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Abstract

The precision control of linear feed axes in machine tooexmmined in this thesis. Al-

though high precision in machining has been a focal poirgfhgineers for over 200 years,
the traditional solutions have often been based on compkxhanical designs. In this
thesis, two aspects of feed axis controller design are exaainii) the use of appropriate
mathematical models and ii) the significance of three of tlkstraommon performance
limiting factors that have traditionally affected preoisiin linear feed axes. The three
particular performance limiting factors considered ajalyinamic stiffness, ii) torsional

vibrations and iii) backlash.

The most effective way of obtaining knowledge about a cdrsystem is through appro-
priate mathematical modelling. A new two-body model forraggie motor-transmission-
load system is presented in this thesis. This new model is/istio provide a more
accurate representation of both the total inertia and lona&tsiral frequency of a system,
when compared with the two-body model that is traditionalbed by researchers and
system designers. A new model to represent backlash in d@bag-system is also pre-
sented. These new models are then extended to provide scooashematical models
of four common linear feed axis drive configurations: i) aargtmotor driving a rack
and pinion transmission, ii) a rotary motor directly drigia ballscrew transmission, iii)
a rotary motor driving a ballscrew transmission via a syaobus belt, and iv) a linear

motor directly driving the axis.

Different control solutions to the problems of dynamicfstifss, torsional vibrations and
backlash are examined in this thesis, with each contratiptemented on specially con-

structed test-beds. An approach using Quantitative Fe&dbaeory (QFT) is presented

XXi



for systems with inherently low dynamic stiffness. This Q&dproach is shown to pro-
vide a transparent design process, which results in higlamyn stiffness. Different
controllers for torsional vibrations are compared botloteécally and experimentally,
with many previously published solutions shown to be thecaly equivalent. A new
backlash controller is also presented, which is shown éxgetally to provide dynamic

stability and good tracking performance at both high andvelecities.

The importance of treating these performance limitingdecsimultaneously is also ad-
dressed in this thesis, with the control solutions develdpeaddress some factors shown
to also affect the other factors. The QFT approach is shovwgrdweide a suitable inte-
grated design process, where the implications of any comiges, on the control of each

factor, are clearly visible.
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Chapter

Introduction

1.1 Background

The research presented in this thesis is concerned withsgredn machine tools. In
particular, the research focuses on the control of lineadl fixes in machine tools. Two
specific aspects of controller design for linear feed axestdied: i) the use of appropri-
ate mathematical models to improve performance and ii) ifr@fecance of three of the
most common performance limiting factors that have tradaily affected precision in
linear feed axes. The three performance limiting factorssaered are: i) dynamic stiff-
ness, ii) torsional vibrations and iii) backlash. Four eiéint drive train configurations,
which are commonly used in linear feed axes, are also camrslda the research. The
first three configurations all consist of a rotary electricon@oupled with a mechanical
transmission mechanism. The three mechanical transmisséchanisms considered are
the rack and pinion, the direct driven ballscrew and the diedlen ballscrew. The fourth

drive train configuration consists of a linear motor dingcltiving the axis.

High precision in machining has been a focal point for engiae&ver since the industrial
revolution of the 18th century. For instance, James Watitara engine design of 1765
(with patent granted in 1769 [1]) was dependent on a steghtpiston and hence, on the
accuracy of the cylinder bore. Since that period there has begreat deal of research

undertaken in many areas relating to both productivity amdipion in machining. Such

1



research has directly led to the machine tool becoming thet mgportant industrial tool
in existence. While it is difficult to think of any product thdoes not depend in some
way upon the use of machine tools [2], there are a nhumber df kmelwn inventions,
such as the automobile, which would simply never have exisféhout them [3]. Mod-
ern Computer Numerical Control (CNC) machine tools offergieeater productivity and
precision than would be possible with any human operatedhmacHowever, tolerances
on machined products continue to be tightened, resulticgmstant pressure on machine
tool manufacturers to improve machine precision withogteasing costs or lowering

productivity.

The ever-increasing demands placed on precision in machivéve ensured that machine
tool design has maintained the interest of researchersarticplar, the ongoing computer
revolution along with the development of improved sensat actuator technologies has
introduced the potential of economically meeting thesegasing demands through new
approaches in machine tool design. Some notable areas dimeaool design that cur-

rently attract research attention are:

e Machine Structure — From the perspective of precision itgseatial that the
machine structure has high rigidity. Modern computer psscey power has en-
abled researchers to use advanced analysis methods, skictitaglement Meth-
ods (FEM), to study rigidity in machine structures. Thisa@sh has directly led
to newer machine structures, such as Parallel Link ManiptdaPLM), gaining

favour in some multi-degree of freedom machine designs.

e Spindles — With the increasing demands of precision oftempkam with increasing
demands on productivity, high speed machining has becoraetae research area.
In particular, various chatter suppression techniquesgatath improved actuator
and bearing technologies have been examined to reducefélaesesf high spindle
speeds on work-piece quality. Also, since optimal spinfdkesis can vary between
machining operations and work piece materials, reseatohvarious high power

variable-speed spindle alternatives has become quiteeacti

2



e Feed Axes — Since machine tool feed axes often include commplechanical
transmission mechanisms, there are a number of linear amlthear performance
limiting factors that can adversely affect the precisiothafse axes. As such, there
has been substantial research attention given to both tke-o@mand control of
feed axes. In particular, alternative drive train configiores have been examined,
along with advanced control techniques designed to conaperier the various

performance limiting factors.

e CNC Axes Control— When considering any machine tool, it isicgible to achieve
a constant material removal rate. In most machining op@ratia constant material
removal rate is achieved when the spindle and feed axes ah#uhine are co-
ordinated such that the spindle has constant power andebéhfes constant torque
(or linear force). Over recent years there has been cordilieresearch attention
given to the overall Computer Numerical Control and co-eation of machine tool
axes. Thisresearch has focused particularly on softwategas for the simulation
and optimisation of tool paths, along with overall co-oatad control to implement

optimised trajectories at machine level.

e Measuring Systems — In order to achieve precise axis coatr@loptimisation of
tool paths, accurate measuring systems are required. Alithghe development
of improved position sensors for axis control, there haslsgnificant research
undertaken in the area of machine tool error measuremenasiimg equipment
such as ball-bars, probe-balls and laser interferometars been extensively used
for studying machine tool thermal errors, deformations aitdations. Such re-
search has helped in improving overall axes control andaértvelopment of error

compensation techniques.

e Process and Materials Research — In addition to the extemssearch attention
given to various aspects of machine design, there have lgafiant recent stud-
ies performed on individual machining processes and thénmiag) of specific ma-

terials. This research has focused on process and matepgahdent requirements



and has directly influenced many of the aforementioned artasachine design

research.

While it is acknowledged that each of these research areastalto the continued devel-
opment of precision machine tools, the research presenttusi thesis focuses directly
on one particular area — linear feed axes. This chapter ggevan introduction to the
research undertaken, along with an outline of the remaintiéine thesis. Section 1.2
presents a brief account of the history of machine tools aadigion in machining. Al-

though there have been numerous significant contributi@aerthroughout the long his-
tory of machine tools, the focus of this account is on the meyents that have directly
led to the high precision CNC machine tools that both doneithé modern industrial

world and are the subject of interest to this thesis.

Section 1.3 presents an introduction to linear feed axepaiticular, an overview of the
common make-up of a linear feed axis is given, with a majou$oan how the drive train

design is dependent upon the particular machining operatio

The motivation behind this research is presented in SedtidnIncluded is a brief dis-
cussion on appropriate modelling and control techniquesgawith a description of the

associated control problems inherent in the particulathaeical drive trains considered.

Section 1.5 provides an outline to the remainder of the ¢hesi

1.2 Machine Tools and Precision in Machining

It can be said that a tool is any device a human may use to esttergbwer of his or her
hands and aid in doing work [4]. If such a device requires & to provide the power,
hand-skills and intelligence in order to do the work, theidevs usually referred to as a
‘hand tool'. If a tool device still requires hand-skills aimdelligence to do the work but is

driven by an external power source, it is usually referreadst@ ‘power tool’. In contrast,
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the term ‘machine tool’ is applied to an elite class of toolides that incorporate the

power, skills and intelligence required to do the work in tihel itself.

The Encyclopedia of Britannica [5] defines a machine tool atatonary power-driven
machine that either shapes or forms parts made of metal oe soher material. Al-
though the definition of a machine tool has undoubtedly exabivith time, it is generally
accepted that the modern term describes a tool consistiaghefvy and rigid support
structure, a source of power, devices for both work-hol@ing tool-holding and a means
for accurately controlling the desired process [4, 5]. Willarge number of machines
would satisfy this description, the term ‘machine tool’ regominately used with refer-

ence to precision metal-cutting machines.

It appears that the earliest advancements in machining danmegh the work of clock-

makers in the 15th century [3]; most notably, it is from theork that the first recorded

mechanical means of producing screw threads is found. Sénhe @arliest references
to many more modern machine tool features come from the farttalian Renaissance
artist, Leonardo Da Vinci (1452-1519). Da Vinci's illusti@ns show a number of screw-
cutting lathes, boring mills and grinding machines. As veslldisplaying improvements
to the machines of his era, Da Vinci’s illustrations revésd earliest recorded ideas of
such things as the self-centering chuck, the fabricateadgrg wheel and the internal

grinding machine [3].

In both Europe and America it was the production of war weagbat became the major
influence in the early development of machine tools and nmaety In Europe the first
machine tools to undertake the defining role of heavy mettilng were the machines
used for cannon boring [3]. It was also these boring machinasinfluenced the pro-
duction of the first steam engines, which (as mentioned ini@et.1) became the first
great catalyst in the development of precision in metalhogtmachines. The success
of the steam engine resulted in the formation of a number ginenbuilding businesses
in the early 19th century and it is through these busine$sdstie respective works of

Maudslay, Clement, Roberts, Nasmyth and Whitworth becaoegnised as the first ma-
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jor advancements in machine precision [3, 5]. During thisquethere were three main
areas identified as being important to machine precisicacayrate screw threads (result-
ing in the development of the lead-screw), ii) true plandaggs in machine construction
(resulting in the development of the planing machine) andigidity. Other notable de-
velopments during the 19th century include the birth of thiémg machine in America (a
result of the requirement for part uniformity in arms marmidae), and although alluded
to many years earlier by Leonardo Da Vinci, the productiofabficated abrasives and

grinding machines [3, 5].

A major milestone in the history of precision machining ated in 1906 when Frederick
Taylor published the results of an extensive study into maitting: “On the Art of
Cutting Metals” [6]. Metal cutting had now become a scierazTaylor's work marked
the beginning of machine tool research. The research attethiat followed, in the early
20th century, focused on increasing the machining capatityachine tools. The major
results of this early research were improvements in cuttiaterials, cutting techniques,
machine rigidity and consequently, machine output [3]. YWbdowed throughout the
mid to late 20th century was increased research into bottiysttvity and precision in
machining, with the most important results being the dguelent of powered control

systems and machine automation.

Although some early engineers employed feedback contrchardsms (one example
being Watt’s flyball governor of 1788), Hazen’'s 1934 papehé&dry of Servomecha-
nisms” was possibly the first major milestone in automatietea for machine tools. It
is from this paper that the term ‘servomechanism’ origidggervant mechanism) [7].
Servomechanisms have since become an essential compoémhbdern machine tool
axes. While the inherently variable-speed DC motor waseh#art of many early ma-
chine tool servomechanisms, brushless servomotors haee become widespread in
most modern machines. Brushless servomotors are basedrimarent magnet syn-

chronous motors and are characterised by their very higjuéoto inertia ratios [8].

The first numerically controlled machine tool was developethe Massachusetts Insti-
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tute of Technology in 1952 [9]. Numerical Control (NC) candefined as a means for
sequencing machine tool operation (ie cutting rates, tositfpning, coolant control etc.)
by coded numeric information. The earliest numericallytoolfed machines usually had
this coded information recorded on perforated cards, papess or magnetic tapes [9, 10].
However, as advancements began to take place in mini an@ eoonputer technologies
throughout the early 1970s, numerical control of machiméstaas replaced with Com-
puter Numerical Control (CNC). On a CNC machine tool the nucnaformation for
machine sequencing is programmed directly into the cdimigpcomputer. Although
CNC systems were originally considered during the init@Qs development of numer-
ical control, it was not until the cost of computers redudeat this option became viable

inindustry [9, 10]. In the 21st century, CNC machine toolsitwate the industrial world.

1.3 Linear Feed Axes

In general, there are two basic types of axes found in modaghme tools: spindles and
feed axes. For most machining operations the spindle axisg®s high-speed rotation of
the machining tool, while the feed axes are used to ‘feedihehining process. As men-
tioned in Section 1.1, it is desirable for any machine toch¢hieve a constant material
removal rate. In general, this equates to a desire for tmelkpio provide constant power
and for the feed axes to provide constant ‘feed’. Since feed aan be either rotational
or linear, a constant ‘feed’ is usually achieved throughstant torque on rotational axes

and constant force on linear axes.

In Section 1.2, it was stated that accurate screw threads igdentified by the early 19th
century engineers as being one of the three main areas oftamge in machine preci-
sion. Inidentifying the importance of accurate screw tiseghese 19th century engineers
showed an early understanding of the importance of conbtesar feed in machine pre-
cision. This understanding directly led to the developnaémhachines with lead-screws

[5]. Since this period there has been extensive researariaken to continually improve



the performance of lead-screws. Some of the major rese#tegiitian has been focused
on performance limitations caused by friction and backlagth mechanical solutions
such as the use of recirculating ball bearings (to reducéidn) and preloaded double

nuts (to eliminate backlash) resulting.

In the modern machine tool there are a number of drive tranfigorations that are com-
monly used to provide linear feed. The most common configuratconsist of a rotary
servomotor coupled with some type of mechanical transonssiechanism, which con-
verts the motor torque into a linear force. Ballscrews, tloelenn derivative of the early
lead-screws, remain the most commonly used mechanicahtiggion mechanism. How-
ever, the drive train configuration largely depends on thehiméng operation being un-
dertaken. For instance, while all linear feed axes wouldireca constant feed capability,
accurate positioning capability (typically linear acayalown to 1 or 2tm is required)
and high acceleration rates (for quick transient respoaisé€ontour accuracy), there are
other considerations that depend on the particular maafpioperation (such as length
of travel, speed requirements and magnitude of machinirge$) that can influence the

make-up of a machine tool drive train.

While there are hundreds of varieties of metal-cutting nrahused in modern industry,

there are only six basic operations by which machines arerg#y classified [5]:

e Drilling — the operation where the tool (usually a twist drill) cutddsoin solid

metal,

e Turning — the operation of cutting or removing metal from a spinnirarkpiece.

The most common turning machines are lathes and boring, mills

e Milling — the operation of cutting metal through the workpiece béatjagainst a

rotating multiple-edge cutting tool, called a milling certt

e Grinding — the operation of removing metal through the workpiece dgpéirought

into contact with a rotating abrasive (grinding) wheel,

e Shaping and Planing — involve the machining of flat surfaces, grooves or slotsgisi

a single-point cutting tool. The tool in a shaper moves bauk forth over the
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work-piece, cutting on the forward stroke while the worlgaies fed against the
cutting tool on the return stroke. A planer performs the saperation; however,

the motions of the cutting-tool and work-piece are reversed

e Power Sawing — the operation of cutting shapes in metal plate.

Load
Motor S

\\\\ Ballscrew
\ i = |

\ Ry 1“ A il
.!-!-l1-'-I-l-l-hw.&»ww.‘”w#‘| | O |

Direct Driven Ballscrew
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.

Ballscrew

Belt Driven Ballscrew

Figure 1.1: Ball Screw Configurations

The common ballscrew configurations consist of a ballscrewpled to a rotary servo-
motor either directly or via a belt (as a space-saving medsuFigure 1.1 illustrates
the two common ballscrew configurations. The inherent ggaof a ballscrew provides
very good dynamic stiffness, which makes ballscrew conéigons particularly suited
to machining operations with high machining forces, sucrasling, milling and turn-

ing. However, although the rotary servomotors are capafpeaviding constant torque
and high accelerations rates, when coupled to a ballscrewlritie can suffer from high

friction, torsional flexing and speed limitations.

The flexing and speed limitations of ballscrew configuragiomake them unsuitable for

machining operations where high speed and/or long travelsemjuired, such as many



power sawing operations. Modern sawing machines includsnph and laser cutters,
which are characterised by very low (or even zero) machifonges and long travels. In
these machines the mechanical transmission mechanismatiyua rack and pinion (as
illustrated in Figure 1.2). In a rack and pinion drive theveenotor is normally mounted
very close to the pinion, to limit any torsional flexing. Adtingh this drive configuration
can provide much higher speeds and reduced flexing when cechfmaa ballscrew drive,
rack and pinions suffer from poor dynamic stiffness andeased backlash. Hence, rack

and pinions are normally only used on machines with longelsav

Pinion

'

Rack

S

Figure 1.2: Rack and Pinion Mechanism

As an alternative to the common rotary driven linear feedsabmear motors offer a me-
chanically simpler solution that eliminates the mechdrreamsmission mechanism along
with any associated flexing, backlash, friction and compomesar. Although the very
first linear motor was built in the early 1840s (by Wheats)dtg], the use of linear mo-
tors in precision machine tools has only come under stu@yively recently [12, 13, 14].
The attraction of linear motors is not limited to the elintioa of the mechanical trans-
mission mechanism, as linear motors also offer a lineargeadion capable of extremely
high speeds and long travel. However, elimination of thehmaal transmission mech-
anism reduces the friction and dynamic stiffness of theesysind as such, linear motor
driven axes are often the most sensitive to load variatiodsaternal disturbances (such

as machining forces).
With the linear brushless servomotor ‘inheriting’ many lbé tdesirable attributes of its
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rotary counterpart it has become the most popular lineaoniot precision applications.
A typical linear brushless servomotor is illustrated indg 1.3 and consists of a motor
block (containing the motor windings) that travels lingaalong a stationary permanent-
magnet track. At this stage linear motors have become mastigoin replacing rack and
pinions in machines with low machining forces, such as lag#ers, due to their inherent
advantages in eliminating the mechanical transmissiorhar@sm while providing im-
proved high speed performance. For machining operatiotishvigh machining forces,
such as grinding machines, linear motors are less suitaldeadtheir low dynamic stiff-
ness and the fact that the most common linear motors haveetiagmaterial along their
entire length of travel (thus attracting metallic wastegtsas grinding swarf). However,
the fact that linear motor driven axes have less wearing corapts has meant that there

remains a potential advantage in the use of linear motomsyinreachining operation.

Moving Block {Contains Windings)

Stationary Magnet Track

Figure 1.3: Linear Motor

1.4 Research Motivation

The main focus of the research presented in this thesis ¢sspya control of linear feed
axes in machine tools. Some of the factors that are knowrfeotahe precision of linear
feed axes include friction, torsional vibrations, beanlgration, motor cogging, back-
lash and dynamic stiffness. Although engineers have beamieng these performance
limitations for many years, the traditional solutions haten been attained through im-

proved mechanical designs. One of the results of such maahaolutions is the variety
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of different drive configurations that are now available todarn machine tool designers.
As mentioned in Section 1.3, the actual choice of drive camétion is usually dependent
on the particular requirements of the machining operatitowever, complex mechanical

solutions are often very expensive.

This thesis explores the hypothesis that improved pratisidinear feed axes can be
achieved through the use of fast computer control algosthalternative actuator tech-
nologies and non-ideal mechanical components. Thus, #sésthroposes that the choice
of actuator and mechanical drive components need not bepgmdent on the machining
operation and can be made from an economical perspectivewolk that is presented
studies the development of precise control algorithms aparticular covers two specific
aspects of controller design: i) the use of appropriate erattical models and ii) the sig-
nificance of three of the most common performance limitirogdes that have traditionally

affected linear feed axes in machine tools.

1.4.1 Appropriate Mathematical Modelling

It can be said that feedback in control systems is only nacgsshen there is plant
parameter uncertainty and/or disturbances acting on tstersy{15]. In other words: if a
perfect mathematical model of a plant could be developed;omtrol system would only
need to be open-loop as it would be possible to achieve aedesitput through careful
construction of the input signal. The use of feedback hasvakdl engineers to develop
reliable control systems without developing particulatcurate mathematical models.
However, the design of a precise feedback control systerfib®from sound knowledge
of the parameter variation likely to occur and the distudeelikely to act on the system.
The most effective way of obtaining this knowledge is thloagpropriate mathematical

modelling.

Since the major elements of machine tool feed axes are gah{fiexible or elastic)

they are most accurately described by continuous modebsrerboth mass and stiffness
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are distributed continuously over the entire system. It lsawever be very difficult to
derive continuous models and even more difficult to analyskdesign control systems
for them. Hence, approximate discrete models are usuadieped by control system
designers. Discrete models consist of a discrete numbagidf masses connected by
springs that are assumed to be flexible but massless. Whgmeeise position and
velocity control are required though, there remains a guests to what discrete model
offers the ‘best approximation’ of a machine tool feed axisis thesis looks into the
appropriate level of mathematical modelling required fogqgise control of linear feed
axes in machine tools. A number of different models are agped from simple ‘single
degree of freedom’ models to continuous models, with compas made between the

models under a wide range of motor, transmission and loadittons.

1.4.2 Significance of Performance Limiting Factors

Although there are a large number of performance limitirgydes that can affect linear
feed axes, this thesis concentrates on three particultor§aci) dynamic stiffness, ii)
torsional vibrations and iii) backlash. With increased oS&ear motors and other direct
drive actuators, dynamic stiffness has become a major isspeecision machine tools
relatively recently [16]. In contrast, torsional vibrat® and backlash have concerned
machine tool designers for decades [17]. What is commondm=ivall three of these
factors is that the degree of performance limitation asdedi with each factor is very
dependent on the drive configuration and consequently, &ablese factors continues to
challenge control system designers. While it is acknowdeldipat other factors, such as
friction and motor cogging, are also very significant, suattdrs form large independent

areas of academic study and are not the main focus of thisthes

As discussed in Section 1.3, linear motors and other diraee dctuators offer many
advantages in machine tool drives due to reduced frictiah ameduction in wearing
components. However, the reduced mechanical transmiatomesults in a system that

is more sensitive to load variations and external disturban Dynamic stiffness is a
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measure of the sensitivity of a system to disturbances dteajlencies and has only
become of major interest to researchers since the mid 198i@Isough there has been
some effort by control system researchers to improve thamymstiffness of direct drive
actuators, the issue of dynamic stiffness has become m@iant with the increasingly

widespread use of linear motors in machine tools.

Torsional vibrations in machine tool axes are introducedugh an interaction between
the motor to load inertia ratio, flexing of the motor-load pbog and positioning of the
feedback elements. These vibrations can result in visitiersg of the machined mate-
rial and in extreme cases even result in absolute stabildiplpms. The precise reasons
behind these stability problems often remain unclear toynsgstem designers, with (for
example) a commonly used “rule of thumb” resulting in thetlyorecommendation of
re-sizing the motor to maintain a 1:1 motor-load inertigorat)nfortunately, such recom-
mendations fail to take into account the other drive traimponents and promote a poor
understanding of the interacting factors behind the stalmtoblems. While the stabilis-
ing of torsional vibrations has received a lot of attentiwni control systems researchers,

this research has not yet resulted in a single “standardoagp to the problem.

Backlash is present in all mechanical systems where théndrimember is not directly
coupled to the load. The inherent difficulties in contralia system in the presence
of backlash are clear, especially when very high precissorequired. For instance, if
the driving member in a high precision control system res®mirection, the backlash
gap becomes open and two separate systems exist. Duringetiigl the transmission
members on the motor side of the backlash are the only memibeies direct control.
This often results in lost motion on the load side and impaciliations when the driving
member and load come back into contact. Since the controysieésis with backlash
has been a subject of study since the 1940s, there have beeatangmber of solutions
proposed. However, as with the torsional vibration prohldm research undertaken in
controlling systems with backlash has not yet resulted imgle “standard” approach to

the problem.
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In this thesis, precise control algorithms are develope@&ch of the three limiting fac-
tors discussed in this section. The mathematical modghiragented in this thesis is used
as a basis for controller development and the controllexsested over a wide range of
motor, transmission and load conditions. The impact of ttiMecconfiguration, on the

overall control strategy, is also discussed.

1.5 Thesis Outline

This first chapter of the thesis presents an introductiorhéorésearch undertaken, in-
cluding the historical background of the research areampeétus for the particular work

undertaken.

Chapter 2 presents a review of key literature publishederatiea of interest to this thesis.
The chapter is divided into sections that individually esviliterature relevant to dynamic
stiffness, torsional vibrations and backlash. Appropriaathematical modelling and the
overall control of linear feed axes, in light of these pemiance limiting factors, are also

covered.

Chapter 3 presents details of the mathematical modellimgldped throughout this work.
The chapter looks at modelling from a control perspectivié) wach of the performance
limiting factors considered. Detailed mathematical me@ek then developed for each of
the four drive configurations introduced in Section 1.1. 8dyasic rules for appropriate

levels of modelling are also presented.

Chapter 4 details the experimental equipment used thraughe research presented in
this thesis. There are three individual test-beds that heee considered in the research:
i) a simple rotary motor-transmission-load system, ii)rayte linear feed axis that can be
driven by either a ballscrew or a rack and pinion and iii) ahhjigecision linear motor

driven single axis test-bed.
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Chapter 5 presents a study on dynamic stiffness in linedrdges. The inherent dynamic
stiffness and periodic disturbances of each of the fouredtanfigurations, introduced in
Section 1.1, are discussed in this chapter. A robust cosdtation that includes dynamic
stiffness in the design process is also presented and testiée single axis linear motor

driven test-bed.

Chapter 6 presents the results of the work undertaken i thédmn flexing and torsional

vibration suppression. Each of the four drive configuratiare considered in this study.
The work presented in Chapter 6 highlights the interactaogdrs that influence torsional
vibrations and also examines various control solutionsvibration suppression. The

most effective vibration suppression techniques are tggtdd in this chapter.

In Chapter 7 a new approach to the non-linear control of nmectdol servo systems with
backlash is presented. This control approach takes bo#tascand torsional vibrations
into account during the design stage, and addresses batimilystability and the tracking
performance of systems with backlash. The control apprabsthincludes a new method

for identifying whether a system is in the backlash phaseatact phase.

Chapter 8 is a summary of the relevant conclusions from eatieaesearch areas pre-
sented in this thesis. Comments are made regarding thelldigeinge dependent) control
strategy for linear feed axes. The original hypothesis ihgiroved precision in linear
feed axes can be achieved through the use of fast computieokalgorithms, alternative
actuator technologies and non-ideal mechanical compshisrgxamined in light of the
research presented throughout this thesis. Suggestiohgudoe work in this area are also

identified.
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Chapter

Literature Review

2.1 Introduction

As discussed in Chapter 1, the concept of precision in mactuals is not new. Fur-
ther, the general concept of precise control of electycatlven mechanical systems is
not new. For example, it was as early as 1896 when Harry Waotarel first discussed
the fundamental desire to operate electric motors, usefdphcations such as elevators
and printing presses, ‘under perfect and economical cbf8loSuch a statement is still
valid some 100 years or so later and, for the machining imgusiparticular, the tighten-
ing of tolerances on machined products continues to apgysure on manufacturers to
improve the control and accuracy of machine tool feed axest like the notion of pre-
cise control, the study of factors known to limit the perfamoe of machine axes is not
by any means new. In 1969, Carter [17] noted that the moréfignt characteristics of a
driven mechanical system are torsional vibrations, cydtational disturbances (ie bent
shafts, mechanical misalignment etc.) and backlash. Tteedignificance of these fac-
tors remains evident in that they all continue to limit thefpemance of modern machine

axes.

In this thesis, three of the major performance limiting ¢astthat are known to affect
linear feed axes are studied: i) dynamic stiffness, ii)itoral vibrations and iii) backlash.

This chapter critically reviews the prominent literatusdating to each of these three
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factors, identifying key advancements in the study of eackof along with the most sig-
nificant methods that have been used to improve control aachthwystem performance
in the presence of each factor. Issues relating to apptepmadelling for controller de-

velopment are discussed for each individual factor andeprtes! in the relevant sections.

Section 2.2 discusses dynamic stiffness in servo systedhsaers material that has been
published on improving dynamic stiffness through contretinmds. Section 2.3 discusses
research relevant to torsional vibrations and techniqsesl gior vibration suppression.
Section 2.4 discusses backlash and in particular, the rakteat has been published
in the areas of backlash avoidance, backlash modellinglanddntrol of systems with
backlash. Finally, Section 2.5 summarises the key pointiscamclusions that can be

drawn from this literature review.

2.2 Dynamic Stiffness

2.2.1 General Background

Dynamic stiffness is a measure of the sensitivity of a sydtemtisturbances at all fre-
guencies. Systems with low dynamic stiffness are henceactaised by poor distur-
bance rejection and can be unsuitable in operations with imgchining forces. Due to
the elimination of any gearing and additional friction asated with mechanical trans-
mission mechanismes, linear motors and other direct dritwgadors are the most common

sources of low dynamic stiffness in machine tools.

In the early 1990s there were only two manufacturers who badessfully used linear
motors for precision positioning of machine tools; namtig, Ingersoll Milling Machine

Company in the U.S.A. and the Ex-Cell-O Company in Germasy. [lless than a decade
later, at the 20th Japan International Machine Tool Fair00@ there were some 17
exhibitors of machine tools using linear motor technolegi®]. The advantages of linear

motors in eliminating mechanical transmission mechanerm@seen as very attractive by
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many machine tool manufacturers, especially in machine=revhigh linear speeds and

accelerations are required.

The major disadvantage that is often associated with limedor driven axes is high cost
[20, 21]. However, as the demand for linear motors has bemeasing the capital costs
have reduced. Also, with less wearing components, the bViéeacycle cost of a linear
motor driven system can actually be less when the high maaniee costs of other options
are taken into account. As an example, a linear motor usedéhiale crash test facility
at the UK Motor Industry Research Association was describd®93 by Aston [22] as

providing 25 years of completely trouble-free operation.

In terms of performance, it is the inherently low dynamidfséss of linear motor driven
axes that is seen as the main disadvantage. In 1994 Alter saal [I6] examined the
stability of linear brushless servomotor feed drives ircggien turning applications, con-
cluding that stability was not a problem and that attentloowgd be focused on the impor-
tant performance issues of disturbance rejection andctajetracking. Since that time
the issue of dynamic stiffness has become a major area oégtt® researchers with the

increasingly widespread use of linear motors in precisi@acime tools.

Consider the response of a general positioning axis to arbastce force. For a sinusoidal

response at a particular frequenty, the position displacement)(can be described by:
X(t) = Ef sin(2mft) (2.1)
where g is the maximum position displacementfait follows that:
X(t) = 2mfEf coq 2mft) (2.2)

andx(t) = —(2rtf)%E; sin(27ft) (2.3)

For a general linear axis with negligible friction and no prair mechanical transmission

connected, the disturbance force required to produce gmonse of Equation (2.1) is

19



governed by Newton'’s second law of motion:
Fa=M (— (271f )2 Eq sin(znft)) (2.4)
Hence, the magnitude of this disturbance force is:
|Fg| = M (2rTf)2Ef (2.5)

Defining By, as the maximum allowable position error at any frequencgait be seen
that the magnitude of the force required to excegdri€reases with frequencyry| is
proportional to frequency squared). The magnitude of dyaahtiffness (DS) for the gen-
eral case is thus defined by Equation (2.6). Dynamic stiffmes practical machine tool
axis varies with the mechanical transmission parameteesjiy friction and the control
system. However, it is clear that with the elimination of tma&gcical transmission, the
inherent dynamic stiffness of a linear motor driven axis lbampproximated by Equation
(2.6).

DS= E—:'J = M(27rf)? (2.6)

2.2.2 Control of Dynamic Stiffness

With the absence of a mechanical transmission mechanigngptitrol system of a linear
motor (or any direct drive axis) is the primary means of diséimce rejection (particu-
larly in applications with high machining forces). Howeweith the reduced mechanical
system, the overall controller bandwidth of a linear mosessentially only limited by
the peak force of the motor, the resolution of the feedbacthraeism and the servo drive
electronics [20, 23, 24]. As aresult, the research effarnjoroving dynamic stiffness has
been applied at all levels of the overall control systemiuiding the current, flux linkage,

velocity, position and overall path-planning levels.

Weigel and Mutschler [25, 26] studied deadbeat control afadyic stiffness in a lin-

ear brushless servomotor at both the current and flux linkagss. It was found that
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deadbeat flux linkage control met the demand for a high baditiow level controller;
however, the flux linkage feedback required an observer avelhyaaccurate model of
the system to avoid nonlinear oscillations. Finite elemmaethods coupled with direct
system measurements were recommended to produce a dsgatech model. Cui et al
[27] also studied the use of finite element methods to de\esicgccurate model for direct
thrust control of a linear brushless servomotor. It was tatexd, through simulation, that
direct thrust control could be effective for low level casitof linear motors. In a related
piece of work, Zhao et al [28] studied the use of wavelet asialio identify the primary
resistance of a brushless linear motor system. It was cdedliagain through simulation,
that wavelet analysis produced a higher resolution for tivagry resistance identifica-
tion and could be used to improve the flux linkage observati@direct thrust controller.
Interestingly, in [26] Weigel and Mutschler concluded thdhough a standard PI current
loop had inferior dynamic performance it was more robusteasler to implement than

the thrust control methods.

Alter and Tsao [29] examined the effects of an optirHial controller, in the position
loop, on the dynamic stiffness of a practical linear motowas found from experimen-
tal analysis that thél,, controller provided a 27-46% improvement in dynamic safa
when compared with a conventional Proportional plus DéxedPD) position controller.
With the addition of machining force feedback, the optitdalmethod was found to pro-
vide a further 70-100% improvement in dynamic stiffness mbempared with position
feedback alone. In a further work [12], Alter and Tsao inigeged the use of optimal
I, and H, feedforward control to enhance the tracking performanca bihear motor
system. Although parameter uncertainty limited the pcatteffectiveness of the feed-
forward control, a 50% reduction in the rms tracking erroswtll achieved. Alter and
Tsao concluded that the combinatiorl padndH., optimal feedforward and feedback con-
trol represented a viable control approach for linear msystems, resulting in both high

dynamic stiffness and optimal tracking performance.

Shen and Tsai [30] also investigated the uselgfto enhance the dynamic stiffness of a
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linear motor controlled via a pseudo derivative feedbadk ¥aedforward (PDFF) control
scheme. It was found that with the additiorttf the dynamic stiffness of an experimental
linear motor system showed an 85% improvement when competbdstandard PDFF

control.

As an alternative til., sliding mode control was examined by Van Brussel and Van den
Braembussche [31] for robust tracking performance of limeators. It was found that
sliding mode control achieved the desired robust perfonaaas long as the control law
contained no discontinuous terms (which were said to legabssible high frequency
errors). Sliding mode techniques were also combined withpide control techniques
by Xu and Yao [32, 33, 34] to improve both dynamic stiffnesd tnacking performance
of linear motors. The combined control scheme, termed Adaptobust Control (ARC),
was tested for both velocity feedback [32, 33] and positiay éeedback (using a velocity
observer) [34]. For both the velocity and position feedbeages, it was concluded that
the ARC control scheme showed good transient performartdraad tracking accuracy
in the presence of parametric uncertainties and boundéatioigces. In a related piece
of work, Hong and Yao [35] added actuator saturation infdromato the ARC design
process to improve the experimental realisation of themaky guaranteed tracking and

dynamic stiffness performance.

Other control approaches that have used a nonlinear actuattel to improve dynamic
stiffness in linear motor systems include the Auto-Distunte Rejection Controller (ADRC)
and the input-output linearisation technique. Yang et @] [3aim, through simulation,
that the ADRC approach (which uses a nonlinear state ereoibfgck control law) when
applied to both the current and velocity loops of a linearanglystem can provide im-
proved dynamic stiffness and tracking performance. Dolaral Stumberger [37] used
the input-output linearisation technique (which involtbd exact cancellation of system
nonlinearities in an overall position feedback loop) onredir synchronous reluctance
motor model. Simulation and experimental results demateddrgood tracking perfor-

mance; however, no disturbance rejection results weragive
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One of the most comprehensive approaches to the controlnandig stiffness was pre-
sented by Renton and Elbestawi [38] and involves improvedrobeffort at both the

low servo and high path-planning levels of a linear motodfeleive. The approach
uses Minimum-Time Path Optimisation (MTPO) to address fexte scheduling at the
path-planning level and Minimum-Time Tracking Control (WMCT) to address the pri-
mary sources of path error at the servo level. The focus efgphproach is on the actual
capabilities of an axis and all primary sources of path earerincluded in the overall
design. Renton and Elbestawi found that the disturbaneetien properties of this ap-
proach were superior to both standard PD &hd They also found that the dynamic
stiffness could be further improved through the use of agakcidisturbance observer

that is synchronised to the spindle axis.

In this thesis the control of dynamic stiffness is examinmedfthe perspective of practical
implementation. In many cases a linear motor can only berpurated into a multiple
axis machine tool if it is compatible with the drive systened®n the other axes. Al-
though there are clear advantages in addressing dynaifiness at the lower current or
flux levels [25, 26, 27, 28, 38], access to these lower segvelicontrol loops is often
limited in standard servo drives. However, it is sometimessible to take advantage of
the information contained in lower level feedback (curmantorque/force) in higher level
control algorithms. Another important practical issue esnputational efficiency of the
control algorithms. Although processor speeds are coallynincreasing, many standard
servo drives still only have a small window (within the samglinterval) for the imple-
mentation of control algorithms. For this reason artificigélligence methods, such as

Fuzzy Logic [39], are often not a practical solution.

When considering the control approaches that have beeniegdror the velocity and
position loops of direct drive systems, the various robashhiques, such ad. and

sliding mode control, were shown throughout the literatorprovide improved dynamic
stiffness [12, 29, 32, 33, 34]. One robust control technithat was absent from the

available literature is Quantitative Feedback Theory (REIFT offers a general design
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approach based on stability bounds, loop shaping and amagrin the system. In the
benchmark control session of the 1995 European ControléZente, both the winning
entry and the runner up used QFT. Further, the winning QFigdegas the only entry that
fulfilled all of the design specifications [40]. For thesesaas, a QFT design approach to

the control of dynamic stiffness is presented in this thesis

2.3 Drive Train Flexing and Vibration Suppression

2.3.1 General Background

The most basic elements of any drive train are the motor,dheé &nd any devices used
to couple the motor to the load. It is therefore no surprise the three most significant
performance limiting factors, as discussed by Carter [&r, related to the interaction
between these basic drive elements. Consider the veryeinpk train shown in Figure
2.1. This system consists only of a motor and load couplemityir a single transmission
element. As there is no ‘free-play’ in the system, backlagb heen avoided. Also, it
is assumed that the transmission element is perfectlhgstrand perfectly aligned, thus
avoiding any alignment related cyclic disturbances. Tmaasion flexing and torsional
vibrations cannot be considered negligible however, agalltransmission devices (used

to form the motor-load coupling) are non-rigid by nature.

Motor (J ) Load (J)

Transmission (JS,KS,CS)

AN

Figure 2.1: Simple Motor-Transmission-Load System
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As discussed in Section 1.4.2, torsional vibrations an@diced through an interaction
between the motor and load inertias, flexing of the motod-lcaupling and positioning
of the feedback elements. However, Industry has tradilipoaly concentrated on the
relative sizes of the motor and load inertias. From the absirstems perspective, a low
total inertia is particularly desirable as the resultingthtorque to inertia ratio results
in faster accelerations and faster transient responses.claims from many servo mo-
tor manufacturers though, are that motor-load inertiaosatlose to 1:1 should always
be maintained in order to avoid vibrations and related Btalproblems. As a result,
manufacturer “rules of thumb” are often used to define aet®gtinertia ratios. For in-
stance, Baldor (a servo motor manufacturer) state in thiegtyct catalogues that inertia
matching is a critical motor selection criteria and althiougotor-load inertia ratios of
higher than 1:5 may be possible, they are not recommendedibeof possible stability
problems [41]. Such recommendations neglect the impadbef alrive train components
and these “rules of thumb” can also often vary between matwfars [42]. This thesis

provides an analysis that overcomes these shortcomings.

One of the most important issues overlooked by such widedg tsules of thumb” is
the fact that practical devices used to form motor-load togp are non-rigid by nature.
Designers tend to traditionally treat motor and load ieris a single ‘lumped’ inertia.
Along with this, the feedback element is usually attachegtéanotor. In treating a system
in this manner there is an inherent assumption that the sawugévice connecting motor
and load is infinitely stiff. In reality, all coupling devisédnave finite stiffness and the load
response is not identical to that of the motor [43]. This lmees a particularly critical
issue when attempting to design controllers for highly i systems, where feedback
is only available from the motor and the variables of inteaes load velocity and position.
Such highly ‘flexible’ systems often arise in industry whessiginers choose low inertia
coupling devices in order to improve system transient resps. When reducing the
inertia of the coupling devices, the rigidity of the transeion is also often reduced.
While there is some advantage to matching motor and loadiaseas a solution, the

practice of re-sizing motors in order to maintain unity mdtmad inertia ratios can be a
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far more costly solution when compared with choosing a migid transmission.

The importance of high rigidity in motor-load couplings istmew knowledge, as Carter
[17] described torsional vibrations as occurring due tagpness of shafts and couplings
interacting with load inertias. Despite this, infinitelyfistouplings are still often as-
sumed in the analysis and design of servo systems. For egadphstrong [42] (from
Kollmorgen Motion Technologies) even used an infinitelyf sibupling while discussing
why motor and load inertias should be ‘matched’. It shouldlear that an infinitely stiff
coupling results in one single inertia and as such, an mertsmatch cannot exist. One
of the major points in [42], is that inertias should be mattfer maximum power trans-
fer. While the notion of maximum power transfer is valid, atfempts to analyse the
stability problems associated with motor-load inertiaasmttannot be undertaken using

an infinitely stiff coupling.

2.3.2 Modelling and Analysis of Torsional Vibrations

The analysis and control of torsional vibrations has restigonsiderable research at-
tention. However, while most published material has ackadged the importance of
treating motor-load couplings as non-rigid, the standaod@hused by researchers is an
approximate two-body model based on the system shown i@l [40, 43, 44, 45,
46, 47, 48]. With this system, backlash, friction and otteatdrs that would normally
affect servo system performance are generally regardedd@igible. It is also assumed
that the relationship between the flexing of the transmisgiement and the resulting
‘spring’ force can be completely described by Hooke’s Lawl as such, any nonlinear

spring characteristics are negligible.

With reference to Figure 2.1:
e Jy is the motor inertia,
e J is the load inertia,

e Jis the inertia of the transmission element,
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Tmis the torque produced by the driving motor,

Ksis the torsional stiffness of the transmission element,

Csis the coefficient of internal damping that is inherent intla@smission element,

and

wm and w are the radial velocitiesé(n and9|) at the motor and load ends of the

transmission element respectively.

