although some higher order controllers did allow for further increases in dynamic

stiffness, these increases could not be achieved without violating the other performance

specifications.

5.4.3 Dynamic Stiffness of the QFT Controlled Linear Motor

The QFT controller developed in Section 5.4.2 was implemented on the Linear Motor

Test-Bed. During the implementation of this controller, itwas found that the Linear Motor

Test-Bed had a minor system resonance at approximately 200 Hz. A notch filter was

successfully added to the controller to reduce this resonance; however, the proportional

gain of the velocity controller was also slightly reduced toensure a stable system.

The 125N step disturbance force, used in Section 5.4.1, was again applied to the load side

of the Linear Motor Test-Bed. The response of the Linear Motor Test-Bed, with the QFT

designed control system, is shown in Figure 5.24. A maximum position error of 3.4µm

can be seen in this response. In comparison, the maximum position error of the Linear

Motor Test-Bed with the standard manufacturer recommendedcontroller tuning was ap-

proximately 85µm. While the QFT designed controller reduced the maximum position

error by more than an order of magnitude, the closed-loop bandwidths of the two con-

trollers were approximately equivalent. This result clearly demonstrates the importance

of including dynamic stiffness in the design approach.

For a direct comparison, Figure 5.25 shows the response of the QFT designed control sys-

tem on the same graph as the standard controller responses ofthe Linear Motor Test-Bed

and the ballscrew configurations of the Drive Comparison Test-Bed. Although still an

order of magnitude higher than the maximum position errors of the two ballscrew config-

urations, a maximum error of 3.4µm to a disturbance force of 125N would be considered
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acceptable in many machining operations.
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Figure 5.24: Linear Motor Position – QFT (125N Disturbance)
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5.5 Conclusions

A study of dynamic stiffness in precision machine tool feed axes has been presented in

this chapter. In particular, the study focused on the use of linear motors in precision feed

axes. The advantages of linear motors in reducing periodic torque/force disturbances in

feed axes were analysed, along with the disadvantages associated with the inherently low

dynamic stiffness of linear motors. Control system design was also examined from the

perspective of dynamic stiffness, with a QFT approach presented that includes dynamic

stiffness in the design process.

The periodic torque/force disturbances of both linear and rotary motor driven feed axes

were studied in Section 5.2. Through the use of position frequency spectra, the most

significant cyclic disturbances were quantified for the Linear Motor Test-Bed and all three

configurations of the Drive Comparison Test-Bed. Although the reduction of periodic

torque/force variations is one of the recognised advantages of linear motor driven axes,

the study presented in this section both quantified and compared actual disturbances in

real linear and rotary driven axes.

The results presented in Section 5.2 clearly showed that theonly significant disturbances

in the Linear Motor Test-Bed were due to the motor’s electrical cycle and associated cog-

ging forces. In comparison, it was found that additional disturbances were significant on

all three configurations of the Drive Comparison Test-Bed. These additional disturbances

were due to the associated mechanical transmission mechanisms of each configuration. It

was also found that the mechanical power required to overcome friction at 200mm/min

was more than an order of magnitude higher for the ballscrew configurations, when com-

pared with the linear motor and rack and pinion configurations.

The inherent dynamic stiffnesses of rack and pinion, ballscrew and linear motor driven

axes were compared mathematically in Section 5.3. The resulting mathematical expres-

sions clearly illustrated the relationship between dynamic stiffness, load mass and trans-

mission gearing. The force disturbances required to exceedgiven position error tolerances
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were also calculated for the Linear Motor Test-Bed and all three configurations of the

Drive Comparison Test-Bed in Section 5.3. Through a comparison of the calculated force

disturbances, it was found that the linear motor and rack andpinion configurations were

only capable of providing significant stiffness at high frequencies. In contrast, the dy-

namic stiffness of the ballscrew driven configurations was shown to be inherently higher

and less affected by changes in load mass. These results are primarily due to the inherent

gearing in the ballscrew configurations.

The design of control systems for increased dynamic stiffness was also examined in this

chapter. The standard control structure and tuning processof the CNC system (based

primarily on overall system bandwidth) was examined first inSection 5.4.1, with a 125N

step disturbance force applied to the Linear Motor Test-Bedand all three configurations of

the Drive Comparison Test-Bed. When comparing the responses of the test-bed configu-

rations, it was found that the maximum position error on the two ballscrew configurations

was more than 2 orders of magnitude lower than that of the linear motor configuration

and almost 4 orders of magnitude lower than that of the rack and pinion configuration.

The much larger error of the rack and pinion configuration wasshown to be due to high

backlash in the system. Methods that can be used to improve the performance of systems

with backlash are examined in Chapter 7.

A QFT approach to designing control systems that simultaneously address performance

specifications based on stability, robustness, overall response speed and dynamic stiffness

was presented in Section 5.4.2. A method for generating QFT performance bounds based

on the dynamic stiffness requirements was also presented. An example design for the

Linear Motor Test-Bed was shown to reduce the maximum position error of this system

(when subjected to the 125N disturbance force) by more than an order of magnitude,

while not affecting the closed-loop bandwidth of the system. In the example design it was

found that the velocity loop control structure did not require any higher order than that of

a standard PID regulator. Higher order control structures were also examined during the

QFT design process; however, while it was possible to increase the dynamic stiffness of

135



this design using a higher order control structure, it was found that the other performance

specifications were compromised. Hence, there was no advantage in using a higher order

structure in this particular example.

Through the example design presented in this chapter, the QFT approach was shown to

provide a structured and transparent design process. The effects of any changes in the con-

trol structure were able to be assessed simultaneously for each of the given performance

specifications. In comparison, the standard approaches to designing PID regulators are

very limited, with any trade-offs between robustness, transient performance and dynamic

stiffness not always clear to the designer.

136



Chapter6
Drive-Train Flexing and Torsional

Vibrations

6.1 Introduction

A theoretical analysis of the various factors that interactto cause torsional vibrations, and

associated stability problems, in servo systems is presented in this chapter. In particular,

the analysis focuses on flexing in the drive-trains commonlyused for machine tool feed

axes. Although drive-train flexing is directly responsiblefor the transmission of torque

(or force) to the load, it is also directly associated with the resulting oscillations that can

be observed in the motor and load responses. Industry has traditionally dealt with these

stability problems through ‘matching’ the inertias of the motor and load in systems; how-

ever, the analysis presented in this chapter shows that in some cases excessive torsional

vibrations can occur even in drive-trains with a 1:1 inertiaratio.

While load position is the most critical output of a machine tool feed axis, torsional vi-

brations have an impact on both velocity and position. Sincethe control structure in most

feed axes is cascaded, the inner velocity loop is faster thanthe outer position loop. For

this reason, most approaches to controlling torsional vibrations are implemented in the

velocity loop. Similarly, the analysis presented in this chapter concentrates on the mo-

tor and load velocity responses, rather than position. Throughout the presented analysis
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the effectiveness of velocity control solutions from all ofthe three fundamental groups

(identified in Section 2.3.3) are also compared both theoretically and experimentally.

In Section 6.2 a theoretical analysis of flexing and system oscillations in a simple motor-

transmission-load system is presented, along with a discussion on absolute stability. A

mathematical analysis of the different control solutions that use specific flex related feed-

back quantities, to reduce torsional vibrations, is also presented in Section 6.2.

In Section 6.3 various proposed control solutions are compared through simulation and

application to the Motor-Transmission-Load Test-Bed. As described in Section 4.3, this

test-bed was designed to allow for a concentrated analysis of drive-train flexing and tor-

sional vibrations (with other important performance limiting factors minimised). As a

result of this comparison the most effective control solutions are identified.

In Section 6.4 the overall analysis of torsional vibrations(both theoretical and experimen-

tal) is extended to the common machine tool drive configurations. The Drive Comparison

Test-Bed (described in Section 4.4) is used for the experimental analysis in this section.

The results presented throughout this chapter are discussed further in Section 6.5, with

the development of a standard approach to the problem suggested. Other key points and

conclusions that can be drawn from this chapter are also summarised in Section 6.5.

6.2 Theoretical Analyses of Transmission Flexing and Con-

trol Solutions for Torsional Vibrations

6.2.1 Overview

The analyses presented in this section examine the various factors that can interact to

cause torsional vibrations and absolute stability problems in motor-transmission-load sys-

tems. The use of specific flex related feedback quantities to reduce torsional vibrations in

a closed loop control system is also examined.
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The inherent flexing of the transmission element in a motor-transmission-load system is

analysed in Section 6.2.2. This analysis examines how each of the system inertias and

the torsional stiffness of the transmission element can influence the natural frequency of

oscillation of the system. To further understand the effects that torsional stiffness and

each of the system inertias have on a closed loop control system, the open loop frequency

responses of a motor-transmission-load system with both motor velocity and load velocity

as outputs are examined in Section 6.2.3. It is shown in both Sections 6.2.2 and 6.2.3 that

motor-load inertia ratio has a very limited effect on the natural frequency of oscillation

of a system and on any resonant peaks that can result when closing the loop. Limitations

associated with using feedback sensors placed at the motor are also identified in Section

6.2.3.

The issues associated with feedback sensor location are further examined in Sections 6.2.4

and 6.2.5. In Section 6.2.4 the influence of feedback sensor location on absolute stability

is examined, with stability problems identified when the feedback is restricted to the load

side. The influence of different flex related feedback quantities (based on combinations of

motor and load feedback) on the closed loop flex response is examined in Section 6.2.5.

Through the analysis presented in Section 6.2.5 many previously published control solu-

tions, which use these flex related feedback quantities, areshown to be mathematically

equivalent.

6.2.2 Transmission Flexing

For an initial analysis of flexing, the ‘traditional’ two-body model was considered. If all

friction and damping sources are considered negligible, a transfer function with transmis-

sion flex as output can be obtained from Equations (3.3) and (3.4):

θs

Tm
=

1
Jm

s2+
Ks(Jl+Jm)

JlJm

(6.1)
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Applying a unit impulse and taking the inverse Laplace transform of Equation (6.1), re-

sults in a description of flex as a function of time. If Jl is also substituted with IrJm (ie

Ir = Jl
Jm

) this time function can be described in terms of motor-load inertia ratio:

θs(t) =
1
Jm

√

JmIr

Ks (1+ Ir)
sin





√

Ks (1+ Ir)

JmIr
t



 (6.2)

From Equation (6.2) it can be seen that increasing the torsional stiffness of the trans-

mission also increases the natural frequency of oscillation of the motor-transmission-load

system, while decreasing the amplitude of this oscillation. It is also worth noting that

when Ks = ∞, flex reduces to zero (as expected). Examining the influence of inertia

ratio shows that the effects are opposite to that of torsional stiffness – as the inertia ra-

tio increases, the natural frequency of oscillation decreases and the amplitude increases.

However, as the inertia ratio continues to increase above unity it tends to cancel, reducing

the effects it has on both the frequency and amplitude of the oscillation.

One problem with using the ‘traditional’ two-body model to analyse flex is that, as shown

in Section 3.2.3, the ‘traditional’ two-body model does notalways provide an accurate

description of the system’s natural frequency, particularly when the inertia of the trans-

mission element is significant. For this reason, a transfer function with transmission flex

as output was also obtained using the ‘adjusted’ two-body model:

θs

Tm
=

2
2Jm+Js

s2+
8Ks(Jm+Jl+Js)

8JmJl+3Js(Jm+Jl)+J2
s

(6.3)

Applying a unit impulse and taking the inverse Laplace transform of Equation (6.3) results

in a more accurate description of flex as a function of time:

θs(t) =
2

2Jm (1+ Is)

√

Jm
(

8Ir +3Is (1+ Ir)+ I2
s

)

8Ks (1+ Ir + Is)
sin

(√

8Ks (1+ Ir + Is)

Jm
(

8Ir +3Is (1+ Ir)+ I2
s

) t

)

(6.4)
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In Equation (6.4) Jl has once again been substituted with IrJm, so that the time function is

described in terms of inertia ratio. To reduce the complexity of Equation (6.4), the inertia

of the transmission element (Js) has also been described in terms of an inertia ratio (Is,

where Is = Js
Jm

). Note that when Is = 0, Equation (6.4) reduces to Equation(6.2).

From Equation (6.4) it can be seen that varying torsional stiffness of the transmission

has the same effect as in Equation (6.2). Also when Is (and subsequently, Js) is very

small, varying the motor-load inertia ratio has the same effect as in Equation (6.2). As

Is increases though, the influence of motor-load inertia ratioon both the frequency and

amplitude of the oscillation reduces. The importance of this result can be understood best

when considering a long ballscrew with significant inertia but low torsional stiffness. In

this case, the effects of varying the motor-load inertia ratio, on both the frequency and

amplitude of any oscillations present, are significantly reduced. However, a ballscrew

with a larger diameter and the same length would have increased stiffness and inertia –

resulting in an increase in the natural frequency of oscillation and a decrease in the am-

plitude. What is particularly evident from both Equations (6.2) and (6.4) is that torsional

stiffness of the transmission has a much greater influence onany flexing than the inertia

ratio does.

6.2.3 Oscillations in the Closed Loop System

To analyse the effects of varying inertia ratio and torsional stiffness when closing the

velocity loop, the open loop frequency responses of a motor-transmission-load system

with both motor velocity and load velocity as outputs were examined. The frequency

response with motor velocity as output is shown in Figure 6.1(a), while the frequency

response with load velocity as output is shown in Figure 6.1 (b).

A comparison of Figures 6.1 (a) and 6.1 (b) reveals that for all frequencies higher than

the quadratic zeros (in Figure 6.1 (a)) the motor and load velocities quickly become 180

degrees out of phase. Of particular note is the frequency range between the quadratic
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zeros and quadratic poles of the motor response. Since the quadratic poles represent a

resonance in both the motor and load responses, it can be seenthat the magnitude of the

resonant peak in the motor response increases with the widthof this frequency range. This

characteristic, coupled with the fact that in this range themotor sensor provides feedback

that leads the total torque rather than lagging it (as the load does), highlights one of the

major problems faced by system designers who use feedback sensors at the motor. This

result is also consistent with that found by Welch [43].
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Figure 6.1: Frequency Responses – Oscillation Analysis
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Equations (2.9) and (2.10) describe the corner frequenciesof the quadratic zeros and

quadratic poles in the motor response when the transmissioninertia is assumed to be

negligible. If the transmission inertia is taken into account the quadratic zeros of the

motor response are described by Equation (6.5) and the quadratic poles are described by

Equation (6.6). Note also that Equation (6.6) is equivalentto the frequency in the flex

expression of Equation (6.4).

ωz =

√

8KsJm +4KsJs

8JmJl +3Js(Jm +Jl)+J2
s

=

√

4Ks(2+ Is)

Jm(8Ir +3Is(1+ Ir)+ I2
s )

(6.5)

ωp =

√

8Ks(Jm +Jl +Js)

8JmJl +3Js(Jm +Jl)+J2
s

=

√

8Ks(1+ Ir + Is)

Jm(8Ir +3Is(1+ Ir)+ I2
s

(6.6)

When examining Equations (6.5) and (6.6) it can be seen that the corner frequencies of

both the quadratic zeros and quadratic poles are proportional to the torsional stiffness of

the transmission element. Hence, a transmission element with a higher torsional stiffness

would result in the zeros and poles moving further to the right in the frequency response

of Figure 6.1 (a). As the zeros and poles move further to the right and away from the

cross-over frequency, relative stability is increased when closing the loop.

Analysing the influence of motor-load inertia ratio in Equations (6.5) and (6.6) shows

that ωz reduces with an increase in inertia ratio, whileωp is relatively unaffected (as

discussed in Section 6.2.2). This means that the band between the two corner frequencies

is increased, resulting in an increase in magnitude of the resonance. Unless the torsional

stiffness of the coupling is relatively high, this band of frequencies will occur near the

cross over frequency, resulting in poor relative stabilitywhen closing the loop.

The most interesting factor in this analysis is the influenceof motor inertia. Increasing

the motor inertia to overcome a large motor-load inertia mismatch (which is a common

solution used in industry) does reduce the width of this bandof frequencies. However,

this is primarily achieved by reducingωp, while ωz remains relatively unaffected (if the

transmission inertia is negligible,ωz does not change at all). Although this does reduce
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the range between the two corner frequencies (and hence willreduce the magnitude of the

resonance to an extent), it does not move this band of frequencies away from the cross-

over frequency. Hence, high amplitude oscillations can still exist when closing the loop.

The only reliable method of moving this band of frequencies away from the cross-over

frequency is to increase the torsional stiffness of the transmission element.

6.2.4 Absolute Stability

Consider the block diagram shown in Figure 6.2, where both motor and load feedback

are proportionally applied to a motor-transmission-load system (through gains Km and

Kl respectively). The influence of feedback sensor location onabsolute stability was

examined for this system using Routh’s Stability Criterion[61].

+
-

Input Motor Output 

System

Load Output

System

Load VelocityMotor Velocity

+
+ K

m

K
l

Error

Figure 6.2: Absolute Stability Analysis – Closed Loop System

The motor and load output systems shown in Figure 6.2 were modelled using the ‘ad-

justed’ two-body model. Equation (6.7) represents the transfer function of the ‘Motor

Output System’, while Equation (6.8) represents the transfer function of the ‘Load Out-

put System’. These two transfer functions can be obtained from Equations (3.19) and

(3.20).

θ̇m

Error
=

2
((

8JmJl +3Js (Jm +Jl)+J2
s

)

s2+4Ks (2Jm +Js)
)

s(2Jm +Js)
((

8JmJl +3Js (Jm +Jl)+J2
s

)

s2+8Ks (Jm +Jl +Js)
) (6.7)

θ̇l

θ̇m
=

4Ks (2Jm +Js)
(

8JmJl +3Js (Jm +Jl)+J2
s

)

s2+4Ks (2Jm +Js)
(6.8)
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From Equations (6.7) and (6.8) the characteristic equationof the feedback system shown

in Figure 6.2 was determined to be:

(2Jm +Js)
(

8JmJl +3Js (Jm +Jl)+J2
s

)

s3+2Km
(

8JmJl +3Js (Jm +Jl)+J2
s

)

s2

+8Ks (2Jm +Js)(Jm +Jl +Js)s+8Ks (Km +Kl)(2Jm +Js) (6.9)

From the characteristic equation, Routh’s array of coefficients can be constructed. Table

6.1 represents Routh’s array of coefficients resulting fromEquation (6.9).

Table 6.1: Array of Coefficients for Routh’s Stability Analysis

s3 (2Jm +Js)
(

8JmJl +3Js (Jm +Jl)+J2
s

)

8Ks (2Jm +Js)(Jm +Jl +Js)

s2 2Km
(

8JmJl +3Js (Jm +Jl)+J2
s

)

8Ks (Km +Kl)(2Jm +Js)

s1 4Ks(2Jm+Js)(Km(2Jl+Js)−K l(2Jm+Js))
Km

s0 8Ks (Km +Kl)(2Jm +Js)

For absolute stability, all of the coefficients in the first data column of Table 6.1 must

be positive. Since each of the individual parameters in the characteristic equation are

positive, this condition will hold true as long as the first entry in thes1 row is positive, ie:

Km > Kl
2Jm +Js

2Jl +Js

Hence, through careful choice of Km and Kl, the system shown in Figure 6.2 is absolutely

stable regardless of the inertia ratio or transmission element stiffness. If the feedback

is restricted to motor velocity (ie Kl = 0), the condition for absolute stability holds true

regardless of the value of Km. Conversely, if the feedback is restricted to load velocity(ie

Km = 0), the system is unstable regardless of the value of Kl.

In a practical system, where friction and damping of the transmission element are present,

it is possible to design an absolutely stable system with only load velocity feedback.

However, absolute stability problems are still likely to bea serious issue when designing

a practical motor-transmission-load control system with only load velocity as feedback.
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6.2.5 An Analysis of Feedback Approaches

It is clear, from the analysis presented in Section 6.2.3, that a feedback device attached

to the load can provide valuable information on flex in a servosystem (as long as it

is not the only feedback available). In this section the use of load feedback in higher

order controllers is theoretically analysed. In particular, the control approaches that use

specific flex-related feedback quantities (which can consist of motor and load feedback,

as discussed in Section 2.3.3) are analysed and compared.

Consider the block diagram shown in Figure 6.3. The solid section at the centre of this

diagram represents the system described by the ‘traditional’ two-body model. The dashed

sections in the diagram show how the different feedback quantities, which were discussed

in Section 2.3.3, can be used to form inner feedback loops of ahigher order velocity

controller.
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Figure 6.3: Feedback System Block Diagram

Recall that Equation (6.2) describes the flex of the ‘traditional’ two-body model as a

function of time. Through the same method of applying unit impulses to the relevant
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transfer functions and taking inverse Laplace transforms,transmission flex as a function

of time can also be determined for each of the feedback approaches shown in Figure 6.3.

