
University of Wollongong - Research Online
Thesis Collection

Title: Virtual manipulation

Author: S Dong

Year: 2008

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Theses Collection

University of Wollongong Theses Collection

University of Wollongong Year 

Virtual manipulation

Shen Dong
University of Wollongong

Dong, Shen, Virtual Manipulation, PhD thesis, School of Electrical, Computer and Telecom-
munications Engineering, University of Wollongong, 2008. http://ro.uow.edu.au/theses/141

This paper is posted at Research Online.

http://ro.uow.edu.au/theses/141

School of Electrical, Computer and Telecommunications Engineering

Virtual Manipulation

Shen Dong

This thesis is presented as full requirements for the award of a

PhD

at the University of Wollongong

January 2008

 i

ABSTRACT

An empirical research on developing a new paradigm for programming a robotics

manipulator to perform complex constrained motion tasks is carried out in this thesis.

The teaching of the manipulation skills to the machine commences by demonstrating

those skills in a haptic-rendered virtual environment. This is in contrast to

conventional approach in which a robotics manipulator is programmed to perform a

particular task.

A manipulation skill consists of a number of basic skills that, when sequenced

and integrated, can perform a desired manipulation task. By manipulation means the

ability to transfer, physically transform or mate a part with another part.

Haptic-rendering augments the effectiveness of computer simulation by providing

force feedback for the user. This increases the quality of human－ computer

interaction and provides an attractive augmentation to visual display and significantly

enhances the level of immersion in a virtual environment.

The study is conducted based on the peg-in-hole application as it concisely

represents a constrained motion-force-sensitive manufacturing task with all the

attendant issues of jamming, tight clearances, and the need for quick assembly times,

reliability, etc. The state recognition approach is used to identify and classify the skills

acquired from the virtual environment.

A human operator demonstrates both good and bad examples of the desired

behaviour in the haptic virtual environment. Position and contact force and torque

 ii

data, as well as orientation generated in the virtual environment, combined with a

priori knowledge about the task, are used to identify and learn the skills in the newly

demonstrated tasks and then to reproduce them in the robotics system. The robot

evaluates the controller’s performance and thus learns the best way to produce that

behaviour.

The data obtained from the virtual environment is classified into different cluster

sets using the Hidden Markov Model (HMM), Fuzzy Gustafson–Kessel (FGK) and

Competitive Agglomeration (CA) respectively. Each cluster represents a contact state

between the peg and the hole. The clusters in the optimum cluster set are tuned using

a Locally Weighted Regression (LWR) algorithm to produce prediction models for

robot trajectory performing the physical assembly based on the force/position

information received from the rig.

The significance of the work is highlighted. The approach developed and the

outcomes achieved are reported. The development of the haptic-rendered virtual

peg-in-hole model and structure of the physical experimental rig are described. The

approach is validated though experimental work results are critically evaluated.

Keywords: Haptic, PHANToM, ReachIn, Virtual Reality, Peg-in-hole, Skill

acquisition.

 iii

STATEMENT OF ORIGINALITY

This is to certify that the work described in this thesis is entirely my own, except

where due reference is made in the text.

No work in this thesis has been submitted for a degree to any other university or

institution.

Signed

Shen Dong

18th of February 2008

 iv

ACKNOWLEDGEMENTS

I would like to extend grateful appreciation and sincere respect to my supervisor,

Professor Fazel Naghdy, for his generous advice and guidance, during all stages of my

postgraduate study.

I am very thankful to the staff in School of Electrical, Computer and

Telecommunications Engineering for their assistance.

I am also deeply indebted to my friends and those who helped me throughout.

A very special appreciation is due to my family members. Without their patience,

understanding and encouragement, completion of this study would not have been

possible.

 v

TABLE OF CONTENTS

ABSTRACT………………………………………………………………i

STATEMENT OF ORIGINALITY……………………………………...iii

ACKNOWLEDGEMENTS……………………………………………..iv

TABLE OF CONTENTS…………………………………………………v

LIST OF FIGURES………………………………………………....……x

LIST OF TABLES…………………………………………………..….xiv

ABBREVIATION AND ACRONYMS……………………………...….xv

CHAPTER 1 Introduction……….…………………………………….....1

1.1 The Problem Statement……………………………………………….1

1.2 Overview of the Project………………………………………………3

1.3 Aims and Objectives………………………………………………….6

1.4 Overall Approach……………………………………………………..8

1.4.1 Virtual Learning Environment………………………………..8

1.4.2 Perception…………………………………………………….9

1.4.3 Imitation………………………………………………………9

1.4.4 Forming Habits……………………………………………...10

1.4.5 Validation……………………………………………………10

1.4.6 Proposed Experimental Rig…………………………………11

1.5 Structure of the Thesis………………………………………………11

CHAPTER 2 Background………………………………………………13

 vi

2.1 Introduction…………………………………………………………13

2.2 Robot Programming Survey………………………………………...13

2.3 Overview of Teaching by Showing/Demonstration…………………20

2.3.1 Teaching by Showing/Demonstration without Model………22

2.3.2 Teaching by Showing/Demonstration in an Interactive

Environment………………………………………….……..29

2.3.3 Teaching by Showing in a Virtual Environment……………32

2.3.4 Other Alternatives to Teaching by Showing………………..36

2.4 Summary……………………………………………………………39

CHAPTER 3 Haptic-rendered Virtual Environment……………………40

3.1 Introduction…………………………………………………………40

3.2 Background………………………………………………………….41

3.3 Haptic-rendered Virtual Environment………………………………45

3.3.1 PHANToM 1.5………………………………………………45

3.3.2 GHOST SDK………………………………………………..48

3.3.3 ReachIn Desktop Display…………………………………...49

3.3.4 ReachIn API………………………………………………....51

3.4 Haptic-rendering Techniques………………………………………..52

3.4.1 Volume Rendering…………………………………………..52

3.4.2 Surface Rendering………………………………………......53

3.4.2.1 Penalty-based Rendering………………………………..54

 vii

3.4.2.2 God-Object Rendering…………………………………..56

3.4.2.3 Proxy-based Rendering………………………………….58

3.5 Force feedback in Haptic-rendered Environment…………………...61

3.5.1 Spring-damper System………………………………………..61

3.5.2 Force Feedback from Haptic-rendered Environment…………64

3.6 Graphic-modelling Techniques……………………………………..66

3.7 Haptic-rendered Peg-in-hole Environment…………………………67

3.7.1 Penalty-based Peg-in-hole Rendering………………………68

3.7.1.1 Haptic Rendering for 3 DOF Device…………………...68

3.7.1.2 Haptic-rendered Model for 6 DOF Device……………...71

3.7.2 Application of Proxy-based method to Peg-in-hole Insertion...77

3.8 Summary……………………………………………………………79

CHAPTER 4 Skill Acquisition…………………………………………81

4.1 Introduction…………………………………………………………81

4.2 Background………………………………………………………….81

4.3 Perception Module…………………………………………………..84

4.3.1 Noise Removal……………………………………………...88

4.3.2 Data Compression…………………………………………..88

4.4 Trajectory Cloning by Data Mining Tools………………………….91

4.5 Trajectory Cloning using Manipulation State Classification……….97

4.5.1 Manipulation States Classification by Physical Contact

 viii

Relations……………………………………………………98

4.5.2 Manipulation States Classification by Fuzzy Clustering

Algorithm………………………………………………….105

4.5.2.1 Fuzzy c-means Clustering Algorithm………………….106

4.5.2.2 Fuzzy Gustafson-Kessel Clustering Algorithm………..107

4.5.2.3 Competitive Agglomeration algorithm………………...114

4.6 Manipulation States Learning by Hidden Markov Models………..120

4.6.1 The Concept of Hidden Markov Models…………………….121

4.6.2 Skill Model Construction by HMM………………………….127

4.7 Trajectory Learning in Physical Experimental Rig………………..133

4.8 Summary…………………………………………………………..135

CHAPTER 5 Result Analysis…………………………………………136

5.1 Introduction………………………………………………………..136

5.2 Proposed Learning Procedure……………………………………...136

5.3 Experimental Rig…………………………………………………..137

5.4 Experimental Results………………………………………………141

5.4.1 Typical Performance……………………………………….142

5.4.2 State Classifier Comparison……………………………….151

5.5 Summary…………………………………………………………..157

CHAPTER 6 Conclusion and Further Research………………………159

6.1 Overview…………………………………………………………..159

 ix

6.2 Contributions of the Research……………………………………..159

6.2.1 Virtual Manipulation through 6DOF……………………..…159

6.2.2 Proposed Physical Model……………………………………161

6.2.3 Concurrent Haptic and Geometric Modelling……………….161

6.2.4 Skill-acquisition Update……………………………….…….162

6.3 Further Research…………………………………………………...163

6.3.1 Physical Experimental Rig………………………………...164

6.3.2 Haptic-rendered Virtual Environment……………………..165

6.3.3 Machine Learning Algorithm……………………...………165

6.3.4 Generalisation……………………………………………..167

 x

LIST OF FIGURES

Figure 1.1 Overall model of system…………………………………………………6

Figure 2.1 General robot programming…………………………………………....14

Figure 2.2 Off-line simulation programming environment………………...……...18

Figure 2.3 Inductive learning rules generalised from See5……………………......19

Figure 2.4 Teaching by guiding system……………………………………………20

Figure 2.5 Teaching by showing…………………………………………………...22

Figure 3.1 PHANToM desktop haptic device……………………………...………48

Figure 3.2 ReachIn desktop display…………………………………………..……51

Figure 3.3 Motion of the virtual Proxy…………………………………………….59

Figure 3.4 Configuration space of the proxy ……………………………………...60

Figure 3.5 Mass-Spring-Damper System………………………………….……….63

Figure 3.6 3DOF peg-in-hole insertion virtual environment………………………64

Figure 3.7 Normal force and friction force ……………………………………...64

Figure 3.8 Definition of the strain z ……………………………………………….66

Figure 3.9 TriPolyMesh method…………………………………………………...69

Figure 3.10 PointShell method……………………………………………………...70

Figure 3.11 Strong oscillation indicated by high torques…………………………...71

Figure 3.12 Modified TriPolyMesh method (a)……………………………….…….72

Figure 3.13 Modified TriPolyMesh method (b)……………………………….…….73

 xi

Figure 3.14 Dual-gstCylinder method………………………………………………74

Figure 3.15 PointShell method……………………………………………………...74

Figure 3.16 Results of using modified TriPolyMesh method………………………76

Figure 3.17 Results of using Dual-gstCylinder method…………………………….76

Figure 3.18 Results of using PointShell method……………………………………76

Figure 3.19 6 DOF Peg-in-hole haptic virtual environment………………………...77

Figure 3.20 Training data obtained from the virtual environment…………………..79

Figure 4.1 Structure of the Perception Module…………………………………….87

Figure 4.2 PCA example…………………………………………………………...91

Figure 4.3 Mathematic expectation of force and torque data………………...……94

Figure 4.4 Fastest operation result…………………………………………………95

Figure 4.5 Peg and hole indexed by symbols…………………………………….100

Figure 4.6 Supposed state 8 or 9………………………………………………….102

Figure 4.7 Peg-in-hole contact states……………………………………………..103

Figure 4.8 State classification result by physical contact state…………………...104

Figure 4.9 Skill-acquisition procedure using FGK……………………………….108

Figure 4.10 State classification result by FGK…………………………………….112

Figure 4.11 Skill-acquisition procedure using CA…………………………………114

Figure 4.12 State classification result by CA………………………………………118

Figure 4.13 Manipulation states chain using physical contact state classification...128

Figure 4.14 Manipulation states chain using Fuzzy Gustafson-Kessel algorithm…128

 xii

Figure 4.15 Manipulation states chain using Competitive Agglomeration

algorithm……………………………………………………………...128

Figure 4.16 (a) Comparing the reconstructed state sequences using physical contact

state with the original state sequences…………………………….129

Figure 4.16 (b) Comparing the reconstructed state sequences using Fuzzy

Gustafson-Kessel algorithm with the original state sequences…...130

Figure 4.16 (c) Comparing the reconstructed state sequences using Competitive

Agglomeration algorithm with the original state sequences……...130

Figure 5.1 Skill model used in the physical experimental rig……………………135

Figure 5.2 Block diagram of the purpose-built peg-in-hole physical experimental

rig……………………………………………………………….……..139

Figure 5.3 Experimental results using peg and hole’s physical contact relations as

state classifier…….……………………………………………...……143

Figure 5.4 Experimental results using Fuzzy Gustafson-Kessel algorithm as state

classifier…………………………………………………………..…...145

Figure 5.5 Experimental results using Competitive Agglomeration algorithm as

state classifier…………………………………………………….....147

Figure 5.6 Average runtimes in different initial states…………………………....151

Figure 5.7 Standard deviation of the average runtimes…………………………..152

Figure 5.8 Average tilting adjustment times in different initial states……………152

Figure 5.9 Average jamming times in different initial states……………………..153

 xiii

Figure 5.10 Successful rates of the peg-in-hole insertion performance………….153

 xiv

LIST OF TABLES

Table 2.1 An example of major text programming components………………….16

Table 4.1 Assembly classification……………………………………………….101

Table 4.2 3 DOF assembly classification………………………………………..103

Table 4.3 Error percentage below 10% and the maximum compression rate

achieved……………………………………………………………….111

Table 4.4 HMM model training results index…………………………………...126

Table 4.5 HMM model training results………………………………………….127

Table 5.1 Statistical results of the physical insertion performance……………...151

 xv

ABBREVIATIONS AND ACRONYMS

3D Three Dimension

ACMP Artificial Constrained Motion Primitive

ALVINN Autonomous Land Vehicle In a Neural Network

API Application Programming Interface

APO Assembly Plan from Observation

CA Competitive Agglomeration

CAD Computer Aided Design

CMU Carnegie Mellon University

DAQ Data Acquisition

DRAMA Dynamical Recurrent Associative Memory Architecture

DOF Degree of Freedom

FCM Fuzzy C-Means

FGK Fuzzy Gustafson–Kessel

FMLE Fuzzy Maximum Likelihood Estimation

GHOST General Haptic Open Software Toolkit

GRAVIS Gestural Recognition Active Vision System

HMM Hidden Markov Model

ILP Inductive Logic Programming

ISA Industry Standard Architecture

 xvi

LQ Linear Quadratic

LQR Linear Quadratic Regulator

LWL Locally Weighted Learning

LWR Locally Weighted Regression

MLP Mutli-layer Perception

NN Neural Network

NURBS Non-uniform Rational B-Splines

ODMM Observation-driven Markov Model

OLDs Deformable Liner Objects

p.d.f. Probability Density Function

PCA Principal Component Analysis

PbD Programming by Demonstration

PID Proportional Integral Derivative

RMS Root Mean Square

SDK Software Development Kit

SHOSLIF Self-organising Hierarchical Optimal Subspace Learning and

Inference Framework

SRPT Stochastic Recursive Partition Tree

SVM Support Vector Machine

VPCM Virtual Polyhedron for Constrained Motion

VR Virtually Reality

 xvii

VRML Virtual Reality Modelling Language

VSF Virtual Small Face

 1

CHAPTER 1 INTRODUCTION

1.1 The Problem Statement

Robotics manipulators are primarily employed in industry to improve productivity.

Many complex manufacturing tasks such as assembly require force sensitive

manipulation. The robotics manipulators are not usually considered an ideal solution

for such applications due to the complexity associated with their programming and

employment. In fact, one of the major barriers to the utilisation of robots in assembly

tasks to date has been the lack of an effective and reliable method to program them to

carry out constrained motion.

In a constrained motion manipulation, the object manipulated by the robots is in

contact with the surrounding environment or other objects. This requires the

manipulator, the object and the environment perform compliant motion along certain

directions.

A task cannot be structured accurately in compliant motion. A human operator

adapts to uncertainty associated with the task through kinaesthetic information

received from the hands. Similarly, a robot arm engaged in compliant motion is

dependent on the force and tactile signals received from interaction with the

environment. Integration of the sensory data with the position control of a robots is

quite complex.

In this study, the feasibility of teaching manipulation skills to a robotic

manipulator to perform a constrained motion task is explored. This will replace the

conventional method of programming a robot. A skill consists of a sequence of actions

which collectively complete a specific task. A human operator develops skills through

training and practice in psychomotor domain. This is best achieved by learning the

skill from another human being. For a robot, acquiring skills from a human operator

has been a viable approach to pursue.

 2

1.2 Haptic Rendered Virtual Environment

In the approach developed in this study, the instructor demonstrates the manipulation

task in a haptic rendered virtual environment using a haptic device. The process of

haptic-rendering consists of using information collected from the virtual environment,

and evaluating the forces and torques to be reacted at a given position, velocity, etc. of

the operational point of a haptic interface. The operational point is the physical

location on the haptic interface where position, velocity, acceleration, and sometimes

forces and torques, are measured.

In order to display a virtual environment, the following problems must be

addressed [Pearce 1999]:

(a) Finding the point of contact: This is the problem of collision detection, which

becomes more difficult and computationally expensive as the model of the

virtual environment becomes more complex.

(b) Generation of contact forces and torques: This creates the “feel” of the object.

Contact forces can represent the stiffness of the object, damping, friction,

surface texture, etc.

(c) Dynamics of the virtual environment: Objects manipulated in a virtual

environment can collide with each other and move in a complicated way.

(d) Computational rate: Computational rate must be high, around 1 kHz or higher,

and the latency must be low. Inappropriate values of both of these variables can

cause hard surfaces in the virtual environment to feel soft as well as creating

system instabilities.

 3

1.3 Assembly States

The state recognition approach is used to identify and classify the skills acquired from

the virtual environment. The process of identification of assembly states is quite

critical. States not correctly classified can result in the failure of physical system. An

assembly consists of a sequence of states. The assembly process itself is the chain of

transitions from the initial state to the goal state. Different learning strategies will be

applied according to the current state.

State identification methods can be divided into direct [Burdea 2000] and indirect

approaches [Potts 2000]. The commonly used direct identification methods are

dependent on quasi-static motion with negligible friction and noiseless sensing

[Burdea 2000]. Hence, they cannot be applied to assembly tasks performed in an

environment with high uncertainty. The indirect methods, on the other hand, do not

have such restrictions and can be employed in uncertain environments with friction

and noisy sensory signals [Potts 2000].

Consequently, indirect identification methods are more appropriate for this work,

and are employed for the classification of a state. The trajectory of the operator is

classified into several states. The trajectory is learned by identifying constraints

among the state variables in the operation process. These constraints determine the

corresponding desired current and next state and decide on the best trajectory to reach

the goal. Actions that choose the desired trajectory are computed using knowledge of

the system dynamics, learned by nonlinear function approximators. An on-line

incremental learning algorithm is used to identify the trajectories of the controller’s

 4

skills at each state.

1.4 Conceptual Model behind the Approach

A manipulation skill is the ability to transfer, physically transform or mate a part with

another part. A specific manipulation skill consists of a number of basic skills that

when sequenced and integrated can achieve the desired manipulation outcome. The

manipulation task (Ms) is applied to the part by the human operator through an action

uh(t), transferring the part from an initial state of xh(ti) to a final state of xh(tf). The

control action command uh, provides position, orientation, and dimension of the part

or its contact forces/torques with the environment. The measured state variables at

any instant of time t will represent the output of the manipulation system yh(t). The

variables x, u and h are vectors.

The overall approach pursued in this thesis is presented in Figure 1.1. As

illustrated in this diagram, the robotic manipulator mimics the behaviour of the human

operator by acquiring the skills and producing the machine control action um(t) from

yh(t). Different stages of the work are described as below:

(a) The human operator performs the manipulation task in a virtual environment

using a haptic device. The haptic device provides the operator with contact

forces and torques similar to those in a real life operation.

(b) The information produced in the virtual environment, yh(t), is used by the

Perception module to identify the basic skills and functions employed in the

operation and to extract the algorithm sequencing the applied skills.

 5

(c) The information produced in stage (b) is passed to Data Refinement Module in

order to remove the noise data, and to extract the most significant data. The

refined data is then passed to the Manipulation Task Planner to be translated

into position/force/torque trajectories and associated control algorithms for the

robotic manipulator. Initially um is generated based on the information received

from the Perception module, the output of the machine manipulation system

ym(t), prior knowledge about the task according to the following relationships

[Pearce 1999]:

),(1 iii TSS λ=+ (1.1)

),(ii
m
i IElu = (1.2)

In (1.1), Si denotes the discrete constraints of the task at instant i, Ti represents the

discrete information occurring at instant i, λ is the trajectory constraints learning

function used to predict the next constraint of the task. The function l stands for

trajectory learning function, which computes the output ui
m, based on the current

state Ei and the current information Ii.

(d) The performance of the manipulation um is then compared with the expected

behaviour. The manipulator trajectory and um are adjusted according to the error

to produce a behaviour as close as possible to the manipulation performance by

the human.

(e) After satisfactory imitation, information from the Learning Module will be

taken into account to calculate um. The Learning Module performs various

optimisation processes to enhance the performance.

 6

Figure 1.1 Overall model of system

Such a system will be most effective when the Perception and Learning modules

are generic. The Manipulation Virtual Environment will be dependent on the

application and the Task Planner will be dependent on the manipulator employed.

1.5 Significance of the Thesis

This study has its focus primarily on the developing a haptic-rendered virtual model

for the peg-in-hole assembly and classifying the acquired skills by applying the state

 7

recognition methods to the data acquired from the virtual environment.

The peg-in-hole insertion problem is used as a case study, which represents a

typical constrained motion force sensitive manufacturing task with the attendant

issues of jamming, tight clearance, and the need for quick assembly times. In the

developed system, position and contact force and torque as well as orientation data

generated in the haptic rendered virtual environment combined with a priori

knowledge about the task are used to identify and learn the skills in the newly

demonstrated task.

This study represents a significant progress on the work carried out on

programming a robotics system through demonstration. It is distinctively different

from the previous works, as it offers the following unique and original contributions:

i. Broadly, the project has a generic scope that is novel and innovative. It explores

how an intelligent machine can replicate human motor manipulation skills. The

model identified for human psychomotor learning will be emulated in the

machine to achieve different stages of motor learning.

ii. Hence the proposed work, is unique in its approach and hypothesis, and

provides a new insight into the nature of transfer of manipulation skills from

human to machine. It proposes new generic intelligent algorithms and

methodologies to emulate different stages of human psychomotor learning in

machines, including perception, imitation, mechanism, and complex/overt

response. This makes the project significantly different from previous work

depending on machine learning in the cognitive domain.

 8

iii. More specifically, the project explores the feasibility of online transfer of

physically constrained manipulation skills from a human operator to a

manipulator through demonstration, utilising a virtual training environment with

tactile sensing. Constrained motion manipulation is an important aspect of any

realistic manipulation environment, such as automatic assembly.

iv. The acquisition of manipulation skills begins with demonstrating the necessary

skills by the human operator in a virtual environment with tactile sensing

(haptics). The use of the virtual environment simplifies the process, as the

training data is acquired directly from the haptic system.

v. The project also explores how more complex manipulation skills can be

constructed from basic skills, as words are formed from letters.

vi. The proposed concepts are at the leading edge of tele-robotics and intelligent

systems research.

1.6 Overall Approach

The project will be carried out by realising the following stages: Virtual Learning

Environment, Perception, Imitation, Forming Habits, and Validation,

1.6.1 Virtual Learning Environment

The data used by the machine to acquire basic manipulation skills is generated

through a haptic-rendered virtual environment. This approach offers a number of

advantages compared to other methods. The training data (for example, velocities,

angles, positions, forces and torque) can be extracted and recorded directly, which

 9

simplifies the data-collection process. The environment can be easily modified and

changed as the manipulation process and its requirements are changed. The risk of

breakdown and breakage of the system is very low. Dangerous and costly

environments can be developed in the virtual environment without associated risks.

The peg-in-hole insertion with a tight fit representing a constrained motion

manipulation is used to demonstrate the feasibility and validity of the developed

concepts and methodologies. A six degrees of freedom (6 DOFs) haptic device, called

PHANToM (PHANToM Premium 1.5 from SensAble Technologies Inc., USA) is

deployed [SensAble (online)]. A ReachIn hardware platform and application

programming interface is used in the implementation of the virtual manipulation

environment [ReachIn (online)].

1.6.2 Perception

The second stage will be to explore a methodology through which the behaviour of

the operator using the haptic device can be perceived by the Perception Module. In

reality, the key question asked will be how the sensory data produced by the virtual

environment can be translated into a pattern of behaviour for training and operation of

the physical manipulator. Such behaviour cannot be simply modelled analytically or

explicitly described by the static and dynamic equations of motion. This is due to the

complexity of the operations involved and the inadequacy of analytical methods to

model such behaviour.

1.6.3 Imitation

As the third task, the perception of the operator’s behaviour should be translated into

 10

appropriate control strategies for the physical manipulator to imitate the manipulation.

This is carried out by the Manipulator Task Planner module. Such a control strategy

will be hierarchical. At the lower level, the individual joints of the manipulator will be

controlled using a conventional method. At the higher level, the task planning for the

robot arm will be carried out as fine-motion planning to achieve certain contact

formations between the parts involved to satisfy force constraints defined by the

classifier. Part-mating can be then defined as moving from an initial contact formation

to a goal contact formation.

1.6.4 Forming Habits

Another function of the learning module is to enhance the performance of the

manipulator over time and to produce a complex and overt response. The aim is to

gradually phase out the error-based corrections at higher control levels and replace

them with appropriate actions according to every new situation encountered. This will

be similar to developing habits in psychomotor taxonomy and forms the fourth stage

of the project.

1.6.5 Validation

The peg-in-hole insertion task will be virtually defined through the haptic device and

the solid modeller. The developed methodology will be then applied and the validity

of the developed perception, control algorithms, and habits will be systematically

studied. This will result in further modification and enhancement of the algorithms

and techniques developed.

 11

1.6.6 Proposed Experimental Rig

The experimental system consists of a 6 DOF articulated manipulator attached to a 6

DOF force/torque sensor. A 6 DOF haptic device is added to the experimental rig for

training of the manipulation system. The force/torque data produced by the haptic

device will match the information produced by the force sensor. Initial verifications of

some of the basic strategies will be carried out on the physical peg-in-hole insertion

experimental rig. The host PC will receive the sensory information and training data

from the haptic device and will produce the necessary control signals to drive

different actuators of the manipulator. It will be necessary to interface the host

computer with the controller of the robot arm.

1.7 Structure of the Thesis

The thesis is organised as follows. A review of the literature associated with the study

will be carried out in Chapter 2. In Chapter 3, the concept of haptic rendering will be

introduced and three popular haptic-rendering technologies will be reviewed. In

addition, Haptic-rendering tools including PHANToM, GHOST SDK, VRML and

ReachIn API, are described. Penalty-based rendering and proxy-based rendering

methods employed in the peg-in-hole insertion procedure will be explained. The

algorithm used to calculate the collision force and torque of peg and hole are

described. An analysis of the force and torque data generated by the haptic-rendered

virtual environment will be also carried out in this chapter.