In the two-body model of the system shown in Figure 2.1 thetimef the transmis-
sion element is assumed to be zero. Hence, the system is eiypdlescribed by two

equations of motion, with two generalised coordindigsand 6, :

Jmém = Tm—Ks(em_el)_Cs(em_él) (2-7)

J8 = Ks(Bm—8)+Cs(6m—8) (2.8)

Through further analysis of Equations (2.7) and (2.8), egpions can also be obtained for
the undamped natural frequencies of this system. Equatidhrepresents the undamped
natural frequency due to the zeros in the frequency respaintde system, while Equa-
tion (2.10) represents the undamped natural frequencyaltieetpoles in the frequency

response of the system.

Ks
— [Ds 2.9
W, 3 (2.9)

_ [ KslIm+d)
wp = 15 (2.10)

Many papers focus predominately on the control of vibrati@ther than on how the var-
ious factors interact to introduce these vibrations. Tags has resulted in the publication
of many apparently different control solutions, which tout to be mathematically based
on the same approach. While the undamped natural frequepfiens (Equations (2.9)

and (2.10)) are derived in many of the reviewed articles §8),44, 48, 49], only Welch
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[43] and Vukosaw et al [44] go on to discuss the importance of considerin@fathe

interacting factors (including the positioning of feedb@atements).

Apart from the limited analyses performed in many of the @&baksticles, there are also
problems with the standard use of the ‘traditional’ two-fpoabdel, represented by Equa-
tions (2.7) and (2.8). The major problem is that any inessogiated with the motor-load
coupling device is considered negligible, whereas in maiwedrains the mass or inertia
of the coupling device can be quite significant and oftendatigan the inertia of the load
itself (as seen by the motor). Some examples of this are inyrohthe power sawing

operations where feed axes transmissions can be over 10emgthl Also, in general

ballscrew axes the load inertia is reflected to the motor thidmuigh the inherent gearing
of the ballscrew, which can reduce it to a value less thanrt@eia of the ballscrew itself.

Another important aspect when considering ballscrew drases is the fact that torsional

stiffness and the transmission inertia both vary with traglposition.

Nordin [40] deals with the issues discussed in the preceparggraph by claiming that
the realism of the two-body model can be increased throwggtiitrg some parameters as
uncertain. While this is a good approach for ensuring a rotstrol solution, designing
a controller at all can be difficult if the bounds of uncertgiare unknown. For all of these
reasons the ‘traditional’ two-body model can be greatlyrowed upon when modelling

motor-transmission-load systems.

2.3.3 Control Solutions

Traditionally, the velocity control of servo systems hasibased on some form of sim-
ple Proportional (P), Proportional plus Integral (Pl) oppwrtional plus Integral plus
Derivative (PID) regulator, with Pl being the most commoreTearly methods used to
improve system performance, in the presence of torsiomaatrons, focused on reduc-
ing the gains of such regulators to ensure any resonantdreigs occurred outside the

system bandwidth. Of course such remedies also resultédggish transient responses.
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Some alternatives suggested in 1969 by Carter [17], indube introduction of low-
pass or notch filtering to suppress resonances and allowcezase in system bandwidth.
Carter also suggested that improvements could be achigvetwhing the feedback ele-
ment to a nodal point (a point along the transmission whee#élasons do not occur), or
at least as close as possible to a nodal point. However, iry machine tool feed axes
the only practical position for a feedback sensor is at théomdt is also worth noting
that caution is required when using a single feedback delamed at (or near) the load

as the system can quickly become unstable.

The early methods of using simple P, Pl or PID regulatorsptEliwith vibration sup-
pression filtering, have remained among the most commorraaapproaches used in
modern servo systems. In fact, with the ongoing computeluéon and increasing pref-
erence towards digital control, software tunable filtergehbecome a standard feature
in many industrial servo controllers. The continual adwament of digital controllers
has also allowed for much more flexibility in the control of\gesystems, leading to an

increase in the research of higher order control schemesanglex filtering techniques.

A number of different approaches for controlling torsiomddrations in servo systems
have been published since the mid 1980s. In general thobhghe tsolutions can all be

classified as belonging to one of three fundamental groups:

1. Conventional control, with vibration suppression filkgrand a single feedback

device (usually attached to the motor),

2. Higher order control, with multiple feedback deviceddeled to both the motor

and load) and

3. Higher order control, with a single feedback device (lUgw@tached to the motor).

The first of these groups represents all variations of thdittomal approach, which con-
sists of a simple regulator and vibration suppression ifiigerHowever, significant work
in digital signal processing and filtering has recently bapplied to servo systems. In

particular, both Finite Impulse Response (FIR) filteringl dnfinite Impulse Response
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(IIR) filtering have been successfully used for the suppoassf various types of me-

chanical vibrations in machine axes [44, 50].

The second and third groups both focus on using higher ordietralers. The most
common approaches in both of these groups are based on tei@deedback with either
pole placement or linear quadratic design techniques [4648, 49, 51, 52]. In [51]
the author of this thesis used state feedback sensors atdteg and load to stabilise a
two-mass experimental system; the same controller wasessfidly adjusted to use a
single motor sensor and full order state observation in.[S&hilarly, [46, 47, 48, 49] all
report success using state feedback with a single motoosand estimation techniques
(such as state observers) to provide feedback of the otltesssDue to practical concerns
in most mechatronic systems (such as mounting constraxgpense and noise) a single

feedback device at the motor is generally preferred oveinitiasion of a load sensor.

While most high order servo controllers are based on gerstaited feedback, some au-
thors have also reported success with controller desigsedbaround specific flex-related
feedback quantities. In [52], the author of this thesis uséshaft-flex’ inner feedback
loop in conjunction with a standard PI controller to suctdgsstabilise oscillations in
a simple two-mass system. Brandenburg et al [45], reporteites success with the use
of a ‘shaft-torque’ inner feedback loop. Other feedbackmjtias that have also report-
edly delivered success in stabilising such systems indnattorque (Ji et al [46]), load
acceleration (Hori et al [49]) and motor acceleration (WdgK3]). Of particular interest
among these solutions is the motor acceleration feedbat&rmyproposed by Welch [43],

as it does not require any load feedback (either direct amastd).

Almost all of the higher order control approaches that useglesfeedback device (Group
3), require some form of feedback estimation. There are tiemsme notable exceptions
to this generalisation including the aforementioned appindoy Welch [43] (using motor

acceleration feedback), along with single feedback dedigised on QFT. Although esti-
mation techniques can be used with QFT, they are in confliitt thie fundamental basis

of the theory [15]. As mentioned in Section 2.2.2, both thening entry and the runner
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up in the benchmark control session of the 1995 Europeanr@d@@wnference used QFT.
It is interesting to note that this benchmark control sesgwolved competing designs

for control of a three mass flexible system [40].

The choice between vibration suppression filtering and seeofi higher order controllers
has become very subjective; however, previous results ¢panerally shown that simple
Pl regulators tend to only achieve comparable performartnvthe current loop has a
low bandwidth. If the current loop is fast enough to damp #®onance, higher order

control schemes generally offer superior performance43054].

The most interesting of the higher order control approaeheshe various solutions that
use specific flex-related feedback quantities. All of thedet®ns claim to successfully

stabilise torsional vibrations and each one of them can lee us conjunction with a

standard PI velocity loop, an outer state feedback loopamrporated into QFT designs.
However, while each of these solutions appears to offerguenapproach to the problem,
a quick analysis of system flexing (under such feedbackatevaany of them to be fun-

damentally equivalent. Although some articles have coegbaarious control approaches
[40, 47], these comparisons have not been comprehensive nodbeen performed over
a wide range of motor-transmission-load conditions anakhent recognised the equiva-
lence of many of the feedback solutions. Hence, a standamaagph to the problem has

yet to be adopted.

In this thesis a comprehensive comparison of the variousoappes to controlling tor-
sional vibrations is presented. This comparison is peréatmver a wide range of motor-
transmission-load conditions and uses an experimentabégsthat was specifically de-
signed to analyse torsional flexing and vibrations. The ammspn also includes control
approaches that were developed as part of this thesis. Tpartamce of using an accu-
rate system model in the controller design process is sdwathid a two-body model with

improved accuracy (when compared with the ‘traditionabtaody model) is developed.
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2.4 Backlash

2.4.1 General Background

According to the Oxford English Dictionary, the term badklavas originally used to
describe the ‘jarring reaction or striking back of a wheeser of connected wheels in a
piece of mechanism, when the motion is not uniform or whemeangressure is applied’
[55]. The same term was later used to describe ‘the play letwdjacent movable parts
(as in a series of gears)’, along with ‘the jar caused by thHigemthe parts are put into
action’ [56]. Some other simple definitions of backlashuud: ‘the lost motion in a gear
train’ [57] and ‘the amount by which a tooth space exceedshloiness of an engaging
tooth’ (again with reference to a gear train) [58]. For thepgmses of this thesis, back-
lash can be thought of as the whole phenomenon resulting tagnbetween movable
mechanical parts. This includes both lost motion (when #méspare not in contact) and
the system reaction when such parts come back into conthettéeFm “backlash gap” is

used to describe the actual play itself.

As discussed in Section 1.4.2, the inherent difficultiesaritmlling a system with back-

lash are clear. During any period when the backlash gap is tpe separate systems
exist with only the transmission members on the motor sidihefbacklash gap being
driven, while the load is in a sense ‘uncontrolled’. When liaeklash gap closes, the
resulting collision can cause severe system oscillatiamt®©| systems can often exhibit
steady state errors in the presence of backlash. Furthetcycles with irregular oscil-

lation and peak-peak amplitudes greater than the totallésitigap can be experienced
[40]. For these reasons, backlash has historically beesidered as one of the most

serious problems associated with precision control of nm&ctool drive trains [40, 59].

Since the precise control of systems with backlash has beemmduring engineering
problem for over 60 years, the traditional (and still the tremsmmon) approach to over-

coming the effects of backlash is to minimise it through ioyad mechanical design and
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manufacture [17, 60]. Precise manufacturing techniqudsaanurate assembly allow for
a reduction in the clearance between gearbox teeth and ,h@meduction in the width

of any backlash gap. However, there are limitations witls thiethod in that a certain
amount of space between gearbox teeth is necessary focdtion and assembly. The
most common mechanical approach used in modern precisiohingtools is to provide

a preload to ensure persistent contact of gear teeth. Thegersumber of preload meth-
ods commonly used, including the use of a second inversermaatbthe use of spring
loaded gearboxes to ensure there is always gear contacthndiyections. One exam-
ple of a preloaded anti-backlash configuration, which ismfound in modern precision

machine tools, is the double nut ballscrew system.

In general, the mechanical techniques for reducing thetsfief backlash are expensive
and can also result in higher friction and increased enesggumption. These disadvan-
tages have traditionally been compared with the projeatsts®f allowing a mechanism
to function in the presence of backlash (ie the cost of redidggmamic performance, in-
creased wear, service failures, noise etc.) [60]. For thessons, the research of more

cost-effective control solutions to backlash has remaofedterest to engineers.

2.4.2 Backlash Modelling

Like the torsional vibration problem, all analyses on thie@t of backlash, along with
any associated controller development, require an accunathematical description of
backlash in the system. The appropriate representatiomakldish in a system model
is very dependent on the actual configuration of the mechhtri@nsmission elements
surrounding the backlash. However, the common approachésdklash modelling
are generally defined in terms of a two-body system. FiguzelRistrates the motor-
transmission-load system of Figure 2.1, with the additiba dacklash element in the
transmission shaft. If this is treated as a ‘traditionalbthody system, the transmission
shaft is considered to have an inertia of zero, along witkidmal stiffness K and an

inherent internal damping coefficient o£.C
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Mator (J ) Backlash Gap (2a) Load (J)
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Transmission (K,C))
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b

Figure 2.2: Transmission Backlash

With reference to Figure 2.2:
e O is the absolute position of the motor inertig)J
e 0 is the absolute position of the load inerti@) @nd

e B, is the absolute position of the transmission shaft at th&lbab.

Defining Bg. as the backlash anglefg (t) = 6y(t) — 6 (t). Also, since the backlash
angle is usually defined symmetrically within the backlasp,ga total backlash gap of
2a results in: |Bg| < a. If the shaft flex is then defined &&(t) = 6m(t) — By(t), the
overall displacement between motor and l08g({) = 6m(t) — 6 (t)) is equivalent to the

addition of the shaft flexfs) and the backlash anglég] ).

Recall that Equations (2.7) and (2.8) are the equations abméor the two-body model
of the system shown in Figure 2.1. In these equations, thergsion torque (the torque
delivered to the load) is given byskBm — 6 ) + Cs(6m— 6). If backlash is included in

this system (as shown in Figure 2.2), the transmission tobgzomes:
Tirans = Ks(6s) + Cs(és) =Ks(6g—6sL) + Cs(éd — éBL) (2.11)

Equation (2.11) is the exact expression for the transmmdsi@ue of the two-body system
with backlash, shown in Figure 2.2. The difficulty with Eqoat(2.11) is that it contains
a third degree of freedom, representedégy The relationship betweef), and the load

position @) is expressed by the backlash angbg, (), which saturates ata. Due to
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obvious difficulties in dealing with a third degree of freedin a two-body model, the

most common backlash models are approximate models thatt@gaafude the coordinate
6.

A A
1o Toe)

Y

Ly

- 0 /o eb —Q 0 o

(a) Hysteresis Model (b) Dead Zone Model

Figure 2.3: Common Backlash Models

In introductory control texts, a hysteresis model is oftsedias the basic method for
describing the effects of backlash [61, 62, 63]. This madglapproach can be described
with reference to Figure 2.3 (a). Consider initially thag ihput and output positions at
the backlash are zeréyis the input position at the backlash afyds the output position).
If the transmission shaft begins to move in a positive dioggtcontact is not established
with the load until6, = a. While there is continual positive contact, the load positi
is 6 = 6, — a. If contact is lost (through a reversal of direction) thepautis no longer
driven by the input and output position is no longer a functéthe input. If the reversal
of direction continues, contact is not established agaiih tine backlash gap is traversed.
If continual contact is established in the negative dimettithe load position becomes
6 = 6,+ a. The two diagonal lines of Figure 2.3 (a), describe the i@tahips between
input and output positions during the two contact phaseg. hidrizontal lines of Figure

2.3 (a), illustrate the uncontrolled state of output positiuring the non-contact phase.

The problem with the hysteresis model is that it only dessithe relationship between

the input and output positions of a backlash element. Itearglfrom the fundamental
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laws of dynamics, that the effect of backlash on transmmssiojue is the most important
element when modelling backlash. Unfortunately, the hngsie model does not account
for the fact that the transmission torque is zero during thie-contact phase. For this
reason, the hysteresis model can only be applied to eitleeinffut or output positions
of a system (depending on the location of the backlash) andatebe included in an
expression for transmission torque. Although the hysterasdel has been used by some
researchers [64, 65, 66, 67, 68], it is clear that this modekdot effectively represent

the complete dynamics of backlash.

A common and more accurate alternative to the hysteresighmtb use a dead zone in
the expression for transmission torque. The input to thesld®ne is the overall displace-
ment between motor and loaéy) and the output (Ddy)) represents the actual shaft flex
(6s). An example of this common dead zone model can be seen ime=&y8 (b), where

the output of the dead zone is:

6g—a 6g>a
D(64) = 0 |6<a (2.12)

Bg+a 6y<—a

The transmission torque for the dead zone model is:

Ttrans = KsD(8y) (2.13)

When comparing Equations (2.12) and (2.13) with Equatiohl(g it can be seen that the
dead zone model accurately describes the torque component dransmission flexing;
however, the torque component due to damping in the traisgmniss neglected. Hence,
this dead zone model is only valid when the internal dampiogffcient (G) of the
transmission is zero. A slight modification of the dead zomelehis shown in Equation
(2.14), where internal damping is taken into account. Togiethe standard and modified

dead zone models represent the most common modelling aghpi@and in the literature
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on backlash control [45, 54, 69, 70, 71, 72, 73, 74].

KS(Qd—a)+Cséd 6y > a
Ttrans = 0 64| < a (2.14)

KS(9d+a) —l—Cst 6y < —a

Although the modified dead zone model of Equation (2.14) daks internal damping
into account, Nordin [40] has shown (through a phase plaakysis) that this model does
not accurately predict when contact is lost. Hence, the fieabiilead zone model remains
inaccurate if the internal damping of the transmissiongsigicant and can actually pre-
dict a sign change in the transmission torque without th&lbah gap being traversed. As
an alternative, Nordin presents a phase plane backlashltiades intended to provide
a much more accurate prediction of when contact is estaulisimd lost. The Nordin
phase plane model is represented by Equations (2.15) t8)(R&Q]. When the internal

damping of the transmission is zero, this model reducesadadim of the standard dead

zone model.
Ks(Bg—a) +Csby  (6g,6q) € A
Ttrans = 0 (64, Qd) c A° (2.15)
Ks(Bg+0a)+Csby (6y,64) € A~
where:
( _ Ks(6g+a)
. Csby (7 Cs 71) 2
A = (04,054 (BatOH(RHer e S>2a >0, 6
\ Ks(Bg— ) + Cséd >0 Véd
( i Ks(Qdfﬂ)
. _ Csed (7 Cs@ 71) _ a
A~ = (64,80 G- O+RKT)e © S =20 Ba<0 5 g
Ks(Bg+a) +Csby <0 6y
A’ = (64,60)\(ATUA") (2.18)

In this thesis, the physical implications of the phase pamaysis presented in [40] are
investigated. As a result, a new backlash model is preséimads shown to appropriately

address the shortcomings of the common dead zone modegtheotery clear and simple
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extension of the dead zone model.

2.4.3 Control of Backlash

Since researchers have been studying backlash for over &8, ymany different ap-
proaches to controlling servo systems in the presence éddsithave been investigated
and published. With a very high number of publications, diiicult to provide an ex-
haustive literature survey on this topic. For this reasbe literature survey presented in
this thesis is specifically aimed at identifying all of thejoraand essentially unique, con-
tributions to the advancement of backlash control. The &nmehtal differences between
the large number of published approaches are highlighted tike approaches classified
according to these differences. Since many of the publisbattol approaches are both
theoretically and mathematically complex, this surveyp @ddresses the practical issues

of implementing backlash controllers in real servo systems

The traditional methods for reducing limit cycles and agsed vibrations in systems
with backlash involve reducing the bandwidth of standanédr controllers. Generally,
a linear approximation of the backlash non-linearity isedetined and then used in the
linear design process to avoid limit cycles. The most comtechnique used to find a
linear approximation of a non-linearity is the describingdtion technique, which was
developed independently in England, Russia, GermanycErand the United States dur-
ing the late 1940s and early 1950s [75]. Describing funetithrat specifically represent
the backlash non-linearity were developed by Tustin [76}e€nut [77] and Thomas
[78]. Some examples of using describing functions in thagiesf linear controllers

for systems with backlash can be found in [57, 58, 61, 65, A{hough the describ-

ing function technique is by far the most common, other magerous methods based
on absolute stability criteria have also been used to desticklash in linear controller

designs [68, 80].

Linear approximation methods, such as describing funstibave also been used in the
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design of more complex backlash controllers. Brandenbtig §81] used describing
functions to show that the limit cycle amplitude in systemthvbacklash can depend
on the size of the load disturbance torque. Hence, a line@ralter that incorporated a
load torque observer was shown to reduce limit cycles in systems. Brandenburg also
claimed further improvements in limit cycle avoidance tigh the application of adaptive
control on the disturbance model gains [45]. Nordin [40, 82d dual-input describing
functions and the QFT design technique to develop a switdoedinear controller for
systems with backlash. Nordin’s controller switched be&mavo linear controllers, one
tuned optimally for the contact phase and another with redwgains for the backlash
phase. Boneh and Yaniv [70] also used the concept of a switche-linear controller,
with the backlash phase controller designed via the QFTnigale with an upper bound

placed on the limit cycle amplitude.

All of the approaches discussed so far, whether linear oflinear, are based upon the
concept of reducing the speed at which the system travdrsdsacklash gap. The main
reason for doing this is to limit the severity of any collisgothat may result when the
backlash gap closes. This group of approaches is sometafegsad to as having ‘weak’

action in the backlash gap [40]. An alternative group of apphes use ‘strong’ action in
the backlash gap. These approaches are based upon thetooihioepeasing the speed
at which the system traverses the backlash gap, so thatregpritact between the motor
and load is resumed as quickly as possible. While the weaéracontrol approaches
are predominately concerned with the dynamic stabilityhef $ystem, the strong action

approaches are more concerned with lost motion at the load.

The work of Tao et al [62, 67, 69, 83, 84, 85, 86, 87] is the mostrpnent in the area
of strong action backlash controllers. Tao’s early publass in this area [62, 67, 83, 84]
focused on backlash at either the input or output of a system,involved the use of
an adaptive inverse controller to effectively cancel thekbkesh. The adaptive approach
theoretically allows for the control of systems with unkmolacklash gap and unknown

plant parameters. Although adaptive inverse controllegseveuccessfully simulated by

39



Tao, there are serious practical issues in implementirggetbentrollers. Firstly, backlash
is rarely located at the input or output of practical dynasystems, with the transmis-
sion between the motor and load the most common source ofasdickSecondly, inverse
compensation at the input of a system implies that the babldap will be traversed in-
stantaneously, which is not possible. In [88], Dean et alam@nted an inverse controller
on a practical system and actually found that the inversé&ralber degraded the system

performance when compared with a traditional linear cdlaro

In more recent publications by Tao [69, 85, 86, 87] switched-hinear controllers are
proposed, which use traditional linear controllers dutimgcontact phase and controllers
based on optimal open-loop compensation laws during thiddstt phase. Each of these
controllers could again be classified as using a strongrachiwing the backlash phase.
Although the switched controllers address some of the daakdof the inverse control
approach, the control laws applied during the backlashgphssmathematically complex

and only simulation results could be found in the availahibligations.

Other approaches that can be classified as using a strong datiing the backlash phase
include controllers proposed by Yang et al. [89], Mata-Jieget al. [90] and Schoéling
et al. [91]. Yang used an adaptive switched nonlinear ctiatrdhe control objective in
Yang's approach was to traverse the backlash gap as quieklgssible, although the im-
portance of “unacceptable collisions” was noted. Goodkirerperformance was claimed
by Yang through simulation; however, no practical resuksengiven. Mata-Jiménez pro-
posed a constant-impulsive hybrid control structure, wlagpropriately timed impulses
were used during the backlash phase. The work by Mata-Jing&as essentially theo-
retical and the controller required position and velocagdback from both sides of the
backlash, which limits the practical value of this appraasthdling used a state feedback
approach with input-output linearisation. The controfeoposed by Schdéling showed
good dynamic behaviour and steady-state accuracy for aplart experimental set-up.
However, feedback from all of the states, or alternativeregton methods, are required

with this approach, which may also limit its practical apption on many machine tools.
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A lot of the more recent research in controlling backlash ¢@mscentrated on artificial
intelligence methods such as fuzzy logic and neural netsvorke use of fuzzy logic has
generally been in the area of controlling systems with irguautput backlash [92, 93].
With the fuzzy logic approach, an inverse controller is mojuired; however, the problem
that backlash is rarely located at the input or output of aadyic system still remains.
The neural network approaches generally complementiaditiinear control structures,
with the neural networks used in the application of strorigpaauring the backlash phase
[94, 95]; however, neural networks have also been used tplssnent inverse controllers
[66]. As noted in Section 2.2.2, one of the major difficultrgth both neural networks and
fuzzy logic is the additional computational power requibgdthese methods. Although
there is potential in these approaches, the additional atatipnal requirements would

still be excessive for many practical servo systems.

The many different approaches to controlling backlash eaoléssified in a number of
different ways. Some of the important classifications idellinear or non-linear, weak
or strong action in the backlash phase, classical/modeantificially intelligent based,
feedback sensed from motor or load (or both) and velocityositpn controlled. How-
ever, the most important classification is whether the otletris designed to provide
good tracking performance or to guarantee dynamic stalfdit both). In [40] Nordin
claims that strong action in the backlash phase does not wakwell and that weak
action is more advantageous. However, Nordin was lookinlgeaproblem from the per-
spective of dynamic stability, where weak action is indegdaatageous. In most of the
papers where strong action is proposed, good tracking ipeafoce is the main design
specification. One of the claimed advantages in implemgmieak action approaches
is that the width of the backlash gap does not need to be knélewever, if feedback
from the load is not available and the design specificatieqaire good position tracking,
it is essential that the backlash gap is known. The main igstiemany of the strong
action approaches is that they are not practical to implémeneal servo systems, either
because of unrealistic system modelling or a requiremeneXoessive computational

power.
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A new approach to controlling backlash that combines bothknsnd strong action is
proposed in this thesis. Through this approach both dynatataility and tracking per-
formance is addressed. Further, the proposed controliesgned for practical imple-
mentation on standard servo drives, requiring feedbaak fitee motor side only and

minimal computational power.

2.5 Conclusions

The literature review presented in this chapter has covémext performance limiting
factors that are known to affect linear feed axes in machonést i) dynamic stiffness,
i) torsional vibrations and iii) backlash. Although somktleese factors have attracted
research attention for more than 50 years, areas for fustiiely were clearly identified

throughout the literature review.

Dynamic stiffness was described in Section 2.2 as a meas$uhe sensitivity of a sys-
tem to disturbances at all frequencies. In machine tool ée@s, low dynamic stiffness
has become a more prominent issue with the increasinglyspigad use of linear mo-
tors. The literature review indicated that research efforproving dynamic stiffness
has been applied at all levels of the overall machine tootrobsystem, including the
current, flux linkage, velocity, position and path-plarmiavels. However, with access to
the lower current and flux levels limited in standard servgeady, the velocity and posi-
tion loop levels were identified as the most practical for lenpenting control strategies

designed to improve dynamic stiffness.

Various robust techniques applied at the velocity and mrsibop levels, such abls,
and sliding mode control, were found throughout the revievprtovide improved dy-
namic stiffness. One robust technique that was absent fnenavailable literature was
Quantitative Feedback Theory. In this thesis the theak#tispects of dynamic stiffness

are studied, with a method for including dynamic stiffnesa iQFT design process pre-
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sented. The advantages of using a QFT approach to desigelimgjty and position loops

for improved dynamic stiffness are also examined.

Literature relevant to the analysis and control of torsionlarations was reviewed in
Section 2.3. It was found that this particular performamegthtion had received consid-
erable research attention over the past 50 years. Although of the reviewed literature
acknowledged the importance of treating motor-load cagslias non-rigid, the impact
of other drive train components was often neglected in ttadyaps presented. Also, the
standard model used by researchers was found to be an apptexiwo-body model. It
was shown that this ‘traditional’ two-body model had a méijoitation in that the inertia
of the motor-load coupling device is considered negligitbiecontrast, the coupling in-
ertia in practical machine tool drive trains can actuallygbée significant and, for some

drive configurations, can also vary with the load position.

Although many different approaches to controlling torsibwvibrations have been pub-
lished, particularly since the 1980s, these approaches feand to fall into three funda-
mental categories: 1. Conventional Control, 2. Higher oodatrol with feedback from
both the motor and load, and 3. Higher order control with gleifeedback device (usu-
ally attached to the motor). It was also found that existingiparisons between these
control approaches were very limited and had not been peddrover a wide range of
motor-transmission-load conditions. In this thesis adligh analysis of torsional vibra-
tions in machine tool feed drives is presented, along withraprehensive comparison of
the various approaches to controlling torsional vibragiorhis comparison includes con-
trol approaches that were developed as a part of this thdgmtations in the modelling
of machine tool drive trains are also addressed in thisshesih a new two-body model

that takes the inertia of the motor-load coupling device axtcount developed.

In Section 2.4, improved mechanical design was identified@most common technique
for reducing the effects of backlash. However, it was alamtbthat a large amount of
research into more cost-effective control solutions h&dnalace over the past 60 years.

The different control solutions identified throughout thierature review can be classified

43



as providing either ‘weak’ or ‘strong’ action during the k&sh phase. It was generally
found that the control solutions with a strong action wer@adilt to implement practi-

cally, due to either requiring excessive computationalgroov being based on unrealistic
system modelling. One important issue that was also idedtds being overlooked by
many researchers, is the fact that weak and strong contiiohacaddress different sys-
tem design specifications. While weak control action cary acldress the problem of
dynamic stability, strong control action is used to improe tracking performance of

systems with backlash.

The most common models for representing backlash in a systen® found to be the
hysteresis model and the dead zone model. It was shown tttabbthese models had
significant shortcomings in accurately describing badklageal systems. The hysteresis
model can only describe the relationship between the inpdibatput positions of a back-
lash element and not the transmission torque. While the dead model does describe
the transmission torque, it is only accurate when the inttetemping of the transmission
is zero. In this thesis a very clear and simple extensioneoddégad zone model is pre-
sented and shown to appropriately address the shortcormfripese common backlash
models. Further to this modelling contribution, a new apptoto controlling backlash
that combines both weak and strong action is presented.cbhisol approach is shown,
through both simulation and experimental application fteatively address both the dy-

namic stability problems and the tracking performance sfays with backlash.

The interaction between dynamic stiffness, torsionalatibns and backlash is also ad-
dressed in this thesis, with the final control solutions facheof these factors shown to be

affected by the others.
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Chapter3

Modelling of Machine Tool Drive Trains

3.1 Introduction

In general, there are two classes of mathematical modektdrabe used to describe a
non-rigid machine tool drive train: lumped parameter (gie) and distributed-parameter
(continuous) models. Discrete models consist of a discneteber of masses and springs,
where the masses are assumed to be rigid and the springseaibsube flexible but mass-
less. The number of masses in a system coincides with theerushdegrees of freedom
of the system. In a continuous model there is both mass affidess at each point and
these are distributed over the entire system. The inteoortp of such a system define
a domain (D), while the points on the exterior of D define tharmary (S). Since there
are an infinite number of points in D, a continuous system @aregarded as having an

infinite number of degrees of freedom [96].

One commonly used approach for the modelling of dynamicstesys is the Lagrangian
approach. The Lagrangian approach holds true acrossetiffepordinate systems and
provides a systematic method for handling a broad class ydipal systems, regardless
of their complexity [97]. Lagrange’s equations can be dstifrom any one of a number
of formulations of the fundamental laws of dynamics andailtih they are most com-

monly used for discrete system modelling, Lagrange’s egusican also be extended to
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continuous systems [96, 98].

d[dL oL
i log| oq = P S
where: L = T-V

Equation (3.1) is the standard form of Lagrange’s equationliscrete systems. In Equa-
tion (3.1),q, represents a generalised coordinate and L represents ¢nariggan. The
Lagrangian is a function of all the generalised coordinates generalised velocities of
the system and is equivalent to the difference between takkinetic energy (T) and the
total potential energy (V) of the system. Ardegree-of-freedom discrete system contains
n generalised coordinates. Lagrange’s equation must béedpjplr each of these coor-
dinates, resulting im ordinary differential equations of motion that completdscribe

the system.

As would be expected, the mathematical formalism for carirs systems is different
from that of discrete systems. Where the motion ohategree-of-freedom discrete sys-
tem is described by ordinary differential equations, the motion of continuaystems
is governed by boundary-value problems consisting of gladitfferential equations to be
satisfied over D and appropriate boundary conditions to bsfiga at every point of S
[96]. When using the Lagrangian approach for continuousesys, the partial differ-
ential equations to be satisfied over D are formulated tHrapmplication of Lagrange’s

differential equation of motion (Equation (3.2)).
oL o0 (oL 0% [ dL d (aL 0% (adL
5 oxlow) * oe (wr) o (3) Yo (5g) R0 62

In Equation (3.2)¢ represents a generalised coordinate amelpresents the Lagrangian
Density. The generalised coordindtg in a distributed system is a function of both the
spatial variabléx) and time(t). As such, the equations of motion for a continuous system
consist of partial-derivatives with respect to bathndt. In Equation (3.2), derivatives

with respect tax are denoted by primes/j and derivatives with respect toby over-
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dots @). As with the discrete case, the Lagrangian in a continugsem is equivalent
to the difference between the total kinetic energy and totééntial energy. However,
the Lagrangian for distributed systems consists of botmtary Lagrangians and the

Lagrangian density.

As discussed in Section 1.4.1, the major elements of mat¢boideed axes are most ac-
curately described by continuous models. However, whigeetthas been a great deal of
recent research on the topics of simulation and controéergmh for continuous systems,
these solutions are still regarded as complex and would edbhd most appropriate for
the systems considered in this thesis. In fact, in terms ofirately predicting the per-
formance of most machine tool feed axes, it is generally tmytotal system inertia and
the lower natural frequencies that are of practical con¢aiong with any nonlinearities
such as friction and backlash). For this reason, a two-bodgtehwould generally be
an acceptable approximation for many systems, as long asddel accounted for all
significant inertias and provided an accurate estimateefdWwest natural frequency of
the system. The problem with the traditional models useddoyossystem designers is

that they often do not meet either of these criteria.

In this chapter, the Lagrangian approach has been used ¢étopewnodels for linear feed
axes based on each of the four mechanical transmission meaofsintroduced in Chap-
ter 1. Using the basic motor-transmission-load system aartirgy point (Figure 2.1),
various discrete models have been derived and then compétethe continuous model
of the system. As a result of these comparisons, a new appataitwo-body model has
been defined, which provides far greater accuracy over a gidge of realistic motor-
transmission-load conditions than the ‘traditional’ tivoely model. In addition to the de-
velopment of the new approximate two-body model, this obregiso discusses the impact
of friction and damping in machine tool feed axes along wilkdrassing the non-linear
modelling of backlash. The modelling approaches presdmigd also been extended to
provide accurate models for each of the four mechanicakm@ésion mechanisms un-

der consideration. The final models take into account afliB@gant system inertias and
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lowest natural frequencies, along with friction, dampimngl dacklash.

In Section 3.2 the continuous model and various discreteetsdr a simple motor-
transmission-load system are derived. The discrete madelthen compared with the
continuous model, with the most accurate approximate nsadehtified and the most

appropriate model for controller design defined.

Section 3.3 discusses the impact of damping, friction ahératorque disturbances on
the system and the best ways of taking these factors intaiat@oany system modelling

and simulation.

A new backlash model is defined in Section 3.4. This new babktaodel addresses the
shortcomings of the common dead zone model and is shown tadilg mcorporated into

the approximate two-body models discussed in Section 3.2.

In Section 3.5 the basic approximate model, including argklash, damping, friction
and disturbance considerations, is extended to provideraiec approximate models of
the four most common mechanical transmissions currenty urs linear machine tool
feed axes. Sections 3.5.1, 3.5.2, 3.5.3 and 3.5.4 detagxtemnded models for direct
driven ballscrew, belt driven ballscrew, rack and piniod #inear motor driven systems

respectively.

Finally, Section 3.6 summarises the key points and cormhgsihat can be drawn from

this chapter.

3.2 Basic Motor-Transmission-Load Models

3.2.1 Initial System Models

Recall the simple motor-transmission-load system ilatsdl in Figure 2.1 and described

in Section 2.3. This simple system is used to develop thelsgsiem models and forms
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the basis for all of the extended modelling presented indihégpter. The equations of mo-
tion for the ‘traditional’ two-body model of this system aywen in Section 2.3 (Equations

(2.7) and (2.8)). If damping is considered negligible, thequations become:

Jmém = Tm—Ks(em—el) (3-3)
Jlél = Ks(em—el) (3-4)

Figure 3.1 illustrates the system of Figure 2.1, with th@draission shaft split into 4
equal sections. If the transmission shaft is uniform, edd¢he4 sections have identical

inertia (g = Jo = Jg = Jo = ).

Figure 3.1: Motor-Load System with a Multi-Inertia Transsion Shaft

For analysis, consider the shaft inertias to be lumped atémére of each section (as
indicated in Figure 3.1) and that all of the inertias in thetsyn are coupled by inertia-
less flexible elements. This system is described by six géised coordinatesd, 6,
O, B3, By and 6, whereby, is the absolute angular position of shaft inertig Jrhe

Lagrangian of this system is formulated as follows:

L = T-V

1J:0 1o 1k 1y
24 24652 24953+24954+ J'e'

—4K (B — 6s1)? — 2Ks(Bs1 — B)? — 2Ks( B — B3)?

—2Kg(B3 — Bs4)?2 — AKs(Os — 6))?

= Jm92 =02 +

Applying Lagrange’s Equation (Equation (3.1)), wih= 64
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00g 4%
d [ oL X

& o5 = g

oL
0064
Fo, = O
thus:
N B
2951 — 8K5(9m — 931) —|—4K5(931 — 952) =0

= X0 = 32Ks(Om— Os1) — 16Ks(Os1 — Bs)

Through a similar application of Lagrange’s Equation to titeer 5 generalised coor-
dinates, the dynamics of this ‘multi-body’ system can be plately described by six

equations of motion:

Inbm = Tm—8Ks(Bm—6s) (3.5)
X0 = 32Ks(6m— Os1) — 16Ks(6s — O) (3.6)
B = 16Ks(6s — Os) — 16Ks(Op — 6) (3.7)
X0 = 16Ks(6p— O3) — 16Ks(Os3 — Osy) (3.8)
X0y = 16Ks(O3— Os5) —32Ks(Oss— ) (3.9)

36 = 8Ks(6u—8) (3.10)

The equations of motion represented by Equations (3.5).1®}3an be generalised for

similar systems with the transmission shaft split inteections:

JOa = 2n°Kg(Bm— Bs) —n?Ks(Bs — OB)

Wbo = n?K(6s— Og) —Nn*Ks(B — Bs)

Jg = 2nKs(0sn — 6))
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For ann-sectioned transmission shaft, there mre2 equations of motion and the inertia
of each section is%s. A more detailed derivation of the six equations of motiontfee

4-sectioned transmission shaft of Figure 3.1 is given inexux B.

Figure 3.2: Motor-Load System with a Distributed Inertimaismission Shaft

Consider once more the simple motor-transmission-loatesysf Figure 2.1. In order
to derive a continuous model of this system, the transmmssiaft must be treated with
distributed inertia (as shown in Figure 3.2). In Figure 312 shaft flex @) is a function

of both the positionx) along the length of the shaft and tint¢. (The inertia and torsional
stiffness of the shaft are also functionsxpfwith 1(x) being the mass moment of inertia
density and GJ the product of the shear modulus (G) and the area polar moafen
inertia of the cross sectionx)( It should also be noted that L in Figure 3.2 is the overall

length of the transmission shatft.

If Lo and L_ are the boundary Lagrangiansxat) andx=L respectively, the Lagrangian

of the continuous system is:

L.
L = Lo+L|_+/ Cdx
0
where
Lo = To—Vo
1 -
= _‘1'1’]92(07t>
2
L, = TL-VL
1. .,
= ZJOALt
S8y
L = T-V
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1 . 1 /
- 3 (X)02(xt) — 5GIx)6 2(x.1)

| | L
L = %Jmez(o,t)+%J92(L,t)+%/() (1x)62(x.t) — GIX)8%(x,t)) dx

Applying Lagrange’s equation for distributed systems (&upn (3.2)), withg = 6:

oL
= —GJX)0'(xt)

&(W) = 5 (GIE (X))

S—'é = 1(x)0(x;t)
%(%) = 1(x)0(xt)
ALy

00

2 (oY _
oxot \ 90’ )

0 /
i (GIX)0'(x,1)) = 1(x)8(x,t) + Fg =0

thus:

(where R is a distributed Torque

The Boundary Conditions a0 andx=L are:

GJx)@'(0,t) = Jn6(0,t)

GJX)0'(L,t) = —30(L,t)

(3.11)

(3.12)

(3.13)

Equation (3.11) is the partial differential equation of roatfor the continuous model of

the system shown in Figure 2.1. Equations (3.12) and (31E3jh& boundary conditions

at x=0 and x=L respectively. Equations (3.11), (3.12) and3Btogether represent the
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boundary value problem for the continuous model of the systleown in Figure 2.1.

3.2.2 Natural Frequencies of Oscillation

When considering a simple motor-transmission-load systeentotal system inertia and
lowest natural frequencies are two of the highest practioacerns for control system
designers. Hence, any approximate model should take ictwiac all significant system
inertias and give an accurate prediction of the lowest ahtvequency of the system.
Although the ‘traditional’ two-body model does not take tin@nsmission inertia into
account, it is a fairly trivial task to slightly modify the rdel and include any significant
transmission inertia. Such modifications however, wileaffthe natural frequency of the
model. For this reason, the accuracy of the natural frequehany approximate model

can be considered to be one of the most important qualitidseahodel.

The first step in analysing the accuracy of any approximatdeaiis to compare the
natural frequencies of the approximate model with that efdbntinuous model. In order
to determine the natural frequencies of the continuous inthaieboundary-value problem
represented by Equations (3.11), (3.12) and (3.13) mustlved The solution of such
a boundary-value problem requires the solution of an aasatidifferential eigenvalue
problem consisting of an infinite set of eigenvalues andrdigections. However, the

eigenvalue problem of the continuous model must first bevddrbefore it can be solved.

To derive the eigenvalue problem, first let the distributedjie Fp in Equation (3.11)

equal zero — so that the transmission shatft is in free vilmati

‘;ix (GIXE' (%)) = 1(xB(x1), 0< x <L (3.14)

Hence, the free vibration of the transmission shatft is desdrby Equation (3.14) and the
boundary conditions of Equations (3.12) and (3.13). If agoh in the form of Equation
(3.15) is assumed, Equations (3.15), (3.16) and (3.17) easubstituted into Equations

53



(3.11), (3.12) and (3.13) to determine the characterisfiaéon of the continuous model.

B(xt) = OXF(t) (3.15)

where Kt) satisfies:

Ft) = —AF(t) (3.16)
and:A = w? (wis the frequency of oscillation
— BZGTJ (3.17)

Equation (3.18) is the resulting characteristic equatiaim® continuous model and must
be solved numerically fo. A complete mathematical description of the boundary value

problem and the derived solution is given in Appendix B.

BIm+d)
=

A f(x1)
X2 =x1-

f(x1)

Figure 3.3: lllustration of the Newton-Raphson Numericathbd
One common numerical method that can be used to find valugsisfthe ‘Newton-
Raphson’ method. The underlying principle of the ‘NewtoapRson’ method is that
tangent lines can be used to approximate the graph of a &mfs). For instance, if
r is a root of {x) = 0 andx; is an initial approximation of, the x-interceptx,) of the

tangent line’f(x;) is a closer approximation of(as shown in Figure 3.3). Similarly, the x-
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intercept of the tangent liné(k,) is an even closer approximationofThe continuation

of this process generates successive approximationshwbitverge at itself.

As there are an infinite number of roots to Equation (3.18)in&ral approximation of
the root corresponding to the lowest natural frequerlzy ¢an best be chosen through
an inspection of the graph of Equation (3.18). Once an ate@agproximation of3; is
determined, the lowest natural frequency of the continumeodel can be calculated using

Equation (3.17).

For approximate models, the number of natural frequensigspendent on the number of
bodies in the system. One of the most common methods usetktordiee the natural fre-
quencies of such discrete systems is an approximate metletbdolzer. This method
is based on the fact that an undamped vibrational systeniresqguo external torque to
vibrate at a natural frequency. For a multiple-body syst&msh as the 4 body system of
Figure 3.1, an approximate two-body model can be used to raakaitial estimate of
the lowest natural frequency. Holzer's method would thewlve an assumption that the
system is oscillating at the estimated frequency and tretdhd end of the system has
an angular amplitude of 1 radian. Since the torque neces$samprate the load has to
come from the inertial body that is immediately to the leftiod load (referring to Figure
3.1), the value of the torque and the angular amplitude dfiti@rtial body can be calcu-
lated. This process would then be repeated for each bodyedgytstem, until the input
torque of the motor is determined. If the input torque of th@anis zero, the estimated
frequency is a natural frequency. If the torque is non-zétve value of the torque can be
used to make a more refined estimate of the natural frequerttyh@ process repeated
until an acceptably accurate estimation is determinedakoore thorough description of

Holzer's method the reader is referred to [99].