The ‘traditional’ two-body model is used in this analysis tolimit the size of the resulting

equations. However, each of the time functions derived in this section can be described in

terms of the ‘adjusted’ two-body model by applying the following substitutions:

Jm = Jm(ad j) = Jm +
Js

2

Jl = Jl(ad j) = Jl +
Js

2

Ks = Ks(ad j) =
2Ks (2Jm +Js)(2Jl +Js)

8JmJl +3Js (Jm +Jl)+J2
s

Shaft Flex Feedback

Consider first the use of shaft-flex feedback, which was successfully used by the author

of this thesis in [52] to reduce system oscillations on the Motor-Transmission-Load Test-

Bed. This can be achieved by setting each of Kam, Kal, Kv and Kt (in Figure 6.3) to zero,

while K f is the non-zero shaft-flex gain. Equation (6.10) representsthe transfer function

for this system, with transmission flex as output. Equation (6.11) represents the system

flex response as a function of time.

θs

Tm
=

1
Jm

s2+
Ks(Jl+Jm)+K f Jl

JlJm

(6.10)

θs(t) =
1

Jmω
sin(ωt) (6.11)

where,ω =

√

Ks(1+ Ir)+K f Ir

JmIr

A comparison between Equations (6.11) and (6.2), reveals that Equation (6.11) contains

an additional element (Kf Ir) in the numerator of the natural frequency of oscillation.
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Since this element cannot be grouped with every instance of inertia (Jm and Jl) or with the

torsional stiffness of the transmission (Ks), it is not strictly correct to claim an effective

change in the total inertia or the torsional stiffness of thesystem. However, it is clear

that increasing the feedback gain Kf has a similar effect to the preferred approach of

increasing Ks, in that the frequency of oscillation increases while the amplitude of this

oscillation decreases.

Shaft Torque Feedback

Equation (6.12) represents the transfer function of the system when shaft-torque feedback

is used, as suggested by Brandenburg et al [45]. This can be achieved by setting each of

Kam, Kal, K f and Kv (in Figure 6.3) to zero, while Kt is the non-zero shaft-torque gain.

Equation (6.13) represents the flex response of this system,as a function of time.

θs

Tm
=

1
Jm

s2+
Ks(Jl+Jm+KtJl)

JlJm

(6.12)

θs(t) =
1

Jmω
sin(ωt) (6.13)

where,ω =

√

Ks(1+ Ir +Kt Ir)

JmIr

Comparing Equation (6.13) with Equation (6.11) shows that they are almost identical. The

only difference between these two approaches is that the additional element in the numer-

ator of the natural frequency is now also dependent on Ks. This is expected since Ks is a

constant of proportionality between shaft-flex and shaft-torque. Although this proportion-

ality may not be exact in a practical system (where friction and sensor inaccuracies are

significant), from a theoretical perspective the shaft-flexfeedback and shaft-torque feed-

back approaches are fundamentally equivalent. It is also worth noting that when friction is

considered negligible, load-torque feedback (as suggested by Ji and Sul [46]) is identical
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to shaft-torque feedback and hence also results in a fundamentally equivalent approach.

Acceleration Feedback

Equation (6.14) represents the transfer function of the system when motor and load ac-

celeration feedback are used. In this case, Kf , Kv and Kt (in Figure 6.3) are set to zero,

while Kam is the motor acceleration gain and Kal is the load acceleration gain.

θs

Tm
=

1
Jm+Kam

s2+
Ks(Jl+(Jm+Kam)+Kal)

Jl(Jm+Kam)

(6.14)

Equation (6.15) represents the flex response, as a function of time, when Kam is set to

zero. This configuration provides acceleration feedback from the load only, as suggested

by Hori et al [49].

θs(t) =
1

Jmω
sin(ωt) (6.15)

where,ω =

√

√

√

√

Ks

(

1+ Ir + Kal
Jm

)

JmIr

Equation (6.16) represents the flex response, as a function of time, when Kal is set to zero.

This configuration provides acceleration feedback from themotor only, as suggested by

Welch [43].

θs(t) =
1

(Jm +Kam)ω
sin(ωt) (6.16)

where,ω =

√

Ks ((Jm +Kam)+Jl)

(Jm +Kam)Jl

A comparison between Equation (6.15) and Equations (6.11) and (6.13) shows that the

load acceleration feedback approach is almost identical toboth shaft-flex and shaft-torque

feedback. This result is due to the fact that transmission torque is equivalent to the product
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of load inertia and load acceleration in an undamped system.A comparison between the

additional elements in Equations (6.13) and (6.15) shows that they satisfy this relation-

ship. In contrast, the motor acceleration feedback approach differs in that it has the same

effect as altering the motor-load inertia ratio of the system. Note that Equation (6.16) has

been written in terms of the inertias Jm and Jl to show that Kam can be grouped with every

instance of Jm. Hence, Equation (6.16) is equivalent to Equation (6.2) if the inertia ratio

is re-defined as Ir = Jl
Jm+Kam

.

Velocity Difference Feedback

Equation (6.17) represents the transfer function of the system when the difference between

motor and load velocity (̇θs) is used for feedback. This can be achieved by setting each

of Kam, Kal, K f and Kt to zero, while Kv is used as a velocity difference gain. Equation

(6.18) represents the flex response of this system as a function of time.

θs

Tm
=

1
Jm

s2 + Kv
Jm

s+
Ks(Jm+Jl)

JmJl

(6.17)

θs(t) =
1

Jmω

√

4J2mω2

4J2
mω2−K2

v
e
−Kv

2Jm
t
sin

(

ω

√

4J2
mw2−K2

v

4J2
mω2

t

)

(6.18)

where,ω =

√

Ks (1+ Ir)

JmIr

An examination of both Equations (6.17) and (6.18) reveals that, unlike the other forms

of feedback examined in this section, velocity difference feedback does not effectively

alter either the natural frequency or the inertia ratio of the system. Instead, increasing Kv

increases the damping of the system oscillations, which is also a desirable result.

When comparing the different feedback approaches, it can beseen that the feedback gains

used in shaft-flex feedback, shaft-torque feedback, load-torque feedback and load accel-

eration feedback are all related by system constants. Hence, each of these approaches are
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fundamentally equivalent and have a similar effect to varying the torsional stiffness of the

system. Only motor acceleration feedback and velocity difference feedback produce dif-

ferent results, with motor acceleration feedback effectively altering the motor-load inertia

ratio of the system and velocity difference feedback affecting the system damping. All of

these approaches can theoretically reduce the amplitude ofthe flex response. However,

the effects of varying the inertia ratio of the system (as is effectively achieved through

motor acceleration feedback) were shown in Sections 6.2.2 and 6.2.3 to be very limited.

6.3 A Comparison of Control Solutions

6.3.1 Overview

Recall from Section 2.3.3, that the different approaches for controlling torsional vibrations

can generally be classified as belonging to one of three fundamental groups:

1. Conventional control, with vibration suppression filtering and a single feedback

device (usually attached to the motor),

2. Higher order control, with multiple feedback devices (attached to both the motor

and load) and

3. Higher order control, with a single feedback device (usually attached to the motor).

In order to evaluate the performance of control solutions from each of these three groups,

representative control approaches were applied to the Motor-Transmission-Load Test-

Bed. Through both simulation and actual data acquisition from the test-bed, the transient

responses of the controllers (to a velocity step input of 100rad/s) were compared. A total

of 9 different control approaches were included in this comparison, with PI control chosen

as a performance benchmark:
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1. Group 1 (conventional control with/without filtering)

• PI control with no filtering

• PI control with simple notch filtering

2. Group 2 (higher order control – motor and load feedback)

• PI with shaft flex feedback

• PI with velocity difference feedback

• PI with load acceleration feedback

• State feedback

3. Group 3 (higher order control – motor feedback)

• PI with motor acceleration feedback

• State feedback with observer

• Unrestricted QFT design (motor velocity loop)

The general design criteria for all of the controllers consisted of achieving a fast response,

while limiting overshoot and oscillation in both the motor and load responses. This re-

sulted in a single design specification that the closed loop gain magnitudes had to be 0dB

or less at all frequencies, in both the motor and load velocity responses. The poles of

the state feedback controllers were chosen to ensure that the 0dB design specification

was satisfied, with the well known Ackermann’s formula [61] used to determine each

state feedback gain matrix. For the case where an observer was used, the observer gains

were also determined using Ackermann’s formula with the observer poles chosen to be

5 times faster than the slowest poles of the state feedback controller. For all other cases

a QFT design approach was used, with the design restricted tothe relative feedback and

compensator structure of each case.

Since the design specification related to both the motor and load velocity responses, nom-

inal plant transfer functions for both the motor and load were included in each step of

the QFT designs presented in this chapter. This is an important addition to standard QFT,

as the Nichols Chart used in a single loop design is usually restricted to a single nomi-

nal transfer function. This approach provided a distinct advantage over traditional tuning

methods in that both the motor and load specifications could be addressed simultaneously,
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even for the benchmark PI controllers. The method developedto include both the motor

and load transfer functions in a single QFT design is presented in Section 6.3.2.

The simulated and experimental transient responses of the benchmark PI controllers are

presented in Section 6.3.3. To effectively simulate the Motor-Transmission-Load Test-

Bed, the Matlab package was used. With the addition of the Simulink toolbox, a block

diagram approach to modelling and simulation was employed.This approach allowed

for the current loop characteristics, system nonlinearities and various disturbances to be

easily included in all of the simulations performed. The main interface of the simulator is

shown in Figure 6.4. This interface allowed for easy adjustment of transmission stiffness,

transmission inertia, motor inertia, inertia ratio and control method. The block diagram

of the overall simulation model is shown in Figure 6.5.

Figure 6.4: Simulation System – Main Interface
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A change in control method on the main interface results in changes to the control and

feedback subsystems of Figure 6.5. An example of one of thesesubsystems (‘Feedback

System 2’) is shown in Figure 6.6. It can be seen from Figure 6.6 that the actual feedback

path is controlled via a multiport switch. The state of the multiport switch is updated

every time a new control method is chosen on the main interface. Each of the ‘Pre Filter’,
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‘Controller 1’, ‘Controller 2’ and ‘Feedback System 1’ subsystems (in Figure 6.5) contain

similar multiport switches, so that the control algorithm and feedback gains implemented

in each subsystem are dependent on the control method chosenvia the main interface.

The block labelled ‘Flexible Transmission System’ (in Figure 6.5) contains the complete

dynamics of the Motor-Transmission-Load Test-Bed including the current control loop.

This block can easily be altered to represent the other test-beds.

The simulated and experimental transient responses of the alternative control solutions

are presented in Section 6.3.4. All simulations for the alternative control solutions were

performed using the described Matlab based system. The results for all of the control

approaches are also compared in Section 6.3.4.

6.3.2 Dual Response QFT Method

As described in Section 6.3.1, nominal plant transfer functions for both the motor and

load were included in the QFT designs presented in this chapter. Figure 6.7 shows an

example Nichols Chart with both the motor and load nominal plants plotted (the solid

black line represents the open loop motor velocity, while the solid blue line represents the

open loop load velocity).

There is some difficulty in including a second plot in a singleloop QFT design, as the de-

sign process assumes the designer is closing the loop with unity feedback from the output

of the plotted transfer function. This can only be true for one of the plots when there are

two outputs plotted. Consider the example plots shown in Figure 6.7. If the motor veloc-

ity is used in a unity feedback arrangement, the closed loop magnitudes represented by

the standard Nichols Grid would provide an accurate indication of the closed loop mag-

nitudes at each frequency for the motor velocity (black line). However, they would not

provide any indication of the closed loop magnitudes for theload velocity (blue line). For

the standard Nichols Grid to provide an accurate indicationof the closed loop magnitudes

for load velocity, load velocity feedback must be used. Hence, two sets of bounds for
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Figure 6.7: Nichols Chart with Nominal Transfer Functions for both Motor and Load

each performance specification are required when both motorand load transfer functions

are included in the design process.

Figure 6.8 shows an example of two separate bounds for the motor and load responses,

based on a single performance specification. In this case a simple stability specification

was set, limiting the closed loop magnitude of both motor andload responses to 0dB at

158 rad/s. In Figure 6.8 the bound for the motor response is represented by the red dashed

line and can be seen to match the 0dB closed loop magnitude of the standard Nichols

Grid. The bound for the load response is represented by the green dashed line and is

completely different. If G(s) represents the controller tobe designed (which is the same

for both nominal plants), Pm(s) represents the motor transfer function and Pl(s) represents

the load transfer function, the two sets of bounds are calculated such that:

∣

∣

∣

∣

G(s)Pm(s)
1+G(s)Pm(s)

∣

∣

∣

∣

< 0dB for the motor
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and

∣

∣

∣

∣

G(s)Pl(s)
1+G(s)Pm(s)

∣

∣

∣

∣

< 0dB for the load
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Figure 6.8: An Example of QFT Stability Bounds for both Motorand Load

The importance of including the load response in the design process is evident from Figure

6.8, as it can be seen that the nominal motor plant already satisfies the performance bound

(even with G(s) = 1) while the nominal load plant does not. This is shown by the fact that

the entire motor plant is outside the red bound, but the load plant is above the green bound

at 158 rad/s (158 rad/s is shown by a circle on each of the plots). In order to satisfy a closed

loop specification of both motor and load magnitudes being less than 0dB at 158 rad/s,

the controller G(s) must be modified so that both plants satisfy their respective bounds.
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6.3.3 Performance of PI Velocity Controllers

The benchmark PI controllers were tested using all of the available inertia discs and shafts

of the Motor-Transmission-Load Test-Bed (refer to Section4.3.2 for details). In particu-

lar, four different motor-load inertia configurations weretested on each of the 3 shafts:

1. No discs attached to either the motor or load (inertia ratio 1:1),

2. Disc 1 attached to the motor and Disc 3 attached to the load (inertia ratio 1.07:1),

3. Discs 1 and 2 attached to the motor, with no discs attached to the load (inertia ratio

16.9:1),

4. No discs attached to the motor, with Discs 1 and 2 attached to the load (inertia ratio

1:16.9).

An example design is shown in Figure 6.9, where the system uses Shaft 3 and motor-load

inertia configuration 2 (inertia ratio 1.07:1).

−360 −315 −270 −225 −180 −135 −90 −45 0 45 90
−80

−60

−40

−20

0

20

40

Open−Loop Phase (deg)

O
pe

n−
Lo

op
 G

ai
n 

(d
B

)

 6 dB

 3 dB

 1 dB

 0.5 dB

 0.25 dB

 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

 −60 dB

 −80 dB

Nichols Chart − QFT Loop Shaping

100

110

120

130

140

150

158

160

Figure 6.9: Loop Shaping - PI Control
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In Figure 6.9 all of the motor bounds lie on the 0dB closed loopmagnitude of the standard

Nichols Grid, while the load bounds can be seen to vary with frequency (the Legend

in Figure 6.9 refers to the bound frequencies). The general design goal, to ensure the

fastest response, is to get as close as possible to the boundswithout violating them. The

controller design shown in Figure 6.9 can be seen to satisfy all of the bounds, with the

dominant bounds being the load bounds at 140 and 150 rad/s. Figure 6.10 shows the

actual closed loop frequency responses for the design example of Figure 6.9. As can be

seen the design specifications have been met and 140-150 rad/s in the load response is

confirmed as the critical frequency range.
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Figure 6.10: Closed Loop Frequency Response - PI Control

The simulated motor and load transient responses for PI control of the system with Shaft

3 as the transmission element are shown in Figure 6.11. Similarly, the motor and load

transient responses for PI control of the experimental system, under the same conditions,

are shown in Figure 6.12. In each of Figures 6.11 and 6.12, themotor responses are shown

in the upper graph, while the load responses are shown in the lower graph.

The first thing to note about all of the transients shown in Figures 6.11 and 6.12 is that

standard PI control does not effectively limit oscillations in this system. Recall from

Table 4.2 that Shaft 3 has the lowest torsional stiffness of the 3 experimental shafts; con-

sequently, excessive oscillations are observed in this system even when the motor-load
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inertia ratio is approximately 1:1 (as in Cases 1 and 2). The only way to reduce these os-

cillations is to reduce the proportional and/or integral gains, which would result in slower

overall responses.
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Figure 6.11: Simulated Motor and Load Velocity Responses - PI Control, Shaft 3
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Figure 6.12: Experimental Motor and Load Velocity Responses - PI Control, Shaft 3
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It is also evident from both Figures 6.11 and 6.12 that when the motor inertia is much

larger than the load inertia the motor response is relatively smooth while the load response

exhibits significant oscillation, and vice versa (Cases 3 and 4). However, inertia ratios

closer to unity can become even more difficult for designers,as significant oscillations

are present in both the motor and load responses (especiallywhen both motor and load

inertias are relatively large – Case 2).

When comparing Figures 6.11 and 6.12, it can be seen that the simulated system responses

provide a very accurate representation of the actual experimental responses. Some back-

lash dynamics are noticeable in the experimental responses(due to the use of interchange-

able inertia discs), although these dynamics have not had a significant affect on the major

response attributes. Another minor difference is that the simulated motor response of

Case 4 appears to be more damped than the actual experimentalresponse.

The simulated motor and load transient responses for PI control of the system with Shaft

2 as the transmission element are shown in Figure 6.13. The corresponding experimental

responses are shown in Figure 6.14. Similarly, the simulated responses for the system with

Shaft 1 as the transmission element are shown in Figure 6.15,while the corresponding

experimental responses are shown in Figure 6.16.

An important observation that can be made from Figures 6.13 to 6.16 is that as the tor-

sional stiffness of the transmission element increases (shown successively with Shaft 2

and Shaft 1) the frequencies of all system oscillations increase, while the amplitudes de-

crease. This was predicted in the analysis presented in Section 6.2. These results clearly

demonstrate that the significance of system oscillations isreduced as torsional stiffness of

the transmission element is increased. In comparison, the standard industry practice of en-

suring a unity inertia ratio can actually result in very significant amplitudes of oscillation

in both motor and load responses.
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Figure 6.13: Simulated Motor and Load Velocity Responses - PI Control, Shaft 2
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Figure 6.14: Experimental Motor and Load Velocity Responses - PI Control, Shaft 2
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Figure 6.15: Simulated Motor and Load Velocity Responses - PI Control, Shaft 1
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Figure 6.16: Experimental Motor and Load Velocity Responses - PI Control, Shaft 1

A summary of the characteristics for all of the responses presented in Figures 6.11 to 6.16

is given in Table 6.2.
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Table 6.2: Transient Response Characteristics - PI Control
Oscillation Max Oscillation

Rise Time Frequency Amplitude
(ms) (rad/s) (% of step)

Motor Load Motor Load Motor Load
Case 1 23 21 1470 1470 0.45 0.27

Shaft 1 Case 2 41 40 658 658 0.48 0.47
Simulated Case 3 149 148 N/A 977 0 0.33

Case 4 155 147 571@ N/A 6.59 0
Case 1 21 22 1480 1480 1.66∗ 1.89∗

Shaft 1 Case 2 43 39 668 668 0.49 0.39
Experimental Case 3 147 147 3141+ 937 1.87+ 0.41

Case 4 153 153 785 3141+ 5.07 4.59+

Case 1 32 25 591 591 1.16 1.27
Shaft 2 Case 2 46 34 277 277 1.6 1.8

Simulated Case 3 149 149 N/A 428 0 0.88
Case 4 153 137 241@ N/A 23.18 0
Case 1 30 23 608 608 2.03 1.93

Shaft 2 Case 2 44 32 289 289 1.6 2.11
Experimental Case 3 151 142 3141+ 438 3.6+ 1.87

Case 4 152 142 418 3141+ 22.7 1.49+

Case 1 38 27 331 331 2.17 2.01
Shaft 3 Case 2 46 54 155 155 4.16 5.82

Simulated Case 3 149 138 N/A 261 0 1.76
Case 4 150 117 125@ N/A 24.94 0
Case 1 35 25 339 339 3.4 3.39

Shaft 3 Case 2 45 50 157 157 2.66 3.47
Experimental Case 3 143 133 785+ 261 1.82+ 1.6

Case 4 152 135 224 3141+ 27.2 0.86+
@ Frequencies affected by higher damping in simulations
∗ Amplitudes affected by excitation of structural natural frequency
+ Short sharp oscillations observed due to backlash dynamicsof inertia discs

The summary in Table 6.2 again illustrates the close agreement between the simulation

and experimental responses. The simulated motor responsesfor Case 4 (high load inertia)

do commonly appear to be more damped than the actual experimental responses. How-

ever, the testing was performed over a wide range of motor-transmission-load conditions

and the complete set of results confirm that the approximate simulation model provides

a very accurate representation of the real system. One otherminor difference between

simulated and experimental results can be seen in the Case 1 responses of Figure 6.16,

where the experimental motor and load responses have a larger than predicted amplitude
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of oscillation. This is due to the excitation of a structuralresonance on the test-bed. The

relatively high frequency of this resonance would however allow for simple filtering with-

out a costly reduction in response speed. The effects of eachof these minor differences

are clearly identified in Table 6.2.

