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ABSTRACT 

 

An empirical research on developing a new paradigm for programming a robotics 

manipulator to perform complex constrained motion tasks is carried out in this thesis. 

The teaching of the manipulation skills to the machine commences by demonstrating 

those skills in a haptic-rendered virtual environment. This is in contrast to 

conventional approach in which a robotics manipulator is programmed to perform a 

particular task.  

A manipulation skill consists of a number of basic skills that, when sequenced 

and integrated, can perform a desired manipulation task. By manipulation means the 

ability to transfer, physically transform or mate a part with another part. 

Haptic-rendering augments the effectiveness of computer simulation by providing 

force feedback for the user. This increases the quality of human－ computer 

interaction and provides an attractive augmentation to visual display and significantly 

enhances the level of immersion in a virtual environment.  

The study is conducted based on the peg-in-hole application as it concisely 

represents a constrained motion-force-sensitive manufacturing task with all the 

attendant issues of jamming, tight clearances, and the need for quick assembly times, 

reliability, etc. The state recognition approach is used to identify and classify the skills 

acquired from the virtual environment. 

A human operator demonstrates both good and bad examples of the desired 

behaviour in the haptic virtual environment. Position and contact force and torque 
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data, as well as orientation generated in the virtual environment, combined with a 

priori knowledge about the task, are used to identify and learn the skills in the newly 

demonstrated tasks and then to reproduce them in the robotics system. The robot 

evaluates the controller’s performance and thus learns the best way to produce that 

behaviour. 

The data obtained from the virtual environment is classified into different cluster 

sets using the Hidden Markov Model (HMM), Fuzzy Gustafson–Kessel (FGK) and 

Competitive Agglomeration (CA) respectively. Each cluster represents a contact state 

between the peg and the hole. The clusters in the optimum cluster set are tuned using 

a Locally Weighted Regression (LWR) algorithm to produce prediction models for 

robot trajectory performing the physical assembly based on the force/position 

information received from the rig.  

The significance of the work is highlighted. The approach developed and the 

outcomes achieved are reported. The development of the haptic-rendered virtual 

peg-in-hole model and structure of the physical experimental rig are described. The 

approach is validated though experimental work results are critically evaluated. 

Keywords: Haptic, PHANToM, ReachIn, Virtual Reality, Peg-in-hole, Skill 

acquisition. 
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CHAPTER 1 INTRODUCTION 

 

1.1 The Problem Statement 

Robotics manipulators are primarily employed in industry to improve productivity. 

Many complex manufacturing tasks such as assembly require force sensitive 

manipulation. The robotics manipulators are not usually considered an ideal solution 

for such applications due to the complexity associated with their programming and 

employment. In fact, one of the major barriers to the utilisation of robots in assembly 

tasks to date has been the lack of an effective and reliable method to program them to 

carry out constrained motion.  

In a constrained motion manipulation, the object manipulated by the robots is in 

contact with the surrounding environment or other objects. This requires the 

manipulator, the object and the environment perform compliant motion along certain 

directions.  

A task cannot be structured accurately in compliant motion. A human operator 

adapts to uncertainty associated with the task through kinaesthetic information 

received from the hands. Similarly, a robot arm engaged in compliant motion is 

dependent on the force and tactile signals received from interaction with the 

environment. Integration of the sensory data with the position control of a robots is 

quite complex.  

In this study, the feasibility of teaching manipulation skills to a robotic 

manipulator to perform a constrained motion task is explored. This will replace the 

conventional method of programming a robot. A skill consists of a sequence of actions 

which collectively complete a specific task. A human operator develops skills through 

training and practice in psychomotor domain. This is best achieved by learning the 

skill from another human being. For a robot, acquiring skills from a human operator 

has been a viable approach to pursue. 
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1.2 Haptic Rendered Virtual Environment 

In the approach developed in this study, the instructor demonstrates the manipulation 

task in a haptic rendered virtual environment using a haptic device. The process of 

haptic-rendering consists of using information collected from the virtual environment, 

and evaluating the forces and torques to be reacted at a given position, velocity, etc. of 

the operational point of a haptic interface. The operational point is the physical 

location on the haptic interface where position, velocity, acceleration, and sometimes 

forces and torques, are measured.  

In order to display a virtual environment, the following problems must be 

addressed [Pearce 1999]: 

(a) Finding the point of contact: This is the problem of collision detection, which 

becomes more difficult and computationally expensive as the model of the 

virtual environment becomes more complex. 

(b) Generation of contact forces and torques: This creates the “feel” of the object. 

Contact forces can represent the stiffness of the object, damping, friction, 

surface texture, etc. 

(c) Dynamics of the virtual environment: Objects manipulated in a virtual 

environment can collide with each other and move in a complicated way. 

(d) Computational rate: Computational rate must be high, around 1 kHz or higher, 

and the latency must be low. Inappropriate values of both of these variables can 

cause hard surfaces in the virtual environment to feel soft as well as creating 

system instabilities. 
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1.3 Assembly States 

The state recognition approach is used to identify and classify the skills acquired from 

the virtual environment. The process of identification of assembly states is quite 

critical. States not correctly classified can result in the failure of physical system. An 

assembly consists of a sequence of states. The assembly process itself is the chain of 

transitions from the initial state to the goal state. Different learning strategies will be 

applied according to the current state. 

State identification methods can be divided into direct [Burdea 2000] and indirect 

approaches [Potts 2000]. The commonly used direct identification methods are 

dependent on quasi-static motion with negligible friction and noiseless sensing 

[Burdea 2000]. Hence, they cannot be applied to assembly tasks performed in an 

environment with high uncertainty. The indirect methods, on the other hand, do not 

have such restrictions and can be employed in uncertain environments with friction 

and noisy sensory signals [Potts 2000]. 

Consequently, indirect identification methods are more appropriate for this work, 

and are employed for the classification of a state. The trajectory of the operator is 

classified into several states. The trajectory is learned by identifying constraints 

among the state variables in the operation process. These constraints determine the 

corresponding desired current and next state and decide on the best trajectory to reach 

the goal. Actions that choose the desired trajectory are computed using knowledge of 

the system dynamics, learned by nonlinear function approximators. An on-line 

incremental learning algorithm is used to identify the trajectories of the controller’s 
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skills at each state. 

 

1.4 Conceptual Model behind the Approach 

A manipulation skill is the ability to transfer, physically transform or mate a part with 

another part. A specific manipulation skill consists of a number of basic skills that 

when sequenced and integrated can achieve the desired manipulation outcome. The 

manipulation task (Ms) is applied to the part by the human operator through an action 

uh(t), transferring the part from an initial state of xh(ti) to a final state of xh(tf). The 

control action command uh, provides position, orientation, and dimension of the part 

or its contact forces/torques with the environment. The measured state variables at 

any instant of time t will represent the output of the manipulation system yh(t). The 

variables x, u and h are vectors. 

The overall approach pursued in this thesis is presented in Figure 1.1. As 

illustrated in this diagram, the robotic manipulator mimics the behaviour of the human 

operator by acquiring the skills and producing the machine control action um(t) from 

yh(t). Different stages of the work are described as below: 

(a) The human operator performs the manipulation task in a virtual environment 

using a haptic device. The haptic device provides the operator with contact 

forces and torques similar to those in a real life operation. 

(b) The information produced in the virtual environment, yh(t), is used by the 

Perception module to identify the basic skills and functions employed in the 

operation and to extract the algorithm sequencing the applied skills. 
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(c) The information produced in stage (b) is passed to Data Refinement Module in 

order to remove the noise data, and to extract the most significant data. The 

refined data is then passed to the Manipulation Task Planner to be translated 

into position/force/torque trajectories and associated control algorithms for the 

robotic manipulator. Initially um is generated based on the information received 

from the Perception module, the output of the machine manipulation system 

ym(t), prior knowledge about the task according to the following relationships 

[Pearce 1999]:  

),(1 iii TSS λ=+            (1.1) 

),( ii
m
i IElu =            (1.2) 

In (1.1), Si denotes the discrete constraints of the task at instant i, Ti represents the 

discrete information occurring at instant i, λ is the trajectory constraints learning 

function used to predict the next constraint of the task. The function l stands for 

trajectory learning function, which computes the output ui
m, based on the current 

state Ei and the current information Ii.  