A particular case of discrete model is the simple two-bodgehownhich has two degrees
of freedom and only one natural frequency. Although Hokzenethod is still valid for
the two-body model, the simplicity of the model allows foretact determination of the

natural frequency. One way of determining the exact natuegjuency of a two-body
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model is to determine the transfer function of the systenm winsmission flexd) as
output and equate this with the standard form of a second draesfer function. This
method of equating the system flex transfer function withstla@dard second order form
was used when determining the natural frequencies of ah®two-body approximate
models presented in Section 3.2.3, while Holzer's methosl wgeed for all of the higher

order multiple-body models.

3.2.3 A Comparison of Approximate Models

As the continuous model is considered to be the ‘benchmarkeims of accuracy, the
lowest natural frequencies of various approximate moaékhé simple motor-transmission-
load system of Figure 2.1) have been compared in terms af peecentage error from
that of the lowest natural frequency of the continuous modlbls comparison has been
performed over a wide range of realistic motor-transmis$oad conditions, with a total
of 11 approximate models considered. Of these 11 approgimatels, 4 are multiple-
body models, while the remaining 7 represent different jpbssariations of distributing
the transmission shatft inertia between the motor and laissif a two-body model. The
natural frequencies for the continuous model and all of fpr@ximate models were de-
termined using the methods outlined in Section 3.2.2. Thihemaatics package ‘Matlab’
was used to automate the numerical methods and calculataribes natural frequencies.

The Matlab functions developed for this task are given in émgix C.
The first four models considered are multiple-body modedsiéscribed in Section 3.2.1):

1. A‘'multiple body’ model with the transmission shaft spfito 4 equal sections.
2. A ‘'multiple body’ model with the transmission shaft sjtito 8 equal sections.
3. A ‘'multiple body’ model with the transmission shaft spiito 16 equal sections.

4. A multiple-body model with the transmission shaft spiiio 100 equal sections.
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Figure 3.4: Inertias and Compliance of Simple Motor-Traissmon-Load System

Each of the seven two-body models considered can be dedénlierms of Figure 3.4.
In this figure the simple motor-transmission-load systershiswn with a line indicat-
ing the centre of the transmission shaft. The transmisdiaft $ias been split into two
equal sections with half of the shaft inertia ‘lumped’ miéynbetween the centre of the
transmission shaft and the motor. The other half of the sheftia is ‘lumped’ mid-way
between the centre of the transmission shaft and the loadedah of the four inertias
shown in Figure 3.4,erepresents the compliance between the particular inertiatze

centre of the transmission shatft.
The two-body models considered are:

1. The ‘traditional’ two-body model. The inertia on the masade is ¢, and the inertia
on the load side is;J The transmission shaft is considered to have zero inektia (

= Jo = 0). The compliance between motor and load inertiag,ise.

2. Two-body model with transmission inertia equally distited between the motor
and load. The inertia on the motor side jg 3 Jn + J, while the inertia on the

load side isg=J + Jp and the compliance between the motor and load side inertias

isen+§g.

3. Two-body model with transmission inertia lumped at theéanoT he inertia on the
motor side is ¥ = Jn + 1 + Jo, the inertia on the load side isand the compliance

between the motor and load side inertiasyistes .
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4. Two-body model with transmission inertia lumped at thedloThe inertia on the
motor side is ¢, the inertia on the load side is 3 J + Jg + Jp and the compliance

between the motor and load side inertiasqistes .

5. Two-body model with transmission inertia lumped at bbh tnotor and load, but
distributed so that original motor-load inertia ratio isaieed. The inertias on the

motor and load sides respectively are:

Js1 +Je0
Jn+J

h+@)

) andJ =] <1+ 33

%A:Jm<1+

The compliance between motor and load side inertiag s @.

6. Two-body model with transmission inertia equally distited between the motor
and load sides. In this model however, the total inertia efrttotor side is lumped
at an effective position along the transmission shaft bagdtle relative sizes of the
motor and motor-side transmission inertias. The compédretween the new po-

sition of the motor-side inertia and the centre of the trassimn shaft is described

by:
_ Emdm + €s1Ja1
I+

Similarly, the total inertia of the load side is lumped at #fiecive position along
the transmission shaft based on the relative sizes of tliedod load-side transmis-
sion inertias. The compliance between the new positionefdad-side inertia and

the centre of the transmission shaft is described by:

:QJ|+esstz
I+l

Thus, the resulting inertia on the motor side g 3 Jn+ Js1, the resulting inertia
on the load side is|J= J + Jo and the compliance between the motor and load

side inertias is g +€|_.

7. Two-body model with transmission inertia distributedtlsat original motor-load
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inertiaratio is retained. However, like model 6, the totaltor and load side inertias
are lumped at effective positions along the transmissiaft ffased on the relative
sizes of the inertias involved. The compliance between e position of the

motor-side inertia and the centre of the transmission seakscribed by:

_ &mntegyJg

o In (Js1 + Jo0)
M Jm+JSl

where, & = i3

The compliance between the new position of the load-sidéiznand the centre of

the transmission shaft is described by:

eJ +egyJg,
= = == h =

J (Ja1+ J2)
Jn+J

The resulting inertias on the motor and load sides respagtare:

Ly kit (L Mk
= (14505 o= (10 35

The compliance between motor and load side inertiagjis-e,_.

A total of 6 different transmission elements have been ohetlin this comparison, with
the load:motor inertia ratio varied between 3 differenuesl (0.05,1,12) for each trans-
mission element. The particular transmission elementsdied in this comparison were
chosen to illustrate extremes in possible drive-train cuméitions. The first 2 were cho-
sen to represent both a very flexible transmission and a gtifftéransmission. The last
4 were chosen to represent realistic ballscrew configuratibat are commonly used in
machine tool feed drives. It is important to realise that load:motor inertia ratios are
often likely in ballscrew configurations due to the inhergaaring of the ballscrew. It
should also be noted that with torsional stiffness of bedias being variable, the cases
considered in this comparison are the most demanding asath&ysume the lowest pos-
sible torsional stiffness for each individual configuratige these comparisons are valid
for cases where the position of the load along each ballsigdwthest away from the

motor).
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The chosen transmissions are:

¢ A long thin transmission shaft (6mm diameter, 0.5m length),

e A shorter and thicker transmission shaft (20mm diamet&émQ@ength),

e A 16mm diameter ballscrew, 1m in length,

e A 25mm diameter ballscrew, 1m in length,

e A 25mm diameter ballscrew, 3m in length and

¢ A 50mm diameter ballscrew, 3m in length.
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Figure 3.5: Model Comparison

I 6mm/0.5m Shaft (1:0.05)
I 6mm/0.5m Shaft (1:1)

I 6mm/0.5m Shaft (1:12)
I 20mm/0.1m Shaft (1:0.05)
I 20mm/0.1m Shaft (1:1)
[ 20mm/0.1m Shaft (1:12)
[ 16mm/1m Ballscrew (1:0.05)
[ ]16mm/im Ballscrew (1:1)
[ J1emm/im Ballscrew (1:12)
[ ]25mm/im Ballscrew (1:0.05)
[ ]25mm/im Ballscrew (1:1)
[ ]25mm/im Ballscrew (1:12)
[ 25mm/3m Ballscrew (1:0.05)
[ 25mm/3m Ballscrew (1:1)
I 25mm/3m Ballscrew (1:12)
I 50mm/3m Ballscrew (1:0.05)
I 50mm/3m Ballscrew (1:1)
I 50mm/3m Ballscrew (1:12)

The results of the approximate model comparison are showigure 3.5. In this figure

the percentage error of the lowest natural frequency, foh eaotor-transmission-load
condition, has been graphed for each of the approximate Is\o@lee continuous model

has been used as the benchmark when calculating the peyeesttars. Although the

percentage errors for some cases were much greater thantb@¥ertical (y) axis in

Figure 3.5 was limited to 50% to allow for an easy compariseimvieen the models.
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From the results shown in Figure 3.5, it can be seen that thphedbody models show
a consistent improvement in accuracy with the increasedoenf sections used (as ex-
pected). However, it was not until the number of sections imaseased to 100 that a
percentage error of less than 1% was achieved under all ftratsmission-load condi-
tions. Of course, an approximate model with over 100 sestman be as difficult for

control system designers as the continuous model itself.

The ‘traditional’ two-body model (Two-Body 1) showed higbcaracy when the inertia
of the transmission element was very small, while the acyureduced as the inertia of
the transmission element became more significant. In fach ef the two-body models
showed reduced accuracy as the inertia of the transmiskioreat became more signif-
icant, particularly in the important ballscrew cases wheeeload inertia was relatively
small. In some cases the percentage errors were much moréhhaxis limit of 50%,

with errors of up to an order of magnitude higher recorded.

In general, it can be seen that ‘Two-Body 2’ and ‘Two-Body @&re the most accurate
two-body models over the entire range of motor-transmis&ad conditions. In partic-
ular, “Two-Body 6’ was the only two-body model that had a gertage error of less than
10% under all motor-transmission-load conditions. Alsbyo-Body 6’ was the only
model that had percentage errors less than that of thetivadl’ two-body model un-
der all conditions (including all of the multiple-body mdsle When further comparing
“Two-Body 6’ with the multiple-body models, it was found thander some conditions
“Two-Body 6’ was more accurate than all of the multiple-badgdels. However, like the
other two-body models, this accuracy reduced as the ingfrtiae transmission element

became more significant.

For control system designers, the overall modelling gotd rminimise complexity while
still accurately accounting for any significant inertiaslaeasonances in the system. From
the results presented in Figure 3.5, it can be seen that aw&dtructed two-body model
is the most appropriate choice in meeting this goal. If tla@gmission element has a

very low inertia (such as a belt), the traditional ‘two-bodyodel with an inertia-less
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transmission is a simple and appropriate choice. Howek#ngitransmission element
has significant inertia (such as many ballscrew cases)tamative two-body model that
takes the inertia of the transmission element into accoulhtalways provide a better
representation of the total system inertia. The choice arelho ‘lump’ the transmission
inertia though, has a very significant influence on the aoyucé the natural frequency
estimates. The most accurate two-body model in terms ofustog for both significant
inertias and resonances in the system, was found to be “Tedy-B’. This model equally
distributes the transmission inertia between the motol@ad sides and uses an adjusted
system compliance based on the relative sizes of all indadies. This model is a much
more accurate standard for modelling than the ‘traditioiwed-body model and can be
used for developing more complicated system models. Thnouwithe remainder of this
thesis, ‘Two-Body 6’ is referred to as the ‘adjusted’ twadiganodel. The equations of

motion for the ‘adjusted’ two-body model are given by Eqoas (3.19) and (3.20).

2Tm

20+

B { 4Ks(2] + X)
8Jnd +3%(In+J) +

ém:

Jg} (6m—6) (3.19)

. 4Ks(2dn+ Js) B
4 = l8m+3JS<Jm+J>+J§} (bh—6)

(3.20)

3.3 Damping, Friction and General Torque Variations

The modelling presented in Section 3.2 assumed any frigmhinternal damping in-
herent in the transmission element to be negligible. Initseadll machine tool drive
trains have internal damping in the transmission elememdsgaite significant friction.
In general, the friction in a drive train is much more sigrafic than any internal damp-
ing associated with the drive train materials. Howeverpgate friction models are very

non-linear and make up a large independent area of acadardic s

Since non-linear friction models are not the main topic @ thesis, only coulomb and
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viscous frictions are considered as specific frictionahem the standard system models.
Internal damping of the transmission elements is also densd as a specific term in the
standard models; however, all other losses are treatednesajeorque disturbances. If
coulomb friction, viscous friction and internal dampingtbé transmission are included

in the ‘adjusted’ two-body model, the equations of motiondree:

M 23+ X
_[ 4Ks(2] + ) ](9 _a)
8nd +3%(dn+d)+ 2]
R St w3 (5.21)
. 4Ks(2dn+ %) } B
4 = {8JnJ.+3Js<Jm+J|)+J§ (8= 8)
2G . 2B ; 2T¢q
R ER ALV E e i (822

In Equations (3.21) and (3.22),s@ the internal damping coefficient of the transmis-
sion element, while B and B are the viscous friction coefficients andgh and T;y are
coulomb friction constants at the motor and load ends of ridwestmission respectively.
Since friction, other than coulomb and viscous, and otheyue (or force) disturbances
are also very significant in most machine tool feed axes, gptetenmodel should take
these disturbances into account. Of particular signifieare the cyclic rotational distur-
bances discussed in Section 2.1. It has been shown that mamgse disturbances can
be quantified through a study of periodic torque/force emes on a machine tool axis
[100]. This useful information about a mechanical systemlo&a obtained by recording
drive torque (or force) as a function of position (not timéy.Fast Fourier Transform
(FFT) can be taken for torque/force values recorded at Bgsjgaced position intervals,
transforming the signal from the position domain to the Ipos frequency domain’.
The resulting ‘position frequency’ spectrum will normahgve a relationship to various

components in the machine tool drive train.
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If T pos(0) is a general function for system torque disturbances(is the fundamental

angular position frequency (in cycles/revolution), theiffer series describingpbs(0) is:

Tpos(0) = ancos(nQo) + Z bnsin(nQob) = z cnelNf (3.23)

n=—oo

%
2 "

s

Normally, the periodic torque/force data for an axis is rdea while the axis is running at
a constant velocity. Hence, the DC component of the FFT is&vatpnt to the combination
of coulomb and viscous frictions, while the remaining spattis associated with cyclic
torque disturbances. Through the recording of periodiquefforce data at a number
of different velocities, the viscous friction componenhdae determined and extracted
from the combined DC friction value. This process of det&ing the position frequency
spectrum of a machine tool axis is known as the study of Rwsiliependent Torque (or
Force) Variations (PDTV and PDFV). For a complete treatnoé®DTV and PDFV the

reader is referred to [101].

Equations (3.24) and (3.25) represent the new equationotbmwhen the ‘adjusted’
two-body model is extended to include general periodicuerdjsturbances (as described

by Equation (3.23)) at both the motor and load ends of thestréssion.

% N
B 4Ks(2] + ) (6n—8)
8Ind +3%(m+ )+ 2] "
. 2Cs (9 —él)— ZBm A 2chm
23 kM 2+ " 230+
2 inQo6m
_ Tk nzz_oo Chm€ (3.24)
. 4Ks(2dn+ Js)
= [ -
4 8Jnd +3%(In+J) + 2 (6n=8)
2C . 2B, ARE
2J+Js<6m a)_2~1+Jﬁ_2~1+1§
inQo6
2J+an_zm - eln®o (3.25)
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3.4 Backlash

In Section 2.4.2, several different methods for modelliaghtash in a two-body system
(as depicted by Figure 2.2) were discussed. Of these methueistandard dead zone
model was shown to provide an accurate representation &fdsicwhen internal damp-
ing of the transmission element is negligible. However, wirgernal damping of the

transmission element is significant, the dead zone model dokaccurately predict loss

of contact at the backlash element.

An alternative backlash model, for the two-body system ctepli by Figure 2.2, was

suggested by Nordin [40] to address the shortcomings oféhd done model. The Nordin
model is represented by Equations (2.15) to (2.18) and wada@j@ed using a phase plane
analysis based on the exact expression for transmissiqudan a two-body system with

backlash (Equation 2.11). Nordin defines the caseight contact’ as being wher@g_ =

a and6g_ = 0. Similarly, the case ofié&ft contact’ is defined as being whefg. = —a

and6g_ = 0. These definitions, together with Equation (2.11) give:
Forright contact: Tirans > 0= Tirans = Ks(Bg — O) + Cséd >0 (3.26)

Forleft contact: Tirans < 0= Tirans = Ks(6g+ a) + Cséd <0 (3.27)

The phase plane plot shown in Figure 3.6 (a) is claimed by iMdalbe an exact repre-
sentation of the physical model of the system and is basedjoations (3.26) and (3.27).
The areas in the phase plane plot of Figure 3.6 (a) are defin&dbations (3.28), (3.29)
and (3.30) [40]. The borders separating each area of Figér¢a} have a gradient of
-K¢/Cs. Hence, for the case where (S zero, the phase plane plot of the physical model

is equivalent to the phase plane plot of the dead zone mdualivsin Figure 3.6 (b)).

A = {(64,60):KsBy+Csby > Ksax (3.28)
A = {(64,60): |KsBu+Csba| < Ksar (3.29)
A = {(Qd,éd) : K56d+Cs(9d < —Ksa (3.30)
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Figure 3.6: Phase Plane Plots [40]

With reference to the phase plane plot shown in Figure 3,8N@)din states that there can
be persistent right contact only in,Aand persistent left contact only in.A Also, when

an initial state @y, 84) lies within A, right contact will remain until the stat@{(t), B4 (1))
leaves A . Similarly, if an initial state @y, éd) lies within A_ left contact will remain until
the state §q4(t), Od(t)) leaves A . Hence, contact (either left or right) is only released

when the state reaches the ‘release sef{48].

One important issue relating to the phase plane plot of Ei§u (a) is that it appears to
be possible for a state to lie within the Aarea wherBy < a. Similarly, it appears to be
possible for a state to lie within the_Aarea wher8y > —a. The problem with these two
situations relates to Equations (3.26) and (3.27), whichghase plane plot is based on.
Recall from Section 2.4.2 th&; is equivalent to the addition of the shaft flef) and
the backlash angledg, ). Equation (3.26) is only valid whefs, = a andfg_ =0, so if a
state lies within the A area wherfy < a: Equation (3.26) implies thas has to be less
than 0. However, it is not physically possible for the systerbe in right contact when
6s < 0. Similarly, Equation (3.27) is only valid wheiy, = —a andGBL =0, so if a state
lies within the A_ area wher6y > —a: Equation (3.27) implies tha has to be greater
than 0. Again, itis not physically possible for the systerhéan left contact whe#fs > 0.

The reality in both of these situations is th # +a and hence, Equations (3.26) and
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(3.27) are not valid. For this reason the phase plane plotshio Figure 3.6 (a) is not

actually an exact representation of the physical model®tistem.

&

rad/s
Q

o 5 &

rad

(a) Adjusted Backlash Model

Figure 3.7: Adjusted Phase Plane Plot

An adjusted phase plane plot that accounts for the physioéhtions of Figure 3.6 (a)
is shown in Figure 3.7. In this plot, the backlash elemenefinéd to be irright contact
whenever a statéfqy, 8y) lies within the A" area. Similarly, the backlash element is
defined to be ifeft contact whenever a statédy, éd) lies within the A~ area. Hence,
the backlash element is in non-contact whenever a §6atéy) lies within the A area.
This adjusted phase plane plot can also be used to describe dactklash model that
addresses the shortcomings of previous models, yet is desarfension to the common
dead zone model. The new backlash model is represented lati&omi (3.31) to (3.34)
and like the Nordin phase plane model, the new model redodbe tstandard dead zone

model when internal damping of the transmission is zero.

Ks(Bg— ) +CsBy (B4,04) € A
Tirans = 0 (64, Qd) e A0 (3.31)

Ks(ed + CY) + Cséd (Qd, Gd) eA”
where:

. 6y > a éd >0
AT = (64,60 o (3.32)
Ks(Bg—a)+Cs63 >0 64<0
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Ap

) 6y < —a QdSO
= (64,60) . .
Ks(Bg+a)+CsBy <0 64>0

= (6g,6q)\(ATUA")

(3.33)

(3.34)

Since Equations (3.31) to (3.34) represent backlash in ebtvaty system, this new back-

lash model can easily be included in an extension to the &elll two-body model (de-

veloped in Section 3.2). Equations (3.35) to (3.41) reprede new equations of motion

when the ‘adjusted’ two-body model is extended to includnlgeneral periodic torque

disturbances and backlash.

ém:

where:

Ttrans

[ee]

2
2dn+Js

2
2] +Js

N=—o0

Ttrans — BIél —Tta — Z Cnl eano&]

N=—o0

KSadj(Gd—a)+Cséd (Qd,éd) c A"
= 0 (Qd,éd) e Al
Ksadj(Ba+ @) +CsBy (64, 6a) € A

and:

K sadj

¢
. 6y > a QdZO
= (64,64): . .
KSadj(Qd—a)—l—CsedZO 64 <0

. 6y < —a éd <0
= (6q4,6q):

KSadj(9d+a)+Cséd <0 éd >0
\
= (64,64)\(ATUA")

2Ks(2In+J)(23 + %)
8nd +3%(In+3) + 2
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3.5 Models for Common Drive Train Configurations

The simple motor-transmission-load systems shown in Eg@rl and 2.2, allow for con-
centrated analyses on the individual factors that are krtovimit the performance of a
machine tool axis. Although these systems are simplifiezy; tto form the basis of many
common drive train configurations. Similarly, the ‘adjubtivo-body model, in both its
standard and extended forms, can be used as a basic buildakgindeveloping accurate
models for many drive configurations. In this section, aateiapproximate models of the
four most common drive train configurations currently usetinear machine tool feed

axes are developed.

3.5.1 Direct Drive Ballscrew Axes

Consider a directly driven ballscrew as shown in Figure 3l8is configuration consists
of a rotary motor directly coupled to the ballscrew, prodgciinear motion at the load
end. It is clear to see that this configuration is almost idahto the simple motor-
transmission-load system with backlash (as shown in Figu#e The ballscrew forms
the transmission element and there is a source for possiblddsh between the ballscrew
and the ballscrew nut (attached to the load). With this systes load inertia is dependent
on both the mass of the load and the gearing ratio of the ballscAlso, the torsional

stiffness of the transmission {Kis now a function of the load positiox)(

Load
Motor (T

Iﬂ)
™ N A
| Ny »
' ‘L

Figure 3.8: Dynamics of a Directly Driven Ballscrew

For the directly driven ballscrew system of Figure 3.8, lgt be the overall length of the

ballscrew, gs the total inertia of the ballscrew, Ks the torsional stiffness of the entire
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ballscrew, Bsthe pitch of the ballscrew and Mhe mass of the load. Ifitis assumed that
flexing of the ballscrew only occurs between the motor and,ltd@& remaining ballscrew
inertia can be lumped with the load. For the case where dri¢tgeneral torque distur-
bances and backlash are considered negligible, the ‘adjusto-body model represented

by Equations (3.19) and (3.20) are valid with the followingpstitutions:

Ks = KSB;S(LBS (3.42)
1 = JLB_SX (3.43)
BS
g = Ty (3.44)
Pss
3 = (Pes) iy (Feslles—x) (3.45)
! 21 L LBS .

Since the torsional stiffness (K the transmission inertia {Jand load inertia (J are
now functions of the load position, it is clear to see thaerewith backlash considered
negligible, this system is non-linear and the resonantukeegies will vary with the load
position. This extended model, although non-linear, candesl to accurately simulate
the system and the given substitutions provide all necgssrmation to predict the
parameter variations likely to occur. Hence, this extersystiem model provides accurate

information for developing a robust control solution.

Similarly, if friction, internal damping, general torquestirbances and backlash are con-
sidered to be significant, Equations (3.35) to (3.41) foraeaplete two-body model are
valid with the same substitutions given by Equations (3t42)3.45). In this complete
model any linear friction at the load needs to be translatemrotary terms and lumped
with B; and T;q. The defined backlash gap @fa remains valid and refers to the angu-
lar displacement that is traversed by the ballscrew (in efir@ction) before coming into

contact with the ballscrew nut.
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3.5.2 Belt Driven Ballscrew Axes

The belt driven ballscrew is a slightly modified ballscremfiguration that consists of a
rotary motor coupled to the ballscrew via a belt, as showngaoie 3.9. This configuration
is commonly used in machine tools as a space saving meastnite e characteristics
of the ballscrew are the same as the directly driven modgInfjeof the coupling between

motor and ballscrew is now significant.

Load

Figure 3.9: Dynamics of a Belt Driven Ballscrew

Since there are two non-rigid transmission elements in yiséem of Figure 3.9, three
equations of motion are required. Although the flexing artdrimal damping of the belt
are significant, the inertia of the belt can be consideredigibte. Also, along with any

backlash associated with the ballscrew, there are extraca®wf possible backlash at
both the motor and ballscrew ends of the belt. However, thesdacklash sources (at
each end of the belt) can be treated as a single backlashrglandescribed by a single
backlash gap. The complete equations of motion for the belen ballscrew system,

including friction, internal damping, general torque drtances and backlash, are:

. 1 . o0 .
Om = I Tm— RmFpit = Bmbm—Ttem— Z Cnmejngoem] (3.46)
N=—oo
6p = 2 RpFoit — Ths — BpBp — Ttep — g Cnpe! "0 (3.47)
23+ % 2
) 2 . e .
6 = 57 % Tos—BIO—Tra— 3 Cnle‘ngoe'] (3.48)
n=—oo
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where:
e Jy is the combined inertia of the motor and the motor pulley,

Jp is the inertia of the pulley driving the ballscrew,

Rm is the radius of the motor pulley,

Rp is the radius of the pulley driving the ballscrew,

By is the absolute angular position of the pulley driving thisoaew,

Fuit is the linear force transmitted through the belt and

Tys is the torque transmitted through the ballscrew.

In Equations (3.46), (3.47) and (3.48), the valugsB) and J are subject to the same
substitutions as in the directly driven ballscrew case ddiesd by Equations (3.43) to
(3.45)). Also, the torque transmitted through the ballacf€ys) is defined by Equations
(3.37) to (3.41), wherefans = Tps, O = Os, Jn =Jp and Ks is subject to the substitution
described by Equation (3.42). Power is transmitted linetmough the belt, with the
belt stiffness coefficient (i) and internal damping coefficient {) both defined in

terms of linear force. Hence, if the backlash gap in the baftdmission-ay;) refers to

the angular displacement that is traversed by the motoia@h direction) before the belt
comes into contact with the pulleys, the linear force traittsah through the belt can be

described by:

Kepit (Xd —Xa) +CepitXd  (Xd, Xd) € AT

Fot = 0 (Xg,%q) € A° (3.49)
Ksoit (Xd +Xa ) + CspitXd  (Xd,Xd) € A~
and:
4
. Xd > Xa X4 >0
AT = (Xd, %) ! _ _ (3.50)
\ Ksolt (Xd —Xa) + CepitXd > 0 Xg <O
>
_ . Xd < —Xa X4 <0
AT = (Xd,Xd): _ _ (3.51)
Ksoit (Xd +Xa) + CapitXd <0 Xg >0
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A = (xg,%1)\(ATUA") (3.52)

Xa = Rm0pit (3.54)

3.5.3 Rack and Pinion Driven Axes

Consider the rack and pinion drive configuration shown iruFeg3.10. This configuration
usually consists of a rotary motor directly coupled to th@gm, producing linear motion
along the length of the rack. In this configuration torsiosté#fness of the motor/pinion
coupling is a constant. As such, it can easily be describéerms of Equations (3.35) to

(3.41).

Pinion

Figure 3.10: Dynamics of a Rack and Pinion

The most important point to note about this configuratioh# the load inertia is depen-
dent on both the load mass and the gearing ratio of the raclpianeh. For the system
shown in Figure 3.10, let be the absolute linear position of the pinion on the radke

the radius of the pinionpjy be the inertia of the pinion and Moe the mass of the load.
Further, let the backlash gag @) refer to the angular displacement that is traversed by

the motor (in each direction) before the pinion comes intatact with the rack. Hence,
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for this system Equations (3.35) to (3.41) are valid withfihllowing substitutions:

6 — ; (3.55)

J = Jpn+Myr? (3.56)

Unlike the two ballscrew configurations, it can be seen thatftexing of the rack and
pinion can be described linearly if backlash is consideregligible. However, backlash

is often very significant in rack and pinion drives.

3.5.4 Linear Motor Driven Axes

Finally, consider the linear motor configuration shown igue 3.11. Unlike all of the
rotary motor driven configurations, the linear motor diledrives a linear machine tool
feed axis and does not require a mechanical transmissiohanestn. The moving part
of the linear motor is always attached directly to the load as such, the system can be
appropriately described as having only one degree of freeddnis direct drive approach
also eliminates any backlash in the system. For these readon‘adjusted’ two-body
model and new backlash model developed throughout thistehape not required to
accurately describe the motion of a linear motor axis. Haxegviction and linear force

variations are still significant.

Moving Block (M)

. \ - S =t — S
L L= = \ | y
S S 7 M k
= —
——

Figure 3.11: Dynamics of a Linear Motor Driven Axis

For the linear motor system of Figure 3.11, ¥ebe the absolute linear position of the

motor and M be the combined mass of the motor and load. Heémeeguation of motion
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for this system including friction and general periodicdewariations is:

L
M

X = Fm—BX—FfC— Z CneanOx (357)

N—=—o0

In Equation (3.57), k; represents the constant coulomb frictional force @gdepresents

the fundamental position frequency. As with the rotary maases, the fundamental
position frequency is expressed in cycles per revolutiooweler, for the linear motor
one revolution is defined as the linear distance travellecthdwne electrical cycle of the

motor.

3.6 Conclusions

Mathematical models for linear feed axes of machine tooleweveloped in this chap-
ter. Initially, a model for a simple motor-transmissioratbsystem was developed, with
descriptions for friction, damping and backlash subsetjpedded to improve the accu-
racy of the model. The complete motor-transmission-loadehwas then extended to
accurately describe the direct driven ballscrew, beltadrigallscrew, rack and pinion, and

linear motor driven axis configurations.

In Section 3.2 the Lagrangian approach to modelling was tesddtermine both discrete
and continuous models of a simple motor-transmission-gyatem. The lowest natural
frequencies of 11 approximate discrete models were themaoed with that of the con-
tinuous model of this system, over a wide range of motorstm@iasion-load conditions.
It was found that the lowest natural frequency of the traddi two-body model, used
by most researchers, had a percentage error (with refeterthe continuous model) of
greater than 50% under some common motor-transmissiahdoaditions. Although
models with increased degrees of freedom were shown to wepte accuracy, it was
found that approximately 100 degrees of freedom were requo achieve a percentage
error of less than 1% over the entire range of motor-transionisload conditions consid-

ered.
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A total of 7 different two-body model configurations were luded in the comparison
presented in Section 3.2. In one of the two-body model cordigans the inertia of the
transmission element was equally distributed between titemand load sides, with the
system compliance adjusted with respect to the relativessot all inertial bodies. This
particular configuration was found to achieve a percentage ef less than 10% over the
entire range of motor-transmission-load conditions aber®d. The same configuration
was also found to be more accurate than the traditional way-lmodel under all of the
conditions considered, and even more accurate than alkedfitther degree of freedom
models under some of the conditions. Since the modellingfgwa a control perspective
is to minimise the complexity of the model, while accuratatcounting for significant
inertias and resonances in the system, this ‘adjusted’tody model was identified as

the most appropriate choice for modelling a simple motangmission-load system.

The ‘adjusted’ two-body model was extended in Section 3.Bi¢tude simple expres-
sions for damping, coulomb friction, viscous friction anehgral torque disturbances. A
Fourier series was used to describe the general torquelshsites in this extended model.
Practical values for this Fourier series can be determisgtguhe PDTV method, with

the resulting position frequency spectrum representirgumvariations in the system.

In Section 3.4 a new model for accurately representing lbabtkh a two-body system was
developed. This new model was shown to provide a simple gh¢igar of backlash, while

addressing the shortcomings of previous backlash modelsiad also shown that the
‘adjusted’ two-body model from Section 3.2 could be easiieaded to include this im-

proved description of backlash. This complete two-body ehpdovides dual advantages
over previous descriptions of systems with backlash, witingroved representation of
the backlash element itself and a more accurate predictitreaesonant frequencies of
the system. This dual advantage is quite significant as taegds in inertia experienced

in a system with backlash can be a source of excitation fadesysesonances.

In Section 3.5, the complete approximate model for a simpdortransmission-load

system was used to develop new models for common machindtiwelconfigurations.
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The drive configurations modelled in this section were threadidriven ballscrew, belt
driven ballscrew, rack and pinion, and linear motor confgjons. These complete drive
train models take into account each of the factors desciibdus chapter, and are used
throughout the remainder of this thesis to accurately madeilal linear and rotary drive

axes.
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Chapter I

Experimental Equipment

4.1 Introduction

The control schemes developed and analysed in this theséstested on specially con-
structed experimental test-beds. In total there were ttastebeds used throughout the
research: i) a simple rotary motor-transmission-loadbest, ii) a single linear axis test-
bed driven by a rotary motor that can be coupled with eithealéstrew or rack and
pinion, and iii) a high precision linear motor driven singleis test-bed. The combina-
tion of these four test-beds allowed for comprehensivengstf all four of the common
drive train configurations, along with the effects of eackhafthree performance limiting

factors considered in the research.

The overall automated control of each of the four test-beals mandled by a typical in-
dustry CNC system. The CNC system consists of a servo powwphsuwo digital servo

drives, an input output unit and safety stop unit. These anmapts are all mounted on
a light steel frame, with castors for mobility. The CNC sddte is run on a standard
personal desktop computer. Communication between théatiggrvo drives, the input
output unit and the desktop computer is handled by SERCO84|SEeal time COm-

munications System). SERCOS is based on the internati¢aatiard IEC 1491 and

exchanges data via a fibre optic ring. This CNC system isyeasiffigured and tuned
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for different test-beds via a database system, providingxbie solution for testing the

same control schemes on the four different test-beds.

The specific details of each of the four test-beds and the-dewel control scheme of the
CNC system are discussed in this chapter. System paranaetedetermined in order
to describe each of the test-beds in terms of the drive traidets developed in Chapter
3. Since the drive-level control scheme of the CNC systenoisroon for all four test-

beds, an analysis of this control scheme is presented fiSéation 4.2. In Section 4.3
the details of the simple rotary motor-transmission-logstem (Motor-Transmission-
Load Test-Bed) are discussed, with the mechanical parasnaftéhis test-bed presented.
Section 4.4 presents the details of the single linear axas ¢an be driven by either a
ballscrew or rack and pinion (Drive Comparison Test-Bed)ilevSection 4.5 describes
the single axis linear motor driven test-bed (Linear MotesffBed). Finally, Section 4.6
summarises the key points and conclusions that can be drawnthe details presented

in this chapter.

4.2 CNC Control Scheme

As mentioned in Section 4.1, the control of each of the trestlbeds used throughout this
research was handled by the same CNC system. Although dudivgains and settings
need to be adjusted for each of the test-beds (easily handleddatabase system on the
CNCQC), the overall drive-level control strategy is commonitiAbrushless servomotors
used to drive each of the different mechanical configuratitime digital servo drives of
the CNC system were configured to control the output torquéofce in the case of the
linear motor) of these servomotors. It is this motor torgoieforce) that is the driving

input in all of the system equations developed in Chapter 3.

Although brushless servomotors are often labelled as tdess DC’ motors or ‘Brushless
AC’ motors, the standard construction of these motors ietham that of a permanent

magnet synchronous motor with continuous rotation obthlmecontrolling three-phase

80



current flow in the stator coils. For a rotary brushless saotor, maximum torque is
maintained by monitoring the rotor position and contrglthe three-phase stator currents
to produce a resultant MagnetoMotive Force (MMF) that issglsvat a 90 degree angle to
the permanent magnet rotor MMF [8]. Bfis defined as the angle between the stator and
rotor MMFs, the three phase stator currents can be desdoypedstator current phasor
referred to the rotor:

ie 1P =i+ jig (4.1)

In Equation (4.1)j4 (direct axis current) is the component of the resultingostatirrent
phasor that is parallel to the rotor frame of referenceigiiguadrature axis current) is the
component of the resulting stator phasor current that igepeticular to the rotor frame of
reference. It follows thaty must equal zero for maximum torque to be maintainge-(

90°). In the case wherig does equal zero, the torque of a rotary brushless servornsotor

described by [8]:
T = <E> la 4.2)

In Equation (4.2)Z is the total number of stator conductogsjs the magnetic flux and
iq is the quadrature axis current. SinZenever changes in a finished motor and the
magnetic flux is determined by the motor dimensions and thie stff magnetisation, a

torque constant can be defined for brushless servomotors:

Z
Ki = (E_{)(P

and hence: f = Kiig (4.3)

From Equations (4.1) and (4.3) it can be seen that, as longeaditect axis current is

controlled with a set point of zero, the torque developedrotary brushless servomotor
is proportional to the quadrature axis current. For a besshlinear motor the linear force
is developed in the same manner; however, in a linear mot®the permanent magnets
that are often stationary while the motor coils move lingatbng the axis. In this case,

it is the position of the moving coils that must be monitore@nsure that the two MMFs
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are always at 90 degrees. The overall drive-level contioése of the CNC system is

illustrated in Figure 4.1.

CNC Position & Velocity

Drive |
M» Pos & Vel — (4 3 Phase T 0w 6,0
Controllers = Current | V(s) PWM —— | Motor m__, |Drive Train >
A Controller & Sensors
A Supply
Coil
Currents
ls
0— - Commutation
|q Control
T(—)
m

Figure 4.1: CNC Digital Servo Drive — Control Diagram

In Figure 4.1, the input is a stream of position and velocynmands from the CNC

motion control software and the output is the actual pasitind velocity of the overall

drive-train system sensed at the motor and/or load. Th&dhlalue arrows in Figure 4.1
represent the flow of multiple system signals, while the blagows represent the flow
of individual system signals. The drive position and velpcontrollers are embedded in
the CNC drive code and output a reference control curreq? flepresenting the desired
motor torque. The current controller is a Pl regulator whid dutput described (in Laplace

Transform notation) by Equation 4.4.

V(s) =Kp <1+ %S) (Iret () = Ib(s)) (4.4)

In Equation 4.4, {y is a function of both{ and . However, since the set-point fog |
is zero (as shown in Figure 4.1),lis approximately equivalent tg.l The output of the
current controller is a voltage command that is applied ®ttiree-phase Pulse Width
Modulated (PWM) supply, which feeds the servomotor. Theilteg®gy coil currents in
the motor are sensed, with the actual motor position and armdation routine used to
determine thed and y components. The output from the motor is a torqug)(@sed to

drive the mechanical transmission and load (drive train).

From Equation (4.3) it can be seen that the feedback systétigofe 4.1 reduces to the
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simplified system illustrated in Figure 4.2, whé&g(s) = l:zf(a) . Hence, if the closed loop

transfer function with & as input andd as output is known, the entire current control

system including the PI regulator, drive electronics aérimal motor components can be

represented by the single bloBkG(s).

CNC Position & Velocity
Command Stream

|
— R e | Pos &Vel —<p KG(s) L

Controllers

T

Figure 4.2: CNC Digital Servo Drive — Reduced Control Diagra

DIfivE T Drive Train 0,0,,0,0,

& Sensors

In both of the rotary motor driven test-beds, which are dised further in Sections 4.3
and 4.4, the same brushless servomotors (Siemens 1FK@HE2tHwere used. For this

reason, the overall CNC drive/servomotor current respantee same for both of these
test-beds. In order to model the current control systenpsed loop frequency response

of this system was measured on the CNC and is shown in Fig8re 4.

Closed Loop Response — Current Control (Siemens Rotary Motors)

-10}

-15¢+

Gain Magnitude (dB)

-20F

Measured Response

251 Modelled Filter

-30 . p
10 10 10
Frequency (Hz)

Figure 4.3: Rotary CNC drive/servomotor Current Response

The solid blue line in Figure 4.3 is the measured respong8.(d) when the CNC is
coupled to the rotary servomotors. The solid red line is ésponse of a simple second-

order filter that was used in this thesis to mo@g(s). It can be seen from Figure 4.3 that
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this simple filter provides a very close approximation of élséual system response. The

transfer function of the simple filter model is given by Eqoat(4.5).

5654

CelS) = g 241051 5652

(4.5)

Given that the Siemens rotary brushless servomotors hawejaet constani; = 1.18,

the overall current control system can be described by Eruét.6).

_ 1.18(5654)
- S +44105+ 5654

— = K;G¢(9) (4.6)

The linear motor test-bed was driven by a linear brushlesgos®tor (Linear Drives
LD3806). In order to model the linear CNC drive/servomotarrent control system, a
closed loop frequency response of the system was again neelasn the CNC and is

shown in Figure 4.4.

Closed Loop Response — Current Control (Linear Motor)
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Figure 4.4: Linear CNC drive/servomotor Current Response

The solid blue line in Figure 4.4 is the measured respong8.(f) when the CNC is
coupled to the linear motor. The solid red line is the respafsanother simple second-
order filter that was used to mod@t(s) for the linear motor case. It can be seen from

Figure 4.4 that once again the simple filter provides a veogeclapproximation of the
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actual system response. The transfer function of the siifilpde model used for the

linear motor case is given by Equation (4.7).

B 7225
- 245925+ 722%

Ge(s) 4.7)

Given that the Linear Drives motor has a force constant= 75, the overall current

control system can be described by Equation (4.8).

F 75(722%

(4.8)

4.3 Motor-Transmission-Load Test-Bed

4.3.1 General Description

The Motor-Transmission-Load Test-Bed was constructedd¢emble the basic two-body
model introduced in Section 2.3. The test-bed consists of divthe Siemens rotary
servomotors mounted on fabricated right angle brackets. mibunting brackets rest on
a sturdy base constructed from 16mm thick steel plate, amel machined such that they
were able to slide back and forth along the base while maimigicorrect alignment.

Special couplings allow the two motors to be connected byri@tyeof shafts of varying

lengths and diameters. The couplings also act as a carrigef@ovable discs, which
allow the load inertia to be varied in steps. The motor at tiaellend was used only for
applying load disturbance torques. Figure 4.5 (a) showsetstebed with motor mounts
and test shaft in their assembled positions. Figure 4.5Hb)vs a closer view of the

directly connected load coupling with removable inertiscdi

As can be seen, the constructed test-bed is consistent hatbasic two-body system
illustrated in Figure 2.1. This simple test-bed allowed #&concentrated analysis of

drive-train flexing and torsional vibrations, while otherportant factors such as friction
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Driving Motor Load Motor

Flexible Shaft

(a) Motor, Transmission and Load

Direct Coupling

Removable
Inertia Disc

(b) Load Inertia

Figure 4.5: Experimental Motor-Transmission-Load System

and backlash were minimised. The major difference betwherekperimental system
of Figure 4.5 and the ideal system of Figure 2.1 is that thigcdlifies in perfectly align-
ing a practical transmission element result in alignmelatee cyclic disturbances being

present in the experimental system.

Through the addition of backlash couplings between thestragsion element and the
load, this simple test-bed can be varied to resemble the basibody model with back-
lash (as illustrated in Figure 2.2). To achieve this a nunabextra couplings were ma-
chined with known backlash gaps, allowing for an analysas toncentrated on the effects
of backlash and the inter-relating effects of backlash angldnal vibrations. A selection
of these backlash couplings is shown in Figure 4.6 (a), wigjuire 4.6 (b) showing how
the couplings are mounted on the test-bed. Detailed dranofighe basic test-bed and

couplings are given in Appendix D.
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Backlash

g

(a) Couplings (b) Couplings Mounted on Test-Bed

Figure 4.6: Backlash Couplings

Position feedback at both the motor and load ends of thebebtis achieved through
rotary encoders embedded in the Siemens motors. Theseniactal optical encoders
produce two channels of differential sinusoids in quadmgtiinus providing both position

and directional information. The CNC system interpolatsisg the basic period of the
encoders (3.068 mrad) along with instantaneous sine andeciwgormation to improve

the resolution of the position feedback. For additionakte@ation feedback, a Hibner
rotary accelerometer (based on the Ferraris Principle)alsasused during some of the
experimentation undertaken on the test-bed. The accet&tevrnan be attached to ei-
ther the motor or load end of the system. Additional data @se¢lfeedback elements is

included in Appendix D.