6.3.4 Performance of Alternative Velocity Control Solutions

In order to test the performance of the alternative control solutions, each controller was

applied to the Motor-Transmission-Load Test-Bed using Shaft 3 and motor-load inertia

configuration 2. This particular configuration was shown in Section 6.3.3 to exhibit sig-

nificant oscillations in both the motor and load responses, and at a lower frequency than

any of the other configurations tested. For these reasons, the combination of Shaft 3 and

motor-load inertia configuration 2 provides a demanding set-up for comparing controller

performance.

Figures 6.17 to 6.24 show the simulated and experimental velocity responses for the tested

controllers. In each figure the upper graph shows the simulated motor and load responses,

while the lower graph shows the experimental motor and load responses. The responses

of the PI controller with notch filtering are shown in Figure 6.17. The design of the notch

filter was undertaken in thes-domain and has the form given in Equation (6.19), where

the width and depth of the notch are adjusted via the damping ratio (ζ ). To implement the

notch filter on the digital drives (of the CNC system) a Tustintransformation of Equation

(6.19) was performed to translate the notch into thez-domain. The generalz-domain form

of a 2nd order filter (after a Tustin transformation) is givenin Equation (6.20), whereh is

the sampling period. For the case of the notch filter:ω1 = ω2 = ω, ζ1 = 0 andζ2 = ζ .

s2

ω2 +1
s2

ω2 + 2ζ s
ω +1

(6.19)
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Figure 6.17: Motor and Load Velocity Responses - Notch Filtering

For the experimental implementation of shaft flex feedback,the shaft flex was calculated

using direct motor and load position encoder measurements.Similarly, the experimental

implementation of velocity difference feedback was achieved via differentiation of the

same motor and load position encoder measurements. The responses for the PI controller

with shaft flex feedback are shown in Figure 6.18. The responses for the PI controller

with velocity difference feedback are shown in Figure 6.19.
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Figure 6.18: Motor and Load Velocity Responses - Shaft Flex Feedback
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Figure 6.19: Motor and Load Velocity Responses - Velocity Difference Feedback

A Hübner rotary accelerometer was used to obtain the feedback signals for the exper-

imental implementation of load and motor acceleration feedback. Double-differentiated

position encoder measurements were initially tested for use as acceleration feedback. The

resulting signals were found to contain large amounts of noise and were not suitable for
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closed loop feedback. In comparison, the Hübner accelerometer provided smooth ac-

celeration feedback signals. The responses for the PI controller with load acceleration

feedback are shown in Figure 6.20. The responses for the PI controller with motor accel-

eration feedback are shown in Figure 6.21.
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Figure 6.20: Motor and Load Velocity Responses - Load Acceleration Feedback
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Figure 6.21: Motor and Load Velocity Responses - Motor Acceleration Feedback
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The responses for the state feedback controller are shown inFigure 6.22. Three states

were defined for the controller; namely, motor velocity, load velocity and shaft flex. Fig-

ure 6.23 shows the responses for the same state feedback controller with an observer

added to estimate the load velocity and shaft flex states.
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Figure 6.22: Motor and Load Velocity Responses - State Feedback
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Figure 6.23: Motor and Load Velocity Responses - State Feedback with Observer
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The responses for the unrestricted QFT designed motor velocity loop are shown in Figure

6.24. The final controller design consisted of a PI stage withtwo 2nd order loop filters.

The 1st of the filters had the form of a notch filter, while the 2nd filter provided a band of

phase lag to help compensate for the inherent band of phase lead between the quadratic

zeros and quadratic poles of the system. The actual loop design is given in Equation

(6.21). As with the simple notch filter, a Tustin transformation was used to translate the

s-domain design to thez-domain (see Equation (6.20)).
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Figure 6.24: Motor and Load Velocity Responses - QFT with Motor Feedback Only
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 (6.21)

where:ω1 = 158 ζ1 = 0.025

ω2 = 158 ζ2 = 0.5

ω3 = 158 ζ3 = 0.1

ω4 = 140 ζ4 = 0.2
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The Nichols chart for the loop design of Equation (6.21) is shown in Figure 6.25. The

effects of the two filters can easily be seen when comparing Figure 6.25 with Figure 6.9

(the standard PI controller). The notch filter has the effectof reducing the closed loop

magnitude at the natural frequency of oscillation, which isevident by the flatter circle in

the motor velocity plot of Figure 6.25 (mathematically, this is equivalent to increasing the

damping of the system). The phase lag introduced by the 2nd filter is also evident by the

open loop phase not exceeding 0 degrees in Figure 6.25, whereas the open loop phase

exceeds 45 degrees around the natural frequency of oscillation in Figure 6.9.

A summary of the characteristics for all of the responses presented in Figures 6.17 to 6.24

is given in Table 6.3. For comparison purposes, the characteristics of the benchmark PI

controller for Shaft 3 and motor-load inertia configuration2 are also repeated in Table

6.3.
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Table 6.3: Transient Response Characteristics - Alternative Controllers
Oscillation Max Oscillation

Rise Time Frequency Amplitude
(ms) (rad/s) (% of step)

Motor Load Motor Load Motor Load
PI Controller – Sim. 46 54 155 155 4.16 5.82
PI Controller – Exp. 45 50 157 157 2.66 3.47
Notch Filtering – Sim. 50 31 159 159 1.18 1.55
Notch Filtering – Exp. 49 35 157 157 0.74 0.67
Shaft Flex FB – Sim. 37 19 169 169 3.56 1.42
Shaft Flex FB – Exp. 38 36 212 212 2.55 0.68
Velocity Difference FB – Sim. 46 30 261 N/A 1.2 ≈ 0
Velocity Difference FB – Exp. 51 42 224 N/A 1.6 ≈ 0
Load Acceleration FB – Sim. 50 38 349 N/A 5.88 0
Load Acceleration FB – Exp. 42 39 174 174 1.83 0.56
Motor Acceleration FB – Sim. 37 19 173 173 3.38 1.24
Motor Acceleration FB – Exp. 45 45 176 176 2.14 1.8
State FB – Sim. 48 33 390 N/A 0.99 0
State FB – Exp. 61 48 392 N/A 1.28 0
State FB with Observer – Sim. 48 33 628 N/A 0.42 0
State FB with Observer – Exp. 78 66 571 128 0.31 0.67
QFT Controller – Sim. 55 40 133 133 0.23 0.4
QFT Controller – Exp. 51 41 157 157 0.88 1.14
FB - Feedback
Sim. - Simulated Responses
Exp. - Experimental Responses

It can be seen, from Table 6.3 and Figures 6.17 to 6.24, that all of the studied control

approaches were successful in reducing the maximum amplitudes of oscillation in the

load responses. The improvement in oscillation amplitude did come at the cost of reduced

response speed in some cases; however, this slight reduction in response speed is minimal

in comparison to the effects of reducing the PI gains. Table 6.3 and Figures 6.17 to 6.24

again show close agreement between the experimental and simulated results. The fragile

nature of the very thin transmission shaft, used on the test-bed to provide low torsional

stiffness, did however make it difficult to use the optimal theoretical controller gains.

When comparing the relative performance of the control solutions, it can be seen that the

best results were achieved by the state feedback controllerand the PI controller with ve-

locity difference feedback. Both of these controllers resulted in smooth responses for both
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the motor and load, with minor impact on the system rise times. In both cases load veloc-

ity was used as an additional feedback signal. In comparison, the two PI controllers using

load acceleration feedback and shaft flex feedback resultedin smooth load responses, but

significant oscillations remained in the motor responses. In fact, the simulated motor re-

sponse for load acceleration feedback actually predicted aslight increase in maximum

amplitude of oscillation. In practice, the controller performance for both load accelera-

tion feedback and shaft flex feedback appeared similar to decreasing the motor inertia of

the system (refer to Case 4 for each of the shafts in Section 6.3.3). As a result, these ap-

proaches were found to be very similar to using motor acceleration feedback, which also

effectively reduced the system motor inertia (as predictedin the mathematical analysis

if Section 6.2.5). The advantage of motor acceleration feedback over load acceleration

feedback and shaft flex feedback is that no feedback is required from the load end.

The other controllers, that used feedback from the motor only, produced mixed results.

The simple notch filter and the unrestricted QFT design provided good overall perfor-

mance in both the motor and load responses. However, the state feedback controller with

observer was unstable on the experimental system when the original state feedback gains

were used. Stable experimental results were obtained for this controller, but only after

considerably reducing the system response speed. It was also found that the observer

required more computational power than any of the other approaches. In Figure 6.26,

100 samples of the time taken to execute a complete control cycle, for each of the tested

controllers, are plotted. In any system the total executiontime for the control cycle must

be less than the sample period of the control system (125µs on the digital servo drives of

this system). The additional computational requirements of the observer are clearly illus-

trated in Figure 6.26, where the average control cycle execution is right on the limit and

at times even exceeds the allowed 125µs (a drop to around zero in the recorded execution

time is a result of the control cycle not completing within the allowed sample period). In

comparison, all of the other control approaches take around100µs to execute.

In general, out of all the approaches, the simple notch filterand the unrestricted QFT de-
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Figure 6.26: Control Cycle Timing for the Digital Servo Drives

sign were the easiest to implement and tune. Of these two approaches, the unrestricted

QFT design produced a smoother motor response during the transient period, at the ex-

pense of a small increase in rise time. Although the state feedback controller (without an

observer) produced the best overall results, this controller is more difficult to tune than

the others (especially if fine tuning is required on the practical system) and requires addi-

tional feedback from the load. If the unrestricted QFT design approach was extended to

include separate load velocity feedback, this approach would also allow for a controller

design with the same structure as the state space controller.

6.4 Influence of Drive-Train Configuration

The influence of drive-train configuration on torsional vibrations was studied using the

Drive Comparison Test-Bed (refer to Section 4.4 for details). Figure 6.27 shows the motor

velocity frequency response (closed loop PI control) for the test-bed with the rotary motor

directly coupled to the ballscrew transmission. A chirp signal was used in addition to a

constant velocity command for logging the frequency data. For the response shown in

Figure 6.27 the chirp signal was applied when the load was positioned as far away from

174



the motor as possible. This represents the worst case scenario, since the torsional stiffness

of a ballscrew reduces as the load moves away from the motor (as described in Section

3.5.1).
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Figure 6.27: Frequency Response – Direct Driven Ballscrew Configuration
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Figure 6.28: Frequency Response – Belt Driven Ballscrew Configuration

From Figure 6.27, it can be seen that the direct driven ballscrew configuration has a band-

width of approximately 1000 rad/s. A resonant peak can also be observed between 2000
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and 3000 rad/s. Figure 6.28 shows the motor velocity frequency response for the test-bed

with the synchronous timing belt used to couple the rotary motor to the ballscrew trans-

mission. The chirp signal was again applied with the load positioned as far away from the

motor as possible.

When comparing Figure 6.28 with Figure 6.27 it can be seen that the synchronous timing

belt has significantly damped the resonant peak observed in Figure 6.27 (the direct driven

case). However, the reduced stiffness of the belt driven system has lowered the resonant

frequency to approximately 1000 rad/s, resulting in a loweroverall controller bandwidth.
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Figure 6.29: Frequency Response – Rack and Pinion Configuration

Figure 6.29 shows the motor velocity frequency response forthe test-bed when configured

to use the rack and pinion transmission. As can be seen, the overall controller bandwidth

is much lower for the rack and pinion transmission than either of the ballscrew cases. The

limited controller bandwidth is not however a result of any lower resonant frequencies

(as can be seen from Figure 6.29), but rather the large amountof backlash inherent in

the rack and pinion system. As a comparison, Figure 6.30 shows the motor velocity

frequency response for the Linear Motor Test-Bed. Since linear motors provide a direct

drive mechanism with zero backlash, the controller bandwidth of the Linear Motor Test-
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Bed is higher than each of the other configurations and is not affected by any resonant

frequencies.
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Figure 6.30: Frequency Response – Linear Motor Test-Bed

As can be seen from Figures 6.27 to 6.30, drive train configuration has a large influence

on any resonant frequencies and subsequent torsional vibrations in a system. With refer-

ence to the configurations examined in this section, the direct driven ballscrew case had

the largest resonant peak. The addition of a synchronous timing belt to this system re-

sulted in significant damping of the resonance, but also resulted in a lower overall system

bandwidth. The rack and pinion configuration and the linear motor system showed no

significant resonant frequencies; however, the rack and pinion configuration had a low

system bandwidth due to the presence of backlash. Since no anti-backlash mechanisms

or advanced control techniques were used in this test, the system quickly became unstable

whenever the PI controller gains were increased. Methods that can be used to improve the

performance of systems with backlash are examined in Chapter 7.

Each of the methods examined in Section 6.3.4 can be applied to systems with a large

resonant peak and subsequent torsional vibrations. As an example, the unrestricted QFT

approach was used to design a new controller for the direct driven ballscrew configuration.

The QFT approach is particularly suited to this problem, as the variation in torsional
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stiffness (inherent in a ballscrew) can be included in the design process. Figure 6.31

shows the motor velocity response for the QFT controller. When comparing Figure 6.31

with Figure 6.27, it can be seen that the QFT designed controller successfully reduced the

resonant peak, while maintaining the overall system bandwidth.
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Figure 6.31: Frequency Response – QFT Controlled Direct Driven Ballscrew

6.5 Conclusions

A theoretical analysis of drive-train flexing and torsionalvibrations has been presented

in this chapter. Different control solutions to the problemwere studied, with their ef-

fectiveness compared both theoretically and experimentally. The influence of the overall

drive-train configuration was also analysed experimentally.

Open loop flexing of the transmission element in a system was studied in Section 6.2.2.

The impact this flexing has on the closed loop system was further studied in Section 6.2.3.

It was found that torsional stiffness of the transmission element has a much greater affect

on both the frequency and amplitude of any resulting system oscillations than motor/load

inertia ratio does. Also, as the inertia of the transmissionelement increased, it was found
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that motor/load inertia ratio had less affect on system oscillations. This latter result is

important as many practical transmissions (such as long ballscrews) have quite significant

inertia.

In Section 6.2.3 it was found that the position and width of the band of frequencies be-

tween the quadratic zeros and quadratic poles of the motor response have a considerable

impact on the resonant peak of a closed loop system. The common practice of varying

motor inertia to maintain a unity motor/load inertia ratio was shown to vary the width

of this band of frequencies, but not the position. Although narrowing the width of the

frequency band can reduce the resonant peak of the closed loop system, varying torsional

stiffness of the transmission element was shown to produce the improved result of vary-

ing both the width and position of the frequency band. As the actual frequencies in this

band become higher, the impact of any resulting oscillations on the closed loop system is

reduced.

The location of feedback sensors, in motor-transmission-load systems, was discussed in

Sections 6.2.3 and 6.2.4. It was found that for some frequencies motor feedback leads

the total torque rather than lagging it, as the load does. Hence, motor feedback does not

always provide an accurate representation of the load. It was also shown that absolute

stability problems can exist when load feedback is solely used. For these reasons, a com-

bination of motor and load feedback (where practical) is themost appropriate approach

for systems with low torsional stiffness.

In Section 6.2.5, control solutions using feedback from themotor were compared with

solutions using a combination of motor and load feedback. When compared theoretically,

it was found that shaft (transmission) torque feedback, load torque feedback, load acceler-

ation feedback and shaft flex feedback are all fundamentallyequivalent approaches, with

the feedback gains of each approach related by system constants. Although all of these

approaches are theoretically effective in reducing systemoscillations, their fundamental

equivalence was not discussed in any of the literature reviewed in Chapter 2.

Two of the feedback approaches, compared in Section 6.2.5, were developed as a part of
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this thesis. The first approach, shaft flex feedback, was found to increase the frequency

and reduce the amplitude of system oscillations, but was also found to be fundamentally

equivalent to other published solutions (as already noted). However, the second approach,

velocity difference feedback, was found to reduce system oscillations through effectively

increasing the system damping. The fact that many of the published feedback approaches

are fundamentally equivalent highlights the advantages ofdeveloping a standard approach

to the problem of controlling torsional vibrations.

A method to include both motor and load specifications in a single QFT design proce-

dure was presented in Section 6.3, along with an experimental comparison of control

approaches. The test-bed used for the experimental comparison allowed for drive-train

flexing and torsional vibrations to be directly analysed. Simulated and experimental tran-

sient responses were presented for a wide range of motor-transmission-load conditions.

The limitations of using standard PI control on systems withlow torsional stiffness were

demonstrated, with both the motor and load responses exhibiting significant oscillations.

Although the practice of re-sizing motors in order to maintain unity motor-load inertia

ratios can improve system performance, the experimental results in Section 6.3 clearly

show that excessive system oscillations can still be present in systems with a unity inertia

ratio.

All of the alternative control approaches examined in Section 6.3 showed improvement

over standard PI control, with state feedback and velocity difference feedback demon-

strating the best results. However, both of these approaches require feedback from the

load, which is not always practical in many machine tool designs. Of the controllers that

require feedback from the motor only, the simple notch filterand further filtering through

an unrestricted QFT design were shown to be very effective and easy to implement and

tune. In comparison, state feedback was found to be difficultto fine-tune practically and

with the addition of an observer required more computational power than all of the other

approaches.

The results presented throughout Section 6.3 also demonstrated strong agreement between

180



the simulated and experimental responses, across the wide range of conditions. This

strong agreement validates the accuracy of the system models, which were based on the

‘adjusted’ two-body model developed in Chapter 3.

The influence of drive-train configuration on torsional vibrations was studied experimen-

tally in Section 6.4. It was found that the ballscrew configurations exhibited higher res-

onant peaks than the rack and pinion and linear motor configurations. In particular, the

direct driven ballscrew case had the largest resonant peak.The addition of a synchronous

timing belt to this system was shown to increase the damping of the resonance, but reduce

the overall bandwidth of the system. The problems associated with ballscrew configu-

rations also become more significant as the travel of the axisis increased, since longer

ballscrews often suffer from low torsional stiffness and increased inertia. From the con-

trol perspective, the QFT approach was shown to successfully reduce the resonant peak

of a ballscrew driven axis, without reducing the overall system bandwidth. The QFT ap-

proach allows for the inherent variation in ballscrew torsional stiffness to be taken into

account during the design process.
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Chapter7
Backlash

7.1 Introduction

A new approach to the non-linear control of machine tool servo systems with backlash is

presented in this chapter. Backlash has historically been considered as one of the most

serious problems associated with precision control in machine tools and has maintained

the attention of engineers for over 60 years. As can be seen inboth Chapter 5 and Chapter

6, the existence of backlash can limit the effectiveness of controllers designed to address

other performance related factors such as torsional vibrations and dynamic stiffness. In

fact, the changes in inertia experienced in a system with backlash can be a source of

excitation for torsional vibrations. Further, some of the approaches that were shown to be

effective in reducing torsional vibrations in Chapter 6 canactually increase the adverse

effects of backlash if not applied carefully. For this reason, the control of backlash should

always be treated in parallel with the problem of reducing torsional vibrations in any

system where backlash is present.

The control approach presented in this chapter takes both backlash and torsional vibra-

tions into account, using the accurate system models derived in Chapter 3. The approach

also combines the concepts of ‘weak’ and ‘strong’ action during the backlash phase,

which has the advantage of addressing both the dynamic stability and tracking perfor-

mance of a system with backlash. Position and acceleration feedback from the motor
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are used in this approach and, for the case of velocity tracking, the width of the back-

lash gap does not need to be known. However, if accurate position tracking is required, a

measure of the backlash gap is essential when position feedback from the load is not avail-

able. The backlash gap of the experimental system used to evaluate the control approach

was manually measured and is given in Chapter 4. Although a number of methods have

been suggested for automatically measuring the width of a backlash gap (for examples

the reader is referred to [103, 104, 105]), the work presented in this chapter was focused

solely on the effective control of systems with backlash.

An analysis of describing functions for backlash models is presented in Section 7.2. The

describing functions of the standard dead-zone model and the new backlash model, intro-

duced in Section 3.4, are presented. The outputs of these describing functions are then

compared in terms of phase and magnitude.