An overview of the acquisition of manipulation skills from haptic-rendered

 12

virtual manipulation will be provided in Chapter 4. The concept of acquisition of

manipulation skills from haptic-rendered virtual manipulation will be also explained

in this chapter. Skill-acquisition based on behavioural cloning methods, the Hidden

Markov Model and Fuzzy Clustering algorithms, will be explained in detail.

In Chapter 5, the experimental validation of the algorithms of the Fuzzy

Gustafson–Kessel (FGK) and Competitive Agglomeration (CA), and Hidden Markov

Model (HMM) will be provided. The physical peg-in-hole experimental rig proposed

to employ these algorithms in the real task will be introduced first. The experimental

rig will be described and the experiments designed to validate the work will be

presented. Finally the validation results will be provided.

Chapter 6 will draw some conclusions and will highlight the main contributions

of the thesis. Some suggestions for further research on the project will be also

provided.

 13

CHAPTER 2 BACKGROUND

2.1 Introduction

This work explores the feasibility of reconstructing human manipulation skills in

complex constrained motions by tracing and learning the manipulation performed by

the operator. Manipulation skills are taught to machine by a human operator

demonstrating these skills in a haptic-rendered virtual environment. This represents

further extension of the concept of “teaching by showing” and can be considered as a

new paradigm in programming robotic manipulators.

In this chapter, a review of the previous work associated with this concept is

carried out. This will highlight the significance and the contribution of the work.

2.2 Programming of Robotics Manipulators

While the development of sophisticated intelligent humanoid robots has been the

ultimate goal of robotics research, other factors such as cost saving have been driving

research and development in robotics. In some manufacturing sectors, such as welding,

material-handling, spray-painting and assembly, robotics research community has

exerted significant effort to design user-friendly interfaces and more powerful

programming methods for robotic manipulators. The extensive research conducted by

Blume [Blume 1983] and Ránky [Ránky 1985] on the historical evolution of robotic

programming highlight the results produced.

 14

The general robot programming paradigm, as shown in Figure 2.1, characterises

the real physical manipulation tasks and abstract models representing these tasks.

Abstract models can be realised by different robot programming methods. In majority

of methods, commands based on the abstract models instruct robots to perform certain

manipulation tasks and change the states both in the abstract model and the real task.

Internal robot sensors and external sensors, such as force/torque, position, ultrasonic

and vision sensors, are used to observe the sequence of actions in both the abstract

model and the real world, and ensuring that they are kept consistent with each other

[Jones 2004].

Figure 2.1 General robot programming [Jones 2004]

fpinkert
Text Box

Please see print copy for Figure 2.1

 15

The traditional programming methods developed for robotics manipulators can

be grouped into four categories of text programming, off-line simulation-based

programming, inductive learning and teaching by guiding.

Text programming can be applied to complex applications, but it has proven to

be quite intensive in code and computing time. The development time is long, and

special skills and much effort are required to produce a complete program. This has

resulted in the development of task-level robot languages [Caine 1989; Perez 1977].

Task-level programming enables the user to specify the desired goals of the tasks

without defining every movement of the robot in detail. The task planner will express

each task in terms of necessary manipulator motions and actions. This scheme

requires the system to have the ability to perform many planning tasks automatically.

In addition, task-level programming tools require a great deal of information about the

workspace, the robots, the objects, the initial state of the environment and the final

goal to be reached, which can be extremely tedious and time-consuming. A structured

text program is usually composed of several major parts, which are Data Types

(including derived Data Types), Variable Declarations, Operators and Expressions,

Condition Statements, Iteration Statements, and Functions, depicted in Table 2.1

[Craig 2005].

 16

Table 2.1 An example of major text programming components [Craig 2005]

The off-line simulation-based methods usually integrate text-programming and

model-based motion planners in one common platform [Matsubara 1985; Derby

fpinkert
Text Box

Please see print copy for Table 2.1

 17

1982]. Model-based motion planners can automatically generate motions from virtual

reality models on graphical simulation platforms so that teaching a robot to perform

the task by programming can be relatively easy. The RoboCell robotics off-line

simulation programming environment for SCORBOT robots of Intelitek is an

example of this method, as shown in Figure 2.2 [Intelitek (online)]. This approach is

powerful but requires special hardware and a complete description of the real world,

both of which are costly. Although current off-line programming systems mostly

provide high-level manipulation language to simplify the programming procedure and

comparatively shorten the development, off-line programming environments do not

address the issue of sensor-guided robot actions. They are also mostly limited to

kinematics or dynamics simulation of a robot, without the provision of advanced

reasoning functionality and flexibility in the tasks.

 18

Figure 2.2 Off-line simulation programming environment [Intelitek (online)]

Inductive learning, also called learning from example, is one of the most

important approaches developed for programming a robot arm. In inductive learning,

a robot arm controls appropriate motion and sensing strategies through trial and error

[Dufay 1984]. This is an effective method when it is used to refine other programming

methods, but it is not suitable for very complex tasks. The inductive learning rules are

acquired, generalised or statistically analysed from a large number of training

examples. The performance of inductive learning methods can be measured by the

learning curve, which shows prediction accuracy as a function of the observed

examples. Inductive learning decision rules can be generalised from data-mining tools,

fpinkert
Text Box

Please see print copy for Figure 2.2

 19

such as the See5 decision tree algorithm, or from other statistical analysis methods,

such as the Hidden Markov Model (HMM), clustering algorithms, or artificial neural

networks. Figure 2.3 shows an example of a Cross-Referencing Classifiers produced

by See5 data-mining tool. The inductive learning rules are also generalised [See5

(online)].

Figure 2.3 Inductive learning rules generalised from See5 [See5 (online)]

Teaching by guiding is a simple method in which a human operator drives a

robot’s end-effector to all the appropriate locations in the real world to perform the

task, while the characteristics of the motion are recorded. In spite of its simplicity, this

fpinkert
Text Box

Please see print copy for Figure 2.3

 20

method is prone to error, is less portable and has high risk. It is not generic or flexible,

and is not applicable to complex tasks. In addition, this method cannot accommodate

extensive sensory interaction and can be dangerous for the operator.

The essential component of the teaching by guiding is illustrated in Figure 2.4

[Jones 2004]. The approach consists of four major steps, namely, data acquisition,

trajectory reconstruction, task description, and command generation module.

Figure 2.4 Teaching by guiding system [Jones 2004]

fpinkert
Text Box

Please see print copy for Figure 2.4

 21

2.3 Overview of Teaching by Showing/Demonstration

There has been a number of attempts to overcome some of the shortcomings of the

“teaching by guiding” approach. Summers and Grossman [Naylor 1987] embedded a

collection of sensory information and interaction with the operator in the task

instruction procedure. The concept of “teaching by showing” or “teaching by

demonstration” has been another extension of “teaching by guiding”, in which a

robotic system learns a particular task by watching a human operator performing it.

The best method allows the user to make natural movements which can be mapped

easily to instruct driving the robotic manipulator (Figure 2.5) [Jones 2004]. This

method suffers from a number of shortcomings including the robot operation

downtime, the danger exposed to the human operator and the difficulty of making

adjustments for new products.

 22

Figure 2.5 Teaching by showing [Jones 2004]

2.3.1 Teaching by Showing/Demonstration without Model

Some recent developments have significantly advanced the “teaching by showing”

approach in programming a robotics manipulator.

Ikeuchi and Sehiro [Summers 1984] developed a system that could extract a fine

motion sequence from the transitions of face contact states obtained by a range of

sensors [Ikeuchi 1991].

fpinkert
Text Box

Please see print copy for Figure 2.5

 23

Smart and Kaelbling proposed a framework for application of reinforcement

learning in programming mobile robots [Smart 2002].

Hass integrated a symbolic recogniser and play back module using a visual servo

for two-dimensional pick-and-place operations [Hass 1991].

Yamada and Uchiyama conducted a study to determine the essential features of

human physical skills based on multi-sensory data and the possibility of transferring

them to robots by focusing on two tasks of crank rotation and side matching [Sato

1997].

Kuniyoshi and Inbana developed a robotics system that could learn reusable task

plans in real time by watching a human performing assembly tasks [Kuniyoshi 1994].

The method was based on visual recognition and analysis of human action sequences.

The effectiveness of the method was demonstrated for a block assembly task.

Montgomery and Bekey developed a model-free “teaching by showing”

methodology, which trains a fuzzy neural controller for an autonomous robot

helicopter [Aleotti 2004]. The controller, combined with a hybrid fuzzy logic

controller and general regression neural network controller, is generated and tuned

using training data gathered while a teacher operates the helicopter.

A vision-based approach to robot path planning has been reported in literature

[Ude 1994]. A desired motion is demonstrated by a demonstrator manipulating an

object with his hand. The manipulation performance is measured with a stereo vision

system. A non-parametric regression technique with robustness to measurement noise

 24

is used to reconstruct the demonstrated motion. The generated path is given as a linear

combination of natural vector splines.

The approach of programming by demonstration is utilised in the

rehabilitation robotic system FRIEND to execute a daily life action of pouring a

beverage into a glass [Martens 2001; She 2003]. A pouring trajectory, which is

independent from specific bottles and glasses, is acquired through human

demonstration. In a given pouring task, this trajectory is used as the motion reference

of the bottle, where the actual location in the trajectory is controlled by the beverage

flow [Ruchel 1999]. The robustness of the approach is improved by means of

abstracting the pouring trajectory independent from specific objects, as well as

integrating additional sensor information to control the trajectory.

Voyles et al explored another type of teaching by showing using a programming

robotic agent. The approach, known as gesture-based programming [Voyles 1997;

1999a; 1999b], teaches a manipulation to the robotics arm using demonstration by a

human operator. Robotic skills obtained from skilled experts used in the development

of robotic systems. The gesture-based programming deals with the issues of how

gesture-based programming systems captures the intention behind finger poses, hand

motions, contact conditions, and even cryptic utterances in real time. The system

retains previously acquired skills to enhance gesture interpretation during training

while providing feedback control at the same time.

 25

Nicolescu, from Interaction Lab of University of Southern California, has

developed an approach for teaching robots that relies on the key features and the

general approaches people use when teaching each other [Nicolescu 2001; 2002;

2003]. The method is initiated from an expert’s demonstration, and then the learner

practises the task several times under the expert’s supervision to refine the acquired

skills. The expert may demonstrate the task again for several times during the

learner’s practice, depending on the complexity of the task. The teacher can also

provide simple instructions and informative clues to help the learning performance

during the practice process. In this method, expert’s demonstration, generalisation of

the demonstration and the learner’s practice the essential components. Additional

information beyond the expert’s demonstration is also provided to the robot through

verbal instruction, enabling the robot to learn the more effectively.

Billard et al has reported experiments conducted to teach certain behaviour to a

doll robot through demonstration [Billard 1998]. The doll robot has the capacity to

learn, imitate and communicate. The robot can imitate the arm and head movements

of the demonstrator through the robot’s simple phototaxis behaviour. In the

experiments, different sequences of actions are taught to the robot, and labelled

accordingly. In further experiments, the robot is taught to grammatically correct

sentences and to describe its actions and perceptions of touch on different parts of its

body. The robot is controlled by a Dynamical Recurrent Associative memory

Architecture (DRAMA) [Billard 1999]. DRAMA is a fully connected network with

 26

self-recurrent connections on each unit that are associated with two parameters, a time

parameter, which records the time delay between activation of each unit linked by the

connection, and a confidence factor, which records the frequency of activation of the

connection.

Billard and Mataric have developed a model to imitate two-arm movements

[Billard 2001a; 2001b]. The model investigates a valid model of a biomechanical

simulation of human movements, developes an architecture for visuo-motor control

and built biologically plausible models of animal imitative abilities. The model

consists of a hierarchy of artificial neural networks. It gives an abstract and high-level

representation of the neurological structure from brain regions that are involved in

visuo-motor control. The model is validated in a biomechanical simulation of a thirty-

seven degrees of freedom (37 DOFs) humanoid robot. Data from the human arm

movements are recorded using video and marker-based tracking systems. The results

show high qualitative and quantitative correlation between the human data and the

performance of the humanoid robot.

The Light-Weight Robots project, developed by the German Aerospace Centre,

provides a practical example of teaching the task of automatic insertion of a piston

into a motor block [Light-Weight (online)] to a robotic manipulator. Teaching

commences by guiding the robot by a human demonstrator using the internal torque

sensing. The axes of the holes in the motor block are vertically oriented. In the

teaching stage, orientation stiffness is assigned a high value, while the translational

 27

stiffness is set low values, allowing only translational movements to be carried out by

the human demonstrator. In the second state, the teaching trajectory is automatically

reproduced by the robot. High values are assigned for the translational stiffness, while

the stiffness for the rotation is low. This enables the robot to compensate for the

remaining position errors. The result shows that the automatic assembly task is

executed four times faster than by the human operator in the teaching stage. The

insertion task had been implemented previously using an industrial robot and a

compliant force－torque sensor. The insertion process had to be performed much

slower to avoid possible jamming. A well-tuned Cartesian force controller is also

deployed.

Yano has described a novel teaching method for a mobile manipulator [Yano

2003]. In this method, the user teaches a nominal trajectory of the hand to a service

robot to perform a fetch-a-can task. The task consists of opening the door of a

refrigerator, picking up the can, and closing the door. In the teaching stage, the user

does not explicitly consider the structure of the robot. The focus is on the movement

of the hand and the relationship between the hand and the manipulated object. After

searching for a sequence of feasible hand positions and orientations within the given

tolerance, the robot generates a feasible trajectory. Although the nominal trajectory

may be infeasible due to the structural limitation, the robot can search for a feasible

trajectory within the given tolerance. If necessary, each divided task can be performed

at a fixed location by dividing the task into subtasks. The advantages of the proposed

 28

method are that a user can teach a task without explicitly considering the structure of

the robot, and the robot can generate a feasible trajectory relatively easily from the

given task specification.

Steil et al have investigated the use of gestures for controlling a vision-based

robot called the GRAVIS-robot (Gestural Recognition Active Vision System robot)

[Steil 2001]. The robot consists of a binocular camera head, a six degrees of freedom

(6 DOFs) robot arm and a nine degrees of freedom (9 DOFs) multi-fingered hand.

Nonverbal communication based on gestural commands of a human instructor is used

to direct the attention of the robot so that it can enable its vision system to more easily

find objects that are specified in instructions.

As an extension of the GRAVIS-robot (Gestural Recognition Active Vision

System robot), a multi-model system is developed to provide a more cognitively

oriented environment [Steil 2001; McGuire 2002]. Information from various sources,

including vision, gestures and voice may be used. For example, an instruction to pick

up a cube could be given by voice, indicated by a gesture that indicates to pick up the

cube, or signalled by the vision system by reflecting an infrared ray on the cube.

A method using hand gestures to control a domestic cleaning robot has been

developed by Strobel [Strobel 2002]. In this work, a robot’s stereo vision system is

used to capture the static hand and arm gestures, while the magnetic tracking system

is used to capture the dynamic gestures. The cleaning robot also has spatial

 29

knowledge, which is used to reinforce the robot’s intention. In the course of cleaning,

the user could point to a surface that should be cleaned.

Lauria et al have designed a natural language system that can provide directions

to a robot [Lauria 2002]. This system is used to teach the robot to find different

locations by travelling through specified routes. The system includes fourteen

primitives with natural language constructs. Unknown commands may be used by the

user in the course of the project performance, and some form of clarification and

learning system would be needed.

2.3.2 Teaching by Showing/Demonstration in an Interactive
Environment

Direct transfer of skills from a human operator to a machine in an interactive

environment has been the next stage in the programming and training of a robotics

system. In the field of mobile robots, Pomerleau used a three-layer perceptron

network to control the CMU ALVINN autonomous vehicle [Pomerleau 1993].

Grudic and Lawrence used an approximation method as a means for creating the

robot’s mapping from sensor inputs to actuator outputs in the transfer of skills to a

mobile robot [Grudic 1996].

In the acquisition of manipulation skills, particularly in constrained motion, the

work carried out by Kaiser and Dillman is of significance [Kaiser 1996]. The work

proposes a general approach to the acquisition of sensor-based robot skills from

 30

human demonstration. An adaptation method is also proposed to optimise the

operation with regard to the manipulator. The method is validated for two

manipulation tasks of the peg-in-hole insertion and opening a door.

Myers et al from Intelligent Automation, Inc. (IAI), developed a system that

learns from demonstrations of a human operator and then produces a sensor-driven

program which controls a robot without operator intervention [Myers 2001]. The

system generates an operation procedure, which is identical to conventional operation

procedure developed from robot programming language that can be easily reused in

similar but different application tasks. Based on the skills demonstrated by a skilled

operator, a robot can be automatically programmed to perform complex assembly

tasks. As the task requirements change, the robot can be reprogrammed as easily as it

was initially programmed.

Skoglund and Aleotti introduced a new “programming-by-demonstration”

approach, using a supervised learning method [Aleotti 2004; Skoglund 2005]. A

“programming-by-demonstration” system prototype is presented for position teaching

of a robot arm. The data of human arm movements are recorded from a wearable

input device, and is used in the software controller of a robot arm. The method does

not require analytical modelling of either the human arm or robot, and can be

customised for different users and robots.

Soshi et al introduced a novel approach for programming robots interactively

through a multimodal interface [Iba 2005]. The key characteristic of this novice-

 31

friendly system is its intuitive interfaces based on speech and hand gesture recognition,

and its ability allowing the user to provide feedback interactively during the time of

both the programming and the execution. By allowing human control during the time

of execution, this interaction capability helps the user to deal with loosely calibrated

position sensors. The system is demonstrated by interactively controlling and

programming a vacuum-cleaning robot. Instead of off-line robot programming, this

on-line robot programming method enables the user to identify what to expect from

the program execution.

A robot’s vision-related and audition-related learning capabilities are detailed in

literature [Weng 2000; Zhang 2001]. The teaching of the robot is carried out online in

real time through physical interaction between the trainers and the robot. The self-

developmental program of the robot generates internal representations and

architecture autonomously during the learning procedure without any visual or

acoustic model information about the world.

Ehrenmann et al have developed a methodology to teach actions performed in by

an operator in household situation to a robotic system [Ehrenmann 2002]. The method

work by segmenting between actions performed during a grasp process. The actions

include the recognition of particular user actions, the task representation and the

mapping strategy itself. The results of the segmentation can be stored to be stored for

application to a real robot.

 32

Chen et al presented a framework for robot programming by human

demonstration [Chen 1998; 2000; 2001]. The framework builds a high-level robot

controller using information extracted from the demonstration. The high-level robot

controller is broken down into steps, each fulfilling a different function during

execution. Multiple demonstrations are used to build a partial view of the robot’s

configuration space. Optimal paths are generated between steps in a task. The

assumption is that demonstrations rarely contain the best path between steps. This

introduces a significant variation to task performance, as the task can be biased

towards maximum execution speed or maximum accuracy.

The use of sensors on the fingers to detect fine manipulation of objects has been

studied by Zollner [Zollner 2002]. Finger movements and forces on the fingertips are

gathered and analysed while an object is grasped. The approach deploys a data glove

and integrated tactile sensors. For classifying a grasp, a time delay method based on a

Support Vector Machine (SVM) is used.

2.3.3 Teaching by Showing in Virtual Environment

Handleman and Lane have carried out some preliminary work on a knowledge-based

“tell” approach to describe the task to be carried out by the robot and the required

corrective control measures to be taken up [Handleman 1996]. The task is defined by

a rule-based, goal-directed strategy. The proposed method has been verified through

computer simulation only for a typical peg-in-hole insertion problem. The

 33

development of the rule-based system has been intuitive and rather complicated. The

developed rules are very much context based and have to be built from scratch for any

new application.

Takamatsu and colleagues developed a system that referred to as the Assembly

Plan from Observation (APO) system [Takamatsu 2000]. The robot has the capability

of observing human performance, recognising tasks and generating programs that

perform the same task within the APO system. The robot’s hand movement is used as

a case study in the project. Trajectory is created after observing a human performance.

In further extension of the work, a task model is developed by integration of

observations made on multiple demonstrations on a single task [Ogawara 2002]. The

data obtained from demonstration is segmented to find important states such as grasps

and moves. The multiple demonstrations highlight which segments is important in the

task. The relative trajectories corresponding to each essential interaction are

generalised and stored in the task model by calculating their mean and variance. The

skilled behaviour is reconstructed from these trajectories. Further study undertaken by

Takamatsu et al has produced a more robust algorithm by correcting possible errors in

the demonstrated data [Takamatsu 2002]. Two methods are used to clean up the errors

from the vision system by using contact relations and their transitions. The first one

corrects the observed configuration from the observed contact relations. The second

approach identifies wrongly classified contact relations from an analysis of

configuration space. Contact states are checked to ensure they do not create problems

 34

such as having two objects in the same location. This ensures that incorrect results

from a vision system do not produce erroneous trajectories.

Yuan et al investigated assembly planning in virtual environments [Yuan 2000]

[Yuan 2004]. This interactive approach of assembly planning provides a hand-based

interface for human operators to perform assembly operations directly in the virtual

environment. It also incorporates a biologically inspired neural network into its

assembly planner to automatically determine collision-free motion paths at run time.

As a result, this approach creates a favourable and unique feature to enable interactive

assembly planning, not only producing alternative assembly sequences from a single

user-defined assembly sequence, but also providing assembly operations with robot-

level instructions.

Ogasawara et al proposed an integrated teleoperation system for maintenance

consisting of a task with teaching function and another with execution function

[Ogasawara 1998]. The system integrates a motion teaching system, a geometric

modelling module, and a task execution system. Automatic analysis of the contact

states of objects is embedded into the motion teaching system to help the operator to

teach assembly motion. A surface-based geometric modelling system uses the

“Teaching Tree” method. This is generated from geometric data of the object.

Manipulation skills and used to combine the planning system and the task execution

system.

 35

Onda et al developed a “teaching-by-demonstration-in-VR” system that

automatically generates a robot program to work in the real world from the assembly

tasks performed by a human operator in a virtual environment [Onda 2001; 2002a;

2002b]. The system generates a program which detects each contact state extracted

from demonstration, and realises it by skilful motion primitives (SMP). Some types of

motion that are included in the recorded motion given by a human operator in this VR

system in the teaching stage cannot be realised at the execution stage if the robot tries

to do the same task by using the human demonstration data, even on a contact-state

level. A method, called the “non-deterministic-search-type motion”, is proposed to

deal with non-deterministic motions when contact-state transitions are made non-

deterministically. A virtual small face (VSF) and an artificial constrained motion

primitive (ACMP), as well as a virtual polyhedron for constrained motion (VPCM),

are introduced. This provides the ability to specify a more general arrangement of the

bodies when one body is not in contact with another. In a virtual environment, new

states as well as contact states should be known to make the robot more skilful.

An approach that allows the results of the demonstration to be graphically

viewed via a 3D simulation and graphical user interface is developed by Friedrich

[Friedrich 1998]. The user is able to supervise the operation of the robot during

program-generation process. The developed code can be also edited, moved around

and even used separately.

 36

2.3.4 Other Alternatives to Teaching by Showing

The “teaching-by-zooming” is another alternative to the “teaching-by-showing”

method [Dixon 2003]. Visual servo control objectives are formulated by the desire to

position/orient a camera based on a reference image obtained by priori positioning the

camera on the desired location. Specially, projective geometric techniques are used to

formulate a visual servo control problem based on a cooperative camera scheme. By

using a second camera with zoom capabilities, the proposed “teaching by zooming”

alternative approach eliminates the need for the camera to be priori positioned on the

desired location.

The “teaching-by-showing-few-images” method can be applied in navigation of

autonomous mobile robots [Matsumoto 2003]. Some scenes are shown by humans as

the features of the environment combined with the motion information. An

autonomous mobile robot navigates paths between feature points by comparing

current image information with given image information. The robot reads the motion

command which is associated with the given image information when the robot

determines the images are identical.

Yokokohji et al has proposed a teaching-by-demonstration method for training of

humanoid robots at home [Yokokohji 2005]. The demonstrator’s motion is captured

by a pair of stereo cameras mounted on her/his head, located very close to her/his eyes.

By tracking the landmarks attached to the demonstrator’s hand and the working

 37

environment, the algorithm estimates not only the demonstrator’s hand motion but

also his/her head motion, which can be used for active vision system.

Laschi et al proposed the application of robot vision to the identification of hand

posture [Laschi 2002]. A skeleton-based approach has been implemented to achieve a

high-speed low-cost implementation, instead of identifying surfaces and volumetric

primitives. Simplified one-dimensional segment-based models, which are generated in

a symbolic way from a selective grouping of points and segments, are used. It is

expected that the effectiveness of man－machine interaction in personal robotics will

be improved when robots are introduced in unstructured environments in the presence

of human beings in applications such as assistance of disabled or elderly persons.

Grunwald et al introduced a “programming-by-touch” method that presents how

an untrained user can intuitively interact with the new DLR light-weight robot just by

touching the arm [Grunwald 2001]. The seven degrees of freedom (7 DOFs) robot

equipped with appropriate sensors can sense the touch. Instead of demonstrating the

skills for the robot by gripping the robot arm at a certain point to move it, the

demonstrator may hold the robot arm at any point, much as s/he would hold a human

arm. The robot is easier and more natural for a non-technical person to use.

A vision-based indoor navigation system for robot navigation has been

investigated by Chen [Chen 2000]. The self-organising hierarchical optimal subspace

learning and inference framework (SHOSLIF), incorporating states and a visual

attention mechanism, are used. This vision-based navigation is formulated as an

 38

observation-driven Markov model (ODMM), which can be realised through recursive

partitioning regression. It keeps the history information and incoming video input as

an observation vector. A stochastic recursive partition tree (SRPT), which maps a pre-

processed current input raw image and the previous state into the current state and the

next control signal, is used for efficient recursive partitioning regression.

A developmental robot, which has the ability of developing its cognitive and

behavioural skills through real-time interactions with the environment, has been

introduced by Zhang [Zhang 2005]. The robot’s learning ability is presented with the

emphasis on its audition perception and audition-related action generation. The robot

conducts the auditory learning from unsegmented and unlabelled speech streams

without any prior knowledge about the auditory signals. The actions that the robot is

expected to perform are also not available. The robot learns the auditory commands

and the desired actions from trainers as well as physical contact with the environment.

A developmental cognitive learning architecture, which learns simple behaviours

and chains these together to form complex behaviours by an artificial agent, has been

developed by Zhang [Zhang 2002]. The major challenge of this work is that training

and testing must be conducted in the same mode through online real-time interactions

between the agent and trainers.

A robot programming system using a virtual-reality graphical simulation system

with haptic feedback technique has been introduced by Kahl [Kahl 2002]. Deformable

liner objects (OLDs) are used in the research. The method aims at describing the

 39

assembly task in a more natural way without precise coordinates. The programmer

performs the assembly task in virtual reality in order to tell the robot roughly in which

direction to move. Then, the software analyses this demonstration and generates a

sequence of elementary skills, such as “establish contact” or “move to edge”, together

with estimated coordinates showing where to execute the skills. The skill sequence

produced in this process is executed by a robot.

2.4 Conclusion

In this chapter, the four categories of programming methods developed for robotics

manipulators, which include text programming, off-line simulation-based

programming, inductive learning and teaching by guiding have been briefly reviewed.

