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ABSTRACT

An empirical research on developing a new paradigm for programming a robotics
manipulator to perform complex constrained motion tasks is carried out in this thesis.
The teaching of the manipulation skills to the machine commences by demonstrating
those skills in a haptic-rendered virtual environment. This is in contrast to
conventional approach in which a robotics manipulator is programmed to perform a
particular task.

A manipulation skill consists of a number of basic skills that, when sequenced
and integrated, can perform a desired manipulation task. By manipulation means the
ability to transfer, physically transform or mate a part with another part.

Haptic-rendering augments the effectiveness of computer simulation by providing
force feedback for the user. This increases the quality of human — computer
interaction and provides an attractive augmentation to visual display and significantly
enhances the level of immersion in a virtual environment.

The study is conducted based on the peg-in-hole application as it concisely
represents a constrained motion-force-sensitive manufacturing task with all the
attendant issues of jamming, tight clearances, and the need for quick assembly times,
reliability, etc. The state recognition approach is used to identify and classify the skills
acquired from the virtual environment.

A human operator demonstrates both good and bad examples of the desired

behaviour in the haptic virtual environment. Position and contact force and torque



data, as well as orientation generated in the virtual environment, combined with a
priori knowledge about the task, are used to identify and learn the skills in the newly
demonstrated tasks and then to reproduce them in the robotics system. The robot
evaluates the controller’s performance and thus learns the best way to produce that
behaviour.

The data obtained from the virtual environment is classified into different cluster
sets using the Hidden Markov Model (HMM), Fuzzy Gustafson—Kessel (FGK) and
Competitive Agglomeration (CA) respectively. Each cluster represents a contact state
between the peg and the hole. The clusters in the optimum cluster set are tuned using
a Locally Weighted Regression (LWR) algorithm to produce prediction models for
robot trajectory performing the physical assembly based on the force/position
information received from the rig.

The significance of the work is highlighted. The approach developed and the
outcomes achieved are reported. The development of the haptic-rendered virtual
peg-in-hole model and structure of the physical experimental rig are described. The
approach is validated though experimental work results are critically evaluated.

Keywords: Haptic, PHANToM, Reachin, Virtual Reality, Peg-in-hole, Skill

acquisition.
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CHAPTER 1 INTRODUCTION

1.1The Problem Statement

Robotics manipulators are primarily employed in industry to improve productivity.
Many complex manufacturing tasks such as assembly require force sensitive
manipulation. The robotics manipulators are not usually considered an ideal solution
for such applications due to the complexity associated with their programming and
employment. In fact, one of the major barriers to the utilisation of robots in assembly
tasks to date has been the lack of an effective and reliable method to program them to
carry out constrained motion.

In a constrained motion manipulation, the object manipulated by the robots is in
contact with the surrounding environment or other objects. This requires the
manipulator, the object and the environment perform compliant motion along certain
directions.

A task cannot be structured accurately in compliant motion. A human operator
adapts to uncertainty associated with the task through kinaesthetic information
received from the hands. Similarly, a robot arm engaged in compliant motion is
dependent on the force and tactile signals received from interaction with the
environment. Integration of the sensory data with the position control of a robots is
quite complex.

In this study, the feasibility of teaching manipulation skills to a robotic
manipulator to perform a constrained motion task is explored. This will replace the
conventional method of programming a robot. A skill consists of a sequence of actions
which collectively complete a specific task. A human operator develops skills through
training and practice in psychomotor domain. This is best achieved by learning the
skill from another human being. For a robot, acquiring skills from a human operator

has been a viable approach to pursue.



1.2 Haptic Rendered Virtual Environment

In the approach developed in this study, the instructor demonstrates the manipulation
task in a haptic rendered virtual environment using a haptic device. The process of
haptic-rendering consists of using information collected from the virtual environment,
and evaluating the forces and torques to be reacted at a given position, velocity, etc. of
the operational point of a haptic interface. The operational point is the physical
location on the haptic interface where position, velocity, acceleration, and sometimes
forces and torques, are measured.

In order to display a virtual environment, the following problems must be

addressed [Pearce 1999]:

(@ Finding the point of contact: This is the problem of collision detection, which
becomes more difficult and computationally expensive as the model of the
virtual environment becomes more complex.

(b) Generation of contact forces and torques: This creates the “feel” of the object.
Contact forces can represent the stiffness of the object, damping, friction,
surface texture, etc.

(c) Dynamics of the virtual environment: Objects manipulated in a virtual
environment can collide with each other and move in a complicated way.

(d) Computational rate: Computational rate must be high, around 1 kHz or higher,
and the latency must be low. Inappropriate values of both of these variables can
cause hard surfaces in the virtual environment to feel soft as well as creating

system instabilities.



1.3 Assembly States

The state recognition approach is used to identify and classify the skills acquired from
the virtual environment. The process of identification of assembly states is quite
critical. States not correctly classified can result in the failure of physical system. An
assembly consists of a sequence of states. The assembly process itself is the chain of
transitions from the initial state to the goal state. Different learning strategies will be
applied according to the current state.

State identification methods can be divided into direct [Burdea 2000] and indirect
approaches [Potts 2000]. The commonly used direct identification methods are
dependent on quasi-static motion with negligible friction and noiseless sensing
[Burdea 2000]. Hence, they cannot be applied to assembly tasks performed in an
environment with high uncertainty. The indirect methods, on the other hand, do not
have such restrictions and can be employed in uncertain environments with friction
and noisy sensory signals [Potts 2000].

Consequently, indirect identification methods are more appropriate for this work,
and are employed for the classification of a state. The trajectory of the operator is
classified into several states. The trajectory is learned by identifying constraints
among the state variables in the operation process. These constraints determine the
corresponding desired current and next state and decide on the best trajectory to reach
the goal. Actions that choose the desired trajectory are computed using knowledge of
the system dynamics, learned by nonlinear function approximators. An on-line

incremental learning algorithm is used to identify the trajectories of the controller’s



skills at each state.

1.4Conceptual Model behind the Approach

A manipulation skill is the ability to transfer, physically transform or mate a part with

another part. A specific manipulation skill consists of a number of basic skills that

when sequenced and integrated can achieve the desired manipulation outcome. The
manipulation task (Ms) is applied to the part by the human operator through an action

u"(t), transferring the part from an initial state of x"(t;)) to a final state of x"(t;). The

control action command u", provides position, orientation, and dimension of the part

or its contact forces/torques with the environment. The measured state variables at
any instant of time t will represent the output of the manipulation system y"(t). The
variables x, u and h are vectors.

The overall approach pursued in this thesis is presented in Figure 1.1. As
illustrated in this diagram, the robotic manipulator mimics the behaviour of the human
operator by acquiring the skills and producing the machine control action u™(t) from
y"(t). Different stages of the work are described as below:

(@ The human operator performs the manipulation task in a virtual environment
using a haptic device. The haptic device provides the operator with contact
forces and torques similar to those in a real life operation.

(b) The information produced in the virtual environment, y"(t), is used by the
Perception module to identify the basic skills and functions employed in the

operation and to extract the algorithm sequencing the applied skills.



(©)

(d)

(e)

The information produced in stage (b) is passed to Data Refinement Module in
order to remove the noise data, and to extract the most significant data. The
refined data is then passed to the Manipulation Task Planner to be translated
into position/force/torque trajectories and associated control algorithms for the
robotic manipulator. Initially u™ is generated based on the information received
from the Perception module, the output of the machine manipulation system

y"(t), prior knowledge about the task according to the following relationships

[Pearce 1999]:
S, =A(5,,T)) (1.1)
u =1(E;, I,) (1.2)

In (1.1), S; denotes the discrete constraints of the task at instant i, T; represents the
discrete information occurring at instant i, A is the trajectory constraints learning
function used to predict the next constraint of the task. The function I stands for
trajectory learning function, which computes the output u;", based on the current
state E; and the current information I;.
The performance of the manipulation u™ is then compared with the expected
behaviour. The manipulator trajectory and u™ are adjusted according to the error
to produce a behaviour as close as possible to the manipulation performance by
the human.
After satisfactory imitation, information from the Learning Module will be
taken into account to calculate u™. The Learning Module performs various

optimisation processes to enhance the performance.
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Figure 1.1 Overall model of system
Such a system will be most effective when the Perception and Learning modules
are generic. The Manipulation Virtual Environment will be dependent on the

application and the Task Planner will be dependent on the manipulator employed.

1.5Significance of the Thesis
This study has its focus primarily on the developing a haptic-rendered virtual model

for the peg-in-hole assembly and classifying the acquired skills by applying the state



recognition methods to the data acquired from the virtual environment.

The peg-in-hole insertion problem is used as a case study, which represents a
typical constrained motion force sensitive manufacturing task with the attendant
issues of jamming, tight clearance, and the need for quick assembly times. In the
developed system, position and contact force and torque as well as orientation data
generated in the haptic rendered virtual environment combined with a priori
knowledge about the task are used to identify and learn the skills in the newly
demonstrated task.

This study represents a significant progress on the work carried out on
programming a robotics system through demonstration. It is distinctively different
from the previous works, as it offers the following unique and original contributions:

i. Broadly, the project has a generic scope that is novel and innovative. It explores
how an intelligent machine can replicate human motor manipulation skills. The
model identified for human psychomotor learning will be emulated in the
machine to achieve different stages of motor learning.

ii.  Hence the proposed work, is unique in its approach and hypothesis, and
provides a new insight into the nature of transfer of manipulation skills from
human to machine. It proposes new generic intelligent algorithms and
methodologies to emulate different stages of human psychomotor learning in
machines, including perception, imitation, mechanism, and complex/overt
response. This makes the project significantly different from previous work

depending on machine learning in the cognitive domain.



Vi.

More specifically, the project explores the feasibility of online transfer of
physically constrained manipulation skills from a human operator to a
manipulator through demonstration, utilising a virtual training environment with
tactile sensing. Constrained motion manipulation is an important aspect of any
realistic manipulation environment, such as automatic assembly.

The acquisition of manipulation skills begins with demonstrating the necessary
skills by the human operator in a virtual environment with tactile sensing
(haptics). The use of the virtual environment simplifies the process, as the
training data is acquired directly from the haptic system.

The project also explores how more complex manipulation skills can be
constructed from basic skills, as words are formed from letters.

The proposed concepts are at the leading edge of tele-robotics and intelligent

systems research.

1.6Overall Approach

The project will be carried out by realising the following stages: Virtual Learning

Environment, Perception, Imitation, Forming Habits, and Validation,

1.6.1 Virtual Learning Environment

The data used by the machine to acquire basic manipulation skills is generated

through a haptic-rendered virtual environment. This approach offers a number of

advantages compared to other methods. The training data (for example, velocities,

angles, positions, forces and torque) can be extracted and recorded directly, which

8



simplifies the data-collection process. The environment can be easily modified and
changed as the manipulation process and its requirements are changed. The risk of
breakdown and breakage of the system is very low. Dangerous and costly
environments can be developed in the virtual environment without associated risks.
The peg-in-hole insertion with a tight fit representing a constrained motion
manipulation is used to demonstrate the feasibility and validity of the developed
concepts and methodologies. A six degrees of freedom (6 DOFs) haptic device, called
PHANToM (PHANToM Premium 1.5 from SensAble Technologies Inc., USA) is
deployed [SensAble (online)]. A Reachin hardware platform and application
programming interface is used in the implementation of the virtual manipulation
environment [Reachlin (online)].
1.6.2 Perception
The second stage will be to explore a methodology through which the behaviour of
the operator using the haptic device can be perceived by the Perception Module. In
reality, the key question asked will be how the sensory data produced by the virtual
environment can be translated into a pattern of behaviour for training and operation of
the physical manipulator. Such behaviour cannot be simply modelled analytically or
explicitly described by the static and dynamic equations of motion. This is due to the
complexity of the operations involved and the inadequacy of analytical methods to
model such behaviour.

1.6.3 Imitation

As the third task, the perception of the operator’s behaviour should be translated into



appropriate control strategies for the physical manipulator to imitate the manipulation.
This is carried out by the Manipulator Task Planner module. Such a control strategy
will be hierarchical. At the lower level, the individual joints of the manipulator will be
controlled using a conventional method. At the higher level, the task planning for the
robot arm will be carried out as fine-motion planning to achieve certain contact
formations between the parts involved to satisfy force constraints defined by the
classifier. Part-mating can be then defined as moving from an initial contact formation
to a goal contact formation.

1.6.4 Forming Habits

Another function of the learning module is to enhance the performance of the
manipulator over time and to produce a complex and overt response. The aim is to
gradually phase out the error-based corrections at higher control levels and replace
them with appropriate actions according to every new situation encountered. This will
be similar to developing habits in psychomotor taxonomy and forms the fourth stage
of the project.

1.6.5 Validation

The peg-in-hole insertion task will be virtually defined through the haptic device and
the solid modeller. The developed methodology will be then applied and the validity
of the developed perception, control algorithms, and habits will be systematically
studied. This will result in further modification and enhancement of the algorithms

and techniques developed.
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1.6.6 Proposed Experimental Rig

The experimental system consists of a 6 DOF articulated manipulator attached to a 6
DOF force/torque sensor. A 6 DOF haptic device is added to the experimental rig for
training of the manipulation system. The force/torque data produced by the haptic
device will match the information produced by the force sensor. Initial verifications of
some of the basic strategies will be carried out on the physical peg-in-hole insertion
experimental rig. The host PC will receive the sensory information and training data
from the haptic device and will produce the necessary control signals to drive
different actuators of the manipulator. It will be necessary to interface the host

computer with the controller of the robot arm.

1.7 Structure of the Thesis

The thesis is organised as follows. A review of the literature associated with the study
will be carried out in Chapter 2. In Chapter 3, the concept of haptic rendering will be
introduced and three popular haptic-rendering technologies will be reviewed. In
addition, Haptic-rendering tools including PHANToM, GHOST SDK, VRML and
Reachln API, are described. Penalty-based rendering and proxy-based rendering
methods employed in the peg-in-hole insertion procedure will be explained. The
algorithm used to calculate the collision force and torque of peg and hole are
described. An analysis of the force and torque data generated by the haptic-rendered
virtual environment will be also carried out in this chapter.

An overview of the acquisition of manipulation skills from haptic-rendered
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virtual manipulation will be provided in Chapter 4. The concept of acquisition of
manipulation skills from haptic-rendered virtual manipulation will be also explained
in this chapter. Skill-acquisition based on behavioural cloning methods, the Hidden
Markov Model and Fuzzy Clustering algorithms, will be explained in detail.

In Chapter 5, the experimental validation of the algorithms of the Fuzzy
Gustafson—Kessel (FGK) and Competitive Agglomeration (CA), and Hidden Markov
Model (HMM) will be provided. The physical peg-in-hole experimental rig proposed
to employ these algorithms in the real task will be introduced first. The experimental
rig will be described and the experiments designed to validate the work will be
presented. Finally the validation results will be provided.

Chapter 6 will draw some conclusions and will highlight the main contributions
of the thesis. Some suggestions for further research on the project will be also

provided.
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CHAPTER 2 BACKGROUND

2.1 Introduction

This work explores the feasibility of reconstructing human manipulation skills in
complex constrained motions by tracing and learning the manipulation performed by
the operator. Manipulation skills are taught to machine by a human operator
demonstrating these skills in a haptic-rendered virtual environment. This represents
further extension of the concept of “teaching by showing” and can be considered as a
new paradigm in programming robotic manipulators.

In this chapter, a review of the previous work associated with this concept is

carried out. This will highlight the significance and the contribution of the work.

2.2 Programming of Robotics Manipulators

While the development of sophisticated intelligent humanoid robots has been the
ultimate goal of robotics research, other factors such as cost saving have been driving
research and development in robotics. In some manufacturing sectors, such as welding,
material-handling, spray-painting and assembly, robotics research community has
exerted significant effort to design user-friendly interfaces and more powerful
programming methods for robotic manipulators. The extensive research conducted by
Blume [Blume 1983] and Ranky [Ranky 1985] on the historical evolution of robotic

programming highlight the results produced.
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The general robot programming paradigm, as shown in Figure 2.1, characterises
the real physical manipulation tasks and abstract models representing these tasks.
Abstract models can be realised by different robot programming methods. In majority
of methods, commands based on the abstract models instruct robots to perform certain
manipulation tasks and change the states both in the abstract model and the real task.
Internal robot sensors and external sensors, such as force/torque, position, ultrasonic
and vision sensors, are used to observe the sequence of actions in both the abstract
model and the real world, and ensuring that they are kept consistent with each other

[Jones 2004].

Please see print copy for Figure 2.1

Figure 2.1 General robot programming [Jones 2004]
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The traditional programming methods developed for robotics manipulators can
be grouped into four categories of text programming, off-line simulation-based
programming, inductive learning and teaching by guiding.

Text programming can be applied to complex applications, but it has proven to
be quite intensive in code and computing time. The development time is long, and
special skills and much effort are required to produce a complete program. This has
resulted in the development of task-level robot languages [Caine 1989; Perez 1977].
Task-level programming enables the user to specify the desired goals of the tasks
without defining every movement of the robot in detail. The task planner will express
each task in terms of necessary manipulator motions and actions. This scheme
requires the system to have the ability to perform many planning tasks automatically.
In addition, task-level programming tools require a great deal of information about the
workspace, the robots, the objects, the initial state of the environment and the final
goal to be reached, which can be extremely tedious and time-consuming. A structured
text program is usually composed of several major parts, which are Data Types
(including derived Data Types), Variable Declarations, Operators and Expressions,
Condition Statements, Iteration Statements, and Functions, depicted in Table 2.1

[Craig 2005].
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Please see print copy for Table 2.1

Table 2.1 An example of major text programming components [Craig 2005]

The off-line simulation-based methods usually integrate text-programming and

model-based motion planners in one common platform [Matsubara 1985; Derby
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1982]. Model-based motion planners can automatically generate motions from virtual
reality models on graphical simulation platforms so that teaching a robot to perform
the task by programming can be relatively easy. The RoboCell robotics off-line
simulation programming environment for SCORBOT robots of Intelitek is an
example of this method, as shown in Figure 2.2 [Intelitek (online)]. This approach is
powerful but requires special hardware and a complete description of the real world,
both of which are costly. Although current off-line programming systems mostly
provide high-level manipulation language to simplify the programming procedure and
comparatively shorten the development, off-line programming environments do not
address the issue of sensor-guided robot actions. They are also mostly limited to
kinematics or dynamics simulation of a robot, without the provision of advanced

reasoning functionality and flexibility in the tasks.
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Please see print copy for Figure 2.2

Figure 2.2 Off-line simulation programming environment [Intelitek (online)]

Inductive learning, also called learning from example, is one of the most
important approaches developed for programming a robot arm. In inductive learning,
a robot arm controls appropriate motion and sensing strategies through trial and error
[Dufay 1984]. This is an effective method when it is used to refine other programming
methods, but it is not suitable for very complex tasks. The inductive learning rules are
acquired, generalised or statistically analysed from a large number of training
examples. The performance of inductive learning methods can be measured by the
learning curve, which shows prediction accuracy as a function of the observed

examples. Inductive learning decision rules can be generalised from data-mining tools,
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Please see print copy for Figure 2.2


such as the See5 decision tree algorithm, or from other statistical analysis methods,
such as the Hidden Markov Model (HMM), clustering algorithms, or artificial neural
networks. Figure 2.3 shows an example of a Cross-Referencing Classifiers produced
by See5 data-mining tool. The inductive learning rules are also generalised [See5

(online)].

Please see print copy for Figure 2.3

Figure 2.3 Inductive learning rules generalised from See5 [See5 (online)]

Teaching by guiding is a simple method in which a human operator drives a
robot’s end-effector to all the appropriate locations in the real world to perform the

task, while the characteristics of the motion are recorded. In spite of its simplicity, this
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method is prone to error, is less portable and has high risk. It is not generic or flexible,
and is not applicable to complex tasks. In addition, this method cannot accommodate
extensive sensory interaction and can be dangerous for the operator.

The essential component of the teaching by guiding is illustrated in Figure 2.4
[Jones 2004]. The approach consists of four major steps, namely, data acquisition,

trajectory reconstruction, task description, and command generation module.

Please see print copy for Figure 2.4

Figure 2.4 Teaching by guiding system [Jones 2004]
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Please see print copy for Figure 2.4


2.3 Overview of Teaching by Showing/Demonstration

There has been a number of attempts to overcome some of the shortcomings of the
“teaching by guiding” approach. Summers and Grossman [Naylor 1987] embedded a
collection of sensory information and interaction with the operator in the task
instruction procedure. The concept of “teaching by showing” or “teaching by
demonstration” has been another extension of “teaching by guiding”, in which a
robotic system learns a particular task by watching a human operator performing it.
The best method allows the user to make natural movements which can be mapped
easily to instruct driving the robotic manipulator (Figure 2.5) [Jones 2004]. This
method suffers from a number of shortcomings including the robot operation
downtime, the danger exposed to the human operator and the difficulty of making

adjustments for new products.
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Please see print copy for Figure 2.5

Figure 2.5 Teaching by showing [Jones 2004]

2.3.1 Teaching by Showing/Demonstration without Model

Some recent developments have significantly advanced the “teaching by showing”
approach in programming a robotics manipulator.