(d) The performance of the manipulation um is then compared with the expected 

behaviour. The manipulator trajectory and um are adjusted according to the error 

to produce a behaviour as close as possible to the manipulation performance by 

the human.  

(e) After satisfactory imitation, information from the Learning Module will be 

taken into account to calculate um. The Learning Module performs various 

optimisation processes to enhance the performance.  
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Figure 1.1 Overall model of system 

Such a system will be most effective when the Perception and Learning modules 

are generic. The Manipulation Virtual Environment will be dependent on the 

application and the Task Planner will be dependent on the manipulator employed.  

 

1.5 Significance of the Thesis 

This study has its focus primarily on the developing a haptic-rendered virtual model 

for the peg-in-hole assembly and classifying the acquired skills by applying the state 
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recognition methods to the data acquired from the virtual environment.  

The peg-in-hole insertion problem is used as a case study, which represents a 

typical constrained motion force sensitive manufacturing task with the attendant 

issues of jamming, tight clearance, and the need for quick assembly times. In the 

developed system, position and contact force and torque as well as orientation data 

generated in the haptic rendered virtual environment combined with a priori 

knowledge about the task are used to identify and learn the skills in the newly 

demonstrated task. 

This study represents a significant progress on the work carried out on 

programming a robotics system through demonstration. It is distinctively different 

from the previous works, as it offers the following unique and original contributions: 

i. Broadly, the project has a generic scope that is novel and innovative. It explores 

how an intelligent machine can replicate human motor manipulation skills. The 

model identified for human psychomotor learning will be emulated in the 

machine to achieve different stages of motor learning. 

ii. Hence the proposed work, is unique in its approach and hypothesis, and 

provides a new insight into the nature of transfer of manipulation skills from 

human to machine. It proposes new generic intelligent algorithms and 

methodologies to emulate different stages of human psychomotor learning in 

machines, including perception, imitation, mechanism, and complex/overt 

response. This makes the project significantly different from previous work 

depending on machine learning in the cognitive domain. 
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iii. More specifically, the project explores the feasibility of online transfer of 

physically constrained manipulation skills from a human operator to a 

manipulator through demonstration, utilising a virtual training environment with 

tactile sensing. Constrained motion manipulation is an important aspect of any 

realistic manipulation environment, such as automatic assembly. 

iv. The acquisition of manipulation skills begins with demonstrating the necessary 

skills by the human operator in a virtual environment with tactile sensing 

(haptics). The use of the virtual environment simplifies the process, as the 

training data is acquired directly from the haptic system.  

v. The project also explores how more complex manipulation skills can be 

constructed from basic skills, as words are formed from letters.  

vi. The proposed concepts are at the leading edge of tele-robotics and intelligent 

systems research. 

 

1.6 Overall Approach 

The project will be carried out by realising the following stages: Virtual Learning 

Environment, Perception, Imitation, Forming Habits, and Validation, 

1.6.1 Virtual Learning Environment 

The data used by the machine to acquire basic manipulation skills is generated 

through a haptic-rendered virtual environment. This approach offers a number of 

advantages compared to other methods. The training data (for example, velocities, 

angles, positions, forces and torque) can be extracted and recorded directly, which 
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simplifies the data-collection process. The environment can be easily modified and 

changed as the manipulation process and its requirements are changed. The risk of 

breakdown and breakage of the system is very low. Dangerous and costly 

environments can be developed in the virtual environment without associated risks. 

The peg-in-hole insertion with a tight fit representing a constrained motion 

manipulation is used to demonstrate the feasibility and validity of the developed 

concepts and methodologies. A six degrees of freedom (6 DOFs) haptic device, called 

PHANToM (PHANToM Premium 1.5 from SensAble Technologies Inc., USA) is 

deployed [SensAble (online)]. A ReachIn hardware platform and application 

programming interface is used in the implementation of the virtual manipulation 

environment [ReachIn (online)]. 

1.6.2 Perception 

The second stage will be to explore a methodology through which the behaviour of 

the operator using the haptic device can be perceived by the Perception Module. In 

reality, the key question asked will be how the sensory data produced by the virtual 

environment can be translated into a pattern of behaviour for training and operation of 

the physical manipulator. Such behaviour cannot be simply modelled analytically or 

explicitly described by the static and dynamic equations of motion. This is due to the 

complexity of the operations involved and the inadequacy of analytical methods to 

model such behaviour. 

1.6.3 Imitation 

As the third task, the perception of the operator’s behaviour should be translated into 



 10

appropriate control strategies for the physical manipulator to imitate the manipulation. 

This is carried out by the Manipulator Task Planner module. Such a control strategy 

will be hierarchical. At the lower level, the individual joints of the manipulator will be 

controlled using a conventional method. At the higher level, the task planning for the 

robot arm will be carried out as fine-motion planning to achieve certain contact 

formations between the parts involved to satisfy force constraints defined by the 

classifier. Part-mating can be then defined as moving from an initial contact formation 

to a goal contact formation. 

1.6.4 Forming Habits 

Another function of the learning module is to enhance the performance of the 

manipulator over time and to produce a complex and overt response. The aim is to 

gradually phase out the error-based corrections at higher control levels and replace 

them with appropriate actions according to every new situation encountered. This will 

be similar to developing habits in psychomotor taxonomy and forms the fourth stage 

of the project. 

1.6.5 Validation 

The peg-in-hole insertion task will be virtually defined through the haptic device and 

the solid modeller. The developed methodology will be then applied and the validity 

of the developed perception, control algorithms, and habits will be systematically 

studied. This will result in further modification and enhancement of the algorithms 

and techniques developed. 
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1.6.6 Proposed Experimental Rig 

The experimental system consists of a 6 DOF articulated manipulator attached to a 6 

DOF force/torque sensor. A 6 DOF haptic device is added to the experimental rig for 

training of the manipulation system. The force/torque data produced by the haptic 

device will match the information produced by the force sensor. Initial verifications of 

some of the basic strategies will be carried out on the physical peg-in-hole insertion 

experimental rig. The host PC will receive the sensory information and training data 

from the haptic device and will produce the necessary control signals to drive 

different actuators of the manipulator. It will be necessary to interface the host 

computer with the controller of the robot arm. 

 

1.7 Structure of the Thesis 

The thesis is organised as follows. A review of the literature associated with the study 

will be carried out in Chapter 2. In Chapter 3, the concept of haptic rendering will be 

introduced and three popular haptic-rendering technologies will be reviewed. In 

addition, Haptic-rendering tools including PHANToM, GHOST SDK, VRML and 

ReachIn API, are described. Penalty-based rendering and proxy-based rendering 

methods employed in the peg-in-hole insertion procedure will be explained. The 

algorithm used to calculate the collision force and torque of peg and hole are 

described. An analysis of the force and torque data generated by the haptic-rendered 

virtual environment will be also carried out in this chapter.  

An overview of the acquisition of manipulation skills from haptic-rendered 
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virtual manipulation will be provided in Chapter 4. The concept of acquisition of 

manipulation skills from haptic-rendered virtual manipulation will be also explained 

in this chapter. Skill-acquisition based on behavioural cloning methods, the Hidden 

Markov Model and Fuzzy Clustering algorithms, will be explained in detail.  

In Chapter 5, the experimental validation of the algorithms of the Fuzzy 

Gustafson–Kessel (FGK) and Competitive Agglomeration (CA), and Hidden Markov 

Model (HMM) will be provided. The physical peg-in-hole experimental rig proposed 

to employ these algorithms in the real task will be introduced first. The experimental 

rig will be described and the experiments designed to validate the work will be 

presented. Finally the validation results will be provided. 

Chapter 6 will draw some conclusions and will highlight the main contributions 

of the thesis. Some suggestions for further research on the project will be also 

provided. 
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CHAPTER 2 BACKGROUND 

 

2.1 Introduction 

This work explores the feasibility of reconstructing human manipulation skills in 

complex constrained motions by tracing and learning the manipulation performed by 

the operator. Manipulation skills are taught to machine by a human operator 

demonstrating these skills in a haptic-rendered virtual environment. This represents 

further extension of the concept of “teaching by showing” and can be considered as a 

new paradigm in programming robotic manipulators. 