A review of the various “teaching-by-showing” techniques, which is the extension of

“teaching by guiding”, has been carried out.

 40

CHAPTER 3 HAPTIC-RENDERED VIRTUAL

ENVIRONMENT

3.1 Introduction

The effectiveness of computer simulation can be augmented using Haptic-rendering.

A haptic interface, or force feedback device increases the quality of human－

computer interaction by accommodating the sense of touch in computer simulation. It

provides an attractive augmentation to visual display and significantly enhances the

level of immersion in a virtual world. A haptic interface has been effectively used in a

number of applications including surgical procedures training, virtual prototyping,

control panel operations, hostile work environments and manipulation of materials.

In this work, haptic-rendered virtual modelling is used as part of a new paradigm

for programming a robotics manipulator to perform complex constrained motion tasks.

The teaching of the manipulation skills to the machine commences by demonstrating

those skills in a haptic-rendered virtual environment.

The peg-in-hole assembly process is used as a platform to study the concept. The

peg-in-hole insertion problem is often taken as a standard assembly problem, as it

concisely represents a constrained motion-force-sensitive manufacturing task with all

the attendant issues of jamming, tight clearances, and the need for quick assembly

times, reliability, etc.

In the developed system, a human operator demonstrates both good and bad

 41

examples of the desired behaviour in the haptic rendered virtual environment. Position,

and contact force and torque data, as well as orientation generated in the virtual

environment combined with a priori knowledge about the task, are used to identify

and learn the skills in the newly demonstrated tasks and then to reproduce them in the

robotics system. The robot evaluates the controller’s performance and thus learns the

best way to produce that behaviour.

In this chapter, the background to the concept of haptic modelling will be

reviewed. Haptic-rendered hardware and software, including PHANToM, GHOST

SDK, VRML and ReachIn API will be described. This will be followed by two

popular haptic-rendering techniques, namely volume rendering and surface rendering.

Penalty-based rendering and proxy-based rendering methods which are based on

surface rendering technology have been employed in the project. These methods will

be also discussed in this chapter.

3.2 Background

Application of robotic systems in repetitive tasks such as pick & place and assembly

requires both online and offline programming. In online programming, a human

operator should physically manipulate the robot to perform the task. The actual

movements of the robot are recorded and then used as skills for robotic operation.

These methods are often time-consuming and risky for either the human operator or

the robot. Offline programming usually takes place in the computer environment. This

 42

is achieved by integration of diverse technologies and training of skilled operators.

The training process is time consuming and costly while the programming procedures

are always tedious and complex.

On the contrary, operating complex robotic systems in a haptic-rendered virtual

environment is intuitive and safe. In such an environment, the operator is immersed in

a 3-D representation of the world with which s/he can interact. Users do not need to

write complicated computer programs. Virtual assembly, for example, provides

computerised tools to help in making assembly-related engineering decisions through

analysis, predictive models, visualisation, and presentation of data [Jayaram 1997].

Computer aided manufacturing has the benefits of increased productivity, improved

quality, and reduced costs. While the environment changes and object movements fed

back to the virtual manipulating system, it can make a haptic-rendered virtual

environment more effective.

There are three steps in implementing such a step:

(a) Trajectory creation in the virtual space

(b) Simulation of the task

(c) Execution of the task by the real robot

In a haptic-rendered virtual environment, operators can manipulate the virtual

robots as well as move the viewpoint in a very simple and intuitive way. By changing

the viewpoint, the operator can look at specific regions of the virtual work space.

The other entities of a manufacturing system can be modelled in a virtual

 43

environment in addition to the manipulators. Each element has its own properties

(shape, position, orientation, behaviour laws). Using the data related to the virtual

objects, it is possible to automatically generate trajectories to manipulate them (grasp,

insert, screw etc.). In this way, the operator can be spared from tedious work. The

created tasks can be simulated at any time with a collision-detection algorithm. This is

essential to avoid possible damage to the physical robot.

The data used by the robot to acquire basic manipulation skills is generated from

a haptic-rendered virtual environment. This approach has a number of advantages

compared to other methods:

(a) The training data, including force, torque, position, angles and velocities,

can be recorded directly from the computer.

(b) This virtual haptic environment can be easily modified according to

different manipulation processes and equipment.

(c) The risk of breakdown and breakage of the system is very low.

(d) Dangerous and costly environments can be easily constructed and simulated.

(e) A user-friendly environment for the human operator can be developed.

A primary advantage of Haptic-rendering is that it provides a bidirectional flow of

information via position-sensing and force feedback. The coupling of these two types

of information flow results in a more natural and intuitive interaction and utilises

additional sensory channel bandwidth of the user. When users are presented with a

proper combination of visual and haptic information, they experience a sensory

 44

synergy resulting from physiological reinforcement of the displayed multimodal cues

[Durlach 1995].

Working with a haptic-rendered virtual environment has other advantages. Firstly,

the size of the real robot is not relevant. Irrespective of the size of the robot, the user

is brought to the same scale through virtual reality representation. Secondly,

establishing a virtual teleoperation in early stages of development and execution of an

application prevents the risks associated with conventional direct link teleoperations,

which has physical link between the real robot and the manipulator. In a direct link, an

unexpected or wrong movement of the operator could result in the breakage of the

robotic system. Moreover, the problems associated with the transmission time delays

are avoided. The few seconds delay between the operator’s action and her/his

perception of the impact of action on the real robot can adversely affect the whole

process. Finally, the access of the human operator to actual plant is not required

during development. This is critical when the disruption of the production line cannot

be accommodated.

A haptic-rendered virtual environment is only effective if all the environmental

changes and object movements are represented in the virtual manipulation model.

This always needs a highly specialised hardware device and high computing speed

with visual or multi-sensory feedback. The control loop should be high speed with

low delay to ensure the stability of the system. Therefore, haptic-rendering depends

closely on the hardware. Hence, a haptic-rendered virtual environment should

 45

maintain a high update rate, present high-quality force feedback, prevent damage

being caused by the performance limit and have a user-friendly interface. Selecting

both the hardware and software for the haptic-rendered system must be carefully

considered. The existing commercial software packages, such as GHOST from

Sensable [SensAble (online)] and ReachIn API from ReachIn AB [ReachIn (online)],

have already considered such issues. Hence, the system designer can progress forward

to the design of the essential core of the haptic algorithm and the graphical parts.

Haptic devices are computer interfaces that allow users to interact with virtual

environments through touch and kinaesthesia. By allowing users to touch and

manipulate virtual environments, haptic devices are potentially useful computer

interfaces for many applications. They can be used for physical skills training, for

scientific data understanding, and for entertainment.

3.3 Haptic-rendered Virtual Environment

The haptic-rendered virtual manipulation environment consists of a six degrees of

freedom (6 DOFs) haptic device PHANToM Premium 1.5 and its accompanying

software GHOST, which is used to construct the virtual manipulation of the peg-in-

hole insertion process. In addition, ReachIn API, along with VRML and Python, are

also used to construct the virtual haptic manipulation environment of the assembly.

 46

3.3.1 PHANToM 1.5

The PHANToM is an advanced, desktop-mounted, general-purpose, haptic interaction

device, designed for effective interaction with virtual objects. The PHANToM family

of haptic devices, developed at the Massachusetts Institute of Technology,

manufactured by SensAble Technologies (Boston, MA), is currently the most widely

used force-feedback interface on the market.

Different models in the PHANToM product line meet the varying needs of both

research and commercial customers. The PHANToM comes in three models, namely,

PHANToM Omni Device, PHANToM Desktop Device and PHANToM Premium

Devices, differing in the size of their physical workspace and the number of Degrees

of Freedom (DOFs). The PHANToM Premium models are high-precision instruments.

They provide the largest workspace and forces within the PHANToM product line.

Some devices also offer 6 DOF. The PHANToM Desktop device and PHANToM

Omni device offer affordable desktop solutions. Of the two devices, the PHANToM

Desktop delivers higher fidelity, stronger forces, and lower friction, while the

PHANToM Omni is the most cost-effective haptic device available today.

Depending on the model, PHANToM devices can provide 6 input DOF, 3 or 6

output DOF, and wrist and shoulder motions. As shown in Figure 3.1, the PHANToM

has a stylus-shaped handle, providing a precision grasp. The characteristics of the

PHANToM make it well suited for point interaction, for example, operated by a single

virtual finger, a pencil or a peg. While using this device, sensors are continuously

 47

tracking the position of the stylus. This position is compared against the position of

objects in the virtual environment. Based on these comparisons, corresponding output

forces are calculated and transferred to the user by three electromechanical actuators.

The size of the physical workspace varies between 16 × 13 × 13 cm and 41 × 59 × 84

cm for different models. The device is compatible with standard PC and UNIX

workstations. A PHANToM 1.5 can produce a maximum exertable force of up to 8.5

N at nominal position, and a continuous exertable force of 3 N at nominal position.

The haptic update rate is 1 kHz. In a 6 DOF device, the maximum torque, generated

by the device actuators is 515 mNm [SensAble (online)]. The relatively large physical

workspace, in combination with the precision grasp stylus and high DOF for input and

output, makes the PHANToM one of the most popular haptic devices on the market.

 48

Figure 3.1 PHANToM desktop haptic device [SensAble (online)]

3.3.2 GHOST SDK

The GHOST SDK (General Haptic Open Software Toolkit), which accompanies

PHANToM, is a powerful, C++ software tool kit that eases the task of developing

touch-enabled applications. It has been developed by SensAble Technologies for the

PHANToM haptic interface, and consists of a C++ library of objects and methods

used for developing interactive, 3D, touch-enabled environment [SensAble (online)].

The GHOST SDK handles the many complex computation required to

realistically simulate physical interaction with digital objects and allows developers to

specify object geometry, properties, and global haptic effects, using a haptic scene

fpinkert
Text Box

Please see print copy for Figure 3.1

 49

graph. The GHOST SDK works as the “physics of touch” engine, which takes care of

the complex computations and allows developers to deal with simple, high-level

objects and physical properties like location, mass, friction, and stiffness. GHOST

automatically computes the interaction forces between a haptic point, and objects

within the virtual environment. It can also simulate object compliance, friction,

springs, impulses and vibrations.

The GHOST SDK provides an abstraction that allows application developers to

concentrate on the generation of haptic scenes, manipulation of the properties of the

scene and objects within the scene, and control of the resulting effects on or by one or

more haptic interaction devices. Developers can use the libraries of 3D prismatic

objects, polygonal objects, and touch effects within the GHOST SDK to add a

convincingly physical dimension to a variety of applications, including medical

simulation, virtual training, geophysics, robotics, teleoperations, assembly path

planning, molecular modelling, and nano-manipulation. At the same time, the flexible,

extensible architecture of the GHOST SDK makes it a powerful platform for haptics

researchers and other developers who need to add new shapes and dynamics, as well

as implement the lower-level, direct-force effects. Ghost SDK does not generate

graphic scenes. Hence, a different tool such as OpenGL [OpenGL (online)] is needed.

3.3.3 ReachIn Desktop Display

The test platform is built on a ReachIn Desktop Display from ReachIn Technologies

 50

[ReachIn (online)]. Figure 3.2 illustrates the ReachIn Desktop Display. The ReachIn

Desktop Display is a hand-immersive hardware platform in which scene graph, haptic

system and communication system between graphics and haptics are integrated in a

consistent, seamless way. The display can provide complex, high-quality haptic

feedback through one PHANToM haptic device or cooperation of two PHANToM

haptic devices. CrystalEyes shutter glasses from StereoGraphics Corporation [Stereo

(online)] are connected to a stereo-output graphics card to provide stereo vision. The

screen faces down towards a half-reflecting mirror which reflects the stereoscope

monitor image. When working on the three-dimensional workspace on the ReachIn

Desktop Display, the user can see the virtual representation of the haptic tool in the

same position in which it is placed in the real world. The graphics and the physical

interaction device are perceived as being totally co-located within the workspace. In

this way, the graphics and haptics are consistent and the virtual environment is seen

and felt in the exact same position.

 51

Figure 3.2 ReachIn desktop display

3.3.4 ReachIn API

ReachIn API is a scene-graph-based application programming interface for creating

multi-sensory, interactive applications. The ReachIn API is based on the structure and

standard of VRML [VRML (online)]. It handles the complex calculations required for

the touch simulation and the synchronisation with graphic and Haptic-rendering,

freeing the user to focus on more important issues such as developing application

behaviour or experimenting with haptic algorithms. The ReachIn API is built on C++

but it also integrates Python, VRML, and special Haptic-rendering technology. It is

 52

strictly object-oriented and utilises an advanced object-oriented system.

The virtual reality world is defined by using the scene-graph definition language

VRML. Both the standard graphical and structural nodes are from VRML in the

ReachIn API. Additional nodes handling the haptics and dynamics of the scene are

implemented in C++. A user can also define own nodes implemented in C++. The

script language Python [Python (online)] is used in the programming of the objects’

behaviour in the virtual reality environment. A special Python script node is provided

in ReachIn API.

3.4 Haptic-rendering Techniques

A haptic-rendering technique is a method that calculates the contact forces generated

during manipulation in a virtual environment and apply them to the force-feedback

device. Most of the rendering techniques used at present are based on a single-point,

which means the haptic output forces are calculated at only one point at any given

time [Petersik 2002].

At present, surface rendering and volume rendering are the two main haptic-

rendering techniques widely used.

3.4.1 Volume Rendering

Volume rendering is concerned with the haptic representation of volumetric objects.

This technique is developed for accurate representation of object surfaces.

 53

Volumetric objects are usually represented by a three-dimensional array of small

volume elements or voxels. Each voxel contains a number of scalar attributes such as

colour and density. An appropriate interpolation function is applied to these attributes

in order to produce continuous output forces [Avila 1996].

Volume rendering includes three procedures [Lichtenbelt 1998]:

(a) Representing the volumetric object by three-dimensional arrays, namely the

RGBA volume data set. The RGBA volume data set is a four-vector data set,

where the first three vectors are the R, G, and B colour components

respectively, and the last vector, A, represents opacity of the value range

between 0 and 1, where 0 means totally transparent and 1 means totally

opaque.

(b) Reconstruction of an appropriate interpolation function from this discrete

data set. Continuous forces are used as output.

(c) Projecting it onto a 2D output image from the desired point of view.

The main advantage of volume rendering is that internal object structures can be

visualised using haptics, so that people can look at the 3D interior information as a

whole. Interpretation of the interior is rather difficult during volume rendering. The

performance of the volume rendering is significantly computing intensive compared

to surface rendering as each frame might take several minutes to be rendered.

 54

3.4.2 Surface Rendering

Compared to computational intensity of volume rendering, surface rendering uses

surface representations to calculate output forces. Currently, this is the most popular

haptic-rendering technique. Objects in the virtual environment are represented by

geometric surface polygons; usually triangles. The main advantage of surface

rendering is that it can utilise the same object representation as graphical rendering

[Petersik 2002]. This haptic-rendering technique is suitable for surface rendering of

rigid bodies, such as various geometric objects. The rendering algorithm does not

maintain any information about the internal object structure provided by the geometric

data representation [Petersik 2002].

The development of surface Haptic-rendering has undergone three main stages.

They are the penalty-based-rendering, the god-object-based rendering and the proxy-

based-rendering [Mark 1996]. The basic concepts underlying the three approaches are

the same. When users try to penetrate the haptic-rendered surface with a haptic probe,

a force feedback will push it out of the surface.

3.4.2.1 Penalty-based Rendering

The penalty-based rendering method is a primitive method among the three haptic-

rendering technologies. This method is inspired by the fact that when two

geometrically rigid objects collide small deformations take place at the contact surface

and these deformations can be modelled with springs.

 55

Consider two colliding objects A and B. When penalty-based collision occurs, the

following parameters, namely contact point p, normal n perpendicular to the surface

across the point p and a penetration depth d, can be measured. The penalty-based

spring force and torque applied to object A are defined as follows:

ndfkFA ×⋅−=)((3.1)

AAA FcpDT ×−=)((3.2)

The spring force FA is calculated as the product of the force function f of distance

vector d and the stiffness constant k. Opposite forces and torques are applied to object

B. The force function f can be linear or a complicated non-linear function. In these

relationships, cA is the centre of mass of A and D is the distance vector between p and

cA.

The penalty-based rendering method has several attractive properties [McNeely

1999] [KiM 2003] [Johnson 2003]:

(a) The force model, based on objects interpenetration, used to compute each

contact point, is simple to construct.

(b) Object contact decision is made in every simulation frame, which makes the

penalty-based rendering method best suited for interactive applications with

fixed time steps, such as haptic rendering.

However, several severe problems prevent penalty-based rendering from

becoming the primary rendering method [Wu 2000] [Larsen 2001]:

i. As the tip of the haptic probe penetrates into the object surface, internal

 56

forces are generated to halt the tip’s advance through the surface. However, a

deep penetration does not produce sufficient reactive forces as the internal

volume of the object is not modelled.

ii. Moreover, the tip of the haptic probe penetrating one side of the object’s

surface is often close to the other side of the surface. As a result, the

generated force would eventually push the point off the surface.

iii. A severe problem is that several points in an object may have the same

distance to the surface. In these situations, forces generated from the haptic

environment become unstable, since force directions may start to change

rapidly. This results in haptic probe oscillation. Since force fields should be

computed in advance, this method is not appropriate in dynamic

environments.

3.4.2.2 God-object Rendering

God-object rendering technology was first employed for haptic applications to address

the limitations of penalty-based rendering by Zilles and Salisbury [Zilles 1994]. This

method employs a strategy to keep track of a virtual contact point, namely the god

object, which remains on the surface during haptic interaction so that it can prevent

the virtual contact point of the haptic interface from penetrating the object. The force

direction will be accurately applied to the operator, while the position of the god

object on the surface is determined.

 57

 Although the actual positions of objects may overlap in the virtual environment,

the generated interaction forces should be based on a contact state where the objects

cannot overlap. Given the previous location of the god object and the current location

of the haptic interface, the algorithm will identify a number of surfaces on the

rendered object which are currently involved in the interaction and denote them as

active. A surface is active if the god object is on one side of the rendered surface, and

the haptic interface is on the other, and the action takes place within the boundaries of

the surface. Once this set of surfaces, or constraints, has been identified the new

location of the god object can be computed. By finding the closest point on the active

constraint surface to the current haptic interface point, the new location of the god

object can be determined. By choosing planar constraints, the solution can be found

by solving a set of linear equations.

The god-object rendering algorithm technique has successfully solved the

problems raised by the penalty-based haptic-rendering technique, because in this case,

the contact is between objects instead of one point and one object [Salisbury 1995].

The god object tries to be as close to the haptic probe tip as possible and any

displacement of the god object relative to the tip gives rise to a haptic force. The god

object is restrained by a predefined topology calculated from the objects in the virtual

environment. Hence, when the tip penetrates into a surface, the god object is left

outside. This will generate a force pulling the instrument out of the surface. The god-

object can slide on the surfaces of polygons when the area is defined as legal in the

 58

topology of the objects. Since the god object is always located on a surface, it can not

penetrate through thin objects. However, the god object could slip through very small

gaps between adjacent polygons, hence the predefined topology is used to restrain the

god object instead of the polygons.

3.4.2.3 Proxy-based Rendering

The proxy-based rendering method, which performs the same function as god-object

rendering, was first described in [Ruspini 1997]. It is an extension of the god-object

rendering technology that employs virtual proxy as a representative object to

substitute the phantom probe in the haptic-rendered virtual environment. By using an

intermediate virtual object, namely proxy, with a defined size instead of the point-

shaped god object, the problem of slipping through gaps between polygons is solved.

Because the virtual proxy has a finite size, it does not slip through the tiny numerical

gaps found in most polygonal meshes [Zilles 1994]. The proxy is restrained by

polygons which makes a dynamic environment possible. This is different from god-

object rendering in which a predefined topology is calculated from the objects in the

virtual environment. With the proxy method, the proxy remains on the object surface

when the haptic probe tip penetrates the object surface. Rather than calculating the

force applied to the device directly from the virtual object, the haptic probe is

controlled to move towards the proxy position. The proxy itself can be controlled to

move over the surface of the object with regard to the location of the haptic probe.

 59

Figure 3.3 illustrates the motion of the virtual proxy. In the absence of an obstacle,

if the virtual proxy’s path does not collide with any obstacles, the virtual proxy moves

directly towards the object. The proxy’s position is advanced until it makes contact

with the first obstacle in its path. When the proxy encounters one or more interfering

primitives, direct motion becomes impossible. The user can still reduce the distance of

the proxy relative to the goal by moving the proxy along one or more of the constraint

object surfaces. The motion is chosen to locally minimise the distance relative to the

goal. The proxy stops when it is unable to decrease its distance relative to the goal,

due to jamming.

Figure 3.3 Motion of the virtual proxy [Ruspini 1997]

 To model the interaction between virtual proxy and obstacle, a configuration

space of the proxy (a constraint plane), namely configuration space obstacles (C-

obstacles), which consists of all the points within one proxy radius of the original

obstacle’s surface, is defined (Figure 3.4). In this configuration space, the position of

fpinkert
Text Box

Please see print copy for Figure 3.3

 60

the proxy is identified as a point while all C-obstacles have continuously defined

surfaces and nonzero thickness [Ruspini 1997]. The periphery of the C-obstacles,

namely the constraint plane, can then be formed.

Figure 3.4 Configuration space of the proxy

The difference vector between the proxy and the device position is used to

calculate a proportional output force. In order to update the proxy position while the

device moves within the object, the distance between the device and the proxy

position, px − , is locally minimised. This will be subject to:

,01

^
≥xn

T

,02

^
≥xn

T

 (3.3)

M

,0
^

≥xn
T

m

 Where p represents the vector from the current proxy position to the user’s

 61

position, x represents the new sub-goal vector, and ,0,
^

mini ≤≤ are the unit normal

of the constraint planes [Ruspini 1997].

Constraint-based rendering methods eliminate the problem of unstable haptic

output. Since the output forces are calculated in real-time, these methods are also

suited for dynamic environments. Because of the real-time rendering, god-object and

proxy rendering methods are more computationally expensive than penalty-based

rendering methods.

3.5 Force feedback in Haptic-rendered Environment

3.5.1 Spring-damper System

In this configuration, the virtual peg is coupled with the PHANToM Premium Devices

(that is the manipulation point) through a spring-damper system [Mathinsite (online)].

An ideal spring-damper system is depicted in Figure 3.5. It is composed of a mass

attached to a spring and a damper. By applying Newton’s second law and analysing

forces applied on the mass (free body), the following relationship can be obtained

[Mathinsite (online)]:

 kxFs −= (3.3)

dt
dxbxBBvFd −=−=−=

.
 (3.4)

 2

2..

dt
xdmxmmaF ===∑ (3.5)

where

 k, B represent spring constant and damper constant, respectively

 62

 m is the mass of the spring-system

 Fs, Fd and ∑F represent forces applied on the spring, damper and mass

respectively

 a or
..
x is the acceleration of the mass

.
x is the velocity of the mass

 x is the displacement of the mass relative to a fixed point of reference.

 Combining the three motion equations, a differential equation for displacement x

as function of time t is obtained:

 02 2
0

.

0

..
=++ xxx ωξω (3.6)

where damping factor
km

B
2

=ξ , frequency
m
k

=0ω .

 63

Figure 3.5 Mass-Spring-Damper System [Mathinsite (online)]

The peg is a dynamic rigid object in the virtual environment. The forces reacting

on the peg are transferred to PHANToM probe through the spring-damper system.

The virtual hole is static in the virtual environment while the peg can be moved and

rotated (Figure 3.6) [Chen 2002a]. Forces applied on the PHANToM probe through

the spring- damper system is described as followed:

...
xmxBkxF ++= (3.7)

where the x,
.
x , and

..
x represent the displacement, velocity, and acceleration of

the peg respectively [Chen 2005].

fpinkert
Text Box

Please see print copy for Figure 3.5

 64

Figure 3.6 3DOF peg-in-hole insertion virtual environment

3.5.2 Force Feedback from Haptic-rendered Environment

The force generated at each point is the sum of the normal force and the friction force

exerted at that point, as shown in Figure 3.7 [Chen 2002b].

Figure 3.7 Normal force and friction force

The direction of the normal force is perpendicular to the contact surface and

points to the moving object. The magnitude of the normal force generated at each

point is calculated by

vbadcdkfc ⋅+⋅+⋅= (3.8)

where

 65

 d is the depth of the point in the contacting static object

 ad is the accumulated depth during a continuous contact between the point

and the static object

 v is the velocity of the object and is calculated by the current Depth minus the

last Depth divided by the sampling time

 k is the stiffness coefficient

 c is the coefficient for the accumulated depth.

 b is the damping coefficient

The torque generated at each point is calculated by

Dfct ×= (3.9)

where

D is the distance from the contact point to the rotating centre of the object.

The direction of the friction force is along the contact surface and opposite to the

moving direction. The magnitude of the friction force generated at each point is

calculated by

zf ×= σ (3.10)

where

 z is the strain describing micro-movements between the two objects, which is

not allowed to exceed a small value called the breakaway distance zmax.

 σ is the stiffness relating force to strain, assuming xi is a point fixed on the

moving object, and yi is an adhesion point on the static object, as shown in

 66

Figure 3.8 [Chen 2002b].

The following relationship is used to calculate zi by

iii yxz −= (3.11)

⎩
⎨
⎧ >−

=
−

−

otherwisey
zyxifzx

y
i

iii
i ,

,

1

max1maxm
 (3.12)

Figure 3.8 Definition of the strain z

3.6 Graphic-modelling Techniques

Graphic-modelling provides vision feedback to the operator that bridges haptic-

rendering model and virtual manipulation. The graphic models are realistic and can be

efficiently constructed. Some of the graphic-modelling techniques can also provide

inspiration for haptic-rendering techniques.

The Non-Uniform Rational B-Splines (NURBS) techniques, typically used in

Computer Aided Design (CAD) environments, have also been widely deployed in

computer graphic displays and vision or touch models acquired by robotic systems

[Han 1996] [Chang 1997] [Ikits 2001] [Balasubramaniam 2002]. Using Non-Uniform

Rational B-Splines (NURBS) technique, very complicated object can be modelled and

modified locally. However, the present of the object requires a large mount of data.

 67

The collision detection is also difficult to perform [Piegl1995].

In the first implementation of the virtual haptic-rendered peg-in-hole insertion

project, OpenGL was used to build the peg-in-hole graphic model and GHOST SDK

for the haptic model. The GHOST SDK (General Haptic Open Software Toolkit),

which accompanies PHANToM, developed by SensAble Technologies for the

PHANToM haptic interface, was used for developing interactive, 3D, and touch-

enabled environment [SensAble (online)]. The penalty-based rendering, developed

through GHOST SDK, cooperates with OpenGL to render both visible graphic objects

and haptic objects. VRML was employed in the final implementation of the graphic

model, while ReachIn API was used to develop the haptic-rendering [ReachIn

(online)]. In this case, the objects, created by proxy-based rendering method,

developed through ReachIn API can be seen through the VRML model.

Both OpenGL and VRML work based on the same concept that surface of the

objects are made of quadrangle polygons. The visibility of the surface depends on the

direction of the normal perpendicular to the surface. The order of the quadrangle

vertexes of the surface and the direction of the normal must follow the right hand rule.