Ikeuchi and Sehiro [Summers 1984] developed a system that could extract a fine
motion sequence from the transitions of face contact states obtained by a range of

sensors [Ikeuchi 1991].
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Smart and Kaelbling proposed a framework for application of reinforcement
learning in programming mobile robots [Smart 2002].

Hass integrated a symbolic recogniser and play back module using a visual servo
for two-dimensional pick-and-place operations [Hass 1991].

Yamada and Uchiyama conducted a study to determine the essential features of
human physical skills based on multi-sensory data and the possibility of transferring
them to robots by focusing on two tasks of crank rotation and side matching [Sato
1997].

Kuniyoshi and Inbana developed a robotics system that could learn reusable task
plans in real time by watching a human performing assembly tasks [Kuniyoshi 1994].
The method was based on visual recognition and analysis of human action sequences.
The effectiveness of the method was demonstrated for a block assembly task.

Montgomery and Bekey developed a model-free “teaching by showing”
methodology, which trains a fuzzy neural controller for an autonomous robot
helicopter [Aleotti 2004]. The controller, combined with a hybrid fuzzy logic
controller and general regression neural network controller, is generated and tuned
using training data gathered while a teacher operates the helicopter.

A vision-based approach to robot path planning has been reported in literature
[Ude 1994]. A desired motion is demonstrated by a demonstrator manipulating an
object with his hand. The manipulation performance is measured with a stereo vision
system. A non-parametric regression technique with robustness to measurement noise
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Is used to reconstruct the demonstrated motion. The generated path is given as a linear
combination of natural vector splines.

The approach of programming by demonstration is utilised in the
rehabilitation robotic system FRIEND to execute a daily life action of pouring a
beverage into a glass [Martens 2001; She 2003]. A pouring trajectory, which is
independent from specific bottles and glasses, is acquired through human
demonstration. In a given pouring task, this trajectory is used as the motion reference
of the bottle, where the actual location in the trajectory is controlled by the beverage
flow [Ruchel 1999]. The robustness of the approach is improved by means of
abstracting the pouring trajectory independent from specific objects, as well as
integrating additional sensor information to control the trajectory.

Voyles et al explored another type of teaching by showing using a programming
robotic agent. The approach, known as gesture-based programming [Voyles 1997;
1999a; 1999b], teaches a manipulation to the robotics arm using demonstration by a
human operator. Robotic skills obtained from skilled experts used in the development
of robotic systems. The gesture-based programming deals with the issues of how
gesture-based programming systems captures the intention behind finger poses, hand
motions, contact conditions, and even cryptic utterances in real time. The system
retains previously acquired skills to enhance gesture interpretation during training

while providing feedback control at the same time.
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Nicolescu, from Interaction Lab of University of Southern California, has
developed an approach for teaching robots that relies on the key features and the
general approaches people use when teaching each other [Nicolescu 2001; 2002;
2003]. The method is initiated from an expert’s demonstration, and then the learner
practises the task several times under the expert’s supervision to refine the acquired
skills. The expert may demonstrate the task again for several times during the
learner’s practice, depending on the complexity of the task. The teacher can also
provide simple instructions and informative clues to help the learning performance
during the practice process. In this method, expert’s demonstration, generalisation of
the demonstration and the learner’s practice the essential components. Additional
information beyond the expert’s demonstration is also provided to the robot through
verbal instruction, enabling the robot to learn the more effectively.

Billard et al has reported experiments conducted to teach certain behaviour to a
doll robot through demonstration [Billard 1998]. The doll robot has the capacity to
learn, imitate and communicate. The robot can imitate the arm and head movements
of the demonstrator through the robot’s simple phototaxis behaviour. In the
experiments, different sequences of actions are taught to the robot, and labelled
accordingly. In further experiments, the robot is taught to grammatically correct
sentences and to describe its actions and perceptions of touch on different parts of its
body. The robot is controlled by a Dynamical Recurrent Associative memory
Architecture (DRAMA) [Billard 1999]. DRAMA is a fully connected network with
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self-recurrent connections on each unit that are associated with two parameters, a time
parameter, which records the time delay between activation of each unit linked by the
connection, and a confidence factor, which records the frequency of activation of the
connection.

Billard and Mataric have developed a model to imitate two-arm movements
[Billard 2001a; 2001b]. The model investigates a valid model of a biomechanical
simulation of human movements, developes an architecture for visuo-motor control
and built biologically plausible models of animal imitative abilities. The model
consists of a hierarchy of artificial neural networks. It gives an abstract and high-level
representation of the neurological structure from brain regions that are involved in
visuo-motor control. The model is validated in a biomechanical simulation of a thirty-
seven degrees of freedom (37 DOFs) humanoid robot. Data from the human arm
movements are recorded using video and marker-based tracking systems. The results
show high qualitative and quantitative correlation between the human data and the
performance of the humanoid robot.

The Light-Weight Robots project, developed by the German Aerospace Centre,
provides a practical example of teaching the task of automatic insertion of a piston
into a motor block [Light-Weight (online)] to a robotic manipulator. Teaching
commences by guiding the robot by a human demonstrator using the internal torque
sensing. The axes of the holes in the motor block are vertically oriented. In the
teaching stage, orientation stiffness is assigned a high value, while the translational
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stiffness is set low values, allowing only translational movements to be carried out by
the human demonstrator. In the second state, the teaching trajectory is automatically
reproduced by the robot. High values are assigned for the translational stiffness, while
the stiffness for the rotation is low. This enables the robot to compensate for the
remaining position errors. The result shows that the automatic assembly task is
executed four times faster than by the human operator in the teaching stage. The
insertion task had been implemented previously using an industrial robot and a
compliant force —torque sensor. The insertion process had to be performed much
slower to avoid possible jamming. A well-tuned Cartesian force controller is also
deployed.

Yano has described a novel teaching method for a mobile manipulator [Yano
2003]. In this method, the user teaches a nominal trajectory of the hand to a service
robot to perform a fetch-a-can task. The task consists of opening the door of a
refrigerator, picking up the can, and closing the door. In the teaching stage, the user
does not explicitly consider the structure of the robot. The focus is on the movement
of the hand and the relationship between the hand and the manipulated object. After
searching for a sequence of feasible hand positions and orientations within the given
tolerance, the robot generates a feasible trajectory. Although the nominal trajectory
may be infeasible due to the structural limitation, the robot can search for a feasible
trajectory within the given tolerance. If necessary, each divided task can be performed
at a fixed location by dividing the task into subtasks. The advantages of the proposed
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method are that a user can teach a task without explicitly considering the structure of
the robot, and the robot can generate a feasible trajectory relatively easily from the
given task specification.

Steil et al have investigated the use of gestures for controlling a vision-based
robot called the GRAVIS-robot (Gestural Recognition Active Vision System robot)
[Steil 2001]. The robot consists of a binocular camera head, a six degrees of freedom
(6 DOFs) robot arm and a nine degrees of freedom (9 DOFs) multi-fingered hand.
Nonverbal communication based on gestural commands of a human instructor is used
to direct the attention of the robot so that it can enable its vision system to more easily
find objects that are specified in instructions.

As an extension of the GRAVIS-robot (Gestural Recognition Active Vision
System robot), a multi-model system is developed to provide a more cognitively
oriented environment [Steil 2001; McGuire 2002]. Information from various sources,
including vision, gestures and voice may be used. For example, an instruction to pick
up a cube could be given by voice, indicated by a gesture that indicates to pick up the
cube, or signalled by the vision system by reflecting an infrared ray on the cube.

A method using hand gestures to control a domestic cleaning robot has been
developed by Strobel [Strobel 2002]. In this work, a robot’s stereo vision system is
used to capture the static hand and arm gestures, while the magnetic tracking system

is used to capture the dynamic gestures. The cleaning robot also has spatial
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knowledge, which is used to reinforce the robot’s intention. In the course of cleaning,
the user could point to a surface that should be cleaned.

Lauria et al have designed a natural language system that can provide directions
to a robot [Lauria 2002]. This system is used to teach the robot to find different
locations by travelling through specified routes. The system includes fourteen
primitives with natural language constructs. Unknown commands may be used by the
user in the course of the project performance, and some form of clarification and

learning system would be needed.

2.3.2 Teaching by Showing/Demonstration in an Interactive
Environment

Direct transfer of skills from a human operator to a machine in an interactive
environment has been the next stage in the programming and training of a robotics
system. In the field of mobile robots, Pomerleau used a three-layer perceptron
network to control the CMU ALVINN autonomous vehicle [Pomerleau 1993].

Grudic and Lawrence used an approximation method as a means for creating the
robot’s mapping from sensor inputs to actuator outputs in the transfer of skills to a
mobile robot [Grudic 1996].

In the acquisition of manipulation skills, particularly in constrained motion, the
work carried out by Kaiser and Dillman is of significance [Kaiser 1996]. The work

proposes a general approach to the acquisition of sensor-based robot skills from
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human demonstration. An adaptation method is also proposed to optimise the
operation with regard to the manipulator. The method is validated for two
manipulation tasks of the peg-in-hole insertion and opening a door.

Myers et al from Intelligent Automation, Inc. (IAl), developed a system that
learns from demonstrations of a human operator and then produces a sensor-driven
program which controls a robot without operator intervention [Myers 2001]. The
system generates an operation procedure, which is identical to conventional operation
procedure developed from robot programming language that can be easily reused in
similar but different application tasks. Based on the skills demonstrated by a skilled
operator, a robot can be automatically programmed to perform complex assembly
tasks. As the task requirements change, the robot can be reprogrammed as easily as it
was initially programmed.

Skoglund and Aleotti introduced a new “programming-by-demonstration”
approach, using a supervised learning method [Aleotti 2004; Skoglund 2005]. A
“programming-by-demonstration” system prototype is presented for position teaching
of a robot arm. The data of human arm movements are recorded from a wearable
input device, and is used in the software controller of a robot arm. The method does
not require analytical modelling of either the human arm or robot, and can be
customised for different users and robots.

Soshi et al introduced a novel approach for programming robots interactively
through a multimodal interface [Iba 2005]. The key characteristic of this novice-

30



friendly system is its intuitive interfaces based on speech and hand gesture recognition,
and its ability allowing the user to provide feedback interactively during the time of
both the programming and the execution. By allowing human control during the time
of execution, this interaction capability helps the user to deal with loosely calibrated
position sensors. The system is demonstrated by interactively controlling and
programming a vacuum-cleaning robot. Instead of off-line robot programming, this
on-line robot programming method enables the user to identify what to expect from
the program execution.

A robot’s vision-related and audition-related learning capabilities are detailed in
literature [Weng 2000; Zhang 2001]. The teaching of the robot is carried out online in
real time through physical interaction between the trainers and the robot. The self-
developmental program of the robot generates internal representations and
architecture autonomously during the learning procedure without any visual or
acoustic model information about the world.

Ehrenmann et al have developed a methodology to teach actions performed in by
an operator in household situation to a robotic system [Ehrenmann 2002]. The method
work by segmenting between actions performed during a grasp process. The actions
include the recognition of particular user actions, the task representation and the
mapping strategy itself. The results of the segmentation can be stored to be stored for

application to a real robot.
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Chen et al presented a framework for robot programming by human
demonstration [Chen 1998; 2000; 2001]. The framework builds a high-level robot
controller using information extracted from the demonstration. The high-level robot
controller is broken down into steps, each fulfilling a different function during
execution. Multiple demonstrations are used to build a partial view of the robot’s
configuration space. Optimal paths are generated between steps in a task. The
assumption is that demonstrations rarely contain the best path between steps. This
introduces a significant variation to task performance, as the task can be biased
towards maximum execution speed or maximum accuracy.

The use of sensors on the fingers to detect fine manipulation of objects has been
studied by Zollner [Zollner 2002]. Finger movements and forces on the fingertips are
gathered and analysed while an object is grasped. The approach deploys a data glove
and integrated tactile sensors. For classifying a grasp, a time delay method based on a

Support Vector Machine (SVM) is used.

2.3.3 Teaching by Showing in Virtual Environment

Handleman and Lane have carried out some preliminary work on a knowledge-based
“tell” approach to describe the task to be carried out by the robot and the required
corrective control measures to be taken up [Handleman 1996]. The task is defined by
a rule-based, goal-directed strategy. The proposed method has been verified through
computer simulation only for a typical peg-in-hole insertion problem. The
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development of the rule-based system has been intuitive and rather complicated. The
developed rules are very much context based and have to be built from scratch for any
new application.

Takamatsu and colleagues developed a system that referred to as the Assembly
Plan from Observation (APO) system [Takamatsu 2000]. The robot has the capability
of observing human performance, recognising tasks and generating programs that
perform the same task within the APO system. The robot’s hand movement is used as
a case study in the project. Trajectory is created after observing a human performance.
In further extension of the work, a task model is developed by integration of
observations made on multiple demonstrations on a single task [Ogawara 2002]. The
data obtained from demonstration is segmented to find important states such as grasps
and moves. The multiple demonstrations highlight which segments is important in the
task. The relative trajectories corresponding to each essential interaction are
generalised and stored in the task model by calculating their mean and variance. The
skilled behaviour is reconstructed from these trajectories. Further study undertaken by
Takamatsu et al has produced a more robust algorithm by correcting possible errors in
the demonstrated data [ Takamatsu 2002]. Two methods are used to clean up the errors
from the vision system by using contact relations and their transitions. The first one
corrects the observed configuration from the observed contact relations. The second
approach identifies wrongly classified contact relations from an analysis of
configuration space. Contact states are checked to ensure they do not create problems
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such as having two objects in the same location. This ensures that incorrect results
from a vision system do not produce erroneous trajectories.

Yuan et al investigated assembly planning in virtual environments [Yuan 2000]
[Yuan 2004]. This interactive approach of assembly planning provides a hand-based
interface for human operators to perform assembly operations directly in the virtual
environment. It also incorporates a biologically inspired neural network into its
assembly planner to automatically determine collision-free motion paths at run time.
As a result, this approach creates a favourable and unique feature to enable interactive
assembly planning, not only producing alternative assembly sequences from a single
user-defined assembly sequence, but also providing assembly operations with robot-
level instructions.

Ogasawara et al proposed an integrated teleoperation system for maintenance
consisting of a task with teaching function and another with execution function
[Ogasawara 1998]. The system integrates a motion teaching system, a geometric
modelling module, and a task execution system. Automatic analysis of the contact
states of objects is embedded into the motion teaching system to help the operator to
teach assembly motion. A surface-based geometric modelling system uses the
“Teaching Tree” method. This is generated from geometric data of the object.
Manipulation skills and used to combine the planning system and the task execution

system.
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Onda et al developed a *“teaching-by-demonstration-in-VR” system that
automatically generates a robot program to work in the real world from the assembly
tasks performed by a human operator in a virtual environment [Onda 2001; 2002a;
2002b]. The system generates a program which detects each contact state extracted
from demonstration, and realises it by skilful motion primitives (SMP). Some types of
motion that are included in the recorded motion given by a human operator in this VR
system in the teaching stage cannot be realised at the execution stage if the robot tries
to do the same task by using the human demonstration data, even on a contact-state
level. A method, called the “non-deterministic-search-type motion”, is proposed to
deal with non-deterministic motions when contact-state transitions are made non-
deterministically. A virtual small face (VSF) and an artificial constrained motion
primitive (ACMP), as well as a virtual polyhedron for constrained motion (VPCM),
are introduced. This provides the ability to specify a more general arrangement of the
bodies when one body is not in contact with another. In a virtual environment, new
states as well as contact states should be known to make the robot more skilful.

An approach that allows the results of the demonstration to be graphically
viewed via a 3D simulation and graphical user interface is developed by Friedrich
[Friedrich 1998]. The user is able to supervise the operation of the robot during
program-generation process. The developed code can be also edited, moved around

and even used separately.
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2.3.4 Other Alternatives to Teaching by Showing

The “teaching-by-zooming” is another alternative to the “teaching-by-showing”
method [Dixon 2003]. Visual servo control objectives are formulated by the desire to
position/orient a camera based on a reference image obtained by priori positioning the
camera on the desired location. Specially, projective geometric techniques are used to
formulate a visual servo control problem based on a cooperative camera scheme. By
using a second camera with zoom capabilities, the proposed “teaching by zooming”
alternative approach eliminates the need for the camera to be priori positioned on the
desired location.

The “teaching-by-showing-few-images” method can be applied in navigation of
autonomous mobile robots [Matsumoto 2003]. Some scenes are shown by humans as
the features of the environment combined with the motion information. An
autonomous mobile robot navigates paths between feature points by comparing
current image information with given image information. The robot reads the motion
command which is associated with the given image information when the robot
determines the images are identical.

Yokokohji et al has proposed a teaching-by-demonstration method for training of
humanoid robots at home [Yokokohji 2005]. The demonstrator’s motion is captured
by a pair of stereo cameras mounted on her/his head, located very close to her/his eyes.

By tracking the landmarks attached to the demonstrator’s hand and the working
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environment, the algorithm estimates not only the demonstrator’s hand motion but
also his/her head motion, which can be used for active vision system.

Laschi et al proposed the application of robot vision to the identification of hand
posture [Laschi 2002]. A skeleton-based approach has been implemented to achieve a
high-speed low-cost implementation, instead of identifying surfaces and volumetric
primitives. Simplified one-dimensional segment-based models, which are generated in
a symbolic way from a selective grouping of points and segments, are used. It is
expected that the effectiveness of man—machine interaction in personal robotics will
be improved when robots are introduced in unstructured environments in the presence
of human beings in applications such as assistance of disabled or elderly persons.

Grunwald et al introduced a “programming-by-touch” method that presents how
an untrained user can intuitively interact with the new DLR light-weight robot just by
touching the arm [Grunwald 2001]. The seven degrees of freedom (7 DOFs) robot
equipped with appropriate sensors can sense the touch. Instead of demonstrating the
skills for the robot by gripping the robot arm at a certain point to move it, the
demonstrator may hold the robot arm at any point, much as s/he would hold a human
arm. The robot is easier and more natural for a non-technical person to use.

A vision-based indoor navigation system for robot navigation has been
investigated by Chen [Chen 2000]. The self-organising hierarchical optimal subspace
learning and inference framework (SHOSLIF), incorporating states and a visual
attention mechanism, are used. This vision-based navigation is formulated as an
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observation-driven Markov model (ODMM), which can be realised through recursive
partitioning regression. It keeps the history information and incoming video input as
an observation vector. A stochastic recursive partition tree (SRPT), which maps a pre-
processed current input raw image and the previous state into the current state and the
next control signal, is used for efficient recursive partitioning regression.

A developmental robot, which has the ability of developing its cognitive and
behavioural skills through real-time interactions with the environment, has been
introduced by Zhang [Zhang 2005]. The robot’s learning ability is presented with the
emphasis on its audition perception and audition-related action generation. The robot
conducts the auditory learning from unsegmented and unlabelled speech streams
without any prior knowledge about the auditory signals. The actions that the robot is
expected to perform are also not available. The robot learns the auditory commands
and the desired actions from trainers as well as physical contact with the environment.

A developmental cognitive learning architecture, which learns simple behaviours
and chains these together to form complex behaviours by an artificial agent, has been
developed by Zhang [Zhang 2002]. The major challenge of this work is that training
and testing must be conducted in the same mode through online real-time interactions
between the agent and trainers.

A robot programming system using a virtual-reality graphical simulation system
with haptic feedback technique has been introduced by Kahl [Kahl 2002]. Deformable
liner objects (OLDs) are used in the research. The method aims at describing the
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assembly task in a more natural way without precise coordinates. The programmer
performs the assembly task in virtual reality in order to tell the robot roughly in which
direction to move. Then, the software analyses this demonstration and generates a
sequence of elementary skills, such as “establish contact” or “move to edge”, together
with estimated coordinates showing where to execute the skills. The skill sequence

produced in this process is executed by a robot.

2.4 Conclusion

In this chapter, the four categories of programming methods developed for robotics
manipulators, which include text programming, off-line simulation-based
programming, inductive learning and teaching by guiding have been briefly reviewed.
A review of the various “teaching-by-showing” techniques, which is the extension of

“teaching by guiding”, has been carried out.
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CHAPTER 3 HAPTIC-RENDERED VIRTUAL
ENVIRONMENT

3.1 Introduction

The effectiveness of computer simulation can be augmented using Haptic-rendering.
A haptic interface, or force feedback device increases the quality of human —
computer interaction by accommodating the sense of touch in computer simulation. It
provides an attractive augmentation to visual display and significantly enhances the
level of immersion in a virtual world. A haptic interface has been effectively used in a
number of applications including surgical procedures training, virtual prototyping,
control panel operations, hostile work environments and manipulation of materials.