In this chapter, a review of the previous work associated with this concept is 

carried out. This will highlight the significance and the contribution of the work. 

 

2.2 Programming of Robotics Manipulators 

While the development of sophisticated intelligent humanoid robots has been the 

ultimate goal of robotics research, other factors such as cost saving have been driving 

research and development in robotics. In some manufacturing sectors, such as welding, 

material-handling, spray-painting and assembly, robotics research community has 

exerted significant effort to design user-friendly interfaces and more powerful 

programming methods for robotic manipulators. The extensive research conducted by 

Blume [Blume 1983] and Ránky [Ránky 1985] on the historical evolution of robotic 

programming highlight the results produced. 
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The general robot programming paradigm, as shown in Figure 2.1, characterises 

the real physical manipulation tasks and abstract models representing these tasks. 

Abstract models can be realised by different robot programming methods. In majority 

of methods, commands based on the abstract models instruct robots to perform certain 

manipulation tasks and change the states both in the abstract model and the real task. 

Internal robot sensors and external sensors, such as force/torque, position, ultrasonic 

and vision sensors, are used to observe the sequence of actions in both the abstract 

model and the real world, and ensuring that they are kept consistent with each other 

[Jones 2004]. 

 

Figure 2.1 General robot programming [Jones 2004] 
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The traditional programming methods developed for robotics manipulators can 

be grouped into four categories of text programming, off-line simulation-based 

programming, inductive learning and teaching by guiding. 

Text programming can be applied to complex applications, but it has proven to 

be quite intensive in code and computing time. The development time is long, and 

special skills and much effort are required to produce a complete program. This has 

resulted in the development of task-level robot languages [Caine 1989; Perez 1977]. 

Task-level programming enables the user to specify the desired goals of the tasks 

without defining every movement of the robot in detail. The task planner will express 

each task in terms of necessary manipulator motions and actions. This scheme 

requires the system to have the ability to perform many planning tasks automatically. 

In addition, task-level programming tools require a great deal of information about the 

workspace, the robots, the objects, the initial state of the environment and the final 

goal to be reached, which can be extremely tedious and time-consuming. A structured 

text program is usually composed of several major parts, which are Data Types 

(including derived Data Types), Variable Declarations, Operators and Expressions, 

Condition Statements, Iteration Statements, and Functions, depicted in Table 2.1 

[Craig 2005]. 
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Table 2.1 An example of major text programming components [Craig 2005] 

  

The off-line simulation-based methods usually integrate text-programming and 

model-based motion planners in one common platform [Matsubara 1985; Derby 
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1982]. Model-based motion planners can automatically generate motions from virtual 

reality models on graphical simulation platforms so that teaching a robot to perform 

the task by programming can be relatively easy. The RoboCell robotics off-line 

simulation programming environment for SCORBOT robots of Intelitek is an 

example of this method, as shown in Figure 2.2 [Intelitek (online)]. This approach is 

powerful but requires special hardware and a complete description of the real world, 

both of which are costly. Although current off-line programming systems mostly 

provide high-level manipulation language to simplify the programming procedure and 

comparatively shorten the development, off-line programming environments do not 

address the issue of sensor-guided robot actions. They are also mostly limited to 

kinematics or dynamics simulation of a robot, without the provision of advanced 

reasoning functionality and flexibility in the tasks. 
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Figure 2.2 Off-line simulation programming environment [Intelitek (online)] 

 

Inductive learning, also called learning from example, is one of the most 

important approaches developed for programming a robot arm. In inductive learning, 

a robot arm controls appropriate motion and sensing strategies through trial and error 

[Dufay 1984]. This is an effective method when it is used to refine other programming 

methods, but it is not suitable for very complex tasks. The inductive learning rules are 

acquired, generalised or statistically analysed from a large number of training 

examples. The performance of inductive learning methods can be measured by the 

learning curve, which shows prediction accuracy as a function of the observed 

examples. Inductive learning decision rules can be generalised from data-mining tools, 
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such as the See5 decision tree algorithm, or from other statistical analysis methods, 

such as the Hidden Markov Model (HMM), clustering algorithms, or artificial neural 

networks. Figure 2.3 shows an example of a Cross-Referencing Classifiers produced 

by See5 data-mining tool. The inductive learning rules are also generalised [See5 

(online)]. 

  

Figure 2.3 Inductive learning rules generalised from See5 [See5 (online)] 

 

Teaching by guiding is a simple method in which a human operator drives a 

robot’s end-effector to all the appropriate locations in the real world to perform the 

task, while the characteristics of the motion are recorded. In spite of its simplicity, this 

fpinkert
Text Box








Please see print copy for Figure 2.3



 20

method is prone to error, is less portable and has high risk. It is not generic or flexible, 

and is not applicable to complex tasks. In addition, this method cannot accommodate 

extensive sensory interaction and can be dangerous for the operator. 

The essential component of the teaching by guiding is illustrated in Figure 2.4 

[Jones 2004]. The approach consists of four major steps, namely, data acquisition, 

trajectory reconstruction, task description, and command generation module. 

  

Figure 2.4 Teaching by guiding system [Jones 2004] 
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2.3 Overview of Teaching by Showing/Demonstration 

There has been a number of attempts to overcome some of the shortcomings of the 

“teaching by guiding” approach. Summers and Grossman [Naylor 1987] embedded a 

collection of sensory information and interaction with the operator in the task 

instruction procedure. The concept of “teaching by showing” or “teaching by 

demonstration” has been another extension of “teaching by guiding”, in which a 

robotic system learns a particular task by watching a human operator performing it. 

The best method allows the user to make natural movements which can be mapped 

easily to instruct driving the robotic manipulator (Figure 2.5) [Jones 2004]. This 

method suffers from a number of shortcomings including the robot operation 

downtime, the danger exposed to the human operator and the difficulty of making 

adjustments for new products. 
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Figure 2.5 Teaching by showing [Jones 2004] 

 

2.3.1 Teaching by Showing/Demonstration without Model 

Some recent developments have significantly advanced the “teaching by showing” 

approach in programming a robotics manipulator. 

Ikeuchi and Sehiro [Summers 1984] developed a system that could extract a fine 

motion sequence from the transitions of face contact states obtained by a range of 

sensors [Ikeuchi 1991].  
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Smart and Kaelbling proposed a framework for application of reinforcement 

learning in programming mobile robots [Smart 2002]. 

Hass integrated a symbolic recogniser and play back module using a visual servo 

for two-dimensional pick-and-place operations [Hass 1991].  

Yamada and Uchiyama conducted a study to determine the essential features of 

human physical skills based on multi-sensory data and the possibility of transferring 

them to robots by focusing on two tasks of crank rotation and side matching [Sato 

1997].  

Kuniyoshi and Inbana developed a robotics system that could learn reusable task 

plans in real time by watching a human performing assembly tasks [Kuniyoshi 1994]. 

The method was based on visual recognition and analysis of human action sequences. 

The effectiveness of the method was demonstrated for a block assembly task. 

Montgomery and Bekey developed a model-free “teaching by showing” 

methodology, which trains a fuzzy neural controller for an autonomous robot 

helicopter [Aleotti 2004]. The controller, combined with a hybrid fuzzy logic 

controller and general regression neural network controller, is generated and tuned 

using training data gathered while a teacher operates the helicopter. 

A vision-based approach to robot path planning has been reported in literature 

[Ude 1994]. A desired motion is demonstrated by a demonstrator manipulating an 

object with his hand. The manipulation performance is measured with a stereo vision 

system. A non-parametric regression technique with robustness to measurement noise 
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is used to reconstruct the demonstrated motion. The generated path is given as a linear 

combination of natural vector splines. 

The  approach  of programming  by  demonstration  is  utilised  in  the  

rehabilitation robotic  system  FRIEND to execute a daily life action  of  pouring a 

beverage into a glass [Martens 2001; She 2003]. A pouring trajectory, which is 

independent from specific bottles and glasses, is acquired through human 

demonstration. In a given pouring task, this trajectory is used as the motion reference 

of the bottle, where the actual location in the trajectory is controlled by the beverage 

flow [Ruchel 1999]. The robustness of the approach is improved by means of 

abstracting the pouring trajectory  independent  from  specific  objects,  as  well  as 

integrating  additional  sensor  information  to  control  the trajectory.  