4.3.2 Mechanical System Parameters

In the control diagrams shown in Figures 4.1 and 4.2, thev®Tirain & Sensors’ block
represents the overall mechanical drive system includihgekevant inertias, friction,
flexing and backlash etc.. The input to this block is a torghlg),( while the output
represents all available motor and load feedback signalsofAhe system equations
developed in Chapter 3 are in the appropriate form to desdhib various mechanical

systems that can be represented by the ‘Drive Train & Sehsiock.

Since the Motor-Transmission-Load Test-Bed was designéeé ttonsistent with a basic
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two-body system, Equations (3.24) and (3.25) were usedderitbe the mechanical drive
train of this test-bed when backlash was zero. For the cabesewbacklash was non-
zero, Equations (3.35) to (3.41) were used. The set of méddgparameters used in

these system equations are given in Tables 4.1 to 4.4.

Table 4.1: System Parameters — Motor and Load

| Parameter | Symbol|  Value |
Motor Inertia (kgnt) Jn | 4.108x10*
Load Inertia (kgr) J 4.108x104
Viscous Friction at Motor (Nms/rad) Bp 2.62x10°°
Viscous Friction at Load (Nms/rad) B, 3.65x10°°
Coulomb Friction at Motor (Nm) Ttem 0.08
Coulomb Friction at Load (Nm) Tta 0.06

Table 4.1 lists the inertia and friction parameters for kb#hmotor and load ends of the
test-bed. The total inertia at each end consists of the io&stia and the inertia of the
transmission coupling. The rotor inertia of the motors waec#ied by the manufacturer
(3.47x10* kgn?), while the inertias of the transmission couplings wereaialted using

Equation (4.9).
_ M(RE+R)

) 2

4.9)

Equation (4.9) describes the moment of inertia of a unifootiow cylinder (which is

a good approximation of the transmission couplings), wiMris the total mass of the
cylinder andR, & R; are the outer and inner radii of the cylinder respectivelyr the

inertia values given in Table 4.1, the masses and radii ofctheplings were directly
measured. The viscous and coulomb friction values givenainlel4.1 were obtained
using the PDTV method described in Section 3.3. Since the @@ponent of the PDTV
spectrum represents the combination of viscous and coufoations, these two friction
components can be separated by measuring the DC comporteetPDTV spectrum at

several different velocities.

Table 4.2 lists the inertia and torsional stiffness paransedf the interchangeable trans-
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Table 4.2: System Parameters — Transmission Shafts

| Parameter | Symbol| Shaftl | Shaft2 | Shaft3 |
Transmission Inertia (kgf) Js 2.08x10° | 1.55x10° | 5.25x10°/
Torsional Stiffness (Nm/rad) Kg 402 70.35 23.6

mission shafts. There were three shafts that were used w#hest-bed, one short and
reasonably stiff shaft (‘Shaft 1’) and two longer shafts tivare machined to be deliber-
ately flexible (‘Shaft 2’ and ‘Shaft 3’). The values of inexfior each of these shafts were
again calculated using Equation (4.9) and directly meabwakies of mass and radii. The
torsional stiffness of each shaft was calculated using tmuét.10).

_ Gr*
- 32

Ks (4.10)

Equation (4.10) describes the torsional stiffness constha uniform shaft, wher& is
the shear modulus (80x1®@a for steel)d is the diameter of the shaft ahib the length of
the shaft. For the torsional stiffness values given in Tdhk the diameters and lengths
of the shafts were directly measured. The internal dampedficient (G) for each shaft
is not listed in Table 4.2. The reason for this is thati€very approximate and also
dependent on the total motor and load side inertias (whiolbeavaried on this test-bed).
In this thesis Gwas determined individually for each experimental set-sipgilEquation
(4.11), where is the material loss factor (estimated at 0.05 for steelp dérivation of

Equation (4.11) is given in Appendix B.

Jnd Ks

Ce=n (Im+J)

(4.11)

Table 4.3: System Parameters — Additive Components

Parameter | Discl | Disc2 | Disc3 | Accelerometer
Inertia (kgnt) 1.544x103 | 5.02x10°3 | 1.417x103 | 2.98x10*
Viscous Friction (Nms/rad 0 0 0 2.71x10°°

There were three different additive discs used with theltesltto vary the inertia at either
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the motor or load end. Table 4.3 lists the inertia of each eséhdiscs, along with both
the inertia and added viscous friction of the rotary acoeteater (which could also be
mounted at either end of the test-bed). The inertias of thdsitive components were
again calculated using Equation (4.9) and directly measuatues for the masses and
radii. The added viscous friction of the accelerometer weterthined using the PDTV

method.

Table 4.4: System Parameters — Coupling Backlash Gaps
| Coupling | Backlash Gapd) |

Coupling 1 0.0873 rad
Coupling 2 0.1745 rad

Table 4.4 lists the backlash gaps of the additional couplihgt were machined for the

test-bed. These gaps were directly measured.

4.4 Drive Comparison Test-Bed

4.4.1 General Description

The Drive Comparison Test-Bed is a single axis positioniysjesn designed for testing
the relative performance of three common drive-train caméigons under similar test
conditions. The three drive-train configurations incogted into the test-bed are: 1. a
rotary motor directly coupled to a ballscrew, 2. a rotary onatoupled to a ballscrew
via a synchronous timing belt and 3. a rotary motor directiypded to a rack and pin-
ion transmission. The main structure of the test-bed ctseifsa 1m length of 150mm
universal column, supported at each end by 16mm steel @latetop surface of the uni-
versal column is machined to accurately support a rack andit&ar guides in parallel.
A 10mm thick steel plate is mounted on the linear guides agd tarrying table. The

overall test-bed is shown in Figure 4.7.

90



Load Carrying Table

Ballscrew

Figure 4.7: Drive Comparison Test-Bed in Direct Driven Batew Configuration

It can be seenin Figure 4.7 that a rotary servomotor is molattene end of the main test-
bed structure and directly coupled to a ballscrew. The txaig itself is mounted to one
side of the universal column. Figure 4.8 shows how the atara drive configurations
are achieved with the test-bed. In Figure 4.8 (a), the seotonhas been moved to the
other side of the steel end plate and coupled to the ballsagew belt and pulley system.
Figure 4.8 (a) also clearly illustrates the space savingithachieved through the belt
driven ballscrew configuration (when compared with thedidgiven ballscrew of Figure
4.7). In Figure 4.8 (b), the rack and pinion configurationlissirated. When using the
rack and pinion system, the ballscrew is detached from thé table and the pinion is

directly coupled to the servomotor, which is mounted on daaslltable.

In general, the mechanical components used in the drivestcdithis test-bed were chosen
to emphasise the effects being studied. For instance, tiseteav was deliberately chosen
to have a small diameter and only a single nut system so ttsdtal flexing and backlash
would be significant. Similarly, a coarse rack and piniomsraission with no inherent
anti-backlash mechanisms was chosen. The applicationeafgion control algorithms

on this test-bed allowed for the testing to be undertakeruwdrst-case conditions.

Position feedback for each of the drive configurations ositést-bed is achieved through
the rotary encoders embedded in the Siemens servomotodgiokal load position feed-
back can be achieved by placing a rotary encoder at the atldenfehe ballscrew (when

the system is being driven by one of the ballscrew configoma). Detailed drawings of
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Load Carrying Table

Load Pulley
Pinion

Motor Pulley

(a) Belt Driven Ballscrew (b) Rack and Pinion

Figure 4.8: Drive Comparison Test-Bed in Alternative Coufagions

the drive comparison test-bed are given in Appendix D.

4.4.2 Mechanical System Parameters

Since the Drive Comparison Test-Bed can be varied betweeag thfferent drive config-
urations, there are three different sets of system equatiat were used to describe the

mechanical drive train:

1. Direct Driven Ballscrew Configuration — the substitusaspecified in Equations
(3.42) to (3.45) were applied to the non-zero backlash systguations (Equations
(3.35) to (3.41)).

2. Belt Driven Ballscrew Configuration — the substitutioneesified in Equations
(3.42) to (3.45) were applied to Equations (3.46) to (3.48)his case, the ballscrew
torque is described by Equations (3.37) to (3.41) and theftuele is described by
Equations (3.49) to (3.54).

3. Rack and Pinion Configuration — the substitutions spetifieEquations (3.55)
and (3.56) were applied to the non-zero backlash systemtieqaa Equations

(3.35) to (3.41)).
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A complete description of how each of these system equasipply to the different con-
figurations is given in Chapter 3. The set of mechanical patama used in all of the

system equations for the Drive Comparison Test-Bed is givdiables 4.5 to 4.7.

Table 4.5: Drive Comparison Test-Bed Parameters — DiregeDBallscrew

| Parameter | Symbol|  Value |
Motor Inertia (kgn¥) Jn | 3.716x10*
Ballscrew Inertia (kgrf) Js | 3.22x10°
Load Mass (kg) ML 8.8
Length of Ballscrew (m) L 1
Pitch of Ballscrew (m) Pas 5x10°3
Viscous Friction at Motor (Nms/rad) Bm 3.05x10°3
Viscous Friction at Load (Nms/rad) B 1.75x10°3
Coulomb Friction at Motor (Nm) Tfem 0.175
Coulomb Friction at Load (Nm) Ttql 0.205
Torsional Stiffness of Overall Ballscrew (Nm/rad) Kgs 225
Internal Damping Coefficient of Ballscrew (Nms/rad) Cs %ﬁ%oﬂ?’
Ballscrew Backlash Gap (rad) a 0.03

Table 4.5 lists the set of mechanical parameters for thisoes when configured in direct
driven ballscrew mode. The total motor inertia in Table 4.5 icombination of the rotor
inertia and the inertia of the motor/ballscrew coupling.eTihertia of the ballscrew and
the inertia of the motor/ballscrew coupling were calcuwatesing Equation (4.9), with
the masses and radii of each component directly measured. tofal load mass is a
combination of the mass of the load carrying table, the més#iseolinear bearings and
the mass of the ballscrew nut. The masses for each of thelséimal components were

directly measured.

The viscous and coulomb friction values given in Table 4.8anabtained using the PDTV
method. The PDTV study was performed with and without thaltoiad connected, so
that the motor and load friction components could be acelyaeparated from the total

system friction.
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The torsional stiffness of the overall ballscrewgk) was calculated using Equation
(4.10) and directly measured values of ballscrew diamatdrlangth. As mentioned
in Section 3.5.1, the actual torsional stiffness of thednaission is a function of both
Kgess and the load positiorx]. Likewise, the internal damping coefficient is dependent o
the load position. Equation (4.12) was used to determinentkenal damping coefficient
and is a modified version of Equation (4.11) taking the vaeabrsional stiffness of the

transmission into account.

S X (41223 + PA M) '

The ballscrew backlash gap was measured by locking thecballdn place and measur-
ing the linear free-play of the table with a dial indicatoheTllinear free-play was then

translated into a rotary backlash gap (in radians).

Table 4.6 lists the set of mechanical parameters for thisoed when configured in belt
driven ballscrew mode. The total motor inertia in this casa combination of the rotor
inertia and the inertia of the motor pulley. The inertiashedf motor and load pulleys were
both calculated using Equation (4.9), with the masses adid ahthe pulleys directly
measured. The ballscrew inertia and total load mass ardi¢gdéro the direct driven

ballscrew case.

The viscous and coulomb friction values given in Table 4.6enagain obtained using the
PDTV method. The PDTV study for this system was performedtHoee different cases:
1. with the motor and motor pulley disconnected, 2. with th@tonand motor pulley
connected to the load pulley, but with no load connected anidtB the load connected.
This approach allowed for the friction components at theandbad pulley and load to

be accurately separated from the total system friction.

The torsional stiffness of the ballscrew is identical to theect driven ballscrew case.
However, the internal damping coefficient of the ballscrewlightly different due to the

fact that the ballscrew is now driven by the load pulley rathan the motor. The stiffness
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Table 4.6: Drive Comparison Test-Bed Parameters — BelteDr®allscrew

| Parameter | Symbol| Value |
Motor Inertia (kgn?) Jn | 6.67x10%
Load Pulley Inertia (kgrf) Jo 3.53x104
Ballscrew Inertia (kgrf) Jgs | 3.22x10°
Load Mass (kg) My 8.8
Length of Ballscrew (m) L 1
Pitch of Ballscrew (m) Pas 5x10°2
Radius of Motor Pulley (m) Rm | 34.5x10°3
Radius of Load Pulley (m) Rp | 34.5x10°3
Viscous Friction at Motor (Nms/rad) Bm 1.6x10°3
Viscous Friction at Load Pulley (Nms/rad) Bp | 1.45x10°3
Viscous Friction at Load (Nms/rad) B 1.75x10°2
Coulomb Friction at Motor (Nm) Ttem 0.08
Coulomb Friction at Load Pulley (Nm) Ttep 0.145
Coulomb Friction at Load (Nm) Tta 0.205
Stiffness of Belt (N/m) Keoit 997
Torsional Stiffness of Overall Ballscrew (Nm/rad) Kggs 225
Internal Damping Coefficient of Belt (Ns/m) Cait 0.048
Internal Damping Coefficient of Ballscrew (Nms/rad) Cs 1'75?/%“3
Belt Backlash Gap (rad) Opit ~
Ballscrew Backlash Gap (rad) OBs 0.03
of the belt was calculated using Equation (4.13).
Keolt = 4Ksp§ (4.13)

In Equation (4.13), k&, is the belt specific stiffness (i.e. the stiffness of a unigpunit

wide belt — from manufacturer testing this is estimated a63® N/m for a 5mm pitch

synchronous timing belt) is the belt width and. is the overall length of the belt. The

internal damping coefficient of the belt was calculated gdtguation (4.11), with the

loss factor () estimated at 0.1 for a Neoprene based synchronous beltbdltserew

backlash gap is identical to the direct driven ballscrevecasile the belt backlash gap
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is approximately zero (as long as the belt is tensioned cthy)e

Table 4.7: Drive Comparison Test-Bed Parameters — Rack mnahP

| Parameter | Symbol| Value |
Motor Inertia (kgnt) Jn | 3.43x10%
Transmission Shaft Inertia (kgin Js 4x107°6
Pinion Inertia (kgm) JPIN 4.4x10°°
Load Mass (kg) My 13.2
Radius of Pinion (m) r 20x10°2
Viscous friction at Motor (Nms/rad) Bm 1.6x10°3
Viscous friction at Load (Nms/rad) B 32.8x10°3
Coulomb Friction at Motor (Nm) Ttem 0.08
Coulomb Friction at Load (Nm) Tta 0.35
Torsional Stiffness of Transmission Shaft (Nm/rad) Ks 25,588
Internal Damping Coefficient of Transmission Shaft (Nnd)ra  Cs 0.0499
Backlash Gap (rad) a 0.014

Table 4.7 lists the set of mechanical parameters for whenetbtebed is configured in
rack and pinion mode. The motor inertia in this case is sintp&/ rotor inertia. The

pinion inertia and transmission shaft inertia were cal®daising Equation (4.9), with
the masses and radii of each component directly measured. tofal load mass is a
combination of the mass of the load carrying table, the mbettgedinear bearings and the

mass of the motor itself. All of these masses were directlgsnesd.

The viscous and coulomb friction values given in Table 4.7enmnce again obtained us-
ing the PDTV method. The PDTV study was performed with theariptnion mounted
on the table and again with the motor/pinion unmounted, so tifle motor and load
friction components could be accurately separated frontdated system friction. The
torsional stiffness of the transmission shaft was caledlaising Equation (4.10) and di-
rectly measured values of shaft diameter and length. Theenat damping coefficient
of the transmission shaft was calculated using Equatidilj4.The backlash gap in the
rack and pinion transmission was measured by locking thie tabplace and directly

measuring the angle of free-play of the pinion.
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4.5 Linear Motor Test-Bed

4.5.1 General Description

The ‘Linear Motor Test-Bed’ is a single axis positioning ®a designed to replicate
one axis of a laser cutting machine. The long travels, higtedp and zero machining
forces associated with the laser cutting process are comgritorught to be ideal for a
linear motor. The particular linear motor used in this testt (Linear Drives — LD3806)
is a ‘tubular’ style linear motor. This type of linear motoorsists of a thrust block
containing three phase armature windings and a tube thaelsdhe permanent magnets
for field excitation (the complete excitation rod passesulgh the centre of the thrust
block). Through a balancing of the forces, the tubular skiylear motor eliminates the
magnetic attraction that exists between the separate arenahd field components of
more common ‘flat’ style linear motors. This magnetic atii@c can often be up to an
order of magnitude higher than the actual payload (affgupporting rail requirements,
peak force requirements, cooling and cost), and is a p#&tipuoblem in high force iron-
core motors. The overall test-bed is shown in Figure 4.9.

. . Load Carrying Table
Linear Guides with Thrust Block
mounted underneath Field Excitation Rod

.........

..........

Figure 4.9: Linear Motor Test-Bed

As can be seen in Figure 4.9, the main test-bed structurestsis a rectangular welded
steel frame made from Rectangular Hollow Section (RHS — 4nath thickness) on the
axial sides and parallel flange channel at the ends. Therlmgdes are mounted on
machined 10mm flat bar, which is welded to the RHS along thal aides of the frame.

A 15mm steel plate is mounted on the linear guides as a loaglicgrtable. The field
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excitation rod is mounted in the centre of the test-bed asdgmthrough the thrust block,
which is attached to the underside of the moving table. Theptete test-bed structure
is mounted on a separate rigid support table. The Linear Mi@st-Bed represents a
state of the art machine tool positioning system and was tisedghout this thesis for
performance comparisons with the other drive configuratsindied. Detailed drawings

of the test-bed are given in Appendix D.

Position feedback on this test-bed is achieved throughaenmental linear encoder (Ren-
ishaw — RGS-S/RGH22B) mounted on one side of the frame sieicThe linear encoder
is an optical encoder and produces two channels of diffedesihusoids in quadrature
(similar to the output of the rotary encoder embedded in ieen8ns motors). The CNC
system interpolates using the basic period of the lineaw@grq(2Q:m) along with instan-

taneous sine and cosine information for improved resatutibposition feedback. The
CNC system also uses this position feedback for commutatioposes. Additional data

on the linear encoder is included in Appendix D.

4.5.2 Mechanical System Parameters

Since the Linear Motor Test-Bed has the simplest mechadioad train of all of the test-

beds considered in this chapter, a single system equatiume{on (3.57)) was used to
describe the test-bed. The set of mechanical parametedsrugguation (3.57) for the

Linear Motor Test-Bed are given in Table 4.8.

Table 4.8: Linear Motor Test-Bed Parameters
| Parameter | Symbol| Value |

Load Mass (kg) M 23
Viscous Friction (Ns/m B 1.56
Coulomb Friction (N) Fic 0.41

In Table 4.8, the load mass is a combination of the mass ofoihe ¢arrying table, the

masses of the linear bearings and the mass of the thrust. dldak the other test-beds,
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the viscous and coulomb friction values of the Linear MotesfiBed were determined

using the PDTV method.

4.6 Conclusions

The experimental equipment used throughout this reseacjbgb has been described in
this chapter. In particular, three different test-bedsanscribed: 1. Motor-Transmission-

Load Test-Bed, 2. Drive Comparison Test-Bed and 3. Lineatokdest-Bed.

The drive-level control scheme of the CNC system (used oofalie test-beds) was dis-
cussed, along with the basic construction details and Spéeatures of each of the three
individual test-beds. The response of the CNC system’sedidsop current controller
was analysed when driving both a rotary servomotor and treafi servomotor. It was
shown that simple second order filters provided a close appeadion of the CNC sys-
tem’s closed loop current response for both types of motdrtence, simple transfer
functions that represent the drive-level control systemevpeesented for both cases. The
output of the rotary servomotor transfer function is torquhbile the output of the linear
servomotor transfer function is force. These torque ancefoutputs are equivalent to the

inputs of the system equations developed in Chapter 3.

For each test-bed axis configuration, the relevant systemtins (as developed in Chap-
ter 3) were identified and the mechanical system parametgrsred by the equations
presented. The methods used for determining each mechpareaneter were described
for all of the test-beds and generally consisted of a contiminaf experimental measure-
ment, appropriate calculations and known component ddte.r@sulting system models
are used in both simulation and controller design througnapters 5, 6 and 7 of this

thesis.
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Chapter

Dynamic Stiffness

5.1 Introduction

A study of the dynamic stiffness of linear feed axes in pliecisnachine tools is presented
in this chapter. The term ‘dynamic stiffness’ can best becdiesd as the frequency re-
sponse of a system’s sensitivity to force disturbancesealoidd. In precision machining

operations, the machining forces resulting from contatwben the tool and workpiece
are often the major source of load disturbance. In some mexghprocesses, such as
laser cutting, there is no direct contact between the todlveorkpiece, which results in

very low (or even zero) machining forces. However, in mostii@ng processes these

machining forces can be quite high.

The study presented in this chapter focuses particularthenlynamic stiffness of linear
motor driven axes. One of the advantages of a linear motaraoragary driven linear axis
is a reduction in periodic torque/force disturbances, Wisdanherent through elimination
of the mechanical transmission mechanism. However, tBis @sults in a system that
IS more sensitive to load variations and external disturban Inherently low dynamic
stiffness is regarded as one of the major performance lilmits of linear motor driven

axes. In this chapter the inherent dynamic stiffness anabglierdisturbances of both
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linear motor and rotary driven axes are compared. A QFT agbrthat includes dynamic

stiffness in the design process is also examined.

In Section 5.2 measurements of the position dependentétiayae variations for a linear
motor driven axis, along with those for the common rotary enalriven configurations,
are presented. The Linear Motor Test-Bed (described in@e4t5) and the Drive Com-
parison Test-Bed (described in Section 4.4) were used éoexperimental measurements
presented in this section. The inherent periodic torquegfdisturbances of the linear mo-

tor system and the rotary motor driven configurations are thentitatively compared.

In Section 5.3 the inherent dynamic stiffness of a linearandtiven axis is compared
with that of the common rotary motor driven configurationsitially, mathematical ex-
pressions for dynamic stiffness (based on Equation 2.6)@reloped for each axis con-
figuration. The system parameters for both the Linear Mo&st-Bed and the Drive
Comparison Test-Bed (presented in Chapter 4) are then aspaantify the inherent dy-

namic stiffness of each of the test-bed configurations.

In Section 5.4 experimental responses to an applied loagrdence are compared for the
Linear Motor Test-Bed and each configuration of the Drive @arison Test-Bed. The

initial responses were recorded using the standard Pl igkred P position loops of the

existing servo drives, tuned using the manufacturer'smsuended method. A robust
QFT approach, that includes both dynamic stiffness andiganperformance specifica-
tions, is then described and implemented on the Linear Migst-Bed, using the same
servo drives. As a comparison, experimental responses tplied load disturbance are

also presented for the QFT designed controller.

Finally, Section 5.5 summaries all of the key points and agions that can be drawn

from this chapter.
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5.2 Torque/Force Variations in Feed Axes

Some of the performance limiting factors associated witkhiree tool feed axes can be
guantified through a study of periodic torque/force vaoias. As described in Section
3.3, a position frequency spectrum of torque or force carostcucted for machine tool
axes. As an example, consider a linear motor system refsgsby Equation (3.57). If

the system is moving at a constant velocity, the motor foecel®e described by:

Fm=BX+Frc+ 5 coel" (5.1)

N—=—o0

It can be seen from Equation (5.1) that the resulting motoacefdat any position) is
equivalent to the addition of the constant frictional f&a¢Bx + F¢c) and the sum of the
forces required to overcome periodic disturbances. Heheefrictional forces make up
the DC component of the position frequency spectrum, whigeremaining spectrum is

associated with the position dependent force variations.

In order to compare the torque/force disturbances inhéoethie common feed axis con-
figurations, position frequency spectra were determinedhfe Linear Motor Test-Bed
and all of the Drive Comparison Test-Bed configurations. position frequency spec-

trum of the Linear Motor Test-Bed is shown in Figure 5.1.

PDFV - Linear Motor
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Figure 5.1: Position Frequency Spectrum - Linear Motor
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The position frequency spectrum of the Drive Comparisort-Besl in the direct drive
ballscrew configuration is shown in Figure 5.2. Similarlye tposition frequency spec-
tra of the Drive Comparison Test-Bed in the belt driven lwaey and rack and pinion
configurations are shown in Figures 5.3 and 5.4 respectiv#yile collecting data for
the frequency spectra, each test-bed configuration was minanstant linear velocity of

200mm/min.
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Figure 5.2: Position Frequency Spectrum - Direct Driversgaéw

PDTV - Belt Driven Ballscrew
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Figure 5.3: Position Frequency Spectrum - Belt Driven Baée/
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PDTV - Rack and Pinion
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Figure 5.4: Position Frequency Spectrum - Rack and Pinion

The position frequency in Figures 5.1, 5.2, 5.3 and 5.4 isesqed in cycles per revolu-
tion. For the Linear Motor Test-Bed, one revolution is tmehr distance traversed during
one electrical cycle of the linear motor. For the Drive Congzn Test-Bed, one revolu-
tion refers to one mechanical revolution of the rotary moidre DC component in each

spectrum has been set to zero, in order to concentrate ortivelig disturbances.

The fundamental frequency in each spectrum correspondsetadtual length of travel
used during the testing procedure. There is a 25:1 ratiodeivthe linear lengths tra-
versed by the rack and pinion and ballscrew configuratiommgwne revolution of the
rotary motor. Hence, there is also a 25:1 ratio between thesmental frequencies of the
rack and pinion and ballscrew spectra (as the same linegihlef travel was used during
the testing procedure). As a result, the rack and pinion masah coarser spectrum than

the other cases.

A summary of the PDFV/PDTYV results is given in Table 5.1, véhboth the DC com-
ponent and the most significant frequency components frgurés 5.1, 5.2, 5.3 and 5.4
are listed. The most likely causes of the frequency compsraae also included in Table

5.1.
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Table 5.1: Significant Components of Experimental PDFV/NDT

Frequency| Magnitude Cause
(Cyc/Rev)
DC 20N Friction
2 2.85N Motor Poling
Linear 0.05 1.9N Fundamental
Motor 4 1.67N Motor Poling
1 1.52N Electrical Cycle
DC 0.311Nm Friction
18 0.052Nm Stator Teeth
Direct Driven 1 0.031Nm Rotor Shaft Cycle
Ballscrew 36 0.012Nm Stator Teeth
54 0.011Nm Stator Teeth
0.03 0.011Nm Fundamental
39 0.009Nm | Ballscrew Bearing Cycle
DC 0.319Nm Friction
18 0.057Nm Stator Teeth
Belt Driven 1 0.034Nm Rotor Shaft Cycle
Ballscrew 0.68 0.025Nm Belt Cycle
3 0.017Nm Motor Poling
36 0.015Nm Stator Teeth
39 0.009Nm | Ballscrew Bearing Cycle
54 0.008Nm Stator Teeth
DC 0.238Nm Friction
18 0.053Nm Stator Teeth
Rack and 3 0.045Nm Motor Poling
Pinion 54 0.015Nm Stator Teeth
36 0.013Nm Stator Teeth
39 0.010Nm Pinion Teeth

As can be seen in Figure 5.1 and Table 5.1, the largest compan¢he linear motor
spectrum was found at 2 cycles/revolution. This comporaohg with the components
at 1 and 4 cycles/revolution, can be attributed to the me®iectrical cycle and associated
cogging forces. The only other significant component in thedr motor spectrum is the

fundamental at 0.05 cycles/revolution, which does notasgnt a performance limitation.

In comparison to the linear motor, the spectra of the Driven@arison Test-Bed con-
figurations have more significant components. From TablebdLFigures 5.2, 5.3 and
5.4, it can be seen that components at 18, 36 and 54 cyclelsftien are significant
in all three configurations of the Drive Comparison Test-Béithese frequency com-

ponents have been attributed to the stator teeth of theyratator. The most signif-
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icant transmission-related frequency component in thisdraw configurations is at 1
cycle/revolution, which is the shaft cycle and is relatedhi® alignment of the ballscrew
itself. Another significant transmission-related compune at 39 cycles/revolution in
the ballscrew configurations and has been attributed toegharys of the ballscrew. The
rack and pinion configuration also has a significant compbatB9 cycles/revolution;
however, this is related to the pinion teeth. The numberethtef the pinion is identical
to the number of balls cycled through one revolution of thisbeew. There is an ad-
ditional component at 0.68 cycles/revolution on the bekadr ballscrew configuration,
which is due to the belt cycle (the belt in this system has E28tand the two pulleys
have 44 teeth — 88/128 = 0.68).

The DC components listed in Table 5.1 were used to deterrhimenechanical power
required by the motors to overcome friction at 200mm/minvds found that 0.068W of
mechanical power was required from the linear motor to awake friction. In compari-
son, the rotary motor supplied 1.3W, 1.34W and 0.04W to aweeefriction in the direct
driven ballscrew, belt driven ballscrew and rack and pirgonfigurations respectively.
As expected, the mechanical power required to overcomigofnigvas much more on the
ballscrew configurations. With reduced power required tercome friction and the elim-
ination of all transmission-related periodic torque/®disturbances, linear motors offer

clear advantages when used in precision linear machine axes

5.3 Inherent Dynamic Stiffness in Feed Axes

A mathematical expression for the dynamic stiffness of aeganinear feed axis was
derived in Section 2.2.1 (Equation (2.6)). Using the sanoegss, detailed expressions
for the inherent dynamic stiffness of individual axis configtions are presented in this
section. It should be noted that the transmission eleméeisal configuration have been
assumed to be infinitely stiff, in order to reduce the comipyedxf each expression and al-

low for a concentrated comparison of dynamic stiffnessoAsince both the disturbance
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force and the maximum position error are expressed lingatlsotary system parameters

have been referred to the linear load side.

Consider first the equation of motion for a linear motor dniegis (Equation (3.57)). For
inherent dynamic stiffness the system is considered to loentrolled (ie i, = 0). If
coulomb friction and the general periodic force variatians assumed to be negligible,

the disturbance force required to produce the responseugdtion (2.1) is described by:

Fg=M (— (211f )2 E; sin(znft)) +B (2mfE¢ cog 27ft)) (5.2)

It can be seen that Equation (5.2) is identical to the gergisdlirbance force expres-
sion (Equation (2.4)) with the addition of a viscous frictierm. The resulting dynamic

stiffness expression for a linear motor driven axis is:

|Fd| 2 2 2
ps= "2l = onf VM2 (2mf)2+ B (5.3)

As a comparison, consider the dynamics of a direct drivelstraw system (described
in Section 3.5.1). If the ballscrew in this system is congdeto be infinitely stiff, with
coulomb friction and general periodic force variations sidered negligible, the distur-

bance force required to produce the response of Equatibhi§2described by:

Fg = (ML‘l‘(E)Z(Jrn-i-JBs)) (—(Zm‘)zEfsin(Zm‘t))

Pgs

21 2
+(P—Bs) (Bm—+By) (2mfE¢ cos(2mft)) (5.4)

It is clear that Equation (5.4) has the same form as Equadi@),(with the total mass (M)
described by Equation (5.5) and the viscous friction caeieffit described by Equation

(5.6). Hence, the dynamic stiffness expression of EqugtaB) is also valid using the
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substitutions given in Equations (5.5) and (5.6).

2
M= ML+(F2,—") (3n+ Jes) (5.5)
BS
2
B — (FZ,—") (Bm+B)) (5.6)
BS

The disturbance force expressions for the belt driven trahg and rack and pinion con-
figurations (when the transmission elements are considered infinitely stiff and both

coulomb friction and general periodic force variations@masidered negligible) also have
the same form as Equation (5.2). Further, with the apprtgpsgabstitutions for mass and
viscous friction co-efficients, the dynamic stiffness eegsion of Equation (5.3) is again
valid for both of these configurations. For a belt driven $akw system (as described
in Section 3.5.2), the total mass is described by Equatiof) @nd the viscous friction

co-efficient is described by Equation (5.8).

2 2
M = ML+<E) (JBs-I-Jp-i-(&) ‘Jm> (5.7)
Pss Rm

2m\ 2 Rp\?

For a rack and pinion system (as described in Section 3#Hh&)otal mass is described

by Equation (5.9) and the viscous friction co-efficient iscléed by Equation (5.10).

1
M = |V||_-|-r—2(Jm+Js+Jp|N) (5.9)
1
B = r—z(Bm+B|) (5.10)

For each of the rotary motor configurations, the total maskwascous friction seen by
the load are very dependent on the gearing of the transmisgistem. In both of the
ballscrew configurations (Equations (5.5) to (5.8)), thaltonass and viscous friction
increase as the pitch of the ballscrew becomes finer. Comadlguthe inherent dynamic

stiffness of these configurations also increases as thecbal pitch becomes finer. For
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the belt driven ballscrew configuration (Equations (5.7 §6.8)), the total mass and
viscous friction increase further as the ballscrew sidéegudlecomes larger than the motor
side pulley. In a rack and pinion configuration (Equation8)and (5.10)), the mass and
viscous friction increase as the radius of the pinion desgea Since the pitch of most
ballscrews (used in machine tool feed axes) is in the low mmgeathe inherent dynamic
stiffness is generally much higher in ballscrew driven axbgn compared with linear

motor or rack and pinion driven axes (although the stiffnrefseack and pinion driven

axes is often improved through the use of gearboxes).

To further compare the inherent dynamic stiffness of thermomdrive configurations, the
disturbance forces required to exceed position errordalas of 1m, 5um and Jum
were calculated for the Linear Motor Test-Bed and all threefigurations of the Drive
Comparison Test-Bed. For an accurate comparison of thereeqdisturbance forces,
actual system parameters (as detailed in Chapter 4) anidedetaodels of each test-bed
configuration (that included both stiffness and dampinghaf transmission elements)
were used in these calculations. Due to the added complekitycluding stiffness and
damping, Matlab was used to calculate all of the disturb&moes (the Matlab functions

used for these calculations are given in Appendix C).

Figure 5.5 shows the required disturbance forces (plotiathat frequency) for the Linear
Motor Test-Bed. Similarly, Figures 5.6, 5.7 and 5.8 showrtguired disturbance forces
(plotted against frequency) for the Drive Comparison Best-in direct driven ballscrew,
belt driven ballscrew and rack and pinion configurationpeesively. The disturbance
forces required to exceed the given position error tolezamnehen the load mass of each

configuration was increased to 200kg are also shown in Fidhuke 5.6, 5.7 and 5.8.

Consider the Linear Motor Test-Bed subject to a typical nraol force of 60N. With the
standard load mass of 23kg and a position error toleranc@ahlFigure 5.5 shows that
the system will inherently provide the required stiffnessffequencies above 510rad/s
(approx.). When the position error tolerance is tighterwedtm, the required stiffness

is only provided at frequencies much higher than the 1006raaiit of Figure 5.5. If
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Inherent Dynamic Stiffness — Linear Motor Test-Bed
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Figure 5.5: Disturbance Forces vs Frequency - Linear Motor

the load mass is increased to 200kg though, themi@lerance is inherently satisfied at

frequencies above 175 rad/s and theritolerance is inherently satisfied at frequencies

above 550rad/s.
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Figure 5.6: Disturbance Forces vs Frequency - Direct Drivalfscrew
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Consider the same 60N machining force applied to the threee@omparison Test-Bed
configurations. Figure 5.6 shows that for the standard loasisnof 8.8kg and a position
error tolerance of 10m, the direct driven ballscrew configuration will inherengpisovide
the required stiffness for frequencies above 95rad/s (eqppr When the position error
tolerance is tightened tquim, the required stiffness is still provided for frequencibse
295rad/s. As expected, the ballscrew driven system inkignerovides the required stiff-
ness at much lower frequencies than the linear motor driystes, even though the Drive
Comparison Test-Bed has a lower standard load mass. Irefurtintrast to the Linear
Motor Test-Bed, increasing the load mass to 200kg on thettirdriven ballscrew con-

figuration only results in a marginal improvement to the dyiastiffness of the system.

Inherent Dynamic Stiffness — Belt Driven Ballscrew
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Figure 5.7: Disturbance Forces vs Frequency - Belt DriveisBiaw

In Figure 5.7 it can be seen that the belt driven ballscreviigoration has low frequency
peaks in the required disturbance forces, for all positioordolerances. These peaks are
due to the low stiffness of the belt. When comparing Figuieviith Figure 5.6 though,
it can also be seen that the belt driven ballscrew configuratiill provides the required
stiffness at very similar frequencies to the direct drivatidzrew configuration (again for

all position error tolerances). This is expected as thesbadiv and motor side pulleys are
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Inherent Dynamic Stiffness — Rack and Pinion
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Figure 5.8: Disturbance Forces vs Frequency - Rack andrPinio

the same size on the Drive Comparison Test-Bed.

When comparing Figure 5.8 with Figure 5.5, it can be seentti@inherent dynamic
stiffness of the rack and pinion configuration is almost tae to that of the Linear
Motor Test-Bed, particularly when the load masses are icg&n(as in the 200kg cases).
Although the inherent dynamic stiffness of the rack andgirgonfiguration can be im-
proved through the use of an additional gearbox, this alsodnces more sources of
backlash and component wear. In contrast, the inherentaigrsiffness of the ballscrew
driven configurations was shown to be much higher than th#tetf.inear Motor Test-
Bed. The dynamic stiffness of the ballscrew configuratiors &lso less affected by

changes in load mass.

5.4 Controller Design for High Dynamic Stiffness

Control systems are the primary means of increasing low mymatiffness in feed axes.

For this reason, research effort in increasing dynamimstk (of linear motor feed axes
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in particular) has been applied at many different levelfiefdverall machine tool control
system. However, as discussed in Section 2.2.2, the velacd position control loops
are often the most practical levels at which dynamic stfthean be addressed in standard
servo drives. In this section, the important aspects ofgihesg velocity and position

control loops for high dynamic stiffness are studied.

The most common control schemes used for velocity and padidops in standard servo
drives consist of P, Pl or PID regulators. Although it is pbkesto achieve quite high

dynamic stiffness with these control schemes, the commsigde@pproaches often con-
centrate solely on transient performance with respecgodfocity and position reference
commands. Hence, the degree of dynamic stiffness in sutbrsgsan become arbitrary.
In Section 5.4.1, the dynamic stiffness of the Linear MotestiBed and all three con-
figurations of the Drive Comparison Test-Bed are compar@agube standard control

schemes of the CNC system and the manufacturer’s tuninglijuéd. In Section 5.4.2, a
QFT design approach that includes dynamic stiffness asfahe design specifications is
described, with an example design shown for the Linear MBést-Bed. The QFT based

design for the Linear Motor Test-Bed is then experimenti@bted in Section 5.4.3.

5.4.1 Standard Control of the Experimental Systems

For the digital servo drives (of the CNC system) used in thésis, the standard velocity
and position control consisted of cascaded PI velocity apddgtion loops. The manu-
facturer's recommendations for machine tool feed axesarthe velocity and position
control loops to have the highest possible closed-loop Wwatitl, whilst not exceeding
maximum closed-loop gains of 5dB for the velocity loop an®ddr the position loop.
The recommended tuning method involves iteratively insirgathe proportional gain of
the velocity loop until the maximum closed-loop gain is ard8dB. The integral action
of the velocity loop is then increased until the 5dB closeol limit is reached. The
position loop is subsequently tuned by iteratively inchegshe proportional gain to the

highest possible value without exceeding 0dB. Althougindlzee a number of other well
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recognised methods for tuning P and PI regulators, methadsrnvolve increasing the
gains until sustained oscillation is achieved (such asl&idgichols second method) are
generally avoided on machine tool feed axes for safety reagdence, the manufacturers

recommended tuning method was used in this section.

In order to compare the dynamic stiffness of different Imie@d axis configurations un-
der the standard control structure (PI velocity, P posjtanmd the manufacturer’'s recom-
mended tuning, a 125N step disturbance force was applidtetimad side of the Linear
Motor Test-Bed and all three configurations of the Drive Cangon Test-Bed. During
each of these tests the CNC system was in steady-stateopasitntrol, with a reference

position of zero. The response of the Linear Motor Test-Bexhown in Figure 5.9.

Position Response — 125N Disturbance
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Figure 5.9: Linear Motor Position (125N Disturbance)

A maximum position error of approximately B can be seen in the linear motor re-
sponse of Figure 5.9. In an actual machine tool, a positicr ef this magnitude could
result in poor surface finish on the work piece. The respook#se Drive Comparison
Test-Bed in the direct driven ballscrew and belt drivendzabw configurations are shown

in Figures 5.10 and 5.11 respectively.
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Position Response — 125N Disturbance
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Figure 5.10: Direct Driven Ballscrew Position (125N Didiance)
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Figure 5.11: Belt Driven Ballscrew Position (125N Distunbe)

A maximum position error of 04m can be seen in the direct driven ballscrew response
of Figure 5.10. The position error of the direct driven balésv can be seen to be very
close to the resolution of the CNC system’s data logger, wis®.1lum. Further, the belt

driven ballscrew response of Figure 5.11 exhibits an everedonaximum position error
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Position Response — 125N Disturbance
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Figure 5.12: Linear Motor and Ballscrew Positions (125Ntrisance)

of 0.2um. For a direct comparison with the Linear Motor Test-Bed, tive ballscrew

responses are shown on the same graph as the linear motonsesp Figure 5.12.

Position Response — 125N Disturbance
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Figure 5.13: Linear Motor and Rack and Pinion Positions [LBBsturbance)

In Figure 5.13, the response of the linear motor is showneséime graph as the response

of the Drive Comparison Test-Bed in the rack and pinion caméigon. Although the
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inherent dynamic stiffness of the rack and pinion configaratvas shown to be almost
identical to that of the Linear Motor Test-Bed in Section,5t3an be seen in Figure
5.13 that the rack and pinion response exhibits a much higlgmum position error of
almost 1.5nm. The reason for such a high position error is that the stahaaing of the
control system is severely limited by the backlash in thé @ud pinion configuration.
Along with the poor disturbance response exhibited by tbidiguration, the oscillations

introduced by the backlash are clearly visible in Figure35.1

The results presented throughout this section clearly shatwvhile the ballscrew driven
axes exhibited very high dynamic stiffness under the manufar's standard velocity
and position control, the linear motor and rack and pinianedtr axes exhibited poor dy-
namic stiffness. The poor performance of the rack and pic@riguration was primarily
due to the backlash in this system. However, the poor pedooma of the linear mo-
tor was primarily due to insufficient integral action in thentroller design. The reason
for the low integral action was that the design approach eotmated on overall system
bandwidth and not disturbance rejection. The integrabadti this design approach was
only iteratively added up to the point where the closed-lgam reached the maximum
specification of 5db. In Section 5.4.2, a QFT design apprdaahincludes both system

bandwidth and disturbance rejection as design specifitattopresented.