If the normal faces the viewer, the surface is visible, otherwise it is invisible.

3.7 Haptic-rendered Peg-in-hole Environment

The peg-in-hole assembly process is used as a platform to study the concept. The peg-

in-hole insertion problem is often taken as a standard assembly problem, as it

 68

concisely represents a constrained motion-force-sensitive manufacturing task with all

the attendant issues of jamming, tight clearances, and the need for quick assembly

times, reliability, etc.

In the developed system, a human operator demonstrates both good and bad

examples of the desired behaviour in the haptic virtual environment. Position and

contact force and torque data, as well as orientation generated in the virtual

environment combined with a priori knowledge about the task, are used to identify

and learn the skills in the newly demonstrated tasks and then to reproduce them in a

robotic system. The robot evaluates the controller’s performance and thus learns the

best way to produce that behaviour.

3.7.1 Penalty-based Peg-in-hole Rendering

3.7.1.1 Haptic-rendering for 3 DOF Device

In the previous research, the haptic-rendered virtual peg-in-hole model was developed

for a 3 DOF haptic device by Yuxin Chen [Chen 2005]. The haptic-rendered peg-in-

hole insertion model was constructed based on penalty-based haptic-rendering method.

This haptic-rendered model, which generates force data, is constructed using the

TriPolyMesh and PointShell methods, developed by the GHOST SDK supplied with

PHANToM haptic device [Chen 2005].

The TriPolyMesh (triangle polygon mesh) method was used to construct the

haptic model of the peg and hole. The surfaces of the virtual peg and hole were

 69

formed by rotating the triangles around the coordinate centre (Figure 3.9) [Chen

2002a].

Figure 3.9 TriPolyMesh method

The PointShell method was employed to generate force data from the haptic-

rendered model. In the PointShell method, an object is represented as a collection of a

group of important points on their surface. The point P(x, y, z) of the curve C(x, y, z)

in the PointShell model must be singular. The following formula must be applied:

0),,(=zyxC (3.13)

0=
∂
∂

=
∂
∂

=
∂
∂

z
C

y
C

x
C (3.14)

where Cx, Cy, Cz are the partial derivatives of function C relative to x, y, z [Chen

2005].

A surface normal vector pointing inwards is assigned to every point on the

PointShell to provide the normal force direction [Renz 2001]. Figure 3.10(a)

 70

illustrates the normal vectors of a PointShell. In the PointShell developed for the peg-

in-hole insertion, the directions of the vectors assigned to singular points are not pre-

determined, as they depend on the normal of the contact surface (Figure 3.10(b))

[Chen 2002a]. The directions are assigned when the peg and hole are in contact.

The developed haptic-rendered model proved quite stable when the peg-in-hole

insertion was performed by the three degrees of freedom (3 DOFs) PHANToM

Premium 1.0 [Chen 2005]. However, when at a later stage, the haptic device was

upgraded to a six degrees of freedom (6 DOFs) device, PHANToM Premium 1.5,

strong oscillation occurred during the virtual peg-in-hole insertion and consequently

the simulation could not be carried out successfully. Force and torque data collected

from one unsuccessful peg-in-hole insertion is depicted in Figure 3.11.

Figure 3.10 PointShell method

 71

-200

0

200

400

600

800

1000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

x
y
z
Fx
Fy
Fz
Mx
My
Mz
Ax
Ay
Az

Figure 3.11 Strong oscillation indicated by high torques

Further investigation of the problem revealed that the PointShell and

TriPolyMesh algorithms used in the model were not sufficiently accurate for operation

with a 6 DOF haptic device.

3.7.1.2 Haptic-rendered Model for 6 DOF Device

In order to stabilise the virtual peg-in-hole insertion with tight fit for a 6 DOF haptic

device, three new algorithms have been developed and applied to the physical model

of the process. They include a modified PointShell algorithm, modified TriPolyMesh

algorithm and dual-gstCylinder algorithm.

In the modified TriPolyMesh algorithm, the haptic hole is constructed by a

triangle polygon mesh algorithm and the haptic peg is a gstCylinder, which is a

cylinder-shape class defined by GHOST SDK, representing a geometric primitive

cylinder. The inside, outside and top surfaces of the hole are formed by rotating

triangle polygons around the y-axis as shown in Figure 3.12. The gstPoints, one of a

 72

variety of data types defined and used in the GHOST API, are added to the vertex of

each triangle polygon, representing a Cartesian three-dimensional point class. A group

of gstPoints is also added to the end edges of the peg. The gstPoint generates contact

force and torque data when it intersects with the body of the peg. Similar to the

previous model, the direction of the vectors assigned to each gstPoint is not

predetermined in advance, as it depends on the normal of the contact surface. This is

determined according to the contact position when the peg and the hole come in

contact. The gstPoints also play an important role in approximately removing the gaps

produced when a polygon is used instead of a circle, as illustrated in Figure 3.13.

Figure 3.12 Modified TriPolyMesh method (a)

 73

Figure 3.13 Modified TriPolyMesh method (b)

In the dual-gstCylinder algorithm, the hole is constructed using two gstCylinders

rather than triangle polygons, forming the inner and outer surfaces of the hole (Figure

3.14). This approach is simple, and the constructed model conforms well to the shape

of the hole and hence there is no inaccuracy in the model. The approach also offers a

simple technique for the construction of the haptic-rendered model. Since the haptic-

rendered model is a real cylinder model, no accuracy problem is introduced according

to the approximate cylinder created by the triangle polygon mesh algorithm. The

gstPoints are defined for the edge of the hole and the two ends of the peg.

 74

Figure 3.14 Dual-gstCylinder method

In the PointShell algorithm, the hole is defined as a dynamic object created by a

group of gstPoints, as shown in Figure 3.15. The peg is also constructed by the

gstCylinder. The direction of the force generated at each gstPoint is normal to the

surface of the hole at each point. The gstPoints on the hole prevents the virtual peg

from penetrating into the inner surface of the hole.

Figure 3.15 PointShell method

 75

The developed algorithms were applied to the virtual peg-in-hole insertion

process. The process proved stable, and no jamming was observed when the assembly

was performed in the virtual environment with a 6 DOF PHANToM Premium 1.5.

Some of the experimental results are illustrated in Figure 3.16－3.18. The

variation of 11 normalised series of x, y, z, fx, fy, fz, Mx, My, Mz, Ax, Ay and Az are

illustrated in these diagrams, where:

• x, y, z are positions of PHANToM probe or peg in the world coordinates

[millimetres].

• fx, fy, fz are reaction forces in the world reference frame from PHANToM

[Newtons],

• Mx, My, Mz are reaction torques in the world reference frame from

PHANToM [Newton*millimetres].

• Ax, Ay, Az are equivalent rotations of the current rotation matrix (orientation)

based on successive rotations around the x, y, z axes. Angles are in radians

and a right-hand rule is used.

 76

-40

-20

0

20

40

60

80

100 x

y

z

Fx

Fy

Fz

Mx

My

Mz

Ax

Ay

Az

Figure 3.16 Results of using Modified TriPolyMesh method

-60

-40

-20

0

20

40

60

80

100

120 x

y

z

Fx

Fy

Fz

Mx

My

Mz

Ax

Ay

Az

Figure 3.17 Results of using Dual-gstCylinder method

-40

-20

0

20

40

60

80

100 x

y

z

Fx

Fy

Fz

Mx

My

Mz

Ax

Ay

Az

Figure 3.18 Results of using PointShell method

 77

3.7.2 Application of Proxy-based method to Peg-in-hole Insertion

Figure 3.19 shows the developed virtual environment using proxy-based rendering

process for the peg-in-hole insertion process. The peg is a dynamic rigid object in the

haptic-rendered virtual environment. The force and torque reacting to the peg are

transferred to PHANToM Premium 1.5 through the spring-damper system. The hole is

static in the environment, while the peg can be translated and rotated.

Figure 3.19 6 DOF Peg-in-hole haptic virtual environment

The haptic-rendered model of the peg-in-hole assembly insertion generating force

and torque data is constructed using the virtual proxy method [Ruspini 1997]. The

virtual rigid peg is defined as a virtual proxy and controlled by the physical ReachIn

probe in the haptic-rendered virtual environment. The position of the virtual proxy is

changed according to alteration in the probe’s position.

The surfaces of the peg and the hole are constructed using polygons. This results

 78

in numerical errors, which can produce gaps in the common edge of the peg and hole.

The size of the virtual proxy is chosen large enough to prevent it from falling into the

gaps.

The force generated at the proxy is the sum of the normal and the friction forces.

The generated torque is the product of the contact force vector applied at the contact

point and the distance vector from the contact point to the rotating centre of the object

[McNeely 1999; Renz 2001]. The full rotation of the proxy is recorded

as ()θ,,, zyx fff . This describes an arbitrary rotation about an axis vector, where

()zyx fff ,, are the axis vectors and θ is the angle in radians in the right-handed

direction. The axis vector is of unit length. The rotation matrix is calculated by:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++
−++
+−+

=

1000
0
0
0

),(
θθθθθθ
θθθθθθ
θθθθθθ

θ
cvffsfvffsfvff

sfvffcvffsfvff
sfvffsfvffcvff

fRot
zzxzyzzx

xyzyyzyx

yxzzxyxx

Where θθ cos1−=v , θθ cos=c , θθ sin=s [Niku 2001]

Figure 3.20 shows the position, force and torque data as well as the change in the

rotation angle from the last step to the current, obtained from the haptic-rendered

virtual environment.

 79

Figure 3.20 Training data obtained from the virtual environment

3.8 Summary

In this chapter, the backgrounds of haptic concept and two popular Haptic-rendering

technologies have been reviewed. The haptic-rendered virtual environment, including

PHANToM, GHOST SDK, VRML and ReachIn API, has been described. Penalty-

based rendering and proxy-based rendering methods, based on surface rendering

 80

technology, employed in the peg-in-hole insertion procedure, as case studies of the

haptic-rendered virtual environment, have been studied. The algorithms used to

calculate the collision force and torque of peg and hole have been described. The

generated force and torque data from the haptic-rendered virtual environment have

also been presented.

 81

CHAPTER 4 SKILL ACQUISITION

4.1 Introduction

The paradigm proposed to acquire manipulation skills from a haptic-rendered virtual

manipulation is introduced and studied in this chapter. The deployed skill acquisition

methods are primarily based on behavioural cloning methods. Manipulation states are

generalized offline by peg and hole’s physical contact relations or statistic methods,

such as Fuzzy Clustering algorithms, according to the characteristics of the generated

manipulation data. Hidden Markov Model is used to estimate the next optimal state, in

another word the optimal state sequence. These approaches are described in detail and

their main characteristics are highlighted.

4.2 Background

Traditional control theory uses a mathematical model of a physical process to predict

its behaviour and adopt appropriate control actions. Unfortunately, either many

processes are too complicated to be accurately modelled or there is insufficient

information available about the process environment.

Heuristic methods, such as artificial neural networks, genetic algorithms, fuzzy

control, expert systems and reinforcement learning have been developed to replicate

the human ability to control and monitor a process without a need to mathematically

model it. These methods, contrary to the ability of a human operator, have their own

 82

strengths and limitations. Each method is more appropriate for a particular application

and might prove ineffective for another.

Moreover, controlling a complex dynamic system, such as a robot, a plane or a

crane, usually requires a skilled operator with full understanding of its operation.

Some machine learning methods, such as artificial neural networks, genetic

algorithms and reinforcement learning, do not use prior knowledge about the system

to be controlled. This results in a low successful learning rate, low robustness, a

considerable amount of time-consuming experimentations with the dynamic system,

and difficult interpretation and comprehensibility of the system. However, a human

operator usually learns initial strategies from their prior knowledge of the system or

from demonstrations by experienced operators.

Donald Michie [Michie 1993] introduced the concept of behavioural cloning,

aiming at deploying the skills of an expert operator to generate a generic automatic

control algorithm using heuristic and machine learning techniques. This method was

originally motivated by the difficulties encountered in getting expert controllers to

produce detailed explanations of their skills. A skilled operator’s control traces are

used as examples for machine learning algorithms to reconstruct the control strategy

that the operator executes subconsciously. In general, there are two goals in

behavioural cloning. One is to generate “good performance” clones, which can

reliably carry out the control task. Another is to generate “meaningful” clones, which

can help to achieve a better understanding of the human operator’s subconscious skill

 83

[Urbancic 1994]. Behavioural cloning has been successfully used in a number of

domains. These include pole balancing, production-line scheduling [Kerr 1994],

piloting [Bain 1999; Sammut 1992], and operating cranes [Suc 2000]. These

experiments are reviewed by Bratko [Bratko 1998].

Decision trees or regression trees are often used in inducing behaviour cloning

controllers. Such clones do provide some insight into the control strategy. However, in

general, they lack the conceptual structure that would clearly reflect the causal

relations in the domain and the goal structure of the control strategy [Suc 1998].

Clones in the form of decision trees do not explicitly show any time ordering between

events in the controlled system and the actions taken. Although successful clones have

been induced in the form of decision trees or regression trees, such as C4.5 [Esmaili

1995; Pearce 1999] and locally weighted regression [Suc 1998], the following

problems have generally been observed with this approach [Suc 1998]:

(a) Behaviour cloning controllers are not stable with regard to small changes in

the control task.

(b) The proportion of successful controllers induced is low, typically below

50%.

(c) Induced clone controllers lack the typical elements of human control

strategies such as goals, subgoals, phases and causality, and hence cannot

adequately generalise the human skill.

The logic-based machine learning method uses the background knowledge, which

 84

is known prior to learning. For example, Inductive Logic Programming (ILP)

[Muggleton 1992] is a kind of logical-based machine learning. Some experiments

with ILP were performed in the control task modeling a pilot flying a F-16 flight

simulation on a leveled left turn [Camacho 1995], but the results were generally not

better than those using decision or regression trees.

Some behavioural cloning approaches employed from traditional control theory

have also proved effective. In Suc [Suc 1997], cloning controllers take the form of

Linear Quadratic (LQ) controllers with subgoals, where in the subgoals are

automatically induced from the operator’s control traces. The reconstruction of a

human operator’s skill exploits some elements of the theory of Linear Quadratic

Regulator problems [Bertsekas 1987]. Both the dynamics of the system and the

example behavioural traces are considered in the learning process. The system model

control skills suggested by Isaac [Isaac 2003] are separated into a reactive level and

an anticipatory level, that is, the learning of traditional PID (Proportional Integral

Derivative) controllers as rule sets and combining them into a goal-directed

hierarchical framework. These approaches have significantly improved both the

clones’ robustness in regards to changes in the control task, and the yield of the

cloning process. However, this approach still has difficulties in domains with

significant nonlinearities.

 85

4.3 Perception Module

The basic skills are derived and structured by the perception module. It derives the

basic skills from the training data produced through manipulation in the virtual

environment and stores them in models which can generate outputs according to

inputs. These models can also be viewed as databases that store the skills. The skills

stored in the database or in the model are used by the planning module to control the

manipulator. Skills in the database can be further augmented by the skills learned

online during physical manipulation by the manipulator.

The human performs manipulations by choosing from a limited but possibly large

repertoire of movement primitives or basic skills. A manipulation task usually consists

of a sequence of basic skills. Identification of these basic skills and mapping them on

to an equivalent series of robot manipulation primitives form the core of an algorithm

for skill acquisition and transfer of those skills from the human to a robotic

manipulator. Such skill-based manipulation is an effective way for a robotic

manipulator to execute a complex task.

The basic skills are defined according to the contact-state transition of a task,

independent from the configuration of a manipulator [Nakamura 1996]. In a virtual

manipulation environment, the basic skills can be also identified by the contact states

and state changes [Onda 1995; Takamatsu 1999]. Using this approach, the basic skills

can be automatically extracted from the manipulation carried out in the virtual

environment.

 86

The structure of the Perception Module of this project is illustrated in Figure 4.1.

In the first step, the training data, generated from the haptic-rendered virtual

environment, are refined by removing noise data and compressing highly correlated

vectors. In the second step, manipulation states are generalized either by peg and

hole’s physical contact relations or by some Fuzzy Clustering algorithms. In the third

step, Hidden Markov Model is applied to estimate the optimal state sequence. The

physical peg-in-hole assembly can start from any predefined manipulation state.

Optimal state sequence can then be used to estimate the next optimal state to follow.

The Locally Weighted Regression (LWR) method is encoded as the approximator for

the trajectories in each state during physical manipulation. The initial locally weighted

regression learning modules are developed by the online training data generated from

the haptic-rendered virtual environment. These locally weighted regression learning

modules will be also improved in real-time by the data generated from the physical

peg-in-hole assembly procedure.

 87

Figure 4.1 Structure of the Perception Module

Perception Module
Online

Learning

Haptic-rendered
Virtual

Environment

Data Refinement Module

Manipulation
States

Classification

Generated Data

States
Classifier
Database

Optimal
State

Sequence

Hidden Markov
Model

Locally Weighted
Regression

LWR
Learning
Modules

Generated Data

Locally Weighted
Regression

Skill Database

Offline
Learning

Physical
Environment

 88

4.3.1 Noise Removal

The training data generated from the haptic-rendered virtual environment may include

inconsistent or unintended actions. These data must be identified and removed from

the training data in the Perception Module before skill acquisition analysis.

The noise in the data is removed before the analysis. The following algorithm

[Kaiser 1996] is applied to refine the data, in which u is the action vector:

1. Remove irrelevant actions that do not enhance an action. This is defined

by 0, ≥≤ ssu δδ , where sδ is an application-specific threshold.

2. Remove the operator’s rough control. If the differences between two

continuous actions are too large, their average value will be used instead.

4.3.2 Data Compression

In some situations, the dimension of the input vector is large, but the components of

the vectors are highly correlated (redundant). It is useful in this situation to reduce the

dimension of the input vectors. An effective procedure for performing this operation is

Principal Component Analysis (PCA) [Smith 2002]. This approach generates the

following outcomes:

(a) It orthogonalises the components of the input vectors so that they are

uncorrelated with each other.

(b) It orders the resulting orthogonal components and principal components, so

that those with the largest variation come first.

 89

(c) It eliminates those components that contribute the least to the variation in

the data set.

Principal Component Analysis (PCA) is a classical statistical method which

identifies patterns in data and expresses the data to highlight their similarities and

differences. It is a common technique for finding patterns in data of high dimension.

Once these patterns in the data have been found, the data can be compressed. The

method is based on linear transformation which has been widely used in data analysis

and compression and has found popular use in face recognition and image

compression.

The process of human-to-robot skill transfer usually involves recording many task

states and sensory information. This results in a large number of dimensions in the

recording of human skills data and low efficiency due to the presence of redundant

data. Reduction in the dimension of data helps to interpret and understand the data

more effectively. In addition, it increases the efficiency of the machine learning

algorithms.

Principal Component Analysis is based on the statistical representation of a

random variable. The aim is to find a set of M orthogonal vectors in the data space

that account for as much data variance as possible. Projecting the data from its

original N-dimensional space onto the M-dimensional subspace spanned by these

vectors results in a dimensionality reduction that often retains most of the intrinsic

information in the data [Smith 2002].

 90

For given a set of training vectors x from the n dimensional input space Rn,

))(),...,(),(()(21 knkkk txtxtxtX = (4.3)

where tk is the kth observation time, the Principal Component Analysis looks for

y1(tk), which is a linear combination of the components of X(tk)

11)()(λ×= kk tXty (4.4)

so that the approximation to X

11)(ˆ λ×= ktyX (4.5)

}ˆ{
2

XXe −= (4.6)

e is minimised.

The residuals, λ2 can be found using the same method. In general,

k

l

j
jjkk tXtX ελλ +××=∑

=1
])([)(ˆ (4.7)

where εk is the residual.

Examples of how to compress two-dimensional data set into one-dimension by

applying Principal Component Analysis algorithm, are shown in Figure 4.2. Specific

steps of the method are described respectively.

 91

a. Original data
b. Normalised data with the

eigenvectors of the
covariance matrix

c. Rotate the data

d. New data points by applying the PCA

using both eigenvectors
e. The reconstruction from the data

derived using only a single eigenvector
Figure 4.2 PCA example

The learning data received from the Manipulation Task Planner Module was

refined before being passed to the Learning Module.

4.4 Trajectory Cloning by Data Mining Tools

As the first attempt in this research, the data mining tool See5 was applied in offline

analysis on one hundred groups of data, which are collected from the haptic-rendered

virtual environment. The peg-in-hole assembly task was used as the case study

application. The dataset was recorded in the form of (position, force, torque,

orientation), as input into the Perception Module. Output of the Perception Module

 92

are the sensor feedbacks to the control motor controlling the peg, which includes the

motions for example, forward, backward and rotation, etc.

One hundred groups of successful peg-in-hole assembly tasks were performed.

The experimental data, including position, force and torque information obtained by

manually controlling the virtual haptic-rendered peg-in-hole assembly model by the

PHANToM were recorded in a data base. The characteristics of insertion were varied

for each insertion as much as possible. For example, operations were performed at

different speeds, some with less reliability, experiencing occasional oscillations and

collisions in some cases. Some insertions were performed conservatively and slowly

to potentially avoiding oscillation of the dynamic peg and damaging the peg and the

hole in physical insertion. Oscillation of the dynamic peg in the virtual

haptic-rendered environment, caused by the gravity of the peg and the vibration of

operator’s hand when handling the haptic probe, can strongly preclude learning of the

manipulation skills. It, however, does not adversely affect the insertion process in the

virtual environment. Any damage caused by collision between the peg and the hole

can be avoided by the ReachIn maximum force and torque settings. The constraints

imposed by this algorithm are scaled to match the limitations of the physical sensor.

The recorded data is interpreted as noise when there are force or torque signals

present in the signal without any collision or jamming between the peg and hole.

Another kind of noise data can be removed by comparing the data points with the

Mathematical Expectation of force and torque at certain positions. For example,

 93

wrong force or torque directions with large or small values are sum of the real force or

torque value and noise caused by rough control of the operator. Such data is removed

from the training set.

Two methods are used in generating the optimum trajectory, namely, General

Strategy and Short Strategy.

In the General Strategy method, the Mathematical Expectation of force and

torque data,)),((torqueforcefE n , is estimated at every position np .

In this case, the force and torque data are random discrete values. Following

formula is used to calculate the Mathematical Expectation of the one hundred groups

of force and torque data at every position np :

),()),((rP)),((torqueforceftorqueforcefobtorqueforcefE n
n

nn ⋅= ∑ (4.8)

Where)),((Pr torqueforcefob n is the corresponding probability of the force and

torque data at any position np and),(torqueforcefn is the force and torque data at

that position.

This trajectory provides a general strategy for the operation of the operator. The

force and torque results are illustrated in Figure 4.3. The noise positions are removed

by employing the method introduced in section 4.3.1. The abnormal positions, which

are the positions recorded in the one hundred individual peg-in-hole assembly tasks,

but appears less than 10 times (less than 10%) in overall position data base, are

removed. The most frequent 2695 positions, appeared in the one hundred attempts, are

used as the testing position sample, while the Mathematical Expectation force and

 94

torque value at this position is depicted accordingly.

Figure 4.3 Mathematical expectations of force and torque data

 95

In the Short Strategy method, after the removal of the noise, the trace with the

shortest time is chosen. The force and torque results are depicted in Figure 4.4.

Figure 4.4 Fastest operation result

 96

Since, the trace is sampled at a frequency of 30Hz, a successful trace typically

lasts approximately between 40s to 130s, providing about 1200 to 4000 samples.

Strategies for faster operators are more complex. This can vary from one operator to

another, requiring more advanced skills to decrease oscillations and large collisions

due to high acceleration. Hence, the General Strategy produces better results than the

Short Strategy in this application.

The C4.5 algorithm in the data mining tool See5 (Windows version) is used to

generate the symbolic rules from the data obtained from virtual environment. The

rules specify basic skills by deriving the assembly trajectories according to the desired

goal or responses. By choosing the “Ruleset” selection as the goal of the algorithm,

the decision trees as “if－then statements” are generated. The rules can be easily

converted into C language.

The See5 operates based on two input files: the Names file and Data file. The

Data file contains the recorded data set in the format of (position, force, torque,

orientation). The Names file, which describes the attributes and classes, contains the

recorded attributes and classes of the force and torque data. Since it is important to

know the current position of the robot tool tip and the direction of the next movement,

the directions of the force and torque signals are more important than their magnitudes.

Hence, the attribute values of force and torque are defined as negative, positive, N/A

and zero. The classes file defines the actions which should be taken by robot on a

 97

particular condition. It includes Forward, Stop, Backward, Right, Left, Backward－

Right and Backward－Left. The generated rule has a typical format as shown below:

Rule 1:

 fy = Negative

 -> class Backward

Rule 2:

 fx = Positive

 fy = Negative

 tz = Positive

 -> class Backward-Right

……

Default class: Forward

The C4.5 algorithm is often used in inducing behaviour cloning controllers. This

cloning method can provide some insight into the manipulation strategy. However,

this kind of method cannot reflect the causal relationships in the manipulation

procedure and the goal structure of the manipulation strategy. Hence, the conceptual

structure is not comprehensive. Moreover, this kind of method does not explicitly

show any time ordering between events in the controlled system and the actions taken.

In the following sections, more innovative algorithms will be employed to

identify different manipulation states in order to reflect the overall manipulation

control strategy.

 98

4.5 Trajectory Cloning using Manipulation State Classification

The trajectory cloning, widely used in behavioural cloning technology, is employed in

this work as a major method for classifying different manipulation states. When the

trajectory constraints, groups of dataset, are recorded in a database and then analysed,

the characteristic of each manipulation state can be easily generalized. Moreover,

cloning different trajectories in different manipulation states will be much easier than

cloning of the entire manipulation trajectory. Since in the same state, trajectory

constraints are more similar than that of the entire manipulation trajectory, different

machine learning algorithms can be used in different states to clone the trajectories. In

contrast to cloning entire trajectory as discussed in section 4.5, generalising different

state characteristics is more accurate and time efficient. This section has its focus on

algorithms which can identify different manipulation state characteristics.

The Hidden Markov Models is applied to the offline data obtained from the

haptic-rendered virtual environment to acquire the basic skills applied by the human

operator during virtual manipulation. The data and the generalized three groups of

state characteristics by three different methods, namely the physical contact

relationships, the Fuzzy Gustafson-Kessel clustering algorithm and the Competitive

Agglomeration algorithm, are used to generate three optimal state sequences

individually.

 99

4.5.1 Manipulation States Classification by Physical Contact

Relationships

The basic skills are defined according to the contact-state transition of a task,

independent from the configuration of a manipulator [Nakamura 1996]. In a virtual

manipulation environment, the basic skills can be also identified by the contact states

and state changes [Onda 1995; Takamatsu 1999]. Using this approach, the basic skills

can be automatically extracted form the manipulation carried out in the virtual

environment.

In the first stage, the peg-in-hole insertion procedure is classified into several

states according to the peg and hole’s contact relationships. In order to express the

geometric information of the peg and hole, the edges and surfaces of the peg and hole

are indexed by symbols. As shown in the Figure 4.5, P and H represent the peg and

the hole respectively, whereas e is the edge, s is the surface and o is the outer platform

surface of the hole.