Voyles et al explored another type of teaching by showing using a programming 

robotic agent. The approach, known as gesture-based programming [Voyles 1997; 

1999a; 1999b], teaches a manipulation to the robotics arm using demonstration by a 

human operator. Robotic skills obtained from skilled experts used in the development 

of robotic systems. The gesture-based programming deals with the issues of how 

gesture-based programming systems captures the intention behind finger poses, hand 

motions, contact conditions, and even cryptic utterances in real time. The system 

retains previously acquired skills to enhance gesture interpretation during training 

while providing feedback control at the same time. 
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Nicolescu, from Interaction Lab of University of Southern California, has 

developed an approach for teaching robots that relies on the key features and the 

general approaches people use when teaching each other [Nicolescu 2001; 2002; 

2003]. The method is initiated from an expert’s demonstration, and then the learner 

practises the task several times under the expert’s supervision to refine the acquired 

skills. The expert may demonstrate the task again for several times during the 

learner’s practice, depending on the complexity of the task. The teacher can also 

provide simple instructions and informative clues to help the learning performance 

during the practice process. In this method, expert’s demonstration, generalisation of 

the demonstration and the learner’s practice the essential components. Additional 

information beyond the expert’s demonstration is also provided to the robot through 

verbal instruction, enabling the robot to learn the more effectively. 

Billard et al has reported experiments conducted to teach certain behaviour to a 

doll robot through demonstration [Billard 1998]. The doll robot has the capacity to 

learn, imitate and communicate. The robot can imitate the arm and head movements 

of the demonstrator through the robot’s simple phototaxis behaviour. In the 

experiments, different sequences of actions are taught to the robot, and labelled 

accordingly. In further experiments, the robot is taught to grammatically correct 

sentences and to describe its actions and perceptions of touch on different parts of its 

body. The robot is controlled by a Dynamical Recurrent Associative memory 

Architecture (DRAMA) [Billard 1999]. DRAMA is a fully connected network with 
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self-recurrent connections on each unit that are associated with two parameters, a time 

parameter, which records the time delay between activation of each unit linked by the 

connection, and a confidence factor, which records the frequency of activation of the 

connection. 

Billard and Mataric have developed a model to imitate two-arm movements 

[Billard 2001a; 2001b]. The model investigates a valid model of a biomechanical 

simulation of human movements, developes an architecture for visuo-motor control 

and built biologically plausible models of animal imitative abilities. The model 

consists of a hierarchy of artificial neural networks. It gives an abstract and high-level 

representation of the neurological structure from brain regions that are involved in 

visuo-motor control. The model is validated in a biomechanical simulation of a thirty-

seven degrees of freedom (37 DOFs) humanoid robot. Data from the human arm 

movements are recorded using video and marker-based tracking systems. The results 

show high qualitative and quantitative correlation between the human data and the 

performance of the humanoid robot. 

The Light-Weight Robots project, developed by the German Aerospace Centre, 

provides a practical example of teaching the task of automatic insertion of a piston 

into a motor block [Light-Weight (online)] to a robotic manipulator. Teaching 

commences by guiding the robot by a human demonstrator using the internal torque 

sensing. The axes of the holes in the motor block are vertically oriented. In the 

teaching stage, orientation stiffness is assigned a high value, while the translational 
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stiffness is set low values, allowing only translational movements to be carried out by 

the human demonstrator. In the second state, the teaching trajectory is automatically 

reproduced by the robot. High values are assigned for the translational stiffness, while 

the stiffness for the rotation is low. This enables the robot to compensate for the 

remaining position errors. The result shows that the automatic assembly task is 

executed four times faster than by the human operator in the teaching stage. The 

insertion task had been implemented previously using an industrial robot and a 

compliant force－torque sensor. The insertion process had to be performed much 

slower to avoid possible jamming. A well-tuned Cartesian force controller is also 

deployed. 

Yano has described a novel teaching method for a mobile manipulator [Yano 

2003]. In this method, the user teaches a nominal trajectory of the hand to a service 

robot to perform a fetch-a-can task. The task consists of opening the door of a 

refrigerator, picking up the can, and closing the door. In the teaching stage, the user 

does not explicitly consider the structure of the robot. The focus is on the movement 

of the hand and the relationship between the hand and the manipulated object. After 

searching for a sequence of feasible hand positions and orientations within the given 

tolerance, the robot generates a feasible trajectory. Although the nominal trajectory 

may be infeasible due to the structural limitation, the robot can search for a feasible 

trajectory within the given tolerance. If necessary, each divided task can be performed 

at a fixed location by dividing the task into subtasks. The advantages of the proposed 
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method are that a user can teach a task without explicitly considering the structure of 

the robot, and the robot can generate a feasible trajectory relatively easily from the 

given task specification. 

Steil et al have investigated the use of gestures for controlling a vision-based 

robot called the GRAVIS-robot (Gestural Recognition Active Vision System robot) 

[Steil 2001]. The robot consists of a binocular camera head, a six degrees of freedom 

(6 DOFs) robot arm and a nine degrees of freedom (9 DOFs) multi-fingered hand. 

Nonverbal communication based on gestural commands of a human instructor is used 

to direct the attention of the robot so that it can enable its vision system to more easily 

find objects that are specified in instructions. 

As an extension of the GRAVIS-robot (Gestural Recognition Active Vision 

System robot), a multi-model system is developed to provide a more cognitively 

oriented environment [Steil 2001; McGuire 2002]. Information from various sources, 

including vision, gestures and voice may be used. For example, an instruction to pick 

up a cube could be given by voice, indicated by a gesture that indicates to pick up the 

cube, or signalled by the vision system by reflecting an infrared ray on the cube. 

A method using hand gestures to control a domestic cleaning robot has been 

developed by Strobel [Strobel 2002]. In this work, a robot’s stereo vision system is 

used to capture the static hand and arm gestures, while the magnetic tracking system 

is used to capture the dynamic gestures. The cleaning robot also has spatial 
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knowledge, which is used to reinforce the robot’s intention. In the course of cleaning, 

the user could point to a surface that should be cleaned. 

Lauria et al have designed a natural language system that can provide directions 

to a robot [Lauria 2002]. This system is used to teach the robot to find different 

locations by travelling through specified routes. The system includes fourteen 

primitives with natural language constructs. Unknown commands may be used by the 

user in the course of the project performance, and some form of clarification and 

learning system would be needed. 

 

2.3.2 Teaching by Showing/Demonstration in an Interactive 
Environment 

Direct transfer of skills from a human operator to a machine in an interactive 

environment has been the next stage in the programming and training of a robotics 

system. In the field of mobile robots, Pomerleau used a three-layer perceptron 

network to control the CMU ALVINN autonomous vehicle [Pomerleau 1993]. 

Grudic and Lawrence used an approximation method as a means for creating the 

robot’s mapping from sensor inputs to actuator outputs in the transfer of skills to a 

mobile robot [Grudic 1996]. 

In the acquisition of manipulation skills, particularly in constrained motion, the 

work carried out by Kaiser and Dillman is of significance [Kaiser 1996]. The work 

proposes a general approach to the acquisition of sensor-based robot skills from 
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human demonstration. An adaptation method is also proposed to optimise the 

operation with regard to the manipulator. The method is validated for two 

manipulation tasks of the peg-in-hole insertion and opening a door. 

Myers et al from Intelligent Automation, Inc. (IAI), developed a system that 

learns from demonstrations of a human operator and then produces a sensor-driven 

program which controls a robot without operator intervention [Myers 2001]. The 

system generates an operation procedure, which is identical to conventional operation 

procedure developed from robot programming language that can be easily reused in 

similar but different application tasks. Based on the skills demonstrated by a skilled 

operator, a robot can be automatically programmed to perform complex assembly 

tasks. As the task requirements change, the robot can be reprogrammed as easily as it 

was initially programmed. 