5.4.2 A QFT Design Approach for High Dynamic Stiffness

From the literature reviewed in Section 2.2.2, it was foumat robust techniques, such
as H. and sliding mode control, had been successfully used toawapthe dynamic
stiffness of linear motor driven axes. However, the QFT néghe was completely absent
from the available literature. In this section, a QFT desagproach for high dynamic
stiffness is presented, along with an example design foL ithear Motor Test-Bed. The
Linear Motor Test-Bed was chosen due to its low inherent dyoatiffness (as shown in

Section 5.3) and the fact that the reduced mechanical systéims test-bed allowed for
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an analysis of dynamic stiffness that would not be affecteddditional factors such as

backlash. The presented approach can be extended to oitbepakgurations.

The QFT design objective is to design and implement robustrotbers that satisfy a
set of desired performance specifications for the systens désign process is usually
undertaken on systems with structured parametric unogytahowever, it can also be
effective on plants with constant parameters. A block diagrepresenting the standard

QFT design problem is shown in Figure 5.14.

Input
LIRS H@—b 65
Pre Filter [ Controller Plant Set

Figure 5.14: QFT Design Block Diagram

Output
»

P(s) >

A4

In Figure 5.14P(s) represents the complete set of plants that describe the xngara-
metric uncertainty of an actual plant. The loop controig(s) is designed, through loop
shaping on the Nichols Chart, such that the closed looplayadind disturbance bounds
are satisfied for the complete set of plants. The loop cdetr@(s) is also used to en-
sure that the closed loop uncertainty is within the rangeifipd by any robust tracking
bounds. The Pre FiltelPF(s), if required, is used to shape the complete closed loop
response to satisfy the upper and lower limits of the rolrasking bounds. A very thor-
ough survey of QFT and its applications is provided by Hota\the original author of
QFT) [15]. Another comprehensive treatment of QFT, inahgdihe detailed steps in-
volved in a complete design, is given by Houpis and Rasmud$#}. The design steps

for all of the QFT designs developed in this thesis can be samsed by:

1. Determination of the desired set of closed loop perforeaspecifications in the
frequency domain (the performance specifications may sbasstability, tracking
and disturbance specifications).

2. Determination of plant templates that can pictoriallgatée the region of open

loop plant parameter uncertainty on the Nichols Chart.
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3. Computation of bounds that can be plotted on the NicholsriClo describe the
performance specifications at specified frequencies ofdste These bounds are
constraints that a nominal open loop plant transfer functiaust satisfy at each
frequency of interest, so that the complete set of plant latep satisfy the closed

loop performance specifications.

4. Design of the loop controllers (and Pre Filter if necegsay manual loop shaping,
such that the controlled nominal plant satisfies all perforoe bounds.

5. Detailed analysis of the design, through simulation,gofy that the performance

specifications have been met.

Detailed procedures associated with each of these five ategsesented in this section.

1. Determination of the closed loop performance specificains.

The cascaded velocity and position loop structure of theexpental CNC system was
maintained in the QFT design approach, since this strudsurgpical of that found in
industrial servo controllers. The complete velocity andipon control structure for the
Linear Motor Test-Bed, subject to an external load distadea can be illustrated by the
block diagram of Figure 5.15, wheRgy(s) describes the complete set of plants (details

of the plant set for the example design are provided at Step 2)

lDist force
Pos,refi : : ; GP(S) Vel_ref GV(S)

A

v

Force_ref Vel_out 1 Pos_out
G (s) H@—b P,.(s) i

Position ] Velocity Current Linear

Controller Controller Controller Motor Plant

Figure 5.15: Block Diagram of Velocity and Position Loops

For the Linear Motor Test-Bed, the current controlleg($) is described by Equations
(4.7) and (4.8). The velocity and position controllers shaw Figure 5.15 (G(s) and
Gp(9)) are determined throughout the design process. Compleaésdef the final con-

trollers for the example design are given at each of the aslesteps in this section.
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In Step 1 the QFT technique requires all closed-loop perémee specifications to be
described in the frequency domain. Hence, the frequencyadomelationships between
each input and output of interest must be determined. FosykEm shown in Figure
5.15, the output velocity (Vel_out) for a given velocity ee¢nce (Vel_ref) and a zero
disturbance force (Dist_force = 0) is described by the ferfsnction given in Equation
(5.11). Similarly, the output position (Pos_out) for a giyaosition reference (Pos_ref)
and a zero disturbance force (Dist_force = 0) is describethéyransfer function given

in Equation (5.12).
Vel_out  Gy(s)Gc(S)Am(s)
Vel_ref 14 Gy(S)G¢(S)Pm(s)

Pos_out Gp(8)Gv(S)Ge(S)Am(S)
Pos_ref  s(14 Gy(S)Gc(S)Rm(S)) + Gp(S)Gv(S)Ge(S)PAm(S)

(5.11)

(5.12)

Again for the system shown in Figure 5.15, the output vejofiel_out) for a given

disturbance force (Dist_force) and a zero velocity refeegfVel _ref = 0) is described by
the transfer function given in Equation (5.13). Similatlye output position (Pos_out)
for a given disturbance force (Dist_force) and a zero pmsiteference (Pos_ref = 0) is

described by the transfer function given in Equation (5.14)

Vel_out Am(s)
Dist_force 1+ Gy(S)G¢(S)PAm(S) (5-13)
Pos_out Am(s) (5.14)

Dist_force  s(1+Gy(S)Gc(S)PAm(S)) + Gp(S)Gu(S)Ge(S)PAm(S)

Since the velocity loop is faster than the outer positiomplidds important that both track-
ing and dynamic stiffness are addressed at this level. Hembecity loop performance

specifications are determined for stability, robust tragkand disturbance rejection:

e Stability — the velocity loop stability specification cosis of an upper bound on
the gain magnitude of the closed-loop velocity responseidkgn (5.11)) for all
frequencies. For the example design, this specificatiorsebsuch that the closed-
loop velocity response of the Linear Motor Test-Bed did nateed the CNC man-

ufacturer’'s recommendation of 5dB.
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e Robust Tracking — the velocity loop tracking specificatimnsists of upper and
lower bounds on the closed-loop velocity response (Egng#oll)), which the
complete set of plantBn(s) must satisfy. Generally these bounds are based on
the desired closed-loop bandwidth, with the upper boundehdo be a fast un-
derdamped response and the lower bound chosen to be a sleardamped re-
sponse. For the example design, the desired closed-loapwidth of the Linear
Motor Test-Bed was chosen to be 1000 rad/s (which is equivédethe bandwidth
achieved using the manufacturer’s standard tuning teclefid he upper and lower
tracking bounds were then chosen to provide an allowablgimdor the entire set
of closed-loop velocity responses, about this bandwidtte dpper tracking bound
(Tru) and lower tracking bound (Trl) are given in Equatiobslf) and (5.16) re-

spectively. Figure 5.16 shows the frequency responsegséthounds.

S
o5+ 1
Tru = 3000 (5.15)

Tl = (5.16)

Frequency Response of Tracking Bounds
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Figure 5.16: Upper and Lower Robust Tracking Bounds
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e Disturbance Rejection — To ensure high dynamic stiffndes ctosed-loop system
must have low sensitivity to force disturbances at the I¢&ghce, the velocity loop
disturbance specification consists of a bound on the vgldesturbance response
(Equation (5.13)), such that load force disturbances aemaated to an acceptable
level at all frequencies. With reference to Equation (2i63an be seen that the
required level of attenuation at each frequency is detexthlyy specifying an al-
lowable peak position error (E) for a particular disturbararce. If the velocity
loop was solely responsible for meeting this position espcification, the allow-
able peak velocity at each frequency would therudie(Equation (2.2)). It can be
seen from Figure 5.15 and Equation (5.14) that the positiop klso contributes
to the overall dynamic stiffness. However, since the vé&yolmop is faster than
the position loop, a limit okwE on the peak velocity will guarantee the required
stiffness. Any additional contribution from the positiaop will only improve the
overall dynamic stiffness. For the example design, a masximaak position error
of 5um was specified for a peak disturbance force of 125N at aluagies. A
disturbance bound dby,(s) = 4 x 10~8s <5f—£s> was hence set for the velocity

disturbance response of the Linear Motor Test-Bed.

The only position loop specification that is required in thésign is the stability spec-
ification, as the overall tracking and dynamic stiffnessursgments have already been
addressed at the velocity loop level. Since dynamic ss#ne specified via a limit on the
peak position error, a position disturbance specificatias Imowever been included for
completeness. Hence, the position loop specificationgsradsign approach are:

e Stability — the position loop stability specification costsi of an upper bound on
the gain magnitude of the closed-loop position responsedtn (5.12)) for all
frequencies. For the example design, this specificatiorsebsuch that the closed-
loop position response of the Linear Motor Test-Bed did xoeeed the CNC man-

ufacturer’'s recommendation of 0dB.
e Disturbance Rejection — The position loop disturbance ifipation consists of a

bound on the position disturbance response (Equation )5 duch that the allow-
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able peak position error (for a specified peak disturbanm®ejas not exceeded at
all frequencies. For the example design, the maximum peskipo error of fum
(at 125N) results in a disturbance boundfy(s) = 4 x 108 (-148dB) on the

position disturbance response of the Linear Motor Test-Bed

2. Determination of Plant Templates

SinceRAn(s) in Figure 5.15 describes a set of plants with a range of parammcertainty,
there is a corresponding region of uncertainty in the respaiR(s) at any given fre-
guency. Equation (3.57) was used to describe the Linear Matst-Bed for the example
design, with the test-bed mass considered to be uncertthimwie range 10kg to 100kg

and all other system parameters considered to be constatéfaled in Table 4.8).

Plant Templates
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Figure 5.17: Plant Templates - Linear Motor Test-Bed

The region of parametric uncertainty in the respons8 gfs) is important in the QFT
design process as the complete set of plants must satidfypesformance specification.

Hence, plant templates are used to describe the region eftaintty at each frequency of
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interest. Plant templates can generally be representeukinytoundaries on the Nichols
Chart; however, a sufficient number of points on the boundaugt be selected so that

the contour of the template accurately reflects the regiamoértainty.

The plant templates (at 0.1, 1, 10, 100 and 1000 rad/s) foexheple design are shown
in Figure 5.17. Each circle shown in Figure 5.17 representsdividual point on a
template boundary. It can be seen that the plant templaténdsitase are described by

simple continuous curves, due to the single uncertain paterm

3. Computation of the Nichols Chart Performance Bounds

Nichols Chart performance bounds are determined for eattiteqierformance specifica-
tions detailed in Step 1 (with the exception of the positmop disturbance specification).
The bounds are determined using the plant templates atylartifrequencies of inter-
est, such that if a nominal open-loop plaR§d#,) satisfies a bound on the Nichols Chart
then the complete set of controlled plants will meet theteglalosed-loop performance
specification. Although any plant belonging to the compseteof open-loop plants can
be chosen as the nominal plant, it is common practice to usplémt represented by the
bottom left corner of the template boundaries. Since thelatas in the example design
are described by simple continuous curves, the plant repted by the lowest point on

the template boundaries was chosen as the nominal plant.

The final Nichols Chart bounds for the velocity loop are showirigure 5.18. These
bounds represent the most stringent of the design requimsnaad are a combination
of the individual stability, tracking and disturbance bdanThe bounds for the velocity
stability specification were determined at frequencies,of@, 20, 50, 100, 200, 500,
1000, 2000 and 5000 rad/s. This set of frequencies was choserer the desired closed-
loop bandwidth, since the stability specification consigitan upper limit of 5dB for all

frequencies. The stability bounds form an enclosed ardeeatdantre of the Nichols Chart
shown in Figure 5.18. At each frequency of interest, the mamplant must be outside

the area enclosed by the associated stability bound.
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Nichols Chart — Combined Bounds
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Figure 5.18: Velocity Loop Combined Bounds - Linear MotosfFBed

Since the velocity loop tracking specification is based andasired closed-loop band-
width, the Nichols Chart bounds for the tracking specifmativere determined at the
same frequencies as the stability bounds. The bounds foretloeity loop disturbance
specification were determined at frequencies of 0.1, 1, @0,ahd 1000 rad/s. This set
of frequencies was chosen after examining the inherentrdimstiffness of the Linear
Motor Test-Bed. From Figure 5.5, it can be seen that the Idveguencies are of most
interest when designing a control system for high dynamifness. As the frequency
increases above 1000 rad/s, the physical system becomaseapb inherently supplying

the required stiffness.

At each frequency of interest, the nominal plant must be alibe associated tracking
and disturbance bounds on the Nichols Chart. Hence, onlyititeest bounds at each
frequency, or the intersection that results in the highestall bound, is required for loop
shaping. For example, the stability and tracking bounds &0 &nd 100 rad/s do not form
part of the critical bounds shown in Figure 5.18, as the aatemt disturbance bounds at

these frequencies placed a higher demand on the contr@nsysésign. Further, the
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bounds at 500 and 1000 rad/s in Figure 5.18 were construcedthe upper intersection

of the individual performance bounds at those frequencies.

Position loop bounds are determined in the same manner asitydbop bounds. How-
ever, the position loop bounds should not be determinedithetvelocity loop design has

been completed, as these bounds are dependent on the fo@Etywilop design.

4. Design of Loop Controllers and Pre Filter

The design of loop controllers in QFT involves a manual shgurocess, such that the
nominal loop transmission functioih{,m) satisfies all of the Nichols Chart bounds. For

the velocity loop shown in Figure 5.15, the nominal loop sraission function is:

Lnom = Gv(S)G¢(S)Prom (5.17)

For the example design, the final shape of the nominal vegltamip transmission function
is shown in Figure 5.19. It can be seen that this transmidsioction satisfies all of the

final performance bounds. The associated velocity coetrd@lgiven in Equation (5.18).

Gy(s) =3.75x 10° <(%+1)S<st°+l)> (5.18)

The closed-loop velocity frequency responses, for the detaget of plants, are shown in
Figure 5.20 (dark blue curves). Although the complete sebatrolled plant responses
can be seen to satisfy the stability bound, the responsesussigle the upper and lower
tracking bounds. The reason for this is that the loop coletr@.(s) only ensures that
the closed loop uncertainty is within the range specifiechieyrbbust tracking bounds. In
this case a simple Pre Filter is required to shape the compédtof controlled plants so
that they satisfy the upper and lower limits of the robustkiag bounds. In terms of the
overall control structure shown in Figure 5.15 the Pre Filteuld be placed directly after

the Position Controller.
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Nichols Chart — Loop Shaping
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The Pre Filter design for this system is given in Equatiod9p. The velocity loop fre-
guency responses with the Pre Filter are also shown in Fig@f(cyan curves). It can be
seen that with the addition of the Pre Filter, the complet@&eontrolled plant responses

satisfy the upper and lower tracking bounds.

(5.19)

Gfo (S> = (i

The position loop design is undertaken in the same manndreagelocity loop design.

The nominal loop transmission function for the positiondas:

R/ nom(S)
where:
R, nom(S) = Gups (3) ( Gu(9)Ge()Prom( 9 ) (5.21)
V. _nom = Ly .
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Figure 5.21: Position Loop Shaping - Dynamic Stiffness Callar
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The final shape of the nominal position loop transmissiorction is shown in Figure
5.21. Although there are four stability bounds that crogsltiop transmission function,
these bounds are above the transmission function at theiassibfrequencies (500, 1000,
2000 and 5000 rad/s). Hence, the final transmission funstidisfies all of the position
loop performance bounds. The associated position coatrodnsists of a simple propor-
tional gain:

Gp(s) = 175 (5.22)

5. Analysis of the Design

The final step in the QFT approach is to analyse the design anfy that all of the
performance specifications have been met. For the velamty, lthe stability and robust
tracking specifications have already been verified throbghésponses shown in Figure
5.20. The velocity loop disturbance responses (Equatid8}}h for the complete set of
controlled plants, are shown in Figure 5.22. It can be se&trethof the responses satisfy

the disturbance bound @, (s) = 4 x 10~ 8s,

Frequency Response - Disturbance Bound Analysis
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Figure 5.22: Velocity Loop Disturbance Analysis - DynamtdfSess Controller

130



The position loop frequency responses, for the completeofsebntrolled plants, are
shown in Figure 5.23 (dark blue curves). It can be seen thaifdhe responses sat-
isfy the stability performance specification (0dB upperit)mThe position disturbance
responses, for the complete set of controlled plants, aesddown in Figure 5.23 (cyan
curves). Although the disturbance specification was adéceat the velocity loop design
stage, it can be seen that all of the position disturbangeress still satisfy the original

disturbance bound dyp(s) = 4 x 1078,
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Figure 5.23: Position Loop Analysis - Dynamic Stiffness €olter

The responses shown in Figures 5.20, 5.22 and 5.23 verityathaf the performance
specifications were met in the example QFT design. It is hewmieresting to note that
the final structure of the velocity controller (Equation1®)) had no higher order than
that of a standard PID regulator and the final structure optsition controller (Equation
(5.22)) was the same as a standard P regulator. Althougé theo limit on the number
of poles and zeros in a QFT designed controller, it was fohaddll of the performance

specifications could be met with these conventional costraktures.
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Higher order controllers were also examined during the aigldoop shaping step of
the example QFT design. It was found that for the Linear Md&st-Bed, with a fixed

current controller, the higher order velocity controlléid not provide any further ben-
efits. Although some higher order controllers did allow fortfier increases in dynamic
stiffness, these increases could not be achieved witholdting the other performance

specifications.

5.4.3 Dynamic Stiffness of the QFT Controlled Linear Motor

The QFT controller developed in Section 5.4.2 was impleeemn the Linear Motor
Test-Bed. During the implementation of this controllewés found that the Linear Motor
Test-Bed had a minor system resonance at approximately 200AHnotch filter was

successfully added to the controller to reduce this resmeiamowever, the proportional

gain of the velocity controller was also slightly reducecettsure a stable system.

The 125N step disturbance force, used in Section 5.4.1, gain applied to the load side
of the Linear Motor Test-Bed. The response of the Linear Md&st-Bed, with the QFT
designed control system, is shown in Figure 5.24. A maximuositn error of 3.4m
can be seen in this response. In comparison, the maximurtigyosiror of the Linear
Motor Test-Bed with the standard manufacturer recommeudattoller tuning was ap-
proximately 8jum. While the QFT designed controller reduced the maximumtjoosi
error by more than an order of magnitude, the closed-looplwatihs of the two con-
trollers were approximately equivalent. This result dega@lemonstrates the importance

of including dynamic stiffness in the design approach.

For a direct comparison, Figure 5.25 shows the response @HT designed control sys-
tem on the same graph as the standard controller responteslahear Motor Test-Bed
and the ballscrew configurations of the Drive Comparisort-Besl. Although still an
order of magnitude higher than the maximum position errbthetwo ballscrew config-

urations, a maximum error of 3n to a disturbance force of 125N would be considered

132



acceptable in many machining operations.

Position Response — 125N Disturbance
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Figure 5.24: Linear Motor Position — QFT (125N Disturbance)
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5.5 Conclusions

A study of dynamic stiffness in precision machine tool fe@dsahas been presented in
this chapter. In particular, the study focused on the usaeél motors in precision feed
axes. The advantages of linear motors in reducing periadgue/force disturbances in
feed axes were analysed, along with the disadvantagesassbwith the inherently low
dynamic stiffness of linear motors. Control system desi@s also examined from the
perspective of dynamic stiffness, with a QFT approach preskthat includes dynamic

stiffness in the design process.

The periodic torque/force disturbances of both linear andry motor driven feed axes
were studied in Section 5.2. Through the use of positionueegy spectra, the most
significant cyclic disturbances were quantified for the kinlotor Test-Bed and all three
configurations of the Drive Comparison Test-Bed. Althoulgé teduction of periodic

torque/force variations is one of the recognised advastafjiinear motor driven axes,
the study presented in this section both quantified and coedpactual disturbances in

real linear and rotary driven axes.

The results presented in Section 5.2 clearly showed thairthyesignificant disturbances
in the Linear Motor Test-Bed were due to the motor’s eleatraycle and associated cog-
ging forces. In comparison, it was found that additionatutisances were significant on
all three configurations of the Drive Comparison Test-Bdukse additional disturbances
were due to the associated mechanical transmission maeohswof each configuration. It
was also found that the mechanical power required to oveedoiction at 200mm/min

was more than an order of magnitude higher for the ballscoigurations, when com-

pared with the linear motor and rack and pinion configuration

The inherent dynamic stiffnesses of rack and pinion, badigand linear motor driven
axes were compared mathematically in Section 5.3. Thetneguhathematical expres-
sions clearly illustrated the relationship between dymastiifness, load mass and trans-

mission gearing. The force disturbances required to exgied position error tolerances
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were also calculated for the Linear Motor Test-Bed and akéhconfigurations of the
Drive Comparison Test-Bed in Section 5.3. Through a corsparof the calculated force
disturbances, it was found that the linear motor and rackpamdn configurations were
only capable of providing significant stiffness at high fueqcies. In contrast, the dy-
namic stiffness of the ballscrew driven configurations wasas to be inherently higher
and less affected by changes in load mass. These resultsraggily due to the inherent

gearing in the ballscrew configurations.

The design of control systems for increased dynamic stfveas also examined in this
chapter. The standard control structure and tuning prookise CNC system (based
primarily on overall system bandwidth) was examined firsdaction 5.4.1, with a 125N
step disturbance force applied to the Linear Motor Test-&wetlall three configurations of
the Drive Comparison Test-Bed. When comparing the resgoofsthe test-bed configu-
rations, it was found that the maximum position error on tine ballscrew configurations
was more than 2 orders of magnitude lower than that of thetingotor configuration
and almost 4 orders of magnitude lower than that of the rackpamion configuration.
The much larger error of the rack and pinion configuration slasvn to be due to high
backlash in the system. Methods that can be used to imprevgettiormance of systems

with backlash are examined in Chapter 7.

A QFT approach to designing control systems that simultasigaaddress performance
specifications based on stability, robustness, overglomese speed and dynamic stiffness
was presented in Section 5.4.2. A method for generating @fbpnance bounds based
on the dynamic stiffness requirements was also presentedexample design for the
Linear Motor Test-Bed was shown to reduce the maximum mwsgiror of this system
(when subjected to the 125N disturbance force) by more timaarder of magnitude,
while not affecting the closed-loop bandwidth of the systémihe example design it was
found that the velocity loop control structure did not requany higher order than that of
a standard PID regulator. Higher order control structuregevalso examined during the

QFT design process; however, while it was possible to irrgélae dynamic stiffness of
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this design using a higher order control structure, it wamtbthat the other performance
specifications were compromised. Hence, there was no ayant using a higher order

structure in this particular example.

Through the example design presented in this chapter, tlegpproach was shown to
provide a structured and transparent design process. Tdutsdf any changes in the con-
trol structure were able to be assessed simultaneoushatdr ef the given performance
specifications. In comparison, the standard approachesdigring PID regulators are
very limited, with any trade-offs between robustness,di@mt performance and dynamic

stiffness not always clear to the designer.
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Chapter

Drive-Train Flexing and Torsional

Vibrations

6.1 Introduction

A theoretical analysis of the various factors that intetactause torsional vibrations, and
associated stability problems, in servo systems is predentthis chapter. In particular,
the analysis focuses on flexing in the drive-trains commaskd for machine tool feed
axes. Although drive-train flexing is directly responsihide the transmission of torque
(or force) to the load, it is also directly associated with thsulting oscillations that can
be observed in the motor and load responses. Industry Fdisdrelly dealt with these
stability problems through ‘matching’ the inertias of thetar and load in systems; how-
ever, the analysis presented in this chapter shows thatie sases excessive torsional

vibrations can occur even in drive-trains with a 1:1 inerégo.

While load position is the most critical output of a machineltfeed axis, torsional vi-
brations have an impact on both velocity and position. Stheecontrol structure in most
feed axes is cascaded, the inner velocity loop is faster tti@outer position loop. For
this reason, most approaches to controlling torsionalaibns are implemented in the
velocity loop. Similarly, the analysis presented in thisgter concentrates on the mo-

tor and load velocity responses, rather than position. ddinout the presented analysis
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the effectiveness of velocity control solutions from alltbé three fundamental groups

(identified in Section 2.3.3) are also compared both thexaist and experimentally.

In Section 6.2 a theoretical analysis of flexing and systetillagons in a simple motor-
transmission-load system is presented, along with a dismu®n absolute stability. A
mathematical analysis of the different control solutidres use specific flex related feed-

back quantities, to reduce torsional vibrations, is algsented in Section 6.2.

In Section 6.3 various proposed control solutions are coetpthrough simulation and
application to the Motor-Transmission-Load Test-Bed. Asatibed in Section 4.3, this
test-bed was designed to allow for a concentrated analysisve-train flexing and tor-

sional vibrations (with other important performance limgf factors minimised). As a

result of this comparison the most effective control solusi are identified.

In Section 6.4 the overall analysis of torsional vibratifinsth theoretical and experimen-
tal) is extended to the common machine tool drive configonsti The Drive Comparison

Test-Bed (described in Section 4.4) is used for the experiahanalysis in this section.

The results presented throughout this chapter are distdisgéer in Section 6.5, with
the development of a standard approach to the problem stegyedther key points and

conclusions that can be drawn from this chapter are also suised in Section 6.5.

6.2 Theoretical Analyses of Transmission Flexing and Con-

trol Solutions for Torsional Vibrations

6.2.1 Overview

The analyses presented in this section examine the varamiier$ that can interact to
cause torsional vibrations and absolute stability proslanmotor-transmission-load sys-
tems. The use of specific flex related feedback quantitiesdoae torsional vibrations in

a closed loop control system is also examined.
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The inherent flexing of the transmission element in a matomgmission-load system is
analysed in Section 6.2.2. This analysis examines how ehtitesystem inertias and
the torsional stiffness of the transmission element canenite the natural frequency of
oscillation of the system. To further understand the effebat torsional stiffness and
each of the system inertias have on a closed loop contrasyshe open loop frequency
responses of a motor-transmission-load system with botbmeelocity and load velocity
as outputs are examined in Section 6.2.3. It is shown in bethiéhs 6.2.2 and 6.2.3 that
motor-load inertia ratio has a very limited effect on theunak frequency of oscillation
of a system and on any resonant peaks that can result whengctbe loop. Limitations
associated with using feedback sensors placed at the nretais identified in Section

6.2.3.

The issues associated with feedback sensor location d@hefaxamined in Sections 6.2.4
and 6.2.5. In Section 6.2.4 the influence of feedback sensatibn on absolute stability
is examined, with stability problems identified when thedfegck is restricted to the load
side. The influence of different flex related feedback quigst{based on combinations of
motor and load feedback) on the closed loop flex responseaimieed in Section 6.2.5.
Through the analysis presented in Section 6.2.5 many prsligublished control solu-
tions, which use these flex related feedback quantitiesslawe/n to be mathematically

equivalent.

6.2.2 Transmission Flexing

For an initial analysis of flexing, the ‘traditional’ two-dg model was considered. If all
friction and damping sources are considered negligiblarester function with transmis-

sion flex as output can be obtained from Equations (3.3) adq: (3

1
% I 6.1)

Tn @, K313
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Applying a unit impulse and taking the inverse Laplace tfams of Equation (6.1), re-
sults in a description of flex as a function of time. |fid also substituted with J, (ie

I, = j]';) this time function can be described in terms of motor-losttia ratio:

_i Il , Ks(1+1r)
GS(t)_Jm”iKs(le)s'n B t (6.2)

From Equation (6.2) it can be seen that increasing the toasistiffness of the trans-
mission also increases the natural frequency of osciltatfadhe motor-transmission-load
system, while decreasing the amplitude of this oscillatitinis also worth noting that
when K = o, flex reduces to zero (as expected). Examining the influehdeedtia
ratio shows that the effects are opposite to that of torsistidness — as the inertia ra-
tio increases, the natural frequency of oscillation desgeaand the amplitude increases.
However, as the inertia ratio continues to increase aboirg mtends to cancel, reducing

the effects it has on both the frequency and amplitude of sieélation.

One problem with using the ‘traditional’ two-body model twadyse flex is that, as shown
in Section 3.2.3, the ‘traditional’ two-body model does atways provide an accurate
description of the system'’s natural frequency, partidylashen the inertia of the trans-
mission element is significant. For this reason, a transfiectfon with transmission flex

as output was also obtained using the ‘adjusted’ two-bodgeho

2

% _ 2T+ (6 3)

Tm @ 8Ks(In+Jd+Jk) '
8Jnd +3%(Jn+J) -+

Applying a unitimpulse and taking the inverse Laplace tfams of Equation (6.3) results

in a more accurate description of flex as a function of time:

o) 2 \/Jm(8lr+3ls(l+lr)+|§)Sin(\/J(8Ks(1+lr+ls) t)

8Ks(1+ 1y +1s) 8l +3ls(1+1;) +13)
(6.4)
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In Equation (6.4) Jhas once again been substituted wjtl,] so that the time function is
described in terms of inertia ratio. To reduce the compyexditEquation (6.4), the inertia
of the transmission elementgfhas also been described in terms of an inertia ratjo (I

where = j]i). Note that whend= 0, Equation (6.4) reduces to Equation(6.2).

From Equation (6.4) it can be seen that varying torsion#fnss of the transmission
has the same effect as in Equation (6.2). Also wheahd subsequentlyglis very
small, varying the motor-load inertia ratio has the samea¢fls in Equation (6.2). As
Is increases though, the influence of motor-load inertia ratidoth the frequency and
amplitude of the oscillation reduces. The importance «f thsult can be understood best
when considering a long ballscrew with significant inertid lkow torsional stiffness. In
this case, the effects of varying the motor-load inertigorain both the frequency and
amplitude of any oscillations present, are significantiyueed. However, a ballscrew

with a larger diameter and the same length would have inedeasffness and inertia —

resulting in an increase in the natural frequency of odailieand a decrease in the am
plitude. What is particularly evident from both Equatiofs2) and (6.4) is that torsional
stiffness of the transmission has a much greater influen@nyprilexing than the inertia

ratio does.

6.2.3 Oscillations in the Closed Loop System

To analyse the effects of varying inertia ratio and torsi@tdfness when closing the
velocity loop, the open loop frequency responses of a moamsmission-load system
with both motor velocity and load velocity as outputs werarained. The frequency
response with motor velocity as output is shown in Figure(&)1 while the frequency

response with load velocity as output is shown in Figure B)1 (

A comparison of Figures 6.1 (a) and 6.1 (b) reveals that fofredjuencies higher than
the quadratic zeros (in Figure 6.1 (a)) the motor and loadoieés quickly become 180

degrees out of phase. Of particular note is the frequenocyeréretween the quadratic
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zeros and quadratic poles of the motor response. Since dmrajic poles represent a
resonance in both the motor and load responses, it can betsgdhe magnitude of the
resonant peak in the motor response increases with the wiittis frequency range. This
characteristic, coupled with the fact that in this rangertiotor sensor provides feedback
that leads the total torque rather than lagging it (as the tees), highlights one of the
major problems faced by system designers who use feedbashkrseat the motor. This

result is also consistent with that found by Welch [43].
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Figure 6.1: Frequency Responses — Oscillation Analysis
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Equations (2.9) and (2.10) describe the corner frequerafiese quadratic zeros and
guadratic poles in the motor response when the transmissestia is assumed to be
negligible. If the transmission inertia is taken into aasbthe quadratic zeros of the
motor response are described by Equation (6.5) and the afiadoles are described by
Equation (6.6). Note also that Equation (6.6) is equivaterthe frequency in the flex

expression of Equation (6.4).

B 8KsIn+4Ksk 4Ks(2+1s) 65
=\ B3 133Gt )+ B\ JnBlr 1 3Is(1 1 1) +12) '

_ 8Ks(In+d+J) 8Ks(1+1r +1s) (6.6)
@ 8JnJ +3%(In+J) + & Jn(8lr +3ls(1+1r) +13 '

When examining Equations (6.5) and (6.6) it can be seen ligatdrner frequencies of
both the quadratic zeros and quadratic poles are propattiorihe torsional stiffness of
the transmission element. Hence, a transmission elemémtwigher torsional stiffness
would result in the zeros and poles moving further to thetrighhe frequency response
of Figure 6.1 (a). As the zeros and poles move further to thet @nd away from the

cross-over frequency, relative stability is increasednvtiesing the loop.

Analysing the influence of motor-load inertia ratio in Eqaas (6.5) and (6.6) shows
that w, reduces with an increase in inertia ratio, whlg is relatively unaffected (as
discussed in Section 6.2.2). This means that the band betivedwo corner frequencies
is increased, resulting in an increase in magnitude of therm@nce. Unless the torsional
stiffness of the coupling is relatively high, this band afduencies will occur near the

cross over frequency, resulting in poor relative stabilityen closing the loop.

The most interesting factor in this analysis is the influeotenotor inertia. Increasing
the motor inertia to overcome a large motor-load inertiamnatch (which is a common
solution used in industry) does reduce the width of this bainfilequencies. However,
this is primarily achieved by reducingy,, while w, remains relatively unaffected (if the

transmission inertia is negligibley, does not change at all). Although this does reduce
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the range between the two corner frequencies (and henceedilte the magnitude of the
resonance to an extent), it does not move this band of fremgeaway from the cross-
over frequency. Hence, high amplitude oscillations cdhestist when closing the loop.
The only reliable method of moving this band of frequencieayfrom the cross-over

frequency is to increase the torsional stiffness of thestraasion element.

6.2.4 Absolute Stability

Consider the block diagram shown in Figure 6.2, where bottomand load feedback
are proportionally applied to a motor-transmission-logstesm (through gains K and
K, respectively). The influence of feedback sensor locatioralsolute stability was

examined for this system using Routh’s Stability Criterj6].

Input Error Motor Output | Motor Velocity R Load Output | Load Velocity >
System System
@ Km

Figure 6.2: Absolute Stability Analysis — Closed Loop Syste

A

The motor and load output systems shown in Figure 6.2 wereshi@gatlusing the ‘ad-
justed’ two-body model. Equation (6.7) represents thestiemfunction of the ‘Motor
Output System’, while Equation (6.8) represents the tersinction of the ‘Load Out-

put System’. These two transfer functions can be obtainaeh fEquations (3.19) and

(3.20).
b 2((83nd+33(Jm+d)+E) L +4Ks(20n+ X)) 6.7)

Error — s(23n+) ((83nd +3%(In+ ) + B) P +8Ks (In+ 3 + %)) '
6 4Ks (20 + %) (6.8)

B (8 +3%(In+d) +FB) 2+ 4Ks(2dn+ k)
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From Equations (6.7) and (6.8) the characteristic equatiahe feedback system shown

in Figure 6.2 was determined to be:

23+ %) (83 +3%(In+3) +£) S+ 2Km (83nd + 3L (In+3) + &) &
+8Ks(2dn+Js) (In+ 3 + Js) s+ 8Ks (Km+ K) (2Jn+ k) (6.9)

From the characteristic equation, Routh’s array of coeffits can be constructed. Table

6.1 represents Routh’s array of coefficients resulting fEgnation (6.9).

Table 6.1: Array of Coefficients for Routh’s Stability Analg
(2dn+X) (833 +3E(In+3) + &) | 8Ks(2In+ ) (In+J +X)

2Km (8dnd +3%(In+J) + &) 8Ks(Km+Kj) (2dn+J)
4Ks(sz+Js)(Km(f<J+Js)—K.(ZJm+JS))

Bl X | R D

8Ks(Km+Kj) (2 + %)

For absolute stability, all of the coefficients in the firstadaolumn of Table 6.1 must
be positive. Since each of the individual parameters in treracteristic equation are

positive, this condition will hold true as long as the firstrgrin thest row is positive, ie:

2n+Js

Km > K5

Hence, through careful choice offand K, the system shown in Figure 6.2 is absolutely
stable regardless of the inertia ratio or transmission eftdrstiffness. If the feedback
is restricted to motor velocity (ie k= 0), the condition for absolute stability holds true
regardless of the value of K Conversely, if the feedback is restricted to load velo@iy

Km = 0), the system is unstable regardless of the valug of K

In a practical system, where friction and damping of thedraission element are present,
it is possible to design an absolutely stable system witly todd velocity feedback.
However, absolute stability problems are still likely todserious issue when designing

a practical motor-transmission-load control system witty doad velocity as feedback.
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6.2.5 An Analysis of Feedback Approaches

It is clear, from the analysis presented in Section 6.2.8 séhfeedback device attached
to the load can provide valuable information on flex in a sesystem (as long as it
is not the only feedback available). In this section the uskad feedback in higher
order controllers is theoretically analysed. In particulbe control approaches that use
specific flex-related feedback quantities (which can comdisnotor and load feedback,

as discussed in Section 2.3.3) are analysed and compared.

Consider the block diagram shown in Figure 6.3. The solidiae@t the centre of this
diagram represents the system described by the ‘traditiov@body model. The dashed
sections in the diagram show how the different feedback tifies) which were discussed

in Section 2.3.3, can be used to form inner feedback loops luflaer order velocity

controller.
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Figure 6.3: Feedback System Block Diagram

Recall that Equation (6.2) describes the flex of the ‘tradiil’ two-body model as a

function of time. Through the same method of applying unipitses to the relevant
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transfer functions and taking inverse Laplace transfotrasismission flex as a function
of time can also be determined for each of the feedback appesashown in Figure 6.3.
The ‘traditional’ two-body model is used in this analysiditoit the size of the resulting

equations. However, each of the time functions derivedigd@ction can be described in

terms of the ‘adjusted’ two-body model by applying the faling substitutions:

Jm = Jm(ad)) ZJm+J§S

J :\]I(adj):\]l‘i‘%s
ko 2Ks(2Int ) (20 +)
S T 8 + 3 (In+ ) + B

Shaft Flex Feedback

Consider first the use of shaft-flex feedback, which was ssfalty used by the author
of this thesis in [52] to reduce system oscillations on thedvtd ransmission-Load Test-
Bed. This can be achieved by setting each gf K4, Ky and K (in Figure 6.3) to zero,
while K5 is the non-zero shaft-flex gain. Equation (6.10) represtet$ransfer function
for this system, with transmission flex as output. Equat®il) represents the system

flex response as a function of time.

1

0s I,
Tn g Kl K (640
os(t) = %—10) sin(aot) (6.11)
where o \/Ks<1+J|rl>+Kflr
mir

A comparison between Equations (6.11) and (6.2), reveatsBfuation (6.11) contains

an additional element (K;) in the numerator of the natural frequency of oscillation.
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Since this element cannot be grouped with every instanceedtfia (J, and J) or with the
torsional stiffness of the transmissiong)Kit is not strictly correct to claim an effective
change in the total inertia or the torsional stiffness of $histem. However, it is clear
that increasing the feedback gainy Kas a similar effect to the preferred approach of
increasing kK, in that the frequency of oscillation increases while thepltode of this

oscillation decreases.

Shaft Torque Feedback

Equation (6.12) represents the transfer function of theegysvhen shaft-torque feedback
is used, as suggested by Brandenburg et al [45]. This canhievad by setting each of
Kam, Ka, K and K, (in Figure 6.3) to zero, while Kis the non-zero shaft-torque gain.

Equation (6.13) represents the flex response of this systea function of time.

1

Bs I,
T, L K@+ Kd) (612)
S +T
Os(t) = ﬁsin(wt) (6.13)
where,w = \/KS<1+J“|+ Kelr)

Comparing Equation (6.13) with Equation (6.11) shows theytare almostidentical. The
only difference between these two approaches is that thé@uhl element in the numer-
ator of the natural frequency is now also dependent @niiis is expected sinceHs a
constant of proportionality between shaft-flex and shaftiie. Although this proportion-
ality may not be exact in a practical system (where frictiod aensor inaccuracies are
significant), from a theoretical perspective the shaft-feldback and shaft-torque feed-
back approaches are fundamentally equivalent. It is alstvmoting that when friction is

considered negligible, load-torque feedback (as sugdéstdi and Sul [46]) is identical
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to shaft-torque feedback and hence also results in a funaaityeequivalent approach.

Acceleration Feedback

Equation (6.14) represents the transfer function of théesysvhen motor and load ac-
celeration feedback are used. In this casg, I, and K (in Figure 6.3) are set to zero,

while Kam is the motor acceleration gain and;Ks the load acceleration gain.

1

93 o Er_H‘Ram
T (3 Kan)

Equation (6.15) represents the flex response, as a functiome, when Ky, is set to
zero. This configuration provides acceleration feedbaainfthe load only, as suggested

by Hori et al [49].

1 .
6s(t) = msm(wt) (6.15)
K
Ks(1+1r+52)
here,w =
where,w J T

Equation (6.16) represents the flex response, as a fundttone when Ky is set to zero.

This configuration provides acceleration feedback fromntisgor only, as suggested by

Welch [43].
1 .
6s(t) = msm(aﬁ) (6.16)
B Ks((Im+Kam) +3)
where,w = \/ Gt Kam) 3

A comparison between Equation (6.15) and Equations (6.4d)(6.13) shows that the
load acceleration feedback approach is almost identidadtio shaft-flex and shaft-torque

feedback. Thisresultis due to the fact that transmissiauiis equivalent to the product
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of load inertia and load acceleration in an undamped systeaomparison between the
additional elements in Equations (6.13) and (6.15) shoasttiey satisfy this relation-
ship. In contrast, the motor acceleration feedback apprdéfers in that it has the same
effect as altering the motor-load inertia ratio of the sgst&lote that Equation (6.16) has
been written in terms of the inertiag and J to show that K, can be grouped with every
instance of g. Hence, Equation (6.16) is equivalent to Equation (6.2)éf inertia ratio

is re-defined as |I= Jﬂ_ﬂK_

Velocity Difference Feedback

Equation (6.17) represents the transfer function of theesysvhen the difference between
motor and load velocityég) is used for feedback. This can be achieved by setting each
of Kam, Kal, K and K to zero, while K is used as a velocity difference gain. Equation

(6.18) represents the flex response of this system as adaraittime.

1

65 I,
s (6.17)
Tn "~ 24 Kig Kehd)
1 | 4Rw? Ky |42 w2 — K2
— 2Jn —mT v
Bs(t) o\ 4202 K\Z,e sin (cu 1207 t) (6.18)
where,w = ngij_ )
r

An examination of both Equations (6.17) and (6.18) revdas, tunlike the other forms
of feedback examined in this section, velocity differeneedback does not effectively
alter either the natural frequency or the inertia ratio efsgstem. Instead, increasing K

increases the damping of the system oscillations, whiclssadesirable result.

When comparing the different feedback approaches, it caede that the feedback gains
used in shaft-flex feedback, shaft-torque feedback, loaglie feedback and load accel-

eration feedback are all related by system constants. KHench of these approaches are
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fundamentally equivalent and have a similar effect to vagythe torsional stiffness of the
system. Only motor acceleration feedback and velocityedsifice feedback produce dif-
ferent results, with motor acceleration feedback effetyialtering the motor-load inertia
ratio of the system and velocity difference feedback aiffigcthe system damping. All of
these approaches can theoretically reduce the amplitutteedfex response. However,
the effects of varying the inertia ratio of the system (asfisctively achieved through

motor acceleration feedback) were shown in Sections 6rfiB£.3 to be very limited.