The recorded training data is classified into several sub-databases and an index is

assigned to each according to the peg and hole’s contact relationships. When the peg

and hole’s contact states correspond to one of those states, the input information is

directly indexed to a specific sub-training data. This streamlines and speeds up the

search of the training database.

 100

Figure 4.5 Peg and hole indexed by symbols

The contact relations of the peg-in-hole assembly state classifications are shown

in Table 4.1. When there is no peg and hole contact, this kind of contact relationship is

grouped as state one. The differences between similar contact states, such as peg left

edge to the hole outer right surface and peg right edge to the hole outer left surface

and so on, are simply distinguished by force and torque directions, which can be

grouped as one state. Hence, the peg edge and hole outer surface contact, peg edge

and hole inner surface contact, peg edge and hole edge contact, peg surface and hole

edge contact, and peg surface and hole inner surface contact can be grouped as state

two, state three, state four, state five and state six respectively.

All the remaining states are the jamming states. State seven is a two-point contact

state in which the point on the peg edge touches the hole inner surface and hole edge

contacts peg surface. State eight is a two point-contact state that the peg edge touches

the hole edge. State nine is a three-point contact state in which the peg-edge touches

 101

the hole-edge as well the hole inner surface. Variations in the hole angles and the peg

position can transfer the system from jamming state to non-jamming state.

State Contact Condition (6 DOF) Condition (3 DOF)

1 No contact 0 0

2 One-contact (Pe , Ho) (Pe , Ho)

3 One-contact (Ps , He) (Ps , He)

4 One-contact (Pe , Hs) (Pe , Hs)

5 One-contact (Pe , He) State 2 or 4

6 One-contact (Ps , Hs) Never happen

7 Two-contact (Pe , Hs) & (Ps , He) (Pe , Hs) & (Ps , He)

8 Two-contact (Pe , He) Never happen

9 Three-contact (Pe , He) & (Ps , He) Never happen

Table 4.1 6 DOF assembly classification

The physical system has only three degrees of freedom (3 DOFs) compared to six

degrees of freedom (6 DOFs) in the virtual model. This implies that that some of the

states defined in the haptic-rendered virtual environment do not have any direct

correspondence in the physical system. For example, the state 6 defined in Table 4.1

will never happen in the three degrees of freedom (3 DOFs) physical system. It

requires the axes of the peg and hole to be parallel and have a distance of 0.05 mm

 102

which is impossible in practice. The centre of the circular outer platform will always

be on the axis or the extension axis of the peg. The contact states 8 and 9 cannot

happen in the physical system either. As shown in Figure 4.6, such a scenario requires

points b and c to be the contact points on the edges of the peg and the hole, and point

a on the hole edge would have come into the peg, which is impossible in the real life.

The contact state 5, the one-point contact scenario which happens between the peg

and the hole edge is quite unlikely. This can be further grouped into contact states 2 or

4 depending on the directions of the force and the torque.

Figure 4.6 Supposed state 8 or 9

Hence, the contact state relationships in the three degrees of freedom (3 DOFs)

physical system can be depicted as shown in Table 4.2. Manipulation states are also

redefined.

 103

State Contact Condition (3 DOF)

1 No contact 0

2 One contact (Pe , Ho)

3 One contact (Ps , He)

4 One contact (Pe , Hs)

5 Two contacts (Pe , Hs) & (Ps , He)

Table 4.2 3 DOF assembly classification

The peg-in-hole insertion procedure is illustrated in Figure 4.7. The contact states

are modelled using their kinematic constraints. The contact configurations correspond

to the discrete states of a discrete event system.

Figure 4.7 Peg-in-hole contact states

The state classification result along with the peg position and force and torque values

of one successful peg-in-hole insertion operation is depicted in Figure 4.8. The

generated state characteristics will be used to generate optimal state sequences using

the Hidden Markov Model as described section 4.7.

 104

Figure 4.8 State classification result by physical contact state

 105

4.5.2 Manipulation States Classification by Fuzzy Clustering

Algorithm

Instead of obtaining the basic skills from the contact-state transition of a task, they can

be obtained from in virtual environment using statistical methods.

Fuzzy clustering algorithms are described in this section. These methods use

statistic analysis of a large amount of data, for example, the data generated from a

haptic-rendered virtual environment, and divide them into clusters according to their

common characteristics. The fuzzy c-means algorithm (FCM) as the basic fuzzy

clustering method will be introduced. The Fuzzy Gustafson-Kessel (FGK) algorithm

and Competitive Agglomeration (CA) algorithm, as some variations of FCM designed

to produce optimal group number of clusters will be then described.

4.5.2.1 Fuzzy c-means Clustering Algorithm

The fuzzy c-means algorithm (FCM) is a widely used fuzzy clustering algorithm

[Bezdek 1981]. All other fuzzy clustering algorithms are evolved from the fuzzy

c-means algorithm. It is important to have a detailed understanding of this algorithm.

This algorithm divides a given dataset RxxX n ⊆= },...{ 1 into c clusters by

minimising the following function:

∑∑
= =

=
c

i

n

j
ji

m
ij xduUXJ

1 1

2),(),,(ββ (4.9)

Subject to ∑
=

>
n

j
iju

1
0 for all },...,1{ ci∈ , which guarantees that no cluster is

 106

empty; ∑
=

=
n

j
iju

1
1 for all },...,1{ nj∈ , which ensures that the sum of the membership

degrees for each datum equals 1, where]1,0[∈iju is the membership degree of

datum xj to cluster i,)(ic=β is the prototype of cluster i, ci is the centre of cluster i,

and),(ji xd β is the distance between datum xj and prototype iβ . The nc× matrix

][ijuU = is also called the fuzzy partition matrix and the parameter m is called the

fuzzifier. Usually m is chosen as two.

The fuzzy c-means algorithm divides a given dataset X into c clusters of equal

size and shape. The shape of the clusters depends on the distance function),(2
ji xcd .

Using the Euclidean distance as the most commonly used option, the data is divided

into c spherical clusters.

Although the fuzzy c-means algorithm is widely used, it fails for some

classification tasks. If the shape of the clusters is not spherical or if the clusters differ

considerably in their size, the result of the fuzzy c-means algorithm is often not very

intuitive and only poorly fits the data. Another problem of the fuzzy c-means

algorithm is its sensitivity to noise and outliers. This sensitivity is caused by training

every datum with the same weight and thus the same influence on the classification

result [Ahmed 2002].

4.5.2.2 Fuzzy Gustafson-Kessel Clustering Algorithm

The Fuzzy Gustafson-Kessel algorithm (FGK) is applied to the trajectory associated with the

 107

manipulation performed by the operator in the haptic virtual environment. The algorithm classifies

the trajectory into a number of clusters, each representing a state. In the first stage of the process,

the constraints on the state variables are learned. These constraints determine the corresponding

desired state and choose the best trajectory to the next state. The Fuzzy Gustafson-Kessel classifier,

obtained by training the data from the haptic-rendered virtual environment, will be used in this

work to estimate the assembly states in online analysis. Principal Component Analysis (PCA) is

then applied to each cluster for dimension reduction and feature extraction. The number of clusters

is determined based on a flatness index of the clusters combined with the PCA compression rate

[Babuska 1995]. Actions that determine the best trajectory from the current state to the next state

are computed using knowledge of the system dynamics, acquired through the trained Hidden

Markov Model (HMM). Locally Weighted Regression (LWR) method will be encoded as the

online nonlinear function approximator in each cluster to generate the trajectories.

Figure 4.9 illustrates the skill-acquisition procedure. The first row represents the

offline training procedure. One hundred groups of data obtained from the

haptic-rendered virtual environment are used in Fuzzy Gustafson-Kessel classifier

training. Thin lines represent the flow of data in the training progress. The second row

represents the online data analysis. Thick lines represent the sensory data in the

physical assembly procedure obtained from the experimental rig. Dotted lines represent

the use of the previously trained module. Data is refined in the Manipulation Task

Planner Module by the algorithm introduced in Section 4.3.1.

 108

Figure 4.9 Skill acquisition procedure using FGK

The Fuzzy Gustafson-Kessel clustering algorithm has been widely used for fuzzy data

analysis and pattern recognition [Babuska 1998], because it is flexible in automatically

determining the optimal hyper-ellipsoidal cluster from the training data set. This

algorithm uses statistical analysis of the data generated from the haptic-rendered virtual

environment, and divides them into groups according to their common characteristic.

A separate norm matrix Mi is calculated to determine the shape of the clusters.

These norm matrices are updated together with the centres of the corresponding

clusters. Therefore the prototypes of the clusters are pairs (vi, Fi).

1/1)(det −= i
n

ii FFM (4.10)

where vi is the centre of the cluster and Fi is the covariance matrix, which defines

the shapes of the clusters. The parameters vi and Fi are defined in equations 4.11 and

4.12 respectively.

∑
=

=
N

j
j

m
ij

i
i zu

N
v

1
,1 (4.11)

∑
=

−−=
N

j

T
ijij

m
ij

i
i vzvzu

N
F

1

))((1 (4.12)

 109

The Fuzzy Gustafson-Kessel clustering algorithm computes the distance to the

prototypes as:

)()(),(2
iji

T
ijij vzMvzvzd −−= (4.13)

where zj represents each data set.

Fuzzy Gustafson-Kessel clustering algorithm searches for the partition matrix and

the cluster prototypes in order to minimise the following function:

∑∑
= =

=
c

i

N

j
ij

m
ij vzduUVZJ

1 1

2),(),,((4.14)

where uij is the membership degree of the data vector zj in the ith cluster.

The prototypes are updated according to equations 4.11 and 4.12 [Hoppner 1999]:

Principal Component Analysis (PCA) algorithm is then applied on the recorded

data from the haptic-rendered virtual environment, because the dimension of the

recorded data from the haptic-rendered virtual environment is large, and the

components of the data are highly redundant. It is useful in this situation to reduce the

dimension of the input vectors. Principal Component Analysis (PCA) is an effective

procedure for performing this operation.

The number of clusters must be specified before clustering. The higher the

number of clusters, the finer will be the approximation of the nonlinearity. However, it

will require the estimation of more parameters with higher variances. If no prior

knowledge on the number of clusters is available, then automatic procedures can be

applied.

A new approach for automatic determination of the number of clusters, based on a

 110

flatness index of the cluster [Babuska 1995] and Principal Component Analysis (PCA),

has been developed in this thesis. In this approach, the eigenvalues are sorted from the

cluster covariance matrix Ci in a descending order, niii ,2,1, λλλ ≥≥≥ L . When

approximating the regression surface, the obtained hyperellipsoidal clusters are flat,

that is, one of the axes is much shorter than the others. Consequently, the smallest

eigenvalues ni ,λ are significantly smaller than the remaining ones. In order to

efficiently approximate the regression surface by hyperplanes, the clusters should be

as flat as possible. The flatness index ti of a cluster is defined as a ratio between the

smallest and the largest eigenvalues.

1,, / iniit λλ= (4.15)

Where ni ,λ and 1,iλ are the smallest and the largest eigenvalues respectively.

An aggregate measure value At called the average cluster flatness is defined in

formula (4.16)

∑
=

=
c

i i

ni
A c

t
1 1,

,1
λ
λ

 (4.16)

The data cluster sets obtained from the Fuzzy Gustafson-Kessel Model consist of

fourteen different parameters, including force and position variables, and could be

investigated further in the future research. In order to reduce the dimension of the data,

Principal Component Analysis (PCA) is applied to each cluster. The compression

level pi,n is determined according to the error produced in the compression process.

ninini Ddp ,,, /= (4.17)

 111

Where di,n is the most significant eigenvalue number or the remaining dimension

numbers after compression, and Di,n is the number of original eigenvalues.

The eigenvalue number di,n is decided by an error percentage ei.

}ˆ{
2

iii XXe −= (4.18)

ei is the Frobenius norm between the compressed matrix iX̂ and original data

matrix iX . The error tolerance E must be set before the calculation of pi,n. The

number of clusters and the compression rate of each cluster is calculated by the

following function:

)(1
1 1,

,
i

c

i i

ni p
c

PT ×= ∑
= λ

λ
 (4.19)

The optimal values of λi,n and di,n, are found by minimising PT.

As a result, five clusters are determined. The compression rate p and the error

percentage e for each cluster are shown in Table 4.3.

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

p (e < 10%) 28.6% 21.4% 35.7% 35.7% 28.6%

Table 4.3 Error percentage below 10% and the maximum compression rate achieved

The state classification result along with peg position and force and torque values

of one successful peg-in-hole insertion operation is depicted in Figure 4.10. The

 112

generated state characteristics will be used to generate optimal state sequences by the

Hidden Markov Model in section 4.7.

Figure 4.10 State classification result by FGK

 113

4.5.2.3 Competitive Agglomeration algorithm

The Competitive Agglomeration (CA) algorithm is applied to the offline data obtained

from the haptic-rendered virtual environment to acquire the basic skills applied by the

human operator during virtual manipulation. It has been necessary to remove the noise

in the data before the analysis. Data was refined in the Manipulation Task Planner

Module by the algorithm introduced in Section 4.4.

The algorithm classifies the trajectory into a number of clusters, each representing

a state. In the first stage of the process, the constraints on the state variables are

learned. These constraints determine the corresponding desired state and choose the

best trajectory to the next state. The Competitive Agglomeration classifier, obtained

by training the data from the haptic-rendered virtual environment, is used to estimate

assembly states in online analysis. Actions that determine the best trajectory from the

current state to the next state are computed using knowledge of the system dynamics,

acquired through the trained Hidden Markov Model (HMM). Locally Weighted

Regression (LWR) method will be encoded as the online nonlinear function

approximator in each cluster for the trajectories.

Figure 4.11 illustrates the skill-acquisition procedure. The first two rows represent

the offline training procedure. One hundred groups of data obtained from the haptic

virtual environment are used in the Competitive Agglomeration classifier training. In

this diagram, thin lines represent the flow of data in the training progress, the third

row represents the online data analysis, thick lines represent the sensory data in the

 114

physical assembly procedure from the experimental rig, and dotted lines represent the

use of the previously trained module.

Figure 4.11 Skill acquisition procedure using CA

The Competitive Agglomeration algorithm has several advantages over other

clustering algorithms:

(a) The clustering does not suffer from initialisation and the local minimum.

(b) The optimal number of clusters is determined after minimisation of the

fuzzy prototype-based object function.

(c) The points are dynamic and can move from one cluster to another to

minimise the fuzzy prototype-based object function.

 115

(d) The algorithm can be used to find clusters of different sizes and shapes by

using an appropriate distance measure in the fuzzy prototype-based object

function.

The Competitive Agglomeration (CA) algorithm commences by classifying the

data set into a large number of clusters. As the training proceeds, clusters compete for

survival. Those with large cardinalities survive and clusters that lose the competition

are removed. The training process gradually decreases the number of clusters. This

will result in an optimal number of clusters when the fuzzy prototype-based object

function is minimised.

Frigui and Krishnapuram [Frigui 1997] first introduced the Competitive

Agglomeration (CA) algorithm as one of the clustering methods mostly for use in

image segmentation.

The Competitive Agglomeration (CA) algorithm searches the optimal cluster

prototypes in order to minimise the following prototype-based object function:

∑ ∑∑∑
= == =

−=
M

i

N

j
ij

M

i

N

j
ijij uvzduVUZJ

1 1

2

1 1

22][),(),,(α (4.20)

Subject to ,1
1

=∑
=

M

i
iju for }.,,1{ Nj K∈ (4.21)

where },,{ 1 NzzZ K= is a set of N data objects represented by n-dimensional

feature vectors.],,[1 MvvV K= represents M cluster prototypes, each of which have to

be determined, and vi is the centre of the cluster.][ijuU = is the membership degree

of the data vector zj in the ith cluster.),(2
ij vzd , representing the distance from

 116

feature vector zj to the cluster centre vi.

The Fuzzy Maximum Likelihood Estimation (FMLE) algorithm [Gath 1989] is

used to divide the given data sets into clusters of different sizes and different shapes.

FMLE interprets the data set as a p-dimensional normal distribution. The distance of a

datum to a cluster is inversely proportional to the posterior possibility (the probability

of selecting the ith cluster given the jth feature vector) that a datum zj is the realisation

of the ith normal distribution.

)
2

)()(
exp())(det(),(

12
1

2
T

ijiij

i

i
ij

fzFfz
P
Fvzd

−−
=

−

 (4.22)

∑
=

−−=
N

j

T
ijij

m
ij

i
i vzvzu

N
F

1
))((1 (4.23)

∑
=

=
N

j
iji u

N
P

1

1 (4.24)

The first part of the prototype-based object-function),,(VUZJ , as the sum of

squared distances to the prototypes weighted by constrained memberships, is used to

control the shapes and sizes of the clusters and to obtain the compact clusters. The

global minimum of the first component is achieved when the number of clusters M is

equal to the number of samples N. The second part of prototype-based object

function),,(VUZJ , used to control the number of clusters, is the sum of squares of the

cardinalities of the clusters. The global minimum of this part is achieved when all

points are in one cluster. When both components are combined and α is chosen

properly, the final partition will minimise the sum of cluster distances and divide the

data set into the smallest possible number of clusters.

 117

The parameter α is chosen by:

∑ ∑
∑ ∑

= =

= =
−

= M

i

N

j ij

M

i

N

j ijij

u

vzdu
e

1 1
2

1 1
22

0
][

),(
)(τ

θ

ηθα (4.25)

where θ is the iteration number, 0η is the initial value and τ is a decay

factor.

The equation for membership iju update is given by:

BiasFMLE
ij uuu += (4.26)

∑=

= M

i ij

ijFMLE

vzd

vzd
u

1
2

2

)),(2/(1

)),(2/(1
 (4.27)

)
)),(2/(1

)),(2/(
(

),(
1

2
1

2

2 ∑
∑

=

=−= M

i ij

M

i iji
i

ij

Bias

vzd

vzdN
N

vzd
u α

 (4.28)

FMLEu is the membership term in FMLE algorithm which takes into account

the relative distance of the feature point to all clusters,

Biasu is a signed bias term which depends on the difference between the

cardinality of the clusters of interest, and the weighted average of cardinalities from

the point of view of feature points.

The value of α is initially set high and then decreased slowly in each iteration

to help the Competitive Agglomeration algorithm to seek an appropriate partition with

an optimal number of clusters. As the algorithm proceeds, the second part of equation

7 enables the cluster to include as many points as possible. Through the process, a few

clusters eventually survive and the rest disappear.

 118

Figure 4.12 State classification result by CA

The state classification result along with peg position and force and torque values

of one successful peg-in-hole insertion operation is depicted in Figure 4.12. The

 119

generated state characteristics will be used to generate optimal state sequences by the

Hidden Markov Model in section 4.7.

4.6 Manipulation States Learning by Hidden Markov Models

After the manipulation states are identified by the above algorithms in the section 4.6,

the Hidden Markov Models (HMM) is applied to the offline data obtained from the

haptic-rendered virtual environment to acquire the basic skills applied by the human

operator during virtual manipulation. Data is refined in the Manipulation Task Planner

Module by the algorithm introduced in Section 4.4. The three optimal state sequences,

employing different state classification methods respectively, will be estimated in this

section.

4.6.1 The Concept of Hidden Markov Models

The contact states between the peg and the hole are identified using the Hidden

Markov Models (HMM) which operates as a probability estimator defined by the

structure),,(πλ BA= . The three parameters of this structure are described as follows

[Rabiner 1989]:

• Matrix A is the state transition probability distribution matrix defined by

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnnn

n

n

aaa

aaa
aaa

A

L

MOMM

L

L

21

22221

11211

 (4.29)

 120

where)](|)1([tStSPa ijij += , Nji ≤≤ ,1 .

S denotes individual states where],,[21 NSSSS L= .

N is the number of states in HMM model.

ija is the time independent probability of having state jS at time t+1 given

that the state iS at time t. 1=∑
j

ija for all i.

• Matrix B is the observation signal probability distribution matrix defined by

],,[21 Nkkk bbbB L= (4.30)

where)](|)([tStvPb jkjk = , Nj ≤≤1 , Mk ≤≤1 .

M is the number of distinct observation symbols per state. The observation

symbols correspond to the physical output of the system being modelled.

)(tvk is the individual visible symbols in a particular visible sequence

)](),(),([21 tvtvtvV ML= .

jkb is the probability of monitoring a particular visible state kv in any state

)(tS j . 1=∑
k

jkb for all j.

• π is the observed initial signal:

][iππ = (4.31)

where])1([ii SSP ==π , Ni ≤≤1 .

Given appropriate values of NMBA ,,,, π , the HMM model can be used to

observe sequence],,,[21 TOOOO L= . Where tO is one of the symbols from V, and

T is the number of observations in the sequence.

There are three basic issues in Hidden Markov Model which must be solved in

 121

real world [Rabiner 1989]:

(a) The Evaluation Problem: Gvien a HMM model with a complete probability

estimator structure),,(πλ BA= and a particular sequence of visible states

],,,[21 TOOOO L= , how)/(λVP , the probability of the sequence of visible

states can be determined.

(b) The Decoding Problem: Given a HMM model with a complete probability

estimator structure),,(πλ BA= and a particular sequence of visible states

],,,[21 TOOOO L= , how the most likely sequence of hidden states S that led to

the sequence of visible states V can be determined.

(c) The Learning Problem: Given a set of training observations of visible symbols,

the number of states and the number of visible states, how the probabilities ija

and jkb required for calculating the HMM model estimator structure

),,(πλ BA= can be determined.

The solution of Evaluation Problem can be carried out by either HMM Forward

algorithm or HMM Backward algorithm [Rabiner 1989].

The probability of a sequence],,,[21 TOOOO L= of visible states produced by

HMM model is given by:

)()/()(
max

1
r

r

r
r SPSOPOP ∑

=

= (4.32)

where r represents a particular sequence],,[21 NSSSS L= of T hidden states.

∏
=

−=
T

t
r tStSPSP

1

))1(/)(()((4.33)

 122

∏
=

=
T

t
r tStOPSOP

1

))(/)(()/((4.34)

Hence, equation (4.32) can be expressed as:

∑∏
= =

−=
max

1 1

))1(/)(())(/)(()(
r

r

T

t

tStSPtStOPOP (4.34)

Equation (4.34) can be further simplified by defining forward variable)(tjα

)/,,,,()(21 λα jTj SOOOPt L= (4.35)

Given the HMM model λ , the probability of the partial observation sequence

TOOO ,,, 21 L and state jS at time t is)(tjα .

⎪
⎩

⎪
⎨

⎧

−
=

∑ =
)(])1([

1
0

)(

1
tObat

t

jk
N

i iji

j

α
α

otherhwise
stateinitialjt
stateinitialjt

==
≠=

&0
&0

 (4.36)

The calculation of the Forward algorithm is given as follow:

BEGIN initialize 0←t ， ija , jkb ，],,,[21 TOOOO L=

 FOR 1+← tt

)(])1([)(
1

tObatt jk
N

i ijij ∑ =
−← αα

 UNTIL Tt =

RETURN)()(0 TaOP ← for the final state

END

Similarly, the Backward algorithm, the time-reversed version of the Forward

algorithm, can be considered.

The backward variable)(tiβ can be defined as:

 123

⎪
⎩

⎪
⎨

⎧

++
=

∑ =
)1(])1([

1
0

)(

1
tObat

i

jk
N

j ijj

i

β
β

otherhwise
statefinaliTt
statefinaliTt

==
≠=

&
&

 (4.37)

The calculation of the Backward algorithm is given as follow:

BEGIN initialize Tt ← ， ija , jkb ，],,,[21 TOOOO L=

 FOR 1−← tt

)1(])1([)(
1

++← ∑ =
tObatt jk

N

j ijji ββ

 UNTIL 1=t

RETURN)0()(iOP β← for the initial state

END

The solution of Decoding Problem can be carried out by Viterbi algorithm

[Rabiner 1989]. The Viterbi algorithm is a formal technique for finding the best state

sequence and is applied as a dynamic programming method. It is actually very similar

to the forward algorithm. It is likely to consider every possible path and calculate the

probability of the visible sequence observed. The HMM Decoding algorithm is given

as follow:

BEGIN initialize {}←path , 0←t

 FOR 1+← tt , 1+← jj

 0=k , 00 =α

 FOR 1+← jj

 ij
N

i ijkj attObt ∑ =
−←

1
)1()()(αα

 UNTIL Nj =

 124

)(maxarg' tj jj
α←

 append to path 'j
S

 UNTIL Tt =

RETURN path

END

As to the solution of Learning Problem, the parameters of the Hidden Markov

Model, including probability transition matrix A and probability density matrix B, are

estimated based on the Baum-Welch algorithm [Rabiner 1989].

The reasonable re-estimation formulas employed to estimate parameters ija and

jkb in the Baum-Welch algorithm for A and B are:

•
∑
∑

−

=

−

== 1

1

1

1

)(

),(
T

t t

T

t t
ij

i

ji
a

γ

ξ
 (4.38)

where ∑ −

=

1

1
),(T

t t jiξ is the expected number of transitions from state Si to state Sj

at any time in the sequence.

∑ −

=

1

1
)(T

t t iγ is the expected number of transitions from state Si at step t.

•
∑
∑

=

=
=

= T

t t

T

vOts
t t

jk
j

j
b kt

1

..
1

)(

)(

γ

γ
 (4.39)

which calculates the ratio between the frequency that any particular symbol vk is

observed and that for any symbol.

The algorithm for training the Hidden Markov Model operates according to the

pseudo code provided below:

BEGIN initialize ija , jkb , training sequence O and convergence criterion θ

 125

 DO 1+← zz

 compute)(za from)1(−za and)1(−zb

 compute)(zb from)1(−za and)1(−zb

)1()(−← zaza ijij

)1()(−← zbzb jkjk

 UNTIL θ<−−−−)]1()(),1()([max
,,

zbzbzaza jkjkijijkji

RETURN)(zaa ijij ← ;)(zbb jkjk ←

END

4.6.2 Skill Model Construction by HMM

The state transition probability distribution matrix A and the observation signal

probability distribution matrix B are good representation of the inherent

characteristics of the peg-in-hole manipulation skill. The Baum-Welch algorithm,

discussed in the Learning problem section, will be employed to determine the matrix

A and B. One hundred groups of data, which are generated by one hundred successful

peg-in-hole assembling tasks and collected from the haptic-rendered virtual

environment, are used as the training data.

The HMM model),,(πλ BA= is derived from the state and the observation

sequences. In this project, the manipulation skills identified by the physical contact

relations of the peg-in-hole assembly and by the fuzzy clustering algorithms of the

peg-in-hole assembly is employed as the state sequence and the observation sequence

 126

respectively, and vice versa. That is when the manipulation skills are observed by the

physical contact relations of the peg-in-hole assembly as observation sequence, the

manipulation skills identified by Fuzzy Gustafson-Kessel algorithm and the

Competitive Agglomeration algorithm will be used as state sequences respectively;

when the manipulation skills are observed by the Fuzzy Gustafson-Kessel algorithm

and the Competitive Agglomeration algorithm as observation sequence respectively,

the manipulation skills identified by physical contact relations of the peg-in-hole

assembly will be used as the state sequences.