In this work, haptic-rendered virtual modelling is used as part of a new paradigm
for programming a robotics manipulator to perform complex constrained motion tasks.
The teaching of the manipulation skills to the machine commences by demonstrating
those skills in a haptic-rendered virtual environment.

The peg-in-hole assembly process is used as a platform to study the concept. The
peg-in-hole insertion problem is often taken as a standard assembly problem, as it
concisely represents a constrained motion-force-sensitive manufacturing task with all
the attendant issues of jamming, tight clearances, and the need for quick assembly
times, reliability, etc.

In the developed system, a human operator demonstrates both good and bad
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examples of the desired behaviour in the haptic rendered virtual environment. Position,
and contact force and torque data, as well as orientation generated in the virtual
environment combined with a priori knowledge about the task, are used to identify
and learn the skills in the newly demonstrated tasks and then to reproduce them in the
robotics system. The robot evaluates the controller’s performance and thus learns the
best way to produce that behaviour.

In this chapter, the background to the concept of haptic modelling will be
reviewed. Haptic-rendered hardware and software, including PHANToM, GHOST
SDK, VRML and Reachin API will be described. This will be followed by two
popular haptic-rendering techniques, namely volume rendering and surface rendering.
Penalty-based rendering and proxy-based rendering methods which are based on
surface rendering technology have been employed in the project. These methods will

be also discussed in this chapter.

3.2 Background

Application of robotic systems in repetitive tasks such as pick & place and assembly
requires both online and offline programming. In online programming, a human
operator should physically manipulate the robot to perform the task. The actual
movements of the robot are recorded and then used as skills for robotic operation.
These methods are often time-consuming and risky for either the human operator or

the robot. Offline programming usually takes place in the computer environment. This
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is achieved by integration of diverse technologies and training of skilled operators.
The training process is time consuming and costly while the programming procedures
are always tedious and complex.

On the contrary, operating complex robotic systems in a haptic-rendered virtual
environment is intuitive and safe. In such an environment, the operator is immersed in
a 3-D representation of the world with which s/he can interact. Users do not need to
write complicated computer programs. Virtual assembly, for example, provides
computerised tools to help in making assembly-related engineering decisions through
analysis, predictive models, visualisation, and presentation of data [Jayaram 1997].
Computer aided manufacturing has the benefits of increased productivity, improved
quality, and reduced costs. While the environment changes and object movements fed
back to the virtual manipulating system, it can make a haptic-rendered virtual
environment more effective.

There are three steps in implementing such a step:

(@) Trajectory creation in the virtual space

(b)  Simulation of the task

(c) Execution of the task by the real robot

In a haptic-rendered virtual environment, operators can manipulate the virtual
robots as well as move the viewpoint in a very simple and intuitive way. By changing
the viewpoint, the operator can look at specific regions of the virtual work space.

The other entities of a manufacturing system can be modelled in a virtual
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environment in addition to the manipulators. Each element has its own properties
(shape, position, orientation, behaviour laws). Using the data related to the virtual
objects, it is possible to automatically generate trajectories to manipulate them (grasp,
insert, screw etc.). In this way, the operator can be spared from tedious work. The
created tasks can be simulated at any time with a collision-detection algorithm. This is
essential to avoid possible damage to the physical robot.

The data used by the robot to acquire basic manipulation skills is generated from
a haptic-rendered virtual environment. This approach has a number of advantages
compared to other methods:

(@) The training data, including force, torque, position, angles and velocities,

can be recorded directly from the computer.

(b) This virtual haptic environment can be easily modified according to

different manipulation processes and equipment.

(c) The risk of breakdown and breakage of the system is very low.

(d) Dangerous and costly environments can be easily constructed and simulated.

(e) Avuser-friendly environment for the human operator can be developed.

A primary advantage of Haptic-rendering is that it provides a bidirectional flow of
information via position-sensing and force feedback. The coupling of these two types
of information flow results in a more natural and intuitive interaction and utilises
additional sensory channel bandwidth of the user. When users are presented with a

proper combination of visual and haptic information, they experience a sensory
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synergy resulting from physiological reinforcement of the displayed multimodal cues
[Durlach 1995].

Working with a haptic-rendered virtual environment has other advantages. Firstly,
the size of the real robot is not relevant. Irrespective of the size of the robot, the user
is brought to the same scale through virtual reality representation. Secondly,
establishing a virtual teleoperation in early stages of development and execution of an
application prevents the risks associated with conventional direct link teleoperations,
which has physical link between the real robot and the manipulator. In a direct link, an
unexpected or wrong movement of the operator could result in the breakage of the
robotic system. Moreover, the problems associated with the transmission time delays
are avoided. The few seconds delay between the operator’s action and her/his
perception of the impact of action on the real robot can adversely affect the whole
process. Finally, the access of the human operator to actual plant is not required
during development. This is critical when the disruption of the production line cannot
be accommodated.

A haptic-rendered virtual environment is only effective if all the environmental
changes and object movements are represented in the virtual manipulation model.
This always needs a highly specialised hardware device and high computing speed
with visual or multi-sensory feedback. The control loop should be high speed with
low delay to ensure the stability of the system. Therefore, haptic-rendering depends

closely on the hardware. Hence, a haptic-rendered virtual environment should
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maintain a high update rate, present high-quality force feedback, prevent damage
being caused by the performance limit and have a user-friendly interface. Selecting
both the hardware and software for the haptic-rendered system must be carefully
considered. The existing commercial software packages, such as GHOST from
Sensable [SensAble (online)] and ReachIn API from Reachin AB [Reachin (online)],
have already considered such issues. Hence, the system designer can progress forward
to the design of the essential core of the haptic algorithm and the graphical parts.
Haptic devices are computer interfaces that allow users to interact with virtual
environments through touch and kinaesthesia. By allowing users to touch and
manipulate virtual environments, haptic devices are potentially useful computer
interfaces for many applications. They can be used for physical skills training, for

scientific data understanding, and for entertainment.

3.3 Haptic-rendered Virtual Environment

The haptic-rendered virtual manipulation environment consists of a six degrees of
freedom (6 DOFs) haptic device PHANTOM Premium 1.5 and its accompanying
software GHOST, which is used to construct the virtual manipulation of the peg-in-
hole insertion process. In addition, Reachin API, along with VRML and Python, are

also used to construct the virtual haptic manipulation environment of the assembly.
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3.3.1 PHANTOM 1.5

The PHANTOM is an advanced, desktop-mounted, general-purpose, haptic interaction
device, designed for effective interaction with virtual objects. The PHANToM family
of haptic devices, developed at the Massachusetts Institute of Technology,
manufactured by SensAble Technologies (Boston, MA), is currently the most widely
used force-feedback interface on the market.

Different models in the PHANToM product line meet the varying needs of both
research and commercial customers. The PHANToM comes in three models, namely,
PHANToM Omni Device, PHANToM Desktop Device and PHANTOM Premium
Devices, differing in the size of their physical workspace and the number of Degrees
of Freedom (DOFs). The PHANToM Premium models are high-precision instruments.
They provide the largest workspace and forces within the PHANToM product line.
Some devices also offer 6 DOF. The PHANToM Desktop device and PHANToM
Omni device offer affordable desktop solutions. Of the two devices, the PHANToM
Desktop delivers higher fidelity, stronger forces, and lower friction, while the
PHANToM Omni is the most cost-effective haptic device available today.

Depending on the model, PHANToOM devices can provide 6 input DOF, 3 or 6
output DOF, and wrist and shoulder motions. As shown in Figure 3.1, the PHANToM
has a stylus-shaped handle, providing a precision grasp. The characteristics of the
PHANToM make it well suited for point interaction, for example, operated by a single

virtual finger, a pencil or a peg. While using this device, sensors are continuously
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tracking the position of the stylus. This position is compared against the position of
objects in the virtual environment. Based on these comparisons, corresponding output
forces are calculated and transferred to the user by three electromechanical actuators.
The size of the physical workspace varies between 16 x 13 x 13 cm and 41 x 59 x 84
cm for different models. The device is compatible with standard PC and UNIX
workstations. A PHANToM 1.5 can produce a maximum exertable force of up to 8.5
N at nominal position, and a continuous exertable force of 3 N at nominal position.
The haptic update rate is 1 kHz. In a 6 DOF device, the maximum torque, generated
by the device actuators is 515 mNm [SensAble (online)]. The relatively large physical
workspace, in combination with the precision grasp stylus and high DOF for input and

output, makes the PHANT0OM one of the most popular haptic devices on the market.
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Please see print copy for Figure 3.1

Figure 3.1 PHANTOM desktop haptic device [SensAble (online)]

3.3.2 GHOST SDK

The GHOST SDK (General Haptic Open Software Toolkit), which accompanies
PHANTOM, is a powerful, C++ software tool kit that eases the task of developing
touch-enabled applications. It has been developed by SensAble Technologies for the
PHANToOM haptic interface, and consists of a C++ library of objects and methods
used for developing interactive, 3D, touch-enabled environment [SensAble (online)].
The GHOST SDK handles the many complex computation required to
realistically simulate physical interaction with digital objects and allows developers to

specify object geometry, properties, and global haptic effects, using a haptic scene
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graph. The GHOST SDK works as the “physics of touch” engine, which takes care of
the complex computations and allows developers to deal with simple, high-level
objects and physical properties like location, mass, friction, and stiffness. GHOST
automatically computes the interaction forces between a haptic point, and objects
within the virtual environment. It can also simulate object compliance, friction,
springs, impulses and vibrations.

The GHOST SDK provides an abstraction that allows application developers to
concentrate on the generation of haptic scenes, manipulation of the properties of the
scene and objects within the scene, and control of the resulting effects on or by one or
more haptic interaction devices. Developers can use the libraries of 3D prismatic
objects, polygonal objects, and touch effects within the GHOST SDK to add a
convincingly physical dimension to a variety of applications, including medical
simulation, virtual training, geophysics, robotics, teleoperations, assembly path
planning, molecular modelling, and nano-manipulation. At the same time, the flexible,
extensible architecture of the GHOST SDK makes it a powerful platform for haptics
researchers and other developers who need to add new shapes and dynamics, as well
as implement the lower-level, direct-force effects. Ghost SDK does not generate

graphic scenes. Hence, a different tool such as OpenGL [OpenGL (online)] is needed.

3.3.3 ReachIn Desktop Display

The test platform is built on a ReachIin Desktop Display from Reachln Technologies
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[Reachln (online)]. Figure 3.2 illustrates the Reachln Desktop Display. The Reachln
Desktop Display is a hand-immersive hardware platform in which scene graph, haptic
system and communication system between graphics and haptics are integrated in a
consistent, seamless way. The display can provide complex, high-quality haptic
feedback through one PHANTOM haptic device or cooperation of two PHANTOM
haptic devices. CrystalEyes shutter glasses from StereoGraphics Corporation [Stereo
(online)] are connected to a stereo-output graphics card to provide stereo vision. The
screen faces down towards a half-reflecting mirror which reflects the stereoscope
monitor image. When working on the three-dimensional workspace on the Reachin
Desktop Display, the user can see the virtual representation of the haptic tool in the
same position in which it is placed in the real world. The graphics and the physical
interaction device are perceived as being totally co-located within the workspace. In
this way, the graphics and haptics are consistent and the virtual environment is seen

and felt in the exact same position.
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Figure 3.2 Reachln desktop display

3.3.4 Reachln API

Reachln API is a scene-graph-based application programming interface for creating
multi-sensory, interactive applications. The Reachln API is based on the structure and
standard of VRML [VRML (online)]. It handles the complex calculations required for
the touch simulation and the synchronisation with graphic and Haptic-rendering,
freeing the user to focus on more important issues such as developing application
behaviour or experimenting with haptic algorithms. The Reachin API is built on C++

but it also integrates Python, VRML, and special Haptic-rendering technology. It is
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strictly object-oriented and utilises an advanced object-oriented system.

The virtual reality world is defined by using the scene-graph definition language
VRML. Both the standard graphical and structural nodes are from VRML in the
Reachin API. Additional nodes handling the haptics and dynamics of the scene are
implemented in C++. A user can also define own nodes implemented in C++. The
script language Python [Python (online)] is used in the programming of the objects’
behaviour in the virtual reality environment. A special Python script node is provided

in Reachln API.

3.4 Haptic-rendering Techniques

A haptic-rendering technique is a method that calculates the contact forces generated
during manipulation in a virtual environment and apply them to the force-feedback
device. Most of the rendering techniques used at present are based on a single-point,
which means the haptic output forces are calculated at only one point at any given
time [Petersik 2002].

At present, surface rendering and volume rendering are the two main haptic-

rendering techniques widely used.

3.4.1 Volume Rendering

\Volume rendering is concerned with the haptic representation of volumetric objects.

This technique is developed for accurate representation of object surfaces.
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\Volumetric objects are usually represented by a three-dimensional array of small
volume elements or voxels. Each voxel contains a number of scalar attributes such as
colour and density. An appropriate interpolation function is applied to these attributes
in order to produce continuous output forces [Avila 1996].

\Volume rendering includes three procedures [Lichtenbelt 1998]:

(@) Representing the volumetric object by three-dimensional arrays, namely the
RGBA volume data set. The RGBA volume data set is a four-vector data set,
where the first three vectors are the R, G, and B colour components
respectively, and the last vector, A, represents opacity of the value range
between 0 and 1, where 0 means totally transparent and 1 means totally
opaque.

(b) Reconstruction of an appropriate interpolation function from this discrete
data set. Continuous forces are used as output.

(c) Projecting it onto a 2D output image from the desired point of view.

The main advantage of volume rendering is that internal object structures can be
visualised using haptics, so that people can look at the 3D interior information as a
whole. Interpretation of the interior is rather difficult during volume rendering. The
performance of the volume rendering is significantly computing intensive compared

to surface rendering as each frame might take several minutes to be rendered.
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3.4.2 Surface Rendering

Compared to computational intensity of volume rendering, surface rendering uses
surface representations to calculate output forces. Currently, this is the most popular
haptic-rendering technique. Objects in the virtual environment are represented by
geometric surface polygons; usually triangles. The main advantage of surface
rendering is that it can utilise the same object representation as graphical rendering
[Petersik 2002]. This haptic-rendering technique is suitable for surface rendering of
rigid bodies, such as various geometric objects. The rendering algorithm does not
maintain any information about the internal object structure provided by the geometric
data representation [Petersik 2002].

The development of surface Haptic-rendering has undergone three main stages.
They are the penalty-based-rendering, the god-object-based rendering and the proxy-
based-rendering [Mark 1996]. The basic concepts underlying the three approaches are
the same. When users try to penetrate the haptic-rendered surface with a haptic probe,

a force feedback will push it out of the surface.

3.4.2.1 Penalty-based Rendering

The penalty-based rendering method is a primitive method among the three haptic-
rendering technologies. This method is inspired by the fact that when two
geometrically rigid objects collide small deformations take place at the contact surface

and these deformations can be modelled with springs.
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Consider two colliding objects A and B. When penalty-based collision occurs, the
following parameters, namely contact point p, normal » perpendicular to the surface
across the point p and a penetration depth d, can be measured. The penalty-based
spring force and torque applied to object A are defined as follows:

F,==k-f(d)xn (3.1)

T,=D(p-c,)xF, (3.2)

The spring force F, is calculated as the product of the force function f of distance
vector d and the stiffness constant k. Opposite forces and torques are applied to object
B. The force function f can be linear or a complicated non-linear function. In these
relationships, c,4 is the centre of mass of A and D is the distance vector between p and
Cy.

The penalty-based rendering method has several attractive properties [McNeely
1999] [KiM 2003] [Johnson 2003]:

(@) The force model, based on objects interpenetration, used to compute each

contact point, is simple to construct.

(b) Object contact decision is made in every simulation frame, which makes the
penalty-based rendering method best suited for interactive applications with
fixed time steps, such as haptic rendering.

However, several severe problems prevent penalty-based rendering from

becoming the primary rendering method [Wu 2000] [Larsen 2001]:

i. As the tip of the haptic probe penetrates into the object surface, internal
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forces are generated to halt the tip’s advance through the surface. However, a
deep penetration does not produce sufficient reactive forces as the internal
volume of the object is not modelled.

Moreover, the tip of the haptic probe penetrating one side of the object’s
surface is often close to the other side of the surface. As a result, the
generated force would eventually push the point off the surface.

A severe problem is that several points in an object may have the same
distance to the surface. In these situations, forces generated from the haptic
environment become unstable, since force directions may start to change
rapidly. This results in haptic probe oscillation. Since force fields should be
computed in advance, this method is not appropriate in dynamic

environments.

3.4.2.2 God-object Rendering

God-object rendering technology was first employed for haptic applications to address
the limitations of penalty-based rendering by Zilles and Salisbury [Zilles 1994]. This
method employs a strategy to keep track of a virtual contact point, namely the god
object, which remains on the surface during haptic interaction so that it can prevent
the virtual contact point of the haptic interface from penetrating the object. The force
direction will be accurately applied to the operator, while the position of the god

object on the surface is determined.
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Although the actual positions of objects may overlap in the virtual environment,
the generated interaction forces should be based on a contact state where the objects
cannot overlap. Given the previous location of the god object and the current location
of the haptic interface, the algorithm will identify a number of surfaces on the
rendered object which are currently involved in the interaction and denote them as
active. A surface is active if the god object is on one side of the rendered surface, and
the haptic interface is on the other, and the action takes place within the boundaries of
the surface. Once this set of surfaces, or constraints, has been identified the new
location of the god object can be computed. By finding the closest point on the active
constraint surface to the current haptic interface point, the new location of the god
object can be determined. By choosing planar constraints, the solution can be found
by solving a set of linear equations.

The god-object rendering algorithm technique has successfully solved the
problems raised by the penalty-based haptic-rendering technique, because in this case,
the contact is between objects instead of one point and one object [Salisbury 1995].
The god object tries to be as close to the haptic probe tip as possible and any
displacement of the god object relative to the tip gives rise to a haptic force. The god
object is restrained by a predefined topology calculated from the objects in the virtual
environment. Hence, when the tip penetrates into a surface, the god object is left
outside. This will generate a force pulling the instrument out of the surface. The god-

object can slide on the surfaces of polygons when the area is defined as legal in the
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topology of the objects. Since the god object is always located on a surface, it can not
penetrate through thin objects. However, the god object could slip through very small
gaps between adjacent polygons, hence the predefined topology is used to restrain the

god object instead of the polygons.

3.4.2.3 Proxy-based Rendering

The proxy-based rendering method, which performs the same function as god-object
rendering, was first described in [Ruspini 1997]. It is an extension of the god-object
rendering technology that employs virtual proxy as a representative object to
substitute the phantom probe in the haptic-rendered virtual environment. By using an
intermediate virtual object, namely proxy, with a defined size instead of the point-
shaped god object, the problem of slipping through gaps between polygons is solved.
Because the virtual proxy has a finite size, it does not slip through the tiny numerical
gaps found in most polygonal meshes [Zilles 1994]. The proxy is restrained by
polygons which makes a dynamic environment possible. This is different from god-
object rendering in which a predefined topology is calculated from the objects in the
virtual environment. With the proxy method, the proxy remains on the object surface
when the haptic probe tip penetrates the object surface. Rather than calculating the
force applied to the device directly from the virtual object, the haptic probe is
controlled to move towards the proxy position. The proxy itself can be controlled to

move over the surface of the object with regard to the location of the haptic probe.
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Figure 3.3 illustrates the motion of the virtual proxy. In the absence of an obstacle,
if the virtual proxy’s path does not collide with any obstacles, the virtual proxy moves
directly towards the object. The proxy’s position is advanced until it makes contact
with the first obstacle in its path. When the proxy encounters one or more interfering
primitives, direct motion becomes impossible. The user can still reduce the distance of
the proxy relative to the goal by moving the proxy along one or more of the constraint
object surfaces. The motion is chosen to locally minimise the distance relative to the
goal. The proxy stops when it is unable to decrease its distance relative to the goal,

due to jamming.

Please see print copy for Figure 3.3

Figure 3.3 Motion of the virtual proxy [Ruspini 1997]

To model the interaction between virtual proxy and obstacle, a configuration
space of the proxy (a constraint plane), namely configuration space obstacles (C-
obstacles), which consists of all the points within one proxy radius of the original

obstacle’s surface, is defined (Figure 3.4). In this configuration space, the position of
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the proxy is identified as a point while all C-obstacles have continuously defined
surfaces and nonzero thickness [Ruspini 1997]. The periphery of the C-obstacles,

namely the constraint plane, can then be formed.

{onstraint {Configuration
Plane ~space Obstacle

hstacle

Figure 3.4 Configuration space of the proxy

The difference vector between the proxy and the device position is used to
calculate a proportional output force. In order to update the proxy position while the
device moves within the object, the distance between the device and the proxy

position, |x - p], is locally minimised. This will be subject to:

/\T
n1 x>0,

AT

n2 x>0, (3.3)

I\T
nmx =0,

Where p represents the vector from the current proxy position to the user’s
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position, x represents the new sub-goal vector, and #n;,0 <i <m, are the unit normal

of the constraint planes [Ruspini 1997].