6.3 A Comparison of Control Solutions

6.3.1 Overview

Recall from Section 2.3.3, that the different approachesdatrolling torsional vibrations

can generally be classified as belonging to one of three fued#al groups:

1. Conventional control, with vibration suppression filhgrand a single feedback

device (usually attached to the motor),

2. Higher order control, with multiple feedback deviceddeled to both the motor

and load) and

3. Higher order control, with a single feedback device (llgwutached to the motor).

In order to evaluate the performance of control solutionsffeach of these three groups,
representative control approaches were applied to the iMoemsmission-Load Test-
Bed. Through both simulation and actual data acquisitiomfthe test-bed, the transient
responses of the controllers (to a velocity step input of rth@lls) were compared. A total
of 9 different control approaches were included in this carrgon, with P1 control chosen

as a performance benchmark:
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1. Group 1 (conventional control with/without filtering)

¢ PI control with no filtering

¢ PI control with simple notch filtering
2. Group 2 (higher order control — motor and load feedback)

Pl with shaft flex feedback
PI with velocity difference feedback

Pl with load acceleration feedback
State feedback

3. Group 3 (higher order control — motor feedback)

e Pl with motor acceleration feedback
e State feedback with observer

e Unrestricted QFT design (motor velocity loop)

The general design criteria for all of the controllers cetesd of achieving a fast response,
while limiting overshoot and oscillation in both the motordaload responses. This re-
sulted in a single design specification that the closed l@p gnagnitudes had to be 0dB
or less at all frequencies, in both the motor and load velaesponses. The poles of
the state feedback controllers were chosen to ensure th@idB design specification
was satisfied, with the well known Ackermann’s formula [6Fed to determine each
state feedback gain matrix. For the case where an obsergeusedl, the observer gains
were also determined using Ackermann’s formula with thesoler poles chosen to be
5 times faster than the slowest poles of the state feedbatkatier. For all other cases
a QFT design approach was used, with the design restricten teelative feedback and

compensator structure of each case.

Since the design specification related to both the motor@eu Velocity responses, nom-
inal plant transfer functions for both the motor and loadeviercluded in each step of
the QFT designs presented in this chapter. This is an immpaatidition to standard QFT,
as the Nichols Chart used in a single loop design is usuatlyicted to a single nomi-
nal transfer function. This approach provided a distineaatiage over traditional tuning

methods in that both the motor and load specifications coaitdoressed simultaneously,
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even for the benchmark PI controllers. The method developéattlude both the motor

and load transfer functions in a single QFT design is preskimt Section 6.3.2.

The simulated and experimental transient responses ofeihehimark Pl controllers are
presented in Section 6.3.3. To effectively simulate the dvidransmission-Load Test-
Bed, the Matlab package was used. With the addition of theul8itoolbox, a block
diagram approach to modelling and simulation was employduds approach allowed
for the current loop characteristics, system nonlinesgitind various disturbances to be
easily included in all of the simulations performed. The materface of the simulator is
shown in Figure 6.4. This interface allowed for easy adjesthof transmission stiffness,
transmission inertia, motor inertia, inertia ratio and tcohmethod. The block diagram

of the overall simulation model is shown in Figure 6.5.

Sampling
1000
Simulation Length
s

]

]
—
=

Cpen Simulink Mode! First!

Shaft Stiffness Shaft Inertia Motar Inertia Inertia Ratio
20.35 0.0000005 0.000231

Figure 6.4: Simulation System — Main Interface
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Figure 6.6: Simulation System — Feedback System 2

A change in control method on the main interface results emges to the control and
feedback subsystems of Figure 6.5. An example of one of thassystems (‘Feedback
System 2’) is shown in Figure 6.6. It can be seen from Figugeltat the actual feedback
path is controlled via a multiport switch. The state of theltiport switch is updated

every time a new control method is chosen on the main interfaach of the ‘Pre Filter’,
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‘Controller 1, ‘Controller 2’ and ‘Feedback System 1’ sylgems (in Figure 6.5) contain
similar multiport switches, so that the control algorithnddeedback gains implemented

in each subsystem are dependent on the control method chiestie main interface.

The block labelled ‘Flexible Transmission System’ (in Fig®.5) contains the complete
dynamics of the Motor-Transmission-Load Test-Bed inatgdihe current control loop.

This block can easily be altered to represent the otheibids-

The simulated and experimental transient responses ofltémative control solutions
are presented in Section 6.3.4. All simulations for theralive control solutions were
performed using the described Matlab based system. Thégdsuall of the control

approaches are also compared in Section 6.3.4.

6.3.2 Dual Response QFT Method

As described in Section 6.3.1, nominal plant transfer fiomst for both the motor and
load were included in the QFT designs presented in this ehaftigure 6.7 shows an
example Nichols Chart with both the motor and load nominahtd plotted (the solid
black line represents the open loop motor velocity, whitedblid blue line represents the

open loop load velocity).

There is some difficulty in including a second plot in a singlep QFT design, as the de-
sign process assumes the designer is closing the loop withfaadback from the output
of the plotted transfer function. This can only be true foe @f the plots when there are
two outputs plotted. Consider the example plots shown inifei@.7. If the motor veloc-
ity is used in a unity feedback arrangement, the closed loagnitudes represented by
the standard Nichols Grid would provide an accurate indoabf the closed loop mag-
nitudes at each frequency for the motor velocity (black)lindowever, they would not
provide any indication of the closed loop magnitudes fortiagl velocity (blue line). For
the standard Nichols Grid to provide an accurate indicatidhe closed loop magnitudes

for load velocity, load velocity feedback must be used. Henwo sets of bounds for
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Nichols Chart — Motor and Load Plants

40
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Open-Loop Gain (dB)
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Open-Loop Phase (deg)

Figure 6.7: Nichols Chart with Nominal Transfer Functioaslboth Motor and Load

each performance specification are required when both raatbtoad transfer functions

are included in the design process.

Figure 6.8 shows an example of two separate bounds for therrant load responses,
based on a single performance specification. In this casap@lesistability specification
was set, limiting the closed loop magnitude of both motor lmad responses to 0dB at
158 rad/s. In Figure 6.8 the bound for the motor respons@resented by the red dashed
line and can be seen to match the 0dB closed loop magnitudeeatandard Nichols
Grid. The bound for the load response is represented by #engilashed line and is
completely different. If G(s) represents the controlleb&designed (which is the same
for both nominal plants), /(s) represents the motor transfer function afd)Represents

the load transfer function, the two sets of bounds are catedlsuch that:

‘ G(S)Pm(s) < 0dB for the motor

1+ G(s)Pm(s)
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and

G(s)R(s)
m‘ < 0dB for the load

Nichols Chart — Motor and Load Boundaries
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Figure 6.8: An Example of QFT Stability Bounds for both Mo#ord Load

The importance of including the load response in the degigegss is evident from Figure
6.8, as it can be seen that the nominal motor plant alreatbfisatthe performance bound
(even with G(s) = 1) while the nominal load plant does not.slikishown by the fact that
the entire motor plant is outside the red bound, but the Id¢emat ;s above the green bound
at 158 rad/s (158 rad/s is shown by a circle on each of the)platerder to satisfy a closed
loop specification of both motor and load magnitudes beisg tean 0dB at 158 rad/s,

the controller G(s) must be modified so that both plantsfyatigir respective bounds.
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6.3.3 Performance of Pl Velocity Controllers

The benchmark PI controllers were tested using all of théabla inertia discs and shafts
of the Motor-Transmission-Load Test-Bed (refer to Sectidh?2 for details). In particu-

lar, four different motor-load inertia configurations wéested on each of the 3 shafts:
1. No discs attached to either the motor or load (inertiarati),
2. Disc 1 attached to the motor and Disc 3 attached to the ioadigé ratio 1.07:1),

3. Discs 1 and 2 attached to the motor, with no discs attaahttetload (inertia ratio

16.9:1),

4. No discs attached to the motor, with Discs 1 and 2 attaahtuktload (inertia ratio

1:16.9).

An example design is shown in Figure 6.9, where the systesm$isaft 3 and motor-load

inertia configuration 2 (inertia ratio 1.07:1).

Nichols Chart — QFT Loop Shaping
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Figure 6.9: Loop Shaping - PI Control
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In Figure 6.9 all of the motor bounds lie on the 0dB closed lo@gnitude of the standard
Nichols Grid, while the load bounds can be seen to vary widlgdency (the Legend
in Figure 6.9 refers to the bound frequencies). The genarsigd goal, to ensure the
fastest response, is to get as close as possible to the batthdsit violating them. The

controller design shown in Figure 6.9 can be seen to satlkfyf éhe bounds, with the

dominant bounds being the load bounds at 140 and 150 radgsire6.10 shows the
actual closed loop frequency responses for the design drashpigure 6.9. As can be
seen the design specifications have been met and 140-150imatie load response is

confirmed as the critical frequency range.

Closed Loop Frequency Response — Motor Closed Loop Frequency Response - Load
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10° 10°
Frequency (rad/s) Frequency (rad/s)

Figure 6.10: Closed Loop Frequency Response - Pl Control

The simulated motor and load transient responses for Ptaaftthe system with Shaft
3 as the transmission element are shown in Figure 6.11. &imithe motor and load
transient responses for Pl control of the experimentaksystinder the same conditions,
are shown in Figure 6.12. In each of Figures 6.11 and 6.12ntier responses are shown

in the upper graph, while the load responses are shown iroter Igraph.

The first thing to note about all of the transients shown iruFég 6.11 and 6.12 is that
standard PI control does not effectively limit oscillatsoim this system. Recall from
Table 4.2 that Shaft 3 has the lowest torsional stiffnesk@fBtexperimental shafts; con-

sequently, excessive oscillations are observed in thiesysven when the motor-load
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inertia ratio is approximately 1:1 (as in Cases 1 and 2). Tiig way to reduce these os-

cillations is to reduce the proportional and/or integrahgawhich would result in slower

overall responses.
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Figure 6.11: Simulated Motor and Load Velocity ResponsdsGdntrol, Shaft 3

PI Control — Motor Responses (Shaft 3, Test—-Bed)
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Figure 6.12: Experimental Motor and Load Velocity Respasngel Control, Shaft 3
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It is also evident from both Figures 6.11 and 6.12 that whenntlotor inertia is much
larger than the load inertia the motor response is relgts@looth while the load response
exhibits significant oscillation, and vice versa (Cases @ 4n However, inertia ratios
closer to unity can become even more difficult for designasssignificant oscillations
are present in both the motor and load responses (espewiadly both motor and load

inertias are relatively large — Case 2).

When comparing Figures 6.11 and 6.12, it can be seen thahtinéased system responses
provide a very accurate representation of the actual exgetial responses. Some back-
lash dynamics are noticeable in the experimental respgdaeso the use of interchange-
able inertia discs), although these dynamics have not haphdisant affect on the major
response attributes. Another minor difference is that theikated motor response of

Case 4 appears to be more damped than the actual experimespanhse.

The simulated motor and load transient responses for Ptaaftthe system with Shaft
2 as the transmission element are shown in Figure 6.13. Tinespmnding experimental
responses are shown in Figure 6.14. Similarly, the simdia@gsponses for the system with
Shaft 1 as the transmission element are shown in Figure @/life the corresponding

experimental responses are shown in Figure 6.16.

An important observation that can be made from Figures @816 is that as the tor-
sional stiffness of the transmission element increasesMstsuccessively with Shaft 2
and Shaft 1) the frequencies of all system oscillationsease, while the amplitudes de-
crease. This was predicted in the analysis presented ito8dc2. These results clearly
demonstrate that the significance of system oscillatioredsced as torsional stiffness of
the transmission element is increased. In comparisontdheard industry practice of en-
suring a unity inertia ratio can actually result in very sfgrant amplitudes of oscillation

in both motor and load responses.
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Figure 6.13: Simulated Motor and Load Velocity ResponsdsGdntrol, Shaft 2
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Figure 6.14: Experimental Motor and Load Velocity Respangel Control, Shaft 2
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Figure 6.15: Simulated Motor and Load Velocity ResponsdsGdntrol, Shaft 1
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Figure 6.16: Experimental Motor and Load Velocity Respasndgel Control, Shaft 1

A summary of the characteristics for all of the responsesgrted in Figures 6.11t0 6.16

is given in Table 6.2.
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Table 6.2: Transient Response Characteristics - Pl Control
Oscillation Max Oscillation
Rise Time Frequency Amplitude
(ms) (rad/s) (% of step)
Motor | Load | Motor | Load | Motor | Load
Casel] 23 21 1470 | 1470 | 0.45 0.27
Shaft 1 Case 2| 41 40 658 658 | 0.48 0.47
Simulated | Case 3| 149 | 148 | N/A 977 0 0.33
Case 4| 155 | 147 | 5719 | N/A 6.59 0
Casel 21 22 | 1480 | 1480 | 1.66° | 1.89
Shaft 1 Case2| 43 39 668 668 | 0.49 0.39
Experimental Case 3| 147 | 147 | 3141 | 937 | 1.87" | 041
Case4| 153 | 153 | 785 | 3141 | 5.07 | 4.59"
Casel 32 25 591 5901 | 1.16 1.27
Shaft 2 Case 2| 46 34 277 277 1.6 1.8
Simulated | Case 3| 149 | 149 | N/A 428 0 0.88
Case4| 153 | 137 | 2419 | N/A | 23.18 0
Casel 30 23 608 608 | 2.03 1.93
Shaft 2 Case 2| 44 32 289 289 1.6 2.11
Experimental Case 3] 151 | 142 | 3141 | 438 | 3.6" 1.87
Case 4| 152 | 142 | 418 | 3141 | 22.7 | 1.49"
Casel 38 27 331 331 | 2.17 2.01
Shaft 3 Case 2| 46 54 155 155 | 4.16 5.82
Simulated | Case 3] 149 | 138 | N/A 261 0 1.76
Case 4| 150 117 | 1259 N/A | 24.94 0
Casel 35 25 339 339 3.4 3.39
Shaft 3 Case 2| 45 50 157 157 2.66 3.47
Experimental Case 3] 143 | 133 | 785" | 261 | 1.82° 1.6
Case4| 152 | 135 | 224 | 3141 | 27.2 | 0.86"
@ Frequencies affected by higher damping in simulations
* Amplitudes affected by excitation of structural naturaduency
* Short sharp oscillations observed due to backlash dynashiogrtia discs

The summary in Table 6.2 again illustrates the close agreebetween the simulation
and experimental responses. The simulated motor respfurgease 4 (high load inertia)
do commonly appear to be more damped than the actual expgahresponses. How-
ever, the testing was performed over a wide range of moamstnission-load conditions
and the complete set of results confirm that the approximatelation model provides
a very accurate representation of the real system. One otimer difference between
simulated and experimental results can be seen in the Casspanses of Figure 6.16,

where the experimental motor and load responses have a thegepredicted amplitude
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of oscillation. This is due to the excitation of a structuedonance on the test-bed. The
relatively high frequency of this resonance would howellemafor simple filtering with-
out a costly reduction in response speed. The effects of eftttese minor differences

are clearly identified in Table 6.2.

6.3.4 Performance of Alternative Velocity Control Solutions

In order to test the performance of the alternative conthlteons, each controller was
applied to the Motor-Transmission-Load Test-Bed usingftShand motor-load inertia
configuration 2. This particular configuration was shown éct®n 6.3.3 to exhibit sig-
nificant oscillations in both the motor and load responsed,a a lower frequency than
any of the other configurations tested. For these reasomspthbination of Shaft 3 and
motor-load inertia configuration 2 provides a demandingugefior comparing controller

performance.

Figures 6.17 to 6.24 show the simulated and experimentatitgresponses for the tested
controllers. In each figure the upper graph shows the simgilabtor and load responses,
while the lower graph shows the experimental motor and leaganses. The responses
of the PI controller with notch filtering are shown in Figur&®. The design of the notch
filter was undertaken in thedomain and has the form given in Equation (6.19), where
the width and depth of the notch are adjusted via the dampitng (). To implement the
notch filter on the digital drives (of the CNC system) a Tustamsformation of Equation
(6.19) was performed to translate the notch intozldemain. The generatdomain form

of a 2nd order filter (after a Tustin transformation) is giwefquation (6.20), wherk is

the sampling period. For the case of the notch filter= «w, = w, {1 =0 and{, = (.

s

w?

+1

2(s

R (6.19)
2T T 1
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w3 (4+4whly+w2h?) w} (2wfh?—8) w5 (4—4whdy+wfh?)

WP (4+4whlo+w2h?) " 1 w(4+dawphlo+ah?) ™ w2 (4+4aphlo+wsh?)
z2+

2giE (6.20)

A-+40pho+ w3

4—4apho+wih?
4+40phdo+wsh?

rZt

PI Control with Notch Filtering — Simulation
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Figure 6.17: Motor and Load Velocity Responses - Notch Fiitg

For the experimental implementation of shaft flex feedb#u shaft flex was calculated
using direct motor and load position encoder measurem&irslarly, the experimental
implementation of velocity difference feedback was achikvia differentiation of the
same motor and load position encoder measurements. Thensespfor the Pl controller
with shaft flex feedback are shown in Figure 6.18. The respoifcer the Pl controller

with velocity difference feedback are shown in Figure 6.19.
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Figure 6.18: Motor and Load Velocity Responses - Shaft Flesdback
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Motor and Load Velocity Responses - Velocitifddence Feedback

A Hubner rotary accelerometer was used to obtain the fed&dtigoals for the exper-

imental implementation of load and motor acceleration bae#t. Double-differentiated

position encoder measurements were initially tested ferassacceleration feedback. The

resulting signals were found to contain large amounts asenand were not suitable for
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closed loop feedback. In comparison, the Hubner accelasnpeovided smooth ac-
celeration feedback signals. The responses for the Plaltantwith load acceleration
feedback are shown in Figure 6.20. The responses for theniotler with motor accel-

eration feedback are shown in Figure 6.21.
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Figure 6.20: Motor and Load Velocity Responses - Load Acetilen Feedback
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Figure 6.21: Motor and Load Velocity Responses - Motor Aeragion Feedback
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The responses for the state feedback controller are shoWwigure 6.22. Three states
were defined for the controller; namely, motor velocity,daeelocity and shaft flex. Fig-
ure 6.23 shows the responses for the same state feedbachkllesnvith an observer

added to estimate the load velocity and shaft flex states.
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Figure 6.22: Motor and Load Velocity Responses - State Fesdb
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Figure 6.23: Motor and Load Velocity Responses - State Fagdtvith Observer
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The responses for the unrestricted QFT designed motoritaeloop are shown in Figure
6.24. The final controller design consisted of a Pl stage tith2nd order loop filters.
The 1st of the filters had the form of a notch filter, while thel Ziiter provided a band of
phase lag to help compensate for the inherent band of phadd&ween the quadratic
zeros and quadratic poles of the system. The actual loogriésigiven in Equation
(6.21). As with the simple notch filter, a Tustin transforraatwas used to translate the

s-domain design to the-domain (see Equation (6.20)).
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Figure 6.24: Motor and Load Velocity Responses - QFT withdiéteedback Only
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where:w; =158 {3 =0.025
wp, =158 (=05
w3 =158 (3=0.1

wy = 140 Z4 =0.2
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Nichols Chart - QFT Loop Shaping
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Figure 6.25: Loop Shaping - Shaft Flex Feedback

The Nichols chart for the loop design of Equation (6.21) ieveh in Figure 6.25. The
effects of the two filters can easily be seen when compariggrgi6.25 with Figure 6.9
(the standard PI controller). The notch filter has the eftéaeducing the closed loop
magnitude at the natural frequency of oscillation, whichvglent by the flatter circle in
the motor velocity plot of Figure 6.25 (mathematicallystis equivalent to increasing the
damping of the system). The phase lag introduced by the ZediBlalso evident by the
open loop phase not exceeding O degrees in Figure 6.25, ashdre open loop phase

exceeds 45 degrees around the natural frequency of osxiliatFigure 6.9.

A summary of the characteristics for all of the responsesegred in Figures 6.17 to 6.24
is given in Table 6.3. For comparison purposes, the charsiits of the benchmark Pl
controller for Shaft 3 and motor-load inertia configurat@mre also repeated in Table

6.3.
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Table 6.3: Transient Response Characteristics - Altera&ontrollers
Oscillation | Max Oscillation

Rise Time Frequency Amplitude

(ms) (rad/s) (% of step)
Motor | Load | Motor | Load | Motor | Load
PI Controller — Sim. 46 54 155 | 155 | 4.16 5.82
PI1 Controller — Exp. 45 50 157 | 157 | 2.66 | 3.47
Notch Filtering — Sim. 50 31 159 | 159 | 1.18 | 1.55
Notch Filtering — Exp. 49 35 157 | 157 | 0.74 | 0.67
Shaft Flex FB — Sim. 37 19 169 | 169 | 3.56 | 1.42
Shaft Flex FB — Exp. 38 36 212 | 212 | 255 | 0.68

Velocity Difference FB — Sim.| 46 30 261 | N/A 1.2 ~0
Velocity Difference FB — Exp.| 51 42 224 | N/A 1.6 ~0
Load Acceleration FB — Sim.| 50 38 349 | N/A | 5.88 0
Load Acceleration FB — Exp.| 42 39 174 | 174 | 1.83 | 0.56
Motor Acceleration FB — Sim| 37 19 173 | 173 | 3.38 1.24
Motor Acceleration FB — Exp| 45 45 176 | 176 | 2.14 1.8
State FB — Sim. 48 33 390 | N/A | 0.99 0
State FB — Exp. 61 48 392 | NJA | 1.28 0
State FB with Observer — Simi. 48 33 628 | N/A | 0.42 0
State FB with Observer — Exp. 78 66 571 | 128 | 0.31 | 0.67
QFT Controller — Sim. 55 40 133 | 133 | 0.23 0.4
QFT Controller — Exp. 51 41 157 | 157 | 0.88 1.14
FB - Feedback

Sim. - Simulated Responses

Exp. - Experimental Responses

It can be seen, from Table 6.3 and Figures 6.17 to 6.24, thaf #he studied control
approaches were successful in reducing the maximum ardegtof oscillation in the
load responses. The improvement in oscillation amplitudedme at the cost of reduced
response speed in some cases; however, this slight rediurctiesponse speed is minimal
in comparison to the effects of reducing the PI gains. Tal8ea6d Figures 6.17 to 6.24
again show close agreement between the experimental anths®t results. The fragile
nature of the very thin transmission shaft, used on theltedtto provide low torsional

stiffness, did however make it difficult to use the optimadretical controller gains.

When comparing the relative performance of the controltgmts, it can be seen that the
best results were achieved by the state feedback contavitethe PI controller with ve-

locity difference feedback. Both of these controllers heslin smooth responses for both
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the motor and load, with minor impact on the system rise tirheboth cases load veloc-
ity was used as an additional feedback signal. In compartkertwo Pl controllers using
load acceleration feedback and shaft flex feedback resmltgtiooth load responses, but
significant oscillations remained in the motor responsedadt, the simulated motor re-
sponse for load acceleration feedback actually predictsliyat increase in maximum
amplitude of oscillation. In practice, the controller perhance for both load accelera-
tion feedback and shaft flex feedback appeared similar teedsing the motor inertia of
the system (refer to Case 4 for each of the shafts in Sect®B)6.As a result, these ap-
proaches were found to be very similar to using motor acagter feedback, which also
effectively reduced the system motor inertia (as prediatetthe mathematical analysis
if Section 6.2.5). The advantage of motor accelerationldaeki over load acceleration

feedback and shatft flex feedback is that no feedback is redéiom the load end.

The other controllers, that used feedback from the motoy, gmibduced mixed results.
The simple notch filter and the unrestricted QFT design pleyigood overall perfor-
mance in both the motor and load responses. However, theefetatback controller with
observer was unstable on the experimental system whenitheadistate feedback gains
were used. Stable experimental results were obtained i®ctmtroller, but only after
considerably reducing the system response speed. It wadalad that the observer
required more computational power than any of the otheragmires. In Figure 6.26,
100 samples of the time taken to execute a complete contcté dpr each of the tested
controllers, are plotted. In any system the total execuiioe for the control cycle must
be less than the sample period of the control systemi{$2i the digital servo drives of
this system). The additional computational requiremehtseobserver are clearly illus-
trated in Figure 6.26, where the average control cycle di@tis right on the limit and
at times even exceeds the allowed i2%a drop to around zero in the recorded execution
time is a result of the control cycle not completing withire tllowed sample period). In

comparison, all of the other control approaches take ara@0ds to execute.

In general, out of all the approaches, the simple notch el the unrestricted QFT de-
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Figure 6.26: Control Cycle Timing for the Digital Servo Dew

sign were the easiest to implement and tune. Of these twaagpipes, the unrestricted
QFT design produced a smoother motor response during theidrd period, at the ex-
pense of a small increase in rise time. Although the statibfeek controller (without an
observer) produced the best overall results, this coetradl more difficult to tune than
the others (especially if fine tuning is required on the pcatsystem) and requires addi-
tional feedback from the load. If the unrestricted QFT desigproach was extended to
include separate load velocity feedback, this approacHdmvalso allow for a controller

design with the same structure as the state space controller

6.4 Influence of Drive-Train Configuration

The influence of drive-train configuration on torsional ations was studied using the
Drive Comparison Test-Bed (refer to Section 4.4 for detal#gure 6.27 shows the motor
velocity frequency response (closed loop PI control) fertést-bed with the rotary motor
directly coupled to the ballscrew transmission. A chirpsigwas used in addition to a
constant velocity command for logging the frequency datar tRe response shown in

Figure 6.27 the chirp signal was applied when the load wagiposd as far away from
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the motor as possible. This represents the worst case szesiace the torsional stiffness
of a ballscrew reduces as the load moves away from the maatgscribed in Section

3.5.1).
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Figure 6.27: Frequency Response — Direct Driven BallscrewfiGuration
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Figure 6.28: Frequency Response — Belt Driven BallscrewfiGoration

From Figure 6.27, it can be seen that the direct driven ba\lgconfiguration has a band-

width of approximately 1000 rad/s. A resonant peak can atsoldserved between 2000
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and 3000 rad/s. Figure 6.28 shows the motor velocity frequessponse for the test-bed
with the synchronous timing belt used to couple the rotaryomim the ballscrew trans-
mission. The chirp signal was again applied with the loadtjpoeed as far away from the

motor as possible.

When comparing Figure 6.28 with Figure 6.27 it can be sedrtliessynchronous timing
belt has significantly damped the resonant peak observedume=6.27 (the direct driven
case). However, the reduced stiffness of the belt drivetesy$as lowered the resonant

frequency to approximately 1000 rad/s, resulting in a loaxarall controller bandwidth.
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Figure 6.29: Frequency Response — Rack and Pinion Configarat

Figure 6.29 shows the motor velocity frequency responsttest-bed when configured
to use the rack and pinion transmission. As can be seen, dralbgontroller bandwidth
is much lower for the rack and pinion transmission than eithéhe ballscrew cases. The
limited controller bandwidth is not however a result of anweér resonant frequencies
(as can be seen from Figure 6.29), but rather the large anwdudcklash inherent in
the rack and pinion system. As a comparison, Figure 6.30 stibes motor velocity
frequency response for the Linear Motor Test-Bed. Sinaealirmotors provide a direct

drive mechanism with zero backlash, the controller bandwad the Linear Motor Test-
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Bed is higher than each of the other configurations and is fiettad by any resonant

frequencies.
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Figure 6.30: Frequency Response — Linear Motor Test-Bed

As can be seen from Figures 6.27 to 6.30, drive train configurdnas a large influence
on any resonant frequencies and subsequent torsionatigitsan a system. With refer-
ence to the configurations examined in this section, thetdteven ballscrew case had
the largest resonant peak. The addition of a synchronousgibrelt to this system re-
sulted in significant damping of the resonance, but alsdtexsin a lower overall system
bandwidth. The rack and pinion configuration and the lineatamnsystem showed no
significant resonant frequencies; however, the rack andmiconfiguration had a low
system bandwidth due to the presence of backlash. Sincetnbaaklash mechanisms
or advanced control techniques were used in this test, gtersyquickly became unstable
whenever the Pl controller gains were increased. Methatstn be used to improve the

performance of systems with backlash are examined in Ch@pte

Each of the methods examined in Section 6.3.4 can be apjlisgstems with a large
resonant peak and subsequent torsional vibrations. Asame, the unrestricted QFT
approach was used to design a new controller for the direemballscrew configuration.

The QFT approach is particularly suited to this problem, e tariation in torsional
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stiffness (inherent in a ballscrew) can be included in theigteprocess. Figure 6.31
shows the motor velocity response for the QFT controllereWbomparing Figure 6.31
with Figure 6.27, it can be seen that the QFT designed coataiccessfully reduced the

resonant peak, while maintaining the overall system badthwi
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Figure 6.31: Frequency Response — QFT Controlled DireateDrBallscrew

6.5 Conclusions

A theoretical analysis of drive-train flexing and torsiondrations has been presented
in this chapter. Different control solutions to the problerare studied, with their ef-
fectiveness compared both theoretically and experimigniithe influence of the overall

drive-train configuration was also analysed experimentall

Open loop flexing of the transmission element in a system waBesl in Section 6.2.2.
The impact this flexing has on the closed loop system wasdustudied in Section 6.2.3.
It was found that torsional stiffness of the transmissi@mednt has a much greater affect
on both the frequency and amplitude of any resulting systseillations than motor/load

inertia ratio does. Also, as the inertia of the transmissilement increased, it was found
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that motor/load inertia ratio had less affect on systemllasicins. This latter result is
important as many practical transmissions (such as lorigdoalvs) have quite significant

inertia.

In Section 6.2.3 it was found that the position and width & land of frequencies be-
tween the quadratic zeros and quadratic poles of the maiponse have a considerable
impact on the resonant peak of a closed loop system. The campnaatice of varying
motor inertia to maintain a unity motor/load inertia rati@svshown to vary the width
of this band of frequencies, but not the position. Althouginrowing the width of the
frequency band can reduce the resonant peak of the closedystem, varying torsional
stiffness of the transmission element was shown to procue@proved result of vary-
ing both the width and position of the frequency band. As tttea frequencies in this
band become higher, the impact of any resulting oscillatmmthe closed loop system is

reduced.

The location of feedback sensors, in motor-transmissiaia-ksystems, was discussed in
Sections 6.2.3 and 6.2.4. It was found that for some freqasnootor feedback leads
the total torque rather than lagging it, as the load does.ceélemotor feedback does not
always provide an accurate representation of the load. stalso shown that absolute
stability problems can exist when load feedback is solebdu&or these reasons, a com-
bination of motor and load feedback (where practical) isrttzest appropriate approach

for systems with low torsional stiffness.

In Section 6.2.5, control solutions using feedback fromrti@or were compared with
solutions using a combination of motor and load feedbackem@ompared theoretically,
it was found that shaft (transmission) torque feedback] toeque feedback, load acceler-
ation feedback and shatft flex feedback are all fundamergagllyvalent approaches, with
the feedback gains of each approach related by system atsiststhough all of these
approaches are theoretically effective in reducing sysisaillations, their fundamental

equivalence was not discussed in any of the literaturewwedan Chapter 2.

Two of the feedback approaches, compared in Section 6.21% developed as a part of
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this thesis. The first approach, shaft flex feedback, wasdaarnncrease the frequency
and reduce the amplitude of system oscillations, but wasfalsnd to be fundamentally
equivalent to other published solutions (as already notédjvever, the second approach,
velocity difference feedback, was found to reduce systesillagons through effectively
increasing the system damping. The fact that many of thaghdd feedback approaches
are fundamentally equivalent highlights the advantagelee¢loping a standard approach

to the problem of controlling torsional vibrations.

A method to include both motor and load specifications in glsiQFT design proce-
dure was presented in Section 6.3, along with an experirheataparison of control
approaches. The test-bed used for the experimental cosopaailowed for drive-train
flexing and torsional vibrations to be directly analysean@ated and experimental tran-
sient responses were presented for a wide range of motwnrtiasion-load conditions.
The limitations of using standard Pl control on systems \athtorsional stiffness were
demonstrated, with both the motor and load responses éxigisignificant oscillations.
Although the practice of re-sizing motors in order to maimtanity motor-load inertia
ratios can improve system performance, the experimergaltein Section 6.3 clearly
show that excessive system oscillations can still be ptesesystems with a unity inertia

ratio.

All of the alternative control approaches examined in $&c6.3 showed improvement
over standard PI control, with state feedback and veloditgrence feedback demon-
strating the best results. However, both of these appreaatpiire feedback from the
load, which is not always practical in many machine tool giesi Of the controllers that
require feedback from the motor only, the simple notch féted further filtering through
an unrestricted QFT design were shown to be very effectideemsy to implement and
tune. In comparison, state feedback was found to be diffiodfihe-tune practically and
with the addition of an observer required more computatipower than all of the other

approaches.

The results presented throughout Section 6.3 also denabedBtrong agreement between

180



the simulated and experimental responses, across the amnde rof conditions. This
strong agreement validates the accuracy of the system syadeich were based on the

‘adjusted’ two-body model developed in Chapter 3.

The influence of drive-train configuration on torsional @tons was studied experimen-
tally in Section 6.4. It was found that the ballscrew confagions exhibited higher res-
onant peaks than the rack and pinion and linear motor couwfigums. In particular, the

direct driven ballscrew case had the largest resonant gdekaddition of a synchronous
timing belt to this system was shown to increase the damgitigeaesonance, but reduce
the overall bandwidth of the system. The problems assatiatth ballscrew configu-

rations also become more significant as the travel of theiaxigreased, since longer
ballscrews often suffer from low torsional stiffness andreased inertia. From the con-
trol perspective, the QFT approach was shown to succegsadlice the resonant peak
of a ballscrew driven axis, without reducing the overallteys bandwidth. The QFT ap-
proach allows for the inherent variation in ballscrew torsil stiffness to be taken into

account during the design process.
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Chapter ;

Backlash

7.1 Introduction

A new approach to the non-linear control of machine tool semstems with backlash is

presented in this chapter. Backlash has historically beasidered as one of the most
serious problems associated with precision control in nm&ctools and has maintained
the attention of engineers for over 60 years. As can be sdastinChapter 5 and Chapter
6, the existence of backlash can limit the effectivenes®ofrollers designed to address
other performance related factors such as torsional witraiand dynamic stiffness. In

fact, the changes in inertia experienced in a system witlklasle can be a source of
excitation for torsional vibrations. Further, some of tipp@aches that were shown to be
effective in reducing torsional vibrations in Chapter 6 eaually increase the adverse
effects of backlash if not applied carefully. For this raagbe control of backlash should
always be treated in parallel with the problem of reducingitmal vibrations in any

system where backlash is present.

The control approach presented in this chapter takes batkldsd and torsional vibra-
tions into account, using the accurate system models deiv€hapter 3. The approach
also combines the concepts of ‘weak’ and ‘strong’ actionirduthe backlash phase,
which has the advantage of addressing both the dynamidistabid tracking perfor-

mance of a system with backlash. Position and acceleratiedbfack from the motor
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are used in this approach and, for the case of velocity mnackhe width of the back-
lash gap does not need to be known. However, if accurateigosiaicking is required, a
measure of the backlash gap is essential when positionde&diom the load is not avail-
able. The backlash gap of the experimental system used lige¢d®adhe control approach
was manually measured and is given in Chapter 4. Althoughabeu of methods have
been suggested for automatically measuring the width ofcalash gap (for examples
the reader is referred to [103, 104, 105]), the work presemt¢his chapter was focused

solely on the effective control of systems with backlash.

An analysis of describing functions for backlash modelséspnted in Section 7.2. The
describing functions of the standard dead-zone model addtv backlash model, intro-
duced in Section 3.4, are presented. The outputs of theseilnlag functions are then

compared in terms of phase and magnitude.

The hybrid weak/strong approach to controlling systemsé Wwacklash is presented in
Section 7.3. The QFT technique is used to effectively desagrollers for both the con-

tact phase and backlash phase of systems with backlash.Rdetaccurately construct
Nichols Chart stability bounds using the describing fumctdf the new backlash model
is shown and then used in the QFT design process. Advantagetisadvantages of the
weak action control approach are demonstrated throughaion. The clear advantages
of combining this weak action with an additive strong act&wa then demonstrated. Im-
plications of the additive strong action are also discusssplecially with reference to the

method used to identify when the system enters the backlzetep

In Section 7.4 the hybrid weak/strong control approach imalestrated on the Motor-
Transmission-Load Test-Bed (described in Section 4.3)e ddmbined effects of the
weak and strong actions of this controller, along with thehmd used to identify when
the system enters the backlash phase, are practically dgratad. The computational

requirements of this controller are also briefly discussed.

A summary of the key points and conclusions that can be draem this chapter are

presented in Section 7.5.
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7.2 Describing Functions and Backlash

As discussed in Section 2.4.3, the describing functionrtiegte has traditionally been the
most common technique used to find linear approximationseoéral nonlinearities. In
particular, the sinusoidal-input describing function basn successfully used to describe
backlash since the 1950s. In this section, the sinusomtaltidescribing function for the
backlash model developed in Section 3.4 is presented angareah with the sinusoidal-
input describing function of a standard dead-zone modehodigh dual-input describing
functions have also been successfully used to describddsdicldO, 82], the sinusoidal-
input method is particularly suited to the QFT design tegbaiwhere stability bounds

are computed at particular frequencies of interest.

The sinusoidal-input describing functioN)for a non-linear element is defined by Equa-
tions (7.1) to (7.3) and can be described as the complex batiween the fundamental
harmonic component of the output and the input (of the noediity) [61]. The method
relies on the assumption that higher order harmonics wiktlaalower amplitude than the

fundamental and are also usually attenuated by the corystés.

/n2 1 B2
Y]_ Al+ Bl _1 A]_
N = YA(pl = than B, (7.1)
where: X is the amplitude of the sinusoidal inp(t)

Y is the fundamental harmonic of the outyt)

@ is the phase shift betwesft) andx(t)

and: A1:7_17 Ozny(t)cos(wt)d(wt) (7.2)
B = 1 2ny(t)sin(a)t)d (wt) (7.3)
tJo
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7.2.1 Describing Function for the Standard Dead Zone Model

The standard dead zone approach to modelling backlashssmiesl in Section 2.4.2 and
is described by Equations (2.12) and (2.13). Figure 7.1 shbe input-output relation-

ship of the dead zone model, where= 0.05 and K = 25. The input in Figure 7.1 is:

8y = 0.15sin(0.47t).

Input — Dead Zone Model

0.2
0.15
011

0.05 -

rad
o

-0.05-
=01
-0.15

-0.2 L L L L L L L L
0 05 1 1.5 2 25 3 35 4 45 5
Time (s)

Output — Dead Zone Model

Nm
T T T T

Figure 7.1: Input-Output Relationship — Standard Dead Adadel

If 683 = Xsin(wt) in the general case, then from Figure 7.1 and Equations, (7 23),
(2.12) and (2.13) :

KS T— Wt
AL = — (Xsin(wt) — a)cos(wt)d (wt)
T Jowty
KS 21— wtq
+— (Xsin(wt) + o) cos(wt) d (wt) (7.4)
T J oty
B, = 5o ™™ Xsin(t) — ) sin(wt)d ()
T Jowty
Ks 27T— wtq
— (Xsin(wt) +a)sin(wt)d (wt) (7.5)
T Jmtwty

From Equation (7.1) it can be seen that the describing fandtr the standard dead zone

model is based on the solutions to Equations (7.4) and @gh have previously been
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shown to be [61]:

Ap = 0 (7.6)
O 2KX | a a2
T T [5‘5'” ()~ (V- () (7.9
Hence, for the standard dead zone model the describingdmetduces to:
N = X Z0 (7.8)

7.2.2 Describing Function for the New Backlash Model

The new backlash model developed in Section 3.4 is deschidfiquations (3.31) to
(3.34). Witha = 0.05, Ks = 25 and G = 15, the input-output relationship of the new
backlash model is shown in Figure 7.2 (note also Byat 0.15sin(0.4mt) — as was the

case in Figure 7.1).

Inputs — New Backlash Model
0.2 T T T T T

0.15

0.1
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o

or \/ ed I
-0.15- e H

-0.2
0

0‘,5 1‘ 115 é 2.‘5 :; 3‘,5 A‘t 44‘5 5
Time (s)
Output — New Backlash Model

Figure 7.2: Input-Output Relationship — New Backlash Model

In order to highlight the differences between the dead zoaéaihand the new backlash

model a very large value of{vas used in the sample input-output relationship shown in
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Figure 7.2. It is important to note that in the case whege=-@, the output of the new

backlash model would be identical to that shown in Figurefgr.the dead zone model.

If 63 = Xsin(wt) in the general case, then from Figure 7.2 and Equations (7.3) and
(3.31) to (3.34):

Ky [ot
AL = 7 (Xsin(wt) — a)cos(wt)d (wt)

CXw [ot

wty
KS T+ wto
4+

T Jmtwty
CSX w [TTHowt

T T+ wty
Kg [t . :
B = — (Xsin(wt) — a)sin(wt)d (wt)
T Joty
CXw [ot

why
KS T+ wto
+—

T Jtwty
CSX w [Towt

T T+ Wty

co (wt)d (wt)
(Xsin(wt) + a)cos(wt)d (wt)

- cog (wt)d (wt) (7.9)

cos(wt) sin(wt)d (wt)
(Xsin(wt) + a)sin(wt) d (wt)

cos(wt)sin(wt) d (wt) (7.10)

From Equation (7.1) it can be seen that the describing fandtr the new backlash model
is based on the solutions to Equations (7.9) and (7.10),wéuie:

o= () )2 (g

+CS§“’ <2(Tl(i;;) +2tant(T) - /1 (%)z—sinl(%)> (7.11)
B, — K:TX <2tanl(T)— Z(Tl(ii;.;) _Sinil(%) +% 1- (%)2>

+2 ((11—2) “y (%)j et ((142—TT2)2_ (%)2> (712)

2
14+4/1- % + %
where:T = = (7.13)

The complete derivation of Equations (7.11), (7.12) and3yis given in Appendix B.
It is also shown in Appendix B that whens € 0, Equations (7.11) and (7.12) reduce to

Equations (7.6) and (7.7) respectively (as expected).
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Figure 7.3 shows plots of magnitude and phase versas(¥ve ratio of the sinusoidal
input magnitude to the backlash gap) for the describingtfancof the new backlash
model. These plots are shown for 5 different levels of systamping (G = 0, 0.01, 0.1,

1 and 10), where K= 25 andw = 5071. Note that when €= 0, the magnitude and phase

plots are equivalent to those for the describing functiothefstandard dead zone model.

Describing Function Magnitude Plot
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Figure 7.3: Magnitude and Phase Plots of the Backlash DmsgriFunction

When the damping is low (ie £&= 0.01 and G = 0.1) the magnitude plots shown in
Figure 7.3 are almost identical to that of the dead zone m@dplesented by the zero
damping case); however, the phase plots show significaftttehat is not predicted by
the dead zone model. As the damping increases, both the tudgrand phase plots
can be seen to vary significantly from those of the dead zordem&ince the inherent
damping in a practical system is usually much lower than yfstesn stiffness (K), the
low damping cases in Figure 7.3 are more representativeabsystem models. Hence,
the major disadvantage of using a describing function basetthe standard dead zone
model is that it does not include any of the phase shift aasetiwith backlash. For this
reason, the describing function of the new backlash modedesl in the design approach

presented throughout the remainder of this chapter.
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7.3 A Hybrid Weak/Strong Backlash Controller

7.3.1 Design Overview

The control approach presented in this section addressbkghi®dynamic stability and
tracking performance of systems with backlash, throughrabtoation of ‘weak’ and
‘strong’ action during the backlash phase. As detailed ©tiSe 2.4.3, the weak approach
to backlash control is based upon the concept of reducingpgbed at which the system
traverses the backlash gap in order to limit the severityngfallisions that may result
when the backlash gap closes. Alternatively, the strongagmh to backlash control is
based upon the concept of increasing the speed at whichstensyraverses the backlash

gap, so that regular contact between the motor and loadused as quickly as possible.