The hybrid weak/strong approach to controlling systems with backlash is presented in

Section 7.3. The QFT technique is used to effectively designcontrollers for both the con-

tact phase and backlash phase of systems with backlash. A method to accurately construct

Nichols Chart stability bounds using the describing function of the new backlash model

is shown and then used in the QFT design process. Advantages and disadvantages of the

weak action control approach are demonstrated through simulation. The clear advantages

of combining this weak action with an additive strong actionare then demonstrated. Im-

plications of the additive strong action are also discussed, especially with reference to the

method used to identify when the system enters the backlash phase.

In Section 7.4 the hybrid weak/strong control approach is demonstrated on the Motor-

Transmission-Load Test-Bed (described in Section 4.3). The combined effects of the

weak and strong actions of this controller, along with the method used to identify when

the system enters the backlash phase, are practically demonstrated. The computational

requirements of this controller are also briefly discussed.

A summary of the key points and conclusions that can be drawn from this chapter are

presented in Section 7.5.

184



7.2 Describing Functions and Backlash

As discussed in Section 2.4.3, the describing function technique has traditionally been the

most common technique used to find linear approximations of general nonlinearities. In

particular, the sinusoidal-input describing function hasbeen successfully used to describe

backlash since the 1950s. In this section, the sinusoidal-input describing function for the

backlash model developed in Section 3.4 is presented and compared with the sinusoidal-

input describing function of a standard dead-zone model. Although dual-input describing

functions have also been successfully used to describe backlash [40, 82], the sinusoidal-

input method is particularly suited to the QFT design technique where stability bounds

are computed at particular frequencies of interest.

The sinusoidal-input describing function (N) for a non-linear element is defined by Equa-

tions (7.1) to (7.3) and can be described as the complex ratiobetween the fundamental

harmonic component of the output and the input (of the non-linearity) [61]. The method

relies on the assumption that higher order harmonics will have a lower amplitude than the

fundamental and are also usually attenuated by the control system.

N =
Y1

X
∠φ1 =

√

A2
1+B2

1

X
∠ tan−1

(

A1

B1

)

(7.1)

where: X is the amplitude of the sinusoidal inputx(t)

Y1 is the fundamental harmonic of the outputy(t)

φ1 is the phase shift betweeny(t) andx(t)

and: A1 =
1
π

∫ 2π

0
y(t)cos(ωt)d (ωt) (7.2)

B1 =
1
π

∫ 2π

0
y(t)sin(ωt)d (ωt) (7.3)
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7.2.1 Describing Function for the Standard Dead Zone Model

The standard dead zone approach to modelling backlash is presented in Section 2.4.2 and

is described by Equations (2.12) and (2.13). Figure 7.1 shows the input-output relation-

ship of the dead zone model, whereα = 0.05 and Ks = 25. The input in Figure 7.1 is:

θd = 0.15sin(0.4πt).
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Figure 7.1: Input-Output Relationship – Standard Dead ZoneModel

If θd = X sin(ωt) in the general case, then from Figure 7.1 and Equations (7.2), (7.3),

(2.12) and (2.13) :

A1 =
Ks

π

∫ π−ωt1

ωt1
(X sin(ωt)−α)cos(ωt)d (ωt)

+
Ks

π

∫ 2π−ωt1

π+ωt1
(X sin(ωt)+α)cos(ωt)d (ωt) (7.4)

B1 =
Ks

π

∫ π−ωt1

ωt1
(X sin(ωt)−α)sin(ωt)d (ωt)

+
Ks

π

∫ 2π−ωt1

π+ωt1
(X sin(ωt)+α)sin(ωt)d (ωt) (7.5)

From Equation (7.1) it can be seen that the describing function for the standard dead zone

model is based on the solutions to Equations (7.4) and (7.5),which have previously been
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shown to be [61]:

A1 = 0 (7.6)

B1 =
2KsX

π

[

π
2
−sin−1

(α
X

)

−
(α

X

)

√

1−
(α

X

)2
]

(7.7)

Hence, for the standard dead zone model the describing function reduces to:

N =
B1

X
∠0 (7.8)

7.2.2 Describing Function for the New Backlash Model

The new backlash model developed in Section 3.4 is describedby Equations (3.31) to

(3.34). Withα = 0.05, Ks = 25 and Cs = 15, the input-output relationship of the new

backlash model is shown in Figure 7.2 (note also thatθd = 0.15sin(0.4πt) – as was the

case in Figure 7.1).
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Figure 7.2: Input-Output Relationship – New Backlash Model

In order to highlight the differences between the dead zone model and the new backlash

model a very large value of Cs was used in the sample input-output relationship shown in
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Figure 7.2. It is important to note that in the case where Cs = 0, the output of the new

backlash model would be identical to that shown in Figure 7.1for the dead zone model.

If θd = X sin(ωt) in the general case, then from Figure 7.2 and Equations (7.2), (7.3) and

(3.31) to (3.34):

A1 =
Ks

π

∫ ωt2

ωt1
(X sin(ωt)−α)cos(ωt)d (ωt)

+
CsXω

π

∫ ωt2

ωt1
cos2(ωt)d (ωt)

+
Ks

π

∫ π+ωt2

π+ωt1
(X sin(ωt)+ α)cos(ωt)d (ωt)

+
CsXω

π

∫ π+ωt2

π+ωt1
cos2 (ωt)d (ωt) (7.9)

B1 =
Ks

π

∫ ωt2

ωt1
(X sin(ωt)−α)sin(ωt)d (ωt)

+
CsXω

π

∫ ωt2

ωt1
cos(ωt)sin(ωt)d (ωt)

+
Ks

π

∫ π+ωt2

π+ωt1
(X sin(ωt)+ α)sin(ωt)d (ωt)

+
CsXω

π

∫ π+ωt2

π+ωt1
cos(ωt)sin(ωt)d (ωt) (7.10)

From Equation (7.1) it can be seen that the describing function for the new backlash model

is based on the solutions to Equations (7.9) and (7.10), which are:

A1 =
KsX

π

(

(

2T
1+ T2

)2

−
(α

X

)2
)

− 2Ksα
π

(

2T
1+ T2 −

α
X

)

+
CsXω

π

(

2T
(

1−T2
)

(1+ T2)
2 +2tan−1 (T )− α

X

√

1−
(α

X

)2
−sin−1

(α
X

)

)

(7.11)

B1 =
KsX

π

(

2tan−1(T )− 2T
(

1−T2
)

(1+ T2)
2 −sin−1

(α
X

)

+
α
X

√

1−
(α

X

)2
)

+
2Ksα

π

(

(

1−T2

1+ T2

)

−
√

1−
(α

X

)2
)

+
CsXω

π

(

(

2T
1+ T2

)2

−
(α

X

)2
)

(7.12)

where:T =

1+

√

1− α2

X2 + C2
s ω2

K2
s

α
X + Csω

Ks

(7.13)

The complete derivation of Equations (7.11), (7.12) and (7.13) is given in Appendix B.

It is also shown in Appendix B that when Cs = 0, Equations (7.11) and (7.12) reduce to

Equations (7.6) and (7.7) respectively (as expected).
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Figure 7.3 shows plots of magnitude and phase versus X/α (the ratio of the sinusoidal

input magnitude to the backlash gap) for the describing function of the new backlash

model. These plots are shown for 5 different levels of systemdamping (Cs = 0, 0.01, 0.1,

1 and 10), where Ks = 25 andω = 50π . Note that when Cs = 0, the magnitude and phase

plots are equivalent to those for the describing function ofthe standard dead zone model.
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Figure 7.3: Magnitude and Phase Plots of the Backlash Describing Function

When the damping is low (ie Cs = 0.01 and Cs = 0.1) the magnitude plots shown in

Figure 7.3 are almost identical to that of the dead zone model(represented by the zero

damping case); however, the phase plots show significant shift that is not predicted by

the dead zone model. As the damping increases, both the magnitude and phase plots

can be seen to vary significantly from those of the dead zone model. Since the inherent

damping in a practical system is usually much lower than the system stiffness (Ks), the

low damping cases in Figure 7.3 are more representative of real system models. Hence,

the major disadvantage of using a describing function basedon the standard dead zone

model is that it does not include any of the phase shift associated with backlash. For this

reason, the describing function of the new backlash model isused in the design approach

presented throughout the remainder of this chapter.
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7.3 A Hybrid Weak/Strong Backlash Controller

7.3.1 Design Overview

The control approach presented in this section addresses both the dynamic stability and

tracking performance of systems with backlash, through a combination of ‘weak’ and

‘strong’ action during the backlash phase. As detailed in Section 2.4.3, the weak approach

to backlash control is based upon the concept of reducing thespeed at which the system

traverses the backlash gap in order to limit the severity of any collisions that may result

when the backlash gap closes. Alternatively, the strong approach to backlash control is

based upon the concept of increasing the speed at which the system traverses the backlash

gap, so that regular contact between the motor and load is resumed as quickly as possible.

From the literature reviewed in Section 2.4.3, it was found that researchers have had

much greater success implementing the weak action approaches to backlash control on

practical systems. The main reason for this is that most of the proposed strong action

approaches are either based on unrealistic system modelling or require excessive compu-

tational power. The hybrid weak/strong approach presentedin this section is based on a

switched non-linear controller [40, 70, 82], which switches between a linear controller

tuned specifically for the contact phase and a second weak action linear controller that

is used during the backlash phase. The weak approach ensuresdynamic stability of the

system, but suffers from poor tracking performance at low velocities. To improve the

tracking performance, the hybrid weak/strong controller incorporates an impulse that is

added to the velocity command when the system first enters a backlash phase. This im-

pulse adds a degree of strong action during the backlash phase and is simple to implement,

with comparatively low computational requirements.

Since the sources of backlash in practical dynamic systems are usually located between

the motor and load (in the transmission system), the equations developed in Section 3.4

for a two-body system with transmission backlash (Equations (3.31) to (3.41)) were used
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in the development of the proposed control approach. The Matlab and Simulink packages

were once again used to simulate the effectiveness of the proposed controller, with real

parameters from the Motor-Transmission-Load Test-Bed used as a representative plant.

The block diagram of the overall simulation model is shown inFigure 7.4.

Figure 7.4: Backlash Simulation System – Simulink Block Diagram

The ‘Backlash Phase Identification’ block, in Figure 7.4, represents the method used by

the hybrid weak/strong controller to identify when a systemis in the backlash phase and is

described in Section 7.3.2. The ‘Weak Action Switched Controller’ block represents the

system for switching between the two linear controllers of the hybrid weak/strong con-

troller and is described in Section 7.3.3. The ‘Strong Action Impulse’ block represents the

method for applying a degree of strong action during the backlash phase and is described

in Section 7.3.4.

7.3.2 Identification of the Backlash Phase

The accurate identification of whether a system is in the backlash phase or contact phase

is one of the most important aspects of any non-linear backlash controller. Researchers

often assume that both motor and load position feedback are available and the width of

the backlash gap is known [69, 70], which makes identifying the backlash phase relatively

uncomplicated. However, many practical systems are restricted to feedback from the

motor and the task of identifying what phase the system is in can be quite difficult.
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Of the literature reviewed in Section 2.4.3, only Nordin [40, 82] was found to have suc-

cessfully identified the backlash phase on a system where thefeedback was restricted to

the motor. Nordin’s method uses the motor torque reference signal (the output of the ve-

locity controller) as an approximation for the torque transmitted to the load. With this

approach the system is assumed to be in the contact phase whenever the motor torque

reference is high. Alternatively, if the motor torque reference is very low, or zero, the

system can be assumed to be in the backlash phase.

The backlash phase identification technique developed for the hybrid weak/strong con-

troller also uses the motor torque reference signal. However, in addition to the motor

torque reference signal, this new phase identification technique also takes the motor ac-

celeration and velocity reference signals into account. The complete block diagram of the

backlash phase identification method developed for the hybrid weak/strong controller is

shown in Figure 7.5.

Figure 7.5: Phase Identification System - Simulink Block Diagram

From the upper section of the block diagram shown in Figure 7.5 it can be seen that the

transmission torque is approximated by subtracting a valueproportional to the motor ac-

celeration from the motor torque reference signal. One problem with the identification

method used by Nordin is that the motor torque reference signal includes the torque com-

ponent that accelerates the motor inertia. Hence, the motortorque reference only provides

a good approximation of the transmission torque when the load inertia is much higher than

the motor inertia. However, if the motor acceleration signal is multiplied by a constant
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equivalent to the motor inertia and then subtracted from themotor torque reference, the

torque component that accelerates the motor can theoretically be removed. Figure 7.6

shows a simulation (on a system with a unity motor:load inertia ratio) comparing the

transmission torque with the motor torque reference signaland the transmission torque

approximation used in this thesis.
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Figure 7.6: Transmission Torque and Approximations – Sinusoidal Input

From the lower graph of Figure 7.6, it can be seen that the motor acceleration feedback

adjustment results in a much more accurate approximation ofthe torque transmitted to the

load (solid blue line) , when compared with the unmodified motor torque reference signal

(solid red line). The improvement achieved through the use of motor acceleration feed-

back is highlighted further when the controller includes a degree of strong action during

the backlash phase. Figure 7.7 shows another simulated comparison (on the same sys-

tem with unity motor:load inertia ratio) when strong actionis applied during the backlash

phase.

As can be seen in Figure 7.7, the motor torque reference signal (solid red line in the lower
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Figure 7.7: Transmission Torque and Approximations – Strong Action

graph of Figure 7.7) has additional torque peaks that are notpresent in the transmission

torque. These additional peaks are due to the motor torque reference increasing with the

applied strong action, and result in the motor inertia accelerating rapidly during the back-

lash phase. Hence, a switching algorithm that switches to the contact phase controller, as a

result of the high motor torque reference, could result in high velocity collisions and limit

cycles. In comparison, the signal that is adjusted using motor acceleration feedback (solid

blue line in the lower graph of Figure 7.7) provides a much more accurate approximation

of the transmission torque.

From the block diagram shown in Figure 7.5, it can be seen thatthe absolute value of

the approximated transmission torque is passed through a function that returns a ‘1’ for

low torque values and a ‘0’ for high torque values. Hence, a value of ‘1’ indicates that the

system could be in the backlash phase. However, when the system is running at a constant

velocity (ie the acceleration is zero), the transmission torque is often very low and a value

of ‘1’ can result even though the system is in the contact phase. For this reason a second

function that returns a ‘1’ when the motor acceleration is high and a ‘0’ when the motor
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acceleration is low, is used to ensure the backlash phase is not falsely identified during a

constant velocity state.

One other important issue to consider when identifying the backlash phase is what type

of control action will be applied during this phase. Although weak action reduces the

severity of any collisions when the backlash gap closes, collisions and a re-opening of the

backlash gap can still occur. Hence, when weak control action is being applied, the initial

opening and any subsequent re-openings of the backlash gap need to be identified. In

contrast, when strong control action is being applied, onlythe initial opening of the back-

lash gap should be identified. Applying additional strong action during any subsequent

re-openings of the backlash gap is undesirable and can result in further collisions and even

instability. For these reasons, the backlash phase identification technique developed for

the hybrid weak/strong controller has two different outputs, one to switch the weak action

controller and another to trigger the strong action impulse.
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Figure 7.8: Backlash Phase Identification - Sinusoidal Input

In Figure 7.8, the two outputs of the backlash phase identification stage are compared with

the transmission torque for a sinusoidal velocity reference. As can be seen, the output used
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to trigger the strong action impulse (upper graph) only asserts on each initial opening of

the backlash gap and not on the subsequent re-openings. In contrast, the output used to

switch the weak action controller (lower graph) asserts on every opening of the backlash

gap. Although both of these outputs are based on the same identification technique, the

strong action output is only asserted after a zero crossing is detected in the differential of

the velocity reference. The reason for this is that a complete traversing of the backlash gap

would normally only occur when the actual reference signal initiates a change in polarity

of the system acceleration.
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Figure 7.9: Backlash Phase Identification - Disturbance Input

In Figure 7.9, the two outputs of the backlash phase identification stage are compared with

the transmission torque for a constant velocity reference.There is also a load disturbance

torque applied at the 5 second mark in Figure 7.9, which is then removed at the 6.5

second mark. As can be seen, there are no false identifications of the backlash gap in

either of the outputs during the constant velocity state, further confirming the accuracy

of this identification technique. However, it is important to note that any openings of the

backlash gap due to the disturbance torque are only identified in the output used to switch
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the weak action controller (lower graph) and not in the output used to trigger the strong

action impulse (upper graph). This highlights the one disadvantage of only asserting the

strong action output after a zero crossing in the differential of the velocity reference. This

disadvantage is only minor though, as the primary role of thestrong action is to improve

the tracking performance of the system and the most important system requirement during

an applied disturbance is dynamic stability.

7.3.3 Weak Action during the Backlash Phase

As discussed in Section 7.3.1, the weak action of the hybrid weak/strong controller is

implemented via switching between a linear controller tuned for the contact phase and a

second linear controller tuned for the backlash phase. The block diagram of the switched

weak action controller is shown in Figure 7.10.

Figure 7.10: Weak Action Controller – Simulink Block Diagram

Switching between controllers of different gains is often referred to as ‘gain scheduling’

and is a technique that is commonly used in the field of non-linear control. The switching

of the weak action controller shown in Figure 7.10 is based onthe output of the phase

identification stage described in Section 7.3.2; when the output of the phase identification

stage is a ‘1’ the backlash phase controller is selected, while an output of ‘0’ results

in selection of the contact phase controller. The actual linear controllers can include

additional feedback and filter elements as appropriate for the particular system (such as
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those studied in Section 6.3.4 to reduce torsional vibrations). The most important design

aspect is to ensure that instability or excessive limit cycles are not introduced as a result of

traversing the backlash gap. In this thesis the individual linear controllers were designed

using the QFT technique, with describing functions used to ensure that the design of the

backlash phase controller avoided limit cycles.

The traditional describing function stability analysis isbased on the system shown in

Figure 7.11, where the non-linear element (represented by the describing functionN) can

be separated from a linear representation of the plant(Gp(s)).

+
-

G
c
(s)

Controller

G
p
(s)

Linear 

Plant

N

Nonlinear

Element

Input Output

Figure 7.11: Non-Linear System Block Diagram

The closed loop transfer function for the system shown in Figure 7.11 is:

Gc(s)Gp(s)N

1+Gc(s)Gp(s)N

Hence, the characteristic equation of the system is: 1+Gc(s)Gp(S)N = 0, or:

Gc(s)Gp(s) = − 1
N

(7.14)

The stability of this system is examined through a comparison of theGc(s)Gp(s) and− 1
N

loci. If the − 1
N locus is not enclosed by theGc(s)Gp(s) locus, the system is stable and

there is no limit cycle at steady state. If the− 1
N locus is enclosed by theGc(s)Gp(s)

locus, the system is unstable. If the two loci intersect, a limit cycle is exhibited. The

magnitude of this limit cycle is characterised by the value of X on the− 1
N locus at the

point of intersection, while the frequency of the limit cycle is characterised by the value

of ω on theGc(s)Gp(s) locus at the point of intersection [61].
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As mentioned in Section 2.4.3, the sources of backlash in practical dynamic systems are

usually located between the motor and load and rarely at the system input or output.

Hence, the model of the plant in such systems is a function of both frequency andN, and

it is not possible to completely separateN from the plant (as per Figure 7.11). For this

type of system, a comparison of theGc(s)Gp(s) and− 1
N loci would not result in a reliable

stability analysis. Instead, the characteristic equationbecomes:

1+Gc (s)Gp (N,s) = 0

and:

Gc (s) = − 1
Gp (N,s)

(7.15)

If both sides of Equation (7.15) are multiplied by the linearrepresentation of the plant

(with N set to unity), then:

Gc (s)Gp (s) = − Gp (s)

Gp (N,s)
(7.16)

It can be seen from Equation (7.16) that the stability of thissystem can be examined

through a comparison of theGc(s)Gp(s) and− Gp(s)
Gp(N,s) loci, with the conditions for stabil-

ity identical to those of the standard describing function analysis (whereGc (s)Gp (s) is

compared with− 1
N ). Since theGc (s)Gp (s) locus is equivalent to the loop transmission

function in the QFT design process, a set of backlash stability bounds for a QFT design

can be calculated directly from− Gp(s)
Gp(N,s) .

Figure 7.12 shows an example set of backlash stability bounds for the Motor-Transmission-

Load Test-Bed, calculated using the describing function ofthe new backlash model (Equa-

tions (7.11) to (7.13)). The test-bed configuration for the bounds shown in Figure 7.12

consisted of Shaft 1 and backlash Coupling 2, with inertia Disc 2 attached to the load

side (complete parameter details for this test-bed are given in Section 4.3.2). If the loop

transmission function in a QFT design were to intersect any of these stability bounds at
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the related frequency, a limit cycle would result. Note thatthe lower frequency bounds in

Figure 7.12 (10 through to 200) are on the left hand side of theNichols Chart. In general

these low frequency bounds do not result in any new restrictions on the controller design,

as the left hand side of the Nichols Chart is always avoided atlow frequencies. Hence,

it is the bounds on the right hand side of the Nichols Chart (inthis case, 500 through to

1000) that are important during the design of the loop controller for the backlash phase.