As the training result, the state transition probability distribution matrix A and the

observation signal probability distribution matrix B of four HMM models are shown

in Table 4.4 and Table 4.5.

State sequence identified by Observation sequence observed by Result index

Physical contact relations Fuzzy Gustafson-Kessel Result 1

Physical contact relations Competitive Agglomeration Result 2

Fuzzy Gustafson-Kessel Physical contact relations Result 3

Competitive Agglomeration Physical contact relations Result 4

Table 4.4 HMM model training results index

 127

Result
index

Matrix A Matrix B

Result
1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0375.0597.00028.0
184.0697.0110.00009.0
203.0024.0703.0001.0069.0
00378.0619.0003.0
002.0057.0095.0012.0834.0

 ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

876.0011.0113.000
020.0873.0043.0054.0010.0
066.0012.0843.00079.0
012.00202.0533.0253.0
0002.0043.00955.0

Result
2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0330.0637.00033.0
216.0646.0133.00005.0
215.0031.0704.0001.0049.0
00335.0659.0006.0
036.0069.0088.0015.0792.0

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

074.0010.0233.0339.0110.0234.0
380.0013.0474.0021.0002.0110.0
039.0002.0233.0360.0111.0255.0
044.0103.0022.0397.0433.0001.0
011.0035.0034.0332.0329.0254.0

Result
3

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

788.0133.0029.0009.0041.0
114.0731.0137.0011.0007.0
034.0047.0839.0001.0079.0
018.0016.0135.0795.0036.0
197.0001.0074.0035.0693.0

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

769.0013.0005.0002.0211.0
012.0793.0039.00156.0
012.0104.0670.0201.0013.0
011.0038.0139.0711.0101.0
034.0011.0122.00833.0

Result
4

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

779.0122.0050.0049.000
012.0663.0233.0059.0033.00
001.0221.0682.0015.0023.0058.0
030.0052.0010.0772.0133.0003.0
0002.0101.0024.0763.0110.0
00062.0113.0012.0813.0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095.0343.0411.0078.0073.0
358.0131.0075.0337.0099.0
436.0039.0074.0117.0334.0
109.0341.0077.0276.0197.0
183.0094.0311.0002.0410.0
208.0237.0093.0119.0343.0

Table 4.5 HMM model training results

The first two state transition probability distribution matrices A of the physical

contact relations of the peg-in-hole assembly have produced similar results, which

demonstrate the inherent characteristics of the peg-in-hole manipulation skill. In this

case, in the course of determining the optimal next state, either matrix A of Result 1 or

2 can be used. In this project, Result 1 is preferred, as the number of distinct

 128

observation symbols per state, M, is 5, while in Result 2, M is 6, which takes a longer

time to derive the parameters of the HMM model.

The state transition diagrams, illustrating manipulation skills classified by the

physical contact relations of the peg-in-hole assembly, by Fuzzy Gustafson-Kessel

algorithm and by Competitive Agglomeration algorithm, are represented by the

Hidden Markov chain of Figure 4.13, Figure 4.14, and Figure 4.15 respectively.

Figure 4.13 Manipulation states chain using physical contact state classification

Figure 4.14 Manipulation states chain using Fuzzy Gustafson-Kessel algorithm

Figure 4.15 Manipulation states chain using Competitive Agglomeration algorithm

 129

The validation of the four trained HMM models),,(πλ BA= is carried out by

comparing the most likely sequences of hidden states derived from the state and the

observation sequences with three different state sequences of one successful

peg-in-hole assembly (showing in Figure 4.11, Figure 4.12, and Figure 4.13). The

Viterbi algorithm, discussed in the decoding problem section, will be employed.

Results are shown in Figure 4.16 (a), (b), and (c). It is obvious that the reconstructed

state sequences are similar to the original state sequences, which has proved the four

HMM models derived successfully.

Figure 4.16 (a) Comparing the reconstructed state sequences using physical contact
state with the original state sequences

 130

Figure 4.16 (b) Comparing the reconstructed state sequences using Fuzzy
Gustafson-Kessel algorithm with the original state sequences

Figure 4.16 (c) Comparing the reconstructed state sequences using Competitive
Agglomeration algorithm with the original state sequences

 131

4.7 Trajectory Learning in Physical Experimental Rig

The Locally Weighted Regression (LWR) method is encoded as the approximator for

the trajectories in each manipulation state during physical manipulation [Christopher

1997]. In most learning methods, a single global model is used to fit all the training

data, while local models attempt to fit the training data only in a region around the

location of the query point. Locally weighted regression uses a distance-weighted

regression to fit nearby points, giving them a high relevance. Locally weighted

regression is a form of lazy and memory-based learning, since it stores the training

data in memory, performs a regression around a point of interest using only training

data that is local to that point and finds relevant data from the database to answer a

particular query point [Bratko 1995]. When a locally weighted linear model is

computed, the stored data points are weighted according to the distance from the

query point.

The following issues are considered when locally weighted regression learning is

applied [Christopher 1997]:

1. Distance function: A typical distance function),(xxd qm , the diagonally

weighted Euclidean distance, is used to measure the relevance between the

query point xq and each data point input vector x.

),()()())((),(2
qxEq

TT
q

j
jjqjqm MMdxxMMxxxxmxxd =−−=−= ∑ (27)

mj is the feature scaling factor for the jth dimension.

M is a diagonal matrix with Mjj=mj.

 132

2. Separable criterion: a general global model can be trained to minimise the

weighted training criterion)(qxE .

∑ ∈
−=

qxx qq xxdKxfxfxE)),(())()((
2
1)(2 (28)

)(xf is the output value corresponding to the input vector x.

)(xf is the global general nonlinear model.

)),((xxdK qm is the Gaussian kernel function, which is used to determine the

weight of each training example.

)),(exp()),((2 xxdxxdK qmqm −= (29)

3. Enough data: sufficient data are needed to satisfy the statistical requirements.

4. Labelled data: each training data point should be linked to a specific output.

5. Representation: fixed length vectors are produced for a list of specified features.

The following LWR training algorithm is performed when a prediction is needed
for a query point q:

BEGIN initialize)()()(110 xaxaxf nnωωω L++= , 0=i , convergence criterion

θ

 DO 1+← ii

 ∑ ∈
−=Δ

qxx jqi xaxfxfxxdK)())()())(,((ηω

iii ii ωωω Δ−−←)1()(

compute)(xf

 UNTIL θ<−= ∑ ∈ qxx qq xxdKxfxfxE)),(())()((
2
1)(2

RETURN)(xf

END

 133

4.8 Summary

The focus of this chapter has been on the acquisition of the manipulation skills. An

overview of classical learning methods has been provided. Offline learning methods

used in the work to develop skill models including Behavioural Cloning method,

Fuzzy Clustering Algorithms, and Hidden Markov Model have been introduced. The

results indicate that the Fuzzy Clustering Algorithms are rather effective in obtaining

manipulation skills by classifying these skills into different states, while the Hidden

Markov Model is more efficient in acquiring the optimal state sequence and

estimating the next optimal state. On line learning algorithm, the Locally Weighted

Regression algorithm, employed in trajectory learning in each manipulation state

during the physical manipulation procedure, is also introduced. Validation of this

method will be further discussed in the following chapter.

 134

CHAPTER 5 VALIDATION

5.1 Introduction

The methodologies developed in this study are validated through experimental work

and the results are reported in this chapter. The physical peg-in-hole insertion rig

representing a typical assembly process is explained first. Various experimental set

ups designed to validate the algorithm are then described. The experimental results

obtained by performing the physical peg-in-hole insertion are presented and a critical

analysis of the results is finally carried out.

5.2 Proposed Learning Procedure

The paradigm developed in this work to create a skill model and used in the physical

experimental rig is illustrated in Figure 5.1. The peg-in-hole insertion procedure is

classified into several states by the state classifier according to the peg and hole’s

contact relations. Different states have different online LWR learning module.

Manipulation states are generalized offline by the peg and hole’s physical contact

relations or Fuzzy Clustering algorithms, according to overall generated manipulation

data characteristics. Hidden Markov Model is used to estimate the next optimal state.

Data generated from the haptic-rendered virtual environment are first applied to the

one of the three offline training algorithms. Then the online state classifier is created.

The more training data applied to the algorithm, the more accurate will be the state

 135

classifier. Specific indexes are assigned to each state. The index speeds up the search

process in the physical manipulation by looking for the proper LWR online learning

module associated with a particular state in a sub-training data set, rather than the

whole database.

Figure 5.1 Skill model used in the physical experimental rig

5.3 Experimental Rig

The physical experimental rig is the peg-in-hole insertion task which represents a

typical assembly process. The algorithms of the Fuzzy Gustafson-Kessel (FGK),

Competitive Agglomeration (CA), Hidden Markov Model (HMM), and Locally

Weighted Regression (LWR) are applied to the experimental rig, which consists of a

one degree of freedom (1 DOF) peg (the translation along the axis of the peg) and a

two degrees of freedom (2 DOFs) hole (the pitch and yaw angles). This provides three

degrees of freedom (3 DOFs) altogether, quite adequate to study the insertion phase of

 136

the assembly process associated with the rig.

The peg with one degree of freedom (1 DOF) is controlled by a Baldor MTE

Series DC servo motor [Baldor (online) a] and driven by a Baldor TSD Series DC

servo controller [Baldor (online) b]. The DC servo motor and the controller provide

precise motion for the peg. The position of the peg is represented by pulses which are

generated by a 14-pin Baldor DC servo motor encoder [Baldor (online) a] when an

actuator is driving the peg. A magnitude of 50 pulses of the encoder is equivalent to a

displacement of 0.1 mm. The position of the peg is between 0 to 50000 pulses. The

number of pulses increases with deeper penetration of the peg into the hole.

The hole with two degrees of freedom (2 DOFs) is controlled by two high-torque

Sanyo Denki phase stepper motors [Sanyo (online)] and driven by two Gecko

micro-step drives [Gecko (online)]. High-torque phase stepper motors are used to

avoid backlash, while micro-step drives are used to control the micro-tilt motion

instead of using a gearbox. The stepper motors and step drives together provide

accurate tilt motion for the hole. The tilt motion is represented by steps of the two

stepper motors controlling the hole. The maximum resolution of the stepper motor is

0.18 degree. The maximum absolute value of steps used in this experimental rig is 25.

Hence, this gives a maximum initial angle of 4.5 degrees (25×0.18=4.5).

The radius of the peg and the hole are l0 mm and 10.05 mm, respectively. This

gives a clearance of 0.05 mm between the peg and the hole. This peg-in-hole

assembly experimental rig is used as a platform to study the concept of typical

 137

assembly problem which concisely models a constrained motion-force-sensitive

manufacturing task with all the attendant issues of jamming, tight clearances, and the

need for quick assembly times, reliability, etc.

The peg is fitted with a 6 DOF Lord force/torque sensor [Lord 1986] which

consists of a transducer unit and a force/torque sensing system controller unit. The

force unit of this Lord force/torque sensor is uf (one uf equals to 0.056448N). The

PHANToM 1.5 haptic device can produce a maximum exertable force of up to 8.5 N

at a nominal position, and a continuous exertable force of 3 N at a nominal position.

Hence, in this task, when a force signal exceeds 55 uf (3.1 N) during the operation,

the peg is stopped and moved back 0.4 mm, waiting for the hole to be aligned with the

peg by the system, and then continues. The peg-in-hole insertion is stopped when the

maximum force reaches 150 uf (8.5N); the force limitation of the PHANToM 1.5. In

this situation, the operation is assumed to have failed. The Lord Force/Torque sensing

controller unit is connected to the Host PC through a RS-232 serial port, which is

configured for a 9600 baud rate and 8N1 (8 bits, no parity, 1 stop bit) mode. Force

sensory signals are read into the Host PC through Com 1 port.

The DAQ-802 data acquisition board, which is a cost-effective high-speed

data-acquisition board for IBM-compatible ISA bus applications, is used to read the

decoded signal generated by the decoder HCTL-2016 [Agilent (online)] connected to

the encoder of the DC servo motor, send signals to the DC controller controlling the

servo motor driving the peg and the stepper motors driving the hole. All of these input

 138

and output signals are read into the Host PC by a DAQ-802 I/O interface card through

a Main I/O connector and an Auxiliary connector.

The experimental rig must be initialised first. The angles of the axes of the

stepper motors fitted on the hole are initialised by aligning the axis of the peg with

that of the hole. This alignment can be achieved by a successful insertion performance.

The input to the Baldor TSD Series DC servo controller, controlling the Baldor MTE

Series DC servo motor driving the peg, should be initialised by a zero value to ensure

that the data from a previous experiment is cleared. This will prevent the peg from

moving while the power is being turned on. The force/torque sensing system is

initialised by inputting the Bias Sensor command “BS” in order to derive force/torque

information from the force/torque sensor. The “OR” command which selects the

Output Record mode is issued to begin the transmission of one record of force/torque

data over the serial port. The “out of sequence” errors produced during the

programming, that cannot input force/torque data to the serial port during the system

running, can be overcome by the initialisation of the force/torque sensor.

The block diagram of the purpose-built peg-in-hole physical experimental rig is

depicted in Figure 5.2. Initially, the peg is being driven down to the hole. The position

of the peg is measured by pulses sent from the encoder/decoder to the DAQ-802 data

acquisition board at the same time. At 26000 pulses, the position of the peg is just

above the hole, while the force/torque sensing system controller starts to monitor the

force/torque by the transducer fitted on the peg and communicating with the Host PC

 139

through the Com1 port at a 9600 baud rate. Hence, the peg can be driven faster when

the position is smaller than 26000 pulses. During the peg-in-hole insertion process, if

the maximum force/torque is below the threshold, the process is continued to

completion. If the maximum force/torque is reached, a certain learning algorithm will

be applied to help either the peg or the hole to continue performance. In this case, the

peg may be moved back 0.4 mm by sending a negative signal to the Baldor TSD

Series DC servo controller or the hole may be turned a certain angle to adjust its pitch

angle or yaw angle. If the position of the peg is increased to more than 47000, the

peg-in-hole insertion is considered to be completed successfully.

Figure 5.2 Block diagram of the purpose-built peg-in-hole physical experimental rig

5.4 Experimental Results

The manipulator’s behaviours are cloned offline and classified into different operation

states by peg and hole’s physical contact relations or Fuzzy Clustering algorithms,

 140

according to overall generated manipulation data characteristics. Hidden Markov

Model is used to estimate the next optimal state, as discussed in Chapter 4. Three skill

models，based on the algorithms above, and developed to estimate different operation

states, are used respectively in each experiment for the purpose of comparing the

physical peg-in-hole insertion performance. The Locally Weighted Regression (LWR)

algorithm described in Chapter 4 is applied to estimate online the required corrective

actions in the form of the rotation angles of the hole, according to different operation

states.

5.4.1 Typical Performance

Three typical performances of three successful peg-in-hole insertion examples,

employing peg and hole’s physical contact relations, Fuzzy Gustafson-Kessel (FGK)

or Competitive Agglomeration (CA) algorithm as manipulation skill state

classification method respectively and Hidden Markov Model (HMM) as optimal next

state estimator, are illustrated in Figures 5.3, 5.4 and 5.5. In order to compare the

results, the same initial angles consisting of x-axis and y-axis misalignments of 2.7

degrees were chosen for all the experiments.

The variation of seven normalised series of force, torque, position and state

changes for the three examples are illustrated in Figures 5.2, 5.3 and 5.4. The

variables fx, fy, and fz represent forces along X, Y, and Z-axis whereas Mx and My are

the torques around X and Y axes. The translation along Z-axis is represented by Z.

 141

The contact state is the state change from the initial state to the goal state.

The monitoring of the peg-in-hole insertion process starts when the peg reaches

the surface of the hole, which is the initial position (position z = 0.7608×104mm), and

stops at the goal position (position z = 2.9508×104mm). The force/torque data are to

be monitored and the position is recorded every pulse time when the position reaches

the initial position, and data-acquisition interface card starts to read the signal

generated by the sensor and the decoder at the same time.

The last diagram in each study shows the contact state changes from the initial

state to the goal state. The peg cannot move along the X and Y axes due to the

limitation on the number of degrees of freedom of the rig. Since the recording of data

commences when the peg is close to the surface of the hole, some of the contact states

defined in the haptic-rendered virtual environment (as described in Chapter 5) could

not be monitored in the physical experimental rig.

The 6 DOF virtual peg-in-hole insertion assembly process changes its rotation

angles about X, Y or Z-axis frequently depending on the input signals received. The

trained LWR model calculates the corresponding rotation angles (steps of the two

stepper motors). Similar to that in the haptic-rendered virtual environment, the LWR

model generates the signal driving the two stepper motors to perform the tilting

adjustment of the hole. The 3 DOF physical experimental rig is relatively simpler than

that of the system in the haptic-rendered virtual environment. Hence, in the physical

system, a correction signal is generated to turn the hole when the peg is encountered

 142

with a large force or torque. Normally this occurs in the jamming state. All the

experiments provided in this section have a jamming state.

 143

Figure 5.3 Experimental results using peg and hole’s physical contact relations as state

classifier

 144

 145

Figure 5.4 Experimental results using Fuzzy Gustafson-Kessel algorithm as state

classifier

 146

 147

Figure 5.5 Experimental results using Competitive Agglomeration algorithm as state

classifier

 148

Observing the results obtained in these experiments, the following conclusions

can be drawn:

(a) The physical experimental rig requires less time to complete the peg-in-hole

insertion task when Competitive Agglomeration Algorithm is used.

(b) The physical experimental rig also has less jamming state and the hole is

aligned with the peg faster when Competitive Agglomeration Algorithm is

used.

(c) The peg and hole’s physical contact relationships and Fuzzy

Gustafson-Kessel algorithm classifies the peg-in-hole insertion process into

five states, while the Competitive Agglomeration algorithm classifies the

insertion process into six states. The state numbers are the optimal results

when the three algorithms are used respectively.

(d) The peg-in-hole insertion process changes its contact states frequently when

the peg and hole’s physical contact relationships or Competitive

Agglomeration algorithm is used. In this case, the online state classifier plays

a less important role than that of the LWR online learning model, while the

peg-in-hole insertion process changes its contact states infrequently when the

Fuzzy Gustafson-Kessel algorithm is used. In this case, the online state

classifier is more important than the online learning model. If the wrong state

is identified, a different online learning model is chosen, and the final result

could be worse.

 149

5.4.2 State Classifier Comparison

In order to compare the performance of the physical experimental rig using different

state classifiers and starting at different initial angles in the physical insertion, a series

of studies was carried out and the results are shown in Table 5.1. The maximum

resolution of the stepper motor is 0.18 degree. Hence, the initial angle of the hole can

be increased by 0.18 degree. In this case, the initial angle of the hole is increased by

0.9 degree.

Initial
Angle

Algorithm
Average
Testing
Sample

Standard.
Deviation

Testing
Sample

Mean
Tilting

Adjustment

Mean
Jamming

Times

Successful
Rate

Physical 478 5.67 6 6 70.89%
GFK 469 5.74 6 5 92.82% (0,0)
CA 440 5.96 5 5 67.81%

Physical 481 6.17 6 6 75.76%
GFK 470 5.62 7 5 86.50% (0,0.9)
CA 440 6.03 5 4 69.25%

Physical 481 6.14 8 5 71.46%
GFK 471 5.62 6 4 83.57% (0,1.8)
CA 441 5.93 6 6 58.56%

Physical 482 5.71 5 5 65.78%
GFK 472 5.85 6 5 92.92% (0,2.7)
CA 443 5.80 5 4 58.22%

Physical 482 5.57 6 6 68.12%
GFK 473 5.77 6 6 86.62% (0,3.6)
CA 444 6.32 6 4 61.13%

Physical 485 5.79 7 6 71.20%
GFK 474 5.91 7 5 91.80% (0,4.5)
CA 443 6.34 6 4 58.25%

Physical 479 5.88 7 5 68.90%
GFK 470 5.74 5 5 96.44% (0.9,0.9)
CA 439 6.18 4 4 57.18%

(0.9,1.8) Physical 481 5.80 7 5 66.13%

 150

GFK 469 5.74 5 4 94.20%
CA 441 5.49 4 4 61.24%

Physical 482 5.65 5 5 72.19%
GFK 471 5.91 6 4 93.95% (0.9,2.7)
CA 442 6.26 4 4 62.02%

Physical 483 5.93 6 5 79.60%
GFK 472 5.59 5 5 90.01% (0.9,3.6)
CA 443 5.81 5 5 55.24%

Physical 484 6.07 8 7 71.83%
GFK 474 5.92 7 6 88.82% (0.9,4.5)
CA 444 5.75 4 4 61.92%

Physical 481 5.70 7 6 71.92%
GFK 470 5.60 5 5 93.17% (1.8,1.8)
CA 440 5.57 6 5 67.59%

Physical 482 5.89 6 6 65.38%
GFK 471 5.45 7 5 94.05% (1.8,2.7)
CA 441 5.77 5 5 60.76%

Physical 482 5.88 5 5 75.02%
GFK 472 5.69 5 5 98.85% (1.8,3.6)
CA 442 5.91 5 4 67.54%

Physical 483 5.56 6 6 73.79%
GFK 474 6.32 6 5 98.59% (1.8,4.5)
CA 443 5.46 5 5 58.81%

Physical 481 5.63 5 5 74.47%
GFK 470 5.93 5 5 97.41% (2.7,2.7)
CA 440 5.85 5 5 62.79%

Physical 481 5.66 6 6 66.94%
GFK 472 5.51 7 6 91.14% (2.7,3.6)
CA 442 5.75 4 4 59.14%

Physical 484 5.54 5 5 70.57%
GFK 472 5.45 7 5 88.92% (2.7,4.5)
CA 442 5.58 4 4 56.17%

Physical 482 5.60 5 5 71.44%
GFK 471 5.39 7 5 98.15% (3.6,3.6)
CA 440 5.59 6 4 67.39%

Physical 482 5.82 6 6 66.13%
GFK 471 5.71 5 5 95.62% (3.6,4.5)
CA 442 5.93 6 6 60.30%

Physical 482 5.71 7 6 70.59% (4.5,4.5)
GFK 472 6.04 6 4 90.19%

 151

CA 441 5.87 5 4 67.24%

Table 5.1 Statistical results of the physical insertion performance

Comparisons of the results produced by the three algorithms are shown in a series

of diagrams. The average runtimes for different initial states and their standard

deviations are shown in Figures 5.6 and 5.7, respectively. Figure 5.8 shows the

comparison of the average tilting adjustment times in different initial states. Figure

5.9 presents the comparison of the average jamming times. Comparison of the

successful rates of the peg-in-hole insertion performance using one of the three

algorithms is illustrated in Figure 5.10.

Figure 5.6 Average runtimes in different initial states

 152

Figure 5.7 Standard deviation of the average runtimes

Figure 5.8 Average tilting adjustment times in different initial states

 153

Figure 5.9 Average jamming times in different initial states

Figure 5.10 Successful rates of the peg-in-hole insertion performance

 154

The results shown above have confirmed the conclusions drawn in Section 5.4.2.

In addition, further observations can be made:

(a) The actual insertion without the deployment of skills obtained from the

haptic-rendered virtual environment has been discussed in Y. Chen’s Ph.D.

thesis [Chen 2005]. The results showed that the average runtimes in different

initial states are 4 time longer than that of deployment of skills obtained from

the haptic-rendered virtual environment because of very high average tilting

adjustment times and average jamming times. In this case, the success rate of

the peg-in-hole insertion performance was also low.

(b) Considering the success rate of the peg-in-hole insertion performance, the

experiments using the Fuzzy Gustafson-Kessel (FGK) algorithm as the state

classifier are the most satisfactory.

(c) Considering the insertion time, using the Competitive Agglomeration (CA)

algorithm as the state classifier results in the fastest performance. The

success rate of the experiments is however relatively low.

(d) As described in Chapter 4, the peg and hole’s physical contact relations

classifier is determined by contact relationship between the peg and the hole,

and the state number is predefined. While the Fuzzy Gustafson-Kessel (FGK)

or Competitive Agglomeration (CA) algorithm can classify the overall

performance into every contact state, a specific approach should be used to

automatically determine the number of clusters. In this experiment, the fuzzy

 155

clustering algorithms, which automatically determine the optimal number of

clusters, performs better.

(e) The overall performance of the peg-in-hole insertion, in terms of all the

manipulation processes, depends very much on which algorithms is used. In

complicated manipulation tasks, correctly identifying the right state in order

to choose the correct online learning is more important. This will expend less

running time. However, a considerable amount of offline training must be

performed.

(f) In addition, choosing the correct offline state training algorithm and online

learning algorithm will improve the overall performance and avoid

expending considerable amount of time.

5.5 Summary

The overall physical peg-in-hole insertion experimental rig has been described in

detail in this chapter. The performance of the physical experimental rig has been

described. The experimental validation by employing various algorithms has been

provided by illustrating them in tables and figures. Significant discussions have

followed.

 156

CHAPTER 6 CONCLUSION AND FURTHER RESEARCH

6.1 Overview

Teaching manipulation skills to a robot by cloning human manipulation habits from a

haptic-rendered virtual environment has been reported. The research conducted to

explore the feasibility of such approach has been explained. The offline and online

learning algorithms proposed to carry out the training and learning process have been

presented. The peg-in-hole insertion which represents a typical assembly process has

been used as a case in the study. The effectiveness of the developed strategy has been

demonstrated and validated through a series of experiments carried out on the

peg-in-hole insertion rig. The results obtained are quite encouraging and clearly

highlight the strengths and weaknesses of the approach.

6.2 Contributions of the Research

The work conducted in this thesis has made a number of contributions as described in

the following sections.

6.2.1 Virtual Manipulation through 6 DOFs

In the first implementation of the virtual manipulation environment, PHANToM

Premium 1.0, a three degrees of freedom (3 DOFs) haptic device was used. The

touch-enabled applications were developed based on GHOST SDK (General Haptic

 157

Open Software Toolkit), a powerful C++ software tool kit, which accompanies

PHANToM.

The graphical model of the assembly [Chen 2002a] was constructed using

OpenGL, whereas its physical model and the force/torque vectors generated in the

virtual manipulation environment were modelled based on the two different

approaches of PointShell and TriPolyMesh [Chen 2002b]. The developed system

proved quite stable when the peg-in-hole insertion was performed using 3DOF

PHANToM.

In order to improve the performance of the developed system, the haptic device

was upgraded to a six-degree of freedom PHANToM Premium 1.5. In complex

applications in which simulation of an arbitrary object to object interaction is required,

a six degrees of freedom (6DOF) haptic device can be a more effective tool. Applying

the 6DOF haptic device to the developed haptic rendered virtual environment resulted

in strong oscillation occurring during virtual peg-in-hole insertion, and preventing a

successful insertion.

Further investigation of the problem revealed that the PointShell and

TriPolyMesh algorithms used in the model were not sufficiently accurate for operation

with a 6DOF haptic device.

In order to stabilise the virtual peg-in-hole insertion with tight fit for a 6DOF

haptic device, three new more precise haptic-rendered models were developed. They

included a modified PointShell algorithm, modified TriPolyMesh algorithm and

 158

dual-gstCylinder algorithm. They stabilised the virtual insertion process and removed

the oscillation observed in the system when the 3DOF haptic device was used.