Constraint-based rendering methods eliminate the problem of unstable haptic
output. Since the output forces are calculated in real-time, these methods are also
suited for dynamic environments. Because of the real-time rendering, god-object and
proxy rendering methods are more computationally expensive than penalty-based

rendering methods.

3.5 Force feedback in Haptic-rendered Environment
3.5.1 Spring-damper System

In this configuration, the virtual peg is coupled with the PHANToM Premium Devices
(that is the manipulation point) through a spring-damper system [Mathinsite (online)].
An ideal spring-damper system is depicted in Figure 3.5. It is composed of a mass
attached to a spring and a damper. By applying Newton’s second law and analysing
forces applied on the mass (free body), the following relationship can be obtained

[Mathinsite (online)]:

F =—kx (3.3)
: dx

F =—Byv=—Bx=-bh— 3.4

d v X d (3.4)
d*x

ZF:ma:mizm (3.5)

dt?
where

e k, Brepresent spring constant and damper constant, respectively
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e m is the mass of the spring-system

o Fs, Fd and L'F represent forces applied on the spring, damper and mass

respectively

e g or x isthe acceleration of the mass

o xisthe velocity of the mass

x is the displacement of the mass relative to a fixed point of reference.
Combining the three motion equations, a differential equation for displacement x

as function of time ¢ is obtained:

X+ 28wy x+ w2x =0 (3.6)

. B /k
where damping factor £ = ——, frequency o, = ,|— .
ping g N q y @, o
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Please see print copy for Figure 3.5

Figure 3.5 Mass-Spring-Damper System [Mathinsite (online)]

The peg is a dynamic rigid object in the virtual environment. The forces reacting
on the peg are transferred to PHANTOM probe through the spring-damper system.
The virtual hole is static in the virtual environment while the peg can be moved and
rotated (Figure 3.6) [Chen 2002a]. Forces applied on the PHANToM probe through

the spring- damper system is described as followed:

F=kx+Bx+mx (3.7)

where the x, x, and x represent the displacement, velocity, and acceleration of

the peg respectively [Chen 2005].
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Figure 3.6 3DOF peg-in-hole insertion virtual environment

3.5.2 Force Feedback from Haptic-rendered Environment

The force generated at each point is the sum of the normal force and the friction force

exerted at that point, as shown in Figure 3.7 [Chen 2002b].

normal force

| friction force

——»

Figure 3.7 Normal force and friction force

The direction of the normal force is perpendicular to the contact surface and
points to the moving object. The magnitude of the normal force generated at each
point is calculated by

fc=k-d+c-ad+b-v (3.8)

where
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e disthe depth of the point in the contacting static object

e ad is the accumulated depth during a continuous contact between the point
and the static object

e visthe velocity of the object and is calculated by the current Depth minus the
last Depth divided by the sampling time

e kis the stiffness coefficient

e c s the coefficient for the accumulated depth.

b is the damping coefficient

The torque generated at each point is calculated by

t=fcxD (3.9)

where

D is the distance from the contact point to the rotating centre of the object.
The direction of the friction force is along the contact surface and opposite to the
moving direction. The magnitude of the friction force generated at each point is
calculated by

f=oxz (3.10)

where

e z is the strain describing micro-movements between the two objects, which is

not allowed to exceed a small value called the breakaway distance z,,,.
e o is the stiffness relating force to strain, assuming x; is a point fixed on the

moving object, and y; is an adhesion point on the static object, as shown in
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Figure 3.8 [Chen 2002b].

The following relationship is used to calculate z; by

i —xy, (3.12)
)= X, F Zpayr If |x, —y,-_1| > Zimax (3.12)
Y4,  Otherwise
+—
x X 0 Vo
Y= X = Sy L

Figure 3.8 Definition of the strain z

3.6 Graphic-modelling Techniques

Graphic-modelling provides vision feedback to the operator that bridges haptic-

rendering model and virtual manipulation. The graphic models are realistic and can be

efficiently constructed. Some of the graphic-modelling techniques can also provide

inspiration for haptic-rendering techniques.

The Non-Uniform Rational B-Splines (NURBS) techniques, typically used in

Computer Aided Design (CAD) environments, have also been widely deployed in

computer graphic displays and vision or touch models acquired by robotic systems

[Han 1996] [Chang 1997] [Ikits 2001] [Balasubramaniam 2002]. Using Non-Uniform

Rational B-Splines (NURBS) technique, very complicated object can be modelled and

modified locally. However, the present of the object requires a large mount of data.
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The collision detection is also difficult to perform [Piegl1995].

In the first implementation of the virtual haptic-rendered peg-in-hole insertion
project, OpenGL was used to build the peg-in-hole graphic model and GHOST SDK
for the haptic model. The GHOST SDK (General Haptic Open Software Toolkit),
which accompanies PHANToM, developed by SensAble Technologies for the
PHANToM haptic interface, was used for developing interactive, 3D, and touch-
enabled environment [SensAble (online)]. The penalty-based rendering, developed
through GHOST SDK, cooperates with OpenGL to render both visible graphic objects
and haptic objects. VRML was employed in the final implementation of the graphic
model, while Reachin APl was used to develop the haptic-rendering [Reachin
(online)]. In this case, the objects, created by proxy-based rendering method,
developed through Reachln API can be seen through the VRML model.

Both OpenGL and VRML work based on the same concept that surface of the
objects are made of quadrangle polygons. The visibility of the surface depends on the
direction of the normal perpendicular to the surface. The order of the quadrangle
vertexes of the surface and the direction of the normal must follow the right hand rule.

If the normal faces the viewer, the surface is visible, otherwise it is invisible.

3.7 Haptic-rendered Peg-in-hole Environment

The peg-in-hole assembly process is used as a platform to study the concept. The peg-

in-hole insertion problem is often taken as a standard assembly problem, as it
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concisely represents a constrained motion-force-sensitive manufacturing task with all
the attendant issues of jamming, tight clearances, and the need for quick assembly
times, reliability, etc.

In the developed system, a human operator demonstrates both good and bad
examples of the desired behaviour in the haptic virtual environment. Position and
contact force and torque data, as well as orientation generated in the virtual
environment combined with a priori knowledge about the task, are used to identify
and learn the skills in the newly demonstrated tasks and then to reproduce them in a
robotic system. The robot evaluates the controller’s performance and thus learns the

best way to produce that behaviour.

3.7.1 Penalty-based Peg-in-hole Rendering
3.7.1.1 Haptic-rendering for 3 DOF Device

In the previous research, the haptic-rendered virtual peg-in-hole model was developed
for a 3 DOF haptic device by Yuxin Chen [Chen 2005]. The haptic-rendered peg-in-
hole insertion model was constructed based on penalty-based haptic-rendering method.
This haptic-rendered model, which generates force data, is constructed using the
TriPolyMesh and PointShell methods, developed by the GHOST SDK supplied with
PHANTOM haptic device [Chen 2005].

The TriPolyMesh (triangle polygon mesh) method was used to construct the

haptic model of the peg and hole. The surfaces of the virtual peg and hole were
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formed by rotating the triangles around the coordinate centre (Figure 3.9) [Chen

2002a].

Triangles

Figure 3.9 TriPolyMesh method

The PointShell method was employed to generate force data from the haptic-
rendered model. In the PointShell method, an object is represented as a collection of a
group of important points on their surface. The point P(x, y, z) of the curve C(x, y, z)

in the PointShell model must be singular. The following formula must be applied:

C(x,y,2z)=0 (3.13)
oc_oc_oc_g a0
ox Oy Oz

where Cx, Cy, Cz are the partial derivatives of function C relative to x, y, z [Chen
2005].
A surface normal vector pointing inwards is assigned to every point on the

PointShell to provide the normal force direction [Renz 2001]. Figure 3.10(a)
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illustrates the normal vectors of a PointShell. In the PointShell developed for the peg-
in-hole insertion, the directions of the vectors assigned to singular points are not pre-
determined, as they depend on the normal of the contact surface (Figure 3.10(b))

[Chen 2002a]. The directions are assigned when the peg and hole are in contact.

(a) ih)

Figure 3.10 PointShell method

The developed haptic-rendered model proved quite stable when the peg-in-hole
insertion was performed by the three degrees of freedom (3 DOFs) PHANToOM
Premium 1.0 [Chen 2005]. However, when at a later stage, the haptic device was
upgraded to a six degrees of freedom (6 DOFs) device, PHANTOM Premium 1.5,
strong oscillation occurred during the virtual peg-in-hole insertion and consequently
the simulation could not be carried out successfully. Force and torque data collected

from one unsuccessful peg-in-hole insertion is depicted in Figure 3.11.
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Figure 3.11 Strong oscillation indicated by high torques

Further investigation of the problem revealed that the PointShell and
TriPolyMesh algorithms used in the model were not sufficiently accurate for operation

with a 6 DOF haptic device.

3.7.1.2 Haptic-rendered Model for 6 DOF Device

In order to stabilise the virtual peg-in-hole insertion with tight fit for a 6 DOF haptic
device, three new algorithms have been developed and applied to the physical model
of the process. They include a modified PointShell algorithm, modified TriPolyMesh
algorithm and dual-gstCylinder algorithm.

In the modified TriPolyMesh algorithm, the haptic hole is constructed by a
triangle polygon mesh algorithm and the haptic peg is a gstCylinder, which is a
cylinder-shape class defined by GHOST SDK, representing a geometric primitive
cylinder. The inside, outside and top surfaces of the hole are formed by rotating

triangle polygons around the y-axis as shown in Figure 3.12. The gstPoints, one of a
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variety of data types defined and used in the GHOST API, are added to the vertex of
each triangle polygon, representing a Cartesian three-dimensional point class. A group
of gstPoints is also added to the end edges of the peg. The gstPoint generates contact
force and torque data when it intersects with the body of the peg. Similar to the
previous model, the direction of the vectors assigned to each gstPoint is not
predetermined in advance, as it depends on the normal of the contact surface. This is
determined according to the contact position when the peg and the hole come in
contact. The gstPoints also play an important role in approximately removing the gaps

produced when a polygon is used instead of a circle, as illustrated in Figure 3.13.

Triangle FointShell

Folyzon Foint 53

Mesh I

Figure 3.12 Modified TriPolyMesh method (a)
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Figure 3.13 Modified TriPolyMesh method (b)

In the dual-gstCylinder algorithm, the hole is constructed using two gstCylinders
rather than triangle polygons, forming the inner and outer surfaces of the hole (Figure
3.14). This approach is simple, and the constructed model conforms well to the shape
of the hole and hence there is no inaccuracy in the model. The approach also offers a
simple technique for the construction of the haptic-rendered model. Since the haptic-
rendered model is a real cylinder model, no accuracy problem is introduced according
to the approximate cylinder created by the triangle polygon mesh algorithm. The

gstPoints are defined for the edge of the hole and the two ends of the peg.
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Figure 3.14 Dual-gstCylinder method

In the PointShell algorithm, the hole is defined as a dynamic object created by a
group of gstPoints, as shown in Figure 3.15. The peg is also constructed by the
gstCylinder. The direction of the force generated at each gstPoint is normal to the
surface of the hole at each point. The gstPoints on the hole prevents the virtual peg

from penetrating into the inner surface of the hole.

Figure 3.15 PointShell method
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The developed algorithms were applied to the virtual peg-in-hole insertion
process. The process proved stable, and no jamming was observed when the assembly
was performed in the virtual environment with a 6 DOF PHANToM Premium 1.5.
Some of the experimental results are illustrated in Figure 3.16 —3.18. The
variation of 11 normalised series of x, y, z, fx, fy, fz, Mx, My, Mz, Ax, Ay and Az are
illustrated in these diagrams, where:
. x, ¥, z are positions of PHANToM probe or peg in the world coordinates
[millimetres].

e  fx, fy, fz are reaction forces in the world reference frame from PHANToM
[Newtons],

o Mx, My, Mz are reaction torques in the world reference frame from
PHANToM [Newton*millimetres].

. Ax, Ay, Az are equivalent rotations of the current rotation matrix (orientation)

based on successive rotations around the X, y, z axes. Angles are in radians

and a right-hand rule is used.
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Figure 3.16 Results of using Modified TriPolyMesh method

Figure 3.17 Results of using Dual-gstCylinder method

Figure 3.18 Results of using PointShell method

76



3.7.2 Application of Proxy-based method to Peg-in-hole Insertion

Figure 3.19 shows the developed virtual environment using proxy-based rendering
process for the peg-in-hole insertion process. The peg is a dynamic rigid object in the
haptic-rendered virtual environment. The force and torque reacting to the peg are
transferred to PHANToOM Premium 1.5 through the spring-damper system. The hole is

static in the environment, while the peg can be translated and rotated.

Figure 3.19 6 DOF Peg-in-hole haptic virtual environment

The haptic-rendered model of the peg-in-hole assembly insertion generating force
and torque data is constructed using the virtual proxy method [Ruspini 1997]. The
virtual rigid peg is defined as a virtual proxy and controlled by the physical ReachIn
probe in the haptic-rendered virtual environment. The position of the virtual proxy is
changed according to alteration in the probe’s position.

The surfaces of the peg and the hole are constructed using polygons. This results
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in numerical errors, which can produce gaps in the common edge of the peg and hole.
The size of the virtual proxy is chosen large enough to prevent it from falling into the
gaps.

The force generated at the proxy is the sum of the normal and the friction forces.
The generated torque is the product of the contact force vector applied at the contact
point and the distance vector from the contact point to the rotating centre of the object
[McNeely 1999; Renz 2001]. The full rotation of the proxy is recorded
as (fx, Sy fz,é?). This describes an arbitrary rotation about an axis vector, where

(fx,fy,fz) are the axis vectors and ¢ is the angle in radians in the right-handed

direction. The axis vector is of unit length. The rotation matrix is calculated by:

FfvO+cO £ fvO- [0 f.fvO+ f,s0

0
Rot (f.,0) = fofvO+ f.s0  f fvO+cO  f.fvO—fs0 8
1

fofvO+ fs0  f fvO+ fs0 f.f.vO+cO
0 0 0

Wherevd =1-cosé,cl =cosé ,s6 =sin@d [Niku 2001]
Figure 3.20 shows the position, force and torque data as well as the change in the
rotation angle from the last step to the current, obtained from the haptic-rendered

virtual environment.
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Figure 3.20 Training data obtained from the virtual environment

3.8 Summary

In this chapter, the backgrounds of haptic concept and two popular Haptic-rendering
technologies have been reviewed. The haptic-rendered virtual environment, including
PHANToM, GHOST SDK, VRML and Reachln API, has been described. Penalty-

based rendering and proxy-based rendering methods, based on surface rendering
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technology, employed in the peg-in-hole insertion procedure, as case studies of the
haptic-rendered virtual environment, have been studied. The algorithms used to
calculate the collision force and torque of peg and hole have been described. The
generated force and torque data from the haptic-rendered virtual environment have

also been presented.
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CHAPTER 4 SKILL ACQUISITION

4.1Introduction

The paradigm proposed to acquire manipulation skills from a haptic-rendered virtual
manipulation is introduced and studied in this chapter. The deployed skill acquisition
methods are primarily based on behavioural cloning methods. Manipulation states are
generalized offline by peg and hole’s physical contact relations or statistic methods,
such as Fuzzy Clustering algorithms, according to the characteristics of the generated
manipulation data. Hidden Markov Model is used to estimate the next optimal state, in
another word the optimal state sequence. These approaches are described in detail and

their main characteristics are highlighted.

4.2 Background

Traditional control theory uses a mathematical model of a physical process to predict
its behaviour and adopt appropriate control actions. Unfortunately, either many
processes are too complicated to be accurately modelled or there is insufficient
information available about the process environment.

Heuristic methods, such as artificial neural networks, genetic algorithms, fuzzy
control, expert systems and reinforcement learning have been developed to replicate
the human ability to control and monitor a process without a need to mathematically

model it. These methods, contrary to the ability of a human operator, have their own
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strengths and limitations. Each method is more appropriate for a particular application
and might prove ineffective for another.

Moreover, controlling a complex dynamic system, such as a robot, a plane or a
crane, usually requires a skilled operator with full understanding of its operation.
Some machine learning methods, such as artificial neural networks, genetic
algorithms and reinforcement learning, do not use prior knowledge about the system
to be controlled. This results in a low successful learning rate, low robustness, a
considerable amount of time-consuming experimentations with the dynamic system,
and difficult interpretation and comprehensibility of the system. However, a human
operator usually learns initial strategies from their prior knowledge of the system or
from demonstrations by experienced operators.

Donald Michie [Michie 1993] introduced the concept of behavioural cloning,
aiming at deploying the skills of an expert operator to generate a generic automatic
control algorithm using heuristic and machine learning techniques. This method was
originally motivated by the difficulties encountered in getting expert controllers to
produce detailed explanations of their skills. A skilled operator’s control traces are
used as examples for machine learning algorithms to reconstruct the control strategy
that the operator executes subconsciously. In general, there are two goals in
behavioural cloning. One is to generate “good performance” clones, which can
reliably carry out the control task. Another is to generate “meaningful” clones, which
can help to achieve a better understanding of the human operator’s subconscious skill
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[Urbancic 1994]. Behavioural cloning has been successfully used in a number of
domains. These include pole balancing, production-line scheduling [Kerr 1994],
piloting [Bain 1999; Sammut 1992], and operating cranes [Suc 2000]. These
experiments are reviewed by Bratko [Bratko 1998].

Decision trees or regression trees are often used in inducing behaviour cloning
controllers. Such clones do provide some insight into the control strategy. However, in
general, they lack the conceptual structure that would clearly reflect the causal
relations in the domain and the goal structure of the control strategy [Suc 1998].
Clones in the form of decision trees do not explicitly show any time ordering between
events in the controlled system and the actions taken. Although successful clones have
been induced in the form of decision trees or regression trees, such as C4.5 [Esmaili
1995; Pearce 1999] and locally weighted regression [Suc 1998], the following
problems have generally been observed with this approach [Suc 1998]:

(@) Behaviour cloning controllers are not stable with regard to small changes in

the control task.

(b) The proportion of successful controllers induced is low, typically below
50%.

(c) Induced clone controllers lack the typical elements of human control
strategies such as goals, subgoals, phases and causality, and hence cannot
adequately generalise the human skill.

The logic-based machine learning method uses the background knowledge, which
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iIs known prior to learning. For example, Inductive Logic Programming (ILP)
[Muggleton 1992] is a kind of logical-based machine learning. Some experiments
with ILP were performed in the control task modeling a pilot flying a F-16 flight
simulation on a leveled left turn [Camacho 1995], but the results were generally not
better than those using decision or regression trees.

Some behavioural cloning approaches employed from traditional control theory
have also proved effective. In Suc [Suc 1997], cloning controllers take the form of
Linear Quadratic (LQ) controllers with subgoals, where in the subgoals are
automatically induced from the operator’s control traces. The reconstruction of a
human operator’s skill exploits some elements of the theory of Linear Quadratic
Regulator problems [Bertsekas 1987]. Both the dynamics of the system and the
example behavioural traces are considered in the learning process. The system model
control skills suggested by Isaac [Isaac 2003] are separated into a reactive level and
an anticipatory level, that is, the learning of traditional PID (Proportional Integral
Derivative) controllers as rule sets and combining them into a goal-directed
hierarchical framework. These approaches have significantly improved both the
clones’ robustness in regards to changes in the control task, and the yield of the
cloning process. However, this approach still has difficulties in domains with

significant nonlinearities.
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4.3 Perception Module

The basic skills are derived and structured by the perception module. It derives the
basic skills from the training data produced through manipulation in the virtual
environment and stores them in models which can generate outputs according to
inputs. These models can also be viewed as databases that store the skills. The skills
stored in the database or in the model are used by the planning module to control the
manipulator. Skills in the database can be further augmented by the skills learned
online during physical manipulation by the manipulator.

The human performs manipulations by choosing from a limited but possibly large
repertoire of movement primitives or basic skills. A manipulation task usually consists
of a sequence of basic skills. Identification of these basic skills and mapping them on
to an equivalent series of robot manipulation primitives form the core of an algorithm
for skill acquisition and transfer of those skills from the human to a robotic
manipulator. Such skill-based manipulation is an effective way for a robotic
manipulator to execute a complex task.