Figure 7.12: Backlash Stability Bounds using Describing Functions

As an example of the design technique and the effectiveness of the switched controller,

a design for the Motor-Transmission-Load Test-Bed configuration described in the pre-

ceding paragraph is presented throughout the remainder of this section. Designs for both

the contact phase and backlash phase are discussed and the final switched controller is

simulated for a constant velocity reference with an appliedload torque disturbance.

The design of the contact phase controller should always be based on the given controller

design specifications, with the backlash gap assumed to be zero. Design specifications

can vary widely depending on the system and the intended application. For the exam-

ple design, the specifications were very general in that a fast response was required and
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torsional vibrations should be suppressed. The only detailed design specification was a

stability requirement that the closed loop gain magnitudesshould be less than 3.5dB at all

frequencies. An example loop design for the contact phase isshown on the Nichols Chart

in Figure 7.13, along with the backlash stability bounds andthe overall stability bound

at 3.5dB. The solid black line in Figure 7.13 represents the loop transmission function of

motor velocity loop, while the solid blue line represents the load velocity. The critical

backlash stability bounds are calculated for the motor velocity only.
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Figure 7.13: Higher Order QFT Design with Backlash Describing Function Bounds

The loop design shown in Figure 7.13 can be seen to intersect the 895 rad/s backlash sta-

bility bound at that frequency. Hence, it would be expected that the system would exhibit

limit cycles as a result of this design. The actual design consists of a PI stage with two

2nd order loop filters, which are included to limit torsionalvibrations. The 1st loop filter

has the form of a notch filter, while the 2nd filter provides a band of phase lag to help

compensate for the inherent band of phase lead in a two body system. This control ap-

proach was described in Section 6.3.4, and was shown to be effective in reducing torsional

vibrations on the Motor-Transmission-Load Test-Bed. The complete filter design is given
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in Equation (7.17).

Gc(s) = 55

(

0.1s +1
s

)





s2

ω2
1
+ 2ζ1s

ω1
+1

s2

ω2
2
+ 2ζ2s

ω2
+1









s2

ω2
3
+ 2ζ3s

ω3
+1

s2

ω2
4
+ 2ζ4s

ω4
+1



 (7.17)

where:ω1 = 950 ζ1 = 0.025

ω2 = 950 ζ2 = 0.5

ω3 = 950 ζ3 = 0.1

ω4 = 920 ζ4 = 0.2

The simulated response of this controller, with the test-bed configuration subjected to a 10

Nm disturbance torque, is shown in Figure 7.14. With the system in steady state velocity

control (at 10 rad/s) the disturbance torque was applied at atime of 5.5 seconds, and then

removed one second later.
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Figure 7.14: Disturbance Response for Contact Phase Controller

In Figure 7.14 the solid green line represents the motor response when the backlash gap
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is set to zero, while the solid blue and red lines represent the motor and load responses

(respectively) when the backlash is present. It can be seen that when the backlash gap is

zero (which is assumed during the design of the contact phasecontroller), the system is

stable. However, with the backlash present the system exhibits a limit cycle in the motor

response (at approximately the predicted frequency of 895 rad/s) when the disturbance

torque is removed.

The design of the backlash phase controller is also based on the given controller design

specifications; however, the effects of backlash are taken into account. When shaping the

loop for the backlash phase controller the transmission function must not intersect any

of the backlash stability bounds at the related frequencies. An example loop design for

the backlash phase is shown on the Nichols Chart in Figure 7.15, along with the backlash

stability bounds and the overall stability bound at 3.5dB.
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Figure 7.15: PI QFT Design with Backlash Describing Function Bounds

The loop design shown in Figure 7.15 consists of the same PI stage as the contact phase

controller; however, the two additional 2nd order filters have been removed. It can be

seen from Figure 7.15 that the loop transmission function ofthe basic PI controller does
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not intersect any of the backlash stability bounds at the relative frequencies. Hence, no

limit cycles would be expected as a result of this design. Thesimulated response of

this controller, with the test-bed configuration subjectedto the same 10 Nm disturbance

torque, is shown in Figure 7.16. As can be seen, this system exhibits no limit cycles

during steady state, or at either the application or removalof the disturbance torque.
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Figure 7.16: Disturbance Response for the Backlash Phase Controller
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Figure 7.17: Disturbance Response for the Switched Controller
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The simulated response of the complete switched controlleris shown in Figure 7.17. As

can be seen, the switched contact/backlash phase controller exhibits some small oscil-

lations when the disturbance torque is removed; however, itis effective in avoiding the

dangerous limit cycles exhibited by the contact phase controller. Although the backlash

phase controller could have included some additional compensation for torsional vibra-

tions, the simple PI stage was used in the example design to demonstrate the importance

of treating backlash and torsional vibrations in parallel.The approach used to design the

contact phase controller of Equation (7.17) was previouslyshown to be effective in reduc-

ing torsional vibrations in a system without backlash (refer to Section 6.3.4). However,

with backlash present, it was the additional filters designed to reduce torsional vibrations

that directly introduced limit cycles into this system.

7.3.4 Combined Weak/Strong Action during the Backlash Phase

Although weak control action is effective at addressing thedynamic stability problems

associated with backlash, systems using only weak action during the backlash phase often

exhibit poor tracking performance. For this reason, the hybrid weak/strong controller

applies a degree of strong action, in the form of an impulse that is added to the velocity

reference command, when the system first enters a backlash phase. The block diagram of

the strong action controller is shown in Figure 7.18.

Figure 7.18: Strong Action Controller – Simulink Block Diagram
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The additional strong action provided by the controller shown in Figure 7.18 is not actu-

ally an impulse in the pure sense of the term, but rather an initial step command that de-

cays rapidly as the backlash gap is traversed. This form of signal allows for the additional

strong action to be applied over an effective period of the backlash gap traversal, while

also providing a smooth transition back to the original velocity reference command. The

actual output of the strong action controller is compared with a pulse of the same width

and a pure impulse in Figure 7.19.
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Figure 7.19: Output of Strong Action Controller Compared with Alternative Pulses

From Figure 7.19 it can be seen that a pure impulse (the black response) would not apply

strong action over an effective period of the backlash gap traversal. Another alternative is

a wider pulse with fixed amplitude (as shown in the purple response), which would apply

strong action over an effective period; however, this action does not provide a smooth

transition back to the original reference. A smooth transition back to the original velocity

reference considerably reduces the risk of any high impact collisions when the backlash

gap closes. In comparison, the output of the strong action controller (the blue response in

Figure 7.19) decays as a function of the motor’s position within the backlash gap.

Determining the position of the motor within the backlash gap is uncomplicated if the size

of the backlash gap is known and both the motor and load positions are measurable. How-
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ever, an approximation method is required for this task whenfeedback is only available

from the motor. The approximation method used in the hybrid weak/strong controller is

represented by the ‘Impulse Width Control’ block shown in Figure 7.18. This method

is based on the motor velocity and the output of the phase identification stage described

in Section 7.3.2. Whenever a transition from the contact phase to the backlash phase is

identified, the position of the motor within the backlash gapis set to zero. At this instant

in time it is assumed that the load velocity is equal to the motor velocity and that it will

remain constant throughout the gap traversal. The difference between the motor velocity

and this constant load velocity is then integrated to determine the position of the motor

as it traverses the backlash gap. When the approximate motorposition is equivalent to

the total width of the backlash gap it is then held constant until the next transition from

contact phase to backlash phase is identified.
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Figure 7.20: Approximate Backlash Gap Traversal

The simulated output of the described approximation methodis compared with the sim-

ulated motor position in Figure 7.20. The top graph in Figure7.20 shows the approx-

imation and the motor position for the weak action controller, while the bottom graph

shows the approximation and motor position when the strong action is added to the veloc-

ity command. As can be seen, the approximate method is very accurate in representing
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the motor position during the backlash gap traversal. Of course, due to compliance in

the motor-load transmission, the motor position will continue to vary once the backlash

gap is closed. The only major assumption used in the approximation method is that the

load velocity is constant during the gap traversal. Although this is not strictly true, it is

a reasonable assumption as the time taken to traverse the backlash gap, especially when

strong action is applied, is very small and the load is uncontrolled during this period.

The final output of the ‘Impulse Width Control’ block, shown in Figure 7.18, is a scaled

version of the approximated motor position. Specifically, the approximate motor position

is multiplied by the desired initial step value and then divided by the desired width of the

strong action. If the backlash gap is known, the desired width can be chosen as a fraction

of the overall backlash gap. However, both the desired widthand the initial step value can

be tuned manually through a simple trial and error process. The output of the ‘Impulse

Width Control’ block is then subtracted from the initial step value to form the strong

action output. Hence, when the backlash gap first opens, the output of the width control

block is zero and the full value of the initial step is applied. As the motor traverses the gap

the output of the width control block increases, which reduces the strong action output.

The reducing strong action output is saturated at zero, which is reached once the motor

position becomes greater than the chosen pulse width. The polarity of the strong action

output is set to the same polarity as the differential of the velocity reference command.

The effects of the additional strong action are demonstrated in Figure 7.21, where the

tracking performance of the weak action controller is compared with that of the hybrid

weak/strong controller. The velocity reference command inFigure 7.21 is a 10 Hz si-

nusoidal signal with an amplitude of 20 rad/s. The simulatedmotor responses for both

controllers are shown in the upper graph, while the simulated load responses are shown in

the lower graph. When examining the load response of the weakaction controller, it can

be seen that the backlash severely affects the sinusoidal tracking performance. In com-

parison, the load response of the hybrid weak/strong controller is much more sinusoidal.

The application of the strong action is clearly visible in the motor response of the hybrid
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weak/strong controller, with sharp spikes observed each time the backlash gap opens. An

initial step value of 200 rad/s and a strong action width of 0.12 rad (approximately 68%

of the total backlash gap) were used in the strong action controller for the weak/strong

responses shown in Figure 7.21.
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Figure 7.21: Low Amplitude Sinusoidal Responses – Weak Action Controller

Poor tracking performance in systems with backlash is predominately a problem at low

velocities. When the velocity reference command is high, the system tends to inherently

traverse the backlash gap quickly. Under these conditions added strong action could result

in high impact collisions and a subsequent degradation of tracking performance. This

problem is addressed in the hybrid weak/strong controller as the width of the strong action

output reduces with respect to time at higher velocities. Hence, this controller is suitable

for both high and low speed tracking.

The high speed tracking performance of the hybrid weak/strong controller is demonstrated

in Figure 7.22, where the simulated motor and load responsesare shown for a sinusoidal
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input with the amplitude increased to 200 rad/s. The system used to simulate the responses

shown in Figure 7.22 was identical to the system used to simulate the low velocity tracking

in Figure 7.21, with the initial step and width of the strong action remaining unchanged

at 200 rad/s and 0.12 rad respectively.
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Figure 7.22: High Amplitude Sinusoidal Responses – Weak Action Controller

As can be seen in Figure 7.22, the load response for the weak action controller is much

more sinusoidal than it was for the low amplitude input signal (Figure 7.21). However,

the added strong action of the hybrid weak/strong controller still results in an improved

load response, with no high speed collisions.

7.4 Experimental Analysis of the Hybrid Controller

The hybrid weak/strong controller presented in Section 7.3was implemented on the

Motor-Transmission-Load Test-Bed. This test-bed allowedfor testing to be carried out
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using different backlash gaps and load inertias. The complete parameter details for the

Motor-Transmission-Load Test-Bed are given in Section 4.3.2.

Figure 7.23 shows the strong action output of the backlash phase identification technique

when a sinusoidal input is applied to the experimental system (configured with Shaft 1,

backlash Coupling 2 and inertia Disc 2 attached to the load).Through the use of motor

acceleration feedback a very accurate approximation of thetransmission torque can be

obtained. The motor acceleration feedback on the experimental system was provided

by the Hübner rotary accelerometer. The resulting transmission torque approximation is

shown alongside the phase identification output in Figure 7.23.
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Figure 7.23: Experimental Backlash Phase Identification

As can be seen in Figure 7.23, both the transmission torque approximation and the phase

identification output of the experimental system are consistent with the expected outputs

described in Section 7.3.2. The response to a 10Nm disturbance torque, of the same

experimental set-up, is shown in Figure 7.24.

It can be seen from Figure 7.24, that the switched weak actionof the backlash con-

troller produces a stable response to the disturbance (red response) torque, while the (non-

switched) response of the controller designed for the contact phase (blue response) begins
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Figure 7.24: Experimental Disturbance Response

to exhibit limit cycles. The tuning of both the contact and backlash phase controllers for

the experimental system were as described in Section 7.3.3;however, the gains of the

contact phase controller were slightly reduced to ensure nodamage would result on the

experimental system when obtaining the non-switched response.

The tracking performance of the experimental system with and without the added strong

action is compared in Figures 7.25 to 7.28. For each of the responses shown in these

figures the test-bed was configured using Shaft 1, with the backlash coupling and load

inertia varied. Inertia Disc 2 was attached to the load for the responses shown in Figures

7.25 and 7.26, with Coupling 1 used in Figure 7.25 and Coupling 2 used in Figure 7.26.

Inertia Discs 1 and 2 were attached to the load for the responses shown in Figures 7.27

and 7.28, with Coupling 1 used in Figure 7.27 and Coupling 2 used in Figure 7.28.

The velocity reference command used for the responses shownin Figures 7.25 to 7.28

was a sinusoidal signal of 1.95 Hz, with an amplitude of 10.46rad/s. This low amplitude

sinusoidal input was chosen due to the fact that poor tracking performance in systems

with backlash is predominately a problem at low velocities.The motor responses with

and without the added strong action are shown in the upper graphs of Figures 7.25 to
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7.28, while the load responses are shown in the lower graphs.
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Figure 7.25: Sinusoidal Tracking – Coupling 1, Inertia Disc2
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Figure 7.26: Sinusoidal Tracking – Coupling 2, Inertia Disc2
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Figure 7.27: Sinusoidal Tracking – Coupling 1, Inertia Discs 1 & 2
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Figure 7.28: Sinusoidal Tracking – Coupling 2, Inertia Discs 1 & 2

The effects of the strong action in the hybrid weak/strong controller are clearly demon-

strated in Figures 7.25 to 7.28. The added strong action greatly improves the tracking per-
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formance of the system, resulting in much more sinusoidal load responses. The tracking

performance of the system, with and without the added strongaction, was also quantified

by integrating the square of the tracking error over one period of the sinusoidal input.

The tracking error in this case was defined as the difference between the sinusoidal input

signal and the associated load response. A summary of the tracking error performances,

of the responses shown in Figures 7.25 to 7.28, is given in Table 7.1.

Table 7.1: Tracking Error Performance
Load Inertia Backlash Gap Control Action Integrated Error

(kgm2) (rad)
weak 0.3574

5.43×10−3 0.0436 weak/strong 0.0753
weak 1.419

0.0873 weak/strong 0.0327
weak 0.3706

6.94×10−3 0.0436 weak/strong 0.0454
weak 0.8005

0.0873 weak/strong 0.0446

It can be seen from Table 7.1 that the additional strong action improved the tracking error

for all four configurations. In each case the strong action component of the controller

was tuned manually, without using the known backlash gap values. The results in Table

7.1 also show that the final tracking errors are very similar for the different size backlash

gaps. Hence, the overall improvement was greater (more thanan order of magnitude) for

the cases where the backlash gap was larger (0.0873 rad). These tracking performance

results, coupled with the stable disturbance torque response shown in Figure 7.24, demon-

strate practically the advantages of combining weak and strong action during the backlash

phase. The results presented throughout this section also confirm that the methods used

to identify the backlash phase and control the pulse width inthe hybrid weak/strong con-

troller can be successfully implemented practically.

One other important practical issue, associated with implementing backlash controllers

on industrial control systems, is the required computational power. It was found that

the time taken to execute a complete control cycle of the hybrid weak/strong controller,

on the industry CNC system used throughout this thesis, was up to 120µs. Since the
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sample period of this system is 125µs, the control cycle execution is right on the limit

of the system. In comparison, the complete control cycle fora traditional PI regulator

takes around 100µs on this system. It has already been shown in Section 6.3.4 that state

feedback control with an observer can exceed the 125µs sample period of this system.

While the hybrid weak/strong controller was successfully implemented on this industry

CNC, it would not be possible to implement many of the more complicated backlash

controllers detailed in Section 2.4.3 due to the additionalcomputational requirements.

7.5 Conclusions

A new approach to the non-linear control of servo systems with backlash has been pre-

sented in this chapter. This approach combined the conceptsof ‘weak’ and ‘strong’ action

during the backlash phase, resulting in a controller that demonstrated both dynamic stabil-

ity and good tracking performance. New methods to constructbacklash stability bounds

on the Nichols Chart, identify when the system enters the backlash phase and approximate

the position of the motor within the backlash gap were also presented in this chapter.

The sinusoidal-input describing function for the new backlash model (developed in Sec-

tion 3.4) was presented in Section 7.2. When compared with the sinusoidal-input describ-

ing function of the standard dead-zone model it was shown that the new backlash model

includes the phase shift associated with backlash, which isnot addressed by the standard

dead-zone model.

The complete hybrid weak/strong approach to controlling backlash was presented in Sec-

tion 7.3. A new method to identify whether a system is in the backlash phase or contact

phase, when the available feedback is restricted to the motor side, was presented in Sec-

tion 7.3.2. The switched weak action controller was presented in Section 7.3.3 and the

method for applying a degree of strong action during the backlash phase was presented in

Section 7.3.4.
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The backlash phase identification method presented in Section 7.3.2 is based on the mo-

tor torque reference signal, but also takes the motor acceleration and velocity reference

signals into account. It was shown that motor acceleration feedback could be used to the-

oretically remove the torque component that accelerates the motor from the motor torque

reference signal. The resulting signal provides a very goodapproximation of the torque

transmitted to the load. When this approximated transmission torque is zero (or low) the

system can be considered to be in the backlash phase. Alternatively, when the approxi-

mated transmission torque is high the system can be considered to be in the contact phase.

It was also shown that the backlash identification requirements are different for weak and

strong control actions. While weak control action requiresevery opening of the backlash

gap to be identified, re-openings of the gap that result from collisions should not be iden-

tified when strong control action is being applied. It was shown that the differential of the

velocity reference signal could be used to distinguish an initial opening of the backlash

gap from any subsequent re-openings that occur due to collisions.

Although the switched weak action control approach is not unique to this thesis, a new

method to construct backlash stability bounds for use in theQFT design was presented

in Section 7.3.3. Since backlash is rarely located at the input or output of a system, this

method takes the position of the backlash element into account. An example QFT design,

using these backlash stability bounds, was also presented and showed that the stability

bounds could predict limit cycle occurrence in the system. The importance of treating

backlash and torsional vibrations in parallel was also demonstrated through this example

design, with the additional filters included to reduce torsional vibrations shown to directly

introduce limit cycles into the system. The switched weak action of the controller was

however shown to be effective in removing these limit cyclesfrom the system (these

results were also confirmed experimentally in Section 7.4).

The design of the strong action component of the hybrid weak/strong controller was de-

scribed in Section 7.3.4. This strong action component is based on an initial step that

decays as the backlash gap is traversed, which provides a smooth transition back to the
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actual velocity reference command and results in a controller that is suitable for both high

and low speed tracking. A method that approximates the position of the motor during the

backlash gap traversal was also presented. The motor position approximation method was

used to control the width of the strong action pulse. The effectiveness of the additional

strong control action was demonstrated through simulations, where it was shown that the

tracking performance of the hybrid weak/strong controllerwas much better than that of a

controller based on weak action only. It was also found that the additional strong control

action did not degrade the stability performance of the controller.

The hybrid weak/strong controller was implemented on the Motor-Transmission-Load

Test-Bed in Section 7.4, and shown to provide both dynamic stability and good tracking

performance as designed. Since each component of this controller was essential for the

overall method to work, the good practical performance of the controller confirmed the

effectiveness of the hybrid approach along with that of the backlash phase identification

technique and the method used to approximate the motor position within the backlash gap.

It was also shown that this control approach was easy to implement and did not require

excessive computational power.
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Chapter8
Conclusions and Recommendations

8.1 Summary of Conclusions

The precision control of linear feed axes in machine tools has been studied in this thesis.