6.2.2 Proposed Physical Model

The peg-in-hole assembly physical model based on three approaches of Modified

TriPolyMesh Method, Dual-gstCylinder Method and PointShell Method suffered from

a number of shortcomings. As the point on the peg’s penetrated into the surface of the

hole, internal forces were generated to halt the peg advance through the hole’s surface.

However, due to insufficient internal volume modelled for the surface, the generated

reactive force was inadequate. Moreover, the point on the peg penetrating one side of

the hole-surface was too close to the other side of the hole surface. As a result, the

generated force would eventually push the point off the other side of the hole.

The virtual proxy method was used to overcome these shortcomings [Petersik

2002]. The virtual rigid peg was defined as a virtual proxy and was controlled by the

physical ReachIn probe in the haptic-rendered virtual environment. The position of

the virtual proxy was changed according to alteration in the probe’s position. The

force and torque reacting to the peg were transferred to PHANToM Premium 1.5

through the spring damper system. The hole was static in the environment while the

peg could be translated and rotated.

This approach overcame the challenges faced in developing the physical model of

the virtual environment. It also proved to be a simple and adaptable method,

 159

sufficiently generic for modelling other applications in the virtual environment.

6.2.3 Concurrent Haptic and Geometric Modelling

In the first virtual model of the peg-in-hole insertion process for the 6 DOFs device,

the graphic and haptic models were created using OpenGL and GHOST SDK

respectively. The process proved to be too complex and elaborate.

The second implementation of the model was carried out based on ReachIn

hardware platform and application programming interface from ReachIn Technologies

[ReachIn online]. CrystalEyes shutter glasses from the Stereo Graphics Corporation

[Stereo online] were connected to a stereo-output graphics card to provide stereo

vision. By using this hand-immersive hardware platform, the peg-in-hole scene graph,

haptic system and communication system between graphics and haptics were

integrated in a consistent, seamless way.

This approach presented a new platform for concurrent haptic and geometric

modelling of the virtual environment and significantly simplified the model and the

development process.

6.2.4 Skill-acquisition Update

Three behavioural cloning methods including Fuzzy Gustafson-Kessel (FGK)

algorithm, Competitive Agglomeration (CA) algorithm, and Hidden Markov Model

(HMM) were explored in the study as possible skill acquisition methods.

 160

The peg-in-hole insertion procedure was classified into several states by the state

classifier, according to the peg and hole’s contact relations. Different states had

different online LWR learning modules. The acquisition of the peg-in-hole insertion

skills was primarily based on behavioural cloning methods. Manipulation states were

generalized offline by the peg and hole’s physical contact relations or statistical

methods such as Fuzzy Gustafson-Kessel (FGK) algorithm, and Competitive

Agglomeration (CA) algorithm. Hidden Markov Model was used to estimate the next

optimal state and the optimal state sequence. Data generated from haptic-rendered

virtual environment were first applied to one of the three offline training algorithms.

Then the online state classifier was created by the Locally Weighted Regression

(LWR) method. The accuracy of the state classified proved to improve with

deployment of more training data in the development of the algorithm. The inclusion

of larger number of training data in the algorithm resulted in more accurate state

classifier. Specific indexes were assigned to each state. This increased the search

speed during physical manipulation by looking for the proper LWR online learning

module associated with a particular state in a sub-training data set, rather than the

whole database.

6.3 Further Research

The research results described in this thesis can be further extended in a number of

directions. Details are described in the following sections.

 161

6.3.1 Physical Experimental Rig

The haptic-rendered virtual peg-in-hole environment has six degrees of freedom,

which is designed to simulate real situation, while the current peg-in-hole physical

experimental rig has three degrees of freedom, which can only provide a one-degree

of freedom peg (the translation along the axis of the peg) and a two-degrees of

freedom hole (the pitch and yaw angles). More degrees of freedom are suggested to be

added to the physical experimental rig in further research.

The robot SCORBOT-ER 4u or its latest version, manufactured by Intelitek, is a

good hardware experimental platform [Intelitek (online)]. The robot SCORBOT-ER

4u has five degrees of freedom (5DOF) (five rotational axes + gripper), in which it

doesn’t have yaw angle freedom. However, the hole has yaw angle freedom which can

provide an additional one degree of freedom. The robot can be programmed to

perform the task of picking up the peg and inserting it in the hole fixed on the work

bench.

The current study was carried on based on cylindrical peg and hole in which the

roll angle around the axis of the peg is void. This physical experimental rig can be

replaced by cuboids peg and hole to which will require the control of the roll angle as

well.

 162

6.3.2 Haptic-rendered Virtual Environment

The current virtual manipulation environment is implemented by the ReachIn

hardware platform and application programming interface. One PHANToM 1.5 haptic

device is used in the research. The ReachIn hardware can provide complex,

high-quality haptic feedback through one PHANToM haptic device or two

PHANToM haptic devices’ cooperation. Hence, another PHANToM haptic device can

be used in a future research study to simulate two hands on one robot or two robots

cooperating. The PHANToM 1.5 haptic device can produce a maximum exertable

force of up to 8.5 N at a nominal position, and a continuous exertable force of 3 N at a

nominal position. Hence, the maximum excertable force in two PHANToM haptic

devices’ cooperation can be doubled.

The construction of cuboid peg-in-hole haptic-rendered virtual environment is

suggested to be the next research step, because it is a more generic model, and

involves the freedom of the roll angle. The current haptic-rendering algorithm, the

virtual proxy algorithm, can still be used as the major rendering algorithm. As to more

complex haptic models, Voxmap PointShellTM (VPSTM) software can be used to solve

certain difficult geometry-related computing problems faster and more efficiently..

6.3.3 Machine Learning Algorithm

The skill-acquisition models employed in this study are based on the idea of cloning

human behaviour and manipulation trajectories. Traditional behaviour cloning, such

 163

as the decision tree method, has been used in many research projects but has proven to

have low efficiency. Statistical analysis algorithms, such as the Hidden Markov Model,

Fuzzy Clustering, Competitive Agglomeration and Locally Weighted Regression

algorithms have been used in this project and have performed well. The Hidden

Markov Model, Fuzzy Clustering and Competitive Agglomeration have been used to

train highly efficiency state classifiers, while Locally Weighted Regression has been

used to clone trajectories of human habits in each manipulation state.

In the future research, the feasibility of designing of a more systematic approach

for classification of the contact states obtained from the haptic rendered virtual

manipulation model and estimation of the assembly states during physical

manipulation should be explored. In the current approach, the fuzzy state

classification algorithms classify the training data into different clusters. Depending

on different classification algorithm, different cluster shape, cluster size, and cluster

number are produced. A large amount of training data was used in this project. The

more training data employed, the more accurate the training result. However, the

training time will be much longer. 14 dimensional spaces, including the force, torque,

and position data, were recorded in this project. In the future research, the more

complex the assembly task perform the higher dimension may be recorded. This will

result of positive or negative dimension of the training data are recorded. Further

analysis of the high dimension data would be, for example, leaving the positive

dimension unchanged, doubling or halving the negative dimension weights to give the

 164

training results less mistake. In this case, an effective algorithm employed to remove

unhelpful dimensions should be developed in the next step in the further research.

Hidden Markov Model is used to estimate the next optimal state and the optimal

state sequence. A fully connected HMM chain will be constructed, no matter how

complex the assembly process is, but arbitrary state transitions may be recorded in the

more complex task in the further research project. Some similar algorithm, derived

from Hidden Markov Model can be employed. For example, Layered hidden Markov

model (LHHM), it is often useful to constrain the model by not allowing arbitrary

state transitions. In the same way it can be beneficial to embed the HMM in a layered

structure which, theoretically, may not be able to solve any problems the basic HMM

cannot, but can solve some problems more efficiently because less training data is

needed. It is sometimes useful to use HMMs in specific structures in order to facilitate

learning and generalization [Oliver 2004].

6.3.4 Generalisation

The work at this stage is focused on the peg-in-hole insertion process. The algorithms

and methodologies developed for this application should be expanded to include

different constraint motion manipulations in the next stage of the project. This will

assist in developing a more generic approach.

 165

Reference

[Adms 1971] J. Adams, “A Closed-loop Theory of Motor Learning,” Journal

of Motor Behaviour, vol. 3, no. 2, pp.111－149, 1971.
[Agilent (online)] Agilent Technologies Innovating the HP Way, “Quadratre

Decoder/Counter Interface ICs,” URL:
http://groups.csail.mit.edu/drl/courses/cs54-2001s/pdf/hctl2000.
pdf.

[Aleotti 2004] J. Aleotti, A. Skoglund and T. Duckett, “Teaching Position
Control of a Robot Arm by Demonstration with a Wearable
Input Device,” Proceedings of International Conference on
Intelligent Manipulation and Grasping, Genoa, Italy, July 1－2,
2004.

[Anderson 1982] I. R. Anderson, “Acquisition of Cognitive Skill,” Psychological
Review, vol. 89, pp. 369－406, 1982.

[Avila 1996] R. S. Avila and L. M. Sobierajski, “A Haptic Interaction
Method for Volume Visualization,” Proceedings of the 7th
IEEE Conference on Visualization, pp. 197－204, San
Francisco, USA, 1996.

[Babuska 1995] R. Babuska and H. B. Verbruggen, “New Approach to
Constructing Fuzzy Relational Models From Data”,
Proceedings of the 3rd European Congress on Intelligent
Techniques and Soft Computing EUFIT’95, pp. 583－587,
Aschen, Germany, 1995.

[Babuska 1998] R. Babuska, Fuzzy Modeling for Control, Kluwer Academic
Publishers, Boston/Dordrecht/London, 1998.

[Bain 1999] M. Bain and C. Sammut, A framework for behavioral cloning,
Machine Intelligence, vol. 15, K. Furukawa, D. Michie, and S.
Muggleton, Eds, Oxford, U.K.: Oxford Univ. Press, 1999.

[Baldor (online) a] Baldor MTE DC Servo Moytor, URL:
http://www.baldor.com/products/servomotors/dc_servomotor/d
c_servo.asp.

[Baldor (online) b] Baldor TSD DC Servo Controller, URL:
http://www.baldor.com/products/motioncontrol/tsd.asp.

[Bertsekas 1987] D. P. Bertsekas, Dynamic Programming: Deterministic and
Stochastic Models, Prentic Hall, Englewood Cliffs, 1987.

[Bezdek 1981] J. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, New York, NY, Plenum, 1981.

[Billard 1998] A. Billard, K. Dautenhahn, and G. Hayes, “Experiments on
Human－robot Communication with Robota, an Imitative
Learning and Communication Doll Robot,” Workshop, Socially

 166

Situated Intelligence at SAB98 conference, Zurich, Technical
Report of Centre for Policy Modelling, Manchester
Metropolitan University, 1998.

[Billard 1999] A. Billard and G. Hayes, “DRAMA, a Connectionist
Architecture for Control and Learning in Autonomous Robots,”
Adaptive Behavior Journal, Vol. 7, no. 1, pp. 35－64, January
1999.

[Billard 2001a] A. Billard and M. Mataric, “Learning Human Arm Movements
by Imitation: Evaluation of a Biologically－inspired
Connectionist Architecture,” Robotics & Autonomous Systems
941, pp. 1－16, 2001.

[Billard 2001b] A. Billard and S. Schaal, “Robust Learning of Arm Trajectories
through Human Demonstration,” Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems,
vol. 2, pp. 734－739, Maui, Hawaii, USA, Oct. 29 － Nov.2
2001.

[Blume 1983] C. Blume and W. Jakob, Programmiersprachen für
Industrieroboter. Vogel-Verlag, 1983.

[Bratko 1995] I. Bratko, T. Urbancic, and C. Sammut, “Behavioural Cloning:
Phenomena, Results and Problems,” Proceedings of 5th IFAC
Symposium on Automated Systems Based on Human Skill.
Berlin, Germany, 1995.

[Bratko 1998] I. Bratko, T. Urbancic, and C. Sammut, “Behavioral Cloning of
Control Skill,” Journal of Machine Learning and Data Mining:
Methods and Applications, R. S. Michalski, I. Bratko, and M.
Kubat, Eds, Chicester, U.K.: Wiley, 1998, pp. 335－351.

[Burdea 2000] G. C. Burdea, “Haptics Issues in Virtual Environments,”
Proceedings of the International Conference on Computer
Graphics, pp. 295－302, Geneva, Switzerland, June 19－24,
2000.

[Caine 1989] M. E. Caine, T. Lozanno-Perez, and W. P. Seering, “Assembly
Strategies for chamferless parts”, Proceedings of IEEE
International Conference on Robotics and Automation, pp. 472
－477, Scottsdale AZ, May 1989.

[Camacho 1995] R. Camacho, “Using Machine Learning to Extract Models of
Human Control Skill,” Proceedings of AIT’ 95, Czech
Republic, 1995.

[Chen 1998] J. R. Chen and B. J. McCarragher, “Robot Programming by
Demonstration － Selecting Optimal Event Paths,”
Proceedings of IEEE International Conference on Robotics and
Automation, vol. 1, pp. 518－523, May 16－20, 1998.

 167

[Chen 2000a] J. R. Chen and B. J. McCarragher “Programming by
Demonstration － Constructing Task Level Plans in Hybrid
Dynamic Framework,” Proceedings of IEEE International
Conference on Robotics and Automation, vol. 2, pp. 1402－
1407, April 24－28, 2000.

[Chen 2000b] S. Chen and J. Weng “State-based SHOSLIF for Indoor Visual
Navigation,” IEEE Transactions on Neural Networks, vol. 11,
Issue 6, pp. 1300－1314 Nov. 2000.

[Chen 2001] J. R. Chen, A. Zelinsky, “Programming by Demonstration:
Removing Sub-optimal Actions in a Partially Known
Configuration Space,” Proceedings of IEEE International
Conference on Robotics and Automation, vol. 4, pp. 4096－
4103, 2001.

[Chen 2002a] Y. Chen and F. Naghdy, “Teaching Manipulation Skills to a
Robot through a Haptic Rendered Virtual. Environment,”
Journal of Advanced Manufacturing Systems (IJAMS), vol. 1,
no. 1, pp. 89－106, June 2002.

[Chen 2002b] Y. Chen, and F. Naghdy, “Skill Acquisition in Transfer of
Manipulation Skills from Human to Machine through a Haptic
Virtual Environment,” Proceedings of IEEE International
Conference on Industrial Technology, Productivity
Reincarnation through Robotics & Automation , 11－14, pp.
337－342, Bangkok, Thailand, Dec. 2002.

[Christopher 1997] G. A. Christopher, W. M. Andrew, and S. Stefan, Locally
Weighted Learning, Artificial Intelligence Review, vol. 11, no.
1－5, pp. 11－73, 1997.

[Data (online)] Data Ming Tools See5 and C5.0, URL:
http://www.rulequest.com/see5-info.html.

[Derby 1982] S. J. Derby, “General robot arm simulation program (GRASP);
Parts 1 and 2,” Proceedings of ASME Conference on Computer
Engineering, pp. 139－154, San Diego, 1982.

[Dixon 2003] W. E. Dixon, “Teach by Zooming: a Camera Independent
Alternative to Teach by Showing Visual Servo Control,”
Proceedings of 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 1, no. 27－31, pp. 749－
754, Oct. 2003.

[Dong 2003] S. Dong, F. Naghdy, and Y. Chen “Six d.o.f Haptic Rendered
Simulation of the Peg-in-Hole Assembly,” Proceedings of
International Conference Manufacturing Excellence,
Melbourne Australia, Oct. 2003.

[Dufay 1984] B. Dufay and J. C. Latombe, “An Approach to Automatic
Robot Programming Based on Inductive Learning,”

 168

International Journal of Robotics Research, vol. 3, no. 4, pp. 3
－20, 1984.

[Durlach 1995] N. I. Durlach and A. S. Mavor, Eds, National Research Council,
Virtual Reality: Scientific and Technological Challenges,
National Academy Press, Washington, D.C., pp. 188－204, 306
－317, 1995.

[Ehrenmann 2002] M. Ehrenmann, R. Zollner, O. Rogalla, and R. Dillmann,
“Programming Service Tasks in Household Environments by
Human Demonstration,” Proceedings of 11th IEEE
International Workshop on Robot and Human Interactive
Communication, pp. 460－467, Sep. 25－27 2002.

[Esmaili 1995] N. Esmaili, C. Sammut, and G. M. Shirazi, “Behavioral
Cloning in Control of a Dynamic System,” Proceedings of
IEEE International Conference on Systems, Man and
Cybernetics Intelligent Systems for the 21st Century,
Vancouver, Canada, pp. 2904－2909, Oct. 22－25, 1995.

[ESmith 1966] E. J. Smith, “The Classification of Education Objectives:
Psychomotor Domain”, University of Illinois Research Project
No. OE 5, pp. 85－104, 1966.

[Frigui 1997] H. Frigui and R. Krishnapuram, “Clustering by Competitive
Agglomeration,” Pattern Recognition, vol. 30, no. 7, pp. 1223
－1232, 1997.

[Friedrich 1998] H. Friedrich, J. Holle, and R. Dillmann, “Interactive Generation
of Flexible Robot Programs,” Proceedings of IEEE
International Conference on Robotics and Automation, Vol 1,
pp. 538－543, May 16－20, 1998.

[Fogel 1994] D. B. Fogel, “An introduction to simulated evolutionary
optimisation,” IEEE Transactions on Neural Networks, vol. 5,
no. 1, pp. 3－14, Jan. 1994.

[Gath 1989] I. Gath and A. Geva, “Unsupervised Optimal Fuzzy
Clustering,” IEEE Transaction on Pattern Analysis and
Machine Intelligence (PAMI), vol. 11, pp. 773－781, 1989.

[Gecko (online)] Gecko Drive G201 Step Motor, URL:
http://www.geckodrive.com/product.cfm?pid=9.

[Grudic 1996] G. Z. Grudic and P. D. Lawrence, “Human-to-robot Skill
Transfer Using the SPORE Approximation,” Proceedings of
IEEE International Conference on Robotics and Automation,
pp. 2962－2967, Minneapolis, Minnesota, April, 1996.

[Grunwald 2001] G. Grunwald, G. Schreiber, A. Albu-Schaffer, and G. Hirzinger,
“Touch: The Direct Type of Human Interaction with a
Redundant Service Robot,” Proceedings of 10th IEEE

 169

International Workshop on Robot and Human Interactive
Communication, pp. 347－352, Sep. 18－21, 2001.

[Handleman 1996] D. A. Handleman, and S. H. Lane, “Human-to-machine Skill
Transfer through Cooperative Learning,” Intelligent Control
Systems, Theory and Applications, M.M. Gupta and N.K.
Sinha, Eds, pp. 187－205, 1996.

[Harrow 1972] A. J. Harrow, “A Taxonomy of the Psychomotor Domain,”
David McKay Company, p. 16, Inc, New York, 1972.

[Hass 1991] N. Hass, “Learning by Ostentation for Robotics Assembly,”
Proceedings of SPIE conference, 1991.

[Holding 1989] D. H. Holding, Human Skills, 2nd ed, Wiley, Chichester, 1989.
[Hoppner 1999] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy

Cluster Analysis, Chichester, J. Wiley & Sons, 1999.
[Iba 2005] S. Iba, C. J. J. Paredis, and P. K. Khosla, “Interactive

Multimodal Robot Programming,” The International Journal of
Robotics Research, vol. 24, no. 1, pp. 83－104, 2005.

[Ikeuchi 1991] K. Ikeuchi and T. Suehiro, “Towards an Assembly Plan from
Observation,” Tech. Rep. CMU-CS-91-167, School of
Computer Science, Carnegie Mellon Univ, Pittsburgh, PA,
1991.

[Intelitek (online)] Intelitek, URL:
http://www.intelitek.com/products/menu.asp?cid=1&pid=5.

[Isaac 2003] A. Isaac and C. Sammut, “Goal-directed Learning to Fly,”
Proceedings of the 20th International Conference on Machine
Learning (ICML－2003), Washington DC, 2003.

[Jayaram 1997] S. Jayaram, H. Connacher, and K. Lyons, “Virtual Assembly
using Virtual Reality Techniques,” Computer-Aided Design,
vol. 29, no. 8, Aug., 1997.

[Jeannerod 1988] M. Jeannerod, “The Neural and Behavioural Organization of
Goal-Directed Movements,” Clarendon, Oxford University
Press, UK, 1988.

[Kahl 2002] B. Kahl and D. Henrich, “Virtual Robot Programming for
Deformable Linear Objects: System Concept and Prototype
Implementation,” Proceedings of 12th International
Symposium on Measurement and Control in Robotics
(ISMCR02), Bourges France, Jun. 20－21, 2002.

[Kaiser 1996] M. Kaiser and R. Dillmann, “Building Elementary Robot Skills
from Human Demonstration,” Proceeding of the IEEE
International Conference on Robotics and Automation, vol. 3,
pp. 2700－2705, 1996.

[Kerr 1994] R. M. Kerr and D. Kibira, “Intelligent Reactive Scheduling by
Human Learning and Machine Induction,” Proceedings of

 170

IFAC Conference on Intelligent Manufacturing Systems,
Vienna, Austria, 1994.

[KSmith 1962] K. U. Smith and W. H. Smith, “Perception and Motor,” W. B.
Saunders, 1962.

[Kuniyoshi 1994] Y. Kuniyoshi, and M. Inbana, “Learning by Watching:
Extracting Reusable Task Knowledge from Visual Observation
of Human Performance,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 6, Dec. 1994.

[Laschi 2002] C. Laschi, M. Gonzalo-Tasis, J. F. Codes, and P. Dario,
“Recognizing Hand Posture by Vision: Applications in
Humanoid Personal Robotics,” Proceedings of IEEE
International Conference on Robotics and Automation, vol. 2,
no. 11－15, pp. 1439－1444, May 2002.

[Lauria 2002] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein, “Mobile
Robot Programming using Natural Language,” Journal of
Robotics and Autonomous Systems, vol. 38, no. 3－4, pp. 171
－181, March 2002.

[Light-Weight (online)] Light-Weight Robots Project. URL:
http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-417/557_rea
d-987/.

[Lord 1986] Lord Corporation. “Installation and Operation Manual for F/T
Series Force Torque Sensing System,” Lord Corporation,
Industrial Automation Division, 407 Gregson Drive, Cary, N.C.
27511, 1986.

[Mark 1996] W. R. Mark, S. C. Randolph, M. Finch, J. M. Van Verth, and
R.M. Taylor III, “Adding Force Feedback to Graphics Systems:
Issues and Solutions,” Proceedings of ACM SIGGRAPH 96, pp.
447－452, New Orleans, Aug. 1996.

[Martens 2001] C. Martens, N. Ruchel, O. Lang, O. Ivlev, and A. Graeser, “A
FRIEND for Assisting Handicapped People,” issue of IEEE
Robotics and Automation Magazine, Mar. 2001.

[Mathews 1989] R. C. Mathews, R. R. Buss, W. B. Stanely, F. Blanchard-Fields,
J. R. Cho, and B. Druhan, “Role of Implicit and Explicit
Processes in Learning from Examples: A Synergistic Effect,”
Journal of Experimental Psychology: Learning, Memory and
Cognition, vol. 15, no. 6, pp. 1083－1100 1989.

[Matsubara 1985] H. Matsubara, A. Okano, and H. Inoue, “Design and
Implementation of a Task Level Robot Language,” Journal of
Robotics Society, Japan, vol. 3, no. 3, 1985.

[Matsumoto 2003] A. Matsumoto, G. Yoshita, and I. Kihana, “Teaching by
Showing Few Images for the Navigation of Mobile Robots,”

 171

Proceedings of the IEEE International Symposium on
Assembly and Task Planning, pp. 270－275, Jul. 10－11, 2003.

[McGuire 2002] P. McGuire, J. Fritsch, J. J. Steil, F. Rothling, G. A. Fink, S.
Wachsmuth, G. Sagerer, and H. Ritter, “Multi-modal
Human-machine Communication for Instructing Robot
Grasping Tasks,” Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and System, vol. 2, pp. 1082
－1088, Sep. 30 － Oct. 5, 2002.

[McNeely 1999] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six
Degree-of-Freedom Haptic Rendering Using Voxel Sampling,”
Proceedings of ACM SIGGRAPH 99, pp. 401－408, Los
Angeles, California, Aug. 1999.

[Michie 1993] D. Michie, “Knowledge, Learning and Machine Intelligence,”
Intelligent Systems, L. S. Sterling, Ed, New York: Plenum,
1993.

[Montgomery 1998] J. F. Montgomery and G. A. Bekey, “Learning Helicopter
Control through ‘Teaching by Showing’,” Proceedings of the
37th IEEE Conference on Decision and Control, vol. 4, pp.
3647－3652, Dec. 16－18 1998.

[Muggleton 1992] S. Muggleton, Inductive Logic Programming－Logic Based
Approach to ML, ser. 38, London, U.K.: Academic, 1992.

[Myers 2001] D. R. Myers, M. J. Pritchard, and M. D. J. Brown, “Automated
Programming of an Industrial Robot through Teach by
showing,” Proceedings of IEEE International Conference on
Robotics and Automation (ICRA’ 2001), vol. 4, pp. 4078－
4083, 2001.

[Nakamura 1996] A. Nakamura, T. Oqasawara, T. Suehiro and H. Tsukune,
“Skill-based back-projection for fine motion planning”,
Proceedings of the 1996 IEEE/RSJ International Conference on
Intelligent Robots and Systems ’96, IROS 96, vol. 2, pp. 526－
553, 1996.

[Naylor 1987] A. Naylor, I. Shao, R. Volz, R. Jungelas, P. Bixel, and K. Lloyd,
“PROGRESS－a Graphical Robot Programming System,”
Proceedings of IEEE International Conference on Robotics
Automat, pp. 1282－1291, 1987.

[Nicolescu 2001] M. Nicolescu and M. J. Mataric, “Learning and Interacting in
Human－Robot Domains,” Special Issue of IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and
Humans , vol. 31, no. 5, pp. 419－430, Chelsea C. White and
Kerstin Dautenhahn Eds, Sep. 2001.

[Nicolescu 2002] M. Nicolescu and M. J. Mataric, “A Hierarchical Architecture
for Behavior-based Robots,” Proceedings of First International

 172

Joint Conference on Autonomous Agents and Multi-Agent
Systems, pp. 227－233, Bologna, ITALY, Jul. 15－19, 2002.

[Nicolescu 2003] M. Nicolescu and M. J. Mataric, “Natural Methods for
Learning and Generalization in Human－Robot Domains,”
Proceeding of Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Melbourne,
AUSTRALIA, Jul. 14－18, 2003.

[Ogasawara 1998] T. Ogasawara, H. Hirukawa, K. Kitagaki, H. Onda, A.
Nakamura, and H. Tsukune, “A Telerobotics System for
Maintenance Tasks Integrating Planning Functions Based on
Manipulation Skills,” Proceedings of 1998 IEEE International
Conference on Robotics and Automation, vol. 4, pp. 2870－
2876, May 16－20, 1998.