Skoglund and Aleotti introduced a new “programming-by-demonstration” 

approach, using a supervised learning method [Aleotti 2004; Skoglund 2005]. A 

“programming-by-demonstration” system prototype is presented for position teaching 

of a robot arm. The data of human arm movements are recorded from a wearable 

input device, and is used in the software controller of a robot arm. The method does 

not require analytical modelling of either the human arm or robot, and can be 

customised for different users and robots. 

Soshi et al introduced a novel approach for programming robots interactively 

through a multimodal interface [Iba 2005]. The key characteristic of this novice-
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friendly system is its intuitive interfaces based on speech and hand gesture recognition, 

and its ability allowing the user to provide feedback interactively during the time of 

both the programming and the execution. By allowing human control during the time 

of execution, this interaction capability helps the user to deal with loosely calibrated 

position sensors. The system is demonstrated by interactively controlling and 

programming a vacuum-cleaning robot. Instead of off-line robot programming, this 

on-line robot programming method enables the user to identify what to expect from 

the program execution. 

A robot’s vision-related and audition-related learning capabilities are detailed in 

literature [Weng 2000; Zhang 2001]. The teaching of the robot is carried out online in 

real time through physical interaction between the trainers and the robot. The self-

developmental program of the robot generates internal representations and 

architecture autonomously during the learning procedure without any visual or 

acoustic model information about the world. 

Ehrenmann et al have developed a methodology to teach actions performed in by 

an operator in household situation to a robotic system [Ehrenmann 2002]. The method 

work by segmenting between actions performed during a grasp process. The actions 

include the recognition of particular user actions, the task representation and the 

mapping strategy itself. The results of the segmentation can be stored to be stored for 

application to a real robot. 
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Chen et al presented a framework for robot programming by human 

demonstration [Chen 1998; 2000; 2001]. The framework builds a high-level robot 

controller using information extracted from the demonstration. The high-level robot 

controller is broken down into steps, each fulfilling a different function during 

execution. Multiple demonstrations are used to build a partial view of the robot’s 

configuration space. Optimal paths are generated between steps in a task. The 

assumption is that demonstrations rarely contain the best path between steps. This 

introduces a significant variation to task performance, as the task can be biased 

towards maximum execution speed or maximum accuracy. 

The use of sensors on the fingers to detect fine manipulation of objects has been 

studied by Zollner [Zollner 2002]. Finger movements and forces on the fingertips are 

gathered and analysed while an object is grasped. The approach deploys a data glove 

and integrated tactile sensors. For classifying a grasp, a time delay method based on a 

Support Vector Machine (SVM) is used. 

 

2.3.3 Teaching by Showing in Virtual Environment 

Handleman and Lane have carried out some preliminary work on a knowledge-based 

“tell” approach to describe the task to be carried out by the robot and the required 

corrective control measures to be taken up [Handleman 1996]. The task is defined by 

a rule-based, goal-directed strategy. The proposed method has been verified through 

computer simulation only for a typical peg-in-hole insertion problem. The 
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development of the rule-based system has been intuitive and rather complicated. The 

developed rules are very much context based and have to be built from scratch for any 

new application. 

Takamatsu and colleagues developed a system that referred to as the Assembly 

Plan from Observation (APO) system [Takamatsu 2000]. The robot has the capability 

of observing human performance, recognising tasks and generating programs that 

perform the same task within the APO system. The robot’s hand movement is used as 

a case study in the project. Trajectory is created after observing a human performance. 

In further extension of the work, a task model is developed by integration of 

observations made on multiple demonstrations on a single task [Ogawara 2002]. The 

data obtained from demonstration is segmented to find important states such as grasps 

and moves. The multiple demonstrations highlight which segments is important in the 

task. The relative trajectories corresponding to each essential interaction are 

generalised and stored in the task model by calculating their mean and variance. The 

skilled behaviour is reconstructed from these trajectories. Further study undertaken by 

Takamatsu et al has produced a more robust algorithm by correcting possible errors in 

the demonstrated data [Takamatsu 2002]. Two methods are used to clean up the errors 

from the vision system by using contact relations and their transitions. The first one 

corrects the observed configuration from the observed contact relations. The second 

approach identifies wrongly classified contact relations from an analysis of 

configuration space. Contact states are checked to ensure they do not create problems 
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such as having two objects in the same location. This ensures that incorrect results 

from a vision system do not produce erroneous trajectories. 

Yuan et al investigated assembly planning in virtual environments [Yuan 2000] 

[Yuan 2004]. This interactive approach of assembly planning provides a hand-based 

interface for human operators to perform assembly operations directly in the virtual 

environment. It also incorporates a biologically inspired neural network into its 

assembly planner to automatically determine collision-free motion paths at run time. 

As a result, this approach creates a favourable and unique feature to enable interactive 

assembly planning, not only producing alternative assembly sequences from a single 

user-defined assembly sequence, but also providing assembly operations with robot-

level instructions. 

Ogasawara et al proposed an integrated teleoperation system for maintenance 

consisting of a task with teaching function and another with execution function 

[Ogasawara 1998]. The system integrates a motion teaching system, a geometric 

modelling module, and a task execution system. Automatic analysis of the contact 

states of objects is embedded into the motion teaching system to help the operator to 

teach assembly motion. A surface-based geometric modelling system uses the 

“Teaching Tree” method. This is generated from geometric data of the object. 

Manipulation skills and used to combine the planning system and the task execution 

system. 
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Onda et al developed a “teaching-by-demonstration-in-VR” system that 

automatically generates a robot program to work in the real world from the assembly 

tasks performed by a human operator in a virtual environment [Onda 2001; 2002a; 

2002b]. The system generates a program which detects each contact state extracted 

from demonstration, and realises it by skilful motion primitives (SMP). Some types of 

motion that are included in the recorded motion given by a human operator in this VR 

system in the teaching stage cannot be realised at the execution stage if the robot tries 

to do the same task by using the human demonstration data, even on a contact-state 

level. A method, called the “non-deterministic-search-type motion”, is proposed to 

deal with non-deterministic motions when contact-state transitions are made non-

deterministically. A virtual small face (VSF) and an artificial constrained motion 

primitive (ACMP), as well as a virtual polyhedron for constrained motion (VPCM), 

are introduced. This provides the ability to specify a more general arrangement of the 

bodies when one body is not in contact with another. In a virtual environment, new 

states as well as contact states should be known to make the robot more skilful. 

An approach that allows the results of the demonstration to be graphically 

viewed via a 3D simulation and graphical user interface is developed by Friedrich  

[Friedrich 1998]. The user is able to supervise the operation of the robot during 

program-generation process. The developed code can be also edited, moved around 

and even used separately.  
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2.3.4 Other Alternatives to Teaching by Showing 

The “teaching-by-zooming” is another alternative to the “teaching-by-showing” 

method [Dixon 2003]. Visual servo control objectives are formulated by the desire to 

position/orient a camera based on a reference image obtained by priori positioning the 

camera on the desired location. Specially, projective geometric techniques are used to 

formulate a visual servo control problem based on a cooperative camera scheme. By 

using a second camera with zoom capabilities, the proposed “teaching by zooming” 

alternative approach eliminates the need for the camera to be priori positioned on the 

desired location. 

The “teaching-by-showing-few-images” method can be applied in navigation of 

autonomous mobile robots [Matsumoto 2003]. Some scenes are shown by humans as 

the features of the environment combined with the motion information. An 

autonomous mobile robot navigates paths between feature points by comparing 

current image information with given image information. The robot reads the motion 

command which is associated with the given image information when the robot 

determines the images are identical. 

Yokokohji et al has proposed a teaching-by-demonstration method for training of 

humanoid robots at home [Yokokohji 2005]. The demonstrator’s motion is captured 

by a pair of stereo cameras mounted on her/his head, located very close to her/his eyes. 

By tracking the landmarks attached to the demonstrator’s hand and the working 
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environment, the algorithm estimates not only the demonstrator’s hand motion but 

also his/her head motion, which can be used for active vision system. 