Throughout this study, two specific aspects of controller design for improved precision

were considered: i) the use of appropriate mathematical models and ii) the significance

of various performance limiting factors. Three particularperformance limiting factors

were considered: i) dynamic stiffness, ii) torsional vibrations and iii) backlash. Also, four

different linear feed axis drive configurations were included in the study: i) a rotary motor

driving a rack and pinion transmission, ii) a rotary motor directly driving a ballscrew

transmission, iii) a rotary motor driving a ballscrew transmission via a synchronous timing

belt and iv) a direct drive linear motor.

Engineers have been examining the performance limitationsof linear feed axes for many

years; however, the most common solutions are still based oncomplex mechanical de-

signs. Although considerable research has been undertakenon alternative control solu-

tions, standard approaches to the control of dynamic stiffness, torsional vibrations and

backlash have yet to be adopted. The key contributions of this thesis and the specific

conclusions that can be drawn from the results presented in each chapter are summarised

in this section.
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A brief history of machine tools and precision in machining was presented in Chapter

1, along with a description of recent research undertaken inall areas of machine tool

design. The motivation and significance of the research presented in this thesis was hence

described, with an outline of the thesis also given.

A review of research undertaken by other scientists and engineers, in respect to each of

the three performance limiting factors considered in this thesis, was presented in Chapter

2. This literature review highlighted limitations in the modelling and control solutions

that have been previously published in these areas, and described the ways that such

limitations are addressed through the research presented in this thesis.

Mathematical models for different linear feed axis configurations were developed in Chap-

ter 3. Initially, a new ‘adjusted’ two-body model for simplemotor-transmission-load

systems was presented in Section 3.2. The lowest natural frequency of this ‘adjusted’

two-body model, along with the lowest natural frequency of 10 other approximate mod-

els, was compared with that of the continuous model. This comparison was performed

over a wide range of motor-transmission-load conditions, with the ‘adjusted’ two-body

model found to provide higher accuracy, under all of the conditions considered, than the

standard two-body model that is traditionally used by researchers and system designers.

The only approximate models that showed higher overall accuracy, than the ‘adjusted’

two-body model, were models with more than two degrees of freedom. However, with

reduced complexity, the ‘adjusted’ two-body model was identified as the most appropriate

model from a control perspective.

In Section 3.3 the ‘adjusted’ two-body model was extended toinclude simple expressions

for damping, coulomb friction, viscous friction and general torque disturbances. A new

model for accurately representing backlash in a two-body system was then presented in

Section 3.4. The new backlash model was shown to address the shortcomings of previous

backlash models. When combined with the ‘adjusted’ two-body model, the new backlash

model provides dual advantages over previous descriptionsof backlash with an improved

representation of the backlash element itself and a more accurate prediction of the reso-
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nant frequencies of a system. In Section 3.5 the complete two-body model was used to

develop new models for the direct driven ballscrew, belt driven ballscrew, rack and pinion,

and linear motor drive configurations.

The experimental equipment used throughout this research project was described in Chap-

ter 4. The drive-level control scheme of the CNC system (usedon each of the test-beds)

was discussed, with simple second order filters shown to provide a good representation

of the CNC system’s closed loop current response. The mechanical system parameters,

for each of the test-beds used during the project, were also identified. These mechanical

system parameters were used in the system equations developed in Chapter 3, to provide

accurate models of each test-bed configuration. All of the control approaches examined

throughout this thesis were implemented practically, through extensive re-programming

of the CNC system.

Contributions to the body of knowledge associated with dynamic stiffness were presented

in Chapter 5. The periodic torque/force disturbances of both linear and rotary driven feed

axes were quantified and compared in Section 5.2. It was shownthat the only signifi-

cant disturbances in the Linear Motor Test-Bed were due to the motor’s electrical cycle

and associated cogging forces. In comparison, the rotary driven configurations had ad-

ditional significant disturbances due to the mechanical transmission mechanisms of each

configuration. It was also shown that the mechanical power required to overcome friction

at 200mm/min was more than an order of magnitude higher for the ballscrew configu-

rations, when compared with the linear motor and rack and pinion configurations. The

inherent dynamic stiffness of the same configurations were compared mathematically in

Section 5.3. Through the mathematical comparison it was found that the linear motor and

rack and pinion configurations were only capable of providing significant stiffness at high

frequencies. In contrast, the dynamic stiffness of the ballscrew driven configurations was

shown to be higher due to the inherent friction and gearing ofthe ballscrew transmission.

The dynamic stiffnesses of each test-bed configuration werecompared experimentally in

Section 5.4. When a 125N step disturbance force was applied,the maximum position
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error on the ballscrew configurations was found to be more than 2 orders of magnitude

lower than that of the linear motor and rack and pinion configurations. A QFT approach to

designing control systems that simultaneously address performance specifications based

on stability, robustness, overall response speed and dynamic stiffness was also presented

in Section 5.4. Although the general QFT approach is not new to this thesis, a new method

for specifying the dynamic stiffness requirements of a system and generating associated

QFT performance bounds was presented. An example design forthe Linear Motor Test-

Bed was implemented, with the maximum position error found to be reduced by more

than an order of magnitude when compared with the results using the original controller

(which was tuned using the CNC manufacturer’s recommended process).

Several key contributions to the body of knowledge associated with torsional vibrations,

and the control of systems that exhibit torsional vibrations, were presented in Chapter

6. The open and closed loop effects of transmission flexing were analysed in Sections

6.2.2 and 6.2.3 respectively. It was found that maintainingunity motor/load inertia ratios

can be beneficial to system performance; however, the effects of varying the motor/load

inertia ratio are very limited and also reduce as the inertiaof the transmission element is

increased. In comparison, the effects of varying the torsional stiffness of the transmission

element are much greater,.

The location of feedback sensors, for systems with a flexibletransmission, was discussed

in Sections 6.2.3 and 6.2.4. It was shown that motor feedbackdoes not always provide an

accurate representation of the load, with motor feedback leading the total torque at certain

frequencies rather than lagging it (as the load does). It wasalso shown that absolute

stability problems can exist when feedback is restricted tothe load-side. Various control

solutions that use combinations of motor and load feedback were theoretically compared

in Section 6.2.5. It was found that many of the control solutions were fundamentally

equivalent, with the feedback gains of each approach related by system constants. This

equivalence was not discussed in any of the literature reviewed in Chapter 2.

A method to include both motor and load specifications in a single QFT design proce-
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dure was presented in Section 6.3, along with an experimental comparison of control

approaches for systems that exhibit torsional vibrations.Two of the control approaches

included in the comparison, shaft flex feedback and velocitydifference feedback, were

developed as a part of this thesis. It was found that all of theexamined control approaches

were effective at reducing torsional vibrations, when compared with standard PI control.

The controllers using state feedback and velocity difference feedback demonstrated the

best results. Of the controllers that required feedback from the motor-side only, which

is often the only practical approach in many machine tool designs, a simple notch filter

and further filtering through an unrestricted QFT design were shown to be effective and

easy to implement and tune. In comparison, the state feedback controller was found to

be difficult to fine-tune practically and with the addition ofan observer, required more

computational power than all of the other approaches.

The general computational limitations of the CNC system used throughout this project

were illustrated in Section 6.3, where the time taken to execute a complete control cycle

of each of the controllers was compared with the sample period of the system. Although

the computational power of servo drives will continue to increase, the timing issues illus-

trated in Section 6.3 remain a problem on many industry servosystems. Hence, theoret-

ical control solutions with excessive computational requirements suffer from significant

practical limitations.

Strong agreement between the simulated and experimental results in Section 6.3 vali-

dated the accuracy of the ‘adjusted’ two-body model developed in Chapter 3. The results

presented in Section 6.3 also clearly showed that excessivesystem oscillations can still

be present in systems with a unity motor/load inertia ratio.The influence of drive-train

configuration on torsional vibrations was experimentally examined in Section 6.4. It was

found that the ballscrew configurations exhibited higher resonant peaks than the rack and

pinion and linear motor configurations considered. When theballscrew was driven via a

synchronous timing belt (rather than directly by the motor)the damping of the resonance

was increased; however, the overall bandwidth of the systemwas reduced.
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A new hybrid weak/strong approach to the non-linear controlof systems with backlash

was developed in Chapter 7. The sinusoidal-input describing function for the new back-

lash model (developed in Section 3.4) was presented in Section 7.2. This describing

function was shown to include the phase shift associated with backlash, which is not ad-

dressed by the standard dead-zone model. A new backlash phase identification method,

which uses the motor torque reference signal and motor acceleration feedback, was pre-

sented in Section 7.3.2. This phase identification technique was shown to provide a very

accurate indication of when a system enters the backlash phase. It was also shown that the

differential of the velocity reference signal could be usedto distinguish an initial opening

of the backlash gap from any subsequent re-openings that occur due to collisions.

A new method for constructing frequency dependent backlashstability bounds was pre-

sented in Section 7.3.3. This method is based on the describing function of the new

backlash model and takes the location of the backlash element into account, rather than

assuming the backlash is at the input or output of a system. Anexample QFT design,

using these backlash stability bounds, was also presented in Section 7.3.3. It was hence

shown that the stability bounds could accurately predict limit cycle occurrence in the

example system. The importance of treating backlash and torsional vibrations simulta-

neously was demonstrated through this example design, withlimit cycles occurring due

to the additional filters that were included to reduce torsional vibrations. The switched

weak action approach incorporated in the hybrid weak/strong controller was shown to be

effective in avoiding these limit cycles.

The design of the strong action component of the hybrid weak/strong controller was de-

tailed in Section 7.3.4. This strong action component is based on an initial step that decays

as the backlash gap is traversed. A method that approximatesthe position of the motor

during the backlash gap traversal is used to control the decay of the initial step. Through

both simulation and experimental analysis, the hybrid weak/strong controller was shown

to provide both dynamic stability and good tracking performance in the presence of back-

lash. In particular, the tracking performance achieved through the additional strong action
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was shown to be much better than that of a controller based on weak action only. This ad-

ditional strong action was also shown to be suitable for bothhigh and low speed tracking,

without degrading the stability performance of the weak action controller or requiring ex-

cessive computational power. Through the development of the hybrid weak/strong control

approach and the new backlash model (Section 3.4), contributions to many aspects of the

overall problem of controlling systems with backlash have been made in this thesis.

The original hypothesis, stated in Chapter 1, was that ‘improved precision in linear feed

axes can be achieved through the use of fast computer controlalgorithms, alternative actu-

ator technologies and non-ideal mechanical components’. The results presented through-

out this thesis show that fast computer control algorithms can be used to reduce the effects

of performance limiting factors, such as dynamic stiffness, torsional vibrations and back-

lash. However, if the precision of the system is limited by multiple factors, the overall

control solution is often compromised when taking all of thelimiting factors into account.

For example, Section 7.3.3 showed that a control solution designed to reduce torsional vi-

brations also directly introduced limit cycles when significant backlash was present in the

system. Similarly, alternative actuator technologies canreduce the effects of some perfor-

mance limiting factors, but reduce the system performance in other areas. As an example

the linear motor option was shown, in Sections 5.2 and 5.3, toeliminate many common

torque disturbances in a linear feed axis, but reduce the dynamic stiffness of the axis.

The overall choice of actuator, controller and mechanical components of a linear feed

axis remains both an economic and application dependent decision. The precision of a

system that uses non-ideal mechanical components can be increased through improved

control; however, a more costly solution using the ideal mechanical components could

still increase precision further. From the overall controlperspective, the QFT approach to

control design was successfully used to address each of the performance limiting factors

studied in this thesis. This particular control approach was shown to provide a transparent

design process, where the effects of any change in the control order and structure could

be assessed simultaneously for each performance limiting factor.
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8.2 Recommendations for Future Work

Although engineers have been examining the performance limitations in precision ma-

chine tools for many years, there remains areas for future research and further improve-

ment on the methods presented in this thesis. In particular,there are immediate areas

where the methods presented to address dynamic stiffness and backlash can be extended.

The QFT design approach was shown to be effective in designing velocity and position

loop controllers for high dynamic stiffness in Chapter 5. Although the velocity and po-

sition loops are often the most practical for implementing improved control schemes in

machine tool feed axes, there are clear advantages in addressing dynamic stiffness at the

lower current or flux levels. It is hence recommended that theQFT approach be extended

to the design of these lower level control loops. The structured and transparent design ap-

proach of QFT allows for changes in control structure to be assessed simultaneously for

each performance specification. This approach would be veryadvantageous in the design

of low level controllers, where faster sampling places a very significant restriction on the

complexity of any final controller design.

The hybrid weak/strong controller presented in Chapter 7 was shown to provide both dy-

namic stability and good tracking performance. However, the strong action component of

this controller required manual tuning for each system it was tested on. Although the tun-

ing of the strong action component is relatively straight forward, it is recommended that

methods be investigated to improve the robustness of this approach. This is an important

area of study, as one of the major advantages of this controller is the low computational

power required. The obvious methods to extend this controller, such as adaptive and arti-

ficial intelligence techniques, could significantly affectits computational requirements.
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AppendixA
Glossary

This appendix contains a list of symbols that were used throughout the text.

A+,A−,A0 areas on a phase plane plot

A+,A−,Ar areas on a phase plane plot

Bl viscous friction at the load

Bm viscous friction at the motor

Cs coefficient of internal damping of a transmission element

Csblt internal damping coefficient of a belt

D continuous system Domain

D(θd) dead zone backlash model output

DS dynamic stiffness

ex compliance between inertial bodies

E maximum allowable position displacement

Ef maximum position displacement at frequencyf

f frequency

F force

Fblt linear force transmitted through a synchronous belt

Ff c coulomb frictional force

G shear modulus

G(s) transfer function

id direct axis current
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iq quadrature axis current

Ir motor/load inertia ratio

Is motor/transmission inertia ratio

I(x) mass moment of inertia density

Jl load inertia

Jm motor inertia

Jp inertia of a ballscrew driving pulley

JPIN inertia of a pinion

Js transmission element inertia

J(x) area polar moment of inertia

Kl load feedback gain

Km motor feedback gain

K p proportional gain

Ks torsional stiffness of a transmission element

Ksad j adjusted torsional stiffness of a transmission element

Ksblt belt stiffness coefficient

Kt motor torque constant

L Lagrangian

L̂ Lagrangian Density

LBS overall ballscrew length

Lnom nominal loop transmission function

M mass

N sinusoidal-input describing function

PBS ballscrew pitch

Pnom nominal plant

P(s) plant set

q generalised system coordinate

Rm radius of a motor pulley

Rp radius of a ballscrew driving pulley

S continuous system boundary

T total kinetic energy

Tbs torque transmitted through a ballscrew

T f cl coulomb frictional torque at the load
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T f cm coulomb frictional torque at the motor

Ti integral action

Tm torque produced by driving motor

Ttrans transmission element torque

V total potential energy

x linear position displacement

Z total number of stator conductors

α half of the total backlash gap

β angle between stator and rotor MMFs

η material loss factor

θb angular input position of a backlash element

θBL the backlash angle (the difference between the input and output positions at

a backlash element)

θd overall angular position displacement between the motor and load

θl angular position at the load

θm angular position at the motor

θp angular position of a ballscrew driving pulley

θs transmission shaft flex

φ magnetic flux

ωl angular velocity of the load

ωm angular velocity of the motor

ωp natural frequency due to poles in a system

ωz natural frequency due to zeros in a system

Ω0 fundamental angular position frequency

241



242



AppendixB
Mathematical Derivations

This appendix contains the mathematical derivations that were referred to throughout the

main body of this thesis. The equations of motion for the simple motor-transmission-load

system with the transmission shaft split into 4 equal sections are derived in Section B.1.

The boundary value problem of the continuous model for the simple motor-transmission-

load system is derived in Section B.2. The solution to this boundary value problem is also

presented in Section B.2. The equation used in Chapter 4 to determine internal damping

coefficients for the various test-beds (Equation (4.11)) isderived in Section B.3. Finally,

the sinusoidal-input describing function of the new backlash model is derived in Section

B.4.

B.1 Equations of Motion of a 4-Sectioned Transmission

Shaft

The system with the transmission shaft split into 4 equal sections is shown in Figure 3.1.

This system is described by six generalised coordinates,θm, θs1, θs2, θs3, θs4 andθl. The

Lagrangian for this system is formulated as follows:
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• Kinetic Energy

Tm =
1
2

Jmθ̇2
m (motor)

Ts1 =
1
2

Js

4
θ̇2

s1 (shaft section 1)

Ts2 =
1
2

Js

4
θ̇2

s2 (shaft section 2)

Ts3 =
1
2

Js

4
θ̇2

s3 (shaft section 3)

Ts4 =
1
2

Js

4
θ̇2

s4 (shaft section 4)

Tl =
1
2

Jl θ̇2
l (load)

T = Tm +Ts1 +Ts2+Ts3 +Ts4+Tl

=
1
2

Jmθ̇2
m +

1
8

Jsθ̇2
s1+

1
8

Jsθ̇2
s2+

1
8

Jsθ̇2
s3 +

1
8

Jsθ̇2
s4+

1
2

Jlθ̇2
l (total)

• Potential Energy (noting that the potential energy of a spring is 1
2kx2)

V = 4Ks(θm−θs1)
2+2Ks(θs1−θs2)

2+2Ks(θs2−θs3)
2+2Ks(θs3−θs4)

2

+4Ks(θs4−θl)
2

• Lagrangian

L = T−V

=
1
2

Jmθ̇2
m +

1
8

Jsθ̇2
s1 +

1
8

Jsθ̇2
s2+

1
8

Jsθ̇2
s3+

1
8

Jsθ̇2
s4+

1
2

Jl θ̇2
l

−4Ks(θm −θs1)
2−2Ks(θs1−θs2)

2−2Ks(θs2−θs3)
2

−2Ks(θs3−θs4)
2−4Ks(θs4−θl)

2

Applying Lagrange’s Equation (Equation (3.1)), withqr = θm:

∂L

∂ θ̇m
= Jmθ̇m

d
dt

[

∂L

∂ θ̇m

]

= Jmθ̈m
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∂L
∂θm

= −8Ks(θm −θs1)

Fθm = Tm

thus:

Jmθ̈m +8Ks(θm−θs1) = Tm

⇒ Jmθ̈m = Tm −8Ks(θm −θs1)

Applying Lagrange’s Equation (Equation (3.1)), withqr = θs1:

∂L

∂ θ̇s1
=

Js

4
θ̇s1

d
dt

[

∂L

∂ θ̇s1

]

=
Js

4
θ̈s1

∂L
∂θs1

= 8Ks(θm −θs1)−4Ks(θs1−θs2)

Fθs1 = 0

thus:

Js

4
θ̈s1−8Ks(θm −θs1)+4Ks(θs1−θs2) = 0

⇒ Js

4
θ̈s1 = 8Ks(θm−θs1)−4Ks(θs1−θs2)

Through a similar application of Lagrange’s Equation to theother 4 generalised coordi-

nates, the equations of motion for this ‘multi-body’ systemcan be determined as:

Jmθ̈m = Tm −8Ks(θm −θs1) (B.1)

Jsθ̈s1 = 32Ks(θm−θs1)−16Ks(θs1−θs2) (B.2)

Jsθ̈s2 = 16Ks(θs1−θs2)−16Ks(θs2−θs3) (B.3)

Jsθ̈s3 = 16Ks(θs2−θs3)−16Ks(θs3−θs4) (B.4)
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Jsθ̈s4 = 16Ks(θs3−θs4)−32Ks(θs4−θl) (B.5)

Jlθ̈l = 8Ks(θs4−θl) (B.6)

B.2 Characteristic Equation of the Continuous Model

In order to derive a continuous model of the simple motor-transmission-load system, the

transmission shaft must be treated with distributed inertia (as shown in Figure 3.2). In

Figure 3.2, the shaft flex (θ ) is a function of both the position (x) along the length of the

shaft and time (t). The inertia and torsional stiffness of the shaft are also functions of

x, with I(x) being the mass moment of inertia density and GJ(x) the product of the shear

modulus (G) and the area polar moment of inertia of the cross section J(x). It should also

be noted that L in Figure 3.2 is the overall length of the transmission shaft.