From the literature reviewed in Section 2.4.3, it was foundt tresearchers have had
much greater success implementing the weak action appsadohbacklash control on
practical systems. The main reason for this is that most @fptloposed strong action
approaches are either based on unrealistic system magletlirequire excessive compu-
tational power. The hybrid weak/strong approach presentéuis section is based on a
switched non-linear controller [40, 70, 82], which switshgetween a linear controller
tuned specifically for the contact phase and a second weandutear controller that
is used during the backlash phase. The weak approach emsurasic stability of the
system, but suffers from poor tracking performance at loWaciges. To improve the
tracking performance, the hybrid weak/strong controlfeorporates an impulse that is
added to the velocity command when the system first enterslddsd phase. This im-
pulse adds a degree of strong action during the backlasle pimalss simple to implement,

with comparatively low computational requirements.

Since the sources of backlash in practical dynamic systeengsaally located between
the motor and load (in the transmission system), the equatieveloped in Section 3.4

for a two-body system with transmission backlash (Equat{@31) to (3.41)) were used
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in the development of the proposed control approach. Théalkland Simulink packages
were once again used to simulate the effectiveness of thmopea controller, with real
parameters from the Motor-Transmission-Load Test-Bedl @sea representative plant.

The block diagram of the overall simulation model is showFigure 7.4.

—1 Strong Impulse [

Strong Action

Impulze
o L._. =
Constant & 4 Gols) Pisi ] Scope?

ut Ll
|
Manual Switch P phase_id

Sine Wave Weak Action

Switched Controller Flexible Transmission
System with Backlash
Backlash Phase

Idertification

Figure 7.4: Backlash Simulation System — Simulink Blockdbam

The ‘Backlash Phase Identification’ block, in Figure 7.4resents the method used by
the hybrid weak/strong controller to identify when a systein the backlash phase and is
described in Section 7.3.2. The ‘Weak Action Switched Callgr’ block represents the
system for switching between the two linear controllershaf hybrid weak/strong con-
troller and is described in Section 7.3.3. The ‘Strong Actimpulse’ block represents the
method for applying a degree of strong action during the laatkphase and is described

in Section 7.3.4.

7.3.2 ldentification of the Backlash Phase

The accurate identification of whether a system is in the lagbkphase or contact phase
is one of the most important aspects of any non-linear babktantroller. Researchers
often assume that both motor and load position feedbackvaitable and the width of
the backlash gap is known [69, 70], which makes identifylregtiacklash phase relatively
uncomplicated. However, many practical systems are céstrito feedback from the

motor and the task of identifying what phase the system isimle quite difficult.

191



Of the literature reviewed in Section 2.4.3, only Nordin,[82] was found to have suc-
cessfully identified the backlash phase on a system wheredaback was restricted to
the motor. Nordin’s method uses the motor torque refereigreb(the output of the ve-
locity controller) as an approximation for the torque traitsed to the load. With this
approach the system is assumed to be in the contact phaseweneéhe motor torque
reference is high. Alternatively, if the motor torque refece is very low, or zero, the

system can be assumed to be in the backlash phase.

The backlash phase identification technique developedhfohybrid weak/strong con-
troller also uses the motor torque reference signal. Howeéweaddition to the motor
torque reference signal, this new phase identificationrtiecte also takes the motor ac-
celeration and velocity reference signals into accouné ddmplete block diagram of the
backlash phase identification method developed for theithyleak/strong controller is

shown in Figure 7.5.
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Figure 7.5: Phase Identification System - Simulink Blockddem

From the upper section of the block diagram shown in Figusattan be seen that the
transmission torque is approximated by subtracting a vataportional to the motor ac-
celeration from the motor torque reference signal. Onelprotwith the identification

method used by Nordin is that the motor torque referenceaigoludes the torque com-
ponent that accelerates the motor inertia. Hence, the rtmtpue reference only provides
a good approximation of the transmission torque when trebitoertia is much higher than

the motor inertia. However, if the motor acceleration slgaanultiplied by a constant
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equivalent to the motor inertia and then subtracted frommtbéor torque reference, the
torque component that accelerates the motor can thedhetimremoved. Figure 7.6
shows a simulation (on a system with a unity motor:load iaemtio) comparing the
transmission torque with the motor torque reference signdlthe transmission torque

approximation used in this thesis.

Transmission Torque

Torque (Nm)
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Motor Torque
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Figure 7.6: Transmission Torque and Approximations — Siidas Input

From the lower graph of Figure 7.6, it can be seen that the mamiceleration feedback
adjustment results in a much more accurate approximatitredbrque transmitted to the
load (solid blue line) , when compared with the unmodifiedontrque reference signal
(solid red line). The improvement achieved through the dseator acceleration feed-
back is highlighted further when the controller includesgrme of strong action during
the backlash phase. Figure 7.7 shows another simulatedacsop (on the same sys-
tem with unity motor:load inertia ratio) when strong actismpplied during the backlash

phase.
As can be seen in Figure 7.7, the motor torque referencelgspial red line in the lower
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Figure 7.7: Transmission Torque and Approximations — S$frction

graph of Figure 7.7) has additional torque peaks that ar@msent in the transmission
torque. These additional peaks are due to the motor tordeeeree increasing with the
applied strong action, and result in the motor inertia aaeging rapidly during the back-
lash phase. Hence, a switching algorithm that switchesstodhtact phase controller, as a
result of the high motor torque reference, could result ghhielocity collisions and limit
cycles. In comparison, the signal that is adjusted usingnaxiceleration feedback (solid
blue line in the lower graph of Figure 7.7) provides a mucheramcurate approximation

of the transmission torque.

From the block diagram shown in Figure 7.5, it can be seenth@tbsolute value of
the approximated transmission torque is passed throughcatidn that returns a ‘1’ for
low torque values and a ‘0’ for high torque values. Hence laevaf ‘1’ indicates that the
system could be in the backlash phase. However, when thensystunning at a constant
velocity (ie the acceleration is zero), the transmissiogue is often very low and a value
of ‘1’ can result even though the system is in the contact @hBer this reason a second

function that returns a ‘1’ when the motor acceleration ghhand a ‘0’ when the motor
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acceleration is low, is used to ensure the backlash phase falsely identified during a

constant velocity state.

One other important issue to consider when identifying thektash phase is what type
of control action will be applied during this phase. Althbugeak action reduces the
severity of any collisions when the backlash gap closefisamis and a re-opening of the
backlash gap can still occur. Hence, when weak controlatibeing applied, the initial
opening and any subsequent re-openings of the backlashegapta be identified. In
contrast, when strong control action is being applied, tméyinitial opening of the back-
lash gap should be identified. Applying additional stronicecduring any subsequent
re-openings of the backlash gap is undesirable and cart nefwither collisions and even
instability. For these reasons, the backlash phase id=tidh technique developed for
the hybrid weak/strong controller has two different ougpone to switch the weak action

controller and another to trigger the strong action impulse
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Figure 7.8: Backlash Phase Identification - Sinusoidal inpu

In Figure 7.8, the two outputs of the backlash phase ideatifin stage are compared with

the transmission torque for a sinusoidal velocity refeeerfts can be seen, the output used
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to trigger the strong action impulse (upper graph) only @ss each initial opening of
the backlash gap and not on the subsequent re-openingsntirast the output used to
switch the weak action controller (lower graph) assertswameopening of the backlash
gap. Although both of these outputs are based on the saméficktion technique, the
strong action output is only asserted after a zero crossidgtected in the differential of
the velocity reference. The reason for this is that a coreptatersing of the backlash gap
would normally only occur when the actual reference signidlates a change in polarity

of the system acceleration.
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Figure 7.9: Backlash Phase Identification - Disturbancetnp

In Figure 7.9, the two outputs of the backlash phase ideatifin stage are compared with
the transmission torque for a constant velocity referefbere is also a load disturbance
torque applied at the 5 second mark in Figure 7.9, which is tleenoved at the 6.5
second mark. As can be seen, there are no false identifisatiotihe backlash gap in
either of the outputs during the constant velocity stateh&r confirming the accuracy
of this identification technique. However, it is importaotriote that any openings of the

backlash gap due to the disturbance torque are only idehiifithe output used to switch
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the weak action controller (lower graph) and not in the otitmed to trigger the strong
action impulse (upper graph). This highlights the one diaathge of only asserting the
strong action output after a zero crossing in the diffeedmti the velocity reference. This
disadvantage is only minor though, as the primary role oktheng action is to improve
the tracking performance of the system and the most impisyatem requirement during

an applied disturbance is dynamic stability.

7.3.3 Weak Action during the Backlash Phase

As discussed in Section 7.3.1, the weak action of the hybedkistrong controller is
implemented via switching between a linear controller tufeg the contact phase and a
second linear controller tuned for the backlash phase. Tdek liagram of the switched

weak action controller is shown in Figure 7.10.
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Figure 7.10: Weak Action Controller — Simulink Block Diagra

Switching between controllers of different gains is ofteferred to as ‘gain scheduling’
and is a technigue that is commonly used in the field of nogalirtontrol. The switching
of the weak action controller shown in Figure 7.10 is basedhenoutput of the phase
identification stage described in Section 7.3.2; when thpuiwf the phase identification
stage is a ‘1’ the backlash phase controller is selectedleven output of ‘0’ results
in selection of the contact phase controller. The actuaaincontrollers can include

additional feedback and filter elements as appropriateh@particular system (such as
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those studied in Section 6.3.4 to reduce torsional vibnadoThe most important design
aspect is to ensure that instability or excessive limitegere not introduced as a result of
traversing the backlash gap. In this thesis the individinaldr controllers were designed
using the QFT technique, with describing functions usechBuee that the design of the

backlash phase controller avoided limit cycles.

The traditional describing function stability analysishased on the system shown in
Figure 7.11, where the non-linear element (representedégiéscribing functiolN) can

be separated from a linear representation of the glapts)).

Input < : : > GC(S)

Controller Linear Nonlinear
Plant Element

Output
»

N >

A 4

v

G,(5

Figure 7.11: Non-Linear System Block Diagram
The closed loop transfer function for the system shown infeg .11 is:

Gc(s)Gp(s)N
1+ Gc(s)Gp(s)N

Hence, the characteristic equation of the system #sGL(s)Gp(S)N = 0, or:

Gc(5)Gp(s) = —— (7.14)

The stability of this system is examined through a comparifaheG¢(s)Gp(S) and—%
loci. If the —% locus is not enclosed by the.(s)Gp(s) locus, the system is stable and
there is no limit cycle at steady state. If thqﬂl locus is enclosed by th€&¢(s)Gp(s)
locus, the system is unstable. If the two loci intersectnatlcycle is exhibited. The
magnitude of this limit cycle is characterised by the valtiX @n the —% locus at the
point of intersection, while the frequency of the limit cgab characterised by the value

of w on theG¢(s)Gp(s) locus at the point of intersection [61].
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As mentioned in Section 2.4.3, the sources of backlash ictiped dynamic systems are
usually located between the motor and load and rarely atyb&m® input or output.
Hence, the model of the plant in such systems is a functiotf fsrequency antl, and

it is not possible to completely separdefrom the plant (as per Figure 7.11). For this
type of system, a comparison of t@g(s)Gp(s) and—% loci would not resultin a reliable

stability analysis. Instead, the characteristic equabecomes:

1+ Gc(9s) Gp(N,S) =0

and:

(7.15)

If both sides of Equation (7.15) are multiplied by the lineapresentation of the plant

(with N set to unity), then:

Gp(s)
Gp(N,s)

Gc(5)Gp(s) = — (7.16)

It can be seen from Equation (7.16) that the stability of 8ystem can be examined

through a comparison of the;(s)Gp(s) and—GC‘;'?ﬁ)s) loci, with the conditions for stabil-

ity identical to those of the standard describing functioalgsis (whereGc (s) Gy (s) is
compared With—%). Since theGc (s) Gp (s) locus is equivalent to the loop transmission

function in the QFT design process, a set of backlash sybitiunds for a QFT design

Gp(s)
Gp(N,s)"

can be calculated directly from

Figure 7.12 shows an example set of backlash stability betardhe Motor-Transmission-
Load Test-Bed, calculated using the describing functich@hew backlash model (Equa-
tions (7.11) to (7.13)). The test-bed configuration for tl@rs shown in Figure 7.12
consisted of Shaft 1 and backlash Coupling 2, with inertisc? attached to the load
side (complete parameter details for this test-bed arengiv&ection 4.3.2). If the loop

transmission function in a QFT design were to intersect drthese stability bounds at
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the related frequency, a limit cycle would result. Note tiha&tlower frequency bounds in
Figure 7.12 (10 through to 200) are on the left hand side oNilcbols Chart. In general
these low frequency bounds do not result in any new resiriston the controller design,
as the left hand side of the Nichols Chart is always avoidddvafrequencies. Hence,
it is the bounds on the right hand side of the Nichols Charthis case, 500 through to

1000) that are important during the design of the loop cdietréor the backlash phase.
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Figure 7.12: Backlash Stability Bounds using Describingdtions

As an example of the design technique and the effectiverfab® switched controller,
a design for the Motor-Transmission-Load Test-Bed configon described in the pre-
ceding paragraph is presented throughout the remaindbrsodéction. Designs for both
the contact phase and backlash phase are discussed andatrswiiched controller is

simulated for a constant velocity reference with an apdbed torque disturbance.

The design of the contact phase controller should alwaysbedon the given controller
design specifications, with the backlash gap assumed torbe Beesign specifications
can vary widely depending on the system and the intendedcapiph. For the exam-

ple design, the specifications were very general in thattaéaponse was required and
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torsional vibrations should be suppressed. The only aéetalesign specification was a
stability requirement that the closed loop gain magnitwdesild be less than 3.5dB at all
frequencies. An example loop design for the contact phasieaen on the Nichols Chart
in Figure 7.13, along with the backlash stability bounds #redoverall stability bound
at 3.5dB. The solid black line in Figure 7.13 represents dlo@ kransmission function of
motor velocity loop, while the solid blue line represents tbad velocity. The critical

backlash stability bounds are calculated for the motoraigi@nly.

Nichols Chart - QFT Loop Shaping
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Figure 7.13: Higher Order QFT Design with Backlash Desagliunction Bounds

The loop design shown in Figure 7.13 can be seen to intetse®&35 rad/s backlash sta-
bility bound at that frequency. Hence, it would be expected the system would exhibit
limit cycles as a result of this design. The actual desigrssis of a Pl stage with two
2nd order loop filters, which are included to limit torsiondrations. The 1st loop filter
has the form of a notch filter, while the 2nd filter provides adbaf phase lag to help
compensate for the inherent band of phase lead in a two badgray This control ap-
proach was described in Section 6.3.4, and was shown toduaie# in reducing torsional

vibrations on the Motor-Transmission-Load Test-Bed. Tovplete filter design is given
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in Equation (7.17).

& 2(15 &2 2{3s
0.1s+1 =4+==4+1 =4+ =>==41
Ge(s) = 55< i ) “ o (7.17)

N 2528 & | 20s
wzz +=2=241 o7 + o +1
where:w; =950 {3 =0.025
wp=950 ¢ =05
w=950 (3=0.1

wy = 920 Z4 =0.2

The simulated response of this controller, with the testdmnfiguration subjected to a 10
Nm disturbance torque, is shown in Figure 7.14. With theesysh steady state velocity
control (at 10 rad/s) the disturbance torque was appliediateaof 5.5 seconds, and then

removed one second later.
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Figure 7.14: Disturbance Response for Contact Phase Qlentro

In Figure 7.14 the solid green line represents the motororespwhen the backlash gap
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is set to zero, while the solid blue and red lines representithtor and load responses
(respectively) when the backlash is present. It can be $egmhen the backlash gap is
zero (which is assumed during the design of the contact pt@seoller), the system is
stable. However, with the backlash present the system gxlailtimit cycle in the motor
response (at approximately the predicted frequency of 88) when the disturbance

torque is removed.

The design of the backlash phase controller is also baseleogiten controller design
specifications; however, the effects of backlash are takiereiccount. When shaping the
loop for the backlash phase controller the transmissiontian must not intersect any
of the backlash stability bounds at the related frequendasexample loop design for
the backlash phase is shown on the Nichols Chart in Figugg @ldng with the backlash

stability bounds and the overall stability bound at 3.5dB.

Nichols Chart — QFT Loop Shaping
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Figure 7.15: P1 QFT Design with Backlash Describing FuncBmunds

The loop design shown in Figure 7.15 consists of the sameaBésds the contact phase
controller; however, the two additional 2nd order filtervddeen removed. It can be

seen from Figure 7.15 that the loop transmission functiotmefoasic Pl controller does
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not intersect any of the backlash stability bounds at thatike frequencies. Hence, no
limit cycles would be expected as a result of this design. Jihaulated response of
this controller, with the test-bed configuration subjediethe same 10 Nm disturbance
torque, is shown in Figure 7.16. As can be seen, this systdnbiexno limit cycles

during steady state, or at either the application or remolveide disturbance torque.
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Figure 7.16: Disturbance Response for the Backlash Phasiedller
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Figure 7.17: Disturbance Response for the Switched Cdetrol
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The simulated response of the complete switched contrislignown in Figure 7.17. As
can be seen, the switched contact/backlash phase coneghéits some small oscil-
lations when the disturbance torque is removed; howeves,gffective in avoiding the
dangerous limit cycles exhibited by the contact phase obletr Although the backlash
phase controller could have included some additional corsgaéon for torsional vibra-
tions, the simple PI stage was used in the example desigmtomigrate the importance
of treating backlash and torsional vibrations in paralléle approach used to design the
contact phase controller of Equation (7.17) was previosistwn to be effective in reduc-
ing torsional vibrations in a system without backlash (rééeSection 6.3.4). However,
with backlash present, it was the additional filters degiigioereduce torsional vibrations

that directly introduced limit cycles into this system.

7.3.4 Combined Weak/Strong Action during the Backlash Phas

Although weak control action is effective at addressingdiiramic stability problems
associated with backlash, systems using only weak actionglthe backlash phase often
exhibit poor tracking performance. For this reason, theridytveak/strong controller
applies a degree of strong action, in the form of an impulatithadded to the velocity
reference command, when the system first enters a backlasle phhe block diagram of

the strong action controller is shown in Figure 7.18.
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Impulse Width Control
Impulse Polarity
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Figure 7.18: Strong Action Controller — Simulink Block Dragn
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The additional strong action provided by the controllerghan Figure 7.18 is not actu-
ally an impulse in the pure sense of the term, but rather aalistep command that de-
cays rapidly as the backlash gap is traversed. This forngogsiallows for the additional
strong action to be applied over an effective period of theklash gap traversal, while
also providing a smooth transition back to the original e@loreference command. The
actual output of the strong action controller is comparetth a&ipulse of the same width

and a pure impulse in Figure 7.19.

Comparison of Strong Action Pulses
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Figure 7.19: Output of Strong Action Controller ComparethmAlternative Pulses

From Figure 7.19 it can be seen that a pure impulse (the bésgonse) would not apply
strong action over an effective period of the backlash gagetisal. Another alternative is
a wider pulse with fixed amplitude (as shown in the purpleoasp), which would apply

strong action over an effective period; however, this actloes not provide a smooth
transition back to the original reference. A smooth traosiback to the original velocity

reference considerably reduces the risk of any high impaltisions when the backlash
gap closes. In comparison, the output of the strong actiotralter (the blue response in

Figure 7.19) decays as a function of the motor’s positiomwwithe backlash gap.

Determining the position of the motor within the backlasp gauncomplicated if the size

of the backlash gap is known and both the motor and load posiare measurable. How-
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ever, an approximation method is required for this task wieedback is only available
from the motor. The approximation method used in the hybrdkistrong controller is
represented by the ‘Impulse Width Control’ block shown igute 7.18. This method
is based on the motor velocity and the output of the phasdifibation stage described
in Section 7.3.2. Whenever a transition from the contacspha the backlash phase is
identified, the position of the motor within the backlash gapet to zero. At this instant
in time it is assumed that the load velocity is equal to theaneeélocity and that it will
remain constant throughout the gap traversal. The difterdetween the motor velocity
and this constant load velocity is then integrated to detezrthe position of the motor
as it traverses the backlash gap. When the approximate rposition is equivalent to
the total width of the backlash gap it is then held constatit tire next transition from

contact phase to backlash phase is identified.
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Figure 7.20: Approximate Backlash Gap Traversal

The simulated output of the described approximation meth@dmpared with the sim-
ulated motor position in Figure 7.20. The top graph in Figtu20 shows the approx-
imation and the motor position for the weak action controhehile the bottom graph
shows the approximation and motor position when the stratigrais added to the veloc-

ity command. As can be seen, the approximate method is veryae in representing
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the motor position during the backlash gap traversal. Ofsmudue to compliance in
the motor-load transmission, the motor position will cang to vary once the backlash
gap is closed. The only major assumption used in the appediom method is that the
load velocity is constant during the gap traversal. AltHotigs is not strictly true, it is

a reasonable assumption as the time taken to traverse tkiaglagap, especially when

strong action is applied, is very small and the load is unodiet during this period.

The final output of the ‘Impulse Width Control’ block, showmfkigure 7.18, is a scaled
version of the approximated motor position. Specificaltg, &pproximate motor position
is multiplied by the desired initial step value and then died by the desired width of the
strong action. If the backlash gap is known, the desirediwedn be chosen as a fraction
of the overall backlash gap. However, both the desired vadththe initial step value can
be tuned manually through a simple trial and error proce$® dutput of the ‘Impulse
Width Control’ block is then subtracted from the initial gtealue to form the strong
action output. Hence, when the backlash gap first opens,utpeioof the width control
block is zero and the full value of the initial step is appliéd the motor traverses the gap
the output of the width control block increases, which rexuthe strong action output.
The reducing strong action output is saturated at zero, wisiceached once the motor
position becomes greater than the chosen pulse width. Tlaetymf the strong action

output is set to the same polarity as the differential of tbleeity reference command.

The effects of the additional strong action are demongtrateFigure 7.21, where the
tracking performance of the weak action controller is coragawith that of the hybrid
weak/strong controller. The velocity reference commané#igure 7.21 is a 10 Hz si-
nusoidal signal with an amplitude of 20 rad/s. The simulatedor responses for both
controllers are shown in the upper graph, while the simdlbttad responses are shown in
the lower graph. When examining the load response of the wetidn controller, it can
be seen that the backlash severely affects the sinusoatiiig performance. In com-
parison, the load response of the hybrid weak/strong cldatie much more sinusoidal.

The application of the strong action is clearly visible ie thotor response of the hybrid
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weak/strong controller, with sharp spikes observed eact the backlash gap opens. An
initial step value of 200 rad/s and a strong action width a&20ad (approximately 68%
of the total backlash gap) were used in the strong actiornraltert for the weak/strong

responses shown in Figure 7.21.
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Figure 7.21: Low Amplitude Sinusoidal Responses — WeakohcGontroller

Poor tracking performance in systems with backlash is predately a problem at low
velocities. When the velocity reference command is higé system tends to inherently
traverse the backlash gap quickly. Under these conditiddsastrong action could result
in high impact collisions and a subsequent degradationagking performance. This
problem is addressed in the hybrid weak/strong controfi¢ne width of the strong action
output reduces with respect to time at higher velocitieqiddethis controller is suitable

for both high and low speed tracking.

The high speed tracking performance of the hybrid weakigtomntroller is demonstrated

in Figure 7.22, where the simulated motor and load respaargeshown for a sinusoidal
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input with the amplitude increased to 200 rad/s. The systad to simulate the responses
shown in Figure 7.22 was identical to the system used to sitathe low velocity tracking
in Figure 7.21, with the initial step and width of the strorgji@an remaining unchanged

at 200 rad/s and 0.12 rad respectively.
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Figure 7.22: High Amplitude Sinusoidal Responses — WeakoAdEontroller

As can be seen in Figure 7.22, the load response for the weiak aontroller is much
more sinusoidal than it was for the low amplitude input slgfk&ure 7.21). However,
the added strong action of the hybrid weak/strong contrslid results in an improved

load response, with no high speed collisions.

7.4 Experimental Analysis of the Hybrid Controller

The hybrid weak/strong controller presented in Sectionwa3 implemented on the

Motor-Transmission-Load Test-Bed. This test-bed allofagdesting to be carried out
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using different backlash gaps and load inertias. The camplarameter details for the

Motor-Transmission-Load Test-Bed are given in Section.3

Figure 7.23 shows the strong action output of the backlaskeidentification technique
when a sinusoidal input is applied to the experimental sygtonfigured with Shaft 1,

backlash Coupling 2 and inertia Disc 2 attached to the lo@tjough the use of motor
acceleration feedback a very accurate approximation ofrdresmission torque can be
obtained. The motor acceleration feedback on the expetahsypstem was provided
by the Hubner rotary accelerometer. The resulting transongorque approximation is

shown alongside the phase identification output in Figu28.7.
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Figure 7.23: Experimental Backlash Phase Identification

As can be seen in Figure 7.23, both the transmission torque@xaipnation and the phase
identification output of the experimental system are caestsvith the expected outputs
described in Section 7.3.2. The response to a 10Nm distogbeomque, of the same

experimental set-up, is shown in Figure 7.24.

It can be seen from Figure 7.24, that the switched weak adfame backlash con-
troller produces a stable response to the disturbancedsponse) torque, while the (non-

switched) response of the controller designed for the abptaase (blue response) begins
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Figure 7.24: Experimental Disturbance Response

to exhibit limit cycles. The tuning of both the contact ana@ldash phase controllers for
the experimental system were as described in Section th8wever, the gains of the
contact phase controller were slightly reduced to ensuréamesage would result on the

experimental system when obtaining the non-switched respo

The tracking performance of the experimental system withwithout the added strong
action is compared in Figures 7.25 to 7.28. For each of thgoreses shown in these
figures the test-bed was configured using Shaft 1, with th&lasic coupling and load
inertia varied. Inertia Disc 2 was attached to the load ferrsponses shown in Figures
7.25 and 7.26, with Coupling 1 used in Figure 7.25 and Cog®imsed in Figure 7.26.
Inertia Discs 1 and 2 were attached to the load for the regsosisown in Figures 7.27

and 7.28, with Coupling 1 used in Figure 7.27 and Couplinge?ius Figure 7.28.

The velocity reference command used for the responses shofigures 7.25 to 7.28
was a sinusoidal signal of 1.95 Hz, with an amplitude of 10at8s. This low amplitude
sinusoidal input was chosen due to the fact that poor trgcgerformance in systems
with backlash is predominately a problem at low velocitidie motor responses with

and without the added strong action are shown in the uppg@hgraf Figures 7.25 to
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7.28, while the load responses are shown in the lower graphs.
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Figure 7.25: Sinusoidal Tracking — Coupling 1, Inertia D2sc
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Figure 7.26: Sinusoidal Tracking — Coupling 2, Inertia D&sc
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Figure 7.27: Sinusoidal Tracking — Coupling 1, Inertia Bidc& 2
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Figure 7.28: Sinusoidal Tracking — Coupling 2, Inertia Bidc& 2

The effects of the strong action in the hybrid weak/strongticiler are clearly demon-

strated in Figures 7.25 to 7.28. The added strong actiortlgiggroves the tracking per-
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formance of the system, resulting in much more sinusoidal l@sponses. The tracking
performance of the system, with and without the added stagtign, was also quantified
by integrating the square of the tracking error over oneggedf the sinusoidal input.
The tracking error in this case was defined as the differert@den the sinusoidal input
signal and the associated load response. A summary of ttlértgaerror performances,

of the responses shown in Figures 7.25 to 7.28, is given ifeTak.

Table 7.1: Tracking Error Performance

Load Inertia| Backlash Gap Control Action | Integrated Error
(kgn?) (rad)

weak 0.3574
5.43x10°3 0.0436 weak/strong 0.0753
weak 1.419
0.0873 weak/strong 0.0327
weak 0.3706
6.94x 103 0.0436 weak/strong 0.0454
weak 0.8005
0.0873 weak/strong 0.0446

It can be seen from Table 7.1 that the additional strong aatnproved the tracking error
for all four configurations. In each case the strong actiommonent of the controller
was tuned manually, without using the known backlash gapegal The results in Table
7.1 also show that the final tracking errors are very simuatlie different size backlash
gaps. Hence, the overall improvement was greater (moreathander of magnitude) for
the cases where the backlash gap was larger (0.0873 rad¥e Titaeking performance
results, coupled with the stable disturbance torque respsinown in Figure 7.24, demon-
strate practically the advantages of combining weak amehgtaction during the backlash
phase. The results presented throughout this section afgora that the methods used
to identify the backlash phase and control the pulse widtherhybrid weak/strong con-

troller can be successfully implemented practically.

One other important practical issue, associated with implging backlash controllers
on industrial control systems, is the required computatigrower. It was found that
the time taken to execute a complete control cycle of theilyleak/strong controller,

on the industry CNC system used throughout this thesis, wa® d2Qus. Since the
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sample period of this system is 128, the control cycle execution is right on the limit
of the system. In comparison, the complete control cycleaftraditional P1 regulator
takes around 1Q@s on this system. It has already been shown in Section 6.8t4thte
feedback control with an observer can exceed theus2fample period of this system.
While the hybrid weak/strong controller was successfuiipliemented on this industry
CNC, it would not be possible to implement many of the more glcated backlash

controllers detailed in Section 2.4.3 due to the additi@eahputational requirements.

7.5 Conclusions

A new approach to the non-linear control of servo systemb hgicklash has been pre-
sented in this chapter. This approach combined the conoépteak’ and ‘strong’ action
during the backlash phase, resulting in a controller thatatestrated both dynamic stabil-
ity and good tracking performance. New methods to consbracklash stability bounds
on the Nichols Chart, identify when the system enters thklbah phase and approximate

the position of the motor within the backlash gap were algs@nted in this chapter.

The sinusoidal-input describing function for the new baskl model (developed in Sec-
tion 3.4) was presented in Section 7.2. When compared wétkitiusoidal-input describ-
ing function of the standard dead-zone model it was showtttiganew backlash model
includes the phase shift associated with backlash, whinbtiaddressed by the standard

dead-zone model.

The complete hybrid weak/strong approach to controllingklzesh was presented in Sec-
tion 7.3. A new method to identify whether a system is in thektesh phase or contact
phase, when the available feedback is restricted to themsiate, was presented in Sec-
tion 7.3.2. The switched weak action controller was presgim Section 7.3.3 and the
method for applying a degree of strong action during the lastkphase was presented in

Section 7.3.4.
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The backlash phase identification method presented ind®etiB.2 is based on the mo-
tor torque reference signal, but also takes the motor aet&la and velocity reference
signals into account. It was shown that motor acceleragedlback could be used to the-
oretically remove the torque component that acceleratemtbtor from the motor torque
reference signal. The resulting signal provides a very ggmaroximation of the torque
transmitted to the load. When this approximated transmstirque is zero (or low) the
system can be considered to be in the backlash phase. Aitelgawhen the approxi-
mated transmission torque is high the system can be coesitiebe in the contact phase.
It was also shown that the backlash identification requirgsare different for weak and
strong control actions. While weak control action requiaesry opening of the backlash
gap to be identified, re-openings of the gap that result froliistons should not be iden-
tified when strong control action is being applied. It wasvghthat the differential of the
velocity reference signal could be used to distinguish @ralropening of the backlash

gap from any subsequent re-openings that occur due toioolis

Although the switched weak action control approach is noqum to this thesis, a new
method to construct backlash stability bounds for use inQR& design was presented
in Section 7.3.3. Since backlash is rarely located at thatiop output of a system, this
method takes the position of the backlash element into atcéun example QFT design,
using these backlash stability bounds, was also presentédtaowed that the stability
bounds could predict limit cycle occurrence in the systerhe importance of treating
backlash and torsional vibrations in parallel was also destrated through this example
design, with the additional filters included to reduce tonsil vibrations shown to directly
introduce limit cycles into the system. The switched weatkoacof the controller was

however shown to be effective in removing these limit cydlesn the system (these

results were also confirmed experimentally in Section 7.4).

The design of the strong action component of the hybrid wetaddg controller was de-
scribed in Section 7.3.4. This strong action component gethaon an initial step that

decays as the backlash gap is traversed, which provides atlsrmansition back to the

217



actual velocity reference command and results in a coetrtiiat is suitable for both high
and low speed tracking. A method that approximates theipasif the motor during the
backlash gap traversal was also presented. The motorgoajiproximation method was
used to control the width of the strong action pulse. Thecéffeness of the additional
strong control action was demonstrated through simulatimhere it was shown that the
tracking performance of the hybrid weak/strong controllas much better than that of a
controller based on weak action only. It was also found thattdditional strong control

action did not degrade the stability performance of the rablet.

The hybrid weak/strong controller was implemented on theéd@®ransmission-Load

Test-Bed in Section 7.4, and shown to provide both dynanaigility and good tracking

performance as designed. Since each component of thisolentvas essential for the
overall method to work, the good practical performance efdbntroller confirmed the
effectiveness of the hybrid approach along with that of thekkash phase identification
technique and the method used to approximate the motorqrosiithin the backlash gap.
It was also shown that this control approach was easy to imga and did not require

excessive computational power.
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Chapter8

Conclusions and Recommendations

8.1 Summary of Conclusions

The precision control of linear feed axes in machine tootslieen studied in this thesis.
Throughout this study, two specific aspects of controllesigie for improved precision
were considered: i) the use of appropriate mathematicakisahd ii) the significance
of various performance limiting factors. Three particut@rformance limiting factors
were considered: i) dynamic stiffness, ii) torsional vilmas and iii) backlash. Also, four
different linear feed axis drive configurations were in@ddhn the study: i) a rotary motor
driving a rack and pinion transmission, ii) a rotary motoredtly driving a ballscrew
transmission, iii) a rotary motor driving a ballscrew tramssion via a synchronous timing

belt and iv) a direct drive linear motor.

Engineers have been examining the performance limitabbhsear feed axes for many
years; however, the most common solutions are still basecbmplex mechanical de-
signs. Although considerable research has been undertakafternative control solu-
tions, standard approaches to the control of dynamic esfntorsional vibrations and
backlash have yet to be adopted. The key contributions efttiésis and the specific
conclusions that can be drawn from the results presenteakcim éhapter are summarised

in this section.
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A brief history of machine tools and precision in machiningsapresented in Chapter
1, along with a description of recent research undertakealliareas of machine tool
design. The motivation and significance of the researclepted in this thesis was hence

described, with an outline of the thesis also given.

A review of research undertaken by other scientists andneegs, in respect to each of
the three performance limiting factors considered in thésts, was presented in Chapter
2. This literature review highlighted limitations in the dwlling and control solutions
that have been previously published in these areas, andilmeddhe ways that such

limitations are addressed through the research presantbibithesis.

Mathematical models for different linear feed axis confagions were developed in Chap-
ter 3. Initially, a new ‘adjusted’ two-body model for simpheotor-transmission-load
systems was presented in Section 3.2. The lowest natupldney of this ‘adjusted’
two-body model, along with the lowest natural frequency @fother approximate mod-
els, was compared with that of the continuous model. Thisparson was performed
over a wide range of motor-transmission-load conditionh whe ‘adjusted’ two-body
model found to provide higher accuracy, under all of the ook considered, than the
standard two-body model that is traditionally used by redesrs and system designers.
The only approximate models that showed higher overall raogt) than the ‘adjusted’
two-body model, were models with more than two degrees @fdiven. However, with
reduced complexity, the ‘adjusted’ two-body model was tdiexdl as the most appropriate

model from a control perspective.

In Section 3.3 the ‘adjusted’ two-body model was extendeddde simple expressions
for damping, coulomb friction, viscous friction and gerlécaque disturbances. A new
model for accurately representing backlash in a two-bodyesy was then presented in
Section 3.4. The new backlash model was shown to addreskdhe@mings of previous
backlash models. When combined with the ‘adjusted’ twoylhoddel, the new backlash
model provides dual advantages over previous descriptibbbacklash with an improved

representation of the backlash element itself and a mongratecprediction of the reso-

220



nant frequencies of a system. In Section 3.5 the completebtwdy model was used to
develop new models for the direct driven ballscrew, beltefriballscrew, rack and pinion,

and linear motor drive configurations.

The experimental equipment used throughout this reseaopbgbwas described in Chap-
ter 4. The drive-level control scheme of the CNC system (wsedach of the test-beds)
was discussed, with simple second order filters shown toighec good representation
of the CNC system’s closed loop current response. The memdiaystem parameters,
for each of the test-beds used during the project, were désttified. These mechanical
system parameters were used in the system equations degtiefo@hapter 3, to provide
accurate models of each test-bed configuration. All of therobapproaches examined
throughout this thesis were implemented practically, dlgfoextensive re-programming

of the CNC system.

Contributions to the body of knowledge associated with dyieastiffness were presented
in Chapter 5. The periodic torque/force disturbances df boear and rotary driven feed
axes were quantified and compared in Section 5.2. It was shioatrthe only signifi-
cant disturbances in the Linear Motor Test-Bed were duedanbtor’s electrical cycle
and associated cogging forces. In comparison, the rotargrdconfigurations had ad-
ditional significant disturbances due to the mechanicakirassion mechanisms of each
configuration. It was also shown that the mechanical powsrired to overcome friction
at 200mm/min was more than an order of magnitude higher ®ibtilscrew configu-
rations, when compared with the linear motor and rack antbpinonfigurations. The
inherent dynamic stiffness of the same configurations wenepared mathematically in
Section 5.3. Through the mathematical comparison it wasddhbat the linear motor and
rack and pinion configurations were only capable of pro\gdiignificant stiffness at high
frequencies. In contrast, the dynamic stiffness of thesbedh driven configurations was

shown to be higher due to the inherent friction and gearirth@ballscrew transmission.

The dynamic stiffnesses of each test-bed configuration e@rgared experimentally in

Section 5.4. When a 125N step disturbance force was apphednaximum position
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error on the ballscrew configurations was found to be more tharders of magnitude
lower than that of the linear motor and rack and pinion comfigans. A QFT approach to
designing control systems that simultaneously addregempgance specifications based
on stability, robustness, overall response speed and dygrstiffness was also presented
in Section 5.4. Although the general QFT approach is not wahis thesis, a new method
for specifying the dynamic stiffness requirements of aesysand generating associated
QFT performance bounds was presented. An example desiginefdiinear Motor Test-
Bed was implemented, with the maximum position error foumdbe reduced by more
than an order of magnitude when compared with the resultgyube original controller

(which was tuned using the CNC manufacturer’'s recommendszeps).

Several key contributions to the body of knowledge assediatith torsional vibrations,
and the control of systems that exhibit torsional vibragiowere presented in Chapter
6. The open and closed loop effects of transmission flexingg va@alysed in Sections
6.2.2 and 6.2.3 respectively. It was found that maintaininiy motor/load inertia ratios
can be beneficial to system performance; however, the sftéotarying the motor/load
inertia ratio are very limited and also reduce as the in@ftitae transmission element is
increased. In comparison, the effects of varying the toiistiffness of the transmission

element are much greater,.

The location of feedback sensors, for systems with a flexralesmission, was discussed
in Sections 6.2.3 and 6.2.4. It was shown that motor feedtaek not always provide an
accurate representation of the load, with motor feedbaaukiihg the total torque at certain
frequencies rather than lagging it (as the load does). It alss shown that absolute
stability problems can exist when feedback is restrictetthéooad-side. Various control
solutions that use combinations of motor and load feedbaate theoretically compared
in Section 6.2.5. It was found that many of the control solui were fundamentally
equivalent, with the feedback gains of each approach elayesystem constants. This

equivalence was not discussed in any of the literaturewweaden Chapter 2.

A method to include both motor and load specifications in glsiQFT design proce-

222



dure was presented in Section 6.3, along with an experirheataparison of control
approaches for systems that exhibit torsional vibratioivgo of the control approaches
included in the comparison, shaft flex feedback and velatifference feedback, were
developed as a part of this thesis. It was found that all oéX@nined control approaches
were effective at reducing torsional vibrations, when cared with standard PI control.
The controllers using state feedback and velocity diffeeefeedback demonstrated the
best results. Of the controllers that required feedback ftibe motor-side only, which
is often the only practical approach in many machine tooigiess a simple notch filter
and further filtering through an unrestricted QFT designeastrown to be effective and
easy to implement and tune. In comparison, the state fekdimatroller was found to
be difficult to fine-tune practically and with the addition arfi observer, required more

computational power than all of the other approaches.

The general computational limitations of the CNC systendubseoughout this project
were illustrated in Section 6.3, where the time taken to eteea complete control cycle
of each of the controllers was compared with the sample garidhe system. Although
the computational power of servo drives will continue tarease, the timing issues illus-
trated in Section 6.3 remain a problem on many industry sgygtems. Hence, theoret-
ical control solutions with excessive computational regpnents suffer from significant

practical limitations.

Strong agreement between the simulated and experimestdtgen Section 6.3 vali-
dated the accuracy of the ‘adjusted’ two-body model devaedap Chapter 3. The results
presented in Section 6.3 also clearly showed that excesgstem oscillations can still
be present in systems with a unity motor/load inertia ralibe influence of drive-train
configuration on torsional vibrations was experimentalgrained in Section 6.4. It was
found that the ballscrew configurations exhibited higheprant peaks than the rack and
pinion and linear motor configurations considered. Wherb#ilkscrew was driven via a
synchronous timing belt (rather than directly by the motbe) damping of the resonance

was increased; however, the overall bandwidth of the systasreduced.
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A new hybrid weak/strong approach to the non-linear cordfdystems with backlash
was developed in Chapter 7. The sinusoidal-input des@ihinction for the new back-
lash model (developed in Section 3.4) was presented in@e€tk. This describing
function was shown to include the phase shift associatdu bétklash, which is not ad-
dressed by the standard dead-zone model. A new backlask plesification method,
which uses the motor torque reference signal and motorexetiln feedback, was pre-
sented in Section 7.3.2. This phase identification teclenwgas shown to provide a very
accurate indication of when a system enters the backlagephavas also shown that the
differential of the velocity reference signal could be usedistinguish an initial opening

of the backlash gap from any subsequent re-openings that doe to collisions.

A new method for constructing frequency dependent bacldeadhility bounds was pre-
sented in Section 7.3.3. This method is based on the dasgribinction of the new
backlash model and takes the location of the backlash efeim@naccount, rather than
assuming the backlash is at the input or output of a systemexample QFT design,
using these backlash stability bounds, was also presemt8ddtion 7.3.3. It was hence
shown that the stability bounds could accurately prediuitlicycle occurrence in the
example system. The importance of treating backlash arsibtal vibrations simulta-
neously was demonstrated through this example design,lwithcycles occurring due
to the additional filters that were included to reduce toralovibrations. The switched
weak action approach incorporated in the hybrid weak/gtaaomtroller was shown to be

effective in avoiding these limit cycles.