Laschi et al proposed the application of robot vision to the identification of hand 

posture [Laschi 2002]. A skeleton-based approach has been implemented to achieve a 

high-speed low-cost implementation, instead of identifying surfaces and volumetric 

primitives. Simplified one-dimensional segment-based models, which are generated in 

a symbolic way from a selective grouping of points and segments, are used. It is 

expected that the effectiveness of man－machine interaction in personal robotics will 

be improved when robots are introduced in unstructured environments in the presence 

of human beings in applications such as assistance of disabled or elderly persons. 

Grunwald et al introduced a “programming-by-touch” method that presents how 

an untrained user can intuitively interact with the new DLR light-weight robot just by 

touching the arm [Grunwald 2001]. The seven degrees of freedom (7 DOFs) robot 

equipped with appropriate sensors can sense the touch. Instead of demonstrating the 

skills for the robot by gripping the robot arm at a certain point to move it, the 

demonstrator may hold the robot arm at any point, much as s/he would hold a human 

arm. The robot is easier and more natural for a non-technical person to use. 

A vision-based indoor navigation system for robot navigation has been 

investigated by Chen [Chen 2000]. The self-organising hierarchical optimal subspace 

learning and inference framework (SHOSLIF), incorporating states and a visual 

attention mechanism, are used.  This vision-based navigation is formulated as an 
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observation-driven Markov model (ODMM), which can be realised through recursive 

partitioning regression. It keeps the history information and incoming video input as 

an observation vector. A stochastic recursive partition tree (SRPT), which maps a pre-

processed current input raw image and the previous state into the current state and the 

next control signal, is used for efficient recursive partitioning regression. 

A developmental robot, which has the ability of developing its cognitive and 

behavioural skills through real-time interactions with the environment, has been 

introduced by Zhang [Zhang 2005]. The robot’s learning ability is presented with the 

emphasis on its audition perception and audition-related action generation. The robot 

conducts the auditory learning from unsegmented and unlabelled speech streams 

without any prior knowledge about the auditory signals. The actions that the robot is 

expected to perform are also not available. The robot learns the auditory commands 

and the desired actions from trainers as well as physical contact with the environment. 

A developmental cognitive learning architecture, which learns simple behaviours 

and chains these together to form complex behaviours by an artificial agent, has been 

developed by Zhang [Zhang 2002]. The major challenge of this work is that training 

and testing must be conducted in the same mode through online real-time interactions 

between the agent and trainers. 

A robot programming system using a virtual-reality graphical simulation system 

with haptic feedback technique has been introduced by Kahl [Kahl 2002]. Deformable 

liner objects (OLDs) are used in the research. The method aims at describing the 
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assembly task in a more natural way without precise coordinates. The programmer 

performs the assembly task in virtual reality in order to tell the robot roughly in which 

direction to move.  Then, the software analyses this demonstration and generates a 

sequence of elementary skills, such as “establish contact” or “move to edge”, together 

with estimated coordinates showing where to execute the skills. The skill sequence 

produced in this process is executed by a robot. 

 

2.4 Conclusion 

In this chapter, the four categories of programming methods developed for robotics 

manipulators, which include text programming, off-line simulation-based 

programming, inductive learning and teaching by guiding have been briefly reviewed.  

A review of the various “teaching-by-showing” techniques, which is the extension of 

“teaching by guiding”, has been carried out.  
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CHAPTER 3 HAPTIC-RENDERED VIRTUAL 

ENVIRONMENT 

 

3.1 Introduction 

The effectiveness of computer simulation can be augmented using Haptic-rendering. 

A haptic interface, or force feedback device increases the quality of human－

computer interaction by accommodating the sense of touch in computer simulation. It 

provides an attractive augmentation to visual display and significantly enhances the 

level of immersion in a virtual world. A haptic interface has been effectively used in a 

number of applications including surgical procedures training, virtual prototyping, 

control panel operations, hostile work environments and manipulation of materials. 

In this work, haptic-rendered virtual modelling is used as part of a new paradigm 

for programming a robotics manipulator to perform complex constrained motion tasks. 

The teaching of the manipulation skills to the machine commences by demonstrating 

those skills in a haptic-rendered virtual environment. 

The peg-in-hole assembly process is used as a platform to study the concept. The 

peg-in-hole insertion problem is often taken as a standard assembly problem, as it 

concisely represents a constrained motion-force-sensitive manufacturing task with all 

the attendant issues of jamming, tight clearances, and the need for quick assembly 

times, reliability, etc.  

In the developed system, a human operator demonstrates both good and bad 
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examples of the desired behaviour in the haptic rendered virtual environment. Position, 

and contact force and torque data, as well as orientation generated in the virtual 

environment combined with a priori knowledge about the task, are used to identify 

and learn the skills in the newly demonstrated tasks and then to reproduce them in the 

robotics system. The robot evaluates the controller’s performance and thus learns the 

best way to produce that behaviour. 

In this chapter, the background to the concept of haptic modelling will be 

reviewed. Haptic-rendered hardware and software, including PHANToM, GHOST 

SDK, VRML and ReachIn API will be described. This will be followed by two 

popular haptic-rendering techniques, namely volume rendering and surface rendering. 

Penalty-based rendering and proxy-based rendering methods which are based on 

surface rendering technology have been employed in the project. These methods will 

be also discussed in this chapter. 

 

3.2 Background 

Application of robotic systems in repetitive tasks such as pick & place and assembly 

requires both online and offline programming. In online programming, a human 

operator should physically manipulate the robot to perform the task. The actual 

movements of the robot are recorded and then used as skills for robotic operation. 

These methods are often time-consuming and risky for either the human operator or 

the robot. Offline programming usually takes place in the computer environment. This 
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is achieved by integration of diverse technologies and training of skilled operators. 

The training process is time consuming and costly while the programming procedures 

are always tedious and complex. 

On the contrary, operating complex robotic systems in a haptic-rendered virtual 

environment is intuitive and safe. In such an environment, the operator is immersed in 

a 3-D representation of the world with which s/he can interact. Users do not need to 

write complicated computer programs. Virtual assembly, for example, provides 

computerised tools to help in making assembly-related engineering decisions through 

analysis, predictive models, visualisation, and presentation of data [Jayaram 1997]. 

Computer aided manufacturing has the benefits of increased productivity, improved 

quality, and reduced costs. While the environment changes and object movements fed 

back to the virtual manipulating system, it can make a haptic-rendered virtual 

environment more effective. 

There are three steps in implementing such a step: 

(a) Trajectory creation in the virtual space 

(b) Simulation of the task  

(c) Execution of the task by the real robot  

In a haptic-rendered virtual environment, operators can manipulate the virtual 

robots as well as move the viewpoint in a very simple and intuitive way. By changing 

the viewpoint, the operator can look at specific regions of the virtual work space. 

The other entities of a manufacturing system can be modelled in a virtual 
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environment in addition to the manipulators. Each element has its own properties 

(shape, position, orientation, behaviour laws). Using the data related to the virtual 

objects, it is possible to automatically generate trajectories to manipulate them (grasp, 

insert, screw etc.). In this way, the operator can be spared from tedious work. The 

created tasks can be simulated at any time with a collision-detection algorithm. This is 

essential to avoid possible damage to the physical robot. 

The data used by the robot to acquire basic manipulation skills is generated from 

a haptic-rendered virtual environment. This approach has a number of advantages 

compared to other methods: 

(a) The training data, including force, torque, position, angles and velocities, 

can be recorded directly from the computer. 

(b) This virtual haptic environment can be easily modified according to 

different manipulation processes and equipment. 

(c) The risk of breakdown and breakage of the system is very low. 

(d) Dangerous and costly environments can be easily constructed and simulated. 

(e) A user-friendly environment for the human operator can be developed. 

A primary advantage of Haptic-rendering is that it provides a bidirectional flow of 

information via position-sensing and force feedback. The coupling of these two types 

of information flow results in a more natural and intuitive interaction and utilises 

additional sensory channel bandwidth of the user. When users are presented with a 

proper combination of visual and haptic information, they experience a sensory 
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synergy resulting from physiological reinforcement of the displayed multimodal cues 

[Durlach 1995]. 