The basic skills are defined according to the contact-state transition of a task,
independent from the configuration of a manipulator [Nakamura 1996]. In a virtual
manipulation environment, the basic skills can be also identified by the contact states
and state changes [Onda 1995; Takamatsu 1999]. Using this approach, the basic skills
can be automatically extracted from the manipulation carried out in the virtual

environment.
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The structure of the Perception Module of this project is illustrated in Figure 4.1.
In the first step, the training data, generated from the haptic-rendered virtual
environment, are refined by removing noise data and compressing highly correlated
vectors. In the second step, manipulation states are generalized either by peg and
hole’s physical contact relations or by some Fuzzy Clustering algorithms. In the third
step, Hidden Markov Model is applied to estimate the optimal state sequence. The
physical peg-in-hole assembly can start from any predefined manipulation state.
Optimal state sequence can then be used to estimate the next optimal state to follow.
The Locally Weighted Regression (LWR) method is encoded as the approximator for
the trajectories in each state during physical manipulation. The initial locally weighted
regression learning modules are developed by the online training data generated from
the haptic-rendered virtual environment. These locally weighted regression learning
modules will be also improved in real-time by the data generated from the physical

peg-in-hole assembly procedure.
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4.3.1 Noise Removal

The training data generated from the haptic-rendered virtual environment may include
inconsistent or unintended actions. These data must be identified and removed from
the training data in the Perception Module before skill acquisition analysis.

The noise in the data is removed before the analysis. The following algorithm
[Kaiser 1996] is applied to refine the data, in which u is the action vector:

1. Remove irrelevant actions that do not enhance an action. This is defined

by ||| < 8,,8, >0, where &, is an application-specific threshold.
2. Remove the operator’s rough control. If the differences between two

continuous actions are too large, their average value will be used instead.

4.3.2 Data Compression

In some situations, the dimension of the input vector is large, but the components of
the vectors are highly correlated (redundant). It is useful in this situation to reduce the
dimension of the input vectors. An effective procedure for performing this operation is
Principal Component Analysis (PCA) [Smith 2002]. This approach generates the
following outcomes:

(@ It orthogonalises the components of the input vectors so that they are

uncorrelated with each other.
(b) It orders the resulting orthogonal components and principal components, so

that those with the largest variation come first.
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(c) It eliminates those components that contribute the least to the variation in

the data set.

Principal Component Analysis (PCA) is a classical statistical method which
identifies patterns in data and expresses the data to highlight their similarities and
differences. It is a common technique for finding patterns in data of high dimension.
Once these patterns in the data have been found, the data can be compressed. The
method is based on linear transformation which has been widely used in data analysis
and compression and has found popular use in face recognition and image
compression.

The process of human-to-robot skill transfer usually involves recording many task
states and sensory information. This results in a large number of dimensions in the
recording of human skills data and low efficiency due to the presence of redundant
data. Reduction in the dimension of data helps to interpret and understand the data
more effectively. In addition, it increases the efficiency of the machine learning
algorithms.

Principal Component Analysis is based on the statistical representation of a
random variable. The aim is to find a set of M orthogonal vectors in the data space
that account for as much data variance as possible. Projecting the data from its
original N-dimensional space onto the AM-dimensional subspace spanned by these
vectors results in a dimensionality reduction that often retains most of the intrinsic
information in the data [Smith 2002].
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For given a set of training vectors x from the n dimensional input space R",

X)) =), x,(2,)0x,(2,)) (4.3)

where ¢ is the kth observation time, the Principal Component Analysis looks for
vi(t), which is a linear combination of the components of X(z)

nt)=X@)x4 (4.4)

so that the approximation to X

X =y(t)x4 (4.5)

2

e:{ﬂX—f(

} (4.6)
e is minimised.

The residuals, 4, can be found using the same method. In general,

X(1) = zl;[X(tk) x A 1x A, + & (4.7)

=)
where g is the residual.
Examples of how to compress two-dimensional data set into one-dimension by
applying Principal Component Analysis algorithm, are shown in Figure 4.2. Specific

steps of the method are described respectively.
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. b. Normalised data with the
a. Original data . c. Rotate the data
eigenvectors of the

covariance matrix

d. New data points by applying the PCA e. The reconstruction from the data
using both eigenvectors derived using only a single eigenvector
Figure 4.2 PCA example

The learning data received from the Manipulation Task Planner Module was

refined before being passed to the Learning Module.

4.4 Trajectory Cloning by Data Mining Tools

As the first attempt in this research, the data mining tool See5 was applied in offline
analysis on one hundred groups of data, which are collected from the haptic-rendered
virtual environment. The peg-in-hole assembly task was used as the case study
application. The dataset was recorded in the form of (position, force, torgue,

orientation), as input into the Perception Module. Output of the Perception Module
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are the sensor feedbacks to the control motor controlling the peg, which includes the
motions for example, forward, backward and rotation, etc.

One hundred groups of successful peg-in-hole assembly tasks were performed.
The experimental data, including position, force and torque information obtained by
manually controlling the virtual haptic-rendered peg-in-hole assembly model by the
PHANTOM were recorded in a data base. The characteristics of insertion were varied
for each insertion as much as possible. For example, operations were performed at
different speeds, some with less reliability, experiencing occasional oscillations and
collisions in some cases. Some insertions were performed conservatively and slowly
to potentially avoiding oscillation of the dynamic peg and damaging the peg and the
hole in physical insertion. Oscillation of the dynamic peg in the virtual
haptic-rendered environment, caused by the gravity of the peg and the vibration of
operator’s hand when handling the haptic probe, can strongly preclude learning of the
manipulation skills. It, however, does not adversely affect the insertion process in the
virtual environment. Any damage caused by collision between the peg and the hole
can be avoided by the Reachln maximum force and torque settings. The constraints
imposed by this algorithm are scaled to match the limitations of the physical sensor.

The recorded data is interpreted as noise when there are force or torque signals
present in the signal without any collision or jamming between the peg and hole.
Another kind of noise data can be removed by comparing the data points with the
Mathematical Expectation of force and torque at certain positions. For example,

92



wrong force or torque directions with large or small values are sum of the real force or
torque value and noise caused by rough control of the operator. Such data is removed
from the training set.

Two methods are used in generating the optimum trajectory, namely, General
Strategy and Short Strategy.

In the General Strategy method, the Mathematical Expectation of force and
torque data, E( f, (force, torque)), is estimated at every position p, .

In this case, the force and torque data are random discrete values. Following
formula is used to calculate the Mathematical Expectation of the one hundred groups

of force and torque data at every position p,:

E(f, (force,torque)) = Z Prob(f, (force,torque))- f, (force,torque) (4.8)

Where Prob(f, (force,torque)) is the corresponding probability of the force and
torque data at any position p, and f, (force,torque) is the force and torque data at
that position.

This trajectory provides a general strategy for the operation of the operator. The
force and torque results are illustrated in Figure 4.3. The noise positions are removed
by employing the method introduced in section 4.3.1. The abnormal positions, which
are the positions recorded in the one hundred individual peg-in-hole assembly tasks,
but appears less than 10 times (less than 10%) in overall position data base, are
removed. The most frequent 2695 positions, appeared in the one hundred attempts, are
used as the testing position sample, while the Mathematical Expectation force and
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torque value at this position is depicted accordingly.
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Figure 4.3 Mathematical expectations of force and torque data
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In the Short Strategy method, after the removal of the noise, the trace with the

VAN

shortest time is chosen. The force and torque results are depicted in Figure 4.4.
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Figure 4.4 Fastest operation result
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Since, the trace is sampled at a frequency of 30Hz, a successful trace typically
lasts approximately between 40s to 130s, providing about 1200 to 4000 samples.
Strategies for faster operators are more complex. This can vary from one operator to
another, requiring more advanced skills to decrease oscillations and large collisions
due to high acceleration. Hence, the General Strategy produces better results than the
Short Strategy in this application.

The C4.5 algorithm in the data mining tool See5 (Windows version) is used to
generate the symbolic rules from the data obtained from virtual environment. The
rules specify basic skills by deriving the assembly trajectories according to the desired
goal or responses. By choosing the “Ruleset” selection as the goal of the algorithm,
the decision trees as “if—then statements” are generated. The rules can be easily
converted into C language.

The See5 operates based on two input files: the Names file and Data file. The
Data file contains the recorded data set in the format of (position, force, torque,
orientation). The Names file, which describes the attributes and classes, contains the
recorded attributes and classes of the force and torque data. Since it is important to
know the current position of the robot tool tip and the direction of the next movement,
the directions of the force and torque signals are more important than their magnitudes.
Hence, the attribute values of force and torque are defined as negative, positive, N/A
and zero. The classes file defines the actions which should be taken by robot on a
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particular condition. It includes Forward, Stop, Backward, Right, Left, Backward—

Right and Backward —Left. The generated rule has a typical format as shown below:

Rule 1:

fy = Negative

-> class Backward
Rule 2:

fx = Positive

fy = Negative

tz = Positive

-> class Backward-Right

Default class: Forward

The CA4.5 algorithm is often used in inducing behaviour cloning controllers. This
cloning method can provide some insight into the manipulation strategy. However,
this kind of method cannot reflect the causal relationships in the manipulation
procedure and the goal structure of the manipulation strategy. Hence, the conceptual
structure is not comprehensive. Moreover, this kind of method does not explicitly
show any time ordering between events in the controlled system and the actions taken.

In the following sections, more innovative algorithms will be employed to
identify different manipulation states in order to reflect the overall manipulation
control strategy.
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4.5 Trajectory Cloning using Manipulation State Classification

The trajectory cloning, widely used in behavioural cloning technology, is employed in
this work as a major method for classifying different manipulation states. When the
trajectory constraints, groups of dataset, are recorded in a database and then analysed,
the characteristic of each manipulation state can be easily generalized. Moreover,
cloning different trajectories in different manipulation states will be much easier than
cloning of the entire manipulation trajectory. Since in the same state, trajectory
constraints are more similar than that of the entire manipulation trajectory, different
machine learning algorithms can be used in different states to clone the trajectories. In
contrast to cloning entire trajectory as discussed in section 4.5, generalising different
state characteristics is more accurate and time efficient. This section has its focus on
algorithms which can identify different manipulation state characteristics.

The Hidden Markov Models is applied to the offline data obtained from the
haptic-rendered virtual environment to acquire the basic skills applied by the human
operator during virtual manipulation. The data and the generalized three groups of
state characteristics by three different methods, namely the physical contact
relationships, the Fuzzy Gustafson-Kessel clustering algorithm and the Competitive
Agglomeration algorithm, are used to generate three optimal state sequences

individually.
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4.5.1 Manipulation States Classification by Physical Contact
Relationships

The basic skills are defined according to the contact-state transition of a task,
independent from the configuration of a manipulator [Nakamura 1996]. In a virtual
manipulation environment, the basic skills can be also identified by the contact states
and state changes [Onda 1995; Takamatsu 1999]. Using this approach, the basic skills
can be automatically extracted form the manipulation carried out in the virtual
environment.

In the first stage, the peg-in-hole insertion procedure is classified into several
states according to the peg and hole’s contact relationships. In order to express the
geometric information of the peg and hole, the edges and surfaces of the peg and hole
are indexed by symbols. As shown in the Figure 4.5, P and H represent the peg and
the hole respectively, whereas e is the edge, s is the surface and o is the outer platform
surface of the hole.

The recorded training data is classified into several sub-databases and an index is
assigned to each according to the peg and hole’s contact relationships. When the peg
and hole’s contact states correspond to one of those states, the input information is
directly indexed to a specific sub-training data. This streamlines and speeds up the

search of the training database.
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Figure 4.5 Peg and hole indexed by symbols

The contact relations of the peg-in-hole assembly state classifications are shown
in Table 4.1. When there is no peg and hole contact, this kind of contact relationship is
grouped as state one. The differences between similar contact states, such as peg left
edge to the hole outer right surface and peg right edge to the hole outer left surface
and so on, are simply distinguished by force and torque directions, which can be
grouped as one state. Hence, the peg edge and hole outer surface contact, peg edge
and hole inner surface contact, peg edge and hole edge contact, peg surface and hole
edge contact, and peg surface and hole inner surface contact can be grouped as state
two, state three, state four, state five and state six respectively.

All the remaining states are the jamming states. State seven is a two-point contact
state in which the point on the peg edge touches the hole inner surface and hole edge
contacts peg surface. State eight is a two point-contact state that the peg edge touches
the hole edge. State nine is a three-point contact state in which the peg-edge touches
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the hole-edge as well the hole inner surface. Variations in the hole angles and the peg

position can transfer the system from jamming state to non-jamming state.

State | Contact Condition (6 DOF) Condition (3 DOF)
1 No contact 0 0

2 One-contact (Pe , Ho) (Pe , Ho)

3 One-contact (Ps, He) (Ps, He)

4 One-contact (Pe , Hs) (Pe , Hs)

5 One-contact (Pe , He) State 2 or 4

6 One-contact (Ps, Hs) Never happen

7 Two-contact (Pe, Hs) & (Ps, He) (Pe , Hs) & (Ps, He)
8 Two-contact (Pe, He) Never happen

9 Three-contact | (Pe, He) & (Ps, He) Never happen

Table 4.1 6 DOF assembly classification

The physical system has only three degrees of freedom (3 DOFs) compared to Six
degrees of freedom (6 DOFs) in the virtual model. This implies that that some of the
states defined in the haptic-rendered virtual environment do not have any direct
correspondence in the physical system. For example, the state 6 defined in Table 4.1
will never happen in the three degrees of freedom (3 DOFs) physical system. It

requires the axes of the peg and hole to be parallel and have a distance of 0.05 mm
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which is impossible in practice. The centre of the circular outer platform will always

be on the axis or the extension axis of the peg. The contact states 8 and 9 cannot

happen in the physical system either. As shown in Figure 4.6, such a scenario requires

points b and c to be the contact points on the edges of the peg and the hole, and point

a on the hole edge would have come into the peg, which is impossible in the real life.

The contact state 5, the one-point contact scenario which happens between the peg

and the hole edge is quite unlikely. This can be further grouped into contact states 2 or

4 depending on the directions of the force and the torque.

extension axls

centre of
peg the platform
pEZ
bic)
hole hole

Figure 4.6 Supposed state 8 or 9

1
N\
/
£
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b

Hence, the contact state relationships in the three degrees of freedom (3 DOFs)

physical system can be depicted as shown in Table 4.2. Manipulation states are also

redefined.
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State | Contact Condition (3 DOF)
1 No contact 0

2 One contact (Pe , Ho)

3 One contact (Ps, He)

4 One contact (Pe , Hs)

5 Two contacts (Pe, Hs) & (Ps, He)

Table 4.2 3 DOF assembly classification

The peg-in-hole insertion procedure is illustrated in Figure 4.7. The contact states

are modelled using their kinematic constraints. The contact configurations correspond

to the discrete states of a discrete event system.

insar'ns's

Figure 4.7 Peg-in-hole contact states

The state classification result along with the peg position and force and torque values

of one successful peg-in-hole insertion operation is depicted in Figure 4.8. The

generated state characteristics will be used to generate optimal state sequences using

the Hidden Markov Model as described section 4.7.
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4.5.2 Manipulation States Classification by Fuzzy Clustering
Algorithm

Instead of obtaining the basic skills from the contact-state transition of a task, they can
be obtained from in virtual environment using statistical methods.

Fuzzy clustering algorithms are described in this section. These methods use
statistic analysis of a large amount of data, for example, the data generated from a
haptic-rendered virtual environment, and divide them into clusters according to their
common characteristics. The fuzzy c-means algorithm (FCM) as the basic fuzzy
clustering method will be introduced. The Fuzzy Gustafson-Kessel (FGK) algorithm
and Competitive Agglomeration (CA) algorithm, as some variations of FCM designed

to produce optimal group number of clusters will be then described.

4.5.2.1 Fuzzy c-means Clustering Algorithm

The fuzzy c-means algorithm (FCM) is a widely used fuzzy clustering algorithm
[Bezdek 1981]. All other fuzzy clustering algorithms are evolved from the fuzzy
c-means algorithm. It is important to have a detailed understanding of this algorithm.
This algorithm divides a given dataset X ={x,,..x,}< R into c clusters by

minimising the following function:

JXUB) =YY urd*(f,x) (4.9)

i=1 j=1

Subject to Z”/ >0 for all ie{l,...,c}, which guarantees that no cluster is
=1
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empty; Zu} =1 forall je{l...,n}, which ensures that the sum of the membership
j=1

degrees for each datum equals 1, where u; €[0,1] is the membership degree of
datum x; to cluster i, S =(c,) isthe prototype of cluster 7, c; is the centre of cluster i,
and d(p,,x;) isthe distance between datum x; and prototype S,. The cxn matrix
U =[u,] is also called the fuzzy partition matrix and the parameter m is called the
fuzzifier. Usually m is chosen as two.

The fuzzy c-means algorithm divides a given dataset X into c clusters of equal
size and shape. The shape of the clusters depends on the distance function dz(c,.,xj).
Using the Euclidean distance as the most commonly used option, the data is divided
into ¢ spherical clusters.

Although the fuzzy c-means algorithm is widely used, it fails for some
classification tasks. If the shape of the clusters is not spherical or if the clusters differ
considerably in their size, the result of the fuzzy c-means algorithm is often not very
intuitive and only poorly fits the data. Another problem of the fuzzy c-means
algorithm is its sensitivity to noise and outliers. This sensitivity is caused by training
every datum with the same weight and thus the same influence on the classification

result [Ahmed 2002].

4.5.2.2 Fuzzy Gustafson-Kessel Clustering Algorithm

The Fuzzy Gustafson-Kessel algorithm (FGK) is applied to the trajectory associated with the
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manipulation performed by the operator in the haptic virtual environment. The algorithm classifies
the trajectory into a number of clusters, each representing a state. In the first stage of the process,
the constraints on the state variables are learned. These constraints determine the corresponding
desired state and choose the best trajectory to the next state. The Fuzzy Gustafson-Kessel classifier,
obtained by training the data from the haptic-rendered virtual environment, will be used in this
work to estimate the assembly states in online analysis. Principal Component Analysis (PCA) is
then applied to each cluster for dimension reduction and feature extraction. The number of clusters
is determined based on a flatness index of the clusters combined with the PCA compression rate
[Babuska 1995]. Actions that determine the best trajectory from the current state to the next state
are computed using knowledge of the system dynamics, acquired through the trained Hidden
Markov Model (HMM). Locally Weighted Regression (LWR) method will be encoded as the
online nonlinear function approximator in each cluster to generate the trajectories.

Figure 4.9 illustrates the skill-acquisition procedure. The first row represents the
offline training procedure. One hundred groups of data obtained from the
haptic-rendered virtual environment are used in Fuzzy Gustafson-Kessel classifier
training. Thin lines represent the flow of data in the training progress. The second row
represents the online data analysis. Thick lines represent the sensory data in the
physical assembly procedure obtained from the experimental rig. Dotted lines represent
the use of the previously trained module. Data is refined in the Manipulation Task

Planner Module by the algorithm introduced in Section 4.3.1.
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Figure 4.9 Skill acquisition procedure using FGK

The Fuzzy Gustafson-Kessel clustering algorithm has been widely used for fuzzy data
analysis and pattern recognition [Babuska 1998], because it is flexible in automatically
determining the optimal hyper-ellipsoidal cluster from the training data set. This
algorithm uses statistical analysis of the data generated from the haptic-rendered virtual
environment, and divides them into groups according to their common characteristic.

A separate norm matrix A; is calculated to determine the shape of the clusters.
These norm matrices are updated together with the centres of the corresponding
clusters. Therefore the prototypes of the clusters are pairs (v;, F)).

M, =(det F)""F™* (4.10)

where v; is the centre of the cluster and F; is the covariance matrix, which defines
the shapes of the clusters. The parameters v; and F; are defined in equations 4.11 and

4.12 respectively.

1 - m
) = V;“f :, (4.11)
N
=3 ul (e, vz, ) (412)
Ni Jj=1 ‘ ‘
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The Fuzzy Gustafson-Kessel clustering algorithm computes the distance to the
prototypes as:

dz(zj,v[) =(z, —v[)TMi(zj -v,) (4.13)

where z; represents each data set.

Fuzzy Gustafson-Kessel clustering algorithm searches for the partition matrix and
the cluster prototypes in order to minimise the following function:

JZV ) =Y S urd () (4.14)

P

where u; is the membership degree of the data vector z; in the ith cluster.

The prototypes are updated according to equations 4.11 and 4.12 [Hoppner 1999]:

Principal Component Analysis (PCA) algorithm is then applied on the recorded
data from the haptic-rendered virtual environment, because the dimension of the
recorded data from the haptic-rendered virtual environment is large, and the
components of the data are highly redundant. It is useful in this situation to reduce the
dimension of the input vectors. Principal Component Analysis (PCA) is an effective
procedure for performing this operation.

The number of clusters must be specified before clustering. The higher the
number of clusters, the finer will be the approximation of the nonlinearity. However, it
will require the estimation of more parameters with higher variances. If no prior
knowledge on the number of clusters is available, then automatic procedures can be
applied.