[Ogawara 2002] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi,
“Generation of a Task Model by Integrating Multiple
Observations of Human Demonstrations,” Proceedings of IEEE
International Conference on Robotics and Automation, vol. 2,
pp. 1545–1550, May 11－15, 2002.

[Onda 1995] H. Onda, H. Hirukawa, and K. Takase, “Assembly Motion
Teaching System Using Position/Force Simulator－Extracting
a Sequence of Contact State Transition”, Proceedings of 1995
IEEE/RSJ International Conference on Intelligent Robots and
Systems, Human Robot Interaction and Cooperative Robots,
vol. 1, pp 9－16, 1995.

[Onda 2001] H. Onda, “Teaching of Assembly Motion by Demonstration:
Artificial Constrained Motion Primitives and Its
Implementation using Virtual Small Faces,” Proceedings of the
IEEE International Symposium on Assembly and Task
Planning, pp. 142－147, May 28－29, 2001.

[Onda 2002a] H. Onda, T. Suehiro, and K. Kitagaki, “Teaching by
Demonstration of Assembly Motion in VR－detection of
Nondeterministic Search-type Motion and Developing of Its
Skillful Motion Primitive,” Proceedings of IEEE 28th Annual
conference of the Industrial Electronics Society, vol. 4, Nov. 5
－8 pp. 2640－2645, 2002.

[Onda 2002b] H. Onda, T. Suehiro, and K. Kitagaki, “Teaching by
Demonstration of Assembly Motion in VR －
non-deterministic Search-type Motion in the Teaching Stage,”
Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and System, vol. 3, pp. 3066－3072, Sep. 30
－ Oct. 5, 2002.

[OpenGL (online)] OpenGL, URL: http://www.opengl.org/.

 173

[Oliver 2004] N. Oliver, A. Garg and E. Horvitz, “Layered Representations
for Learning and Inferring Office Activity from Multiple
Sensory Channels,” Computer Vision and Image
Understanding, vol. 96, pp. 163-180, 2004.

[Pearce 1999] A. Pearce, C. Sammut, and S. Goss, “Simulation as an
Environment for the Knowledge Acquisition of Procedural
Expertise,” Proceedings of the 4th International SimTecT
Conference, Eds, Grant Tudor, Melbourne Australia,
SimTecT99 Organising and Technical Committee, Melbourne,
pp. 255－260. Feb 29 – Mar. 1, 1999.

[Perez 1977] T. Lozano Perez and P. H. Winston, “LAMA: A Language for
Automatic Mechanical Assembly,” Proceedings of
International Joint Conference on Artificial Intelligent, pp. 321
－333, 1977.

[Petersik 2002] A. Petersik, B. Pflesser, U. Tiede, K. H. Hohne, and R. Leuwer,
“Haptic Volume Interaction with Anatomic Models at
Sub-Voxel Resolution”, Proceedings of the 10th Symposium on
Haptic Interfaces for Virtual Environments & Teleoperator
Systems, pp. 66－72, Orlando, USA, Mar. 2002.

[Pomerleau 1993] D. A. Pomerleau, Neural Network Perception for Mobile Robot
Guidance, Kluwer Academic Publishers, 1993.

[Potts 2000] P. Aimee, “Phantom-Based Haptic Interaction,” Proceedings of
the Computer Science Discipline Seminar Conference (CSCI
3901), URL:
http://mrs.umn.edu/~lopezdr/seminar/spring2000/potts.pdf.

[Python (online)] Python, URL: http://www.python.org.
[Rabiner 1989] L. R. Rabiner, “A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition,” Proceedings of
the IEEE, vol, 77, no. 2, pp. 257－286, 1989.

[Ránky 1985] P. G. Ránky, and C. Y. Ho, Robot Modelling: Control and
Applications with Software. IFS Ltd. Springer, 1985.

[Reachin (online)] Reachin Technologies, URL: http://www.reachin.se.
[Renz 2001] M. Renz, C. Preusche, M. Pötke, H. P. Kriegel, and G.

Hirzinger, “Stable Haptic Interaction with Virtual
Environments Using an Adapted Voxmap－PointShell
Algorithm,” Proceedings of the Eurohaptics Conference,
Birmingham, UK, 2001.

[Rosenbaum 1991] D. A. Rosenbaum, Human Motor Control, pp. 16, New York,
Academic, 1991.

[Ruchel 1999] N. Ruchel, O. Lang, and A. Gräser, “Service Robot
Programming by Demonstration with Integration of Sensor
Information,” Proceedings of the 1999 IEEE

 174

Hongkong Symposium on Robotics and Control. vol. 1, pp.
226－231, Hongkong, Jul. 2－3, 1999.

[Ruspini 1997] Ruspini, Diego, K. Kolarov, and O. Khatib, “The Haptic
Display of Complex Graphical Environments,” Proceedings of
SIGGRAPH 97, pp. 345－352, Los Angeles, CA, Aug. 3－8,
1997.

[Salisbury 1995] J. K. Salisbury, D. Brocki, T. Massiet, N. Swarupf, and C.
Zillest, “Haptic Rendering: Programming Touch with Virtual
Objects,” Proceedings of the 1995 Symposium on Interactive
3D Graphics, pp. 123－130, Monterey, CA, 1995.

[Sammut 1992] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to
Fly,” Proceedings of the 9th International Workshop Machine
on Learning. pp. 385－393, San Mateo, CA: Morgan
Kaufmann, 1992.

[Sanyo (online)] Sanyo Denki 2 Phase Stepping System, URL:
http://www.sanyo-denki.com/Products/Stepping%20Motors/me
nu1.htm#sups.

[Sato 1997] D. Sato, S. Yamada, and M. Uchiyama, “Human Skill Analysis
Based on Multi-sensory Data,” Proceedings of IEEE
International workshop on Robot and Human Communication,
pp. 278－283, 1997.

[Schoppers 1987] M. Schoppers, “Universal plans for reactive robots in
unpredictable environments,” Proceedings of the 10th
International Joint Conference on Artificial Intelligence, vol. 11,
pp. 1039－1046, 1987.

[SensAble (online)] SensAble Technologies, URL: http://www.sensable.com.
[She 2003] H. She, C. Martens, and A. Graeser “Application of

Programming by Demonstration in the Rehabilitation Robotic
System FRIEND,” The 8th International Conference on
Rehabilitation Robotics (ICORR 2003), Daejeon, South Korea,
Apr. 23－25, 2003.

[Simpson 1966] J. S. Simpson, “The Classification of Educational Objectives:
Psychomotor Domain,” University of Illinois Research Project
No. OE 5, pp. 85－104, 1966.

[Skoglund 2005] A. Skoglund, R. Palm and T. Duckett, “Towards a Supervised
Dyna-Q Application on a Robotic Manipulator,” Proceedings
of SAIS-SSLS 2005, 3rd Joint Workshop of the Swedish AI
and Learning Systems Societies Mälardalen, Sweden, Apr. 12
－14, 2005.

[Smart 2002] W. D. Smart and L. P. Kaelbling, “Effective Reinforcement
Learning for Mobile Robots,” Proceedings of IEEE

 175

International Conference on Robotics and Automation, vol. 3,
pp. 3404－3410, May 11－15, 2002.

[Smith 2002] L.I. Smith, “A tutorial on Principle Component Analysis,”
Technical Report, University of Otago, New Zealand, 2002.

[Steil 2001] J. J. Steil, G. Heidemann, J. Jockusch, R. Rae, N. Jungclaus,
and H. Ritter, “Guiding Attention for Grasping Tasks by
Gestural Instruction: the GRAVIS-robot Architecture,”
Proceedings of 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3, pp. 1570－1577, Oct.
29 － Nov. 3, 2001.

[Stereo (online)] Stereo Graphics Corporation. URL:
http://www.stereographics.com.

[Strobel 2002] M. Strobel, J. Illmann, B. Kluge, and F. Marrone, “Using
Spatial Context Knowledge in Gesture Recognition for
Commanding a Domestic Service Robot,” Proceedings of 11th
IEEE International Workshop on Robot and Human Interactive
Communication, pp. 468－473, Sep. 25－27, 2002.

[Suc 1997] D. Suc and I. Bratko, “Skill Reconstruction as Induction of LQ
Controllers with Subgoals,” Proceedings of 15th International
Joint Conference on Artificial Intelligent, vol. 2, pp. 914－920,
C. S. Mellish, Ed, Japan, Aug. 1997.

[Suc 1998] D. Suc and I. Bratko, “Skill Modeling through Symbolic and
Qualitative Reconstruction of Operator’s Trajectories,”
Technique Report, Artificial Intelligent Lab, Faculty of
Computer Information Science, University of Ljubljana,
Slovenia, 1998.

[Suc 2000] D. Suc and I, Bratko, “Problem Decomposition for Behavioral
Cloning,” Proceedings of the European Conference on Machine
Learning, pp. 382－391, New York: Springer-Verlag, 2000.

[Summers 1984] P. D. Summers and D. D. Grossman, “XPROBE: An
Experimental System for Programming Robots by Example,”
International Journal of Robotics Research, vol. 3, no. 1, pp. 25
－39, 1984.

[Takamatsu 1999] J. Takamatsu, H. Kirnura, and K. Ikeuchi, “Classifying Contact
States for Recognizing Human Assembly Task,” Proceedings
of 1999 IEEE/SICE/RSJ International Conference on
Multisensor Fusion and Integration for Intelligent Systems,
MFT ’99, pp. 177－182, 1999.

[Takamatsu 2000] J. Takamatsu, H. Tominaga, K. Ogawara, H. Kimura, and K.
Ikeuchi, “Extracting Manipulation Skills from Observation,”
Proceedings of 2000 IEEE/RSJ International Conference on

 176

Intelligent Robots and Systems (IROS 2000), vol. 1, pp. 584－
589, Oct. 31 － Nov. 5, 2000.

[Takamatsu 2002] J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi,
“Correcting Observation Errors for Assembly Task
Recognition,” Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and System, vol. 1, pp. 232－
237, Sep. 30 － Oct. 5, 2002.

[Ude 1994] A. Ude and R. Dillmann, “Vision-Based Robot Path Planning,”
Journal of Advances in Robot Kinematics and Computational
Geometry, J. Lenarcic and B. Ravani, Eds, pp. 505－512,
Kluwer, Dordrecht, 1994.

[Urbancic 1994] T. Urbancic and I. Bratko, “Reconstructing Human Skill with
Machine Learning,” Proceedings of the 11th European
Conference on Artificial Intelligence, A. Cohn, Ed, New York:
Wiley, pp. 498－502, 1994.

[Voyles 1997] R. M. Voyles, “Toward Gesture-Based Programming:
Agent-Based Haptic Skill Acquisition and Interpretation,”
doctoral dissertation, tech. report CMU-RI-TR-97-36, Robotics
Institute, Carnegie Mellon University, Aug. 1997.

[Voyles 1999a] R. M. Voyles, J. D. Morrow, and P. K. Khosla, “Gesture-based
Programming for Robotics: Human-augmented Software
Adaptation,” Journal of IEEE Intelligent Systems and Their
Applications, vol. 14, Issue 6, pp. 22－29, Nov.－Dec. 1999.

[Voyles 1999b] R. M. Voyles, and P.K. Khosla, “Gesture-based Programming:
a Preliminary Demonstration,” Proceedings of IEEE
International Conference on Robotics and Automation, vol. 1,
pp. 708－713, May 10－15, 1999.

[VRML (online)] VRML. URL: http://www.web3d.org/vrml/vrml.htm.
[Weng 2000] J. Weng, W. Hwang, Y. Zhang, C. Yang, and R. Smith,

“Developmental Humanoids: Humanoids that Develop Skills
Automatically,” Proceedings of The 1st IEEE－RAS
International Conference on Humanoid Robots, Boston, MA,
Sep. 7－8, 2000.

[Yano 2003] Y. Yano, “An Intuitive Teaching Method,”
http://www-cv.mech.eng.osaka-u.ac.jp/~yano/research/study1-e
/study1.html, 2003.

[Yokokohji 2005] Y. Yokokohji, Y. Kitaoka, and T. Yoshikawa, “Motion Capture
from Demonstrator's Viewpoint and its Application to Robot
Teaching,” Journal of Robotic Systems, vol. 22, Issue 2, pp. 87
－97, Jan. 10, 2005.

[Yuan 2000] X. Yuan, “Interactive Assembly Planning in Virtual
Environments,” Proceedings of 2000 IEEE/RSJ International

 177

Conference on Intelligent Robots and Systems (IROS 2000),
vol. 2, pp. 1462－1467, Oct. 31 － Nov. 5, 2000.

[Yuan 2004] X. Yuan and S. X. Yang, “Interactive Assembly Planning with
Automatic Path Generation,” Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS 2004), vol. 4, pp. 3965－3970, Sep. 28 － Oct. 2,
2004.

[Zhang 2001] Y. Zhang and J. Weng, “Grounded auditory development of a
developmental robot,” Proceedings of INNS－IEEE
International Joint Conference on Neural Networks, pp. 1059－
1064, Washington, DC, Jul. 14－19, 2001.

[Zhang 2002] Y. Zhang and J. Weng; “Chained Action Learning through
Real-time Interactions,” Proceedings of the 2002 International
Joint Conference on Neural Networks, vol. 3, pp. 2012－2017,
May 12－17, 2002.

[Zhang 2005] Y. Zhang; J. Weng, and W. Hwang, “Auditory Learning: A
Developmental Method,” IEEE Transactions on Neural
Networks, vol. 16, Issue 3, pp. 601－616, May 2005.

[Zollner 2002] R. Zollner, O. Rogalla, R. Dillmann, and M. Zollner,
“Understanding Users Intention: Programming Fine
Manipulation Tasks by Demonstration,” Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and
System, vol. 2, pp. 1114－1119, Sep. 30 － Oct. 5, 2002.

APPENDIX A Experimental Rig Hardware Introduction

A.1 Introduction

 The hardware employed in this project, including the stepping motors, micro-step

drives, DC servo motor, DC servo motor encoder, DC servo controller, DAQ-802 data

acquisition board, HCTL-2016 decoder, and Lord force/torque sensor, are introduced

as follow.

A.2 Sanyo Denki 2 Phase Stepping Motor

 Two Sanyo Denki 2 phase 60mm square stepping motors, model no.

103H7822-0440, were employed in the physical experimental rig to control the hole

and provide two degrees of freedom (2 DOFs) (Figure A.1) [Sanyo (online)].

Figure A.1 Sanyo Denki 2 Phase Stepping Motor [Sanyo (online)]

The stepping motor has the flowing major features that suitable for the project

[Sanyo (online)]:

1. Compact size: H=82mm, W=60mm, D=53.88mm.

2. High torque: 1170mNm. 2 phase hybrid rare earth magnet technology

offering 15% to 20% more torque than standard hybrid types.

fpinkert
Text Box

Please see print copy for Figure A.1

3. Low noise: lower noise has been realized by an optimum structure design

employed for the motors.

4. Simple wiring: the motor equipped with a connector promises easier system

design (Figure A.2).

Figure A.2 Sanyo Denki Motors wiring connections [Sanyo (online)]

Other features include [Sanyo (online)]:

1. Very high positional accuracy, designed for micro-steeping.

2. The motor can be unipolar or bipolar driven.

3. The motor can be available with integrated connector for ease of assembly,

crimps and matching socket supplied.

4. Supply Voltage: 4V

Current: 2A/phase

fpinkert
Text Box

Please see print copy for Figure A.2

Resistance: 2Ω/phase

Inductance: 3.6mH/phase

Weight: 770g

A.3 Gecko Micro-step Drive

The Gecko micro-step drives used in the project can provide a minimum of 0.09

degree resolution for turning the hole and enhance the holding torque through a

special circuit. It doesn’t need external circuits to generate and enlarge the clock and

direction signals. The Gecko micro-step drive is illustrated in Figure A.3 [Gecko

(online)].

Figure A.3 Gecko micro-step drive [Gecko (online)]

The Gecko micro-step drive has the following specifications [Gecko (online)]:

1. Supply Voltage: 24 to 80 VDC

2. Phase Current: 1 to 7 Amps and 0.3 to 2 Amps (2 ranges)

3. Auto Current Reduction: 33% of set current, 1 second after last Step Pulse

4. Size: 2.5”W, 2.5”D, .85”H (63.5mm, 63.5mm, 21.5mm)

fpinkert
Text Box

Please see print copy for Figure A.3

5. Mounting Pattern: 4 6-32 screws, 1.75” by 2.375” (44.5 mm, 60 mm)

6. Quiescent Current: 15 Ma or less

7. Weight: 3.6 oz. (100 gm)

8. Step Frequency: 0 to 200 kHz

9. Step Pulse “0” Time: 0.5 uS min (Step on falling edge)

10. Temp: 0 to 70 C

11. Step Pulse “1” Time: 4 uS min

12. Humidity: 0 to 95 % (non-condensing)

13. Direction Setup: 1 uS min (20 uS min hold time after Step edge)

14. Power Dissipation: 1 to 18 W (1 to 7 Amps)

The connection diagram of the Gecko micro-step drive is illustrated in Figure A.4

[Gecko (online)]

Figure A.4 Gecko micro-step drive connection diagram [Gecko (online)]

A.4 Baldor DC Servo Motor

Baldor MTE Series DC servo motor, model no. MTE-2250-AMACN, is

employed in this project, which is used to control the peg and provide one degree of

freedom (1 DOF). It is environmentally rugged that can provide reliability and long

life in industrial applications. The Baldor’s DC Servo Motors are shown in Figure A.5

[Baldor (online) a]

fpinkert
Text Box

Please see print copy for Figure A.4

Figure A.5 The Baldor’s DC Servo Motors [Baldor (online) a]

 The features of the Baldor’s DC Servo Motors include [Baldor (online) a]:

1. Provide continuous torques from 1.9 lb.-in to 58 lb.-in.

2. high continuous duty 155°C rotor temperature and premium moisture

resistant.

3. A rugged industrial housing and can be supplied with many electrical and

mechanical options.

4. Stock and custom design available.

5. Superior performance down to zero speed.

6. Ideal for applications such as X-Y tables, coil winders, machine tool, robotics,

factory automation, labeling equipment, assembly equipment, textile,

packaging, converting equipment, and laboratory equipment.

A.5 Baldor DC Servo Motor Encoder

 14-pin Baldor DC Servo Motor Encoder, model no. MS3102E-20-27P is used in

the project that provides a physical link between DC motor and DC motor controller.

fpinkert
Text Box

Please see print copy for Figure A.5

The connection diagram is shown in Figure A.6 [Baldor (online) a].

Figure A.6 14-pin Baldor DC Servo Motor Encoder connection diagram [Baldor

(online) a]

A.6 Baldor DC Servo Motor Controller

The Baldor TSD (Twin Servo Drive) series motor controller, model no.

TSD-050-05-1-I (Figure A.7) is employed in the project to control the one degree

fpinkert
Text Box

Please see print copy for Figure A.6

freedom peg. The TSD series motor controller is totally enclosed, stand-alone one or

two axes brush-type PWM servo control, utilizing the latest in FET/IGBT transistors

for efficiency and reliability. This DC Servo Control is fully protected. It contains a

front panel on/off switch and operates directly from 115 VAC. The TSD will power

DC servo motors providing up to 5 amps continuous, 10 amps peak. [Baldor (online)

b].

Figure A.7 The Baldor TSD motor controller [Baldor (online) b]

 The Baldor TSD series motor controller has the following features [Baldor

(online) b]:

1. Easily set up for velocity or torque (current) control applications.

2. Form factor 1.01 or better.

3. Zero deadband performance

4. Adjustable current limits: Peaks and Continuous.

5. Detachable screw terminal inputs (no special tools).

fpinkert
Text Box

Please see print copy for Figure A.7

6. Panel mount enclosure ensures there are no exposed electronics.

7. Simplified ‘start up’ as all connections are defined right on the exterior of the

enclosure.

8. ON/OFF main toggle switch.

9. No audible noise with 20 kHz switching.

10. No additional inductors required.

11. Protection features, with LED indicators for

i. Voltage Error

ii. Surge Current

iii. Over Temperature

Typical connections of the Baldor TSD series motor controller is shown in Figure

A.8

Figure A.8 The Baldor TSD series motor controller typical connections

A.7 Quatech DAQ-802 Data Acquisition Board

 The Quatech's DAQ-802 data acquisition board is used to read the decoded

signal generated by the decoder HCTL-2016 [Agilent (online)] connected to the

encoder of the DC servo motor, send signals to the DC controller controlling the servo

motor driving the peg and the stepper motors driving the hole. All of these input and

output signals are read into the Host PC by a DAQ-802 I/O interface card through a

Main I/O connector and an Auxiliary connector.

Quatech's DAQ-802 is a low-cost data acquisition board with 12-bit resolution,

eight analog input channels, two analog output channels, 32 digital I/O channels, and

three 16-bit programmable counter/timers (Figure A.9). The maximum sampling rate

is 40 kS/sec for A/D with internal or external triggering [DAQ (online)].

Figure A.9 Quatech DAQ-802 Data Acquisition Board [DAQ (online)]

The DAQ-802 provides eight differential analog inputs. It has a bipolar input

range with software programmable gains of 1, 2, 4, and 8 (DAQ-802), and has auto

zeroing and a self-calibrating facility for A/D conversion. The main D-37 connector is

for analog I/O, control lines, and eight digital I/O channels. A second auxiliary D-37

connector, requiring an additional slot in the PC, is provided for an additional 24

digital I/O lines from an 8255 programmable peripheral interface chip (Figure A.10)

[DAQ (online)].

fpinkert
Text Box

Please see print copy for Figure A.9

Figure A.10 DAQ-802 mainD-37 connector and auxiliary D-37 connector [DAQ

(online)]

A 2K Data FIFO is available that provides a cushion for the data stream coming

from the output of the A/D converter. This protects data integrity when using an

interrupt routine under Windows or other operating systems. Scan List capability is

also provided for scanning the input channels with their corresponding gains.

Sequential scanning between any two channels can be programmed. The DAQ-802

can be installed in any available I/O base address location without conflict with

presently installed devices. The board can be enabled or disabled through software

manipulation. The interrupt levels are register selectable through software from IRQ

2-7, 10-12, 14, and 15 [DAQ (online)].

 Features of the DAQ-802 Data Acquisition Board include [DAQ (online)]:

1. 40 kS/sec sampling, 12-bit analog input resolution.

2. Eight differential analog inputs.

fpinkert
Text Box

Please see print copy for Figure A.10

3. Two 12-bit D/A channels, three 16-bit timer/ counters and 32 channels digital

I/O.

4. Self calibrating and auto zeroing.

5. Channel scan capability with various gain for each channel.

6. 2K Data FIFO buffer.

7. Programmable gains of 1, 2, 4, and 8.

8. Interrupt handling capability.

9. Drivers supplied for third-party software.

A.8 HCTL-2016 decoder

The HCTL-2016 decoder [Agilent (online)] provides a physical link between the

Baldor DC Servo Motor Encoder and the DAQ-802 data acquisition board in order to

obtain the position information. The pinouts are shown in Figure A.11. CHA and CHB

read signals from the DC servo motor through the motor encoder. The 12/1A-bit

position latch is read through an 8-bit output port (D0-D7) in 2 sequential bytes. At

first, both OE and SEL pins are set low via DAQ-802, and read in high byte of

position. Then, SEL pin is set high via DAQ-802 and read in low byte of position.

Finally, high and low bytes are combined to produce a 16 bit word.

Figure A.11 HCTL-2016 pinouts

A.9 Lord force/torque sensor

 The force/torque data is obtained by Lord Force/Torque (F/T) sensing system,

which consists of a transducer unit and a system controller unit.

 In this project, the F/T system is connected to the computer through RS232 serial

port, which is configured at 9600 baud rate and 8N1 (8bits, noparity, 1 stop bit) mode.

The commands issued through the serial port are as follow:

 FT: Select resolved force/torque data

In response to this commend, forces and torques applied on the transducer

unit are resolved into three Cartesian force components fx, fy, fz and three

Cartesian torque components tx, ty, tz. The force/torque components are

represented as a six-element vector, F=(fx, fy, fz, tx, ty, tz).

 OA: Output ASCII on the serial port

In response to this command, the F/T system will output continuous data in

ASCII mode. If FT type is selected, F/T system records are transmitted as

strings of 37 characters. The first character is ‘0’ or ‘1’ representing the strain

gauge saturation flag. Following are the six Cartesian force/torque

components, each is expressed as a decimal number, right-hand justified in a

six character field.

 OR: Output one data record in ASCII mode

In response to this command, output record is in the same format as OA

command, but only one data record is issued (one force/torque components

vector).

 BS: Remove bias

Normally, force/torque data output is biased by gravitational loading due to

the weight of the end effector, work piece and any attached cables or hoses.

For task where these effects are constant (the orientation of the end effector

remains fixed with respect to the gravity vector), BS command can be used to

remove this bias. This command establishes the current Transducer Unit load

as bias to be subtracted from all subsequent force/torque output.

APPENDIX B Related Publications

Journal Paper

1. Shen Dong, Fazel Naghdy, “Reproduction of Human Manipulation Skills in a

Robot”, Journal of Robotics and Computer Integrated Manufacturing (RCIM),

2005

Conference Paper

2. Shen Dong, Fazel Naghdy, “Application of Competitive Clustering to Acquisition

of Human Manipulation Skills”, IEEE International Conference on Fuzzy

Systems, 2006 pp. 78-83

3. Shen Dong, Fazel Naghdy, “Manipulation Skills Acquisition and Classification

from Haptic Rendered Virtual Environment”, The 2005 World Congress in

Applied Computing, June 20-23, 2005, Las Vegas, Nevada, USA. pp. 103-108

4. Shen Dong, Fazel Naghdy, “Manipulation Skills Acquisition through State

Classification and Dimension Decrease”, The 17th IEEE International

Conference on Tools with Artificial Intelligence (ICTAI), 14th-16th, November,

2005 Hong Kong. pp. 392-396

5. Shen Dong, Fazel Naghdy, “Competitive Clustering Application on Acquisition

of Human Manipulation Skills”, in International Conference on Computational

Intelligence for Modelling, Control & Automation CIMCA2005, 2005, pp.

1092-1097.

6. Shen Dong, Fazel Naghdy, “Manipulation Skills Acquisition by HMMs from

Haptic Rendered Virtual Environment”, World Haptics Conference, March 18-20,

2005, Pisa, Italy.

7. Shen Dong, Fazel Naghdy, “Reproduction of Human Manipulation Skills in a

Robot”, International Manufacturing Leaders Forum (IMLF-2005), February

2005, Adelaide, Australia.

8. Shen Dong, Fazel Naghdy, “Haptic Rendered Virtual Modelling of Gear

Assembly”, 3rd IFAC Symposium on Mechatronic Systems, September 2004,

Sydney, Australia.

9. Shen Dong, Fazel Naghdy, Yuxin Chen, “Six d.o.f Haptic Rendered Simulation of

the Peg-in-Hole Assembly”, 9th International Conference on Manufacturing

Excellence 2003 (ICME 2003), October 2003, Melbourne, Australia.

	University of Wollongong - Research Online
	Cover page
	Copyright warning
	Title page
	Abstract
	Statement of originality
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	References
	Appendix A
	Appendix B