Working with a haptic-rendered virtual environment has other advantages. Firstly, 

the size of the real robot is not relevant. Irrespective of the size of the robot, the user 

is brought to the same scale through virtual reality representation. Secondly, 

establishing a virtual teleoperation in early stages of development and execution of an 

application prevents the risks associated with conventional direct link teleoperations, 

which has physical link between the real robot and the manipulator. In a direct link, an 

unexpected or wrong movement of the operator could result in the breakage of the 

robotic system. Moreover, the problems associated with the transmission time delays 

are avoided. The few seconds delay between the operator’s action and her/his 

perception of the impact of action on the real robot can adversely affect the whole 

process. Finally, the access of the human operator to actual plant is not required 

during development. This is critical when the disruption of the production line cannot 

be accommodated.  

A haptic-rendered virtual environment is only effective if all the environmental 

changes and object movements are represented in the virtual manipulation model. 

This always needs a highly specialised hardware device and high computing speed 

with visual or multi-sensory feedback. The control loop should be high speed with 

low delay to ensure the stability of the system. Therefore, haptic-rendering depends 

closely on the hardware. Hence, a haptic-rendered virtual environment should 
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maintain a high update rate, present high-quality force feedback, prevent damage 

being caused by the performance limit and have a user-friendly interface. Selecting 

both the hardware and software for the haptic-rendered system must be carefully 

considered. The existing commercial software packages, such as GHOST from 

Sensable [SensAble (online)] and ReachIn API from ReachIn AB [ReachIn (online)], 

have already considered such issues. Hence, the system designer can progress forward 

to the design of the essential core of the haptic algorithm and the graphical parts.  

Haptic devices are computer interfaces that allow users to interact with virtual 

environments through touch and kinaesthesia. By allowing users to touch and 

manipulate virtual environments, haptic devices are potentially useful computer 

interfaces for many applications. They can be used for physical skills training, for 

scientific data understanding, and for entertainment. 

 

3.3 Haptic-rendered Virtual Environment 

The haptic-rendered virtual manipulation environment consists of a six degrees of 

freedom (6 DOFs) haptic device PHANToM Premium 1.5 and its accompanying 

software GHOST, which is used to construct the virtual manipulation of the peg-in-

hole insertion process. In addition, ReachIn API, along with VRML and Python, are 

also used to construct the virtual haptic manipulation environment of the assembly. 

 



 46

3.3.1 PHANToM 1.5 

The PHANToM is an advanced, desktop-mounted, general-purpose, haptic interaction 

device, designed for effective interaction with virtual objects. The PHANToM family 

of haptic devices, developed at the Massachusetts Institute of Technology, 

manufactured by SensAble Technologies (Boston, MA), is currently the most widely 

used force-feedback interface on the market. 

Different models in the PHANToM product line meet the varying needs of both 

research and commercial customers. The PHANToM comes in three models, namely, 

PHANToM Omni Device, PHANToM Desktop Device and PHANToM Premium 

Devices, differing in the size of their physical workspace and the number of Degrees 

of Freedom (DOFs). The PHANToM Premium models are high-precision instruments. 

They provide the largest workspace and forces within the PHANToM product line. 

Some devices also offer 6 DOF. The PHANToM Desktop device and PHANToM 

Omni device offer affordable desktop solutions. Of the two devices, the PHANToM 

Desktop delivers higher fidelity, stronger forces, and lower friction, while the 

PHANToM Omni is the most cost-effective haptic device available today. 

Depending on the model, PHANToM devices can provide 6 input DOF, 3 or 6 

output DOF, and wrist and shoulder motions. As shown in Figure 3.1, the PHANToM 

has a stylus-shaped handle, providing a precision grasp. The characteristics of the 

PHANToM make it well suited for point interaction, for example, operated by a single 

virtual finger, a pencil or a peg. While using this device, sensors are continuously 
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tracking the position of the stylus. This position is compared against the position of 

objects in the virtual environment. Based on these comparisons, corresponding output 

forces are calculated and transferred to the user by three electromechanical actuators. 

The size of the physical workspace varies between 16 × 13 × 13 cm and 41 × 59 × 84 

cm for different models. The device is compatible with standard PC and UNIX 

workstations. A PHANToM 1.5 can produce a maximum exertable force of up to 8.5 

N at nominal position, and a continuous exertable force of 3 N at nominal position. 

The haptic update rate is 1 kHz. In a 6 DOF device, the maximum torque, generated 

by the device actuators is 515 mNm [SensAble (online)]. The relatively large physical 

workspace, in combination with the precision grasp stylus and high DOF for input and 

output, makes the PHANToM one of the most popular haptic devices on the market.  
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Figure 3.1 PHANToM desktop haptic device [SensAble (online)] 

 

3.3.2 GHOST SDK 

The GHOST SDK (General Haptic Open Software Toolkit), which accompanies 

PHANToM, is a powerful, C++ software tool kit that eases the task of developing 

touch-enabled applications. It has been developed by SensAble Technologies for the 

PHANToM haptic interface, and consists of a C++ library of objects and methods 

used for developing interactive, 3D, touch-enabled environment [SensAble (online)]. 

The GHOST SDK handles the many complex computation required to 

realistically simulate physical interaction with digital objects and allows developers to 

specify object geometry, properties, and global haptic effects, using a haptic scene 
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graph. The GHOST SDK works as the “physics of touch” engine, which takes care of 

the complex computations and allows developers to deal with simple, high-level 

objects and physical properties like location, mass, friction, and stiffness. GHOST 

automatically computes the interaction forces between a haptic point, and objects 

within the virtual environment. It can also simulate object compliance, friction, 

springs, impulses and vibrations. 

The GHOST SDK provides an abstraction that allows application developers to 

concentrate on the generation of haptic scenes, manipulation of the properties of the 

scene and objects within the scene, and control of the resulting effects on or by one or 

more haptic interaction devices. Developers can use the libraries of 3D prismatic 

objects, polygonal objects, and touch effects within the GHOST SDK to add a 

convincingly physical dimension to a variety of applications, including medical 

simulation, virtual training, geophysics, robotics, teleoperations, assembly path 

planning, molecular modelling, and nano-manipulation. At the same time, the flexible, 

extensible architecture of the GHOST SDK makes it a powerful platform for haptics 

researchers and other developers who need to add new shapes and dynamics, as well 

as implement the lower-level, direct-force effects. Ghost SDK does not generate 

graphic scenes. Hence, a different tool such as OpenGL [OpenGL (online)] is needed. 

 

3.3.3 ReachIn Desktop Display 

The test platform is built on a ReachIn Desktop Display from ReachIn Technologies 
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[ReachIn (online)]. Figure 3.2 illustrates the ReachIn Desktop Display. The ReachIn 

Desktop Display is a hand-immersive hardware platform in which scene graph, haptic 

system and communication system between graphics and haptics are integrated in a 

consistent, seamless way. The display can provide complex, high-quality haptic 

feedback through one PHANToM haptic device or cooperation of two PHANToM 

haptic devices. CrystalEyes shutter glasses from StereoGraphics Corporation [Stereo 

(online)] are connected to a stereo-output graphics card to provide stereo vision. The 

screen faces down towards a half-reflecting mirror which reflects the stereoscope 

monitor image. When working on the three-dimensional workspace on the ReachIn 

Desktop Display, the user can see the virtual representation of the haptic tool in the 

same position in which it is placed in the real world. The graphics and the physical 

interaction device are perceived as being totally co-located within the workspace. In 

this way, the graphics and haptics are consistent and the virtual environment is seen 

and felt in the exact same position. 
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Figure 3.2 ReachIn desktop display 

 

3.3.4 ReachIn API 

ReachIn API is a scene-graph-based application programming interface for creating 

multi-sensory, interactive applications. The ReachIn API is based on the structure and 

standard of VRML [VRML (online)]. It handles the complex calculations required for 

the touch simulation and the synchronisation with graphic and Haptic-rendering, 

freeing the user to focus on more important issues such as developing application 

behaviour or experimenting with haptic algorithms. The ReachIn API is built on C++ 

but it also integrates Python, VRML, and special Haptic-rendering technology. It is 
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strictly object-oriented and utilises an advanced object-oriented system. 