A new approach for automatic determination of the number of clusters, based on a
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flatness index of the cluster [Babuska 1995] and Principal Component Analysis (PCA),
has been developed in this thesis. In this approach, the eigenvalues are sorted from the
cluster covariance matrix C; in a descending order, 4, >4,>..>2, . When
approximating the regression surface, the obtained hyperellipsoidal clusters are flat,
that is, one of the axes is much shorter than the others. Consequently, the smallest
eigenvalues 4,, are significantly smaller than the remaining ones. In order to
efficiently approximate the regression surface by hyperplanes, the clusters should be
as flat as possible. The flatness index ¢; of a cluster is defined as a ratio between the
smallest and the largest eigenvalues.

t; =2, Ay (4.15)

Where 4,, and A, arethe smallest and the largest eigenvalues respectively.

An aggregate measure value ¢, called the average cluster flatness is defined in
formula (4.16)

l C
tA :Zzl

ﬁ’i,n
Aia

(4.16)

The data cluster sets obtained from the Fuzzy Gustafson-Kessel Model consist of
fourteen different parameters, including force and position variables, and could be
investigated further in the future research. In order to reduce the dimension of the data,
Principal Component Analysis (PCA) is applied to each cluster. The compression
level p;, is determined according to the error produced in the compression process.

p.,=d., D, (4.17)

in
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Where d;, is the most significant eigenvalue number or the remaining dimension
numbers after compression, and D;, is the number of original eigenvalues.

The eigenvalue number d; , is decided by an error percentage e;.

2

e ={x.- X[} (4.18)

e; 1s the Frobenius norm between the compressed matrix )?l. and original data

matrix X,. The error tolerance £ must be set before the calculation of p;,. The
number of clusters and the compression rate of each cluster is calculated by the

following function:

1 < ﬂ‘in
PT == (""xp,) (4.19)
c'Z A,

i

The optimal values of A;, and d;,, are found by minimising PT.
As a result, five clusters are determined. The compression rate p and the error

percentage e for each cluster are shown in Table 4.3.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

p (e <10%) 28.6% 21.4% 35.7% 35.7% 28.6%

Table 4.3 Error percentage below 10% and the maximum compression rate achieved

The state classification result along with peg position and force and torque values

of one successful peg-in-hole insertion operation is depicted in Figure 4.10. The
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generated state characteristics will be used to generate optimal state sequences by the

Hidden Markov Model in section 4.7.
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Figure 4.10 State classification result by FGK
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4.5.2.3 Competitive Agglomeration algorithm

The Competitive Agglomeration (CA) algorithm is applied to the offline data obtained
from the haptic-rendered virtual environment to acquire the basic skills applied by the
human operator during virtual manipulation. It has been necessary to remove the noise
in the data before the analysis. Data was refined in the Manipulation Task Planner
Module by the algorithm introduced in Section 4.4.

The algorithm classifies the trajectory into a number of clusters, each representing
a state. In the first stage of the process, the constraints on the state variables are
learned. These constraints determine the corresponding desired state and choose the
best trajectory to the next state. The Competitive Agglomeration classifier, obtained
by training the data from the haptic-rendered virtual environment, is used to estimate
assembly states in online analysis. Actions that determine the best trajectory from the
current state to the next state are computed using knowledge of the system dynamics,
acquired through the trained Hidden Markov Model (HMM). Locally Weighted
Regression (LWR) method will be encoded as the online nonlinear function
approximator in each cluster for the trajectories.

Figure 4.11 illustrates the skill-acquisition procedure. The first two rows represent
the offline training procedure. One hundred groups of data obtained from the haptic
virtual environment are used in the Competitive Agglomeration classifier training. In
this diagram, thin lines represent the flow of data in the training progress, the third
row represents the online data analysis, thick lines represent the sensory data in the

113



physical assembly procedure from the experimental rig, and dotted lines represent the

use of the previously trained module.
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Figure 4.11 Skill acquisition procedure using CA

The Competitive Agglomeration algorithm has several advantages over other
clustering algorithms:
(@) The clustering does not suffer from initialisation and the local minimum.
(b) The optimal number of clusters is determined after minimisation of the
fuzzy prototype-based object function.
(c) The points are dynamic and can move from one cluster to another to
minimise the fuzzy prototype-based object function.
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(d) The algorithm can be used to find clusters of different sizes and shapes by
using an appropriate distance measure in the fuzzy prototype-based object
function.

The Competitive Agglomeration (CA) algorithm commences by classifying the
data set into a large number of clusters. As the training proceeds, clusters compete for
survival. Those with large cardinalities survive and clusters that lose the competition
are removed. The training process gradually decreases the number of clusters. This
will result in an optimal number of clusters when the fuzzy prototype-based object
function is minimised.

Frigui and Krishnapuram [Frigui 1997] first introduced the Competitive
Agglomeration (CA) algorithm as one of the clustering methods mostly for use in
image segmentation.

The Competitive Agglomeration (CA) algorithm searches the optimal cluster

prototypes in order to minimise the following prototype-based object function:

M N M N
J(Z’U’ V) = Zzu;dz(zjavi)_aZ[zug]z (420)
i=1 j=1 =1 j=1
M
Subject to Zug,- =1 for je{l,...,N}L (4.21)
i=1

where 7 ={z,...,z,}is a set of N data objects represented by r-dimensional

feature vectors. v =[w,...,v,, ] represents M cluster prototypes, each of which have to

be determined, and v; is the centre of the cluster. U =[u,] is the membership degree

of the data vector z; in the ith cluster. d 2(Z j,v,.), representing the distance from
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feature vector z; to the cluster centre v;.

The Fuzzy Maximum Likelihood Estimation (FMLE) algorithm [Gath 1989] is
used to divide the given data sets into clusters of different sizes and different shapes.
FMLE interprets the data set as a p-dimensional normal distribution. The distance of a
datum to a cluster is inversely proportional to the posterior possibility (the probability
of selecting the ith cluster given the jth feature vector) that a datum z; is the realisation

of the ith normal distribution.

(Zj _fi)F;'_l(Zj _fi)T

_ (det(F)?
P

d*(z,,v,) = xp( 5 ) (4.22)
F=t 3w, )G, Y (4.23)
R =%iu (4.29)

The first part of the prototype-based object-function J(z,u,v), as the sum of
squared distances to the prototypes weighted by constrained memberships, is used to
control the shapes and sizes of the clusters and to obtain the compact clusters. The
global minimum of the first component is achieved when the number of clusters M is
equal to the number of samples N. The second part of prototype-based object
functionJ(z,U,7), used to control the number of clusters, is the sum of squares of the
cardinalities of the clusters. The global minimum of this part is achieved when all
points are in one cluster. When both components are combined and « is chosen
properly, the final partition will minimise the sum of cluster distances and divide the

data set into the smallest possible number of clusters.
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The parameter « is chosen by:

= ZZ127:1”;d2(ZJ’Vi)
0{(9) =1e : w N 2
Zi:l[ijluij]

where @ is the iteration number, 7, is the initial value and 7z is a decay

(4.25)

factor.

The equation for membership u, update is given by:

uij — uFMLE + uBias (426)

1/(2d%(z,,v,)

w S 1Qd (2, v,) (4.27)
i1 Vi
@ SN, 2d*(z,,v,)) )
d*(z;v) " @A (z,,,) '
u™E is the membership term in FMLE algorithm which takes into account

the relative distance of the feature point to all clusters,

u”™ is a signed bias term which depends on the difference between the
cardinality of the clusters of interest, and the weighted average of cardinalities from
the point of view of feature points,

The value of « is initially set high and then decreased slowly in each iteration
to help the Competitive Agglomeration algorithm to seek an appropriate partition with
an optimal number of clusters. As the algorithm proceeds, the second part of equation
7 enables the cluster to include as many points as possible. Through the process, a few

clusters eventually survive and the rest disappear.
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Figure 4.12 State classification result by CA

The state classification result along with peg position and force and torque values

of one successful peg-in-hole insertion operation is depicted in Figure 4.12. The
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generated state characteristics will be used to generate optimal state sequences by the

Hidden Markov Model in section 4.7.

4.6 Manipulation States Learning by Hidden Markov Models

After the manipulation states are identified by the above algorithms in the section 4.6,
the Hidden Markov Models (HMM) is applied to the offline data obtained from the
haptic-rendered virtual environment to acquire the basic skills applied by the human
operator during virtual manipulation. Data is refined in the Manipulation Task Planner
Module by the algorithm introduced in Section 4.4. The three optimal state sequences,
employing different state classification methods respectively, will be estimated in this

section.

4.6.1 The Concept of Hidden Markov Models

The contact states between the peg and the hole are identified using the Hidden
Markov Models (HMM) which operates as a probability estimator defined by the
structure A =(4,B,x). The three parameters of this structure are described as follows
[Rabiner 1989]:

e Matrix A is the state transition probability distribution matrix defined by

a4y A,
a a a
21 22 2
A= : o (4.29)
anl anZ ann
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where a; = P[S,(t+1)|S,()], 1<i,j<N.
S denotes individual states where S =[S,,S,,---S,].

N is the number of states in HMM model.

a; s the time independent probability of having state S, at time z+1 given

that the state S, attimes. » a, =1 forall.
J

e Matrix B is the observation signal probability distribution matrix defined by
B=[by, by, -by] (4.30)
where b, =Py, ()| S;@)], 1<j<N, 1<k<M.

M is the number of distinct observation symbols per state. The observation
symbols correspond to the physical output of the system being modelled.

v, (#) is the individual visible symbols in a particular visible sequence
V=@, v, ®)].

b, is the probability of monitoring a particular visible state v, in any state

S,(@). Db, =1 forallj.
T

e 1 isthe observed initial signal:

7 =[x] (4.31)
where 7, =P[SQ)=S,], 1<i<N.

Given appropriate values of 4,B,7,M,N, the HMM model can be used to
observe sequence O =[0,,0,,---,0,]. Where O, is one of the symbols from V, and
T'is the number of observations in the sequence.

There are three basic issues in Hidden Markov Model which must be solved in
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real world [Rabiner 1989]:

(@ The Evaluation Problem: Gvien a HMM model with a complete probability
estimator structure A=(4,B,7) and a particular sequence of visible states
0=1[0,,0,,---,0,], how P(V'/A), the probability of the sequence of visible
states can be determined.

(b) The Decoding Problem: Given a HMM model with a complete probability
estimator structure A1=(4,B,7) and a particular sequence of visible states
0 =[0,,0,,---,0;], how the most likely sequence of hidden states S that led to
the sequence of visible states 7 can be determined.

(c) The Learning Problem: Given a set of training observations of visible symbols,

the number of states and the number of visible states, how the probabilities a;
and b, required for calculating the HMM model estimator structure
A =(4,B, ) can be determined.
The solution of Evaluation Problem can be carried out by either HMM Forward
algorithm or HMM Backward algorithm [Rabiner 1989].
The probability of a sequence O =[0,,0,,---,0,] of visible states produced by

HMM model is given by:

P(O) = rmZ“P(O/ S)P(S.) (4.32)

r=1

where » represents a particular sequence S =[S,,S,,---S,] of T hidden states.
T

P(S) = HP(S(z)/ S(t-1)) (4.33)
=1
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T

P(O1S,)=T]PO@)!5(t)) (4.34)
t=1

Hence, equation (4.32) can be expressed as:

P(O) = rmZaX:ﬁP(O(t)/S(t))P(S(t)/S(t -1)) (4.34)

r=1 t=1

Equation (4.34) can be further simplified by defining forward variable « ()

a,;()=P(0,,0,,--,0;,S,1A) (4.35)

Given the HMM model A, the probability of the partial observation sequence
0,,0,,--,0, andstate S, attimetis «,(7).

0 t =0& j #initial state
a,(t) = 1 t =0& j =initial state (4.36)
[ZL% (t—=1)a,]b,,0() otherhwise

The calculation of the Forward algorithm is given as follow:
BEGIN initialize 1«0, a;, b,, 0=[0,0,, 0]
FOR t<«t+1
o, (1) <[> a,(t~1)a,1b,0()
UNTIL ¢=T
RETURN P(O) < a,(T) for the final state

END

Similarly, the Backward algorithm, the time-reversed version of the Forward

algorithm, can be considered.

The backward variable g (¢) can be defined as:
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0 t=T &i # final state
JAOE 1 t=T &i = final state (4.37)
[27:1 Bt +1)a;1b,0(t +1) otherhwise

The calculation of the Backward algorithm is given as follow:

BEGIN initialize ¢« T, a;, b,, 0=[0,0,,-,0,]

it
FOR t«1t-1
o= [Zji1 B,(t +Da,1b,0( +1)
UNTIL =1
RETURN P(O) «— f.(0)for the initial state
END
The solution of Decoding Problem can be carried out by Viterbi algorithm
[Rabiner 1989]. The Viterbi algorithm is a formal technique for finding the best state
sequence and is applied as a dynamic programming method. It is actually very similar
to the forward algorithm. It is likely to consider every possible path and calculate the
probability of the visible sequence observed. The HMM Decoding algorithm is given
as follow:
BEGIN initialize path <« {}, t <0
FOR t«t+1, j« j+1
k=0, a,=0
FOR j« j+1
a,(t) < b,003." a(t—Da,
UNTIL j=N
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j <« arg maxa, (1)
append to path Sj.
UNTIL ¢=T
RETURN path
END
As to the solution of Learning Problem, the parameters of the Hidden Markov
Model, including probability transition matrix 4 and probability density matrix B, are
estimated based on the Baum-Welch algorithm [Rabiner 1989].
The reasonable re-estimation formulas employed to estimate parameters a, and

b, in the Baum-Welch algorithm for 4 and B are:

a = _sz (( ; ) (4.38)
=1 7\

where Zt:l; (¢,7) 1is the expected number of transitions from state S; to state S

at any time in the sequence.

z:ll% (1) is the expected number of transitions from state S; at step .

DY R A0)
o by=—ZF— (4.39)

DAL

which calculates the ratio between the frequency that any particular symbol vy is
observed and that for any symbol.
The algorithm for training the Hidden Markov Model operates according to the

pseudo code provided below:

BEGIN initialize a.

g’

b, , training sequence O and convergence criterion ¢
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DO z<«z+1
compute a(z) from a(z-1) and b(z-1)
compute b(z) from a(z-1) and b(z-1)
a,(z) < ay(z-1)
b (2) < bu(z-1)
UNTIL max(a, ()~ a, (z ~D).b,, () ~by, (= ~D] < 0
RETURN a, < a;(z); b, < bu(z)

END

4.6.2 Skill Model Construction by HMM

The state transition probability distribution matrix A and the observation signal
probability distribution matrix B are good representation of the inherent
characteristics of the peg-in-hole manipulation skill. The Baum-Welch algorithm,
discussed in the Learning problem section, will be employed to determine the matrix
A and B. One hundred groups of data, which are generated by one hundred successful
peg-in-hole assembling tasks and collected from the haptic-rendered virtual
environment, are used as the training data.

The HMM model A =(4,B,7) is derived from the state and the observation
sequences. In this project, the manipulation skills identified by the physical contact
relations of the peg-in-hole assembly and by the fuzzy clustering algorithms of the
peg-in-hole assembly is employed as the state sequence and the observation sequence
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respectively, and vice versa. That is when the manipulation skills are observed by the

physical contact relations of the peg-in-hole assembly as observation sequence, the

manipulation skills identified by Fuzzy Gustafson-Kessel algorithm and the

Competitive Agglomeration algorithm will be used as state sequences respectively;

when the manipulation skills are observed by the Fuzzy Gustafson-Kessel algorithm

and the Competitive Agglomeration algorithm as observation sequence respectively,

the manipulation skills identified by physical contact relations of the peg-in-hole

assembly will be used as the state sequences.

As the training result, the state transition probability distribution matrix A and the

observation signal probability distribution matrix B of four HMM models are shown

in Table 4.4 and Table 4.5.

State sequence identified by Observation sequence observed by | Result index
Physical contact relations Fuzzy Gustafson-Kessel Result 1
Physical contact relations Competitive Agglomeration Result 2
Fuzzy Gustafson-Kessel Physical contact relations Result 3
Comepetitive Agglomeration Physical contact relations Result 4

Table 4.4 HMM model training results index
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?;jslt Matrix A Matrix B
[0.834 0012 0095 0057 0007] | [0955 O 0043 0002 0 |
0003 0619 0378 0 0 0253 0533 0202 0 0012
Result | 1069 0001 0703 0024 0203 | |0079 0 0843 0012 0066
1 0009 0 0110 0697 0184 | [0010 0054 0043 0873 0.020
0028 0 0597 0375 0 | || 0 0 0113 0011 0876
[0.792 0015 0.088 0069 0036] | [0254 0329 0332 0034 0035 0011
0006 0659 0335 0 O 0001 0433 0397 0022 0103 0044
Result | 1049 0001 0704 0031 0215| | |0255 0111 0360 0233 0002 0039
2 0005 0 0133 0646 0216| | |0110 0002 0021 0474 0013 0380)
0033 0 0637 0330 0 | ||0234 0110 0339 0233 0010 0074
[0.693 0035 0074 0001 0197] | [0833 0 0122 0011 0.034]
0036 0795 0135 0016 0018 | |0.101 0711 0139 0038 0011
Result | 1079 0001 0839 0047 0034 | |0013 0201 0670 0104 0012
3 0007 0011 0137 0731 0.114| | |0156 0 0039 0793 0012
0041 0009 0029 0133 0788| | |0211 0002 0005 0.013 0.769]
(08130012 01130062 0 0 ]| [0.343 0.119 0093 0237 0.208]
0110 0763 0024 0101 0002 O 0410 0002 0311 0.094 0.183
Result | [0003 0133 0772 0010 0052 0030 | |0.197 0276 0.077 0341 0.109
4 0058 0023 0015 0682 0221 0001 | [0334 0117 0.074 0039 0436
0 0033 0059 0233 0663 0012 | |0.099 0337 0075 0131 0.358
| 0 0 0049 0050 0122 0779 | |0073 0078 0411 0343 0095

Table 4.5 HMM model training results

The first two state transition probability distribution matrices A of the physical
contact relations of the peg-in-hole assembly have produced similar results, which
demonstrate the inherent characteristics of the peg-in-hole manipulation skill. In this
case, in the course of determining the optimal next state, either matrix A of Result 1 or

2 can be used. In this project, Result 1 is preferred, as the number of distinct

127




observation symbols per state, M, is 5, while in Result 2, M is 6, which takes a longer
time to derive the parameters of the HMM model.

The state transition diagrams, illustrating manipulation skills classified by the
physical contact relations of the peg-in-hole assembly, by Fuzzy Gustafson-Kessel
algorithm and by Competitive Agglomeration algorithm, are represented by the

Hidden Markov chain of Figure 4.13, Figure 4.14, and Figure 4.15 respectively.

Figure 4.15 Manipulation states chain using Competitive Agglomeration algorithm
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The validation of the four trained HMM models A = (4, B, ) is carried out by
comparing the most likely sequences of hidden states derived from the state and the
observation sequences with three different state sequences of one successful
peg-in-hole assembly (showing in Figure 4.11, Figure 4.12, and Figure 4.13). The
Viterbi algorithm, discussed in the decoding problem section, will be employed.
Results are shown in Figure 4.16 (a), (b), and (c). It is obvious that the reconstructed
state sequences are similar to the original state sequences, which has proved the four

HMM models derived successfully.

Original state sequences
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50 BD
Testing Sample

Reconstructed state sequences using physical contact state classification

5 T T T T T T
4
2
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30 40 50 B0 7

1
0

Testing Sample

Figure 4.16 (a) Comparing the reconstructed state sequences using physical contact
state with the original state sequences
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Figure 4.16 (b) Comparing the reconstructed state sequences using Fuzzy
Gustafson-Kessel algorithm with the original state sequences
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Figure 4.16 (c) Comparing the reconstructed state sequences using Competitive
Agglomeration algorithm with the original state sequences
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4.7 Trajectory Learning in Physical Experimental Rig

The Locally Weighted Regression (LWR) method is encoded as the approximator for
the trajectories in each manipulation state during physical manipulation [Christopher
1997]. In most learning methods, a single global model is used to fit all the training
data, while local models attempt to fit the training data only in a region around the
location of the query point. Locally weighted regression uses a distance-weighted
regression to fit nearby points, giving them a high relevance. Locally weighted
regression is a form of lazy and memory-based learning, since it stores the training
data in memory, performs a regression around a point of interest using only training
data that is local to that point and finds relevant data from the database to answer a
particular query point [Bratko 1995]. When a locally weighted linear model is
computed, the stored data points are weighted according to the distance from the
query point.
The following issues are considered when locally weighted regression learning is
applied [Christopher 1997]:
1. Distance function: A typical distance function d,(x,x), the diagonally
weighted Euclidean distance, is used to measure the relevance between the

query point x, and each data point input vector x.

d,(x,x)= \/Z (m,(x,, = x,))° = J&, =" MM (x, ~x) =d (M, M) (27)
m; is the feature scaling factor for the jth dimension.

M is a diagonal matrix with M;=m;.
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2. Separable criterion: a general global model can be trained to minimise the

weighted training criterion £(x, ).