The design of the strong action component of the hybrid wetaddg controller was de-
tailed in Section 7.3.4. This strong action component igtas an initial step that decays
as the backlash gap is traversed. A method that approxirtteggsosition of the motor
during the backlash gap traversal is used to control theydeicthe initial step. Through
both simulation and experimental analysis, the hybrid istedng controller was shown
to provide both dynamic stability and good tracking perfanoe in the presence of back-

lash. In particular, the tracking performance achievedugh the additional strong action
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was shown to be much better than that of a controller basecdeak action only. This ad-
ditional strong action was also shown to be suitable for hgh and low speed tracking,
without degrading the stability performance of the weakoactontroller or requiring ex-
cessive computational power. Through the developmenediybrid weak/strong control
approach and the new backlash model (Section 3.4), cotititsuto many aspects of the

overall problem of controlling systems with backlash hagerbmade in this thesis.

The original hypothesis, stated in Chapter 1, was that ‘owed precision in linear feed
axes can be achieved through the use of fast computer caigoithms, alternative actu-
ator technologies and non-ideal mechanical component®.r&sults presented through-
out this thesis show that fast computer control algorithamstme used to reduce the effects
of performance limiting factors, such as dynamic stiffnéssional vibrations and back-
lash. However, if the precision of the system is limited byltiple factors, the overall
control solution is often compromised when taking all of lih@ting factors into account.
For example, Section 7.3.3 showed that a control solutisigded to reduce torsional vi-
brations also directly introduced limit cycles when sigrafit backlash was present in the
system. Similarly, alternative actuator technologiesregiuce the effects of some perfor-
mance limiting factors, but reduce the system performamoher areas. As an example
the linear motor option was shown, in Sections 5.2 and 5.8litoinate many common

torque disturbances in a linear feed axis, but reduce thardimstiffness of the axis.

The overall choice of actuator, controller and mechanicahgonents of a linear feed
axis remains both an economic and application dependergioiec The precision of a
system that uses non-ideal mechanical components can teagec through improved
control; however, a more costly solution using the ideal ma@ical components could
still increase precision further. From the overall congreispective, the QFT approach to
control design was successfully used to address each ottfamance limiting factors
studied in this thesis. This particular control approachk slzgown to provide a transparent
design process, where the effects of any change in the ¢amtter and structure could

be assessed simultaneously for each performance limdictgirf
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8.2 Recommendations for Future Work

Although engineers have been examining the performanagations in precision ma-
chine tools for many years, there remains areas for futeeareh and further improve-
ment on the methods presented in this thesis. In partictilare are immediate areas

where the methods presented to address dynamic stiffnddsaaklash can be extended.

The QFT design approach was shown to be effective in degigretocity and position
loop controllers for high dynamic stiffness in Chapter 5thélugh the velocity and po-
sition loops are often the most practical for implementimgpioved control schemes in
machine tool feed axes, there are clear advantages in aduyes/namic stiffness at the
lower current or flux levels. It is hence recommended thaQiR& approach be extended
to the design of these lower level control loops. The stmactiand transparent design ap-
proach of QFT allows for changes in control structure to Is®=ssed simultaneously for
each performance specification. This approach would beaargintageous in the design
of low level controllers, where faster sampling places g sggnificant restriction on the

complexity of any final controller design.

The hybrid weak/strong controller presented in Chapter § stewn to provide both dy-

namic stability and good tracking performance. However ginong action component of
this controller required manual tuning for each system & tested on. Although the tun-
ing of the strong action component is relatively straightard, it is recommended that
methods be investigated to improve the robustness of tipiaph. This is an important
area of study, as one of the major advantages of this coetiislthe low computational

power required. The obvious methods to extend this coettalich as adaptive and arti-

ficial intelligence techniques, could significantly affégstcomputational requirements.
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Appendix

Glossary

This appendix contains a list of symbols that were used ttiout the text.

At A~ A0 areas on a phase plane plot

A, ,A_ A, areas on aphase plane plot

B viscous friction at the load

Bm viscous friction at the motor

Cs coefficient of internal damping of a transmission element
Cqlt internal damping coefficient of a belt

D continuous system Domain

D(6y) dead zone backlash model output

DS dynamic stiffness

e compliance between inertial bodies

E maximum allowable position displacement

E¢ maximum position displacement at frequerfcy

f frequency

F force

Foit linear force transmitted through a synchronous belt
Fie coulomb frictional force

G shear modulus

G(s) transfer function

iq direct axis current
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guadrature axis current
motor/load inertia ratio
motor/transmission inertia ratio
mass moment of inertia density
load inertia

motor inertia

inertia of a ballscrew driving pulley
inertia of a pinion

transmission element inertia
area polar moment of inertia
load feedback gain

motor feedback gain
proportional gain

torsional stiffness of a transmission element

adjusted torsional stiffness of a transmission element

belt stiffness coefficient

motor torque constant

Lagrangian

Lagrangian Density

overall ballscrew length

nominal loop transmission function

mass

sinusoidal-input describing function

ballscrew pitch

nominal plant

plant set

generalised system coordinate

radius of a motor pulley

radius of a ballscrew driving pulley

continuous system boundary

total kinetic energy

torque transmitted through a ballscrew

coulomb frictional torque at the load
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coulomb frictional torque at the motor
integral action

torque produced by driving motor
transmission element torque

total potential energy

linear position displacement

total number of stator conductors

half of the total backlash gap

angle between stator and rotor MMFs
material loss factor

angular input position of a backlash element

the backlash angle (the difference between the input arglibpbsitions at

a backlash element)

overall angular position displacement between the motdiead
angular position at the load

angular position at the motor

angular position of a ballscrew driving pulley
transmission shatft flex

magnetic flux

angular velocity of the load

angular velocity of the motor

natural frequency due to poles in a system
natural frequency due to zeros in a system

fundamental angular position frequency
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Appendix B

Mathematical Derivations

This appendix contains the mathematical derivations tlemeweferred to throughout the
main body of this thesis. The equations of motion for the $&nmpotor-transmission-load
system with the transmission shaft split into 4 equal sesti@re derived in Section B.1.
The boundary value problem of the continuous model for thmgpkd motor-transmission-
load system is derived in Section B.2. The solution to thisratary value problem is also
presented in Section B.2. The equation used in Chapter 4t¢éordime internal damping

coefficients for the various test-beds (Equation (4.11¢)eisved in Section B.3. Finally,

the sinusoidal-input describing function of the new basklenodel is derived in Section

B.4.

B.1 Equations of Motion of a 4-Sectioned Transmission

Shaft

The system with the transmission shatft split into 4 equdi@es is shown in Figure 3.1.
This system is described by six generalised coordin&g9s1, 6, 63, 64 andg. The

Lagrangian for this system is formulated as follows:
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¢ Kinetic Energy

Tm = %Jmé% (motor)

Ta = %‘]Zsészl (shaft section 1
To = %%56522 (shaft section 2
Ts = %%59523 (shaft section B
Ty = %%59524 (shaft section %
T = %;l. 62 (load)
T = Tm+Ta+To+Tag+Ta+T)
= 003t SR T3t Sh0E T A0+ ) (total

¢ Potential Energy (noting that the potential energy of argpis %kxz)

V = 4Kg(Bm— 6s1)?+ 2Ks(Bs1 — B)? + 2Ks( B — B3)? + 2Ks(Os3 — Bs4)?

+4Ks(8sy — 6)?

e Lagrangian

L = T-V
1 . 1 . 1 . 1 . 1 . 1 .
= Shn+ 5365 + 5 k05 + J08 + 5165+ 5367

—2K3(953 — 954)2 - 4Ks(954 - el)z

Applying Lagrange’s Equation (Equation (3.1)), with= 6

oL .
—— = Jub
96, Imbm
d|[ dL ..
a[a—erﬂ = b
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thus:

Jmém + 8Ks( em - 65]_)

—8Ks(6m - 951)

Tm

Tm

= Jmém - Tm—8Ks(9m—65]_>

Applying Lagrange’s Equation (Equation (3.1)), wih= 64

oL
96y

d[aL

|25,

oL

0064
Fogy

thus:

%
4

Os1 — 8Ks(Bm — Bs1) + 4Ks(Bs — Bs)

=0
Js

:>—és;|_

Through a similar application of Lagrange’s Equation to dtiger 4 generalised coordi-

nates, the equations of motion for this ‘multi-body’ systeam be determined as:

Inbim
JsBs1
Jsbe
Jbs

Tm - 8Ks(6m - 951)
16Ks(Bs1 — B) — 16Ks(Og — Bs3)

16Ks( 6 — Bs3) — 16Ks(Bsg — Oss)
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X0y = 16Ks(0s— Bs) —32Ks(6s2— ) (B.5)

J6 = 8Ks(6y—6) (B.6)

B.2 Characteristic Equation of the Continuous Model

In order to derive a continuous model of the simple motandraission-load system, the
transmission shaft must be treated with distributed iagids shown in Figure 3.2). In
Figure 3.2, the shaft flexd| is a function of both the positiorx) along the length of the
shaft and timet). The inertia and torsional stiffness of the shaft are alsafions of
X, with I(x) being the mass moment of inertia density andxstl{e product of the shear
modulus (G) and the area polar moment of inertia of the crestan JK). It should also

be noted that L in Figure 3.2 is the overall length of the tnaission shaft.

The distributed-parameter Lagrangian for this system esiotmulated as follows:

¢ Kinetic Energy

1 .
Tm=To = EJmez(o,t) [motof

T=T_ = %J|92(L,t) load

Tq=T = %I(x)éz(x,t) [shaf
L.
T = To—l—TL-i-/ Tdx
0

. . L.
= %Jmez(o,t>+%J|92(L,t)+% / 1(x)62(x,t)dx [totall
0

e Potential Energy

Vm=Vo = 0[motoi
V| :VL = 0 [|an

V=V = %GJ(X)G’Z(x,t) ishafi
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L.
V = Vo+VL+/ Vdx
0

_ % /0 " 63082 (x.t)dx [total

e Lagrangian

Lo = To—Vo

()
I

— %Jméz(o,t) + %q 62(L,t)+ % /OL (1(x)62(x,t) — GIX)8"3(x,1)) dx

Applying Lagrange’s equation for distributed systems (&apn (3.2)), withq = 6:

oL
a6
oL
06

d (L %, .
a—x<a—(|9_,) = 55 (GINE(x1))

= —GJX)0'(xt)




thus:

:_X (GAX)B'(x.)) —1(x)B(x.t) +Fg =0 (B.7)

(where R is a distributed Torque

With g = 6, the Boundary Condition at x=0 can be determined via:

oo 0 ( Lo \ oL 2 (oL\ o oL\) g
2q(0,t) ot \ dq(0,t) oq odx\adq’ ot \ d¢q x:O_
where:
dLo
20(0,t) 0
dLo -
. = 6(0,t
26(0,t) IO (0,1)
0 dLo ..
— : = 6(0,t
ot (ae(o,t)) In0(0.1)
oL ,
0—(2’ = —GJX)0'(x1)
oL
og7 ~ 0
d [ aL
a_x<ae~> =0
L
— =0
08’
d [ oL
E(ﬁ) 0
thus:
GJx)6'(0,t) = Jmb(0,t) (B.8)
Similarly, the Boundary Condition at x=L can be determine v
oL 0 (oL ) [oL 9 (oLN 9 (L] _
dq(L,t) at \ aq(L,t) Joq ox\dq’ ot \ od x:L_
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where:

thus:

GJx)0'(L,t) =

JO(L,Y)

36(L.1)

—GJ(x)0'(x,t)

_‘Jl é(l-?t>

(B.9)

Equation (B.7) is the partial differential equation of naotifor the continuous model of

the system shown in Figure 2.1. Equations (B.8) and (B.9}fsdoundary conditions

at x=0 and x=L respectively. Equations (B.7), (B.8) and jB&jether represent the

boundary value problem for the continuous model of the systieown in Figure 2.1.

In order to determine the natural frequencies of the coontisumodel, the boundary-value

problem represented by Equations (B.7), (B.8) and (B.9)tibe@solved. The solution of

such a boundary-value problem requires the solution of aaciated differential eigen-

value problem consisting of an infinite set of eigenvalues @genfunctions. However,

the eigenvalue problem of the continuous model must firstdseveld before it can be

solved. To derive the eigenvalue problem, first let the ifisted torque F in Equation
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(B.7) equal 0 — so that the transmission shatft is in free vidma

:_X (GAXE'(x.1)) = I(x)B(x 1), 0< x <L (B.10)

Hence, the free vibration of the transmission shaft is desdiby Equation (B.10) and the

boundary conditions of Equations (B.8) and (B.9). Now assarsolution in the form:

B(x,t) = O(X)F(t) (B.11)
where Kt) is harmonic and satisfies :
Ft) = —AF(t) (B.12)

A = ? (wis the frequency of oscillation

Substituting Equations (B.11) and (B.12) into (B.10):

(;ix (GJ(X)j—)((@(X)F(t))) = |(x)(‘;—t22 (O(X)F(t)), 0<x<L
:>F()§I (GINO' (X)) = 1(XO(X)Ft), 0<x<L
= ()OT| (GIXO' (X)) = —I(X)O(X)AF(t), 0<x<L
:>d£(GJ(x (X)) = —AI(XOX), 0<x<L (B.13)

Substituting Equations (B.11) and (B.12) into (B.8):

7] 0?
GIX) 5 (QO)F(1) = dn(9(0),F(t))

= F(GIXO'(0) = ImOO)F(1)
= F(t)GIN@(0) = —JwO(0)AF(t)

= GIXO'(0) = —AJO(0) (B.14)
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And Substituting Equations (B.11) and (B.12) into (B.9):

] 0?
GIX) = (BL)F(D) = —I55(O(L),F(b))
S FGIXN@(L) = —JOL)E()

= F)GINO'(L) = JO(L)AF(®)

= GJXO(L) = AJO(L) (B.15)

Now, assuming that the transmission shaft is uniform (iexaddd 1) are constants),

Equation (B.13) becomes:

GR'(x) = —AlO(X),0<x<L
Al
// —
= O"(x) + —GJ@(X) 0
= 0"(x)+B%0(x) = 0 (B.16)
Al WPl
2
prm— prm— . 7
wheref3 5~ GJ (B.17)
Similarly, Equation (B.14) becomes:
Adm
/ _— =
©'(0)+ cJ O(0) 0
/ B
= 0(0)+ T(9(0) =0 (B.18)
And, Equation (B.15) becomes:
AJ
/ - _
o'(L) GJG)(L) 0
/ BZJI
= O(L)— I—G)(L) =0 (B.19)
Now, Equation (B.16) has the solution:
O(X) = Cysinfx+ CocosBx (B.20)
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Hence, the boundary condition given by Equation (B.18)ddad

2
ClﬂCOSO—CQBSinO-i-@(ClSinO-i-CzCOSQ =0
2
:>C1,3+C2[fjm =0
g = GBI go

And the boundary condition given by Equation (B.19) leads to

C1BcospBL — CyBsinBL —@(ClsinBLJngcosBL) =0
C1B1 — CoB2) )

= cosBL ( | CoBl+ GBS ClBZJ')

= sinpL ( i
Cal — CoBJ

= tanL
B Col +C189

(B.22)

Substituting Equation (B.21) into Equation (B.22):

(-SR)1-coB3
Col + (—%) BJ

—% (B.23)
==

tanfL =

Equation (B.23) is the characteristic equation of the cardus model and must be solved

numerically forf.

B.3 Internal Damping in a Transmission Element

Equations (2.7) and (2.8) are the equations of motion fotwloebody model of a simple
motor-transmission-load system, where the only dampinthpensystem is the inherent

internal damping of the transmission element. Using theldagptransform a transfer
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function for this system with flex as output can be obtained:

InS6m = Tm—Ks(6m—6)—Cs(S6m—58)
g = Ks(Bm—6) + Cs(S6m—shh)
Hence: 33 (Om—8) = ITm—CsS(Im+3) (Om—8) —Ks(m+J) (6m—8)

-8 u
And: Tm - JmJSZ+CS(Jrn+J)S+Ks(Jm+‘1)
1
I
) (B.24)
LT

If Equation (B.24) is equated with the standard form of a 2rdkosystem, expressions

for damping ratio and natural frequency can be obtained:

. Ks(Im+J)
“h Ind
C
S S
i Cs (Jm + J| )
and: ¢ > 37K

When levels of damping are low, the loss factor of a matesialonsidered to be double
the damping ratio:

n=2¢

Hence, for low levels of damping the internal damping cosdfitof a transmission shaft

] IndKs
Co=m/ ot (B.25)

can be expressed as:
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B.4 Derivation of Describing Function for New Backlash

Model

Consider first Equation (7.9). After performing the intdgra:

A = K_;<§sin2(wt)—03in(wt)) o +

CXw (1 . wt\ o
- <§sm(wt)cos(wt)+7>|uf

+?S (Esmz(wt)Jrasm(wt)) o + — (5 sin(wt) cos(wt) + 7) [iaies

= KZS: (sir? (whp) — sir (wty)) — K_;a (sin(wtz) —sin(wty))

CsXw
+ 21

(sin(wty) cos(wty) + wtp — sin(wty) cos(wty) — wty)

KsX

21

+Kina ((sinmrcos(awtz) + cosmsin(wtz)) — (sinTrcos(wty) + cosTsin(wty)))

+

((sin 11c0S( W) 4 cosTTsin(wty))? — (sinTrcos(wty ) + cosrsin (wtl))z)

+ C82>7<1w ((sinTrcos(wty) + cosTrsin(wty)) (COSTTCOS(wtp) — SinTTsin(wt) ) + wty)
_ C82>7<1w ((sinrcos(wty) + cosTrsin(wty)) (cosTTcos(wty) — sinTTsin(wty)) + wty)
= KZS: (sin2 (wtp) — sin? (wty)) — K_;a (sin(wty) —sin(wty))
+ C52>7(Tw (sin(wty) cos(wtp) + wtp — sin(wty) cos(wty) — wty)
+ K;: (sir (wtp) —sir? (wty)) + K%a (—sin(wty) + sin(wty))
+ C52>7(Tw (sin(wty) cos(wtp) + wtp — sin(wty) cos(wty) — wty)
= K:TX (sir? (wtp) — sirf (wty)) — ZK;G (sin(wtp) — sin(wty))
+ Csﬁw (sin(wtz) cos(wty) + wtp — sin(wty) cos(wty) — wty) (B.26)

Consider also Equation (7.10). After performing the inétigm:

B, = K—ns (g (oot—sin(wt)cos(wt))+acos(mt)) |+ Csﬁoo <%sin2(wt)) |2

Ks /X . TGty Xw (1 . Tty
+ (E (wt — sin(wt) cos(wt)) — acos(wt)) e + CST (5 S|n2(wt)) Jises

KsX . .

= 257_[ (wty — sin(wty) cos(wtp) — wty + sin(wty) cos(wty))
KSa CSXOJ

to) — t

- (cos(wtp) — cos(wty)) + -

KgX
21
KgX

21

+ (sir? (wtp) — sir? (wty))

+ (wty — (sin7Tcos(wtp) + cosTrsin(wty)) (cosTcos(wty) — sinTTsin(wty)))

(wty — (sin7Tcos(wty) + costrsin(wty)) (cosTcos(wty ) — sinrsin(wty)))

- Kina ((cosmcos(wtz) — sinTrsin(wtz)) — (cosmcos(wty ) — sinmsin(wty)))
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CXw
+ S

((sin 11cos(wtz) 4 cosmsin(wtz))? — (sinmrcos(wty) + cosnsin(wtl))z)

= ffawﬂwwmmwm—wwammmwmm
+55 (cos(ay) — costaty) + SN2 (sir (wty) - si? ()
+ KZS: (wtp — sin(wtz) cos(wtz) — wiy + sin(owty) cos(wty )
- K;a (—cos(wtp) + cos(wty)) + C‘Z(Tw (sir? (wtp) — sir? (wty))
- K;x (wtz — sin(wtz) cos(wtz) — wty + sin(wty) cos(wty))
+ ZK;G (cos(wty) - cos{wty)) + 52 (sirf () - sir? (aty)) (B.27)

Note that Equations (B.26) and (B.27) are both functionsofyf and wt,. Hence, the
values ofwt; and wt, are required to find a solution # andB;. From Figure 7.2 it
can be seen thabt; represents the point where the system entersigie contact state.
Since 6y > 0 at wty, the transition into theight contact state occurs whefly = a (see

Equation (3.32)). Hence, att;:

Xsin(wty) = o
and:
.1 /a
wt; = sin (Y) (B.28)

Also, from Figure 7.2 it can be seen thath represents the point where the system leaves
theright contact state and enters the backlash region. Sifice 0 at wty, the transi-
tion into the backlash region occurs wheg(By — o) + Cs6y = 0 (see Equation (3.32)).
Hence, atuts:

Ks(Xsin(wtz) — o) + CsXwcos(wty) =0 (B.29)

Now, letT = tan(%). Hence, from the Half Angle Tangent Formula:

: 2T
S|n<(,()t2) - ﬁ (BSO)
1-T2
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Substituting Equations (B.30) and (B.31) into Equatior2@:

XT CXw(1-T?)
S\ 14712 (1+T2)
S K2XT — Kt —KsaT? + CeXw— CXwT? = 0

and (Ksa + CsX ) T2 — 2KXT 4 (Ksa —CsXw) = 0

Applying the Quadratic Formula:

2KX 4 /4K2X2 — 4 (Kt + CoXw) (Kst — CxXw)
2(Ksar +CsX w)
KeX = /K2X2 — K202 1 C2X 202
Ksa + CsXw

2
Cia?

KZ

1£4/1- %+

%"‘CSO)

S

Hence:
Clu?

141+ 555

wty = 2tanm ™t
a _"_ Csw
X S

Recall that atwt,, 85 > 0 and6y < 0. Hence, sifiwty) > 0 and cogwt,) < 0. From
Equations (B.30) and (B.31):

256



Hence, T must be greater than 1 at,. Checking this for the

C2
14,/1— ;‘g§+ =

first solution df:

Csw > 1
—K_
a2  Clw? a Csw
. 1 1 _
. +\/ T
a a2 Clw? Csw
and <1—Y)+<\/1—W+K—§—K—§ 0 (832)

Since the describing function solution is only valid wheen<

X, Equation (B.32) is al-

ways true. Note that whem > X, the value of the describing function is zero. Checking

also the second solution of

2 Cluw?
1— 1—%+§—‘;’
a , Cw — > 1
XxtR,
T a2  Ciw? . a Csw
- X2 K2 X Ks
a Csw a2  Ciw?
and 1- _ — 1- 5+ =
X Ks ~ \/ X2 Kz

(B.33)

Now, sincea < X the right hand side of Equation (B.33) is always real and tp@si

Hence, the left hand side of Equation (B.33) must also betigesand it is possible to

square both sides:

a W a aCsw w aCw C2w?
1———CS———+ =5+ Cw G, a%w -
X Ks X X XKg Ks XKg K&
J20% 20 2Cw  20Csw

T X2 X Ks XKg

a/a W

x(x XKS)

andg

X
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Note that Equation (B.34) is never true. Hence, there is onby/true solution td@’, and:

2
1+,/1—§—§+%
: (B.35)

Csw
—K_

wty, = 2tan !

Equations (B.26) and (B.27) can now be re-written using tdaes ofcwt; and wts:

ao= K ((%)ismz (sml(;))> -2 <%_sm(3m1(;))>
£ (1) (57 )
- Csiw (sin (sin*1 (%)) cos(sin*1 (%) +sint (%))
s 2T \? 2\ 2Ks 2
- Knx <<TTTZ) _(%) )‘ Kna (1+TT2_%)

CXw (2T (1-T?) _ a a2 . _q/Q
+= ( LT +2tan }(T) - 1—(¥) —sin 1(-)) (B.36)

B, = K;’T (Ztan1 (1+T2) <1+Iz)>
S ) sl Gt ()

e ((1T2) oo (2))) 222 (127 (o2 (2))

_ K;X <2tan1(T)—2-(r1(i7;2T)22)_sml(%)+% 1_(%)2>

(

2Ksa [ (1—T?2 a2\  CoXw 2T \? /a2
T <(ﬁ>‘ 1_(¥)>+T< o) - Y)) (B:37)

Now, consider the case wherg € 0:

X
2 2
X 24+2\/1- — 3o
T2 = —
X2
2+2,/1-2
2 X
1472 = -
X2
2 2
¢ <2+2 1 gz)
1-T2 = -
X2
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2T

a
72 T X (B.38)
1-T2 a2
Hence, from Equations (B.30), (B.31), (B.38) and (B.39):
. o
sin(wtp) = X
q2
cos(wty) = —4/1— X2
L wty = m—sin?t (%)
and 2tan?(T) = m—sin ! (%) (B.40)

If Equations (B.38), (B.39) and (B.40) are then substitutéd Equations (B.36) and
(B.37) (with G = 0):

= (G 6) - GR)

Hence, it can be seen that wheg-€0 the describing function of the new backlash model

reduces to that of the standard dead zone model (which is ¢yd=quations (7.6) and

(7.7)).
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Appendix

Matlab Code

C.1 Code for Natural Frequency Calculations

The mathematics package ‘Matlab’ was used to automate theemcal methods and
calculate the various natural frequencies for the contisunodel and the approximate
models compared in Section 3.2.3. The code for each of théaMainctions devel-
oped for this task is given in this appendix. The functionstfibute _inertia” and “dis-
tribute_inertia_chareq” were used to determine the nbtrgquencies of the continuous
model. The functions “multi_body_freq” and “holzer” wersad to determine the natural

frequencies of the multiple body approximate models.

Function: distribute_inertia

function [freq] = distribute_inertia(motor_inertia,ldainertia,shaft_diameter,shaft_length,freq_estilnate
% [freq] = distribute_inertia(motor_inertia,load_inarshaft_diameter,shaft_length,freq_estimate)

%

GJ = (80e9*pi*shaft_diameter~4)/32;

| = (pi*(shaft_diameter/2)*4*8000)/2;

Ks = GJ/shaft_length

orig_ks = Ks

Shl = I*shaft_length
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Ir = motor_inertia/load_inertia;

ml = (motor_inertia/(motor_inertia+load_inertia))*Shi

Il = (load_inertia/(motor_inertia+load_inertia))*Shl;
mshL = (motor_inertia/(motor_inertia+load_inertia)y&dt_length;
IshL = (load_inertia/(motor_inertia+load_inertia))&fh length;
beta(1) = 0;

chareq_left(1) = 0;

chareq_right(1) = 0;

chareq(1) = chareq_left(t)chareq_right(1);

freq_plot(1) = 0;

for index=2:1000,

beta(index) = beta(index-1) + (pi/(250*shaft_length));
[chl,chr,chq,dchq] = distribute_inertia_chareq(motoertia,load_inertia,l,shaft_length,beta(index));
chareq_left(index) = chl;

if chareq_left(index) > 20

chareq_left(index) = 20;

elseif chareq_left(index) < -20

chareq_left(index) = -20;

end

chareq_right(index) = chr;

if chareq_right(index) > 20

chareq_right(index) = 20;

elseif chareq_right(index) < -20

chareq_right(index) = -20;

end

chareq(index) = chareq_left(index)-chareq_right(index
freq_plot(index) = beta(index)*sqrt(GJ/l);

end

plot(freq_plot,chareq);

freq = freq_estimate*sqrt(1/GJ);

beta_estimate = freq + 10;

while abs((beta_estimate - freq)) > 0.0001

beta_estimate = freq;
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[chl,chr,chq,dchq] = distribute_inertia_chareq(motoertia,load_inertia,l,shaft_length,beta_estimate);
freq = beta_estimate - chg/dchg;

end

disp('The natural frequency for two-body model with negllg shaft inertia is:’);

wnl = sqrt((Ks*(1+load_inertia/motor_inertia))/(loadertia));

disp('The natural frequency for two-body model with shattitia equally lumped at motor and load is:’);
motor_new = motor_inertia + Shl/2;

load_new = load_inertia+ Shl/2;

wn2 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp('The natural frequency for two-body model with shattitia lumped at motor is:’);

motor_new = motor_inertia + Shl;

load_new = load_inertia;

wn3 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp('The natural frequency for two-body model with shattitia lumped at load is:’);

motor_new = motor_inertia;

load_new = load_inertia + Shl;

wn4 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp('The natural frequency for two-body model with shattitia split and lumped at motor and load while maintainingriia ratio
is:);

motor_new = motor_inertia+ml;
load_new = load_inertia + II;
wn5 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp('The natural frequency for two-body model with shattitia split and lumped at motor and load while maintainingriia ratio,
but adjusting shaft length is:’);

motor_new = motor_inertia+ml;

m_new_length = ((motor_inertia*mshL)+(mI*mshL/2))/noot new;

load_new = load_inertia+ll;

I_new_length = ((load_inertia*IshL)+(lI*IshL/2))/loadhew;

Ks = GJ/(m_new_length+l_new_length);

wn6 = sqrt((Ks*(1+load_new/motor_new))/(load_new));

disp('The natural frequency for two-body model with shattitia equally split and Ks adjusted is:’);
motor_new = motor_inertia + Shl/2;

load_new = load_inertia + Shl/2;

m_new_length = ((motor_inertia*shaft_length/2)+((2(shaft_length/4)))/motor_new;

I_new_length = ((load_inertia*shaft_length/2)+((Sh#(&haft_length/4)))/load_new;
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Ks = GJ/(m_new_length+l_new_length)

wn7 = sqrt((Ks*(1+load_new/motor_new))/(load_new))

disp('The natural frequency for two-body model with shattitia equally split and Ks adjusted directly is:’);
motor_new = motor_inertia + Shl/2;

load_new = load_inertia + Shl/2;

cs = 1/orig_ks;

cs_left = ((motor_inertia*cs/2)+((Shl/2)*(cs/4)))/nwwt new;

cs_right = ((load_inertia*cs/2)+((Shl/2)*(cs/4)))/ldanew;

Ks = 1/(cs_left+cs_right)

wn8 = sqrt((Ks*(1+load_new/motor_new))/(load_new))

disp('The natural frequency for two-body model with 1 shaértia and moments taken about motor is:’);
load_new = load_inertia + Shl;

cs = 1/orig_ks

cs = ((load_inertia*cs)+(Shl*cs/2))/load_new;

Ks =1/cs

wn9 = sqrt((Ks*(1+load_new/motor_inertia))/(load_négw)

disp('The natural frequency for two-body model with 8 shaértias and moments taken about motor is:’);
load_new = load_inertia + Shl;

cs = 1/orig_ks;

Ks = load_new/((load_inertia*cs)+((cs/16)*(Shl/8))3t¢s/16)*(Shl/8))+((5*cs/16)*(Shl/8))+((7*cs/16)*(B/8))

+((9*Cs/16)*(Sh1/8))+((11*cs/16)*(Shi/8))+((13*csB*(Shi/8))+((15*cs/16)*(Shi/8)))

wnl0 = sqgrt((Ks*(1+load_new/motor_inertia))/(load_ngw
disp('The natural frequency (for distributed inertia gaise);
freq = freq*sqrt(GJ/1)

disp('The percentage differences are:’);

two_body = abs(wn1-freq)/freq * 100

two_body_split = abs(wn2-freq)/freq * 100
two_body_motor = abs(wn3-freq)/freq * 100
two_body_load = abs(wn4-freq)/freq * 100

two_body_Ir = abs(wn5-freq)/freq * 100
two_body_Ir_Ks_adjust = abs(wn6-freq)/freq * 100
two_body_split_Ks_adjust = abs(wn7-freq)/freq * 100

distribute_inertia = abs(freq-freq)/freq * 100
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Function: distribute_inertia_chareq

function [chareq_left,chareq_right,chareq,dchareqistridute_inertia_chareg(motor_inertia,load_inet&haft_length,beta)
% [freq] = distribute_inertia_chareg(motor_inertiadoanertia,l,shaft_length,beta)

%

chareq_left = tan(beta*shaft_length);

chareq_right = - (beta*(motor_inertia + load_inertid)}/((motor_inertia*load_inertia)/l)*beta’2);

chareq = chareq_left - chareq_right;

dchareq = shaft_length*(1 + (tan(beta*shaft_length)*2notor_inertia + load_inertia)*((I+(motor_inertia*al_inertia*beta”2)/1)/((l-
(motor_inertia*load_inertia*beta”2)/1)"2));

Function: multi_body freq

function [freq] = multi_body_freg(motor_inertia,loadeirtia,shaft_diameter,shaft_length,n,freq_estimatg, freq)
% [freq] = multi_body_freq(motor_inertia,load_inershaft _diameter,shaft_length,n,freq_estimate,coed)fr
%

Torque = holzer(motor_inertia,load_inertia,shaft_dien shaft_length,n,freq_estimate);

if Torque >0

dir=1;

else

dir=0;

end

variation = freq_estimate/10;

while variation > 0.01

if dir ==

freq_estimate = freq_estimate + variation;

else

freq_estimate = freq_estimate - variation;

end

Torque = holzer(motor_inertia,load_inertia,shaft_dienshaft_length,n,freq_estimate);

if Torque >0

pos =1,

else
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pos =0;

end

if pos ~= dir

if dir ==

freq_estimate = freq_estimate - variation;
else

freq_estimate = freq_estimate + variation;
end

variation = variation/10;

end

end

freq = freq_estimate;

percent_error = abs(freg-cont_freq)*100/cont_freq

Function: holzer

function [Torque] = holzer(motor_inertia,load_inersidaft_diameter,shaft_length,n,freq_estimate)
% [Torque] = holzer(motor_inertia,load_inertia,shafardeter,shaft_length,n,freq_estimate)
%

GJ = (80e9*pi*shaft_diameter~4)/32;

| = (pi*(shaft_diameter/2)"4*8000)/2;

Ks = GJ/shaft_length;

Shl = I*shaft_length;

| = load_inertia;

lwsq = I*freq_estimate”2;

Beta = 1;

Torque = lwsqg*Beta;

K = 2*n*Ks;

angle = Torque/K;

for index = 2:n+2

if index < (n+2)

| = Shi/n;

K = n*Ks;
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else

| = motor_inertia;

K = 2*n*Ks;

end

Ilwsq = I*freq_estimate”2;
Beta = Beta - angle;

Torque = Torque + Iwsq*Beta;
angle = Torque/K;

end

C.2 Code for Disturbance Force Calculations

Matlab was also used to calculate the disturbance forcasregfjto exceed the given
position error tolerances in the comparison of inherentadyic stiffness presented in
Section 5.3. The code for these calculations is also givehisnappendix. The function
“dyn_stiff_lin” was used to calculate the required forcesablinear motor system. The
function “dyn_stiff_ddbs” was used to calculate the reediforces for a direct driven
ballscrew configuration. Similarly, the functions “dyniffstodbs” and “dyn_stiff_randp”

were used to calculate the required forces for a belt driaisdrew configuration and a

rack and pinion configuration respectively.

Function: dyn_stiff_lin

function [force_dist] = dyn_stiff_lin(Mass,w,allow_emplot_col);
% [force_dist] = dyn_stiff_lin(Mass,w,allow_error);

%

Bm = 1.56;

sysl = tf(1,[Mass,0]);

sys2 = feedback(sys1,Bm);
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sys3 = tf(1,[1,0]);

final_sys = sys2*sys3;

[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);
end

plot(w,force_dist,plot_col);

Function: dyn_stiff_ddbs

function [force_dist] = dyn_stiff_ddbs(Mass,w,allowr@rplot_col);

% [force_dist] = dyn_stiff_ddbs(Mass,w,allow_error,plcol);

% The general parameters used here are from the Drive CaopaFest-Bed
% The load table is assumed to be at pos x = 0.5m

%

Pitch = 5e-3;

Bl =1.75e-3;

Bm = 3.05e-3;

Jbs = 3.22e-5*0.5;

Jm = 3.716e-4;

Ks =225/0.5;

Cs = 1.75e-3/((0.5)N(1/2));

JI = (Mass*(Pitch/(2*pi))"2) + Jbs;

Ksadj = (2*Ks*(2*Jm+Jbs)*(2*J1+Jbs))/(8*Im*JI+3*Ibsitn+J1)+Ibs"2);
Flex = tf([Cs,0],1);

Flex = Ksadj + Flex;
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JL = (2831 + Jbs)/2;

IM = (2*Im + Jbs)/2;

sysl = tf(1,[JL,BI,0]);

sys2 = tf(1,[JM,Bm,0]);

sys3 = ((Pitch/(2*pi))*sys1)/(1+Flex*(sys1+sys2));
final_sys = (Pitch/(2*pi))*sys1*(Flex*sys3 - (Pitch/(2fp);
[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);

end

plot(w,force_dist,plot_col);

Function: dyn_stiff _bdbs

function [force_dist] = dyn_stiff_bdbs(Mass,w,allowrartplot_col);
% [force_dist] = dyn_stiff_bdbs(Mass,w,allow_error,plcol);

% The general parameters used here are from the Drive Cenparest-Bed
% The load table is assumed to be at pos x = 0.5m

%

Pitch = 5e-3;

Rm = 34.5e-3;

Rp = 15*34.5e-3,;

Bl = 1.75e-3;

Bm = 1.6e-3;

Bp = 1.45e-3;

Jbs = 3.22e-5*0.5;
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Jm =6.67e-4;

Jp = 3.53e-4;

Ks = 225000/0.5;

Cs = 2.137e-3/((0.5)X(1/2));

Kblt = 997000000;

Cblt = 0.048;

JI = (Mass*(Pitch/(2*pi))"2) + Jbs;

Ksadj = (2*Ks*(2*Jp+Jbs)*(2*JI+JIbs))/(8*Ip*JI+3*IbsIp+Jl)+Ibs"2);

Flexbs =tf([Cs,0],1);

Flexbs = Ksadj + Flexbs;

Flexblt = tf({Cblt,0],1);

Flexblt = Kblt + Flexblt;

JL = (2%31 + Jbs)/2;

JP = (2*Jp + Jbs)/2;

sys1 = tf(1,[JL,BI,0]);

sys2 = tf(1,[JP,Bp,0]);

sys3 = tf(Rm,[Jm,Bm,0));

sys4 = (Flexbs*Rp*sys2)/(1+Flexblt*(sys3*Rm + sys2*Rdf;

sysb = ((Pitch/(2*pi))*sys1)/(1-sys2*sys4*Rp*FlexbltFlexbs*(sys1+sys2));

final_sys = (Pitch/(2*pi))*sys1*(Flexbs*sys5 - (Pitch#(#)));

[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);

end

plot(w,force_dist,plot_col);
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Function: dyn_stiff randp

function [force_dist] = dyn_stiff_randp(Mass,w,allowrar,plot_col);
% [force_dist] = dyn_stiff_randp(Mass,w,allow_errogplcol);

% The general parameters used here are from the Drive Cnparest-Bed
% The load table is assumed to be at pos x = 0.5m

%

Rpin = 20e-3;

Bl = 32.8e-3;

Bm = 1.6e-3;

Js = 4e-6;

Jm = 3.43e-4;

Jpin = 4.4e-5;

Ks = 25588;

Cs =0.0499;

JI = Jpin + Mass*Rpin”2;

Ksadj = (2*Ks*(2*Jm+Js)*(2*JI+Js))/(8*Im*JI+3*Js*(Ind)+Is"2);
Flex = tf([Cs,0],1);

Flex = Ksadj + Flex;

JL = (2*Jl + Js)/2;

IM = (25Jm + Js)/2;

sysl = tf(1,[JL,BI,0]);

sys2 = tf(1,[JM,Bm,0]);

sys3 = (Rpin*sys1)/(1+Flex*(sys1+sys2));

final_sys = Rpin*sys1*(Flex*sys3 - Rpin);

[mag,phase] = bode(final_sys,w);

for index = 1:length(mag)

force_dist(index) = allow_error/mag(index);

end

plot(w,force_dist,plot_col);
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Appendix D

Test-Bed Detalls

This appendix contains some of the details of the threebieds used throughout this
research. In particular, details of the feedback elemesesl in each of the test-beds
is given. Detailed drawings of each test-bed are also peavid=igure D.1 details the
main structure design of the Motor-Transmission-Load-Bexl. The design of the mo-
tor mounting brackets for the Motor-Transmission-Loadt-Besd is detailed in Figure
D.2. The special backlash couplings for the Motor-Transiois-Load Test-Bed are also
detailed in Figure D.3. Two drawings of the Drive Comparid@st-Bed are provided.
Figure D.4 details the main test-bed structure, while Fedg5 shows an assembled view
of the test-bed. Two drawings of the Linear Motor Test-Bexlaso provided. Figure D.6
shows the structure and machining details of the main tedtiame, while Figure D.7

shows the details of the load carrying table.

As described in Sections 4.3 and 4.4, position feedbackdtir the Motor-Transmission-
Load Test-Bed and the Drive Comparison Test-Bed was adhi&wveugh rotary encoders
embedded in the Siemens motors. The CNC system interpaisiteg instantaneous sine
and cosine information, along with the basic period of theoelers, to improve the reso-

lution of the position feedback. The specifications of then®ns rotary encoders are:
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Power Supply 5V

Output Signal 2 Channels g\and \,) of differential
sinusoids in quadrature

Output Amplitude (\pp) 1

Output Period (mrad) 3.068

The embedded encoders provide two further sine and cogjnalsifor commutation pur-
poses. Along with the position and commutation signals,@quer revolution reference
signal is also provided. Since the position encoder siga@sncremental, the reference

signal is used to initialise the absolute position of theanot

For additional acceleration feedback, a Hibner acceleiem@®&CC 93) was also used on
the Motor-Transmission-Load Test-Bed. This acceleromgés coupled with a Hubner
sensor amplifier (HEAG 164-15) and could be attached to eitfeemotor or load end of

the system. The specifications of the ACC 93 are:

Output Amplitude max. 2 Vpp

Sensitivity down to 1 mV/0.001 mds
Bandwidth ~ 1 kHz
Weight ~ 120g

The specifications of the HEAG 164-15 sensor amplifier are:

Power Supply 15\A-20% max.=70mA
Differential Output max. 22V max:50mA
Gain (Jumper 1)  +3V = +1 rad/g

Gain (Jumper2)  +3V = +20 rad/$

For the Linear Motor Test-Bed, position feedback was addewnrough an incremental
linear encoder (Renishaw — RGS-S/RGH22B) mounted on oeesithe frame structure.

The CNC system interpolates using instantaneous sine amkedoformation, along with
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the basic period of the linear encoder, to improve the reégolwf position feedback. The
CNC system also uses this position feedback for commutatimposes. The specifica-

tions of the Renishaw linear encoder are:

Power Supply 5V5% 120mA (typical)
Output Signal 2 Channels (\and \») of differential

sinusoids in quadrature

Output Amplitude (Myp) 0.6-1.2

Output Period ggm) 20

Amplitude at 1m/s Approximately 100%
Amplitude at 2m/s Approximately 90%
Amplitude at 4m/s Approximately 65%
Max Acceleration 30g

Weight 459 (read-head)

Dimensions [Length/Width/Height (mm)] 44/27/16

Two magnetic actuators (Renishaw RGM22S) were also usegfa®nce marks for the

linear encoder. These actuators were positioned adjageghettape scale and trigger a
sensor in the read-head as it passes over. The trigger $igmathese actuators enables
a pulse to be outputed from the read-head, which is usedgltirenaxis homing process

to initialise the absolute position.
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Figure D.1: Motor-Transmission-Load Test-Bed — Drawing 1
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Figure D.6: Linear Motor Test-Bed — Frame Drawing
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Figure D.7: Linear Motor Test-Bed — Load Table
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