The distributed-parameter Lagrangian for this system can be formulated as follows:

• Kinetic Energy

Tm = T0 =
1
2

Jmθ̇2(0, t) [motor]

Tl = TL =
1
2

Jl θ̇2(L, t) [load]

Tsh = T̂ =
1
2

I(x)θ̇2(x, t) [shaft]

T = T0 +TL +

∫ L

0
T̂dx

=
1
2

Jmθ̇2(0, t)+
1
2

Jl θ̇2(L, t)+
1
2

∫ L

0
I(x)θ̇2(x, t)dx [total]

• Potential Energy

Vm = V0 = 0 [motor]

Vl = VL = 0 [load]

Vsh = V̂ =
1
2

GJ(x)θ ′2(x, t) [shaft]
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V = V0+VL +
∫ L

0
V̂dx

=
1
2

∫ L

0
GJ(x)θ ′2(x, t)dx [total]

• Lagrangian

L0 = T0−V0

=
1
2

Jmθ̇2(0, t)

LL = TL −VL

=
1
2

Jl θ̇2(L, t)

L̂ = T̂− V̂

=
1
2

I(x)θ̇2(x, t)− 1
2

GJ(x)θ ′2(x, t)

L = L0+LL +
∫ L

0
L̂dx

=
1
2

Jmθ̇2(0, t)+
1
2

Jlθ̇2(L, t)+
1
2

∫ L

0

(

I(x)θ̇2(x, t)−GJ(x)θ ′2(x, t)
)

dx

Applying Lagrange’s equation for distributed systems (Equation (3.2)), withq = θ :

∂ L̂
∂θ

= 0

∂ L̂
∂θ ′ = −GJ(x)θ ′(x, t)

∂
∂x

(

∂ L̂
∂θ ′

)

= − ∂
∂x

(

GJ(x)θ ′(x, t)
)

∂ L̂
∂θ ′′ = 0

∂ 2

∂x2

(

∂ L̂
∂θ ′′

)

= 0

∂ L̂

∂ θ̇
= I(x)θ̇(x, t)

∂
∂ t

(

∂ L̂

∂ θ̇

)

= I(x)θ̈(x, t)

∂ L̂

∂ θ̇ ′ = 0

∂ 2

∂x∂ t

(

∂ L̂

∂ θ̇ ′

)

= 0
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thus:

∂
∂x

(

GJ(x)θ ′(x, t)
)

− I(x)θ̈(x, t)+Fθ = 0 (B.7)

(where Fθ is a distributed Torque)

With q = θ , the Boundary Condition at x=0 can be determined via:

∂L0

∂q(0, t)
− ∂

∂ t

(

∂L0

∂ q̇(0, t)

)

−
[

∂ L̂
∂q′

− ∂
∂x

(

∂ L̂
∂q′′

)

− ∂
∂ t

(

∂ L̂
∂ q̇′

)]∣

∣

∣

∣

x=0
= 0

where:

∂L0

∂θ(0, t)
= 0

∂L0

∂ θ̇ (0, t)
= Jmθ̇ (0, t)

∂
∂ t

(

∂L0

∂ θ̇ (0, t)

)

= Jmθ̈ (0, t)

∂ L̂
∂θ ′ = −GJ(x)θ ′(x, t)

∂ L̂
∂θ ′′ = 0

∂
∂x

(

∂ L̂
∂θ ′′

)

= 0

∂ L̂

∂ θ̇ ′ = 0

∂
∂ t

(

∂ L̂

∂ θ̇ ′

)

= 0

thus:

GJ(x)θ ′(0, t) = Jmθ̈(0, t) (B.8)

Similarly, the Boundary Condition at x=L can be determined via:

∂LL
∂q(L, t)

− ∂
∂ t

(

∂LL
∂ q̇(L, t)

)

+

[

∂ L̂
∂q′

− ∂
∂x

(

∂ L̂
∂q′′

)

− ∂
∂ t

(

∂ L̂
∂ q̇′

)]∣

∣

∣

∣

x=L
= 0
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where:

∂LL
∂θ(L, t)

= 0

∂LL
∂ θ̇ (L, t)

= Jl θ̇(L, t)

∂
∂ t

(

∂LL
∂ θ̇ (L, t)

)

= Jl θ̈(L, t)

∂ L̂
∂θ ′ = −GJ(x)θ ′(x, t)

∂ L̂
∂θ ′′ = 0

∂
∂x

(

∂ L̂
∂θ ′′

)

= 0

∂ L̂

∂ θ̇ ′ = 0

∂
∂ t

(

∂ L̂

∂ θ̇ ′

)

= 0

thus:

GJ(x)θ ′(L, t) = −Jlθ̈ (L, t) (B.9)

Equation (B.7) is the partial differential equation of motion for the continuous model of

the system shown in Figure 2.1. Equations (B.8) and (B.9) arethe boundary conditions

at x=0 and x=L respectively. Equations (B.7), (B.8) and (B.9) together represent the

boundary value problem for the continuous model of the system shown in Figure 2.1.

In order to determine the natural frequencies of the continuous model, the boundary-value

problem represented by Equations (B.7), (B.8) and (B.9) must be solved. The solution of

such a boundary-value problem requires the solution of an associated differential eigen-

value problem consisting of an infinite set of eigenvalues and eigenfunctions. However,

the eigenvalue problem of the continuous model must first be derived before it can be

solved. To derive the eigenvalue problem, first let the distributed torque Fθ in Equation
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(B.7) equal 0 – so that the transmission shaft is in free vibration:

∂
∂x

(

GJ(x)θ ′(x, t)
)

= I(x)θ̈ (x, t), 0 < x < L (B.10)

Hence, the free vibration of the transmission shaft is described by Equation (B.10) and the

boundary conditions of Equations (B.8) and (B.9). Now assume a solution in the form:

θ(x, t) = Θ(x)F(t) (B.11)

where F(t) is harmonic and satisfies :

F̈(t) = −λF(t) (B.12)

λ = ω2 (ω is the frequency of oscillation)

Substituting Equations (B.11) and (B.12) into (B.10):

∂
∂x

(

GJ(x)
∂
∂x

(Θ(x)F(t))

)

= I(x)
∂ 2

∂ t2 (Θ(x)F(t)) , 0 < x < L

⇒ F(t)
d
dx

(

GJ(x)Θ′(x)
)

= I(x)Θ(x)F̈(t), 0 < x < L

⇒ F(t)
d
dx

(

GJ(x)Θ′(x)
)

= −I(x)Θ(x)λF(t), 0 < x < L

⇒ d
dx

(

GJ(x)Θ′(x)
)

= −λ I(x)Θ(x), 0 < x < L (B.13)

Substituting Equations (B.11) and (B.12) into (B.8):

GJ(x)
∂
∂x

(Θ(0)F(t)) = Jm
∂ 2

∂ t2 (Θ(0),F(t))

⇒ F(t)GJ(x)Θ′(0) = JmΘ(0)F̈(t)

⇒ F(t)GJ(x)Θ′(0) = −JmΘ(0)λF(t)

⇒ GJ(x)Θ′(0) = −λJmΘ(0) (B.14)
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And Substituting Equations (B.11) and (B.12) into (B.9):

GJ(x)
∂
∂x

(Θ(L)F(t)) = −Jl
∂ 2

∂ t2 (Θ(L),F(t))

⇒ F(t)GJ(x)Θ′(L) = −JlΘ(L)F̈(t)

⇒ F(t)GJ(x)Θ′(L) = JlΘ(L)λF(t)

⇒ GJ(x)Θ′(L) = λJlΘ(L) (B.15)

Now, assuming that the transmission shaft is uniform (ie GJ(x) and I(x) are constants),

Equation (B.13) becomes:

GJΘ′′(x) = −λ IΘ(x), 0 < x < L

⇒ Θ′′(x)+
λ I
GJ

Θ(x) = 0

⇒ Θ′′(x)+β 2Θ(x) = 0 (B.16)

whereβ 2 =
λ I
GJ

=
ω2I
GJ

(B.17)

Similarly, Equation (B.14) becomes:

Θ′(0)+
λJm

GJ
Θ(0) = 0

⇒ Θ′(0)+
β 2Jm

I
Θ(0) = 0 (B.18)

And, Equation (B.15) becomes:

Θ′(L)− λJl

GJ
Θ(L) = 0

⇒ Θ′(L)− β 2Jl

I
Θ(L) = 0 (B.19)

Now, Equation (B.16) has the solution:

Θ(x) = C1sinβx+C2cosβx (B.20)
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Hence, the boundary condition given by Equation (B.18) leads to:

C1β cos0−C2β sin0+
β 2Jm

I
(C1sin0+C2cos0) = 0

⇒ C1β +
C2β 2Jm

I
= 0

⇒ C1 = −C2βJm

I
(B.21)

And the boundary condition given by Equation (B.19) leads to:

C1β cosβL −C2β sinβL − β 2Jl

I
(C1sinβL +C2cosβL) = 0

⇒ cosβL

(

C1β I−C2β 2Jl

I

)

= sinβL

(

C2β I +C1β 2Jl

I

)

⇒ tanβL =
C1I−C2βJl

C2I +C1βJl
(B.22)

Substituting Equation (B.21) into Equation (B.22):

tanβL =

(

−C2βJm

I

)

I−C2βJl

C2I +
(

−C2βJm

I

)

βJl

= −β (Jm +Jl)

I− β 2JmJl
I

(B.23)

Equation (B.23) is the characteristic equation of the continuous model and must be solved

numerically forβ .

B.3 Internal Damping in a Transmission Element

Equations (2.7) and (2.8) are the equations of motion for thetwo-body model of a simple

motor-transmission-load system, where the only damping inthe system is the inherent

internal damping of the transmission element. Using the Laplace transform a transfer
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function for this system with flex as output can be obtained:

Jms2θm = Tm −Ks (θm −θl)−Cs (sθm − sθl)

Jls
2θl = Ks (θm −θl)+Cs (sθm − sθl)

Hence: JmJls
2(θm −θl) = JlTm −Css(Jm +Jl)(θm −θl)−Ks (Jm +Jl)(θm −θl)

And:
θm −θl

Tm
=

Jl

JmJls2+Cs (Jm +Jl)s+Ks (Jm +Jl)

=

1
Jm

s2 +
Cs(Jm+Jl)

JmJl
s+

Ks(Jm+Jl)

JmJl

(B.24)

If Equation (B.24) is equated with the standard form of a 2nd order system, expressions

for damping ratio and natural frequency can be obtained:

ωn =

√

Ks (Jm +Jl)

JmJl

2ζ ωn =
Cs (Jm +Jl)

JmJl

and: ζ =
Cs

2

√

(Jm +Jl)

JmJlKs

When levels of damping are low, the loss factor of a material is considered to be double

the damping ratio:

η = 2ζ

Hence, for low levels of damping the internal damping coefficient of a transmission shaft

can be expressed as:

Cs = η

√

JmJlKs

(Jm +Jl)
(B.25)
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B.4 Derivation of Describing Function for New Backlash

Model

Consider first Equation (7.9). After performing the integration:

A1 =
Ks

π

(

X
2

sin2 (ωt)−α sin(ωt)

)

|ωt2
ωt1 +

CsXω
π

(

1
2

sin(ωt)cos(ωt)+
ωt
2

)

|ωt2
ωt1

+
Ks

π

(

X
2

sin2 (ωt)+ α sin(ωt)

)

|π+ωt2
π+ωt1 +

CsXω
π

(

1
2

sin(ωt)cos(ωt)+
ωt
2

)

|π+ωt2
π+ωt1

=
KsX
2π

(

sin2 (ωt2)−sin2 (ωt1)
)

− Ksα
π

(sin(ωt2)−sin(ωt1))

+
CsXω

2π
(sin(ωt2)cos(ωt2)+ ωt2−sin(ωt1)cos(ωt1)−ωt1)

+
KsX
2π

(

(sinπ cos(ωt2)+cosπ sin(ωt2))
2− (sinπ cos(ωt1)+cosπ sin(ωt1))

2
)

+
Ksα

π
((sinπ cos(ωt2)+cosπ sin(ωt2))− (sinπ cos(ωt1)+cosπ sin(ωt1)))

+
CsXω

2π
((sinπ cos(ωt2)+cosπ sin(ωt2))(cosπ cos(ωt2)−sinπ sin(ωt2))+ ωt2)

−CsXω
2π

((sinπ cos(ωt1)+cosπ sin(ωt1))(cosπ cos(ωt1)−sinπ sin(ωt1))+ ωt1)

=
KsX
2π

(

sin2 (ωt2)−sin2 (ωt1)
)

− Ksα
π

(sin(ωt2)−sin(ωt1))

+
CsXω

2π
(sin(ωt2)cos(ωt2)+ ωt2−sin(ωt1)cos(ωt1)−ωt1)

+
KsX
2π

(

sin2 (ωt2)−sin2 (ωt1)
)

+
Ksα

π
(−sin(ωt2)+sin(ωt1))

+
CsXω

2π
(sin(ωt2)cos(ωt2)+ ωt2−sin(ωt1)cos(ωt1)−ωt1)

=
KsX

π
(

sin2 (ωt2)−sin2 (ωt1)
)

− 2Ksα
π

(sin(ωt2)−sin(ωt1))

+
CsXω

π
(sin(ωt2)cos(ωt2)+ ωt2−sin(ωt1)cos(ωt1)−ωt1) (B.26)

Consider also Equation (7.10). After performing the integration:

B1 =
Ks

π

(

X
2

(ωt −sin(ωt)cos(ωt))+ α cos(ωt)

)

|ωt2
ωt1 +

CsXω
π

(

1
2

sin2 (ωt)

)

|ωt2
ωt1

+
Ks

π

(

X
2

(ωt −sin(ωt)cos(ωt))−α cos(ωt)

)

|π+ωt2
π+ωt1 +

CsXω
π

(

1
2

sin2 (ωt)

)

|π+ωt2
π+ωt1

=
KsX
2π

(ωt2−sin(ωt2)cos(ωt2)−ωt1+sin(ωt1)cos(ωt1))

+
Ksα

π
(cos(ωt2)−cos(ωt1))+

CsXω
2π

(

sin2 (ωt2)−sin2 (ωt1)
)

+
KsX
2π

(ωt2− (sinπ cos(ωt2)+cosπ sin(ωt2))(cosπ cos(ωt2)−sinπ sin(ωt2)))

−KsX
2π

(ωt1− (sinπ cos(ωt1)+cosπ sin(ωt1))(cosπ cos(ωt1)−sinπ sin(ωt1)))

−Ksα
π

((cosπ cos(ωt2)−sinπ sin(ωt2))− (cosπ cos(ωt1)−sinπ sin(ωt1)))
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+
CsXω

2π

(

(sinπ cos(ωt2)+cosπ sin(ωt2))
2− (sinπ cos(ωt1)+cosπ sin(ωt1))

2
)

=
KsX
2π

(ωt2−sin(ωt2)cos(ωt2)−ωt1+sin(ωt1)cos(ωt1))

+
Ksα

π
(cos(ωt2)−cos(ωt1))+

CsXω
2π

(

sin2 (ωt2)−sin2 (ωt1)
)

+
KsX
2π

(ωt2−sin(ωt2)cos(ωt2)−ωt1+sin(ωt1)cos(ωt1))

−Ksα
π

(−cos(ωt2)+cos(ωt1))+
CsXω

2π
(

sin2 (ωt2)−sin2 (ωt1)
)

=
KsX

π
(ωt2−sin(ωt2)cos(ωt2)−ωt1+sin(ωt1)cos(ωt1))

+
2Ksα

π
(cos(ωt2)−cos(ωt1))+

CsXω
π

(

sin2 (ωt2)−sin2 (ωt1)
)

(B.27)

Note that Equations (B.26) and (B.27) are both functions ofωt1 and ωt2. Hence, the

values ofωt1 andωt2 are required to find a solution toA1 andB1. From Figure 7.2 it

can be seen thatωt1 represents the point where the system enters theright contact state.

Sinceθ̇d > 0 at ωt1, the transition into theright contact state occurs whenθd = α (see

Equation (3.32)). Hence, atωt1:

X sin(ωt1) = α

and:

ωt1 = sin−1
(α

X

)

(B.28)

Also, from Figure 7.2 it can be seen thatωt2 represents the point where the system leaves

the right contact state and enters the backlash region. Sinceθ̇d < 0 at ωt2, the transi-

tion into the backlash region occurs when Ks (θd −α)+Csθ̇d = 0 (see Equation (3.32)).

Hence, atωt2:

Ks (X sin(ωt2)−α)+CsXω cos(ωt2) = 0 (B.29)

Now, letT = tan
(ωt2

2

)

. Hence, from the Half Angle Tangent Formula:

sin(ωt2) =
2T

1+T 2 (B.30)

cos(ωt2) =
1−T 2

1+T 2 (B.31)
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Substituting Equations (B.30) and (B.31) into Equation (B.29):

Ks

(

2XT
1+T 2 −α

)

+
CsXω

(

1−T 2
)

(1+T 2)
= 0

∴ Ks2XT −Ksα −KsαT 2 +CsXω −CsXωT 2 = 0

and (Ksα +CsXω)T 2−2KsXT +(Ksα −CsXω) = 0

Applying the Quadratic Formula:

T =
2KsX ±

√

4K2
s X2−4(Ksα +CsXω)(Ksα −CxXω)

2(Ksα +CsXω)

=
KsX ±

√

K2
s X2−K2

s α2 +C2
s X2ω2

Ksα +CsXω

=

1±
√

1− α2

X2 +
C2

s ω2

K2
s

α
X + Csω

Ks

Hence:

ωt2 = 2tan−1









1±
√

1− α2

X2 +
C2

s ω2

K2
s

α
X + Csω

Ks









Recall that atωt2, θd > 0 andθ̇d < 0. Hence, sin(ωt2) > 0 and cos(ωt2) < 0. From

Equations (B.30) and (B.31):

2T
1+T 2 > 0

∴ T > 0

1−T 2

1+T 2 < 0

∴ T 2
> 1
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Hence,T must be greater than 1 atωt2. Checking this for the first solution ofT :

1+

√

1− α2

X2 +
C2

s ω2

K2
s

α
X + Csω

Ks

> 1

∴ 1+

√

1− α2

X2 +
C2

s ω2

K2
s

>
α
X

+
Csω
Ks

and
(

1− α
X

)

+

(
√

1− α2

X2 +
C2

s ω2

K2
s

− Csω
K2

s

)

> 0 (B.32)

Since the describing function solution is only valid whenα < X , Equation (B.32) is al-

ways true. Note that whenα > X , the value of the describing function is zero. Checking

also the second solution ofT :

1−
√

1− α2

X2 +
C2

s ω2

K2
s

α
X + Csω

Ks

> 1

∴ 1−
√

1− α2

X2 +
C2

s ω2

K2
s

>
α
X

+
Csω
Ks

and 1− α
X
− Csω

Ks
>

√

1− α2

X2 +
C2

s ω2

K2
s

(B.33)

Now, sinceα < X the right hand side of Equation (B.33) is always real and positive.

Hence, the left hand side of Equation (B.33) must also be positive and it is possible to

square both sides:

1− α
X
−Csω

Ks
− α

X
+

α2

X2 +
αCsω
XKs

− Csω
Ks

+
αCsω
XKs

+
C2

s ω2

K2
s

> 1− α2

X2 +
C2

s ω2

K2
s

∴
2α2

X2 − 2α
X

− 2Csω
Ks

+
2αCsω

XKs
> 0

α
X

(

α
X

+
Csω
XKs

)

>
α
X

+
Csω
Ks

and
α
X

> 1 (B.34)
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Note that Equation (B.34) is never true. Hence, there is onlyone true solution toT , and:

ωt2 = 2tan−1









1+

√

1− α2

X2 +
C2

s ω2

K2
s

α
X + Csω

Ks









(B.35)

Equations (B.26) and (B.27) can now be re-written using the values ofωt1 andωt2:

A1 =
KsX

π

(

(

2T
1+ T2

)2

−sin2
(

sin−1
(α

X

))

)

− 2Ksα
π

(

2T
1+ T2 −sin

(

sin−1
(α

X

))

)

+
CsXω

π

((

2T
1+ T2

)(

1−T2

1+ T2

)

+2tan−1 (T )

)

−CsXω
π

(

sin
(

sin−1
(α

X

))

cos
(

sin−1
(α

X

))

+sin−1
(α

X

))

=
KsX

π

(

(

2T
1+ T2

)2

−
(α

X

)2
)

− 2Ksα
π

(

2T
1+ T2 −

α
X

)

+
CsXω

π

(

2T
(

1−T2
)

(1+ T2)2 +2tan−1 (T )− α
X

√

1−
(α

X

)2
−sin−1

(α
X

)

)

(B.36)

B1 =
KsX

π

(

2tan−1 (T )−
(

2T
1+ T2

)(

1−T2

1+ T2

))

−KsX
π

(

sin−1
(α

X

)

−sin
(

sin−1
(α

X

))

cos
(

sin−1
(α

X

)))

+
2Ksα

π

((

1−T2

1+ T2

)

−cos
(

sin−1
(α

X

))

)

+
CsXω

π

(

(

2T
1+ T2

)2

−sin2
(

sin−1
(α

X

))

)

=
KsX

π

(

2tan−1 (T )− 2T
(

1−T2
)

(1+ T2)
2 −sin−1

(α
X

)

+
α
X

√

1−
(α

X

)2
)

+
2Ksα

π

(

(

1−T2

1+ T2

)

−
√

1−
(α

X

)2
)

+
CsXω

π

(

(

2T
1+ T2

)2

−
(α

X

)2
)

(B.37)

Now, consider the case where Cs = 0:

T =
1+
√

1− α2

X2

α
X

T 2 =
2+2

√

1− α2

X2 − α2

X2

α2

X2

1+T 2 =
2+2

√

1− α2

X2

α2

X2

1−T 2 =

2α2

X2 −
(

2+2
√

1− α2

X2

)

α2

X2
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2T
1+T 2 =

α
X

(B.38)

1−T 2

1+T 2 = −
√

1− α2

X2 (B.39)

Hence, from Equations (B.30), (B.31), (B.38) and (B.39):

sin(ωt2) =
α
X

cos(ωt2) = −
√

1− α2

X2

∴ ωt2 = π −sin−1
(α

X

)

and 2tan−2(T ) = π −sin−1
(α

X

)

(B.40)

If Equations (B.38), (B.39) and (B.40) are then substitutedinto Equations (B.36) and

(B.37) (with Cs = 0):

A1 =
KsX

π

(

(α
X

)2
−
(α

X

)2
)

− 2Ksα
π

(α
X
− α

X

)

= 0

B1 =
KsX

π

(

π −sin−1
(α

X

)

+
α
X

√

1−
(α

X

)2
−sin−1

(α
X

)

+
α
X

√

1−
(α

X

)2
)

+
2Ksα

π

(

−
√

1−
(α

X

)2
−
√

1−
(α

X

)2
)

=
2KsX

π

[

π
2
−sin−1

(α
X

)

−
(α

X

)

√

1−
(α

X

)2
]

Hence, it can be seen that when Cs = 0 the describing function of the new backlash model

reduces to that of the standard dead zone model (which is given by Equations (7.6) and

(7.7)).
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AppendixC
Matlab Code

C.1 Code for Natural Frequency Calculations

The mathematics package ‘Matlab’ was used to automate the numerical methods and

calculate the various natural frequencies for the continuous model and the approximate

models compared in Section 3.2.3. The code for each of the Matlab functions devel-

oped for this task is given in this appendix. The functions “distribute_inertia” and “dis-

tribute_inertia_chareq” were used to determine the natural frequencies of the continuous

model. The functions “multi_body_freq” and “holzer” were used to determine the natural

frequencies of the multiple body approximate models.