E(x,) = %Z (f () = f () K(d(x,,%)) (28)

f(x) is the output value corresponding to the input vector x.

f(x) isthe global general nonlinear model.

K(d,(x,,x)) is the Gaussian kernel function, which is used to determine the

weight of each training example.

K(d,, (x,,x)) = exp(=d?n(x,,x)) (29)
3. Enough data: sufficient data are needed to satisfy the statistical requirements.
4. Labelled data: each training data point should be linked to a specific output.

5. Representation: fixed length vectors are produced for a list of specified features.

The following LWR training algorithm is performed when a prediction is needed
for a query point ¢:

BEGIN initialize 7(x) =, +wa,(x)+---w,a,(x), i=0, convergence criterion

n-n

DO i«i+1
Ao, =Y K(d(x, )/ ()= f()a, (x)

,(i) « o,(i-1)- Ao,

compute f(x)

1

UNTIL E(x,)= EZX% (f ()= f (X)) K(d(x,,x)) <O

RETURN f(x)
END
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4.8 Summary

The focus of this chapter has been on the acquisition of the manipulation skills. An
overview of classical learning methods has been provided. Offline learning methods
used in the work to develop skill models including Behavioural Cloning method,
Fuzzy Clustering Algorithms, and Hidden Markov Model have been introduced. The
results indicate that the Fuzzy Clustering Algorithms are rather effective in obtaining
manipulation skills by classifying these skills into different states, while the Hidden
Markov Model is more efficient in acquiring the optimal state sequence and
estimating the next optimal state. On line learning algorithm, the Locally Weighted
Regression algorithm, employed in trajectory learning in each manipulation state
during the physical manipulation procedure, is also introduced. Validation of this

method will be further discussed in the following chapter.
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CHAPTER 5 VALIDATION

5.1 Introduction

The methodologies developed in this study are validated through experimental work
and the results are reported in this chapter. The physical peg-in-hole insertion rig
representing a typical assembly process is explained first. Various experimental set
ups designed to validate the algorithm are then described. The experimental results
obtained by performing the physical peg-in-hole insertion are presented and a critical

analysis of the results is finally carried out.

5.2 Proposed Learning Procedure

The paradigm developed in this work to create a skill model and used in the physical
experimental rig is illustrated in Figure 5.1. The peg-in-hole insertion procedure is
classified into several states by the state classifier according to the peg and hole’s
contact relations. Different states have different online LWR learning module.
Manipulation states are generalized offline by the peg and hole’s physical contact
relations or Fuzzy Clustering algorithms, according to overall generated manipulation
data characteristics. Hidden Markov Model is used to estimate the next optimal state.
Data generated from the haptic-rendered virtual environment are first applied to the
one of the three offline training algorithms. Then the online state classifier is created.

The more training data applied to the algorithm, the more accurate will be the state
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classifier. Specific indexes are assigned to each state. The index speeds up the search
process in the physical manipulation by looking for the proper LWR online learning
module associated with a particular state in a sub-training data set, rather than the

whole database.

otate Classifier Indezed to
Assigned by p| Felevant LWE.
Traning Data Off line State I ez i
Generated from Classification
Haptic Rendered ®  Module, e,
Virtual HW, FGE and '
Environement CA
Indexed neveral Hole
_|_, Sub-tratning o] LWER o Adjustment
data set Ilodules Action

Figure 5.1 Skill model used in the physical experimental rig

5.3 Experimental Rig

The physical experimental rig is the peg-in-hole insertion task which represents a
typical assembly process. The algorithms of the Fuzzy Gustafson-Kessel (FGK),
Competitive Agglomeration (CA), Hidden Markov Model (HMM), and Locally
Weighted Regression (LWR) are applied to the experimental rig, which consists of a
one degree of freedom (1 DOF) peg (the translation along the axis of the peg) and a
two degrees of freedom (2 DOFs) hole (the pitch and yaw angles). This provides three
degrees of freedom (3 DOFs) altogether, quite adequate to study the insertion phase of
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the assembly process associated with the rig.

The peg with one degree of freedom (1 DOF) is controlled by a Baldor MTE
Series DC servo motor [Baldor (online) a] and driven by a Baldor TSD Series DC
servo controller [Baldor (online) b]. The DC servo motor and the controller provide
precise motion for the peg. The position of the peg is represented by pulses which are
generated by a 14-pin Baldor DC servo motor encoder [Baldor (online) a] when an
actuator is driving the peg. A magnitude of 50 pulses of the encoder is equivalent to a
displacement of 0.1 mm. The position of the peg is between 0 to 50000 pulses. The
number of pulses increases with deeper penetration of the peg into the hole.

The hole with two degrees of freedom (2 DOFs) is controlled by two high-torque
Sanyo Denki phase stepper motors [Sanyo (online)] and driven by two Gecko
micro-step drives [Gecko (online)]. High-torque phase stepper motors are used to
avoid backlash, while micro-step drives are used to control the micro-tilt motion
instead of using a gearbox. The stepper motors and step drives together provide
accurate tilt motion for the hole. The tilt motion is represented by steps of the two
stepper motors controlling the hole. The maximum resolution of the stepper motor is
0.18 degree. The maximum absolute value of steps used in this experimental rig is 25.
Hence, this gives a maximum initial angle of 4.5 degrees (25X 0. 18=4. 5).

The radius of the peg and the hole are 10 mm and 10.05 mm, respectively. This
gives a clearance of 0.05 mm between the peg and the hole. This peg-in-hole
assembly experimental rig is used as a platform to study the concept of typical
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assembly problem which concisely models a constrained motion-force-sensitive
manufacturing task with all the attendant issues of jamming, tight clearances, and the
need for quick assembly times, reliability, etc.

The peg is fitted with a 6 DOF Lord force/torque sensor [Lord 1986] which
consists of a transducer unit and a force/torque sensing system controller unit. The
force unit of this Lord force/torque sensor is uf (one uf equals to 0.056448N). The
PHANTOM 1.5 haptic device can produce a maximum exertable force of up to 8.5 N
at a nominal position, and a continuous exertable force of 3 N at a nominal position.
Hence, in this task, when a force signal exceeds 55 uf (3.1 N) during the operation,
the peg is stopped and moved back 0.4 mm, waiting for the hole to be aligned with the
peg by the system, and then continues. The peg-in-hole insertion is stopped when the
maximum force reaches 150 uf (8.5N); the force limitation of the PHANTOM 1.5. In
this situation, the operation is assumed to have failed. The Lord Force/Torque sensing
controller unit is connected to the Host PC through a RS-232 serial port, which is
configured for a 9600 baud rate and 8N1 (8 bits, no parity, 1 stop bit) mode. Force
sensory signals are read into the Host PC through Com 1 port.

The DAQ-802 data acquisition board, which is a cost-effective high-speed
data-acquisition board for IBM-compatible ISA bus applications, is used to read the
decoded signal generated by the decoder HCTL-2016 [Agilent (online)] connected to
the encoder of the DC servo motor, send signals to the DC controller controlling the
servo motor driving the peg and the stepper motors driving the hole. All of these input
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and output signals are read into the Host PC by a DAQ-802 1/0O interface card through
a Main 1/0 connector and an Auxiliary connector.

The experimental rig must be initialised first. The angles of the axes of the
stepper motors fitted on the hole are initialised by aligning the axis of the peg with
that of the hole. This alignment can be achieved by a successful insertion performance.
The input to the Baldor TSD Series DC servo controller, controlling the Baldor MTE
Series DC servo motor driving the peg, should be initialised by a zero value to ensure
that the data from a previous experiment is cleared. This will prevent the peg from
moving while the power is being turned on. The force/torque sensing system is
initialised by inputting the Bias Sensor command “BS” in order to derive force/torque
information from the force/torque sensor. The “OR” command which selects the
Output Record mode is issued to begin the transmission of one record of force/torque
data over the serial port. The “out of sequence” errors produced during the
programming, that cannot input force/torque data to the serial port during the system
running, can be overcome by the initialisation of the force/torque sensor.

The block diagram of the purpose-built peg-in-hole physical experimental rig is
depicted in Figure 5.2. Initially, the peg is being driven down to the hole. The position
of the peg is measured by pulses sent from the encoder/decoder to the DAQ-802 data
acquisition board at the same time. At 26000 pulses, the position of the peg is just
above the hole, while the force/torque sensing system controller starts to monitor the
force/torque by the transducer fitted on the peg and communicating with the Host PC
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through the Com1 port at a 9600 baud rate. Hence, the peg can be driven faster when
the position is smaller than 26000 pulses. During the peg-in-hole insertion process, if
the maximum force/torque is below the threshold, the process is continued to
completion. If the maximum force/torque is reached, a certain learning algorithm will
be applied to help either the peg or the hole to continue performance. In this case, the
peg may be moved back 0.4 mm by sending a negative signal to the Baldor TSD
Series DC servo controller or the hole may be turned a certain angle to adjust its pitch
angle or yaw angle. If the position of the peg is increased to more than 47000, the

peg-in-hole insertion is considered to be completed successfully.

FIT sensing Transducer Fitted

system onPeg

controller
COnL 1
Baldor TED

Host PC

Main O .| SeriesDC | Baldor MTE
Connector Bervo BertesDC ——
e Controller Servo hotor
DAQ-802 Ezperimental
data j rig
acquisition Servo Maotor
board HEIL-Z018 g ronder L
Decoder s Peg
Anziliary j
Connector
—» Hole
—|_’ Two Gecko Two .Sanyo
Stepper Motor s DenkiPhase | |
Drives Stepper
Motors

Figure 5.2 Block diagram of the purpose-built peg-in-hole physical experimental rig

5.4 Experimental Results

The manipulator’s behaviours are cloned offline and classified into different operation
states by peg and hole’s physical contact relations or Fuzzy Clustering algorithms,
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according to overall generated manipulation data characteristics. Hidden Markov
Model is used to estimate the next optimal state, as discussed in Chapter 4. Three skill
models, based on the algorithms above, and developed to estimate different operation
states, are used respectively in each experiment for the purpose of comparing the
physical peg-in-hole insertion performance. The Locally Weighted Regression (LWR)
algorithm described in Chapter 4 is applied to estimate online the required corrective
actions in the form of the rotation angles of the hole, according to different operation

states.

5.4.1 Typical Performance

Three typical performances of three successful peg-in-hole insertion examples,
employing peg and hole’s physical contact relations, Fuzzy Gustafson-Kessel (FGK)
or Competitive Agglomeration (CA) algorithm as manipulation skill state
classification method respectively and Hidden Markov Model (HMM) as optimal next
state estimator, are illustrated in Figures 5.3, 5.4 and 5.5. In order to compare the
results, the same initial angles consisting of x-axis and y-axis misalignments of 2.7
degrees were chosen for all the experiments.

The variation of seven normalised series of force, torque, position and state
changes for the three examples are illustrated in Figures 5.2, 5.3 and 5.4. The
variables fx, fy, and fz represent forces along X, Y, and Z-axis whereas Mx and My are

the torques around X and Y axes. The translation along Z-axis is represented by Z.
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The contact state is the state change from the initial state to the goal state.

The monitoring of the peg-in-hole insertion process starts when the peg reaches
the surface of the hole, which is the initial position (position z = 0.7608x10*mm), and
stops at the goal position (position z = 2.9508x10*mm). The force/torque data are to
be monitored and the position is recorded every pulse time when the position reaches
the initial position, and data-acquisition interface card starts to read the signal
generated by the sensor and the decoder at the same time.

The last diagram in each study shows the contact state changes from the initial
state to the goal state. The peg cannot move along the X and Y axes due to the
limitation on the number of degrees of freedom of the rig. Since the recording of data
commences when the peg is close to the surface of the hole, some of the contact states
defined in the haptic-rendered virtual environment (as described in Chapter 5) could
not be monitored in the physical experimental rig.

The 6 DOF virtual peg-in-hole insertion assembly process changes its rotation
angles about X, Y or Z-axis frequently depending on the input signals received. The
trained LWR model calculates the corresponding rotation angles (steps of the two
stepper motors). Similar to that in the haptic-rendered virtual environment, the LWR
model generates the signal driving the two stepper motors to perform the tilting
adjustment of the hole. The 3 DOF physical experimental rig is relatively simpler than
that of the system in the haptic-rendered virtual environment. Hence, in the physical
system, a correction signal is generated to turn the hole when the peg is encountered
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with a large force or torque. Normally this occurs in the jamming state. All the

experiments provided in this section have a jamming state.
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Observing the results obtained in these experiments, the following conclusions

can be drawn:

(a)

(b)

(©)

(d)

The physical experimental rig requires less time to complete the peg-in-hole
insertion task when Competitive Agglomeration Algorithm is used.

The physical experimental rig also has less jamming state and the hole is
aligned with the peg faster when Competitive Agglomeration Algorithm is
used.

The peg and hole’s physical contact relationships and Fuzzy
Gustafson-Kessel algorithm classifies the peg-in-hole insertion process into
five states, while the Competitive Agglomeration algorithm classifies the
insertion process into six states. The state numbers are the optimal results
when the three algorithms are used respectively.

The peg-in-hole insertion process changes its contact states frequently when
the peg and hole’s physical contact relationships or Competitive
Agglomeration algorithm is used. In this case, the online state classifier plays
a less important role than that of the LWR online learning model, while the
peg-in-hole insertion process changes its contact states infrequently when the
Fuzzy Gustafson-Kessel algorithm is used. In this case, the online state
classifier is more important than the online learning model. If the wrong state
is identified, a different online learning model is chosen, and the final result
could be worse.
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5.4.2 State Classifier Comparison

In order to compare the performance of the physical experimental rig using different

state classifiers and starting at different initial angles in the physical insertion, a series

of studies was carried out and the results are shown in Table 5.1. The maximum

resolution of the stepper motor is 0.18 degree. Hence, the initial angle of the hole can

be increased by 0.18 degree. In this case, the initial angle of the hole is increased by

0.9 degree.
Standard.
. Average - Mean Mean

Initial . . Deviation . . Successful

Angle Algorithm | Testing Testing T.”tmg Jarr_1m|ng Rate

Sample Adjustment |  Times
Sample

Physical 478 5.67 6 6 70.89%
(0,0) GFK 469 5.74 6 5 92.82%
CA 440 5.96 5 5 67.81%
Physical 481 6.17 6 6 75.76%
(0,0.9) GFK 470 5.62 7 5 86.50%
CA 440 6.03 5 4 69.25%
Physical 481 6.14 8 5 71.46%
(0,1.8) GFK 471 5.62 6 4 83.57%
CA 441 5.93 6 6 58.56%
Physical 482 571 5 5 65.78%
0,2.7) GFK 472 5.85 6 5 92.92%
CA 443 5.80 5 4 58.22%
Physical 482 5.57 6 6 68.12%
(0,3.6) GFK 473 5.77 6 6 86.62%
CA 444 6.32 6 4 61.13%
Physical 485 5.79 7 6 71.20%
(0,4.5) GFK 474 591 7 5 91.80%
CA 443 6.34 6 4 58.25%
Physical 479 5.88 7 5 68.90%
(0.9,0.9) GFK 470 5.74 5 5 96.44%
CA 439 6.18 4 4 57.18%
(0.9,1.8) Physical 481 5.80 7 5 66.13%
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GFK 469 5.74 5 4 94.20%

CA 441 5.49 4 4 61.24%

Physical 482 5.65 5 5 72.19%

(0.9,2.7) GFK 471 591 6 4 93.95%
CA 442 6.26 4 4 62.02%

Physical 483 5.93 6 5 79.60%

(0.9,3.6) GFK 472 5.59 5 5 90.01%
CA 443 5.81 5 5 55.24%

Physical 484 6.07 8 7 71.83%

(0.9,4.5) GFK 474 5.92 7 6 88.82%
CA 444 5.75 4 4 61.92%

Physical 481 5.70 7 6 71.92%

(1.8,1.8) GFK 470 5.60 5 5 93.17%
CA 440 5.57 6 5 67.59%

Physical 482 5.89 6 6 65.38%

(1.8,2.7) GFK 471 5.45 7 5 94.05%
CA 441 5.77 5 5 60.76%

Physical 482 5.88 5 5 75.02%

(1.8,3.6) GFK 472 5.69 5 5 98.85%
CA 442 5.91 5 4 67.54%

Physical 483 5.56 6 6 73.79%

(1.8,4.5) GFK 474 6.32 6 5 98.59%
CA 443 5.46 5 5 58.81%

Physical 481 5.63 5 5 74.47%

(2.7,2.7) GFK 470 5.93 5 5 97.41%
CA 440 5.85 5 5 62.79%

Physical 481 5.66 6 6 66.94%

(2.7,3.6) GFK 472 5.51 7 6 91.14%
CA 442 5.75 4 4 59.14%

Physical 484 5.54 5 5 70.57%

(2.7,4.5) GFK 472 5.45 7 5 88.92%
CA 442 5.58 4 4 56.17%

Physical 482 5.60 5 5 71.44%

(3.6,3.6) GFK 471 5.39 7 5 98.15%
CA 440 5.59 6 4 67.39%

Physical 482 5.82 6 6 66.13%

(3.6,4.5) GFK 471 571 5 5 95.62%
CA 442 5.93 6 6 60.30%

(45,45) | Physical 482 5.71 7 6 70.59%
GFK 472 6.04 6 4 90.19%
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CA 441 5.87 5 4 67.24%

Table 5.1 Statistical results of the physical insertion performance

Comparisons of the results produced by the three algorithms are shown in a series
of diagrams. The average runtimes for different initial states and their standard
deviations are shown in Figures 5.6 and 5.7, respectively. Figure 5.8 shows the
comparison of the average tilting adjustment times in different initial states. Figure
5.9 presents the comparison of the average jamming times. Comparison of the
successful rates of the peg-in-hole insertion performance using one of the three

algorithms is illustrated in Figure 5.10.
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Figure 5.6 Average runtimes in different initial states
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Standard Deviation of Testing Samples
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Figure 5.7 Standard deviation of the average runtimes
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Figure 5.8 Average tilting adjustment times in different initial states
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Figure 5.9 Average jamming times in different initial states

Successful Rate

il . g o

50 o

Successful Rate %

30 e

20 -

1 1 1 1 1 1 1 1 1 1
005 027 045 0.8.1.8) 0.98.386) (1.6.1.6 (1.63.6) 2727) (2.7.4.85) (3.6.4.5)
Initial Angle

Figure 5.10 Successful rates of the peg-in-hole insertion performance




The results shown above have confirmed the conclusions drawn in Section 5.4.2.

In addition, further observations can be made:

(a)

(b)

(©)

(d)

The actual insertion without the deployment of skills obtained from the
haptic-rendered virtual environment has been discussed in Y. Chen’s Ph.D.
thesis [Chen 2005]. The results showed that the average runtimes in different
initial states are 4 time longer than that of deployment of skills obtained from
the haptic-rendered virtual environment because of very high average tilting
adjustment times and average jamming times. In this case, the success rate of
the peg-in-hole insertion performance was also low.

Considering the success rate of the peg-in-hole insertion performance, the
experiments using the Fuzzy Gustafson-Kessel (FGK) algorithm as the state
classifier are the most satisfactory.

Considering the insertion time, using the Competitive Agglomeration (CA)
algorithm as the state classifier results in the fastest performance. The
success rate of the experiments is however relatively low.

As described in Chapter 4, the peg and hole’s physical contact relations
classifier is determined by contact relationship between the peg and the hole,
and the state number is predefined. While the Fuzzy Gustafson-Kessel (FGK)
or Competitive Agglomeration (CA) algorithm can classify the overall
performance into every contact state, a specific approach should be used to
automatically determine the number of clusters. In this experiment, the fuzzy
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clustering algorithms, which automatically determine the optimal number of
clusters, performs better.

(e) The overall performance of the peg-in-hole insertion, in terms of all the
manipulation processes, depends very much on which algorithms is used. In
complicated manipulation tasks, correctly identifying the right state in order
to choose the correct online learning is more important. This will expend less
running time. However, a considerable amount of offline training must be
performed.

() In addition, choosing the correct offline state training algorithm and online
learning algorithm will improve the overall performance and avoid

expending considerable amount of time.

5.5 Summary

The overall physical peg-in-hole insertion experimental rig has been described in
detail in this chapter. The performance of the physical experimental rig has been
described. The experimental validation by employing various algorithms has been
provided by illustrating them in tables and figures. Significant discussions have

followed.
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CHAPTER 6 CONCLUSION AND FURTHER RESEARCH

6.1 Overview

Teaching manipulation skills to a robot by cloning human manipulation habits from a
haptic-rendered virtual environment has been reported. The research conducted to
explore the feasibility of such approach has been explained. The offline and online
learning algorithms proposed to carry out the training and learning process have been
presented. The peg-in-hole insertion which represents a typical assembly process has
been used as a case in the study. The effectiveness of the developed strategy has been
demonstrated and validated through a series of experiments carried out on the
peg-in-hole insertion rig. The results obtained are quite encouraging and clearly

highlight the strengths and weaknesses of the approach.