Function: distribute_inertia

function [freq] = distribute_inertia(motor_inertia,load_inertia,shaft_diameter,shaft_length,freq_estimate)

% [freq] = distribute_inertia(motor_inertia,load_inertia,shaft_diameter,shaft_length,freq_estimate)

%

GJ = (80e9*pi*shaft_diameter^4)/32;

I = (pi*(shaft_diameter/2)^4*8000)/2;

Ks = GJ/shaft_length

orig_ks = Ks

ShI = I*shaft_length
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Ir = motor_inertia/load_inertia;

mI = (motor_inertia/(motor_inertia+load_inertia))*ShI;

lI = (load_inertia/(motor_inertia+load_inertia))*ShI;

mshL = (motor_inertia/(motor_inertia+load_inertia))*shaft_length;

lshL = (load_inertia/(motor_inertia+load_inertia))*shaft_length;

beta(1) = 0;

chareq_left(1) = 0;

chareq_right(1) = 0;

chareq(1) = chareq_left(1)- chareq_right(1);

freq_plot(1) = 0;

for index=2:1000,

beta(index) = beta(index-1) + (pi/(250*shaft_length));

[chl,chr,chq,dchq] = distribute_inertia_chareq(motor_inertia,load_inertia,I,shaft_length,beta(index));

chareq_left(index) = chl;

if chareq_left(index) > 20

chareq_left(index) = 20;

elseif chareq_left(index) < -20

chareq_left(index) = -20;

end

chareq_right(index) = chr;

if chareq_right(index) > 20

chareq_right(index) = 20;

elseif chareq_right(index) < -20

chareq_right(index) = -20;

end

chareq(index) = chareq_left(index)-chareq_right(index);

freq_plot(index) = beta(index)*sqrt(GJ/I);

end

plot(freq_plot,chareq);

freq = freq_estimate*sqrt(I/GJ);

beta_estimate = freq + 10;

while abs((beta_estimate - freq)) > 0.0001

beta_estimate = freq;
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[chl,chr,chq,dchq] = distribute_inertia_chareq(motor_inertia,load_inertia,I,shaft_length,beta_estimate);

freq = beta_estimate - chq/dchq;

end

disp(’The natural frequency for two-body model with negligible shaft inertia is:’);

wn1 = sqrt((Ks*(1+load_inertia/motor_inertia))/(load_inertia));

disp(’The natural frequency for two-body model with shaft inertia equally lumped at motor and load is:’);

motor_new = motor_inertia + ShI/2;

load_new = load_inertia+ ShI/2;

wn2 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp(’The natural frequency for two-body model with shaft inertia lumped at motor is:’);

motor_new = motor_inertia + ShI;

load_new = load_inertia;

wn3 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp(’The natural frequency for two-body model with shaft inertia lumped at load is:’);

motor_new = motor_inertia;

load_new = load_inertia + ShI;

wn4 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp(’The natural frequency for two-body model with shaft inertia split and lumped at motor and load while maintaining Inertia ratio
is:’);

motor_new = motor_inertia+mI;

load_new = load_inertia + lI;

wn5 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp(’The natural frequency for two-body model with shaft inertia split and lumped at motor and load while maintaining Inertia ratio,
but adjusting shaft length is:’);

motor_new = motor_inertia+mI;

m_new_length = ((motor_inertia*mshL)+(mI*mshL/2))/motor_new;

load_new = load_inertia+lI;

l_new_length = ((load_inertia*lshL)+(lI*lshL/2))/load_new;

Ks = GJ/(m_new_length+l_new_length);

wn6 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp(’The natural frequency for two-body model with shaft inertia equally split and Ks adjusted is:’);

motor_new = motor_inertia + ShI/2;

load_new = load_inertia + ShI/2;

m_new_length = ((motor_inertia*shaft_length/2)+((ShI/2)*(shaft_length/4)))/motor_new;

l_new_length = ((load_inertia*shaft_length/2)+((ShI/2)*(shaft_length/4)))/load_new;
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Ks = GJ/(m_new_length+l_new_length)

wn7 = sqrt((Ks*(1+load_new/motor_new))/(load_new))

disp(’The natural frequency for two-body model with shaft inertia equally split and Ks adjusted directly is:’);

motor_new = motor_inertia + ShI/2;

load_new = load_inertia + ShI/2;

cs = 1/orig_ks;

cs_left = ((motor_inertia*cs/2)+((ShI/2)*(cs/4)))/motor_new;

cs_right = ((load_inertia*cs/2)+((ShI/2)*(cs/4)))/load_new;

Ks = 1/(cs_left+cs_right)

wn8 = sqrt((Ks*(1+load_new/motor_new))/(load_new))

disp(’The natural frequency for two-body model with 1 shaftinertia and moments taken about motor is:’);

load_new = load_inertia + ShI;

cs = 1/orig_ks

cs = ((load_inertia*cs)+(ShI*cs/2))/load_new;

Ks = 1/cs

wn9 = sqrt((Ks*(1+load_new/motor_inertia))/(load_new))

disp(’The natural frequency for two-body model with 8 shaftinertias and moments taken about motor is:’);

load_new = load_inertia + ShI;

cs = 1/orig_ks;

Ks = load_new/((load_inertia*cs)+((cs/16)*(ShI/8))+((3*cs/16)*(ShI/8))+((5*cs/16)*(ShI/8))+((7*cs/16)*(ShI/8))

+((9*cs/16)*(ShI/8))+((11*cs/16)*(ShI/8))+((13*cs/16)*(ShI/8))+((15*cs/16)*(ShI/8)))

wn10 = sqrt((Ks*(1+load_new/motor_inertia))/(load_new))

disp(’The natural frequency (for distributed inertia case) is:’);

freq = freq*sqrt(GJ/I)

disp(’The percentage differences are:’);

two_body = abs(wn1-freq)/freq * 100

two_body_split = abs(wn2-freq)/freq * 100

two_body_motor = abs(wn3-freq)/freq * 100

two_body_load = abs(wn4-freq)/freq * 100

two_body_Ir = abs(wn5-freq)/freq * 100

two_body_Ir_Ks_adjust = abs(wn6-freq)/freq * 100

two_body_split_Ks_adjust = abs(wn7-freq)/freq * 100

distribute_inertia = abs(freq-freq)/freq * 100
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Function: distribute_inertia_chareq

function [chareq_left,chareq_right,chareq,dchareq] = distribute_inertia_chareq(motor_inertia,load_inertia,I,shaft_length,beta)

% [freq] = distribute_inertia_chareq(motor_inertia,load_inertia,I,shaft_length,beta)

%

chareq_left = tan(beta*shaft_length);

chareq_right = - (beta*(motor_inertia + load_inertia))/(I - ((motor_inertia*load_inertia)/I)*beta^2);

chareq = chareq_left - chareq_right;

dchareq = shaft_length*(1 + (tan(beta*shaft_length))^2)+ (motor_inertia + load_inertia)*((I+(motor_inertia*load_inertia*beta^2)/I)/((I-
(motor_inertia*load_inertia*beta^2)/I)^2));

Function: multi_body_freq

function [freq] = multi_body_freq(motor_inertia,load_inertia,shaft_diameter,shaft_length,n,freq_estimate,cont_freq)

% [freq] = multi_body_freq(motor_inertia,load_inertia,shaft_diameter,shaft_length,n,freq_estimate,cont_freq)

%

Torque = holzer(motor_inertia,load_inertia,shaft_diameter,shaft_length,n,freq_estimate);

if Torque > 0

dir = 1;

else

dir = 0;

end

variation = freq_estimate/10;

while variation > 0.01

if dir == 1

freq_estimate = freq_estimate + variation;

else

freq_estimate = freq_estimate - variation;

end

Torque = holzer(motor_inertia,load_inertia,shaft_diameter,shaft_length,n,freq_estimate);

if Torque > 0

pos = 1;

else
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pos = 0;

end

if pos ~= dir

if dir == 1

freq_estimate = freq_estimate - variation;

else

freq_estimate = freq_estimate + variation;

end

variation = variation/10;

end

end

freq = freq_estimate;

percent_error = abs(freq-cont_freq)*100/cont_freq

Function: holzer

function [Torque] = holzer(motor_inertia,load_inertia,shaft_diameter,shaft_length,n,freq_estimate)

% [Torque] = holzer(motor_inertia,load_inertia,shaft_diameter,shaft_length,n,freq_estimate)

%

GJ = (80e9*pi*shaft_diameter^4)/32;

I = (pi*(shaft_diameter/2)^4*8000)/2;

Ks = GJ/shaft_length;

ShI = I*shaft_length;

I = load_inertia;

Iwsq = I*freq_estimate^2;

Beta = 1;

Torque = Iwsq*Beta;

K = 2*n*Ks;

angle = Torque/K;

for index = 2:n+2

if index < (n+2)

I = ShI/n;

K = n*Ks;
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else

I = motor_inertia;

K = 2*n*Ks;

end

Iwsq = I*freq_estimate^2;

Beta = Beta - angle;

Torque = Torque + Iwsq*Beta;

angle = Torque/K;

end

C.2 Code for Disturbance Force Calculations

Matlab was also used to calculate the disturbance forces required to exceed the given

position error tolerances in the comparison of inherent dynamic stiffness presented in

Section 5.3. The code for these calculations is also given inthis appendix. The function

“dyn_stiff_lin” was used to calculate the required forces on a linear motor system. The

function “dyn_stiff_ddbs” was used to calculate the required forces for a direct driven

ballscrew configuration. Similarly, the functions “dyn_stiff_bdbs” and “dyn_stiff_randp”

were used to calculate the required forces for a belt driven ballscrew configuration and a

rack and pinion configuration respectively.

Function: dyn_stiff_lin

function [force_dist] = dyn_stiff_lin(Mass,w,allow_error,plot_col);

% [force_dist] = dyn_stiff_lin(Mass,w,allow_error);

%

Bm = 1.56;

sys1 = tf(1,[Mass,0]);

sys2 = feedback(sys1,Bm);
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sys3 = tf(1,[1,0]);

final_sys = sys2*sys3;

[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);

end

plot(w,force_dist,plot_col);

Function: dyn_stiff_ddbs

function [force_dist] = dyn_stiff_ddbs(Mass,w,allow_error,plot_col);

% [force_dist] = dyn_stiff_ddbs(Mass,w,allow_error,plot_col);

% The general parameters used here are from the Drive Comparison Test-Bed

% The load table is assumed to be at pos x = 0.5m

%

Pitch = 5e-3;

Bl = 1.75e-3;

Bm = 3.05e-3;

Jbs = 3.22e-5*0.5;

Jm = 3.716e-4;

Ks = 225/0.5;

Cs = 1.75e-3/((0.5)^(1/2));

Jl = (Mass*(Pitch/(2*pi))^2) + Jbs;

Ksadj = (2*Ks*(2*Jm+Jbs)*(2*Jl+Jbs))/(8*Jm*Jl+3*Jbs*(Jm+Jl)+Jbs^2);

Flex = tf([Cs,0],1);

Flex = Ksadj + Flex;
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JL = (2*Jl + Jbs)/2;

JM = (2*Jm + Jbs)/2;

sys1 = tf(1,[JL,Bl,0]);

sys2 = tf(1,[JM,Bm,0]);

sys3 = ((Pitch/(2*pi))*sys1)/(1+Flex*(sys1+sys2));

final_sys = (Pitch/(2*pi))*sys1*(Flex*sys3 - (Pitch/(2*pi)));

[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);

end

plot(w,force_dist,plot_col);

Function: dyn_stiff_bdbs

function [force_dist] = dyn_stiff_bdbs(Mass,w,allow_error,plot_col);

% [force_dist] = dyn_stiff_bdbs(Mass,w,allow_error,plot_col);

% The general parameters used here are from the Drive Comparison Test-Bed

% The load table is assumed to be at pos x = 0.5m

%

Pitch = 5e-3;

Rm = 34.5e-3;

Rp = 15*34.5e-3;

Bl = 1.75e-3;

Bm = 1.6e-3;

Bp = 1.45e-3;

Jbs = 3.22e-5*0.5;
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Jm = 6.67e-4;

Jp = 3.53e-4;

Ks = 225000/0.5;

Cs = 2.137e-3/((0.5)^(1/2));

Kblt = 997000000;

Cblt = 0.048;

Jl = (Mass*(Pitch/(2*pi))^2) + Jbs;

Ksadj = (2*Ks*(2*Jp+Jbs)*(2*Jl+Jbs))/(8*Jp*Jl+3*Jbs*(Jp+Jl)+Jbs^2);

Flexbs = tf([Cs,0],1);

Flexbs = Ksadj + Flexbs;

Flexblt = tf([Cblt,0],1);

Flexblt = Kblt + Flexblt;

JL = (2*Jl + Jbs)/2;

JP = (2*Jp + Jbs)/2;

sys1 = tf(1,[JL,Bl,0]);

sys2 = tf(1,[JP,Bp,0]);

sys3 = tf(Rm,[Jm,Bm,0]);

sys4 = (Flexbs*Rp*sys2)/(1+Flexblt*(sys3*Rm + sys2*Rp*Rp));

sys5 = ((Pitch/(2*pi))*sys1)/(1-sys2*sys4*Rp*Flexblt +Flexbs*(sys1+sys2));

final_sys = (Pitch/(2*pi))*sys1*(Flexbs*sys5 - (Pitch/(2*pi)));

[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);

end

plot(w,force_dist,plot_col);
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Function: dyn_stiff_randp

function [force_dist] = dyn_stiff_randp(Mass,w,allow_error,plot_col);

% [force_dist] = dyn_stiff_randp(Mass,w,allow_error,plot_col);

% The general parameters used here are from the Drive Comparison Test-Bed

% The load table is assumed to be at pos x = 0.5m

%

Rpin = 20e-3;

Bl = 32.8e-3;

Bm = 1.6e-3;

Js = 4e-6;

Jm = 3.43e-4;

Jpin = 4.4e-5;

Ks = 25588;

Cs = 0.0499;

Jl = Jpin + Mass*Rpin^2;

Ksadj = (2*Ks*(2*Jm+Js)*(2*Jl+Js))/(8*Jm*Jl+3*Js*(Jm+Jl)+Js^2);

Flex = tf([Cs,0],1);

Flex = Ksadj + Flex;

JL = (2*Jl + Js)/2;

JM = (2*Jm + Js)/2;

sys1 = tf(1,[JL,Bl,0]);

sys2 = tf(1,[JM,Bm,0]);

sys3 = (Rpin*sys1)/(1+Flex*(sys1+sys2));

final_sys = Rpin*sys1*(Flex*sys3 - Rpin);

[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);

end

plot(w,force_dist,plot_col);
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AppendixD
Test-Bed Details

This appendix contains some of the details of the three test-beds used throughout this

research. In particular, details of the feedback elements used in each of the test-beds

is given. Detailed drawings of each test-bed are also provided. Figure D.1 details the

main structure design of the Motor-Transmission-Load Test-Bed. The design of the mo-

tor mounting brackets for the Motor-Transmission-Load Test-Bed is detailed in Figure

D.2. The special backlash couplings for the Motor-Transmission-Load Test-Bed are also

detailed in Figure D.3. Two drawings of the Drive ComparisonTest-Bed are provided.

Figure D.4 details the main test-bed structure, while Figure D.5 shows an assembled view

of the test-bed. Two drawings of the Linear Motor Test-Bed are also provided. Figure D.6

shows the structure and machining details of the main test-bed frame, while Figure D.7

shows the details of the load carrying table.

As described in Sections 4.3 and 4.4, position feedback for both the Motor-Transmission-

Load Test-Bed and the Drive Comparison Test-Bed was achieved through rotary encoders

embedded in the Siemens motors. The CNC system interpolatesusing instantaneous sine

and cosine information, along with the basic period of the encoders, to improve the reso-

lution of the position feedback. The specifications of the Siemens rotary encoders are:
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Power Supply 5V

Output Signal 2 Channels (V1 and V2) of differential

sinusoids in quadrature

Output Amplitude (Vpp) 1

Output Period (mrad) 3.068

The embedded encoders provide two further sine and cosine signals for commutation pur-

poses. Along with the position and commutation signals, a once per revolution reference

signal is also provided. Since the position encoder signalsare incremental, the reference

signal is used to initialise the absolute position of the motor.

For additional acceleration feedback, a Hübner accelerometer (ACC 93) was also used on

the Motor-Transmission-Load Test-Bed. This accelerometer was coupled with a Hübner

sensor amplifier (HEAG 164-15) and could be attached to either the motor or load end of

the system. The specifications of the ACC 93 are:

Output Amplitude max. 2 Vpp

Sensitivity down to 1 mV/0.001 m/s2

Bandwidth ≈ 1 kHz

Weight ≈ 120g

The specifications of the HEAG 164-15 sensor amplifier are:

Power Supply 15V±20% max.±70mA

Differential Output max. 22V max.±50mA

Gain (Jumper 1) ±3V = ±1 rad/s2

Gain (Jumper 2) ±3V = ±20 rad/s2

For the Linear Motor Test-Bed, position feedback was achieved through an incremental

linear encoder (Renishaw – RGS-S/RGH22B) mounted on one side of the frame structure.

The CNC system interpolates using instantaneous sine and cosine information, along with
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the basic period of the linear encoder, to improve the resolution of position feedback. The

CNC system also uses this position feedback for commutationpurposes. The specifica-

tions of the Renishaw linear encoder are:

Power Supply 5V±5% 120mA (typical)

Output Signal 2 Channels (V1 and V2) of differential

sinusoids in quadrature

Output Amplitude (Vpp) 0.6-1.2

Output Period (µm) 20

Amplitude at 1m/s Approximately 100%

Amplitude at 2m/s Approximately 90%

Amplitude at 4m/s Approximately 65%

Max Acceleration 30g

Weight 45g (read-head)

Dimensions [Length/Width/Height (mm)] 44/27/16

Two magnetic actuators (Renishaw RGM22S) were also used as reference marks for the

linear encoder. These actuators were positioned adjacent to the tape scale and trigger a

sensor in the read-head as it passes over. The trigger signalfrom these actuators enables

a pulse to be outputed from the read-head, which is used during the axis homing process

to initialise the absolute position.
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Figure D.3: Motor-Transmission-Load Test-Bed – Backlash Couplings
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Figure D.5: Drive Comparison Test-Bed – Assembly
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Figure D.6: Linear Motor Test-Bed – Frame Drawing
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Figure D.7: Linear Motor Test-Bed – Load Table
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