6.2 Contributions of the Research

The work conducted in this thesis has made a number of contributions as described in

the following sections.

6.2.1 Virtual Manipulation through 6 DOFs

In the first implementation of the virtual manipulation environment, PHANToOM
Premium 1.0, a three degrees of freedom (3 DOFs) haptic device was used. The

touch-enabled applications were developed based on GHOST SDK (General Haptic
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Open Software Toolkit), a powerful C++ software tool kit, which accompanies
PHANTOM.

The graphical model of the assembly [Chen 2002a] was constructed using
OpenGL, whereas its physical model and the force/torque vectors generated in the
virtual manipulation environment were modelled based on the two different
approaches of PointShell and TriPolyMesh [Chen 2002b]. The developed system
proved quite stable when the peg-in-hole insertion was performed using 3DOF
PHANTOM.

In order to improve the performance of the developed system, the haptic device
was upgraded to a six-degree of freedom PHANTOM Premium 1.5. In complex
applications in which simulation of an arbitrary object to object interaction is required,
a six degrees of freedom (6DOF) haptic device can be a more effective tool. Applying
the 6DOF haptic device to the developed haptic rendered virtual environment resulted
in strong oscillation occurring during virtual peg-in-hole insertion, and preventing a
successful insertion.

Further investigation of the problem revealed that the PointShell and
TriPolyMesh algorithms used in the model were not sufficiently accurate for operation
with a 6DOF haptic device.

In order to stabilise the virtual peg-in-hole insertion with tight fit for a 6DOF
haptic device, three new more precise haptic-rendered models were developed. They
included a modified PointShell algorithm, modified TriPolyMesh algorithm and
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dual-gstCylinder algorithm. They stabilised the virtual insertion process and removed

the oscillation observed in the system when the 3DOF haptic device was used.

6.2.2 Proposed Physical Model

The peg-in-hole assembly physical model based on three approaches of Modified
TriPolyMesh Method, Dual-gstCylinder Method and PointShell Method suffered from
a number of shortcomings. As the point on the peg’s penetrated into the surface of the
hole, internal forces were generated to halt the peg advance through the hole’s surface.
However, due to insufficient internal volume modelled for the surface, the generated
reactive force was inadequate. Moreover, the point on the peg penetrating one side of
the hole-surface was too close to the other side of the hole surface. As a result, the
generated force would eventually push the point off the other side of the hole.

The virtual proxy method was used to overcome these shortcomings [Petersik
2002]. The virtual rigid peg was defined as a virtual proxy and was controlled by the
physical Reachln probe in the haptic-rendered virtual environment. The position of
the virtual proxy was changed according to alteration in the probe’s position. The
force and torque reacting to the peg were transferred to PHANTOM Premium 1.5
through the spring damper system. The hole was static in the environment while the
peg could be translated and rotated.

This approach overcame the challenges faced in developing the physical model of

the virtual environment. It also proved to be a simple and adaptable method,
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sufficiently generic for modelling other applications in the virtual environment.

6.2.3 Concurrent Haptic and Geometric Modelling

In the first virtual model of the peg-in-hole insertion process for the 6 DOFs device,
the graphic and haptic models were created using OpenGL and GHOST SDK
respectively. The process proved to be too complex and elaborate.

The second implementation of the model was carried out based on Reachln
hardware platform and application programming interface from Reachln Technologies
[Reachln online]. CrystalEyes shutter glasses from the Stereo Graphics Corporation
[Stereo online] were connected to a stereo-output graphics card to provide stereo
vision. By using this hand-immersive hardware platform, the peg-in-hole scene graph,
haptic system and communication system between graphics and haptics were
integrated in a consistent, seamless way.

This approach presented a new platform for concurrent haptic and geometric
modelling of the virtual environment and significantly simplified the model and the

development process.

6.2.4 Skill-acquisition Update

Three behavioural cloning methods including Fuzzy Gustafson-Kessel (FGK)
algorithm, Competitive Agglomeration (CA) algorithm, and Hidden Markov Model

(HMM) were explored in the study as possible skill acquisition methods.
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The peg-in-hole insertion procedure was classified into several states by the state
classifier, according to the peg and hole’s contact relations. Different states had
different online LWR learning modules. The acquisition of the peg-in-hole insertion
skills was primarily based on behavioural cloning methods. Manipulation states were
generalized offline by the peg and hole’s physical contact relations or statistical
methods such as Fuzzy Gustafson-Kessel (FGK) algorithm, and Competitive
Agglomeration (CA) algorithm. Hidden Markov Model was used to estimate the next
optimal state and the optimal state sequence. Data generated from haptic-rendered
virtual environment were first applied to one of the three offline training algorithms.
Then the online state classifier was created by the Locally Weighted Regression
(LWR) method. The accuracy of the state classified proved to improve with
deployment of more training data in the development of the algorithm. The inclusion
of larger number of training data in the algorithm resulted in more accurate state
classifier. Specific indexes were assigned to each state. This increased the search
speed during physical manipulation by looking for the proper LWR online learning
module associated with a particular state in a sub-training data set, rather than the

whole database.

6.3 Further Research

The research results described in this thesis can be further extended in a number of

directions. Details are described in the following sections.
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6.3.1 Physical Experimental Rig

The haptic-rendered virtual peg-in-hole environment has six degrees of freedom,
which is designed to simulate real situation, while the current peg-in-hole physical
experimental rig has three degrees of freedom, which can only provide a one-degree
of freedom peg (the translation along the axis of the peg) and a two-degrees of
freedom hole (the pitch and yaw angles). More degrees of freedom are suggested to be
added to the physical experimental rig in further research.

The robot SCORBOT-ER 4u or its latest version, manufactured by Intelitek, is a
good hardware experimental platform [Intelitek (online)]. The robot SCORBOT-ER
4u has five degrees of freedom (5DOF) (five rotational axes + gripper), in which it
doesn’t have yaw angle freedom. However, the hole has yaw angle freedom which can
provide an additional one degree of freedom. The robot can be programmed to
perform the task of picking up the peg and inserting it in the hole fixed on the work
bench.

The current study was carried on based on cylindrical peg and hole in which the
roll angle around the axis of the peg is void. This physical experimental rig can be
replaced by cuboids peg and hole to which will require the control of the roll angle as

well.
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6.3.2 Haptic-rendered Virtual Environment

The current virtual manipulation environment is implemented by the Reachln
hardware platform and application programming interface. One PHANToM 1.5 haptic
device is used in the research. The ReachIn hardware can provide complex,
high-quality haptic feedback through one PHANTOM haptic device or two
PHANTOM haptic devices’ cooperation. Hence, another PHANToM haptic device can
be used in a future research study to simulate two hands on one robot or two robots
cooperating. The PHANToM 1.5 haptic device can produce a maximum exertable
force of up to 8.5 N at a nominal position, and a continuous exertable force of 3 N at a
nominal position. Hence, the maximum excertable force in two PHANTOM haptic
devices’ cooperation can be doubled.

The construction of cuboid peg-in-hole haptic-rendered virtual environment is
suggested to be the next research step, because it is a more generic model, and
involves the freedom of the roll angle. The current haptic-rendering algorithm, the
virtual proxy algorithm, can still be used as the major rendering algorithm. As to more
complex haptic models, Voxmap PointShell™ (VPS™) software can be used to solve

certain difficult geometry-related computing problems faster and more efficiently..

6.3.3 Machine Learning Algorithm

The skill-acquisition models employed in this study are based on the idea of cloning

human behaviour and manipulation trajectories. Traditional behaviour cloning, such
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as the decision tree method, has been used in many research projects but has proven to
have low efficiency. Statistical analysis algorithms, such as the Hidden Markov Model,
Fuzzy Clustering, Competitive Agglomeration and Locally Weighted Regression
algorithms have been used in this project and have performed well. The Hidden
Markov Model, Fuzzy Clustering and Competitive Agglomeration have been used to
train highly efficiency state classifiers, while Locally Weighted Regression has been
used to clone trajectories of human habits in each manipulation state.

In the future research, the feasibility of designing of a more systematic approach
for classification of the contact states obtained from the haptic rendered virtual
manipulation model and estimation of the assembly states during physical
manipulation should be explored. In the current approach, the fuzzy state
classification algorithms classify the training data into different clusters. Depending
on different classification algorithm, different cluster shape, cluster size, and cluster
number are produced. A large amount of training data was used in this project. The
more training data employed, the more accurate the training result. However, the
training time will be much longer. 14 dimensional spaces, including the force, torque,
and position data, were recorded in this project. In the future research, the more
complex the assembly task perform the higher dimension may be recorded. This will
result of positive or negative dimension of the training data are recorded. Further
analysis of the high dimension data would be, for example, leaving the positive
dimension unchanged, doubling or halving the negative dimension weights to give the
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training results less mistake. In this case, an effective algorithm employed to remove
unhelpful dimensions should be developed in the next step in the further research.
Hidden Markov Model is used to estimate the next optimal state and the optimal
state sequence. A fully connected HMM chain will be constructed, no matter how
complex the assembly process is, but arbitrary state transitions may be recorded in the
more complex task in the further research project. Some similar algorithm, derived
from Hidden Markov Model can be employed. For example, Layered hidden Markov
model (LHHM), it is often useful to constrain the model by not allowing arbitrary
state transitions. In the same way it can be beneficial to embed the HMM in a layered
structure which, theoretically, may not be able to solve any problems the basic HMM
cannot, but can solve some problems more efficiently because less training data is
needed. It is sometimes useful to use HMMs in specific structures in order to facilitate

learning and generalization [Oliver 2004].

6.3.4 Generalisation

The work at this stage is focused on the peg-in-hole insertion process. The algorithms
and methodologies developed for this application should be expanded to include
different constraint motion manipulations in the next stage of the project. This will

assist in developing a more generic approach.
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APPENDIX A Experimental Rig Hardware Introduction

A.1 Introduction

The hardware employed in this project, including the stepping motors, micro-step
drives, DC servo motor, DC servo motor encoder, DC servo controller, DAQ-802 data
acquisition board, HCTL-2016 decoder, and Lord force/torque sensor, are introduced

as follow.

A.2 Sanyo Denki 2 Phase Stepping Motor
Two Sanyo Denki 2 phase 60mm square stepping motors, model no.
103H7822-0440, were employed in the physical experimental rig to control the hole

and provide two degrees of freedom (2 DOFs) (Figure A.1) [Sanyo (online)].



Please see print copy for Figure A.1

Figure A.1 Sanyo Denki 2 Phase Stepping Motor [Sanyo (online)]

The stepping motor has the flowing major features that suitable for the project
[Sanyo (online)]:

1. Compact size: H=82mm, W=60mm, D=53.88mm.

2. High torque: 1170mNm. 2 phase hybrid rare earth magnet technology

offering 15% to 20% more torque than standard hybrid types.
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Please see print copy for Figure A.1


Low noise: lower noise has been realized by an optimum structure design
employed for the motors.
Simple wiring: the motor equipped with a connector promises easier system

design (Figure A.2).

Please see print copy for Figure A.2

Figure A.2 Sanyo Denki Motors wiring connections [Sanyo (online)]

Other features include [Sanyo (online)]:

1.

Very high positional accuracy, designed for micro-steeping.

The motor can be unipolar or bipolar driven.

The motor can be available with integrated connector for ease of assembly,
crimps and matching socket supplied.

Supply Voltage: 4V

Current: 2A/phase
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Please see print copy for Figure A.2


Resistance: 2 Q/phase
Inductance: 3.6mH/phase

Weight: 7709

A.3 Gecko Micro-step Drive

The Gecko micro-step drives used in the project can provide a minimum of 0.09
degree resolution for turning the hole and enhance the holding torque through a
special circuit. It doesn’t need external circuits to generate and enlarge the clock and
direction signals. The Gecko micro-step drive is illustrated in Figure A.3 [Gecko

(online)].

Please see print copy for
Figure A.3

Figure A.3 Gecko micro-step drive [Gecko (online)]

The Gecko micro-step drive has the following specifications [Gecko (online)]:
1. Supply Voltage: 24 to 80 VDC

2. Phase Current: 1 to 7 Amps and 0.3 to 2 Amps (2 ranges)

3. Auto Current Reduction: 33% of set current, 1 second after last Step Pulse

4. Size: 2.5"W, 2.5”D, .85”H (63.5mm, 63.5mm, 21.5mm)
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Please see print copy for Figure A.3


5. Mounting Pattern: 4 6-32 screws, 1.75” by 2.375” (44.5 mm, 60 mm)
6. Quiescent Current: 15 Ma or less

7. Weight: 3.6 0z. (100 gm)

8. Step Frequency: 0 to 200 kHz

9. Step Pulse “0” Time: 0.5 uS min (Step on falling edge)

10. Temp:0to 70 C

11. Step Pulse “1” Time: 4 uS min

12. Humidity: 0 to 95 % (non-condensing)

13. Direction Setup: 1 uS min (20 uS min hold time after Step edge)

14. Power Dissipation: 1 to 18 W (1 to 7 Amps)

The connection diagram of the Gecko micro-step drive is illustrated in Figure A.4

[Gecko (online)]



Please see print copy for Figure A.4

Figure A.4 Gecko micro-step drive connection diagram [Gecko (online)]

A.4 Baldor DC Servo Motor

Baldor MTE Series DC servo motor, model no. MTE-2250-AMACN, is
employed in this project, which is used to control the peg and provide one degree of
freedom (1 DOF). It is environmentally rugged that can provide reliability and long
life in industrial applications. The Baldor’s DC Servo Motors are shown in Figure A.5

[Baldor (online) a]
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Please see print copy for
Figure A.5

Figure A.5 The Baldor’s DC Servo Motors [Baldor (online) a]

The features of the Baldor’s DC Servo Motors include [Baldor (online) a]:

1. Provide continuous torques from 1.9 Ib.-in to 58 Ib.-in.

2. high continuous duty 155° C rotor temperature and premium moisture
resistant.

3. A rugged industrial housing and can be supplied with many electrical and
mechanical options.

4. Stock and custom design available.

5. Superior performance down to zero speed.

6. ldeal for applications such as X-Y tables, coil winders, machine tool, robotics,
factory automation, labeling equipment, assembly equipment, textile,

packaging, converting equipment, and laboratory equipment.

A.5 Baldor DC Servo Motor Encoder

14-pin Baldor DC Servo Motor Encoder, model no. MS3102E-20-27P is used in

the project that provides a physical link between DC motor and DC motor controller.



fpinkert
Text Box




Please see print copy for Figure A.5


The connection diagram is shown in Figure A.6 [Baldor (online) a].

Please see print copy for Figure A.6

Figure A.6 14-pin Baldor DC Servo Motor Encoder connection diagram [Baldor

(online) a]

A.6 Baldor DC Servo Motor Controller

The Baldor TSD (Twin Servo Drive) series motor controller, model no.

TSD-050-05-1-1 (Figure A.7) is employed in the project to control the one degree
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freedom peg. The TSD series motor controller is totally enclosed, stand-alone one or
two axes brush-type PWM servo control, utilizing the latest in FET/IGBT transistors
for efficiency and reliability. This DC Servo Control is fully protected. It contains a
front panel on/off switch and operates directly from 115 VAC. The TSD will power

DC servo motors providing up to 5 amps continuous, 10 amps peak. [Baldor (online)

b].
Please see print copy for Figure A.7
Figure A.7 The Baldor TSD motor controller [Baldor (online) b]
The Baldor TSD series motor controller has the following features [Baldor
(online) b]:

1. Easily set up for velocity or torque (current) control applications.
2. Form factor 1.01 or better.

3. Zero deadband performance

4. Adjustable current limits: Peaks and Continuous.

5. Detachable screw terminal inputs (no special tools).
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6. Panel mount enclosure ensures there are no exposed electronics.
7. Simplified ‘start up’ as all connections are defined right on the exterior of the
enclosure.
8. ON/OFF main toggle switch.
9. No audible noise with 20 kHz switching.
10. No additional inductors required.
11. Protection features, with LED indicators for
i.  \oltage Error

ii.  Surge Current

iii.  Over Temperature
Typical connections of the Baldor TSD series motor controller is shown in Figure

A8
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Figure A.8 The Baldor TSD series motor controller typical connections

A.7 Quatech DAQ-802 Data Acquisition Board

The Quatech's DAQ-802 data acquisition board is used to read the decoded
signal generated by the decoder HCTL-2016 [Agilent (online)] connected to the
encoder of the DC servo motor, send signals to the DC controller controlling the servo
motor driving the peg and the stepper motors driving the hole. All of these input and
output signals are read into the Host PC by a DAQ-802 I/O interface card through a
Main I/O connector and an Auxiliary connector.

Quatech's DAQ-802 is a low-cost data acquisition board with 12-bit resolution,




eight analog input channels, two analog output channels, 32 digital 1/O channels, and
three 16-bit programmable counter/timers (Figure A.9). The maximum sampling rate

is 40 kS/sec for A/D with internal or external triggering [DAQ (online)].

Please see print copy for Figure
A.9

Figure A.9 Quatech DAQ-802 Data Acquisition Board [DAQ (online)]

The DAQ-802 provides eight differential analog inputs. It has a bipolar input
range with software programmable gains of 1, 2, 4, and 8 (DAQ-802), and has auto
zeroing and a self-calibrating facility for A/D conversion. The main D-37 connector is
for analog 1/0, control lines, and eight digital 1/0 channels. A second auxiliary D-37
connector, requiring an additional slot in the PC, is provided for an additional 24
digital 1/0 lines from an 8255 programmable peripheral interface chip (Figure A.10)

[DAQ (online)].
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Please see print copy for Figure A.10

Figure A.10 DAQ-802 mainD-37 connector and auxiliary D-37 connector [DAQ

(online)]

A 2K Data FIFO is available that provides a cushion for the data stream coming
from the output of the A/D converter. This protects data integrity when using an
interrupt routine under Windows or other operating systems. Scan List capability is
also provided for scanning the input channels with their corresponding gains.
Sequential scanning between any two channels can be programmed. The DAQ-802
can be installed in any available 1/0O base address location without conflict with
presently installed devices. The board can be enabled or disabled through software
manipulation. The interrupt levels are register selectable through software from IRQ
2-7,10-12, 14, and 15 [DAQ (online)].

Features of the DAQ-802 Data Acquisition Board include [DAQ (online)]:

1. 40 kS/sec sampling, 12-bit analog input resolution.

2. Eight differential analog inputs.
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3. Two 12-bit D/A channels, three 16-bit timer/ counters and 32 channels digital
1/0.

4. Self calibrating and auto zeroing.

5. Channel scan capability with various gain for each channel.

6. 2K Data FIFO buffer.

7. Programmable gains of 1, 2, 4, and 8.

8. Interrupt handling capability.

9. Drivers supplied for third-party software.

A.8 HCTL-2016 decoder

The HCTL-2016 decoder [Agilent (online)] provides a physical link between the
Baldor DC Servo Motor Encoder and the DAQ-802 data acquisition board in order to
obtain the position information. The pinouts are shown in Figure A.11. CHA and CHB
read signals from the DC servo motor through the motor encoder. The 12/1A-bit
position latch is read through an 8-bit output port (D0-D7) in 2 sequential bytes. At
first, both OE and SEL pins are set low via DAQ-802, and read in high byte of
position. Then, SEL pin is set high via DAQ-802 and read in low byte of position.

Finally, high and low bytes are combined to produce a 16 bit word.
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Figure A.11 HCTL-2016 pinouts

A.9 Lord force/torque sensor

The force/torque data is obtained by Lord Force/Torque (F/T) sensing system,
which consists of a transducer unit and a system controller unit.

In this project, the F/T system is connected to the computer through RS232 serial
port, which is configured at 9600 baud rate and 8N1 (8bits, noparity, 1 stop bit) mode.
The commands issued through the serial port are as follow:

e FT: Select resolved force/torque data

In response to this commend, forces and torques applied on the transducer
unit are resolved into three Cartesian force components fx, fy, fz and three
Cartesian torque components tx, ty, tz. The force/torque components are
represented as a six-element vector, F=(fx, fy, fz, tx, ty, tz).

e OA: Output ASCII on the serial port

In response to this command, the F/T system will output continuous data in



ASCII mode. If FT type is selected, F/T system records are transmitted as
strings of 37 characters. The first character is ‘0’ or “1’ representing the strain
gauge saturation flag. Following are the six Cartesian force/torque
components, each is expressed as a decimal number, right-hand justified in a
six character field.

OR: Output one data record in ASCII mode

In response to this command, output record is in the same format as OA
command, but only one data record is issued (one force/torque components
vector).

BS: Remove bias

Normally, force/torque data output is biased by gravitational loading due to
the weight of the end effector, work piece and any attached cables or hoses.
For task where these effects are constant (the orientation of the end effector
remains fixed with respect to the gravity vector), BS command can be used to
remove this bias. This command establishes the current Transducer Unit load

as bias to be subtracted from all subsequent force/torque output.
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