The virtual reality world is defined by using the scene-graph definition language 

VRML. Both the standard graphical and structural nodes are from VRML in the 

ReachIn API. Additional nodes handling the haptics and dynamics of the scene are 

implemented in C++. A user can also define own nodes implemented in C++. The 

script language Python [Python (online)] is used in the programming of the objects’ 

behaviour in the virtual reality environment. A special Python script node is provided 

in ReachIn API. 

 

3.4 Haptic-rendering Techniques 

A haptic-rendering technique is a method that calculates the contact forces generated 

during manipulation in a virtual environment and apply them to the force-feedback 

device. Most of the rendering techniques used at present are based on a single-point, 

which means the haptic output forces are calculated at only one point at any given 

time [Petersik 2002]. 

At present, surface rendering and volume rendering are the two main haptic-

rendering techniques widely used.  

 

3.4.1 Volume Rendering 

Volume rendering is concerned with the haptic representation of volumetric objects. 

This technique is developed for accurate representation of object surfaces. 
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Volumetric objects are usually represented by a three-dimensional array of small 

volume elements or voxels. Each voxel contains a number of scalar attributes such as 

colour and density. An appropriate interpolation function is applied to these attributes 

in order to produce continuous output forces [Avila 1996]. 

Volume rendering includes three procedures [Lichtenbelt 1998]:  

(a) Representing the volumetric object by three-dimensional arrays, namely the 

RGBA volume data set. The RGBA volume data set is a four-vector data set, 

where the first three vectors are the R, G, and B colour components 

respectively, and the last vector, A, represents opacity of the value range 

between 0 and 1, where 0 means totally transparent and 1 means totally 

opaque.  

(b) Reconstruction of an appropriate interpolation function from this discrete 

data set. Continuous forces are used as output. 

(c) Projecting it onto a 2D output image from the desired point of view.  

The main advantage of volume rendering is that internal object structures can be 

visualised using haptics, so that people can look at the 3D interior information as a 

whole. Interpretation of the interior is rather difficult during volume rendering. The 

performance of the volume rendering is significantly computing intensive compared 

to surface rendering as each frame might take several minutes to be rendered.  

 

 



 54

3.4.2 Surface Rendering 

Compared to computational intensity of volume rendering, surface rendering uses 

surface representations to calculate output forces. Currently, this is the most popular 

haptic-rendering technique. Objects in the virtual environment are represented by 

geometric surface polygons; usually triangles. The main advantage of surface 

rendering is that it can utilise the same object representation as graphical rendering 

[Petersik 2002]. This haptic-rendering technique is suitable for surface rendering of 

rigid bodies, such as various geometric objects. The rendering algorithm does not 

maintain any information about the internal object structure provided by the geometric 

data representation [Petersik 2002]. 

The development of surface Haptic-rendering has undergone three main stages. 

They are the penalty-based-rendering, the god-object-based rendering and the proxy-

based-rendering [Mark 1996]. The basic concepts underlying the three approaches are 

the same. When users try to penetrate the haptic-rendered surface with a haptic probe, 

a force feedback will push it out of the surface.  

 

3.4.2.1 Penalty-based Rendering 

The penalty-based rendering method is a primitive method among the three haptic-

rendering technologies. This method is inspired by the fact that when two 

geometrically rigid objects collide small deformations take place at the contact surface 

and these deformations can be modelled with springs. 
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Consider two colliding objects A and B. When penalty-based collision occurs, the 

following parameters, namely contact point p, normal n perpendicular to the surface 

across the point p and a penetration depth d, can be measured. The penalty-based 

spring force and torque applied to object A are defined as follows: 

ndfkFA ×⋅−= )(              (3.1) 

AAA FcpDT ×−= )(              (3.2) 

The spring force FA is calculated as the product of the force function f of distance 

vector d and the stiffness constant k.  Opposite forces and torques are applied to object 

B. The force function f can be linear or a complicated non-linear function. In these 

relationships, cA is the centre of mass of A and D is the distance vector between p and 

cA. 

The penalty-based rendering method has several attractive properties [McNeely 

1999] [KiM 2003] [Johnson 2003]:  

(a) The force model, based on objects interpenetration, used to compute each 

contact point, is simple to construct. 

(b) Object contact decision is made in every simulation frame, which makes the 

penalty-based rendering method best suited for interactive applications with 

fixed time steps, such as haptic rendering.  

However, several severe problems prevent penalty-based rendering from 

becoming the primary rendering method [Wu 2000] [Larsen 2001]: 

i. As the tip of the haptic probe penetrates into the object surface, internal 
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forces are generated to halt the tip’s advance through the surface. However, a 

deep penetration does not produce sufficient reactive forces as the internal 

volume of the object is not modelled.  

ii. Moreover, the tip of the haptic probe penetrating one side of the object’s 

surface is often close to the other side of the surface. As a result, the 

generated force would eventually push the point off the surface.  

iii. A severe problem is that several points in an object may have the same 

distance to the surface. In these situations, forces generated from the haptic 

environment become unstable, since force directions may start to change 

rapidly. This results in haptic probe oscillation. Since force fields should be 

computed in advance, this method is not appropriate in dynamic 

environments. 

 

3.4.2.2 God-object Rendering 

God-object rendering technology was first employed for haptic applications to address 

the limitations of penalty-based rendering by Zilles and Salisbury [Zilles 1994]. This 

method employs a strategy to keep track of a virtual contact point, namely the god 

object, which remains on the surface during haptic interaction so that it can prevent 

the virtual contact point of the haptic interface from penetrating the object. The force 

direction will be accurately applied to the operator, while the position of the god 

object on the surface is determined. 
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 Although the actual positions of objects may overlap in the virtual environment, 

the generated interaction forces should be based on a contact state where the objects 

cannot overlap. Given the previous location of the god object and the current location 

of the haptic interface, the algorithm will identify a number of surfaces on the 

rendered object which are currently involved in the interaction and denote them as 

active. A surface is active if the god object is on one side of the rendered surface, and 

the haptic interface is on the other, and the action takes place within the boundaries of 

the surface. Once this set of surfaces, or constraints, has been identified the new 

location of the god object can be computed. By finding the closest point on the active 

constraint surface to the current haptic interface point, the new location of the god 

object can be determined. By choosing planar constraints, the solution can be found 

by solving a set of linear equations. 

The god-object rendering algorithm technique has successfully solved the 

problems raised by the penalty-based haptic-rendering technique, because in this case, 

the contact is between objects instead of one point and one object [Salisbury 1995]. 

The god object tries to be as close to the haptic probe tip as possible and any 

displacement of the god object relative to the tip gives rise to a haptic force. The god 

object is restrained by a predefined topology calculated from the objects in the virtual 

environment. Hence, when the tip penetrates into a surface, the god object is left 

outside. This will generate a force pulling the instrument out of the surface. The god-

object can slide on the surfaces of polygons when the area is defined as legal in the 
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topology of the objects. Since the god object is always located on a surface, it can not 

penetrate through thin objects. However, the god object could slip through very small 

gaps between adjacent polygons, hence the predefined topology is used to restrain the 

god object instead of the polygons. 

 

3.4.2.3 Proxy-based Rendering 

The proxy-based rendering method, which performs the same function as god-object 

rendering, was first described in [Ruspini 1997]. It is an extension of the god-object 

rendering technology that employs virtual proxy as a representative object to 

substitute the phantom probe in the haptic-rendered virtual environment. By using an 

intermediate virtual object, namely proxy, with a defined size instead of the point-

shaped god object, the problem of slipping through gaps between polygons is solved. 

Because the virtual proxy has a finite size, it does not slip through the tiny numerical 

gaps found in most polygonal meshes [Zilles 1994]. The proxy is restrained by 

polygons which makes a dynamic environment possible. This is different from god-

object rendering in which a predefined topology is calculated from the objects in the 

virtual environment. With the proxy method, the proxy remains on the object surface 

when the haptic probe tip penetrates the object surface. Rather than calculating the 

force applied to the device directly from the virtual object, the haptic probe is 

controlled to move towards the proxy position. The proxy itself can be controlled to 

move over the surface of the object with regard to the location of the haptic probe. 
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Figure 3.3 illustrates the motion of the virtual proxy. In the absence of an obstacle, 

if the virtual proxy’s path does not collide with any obstacles, the virtual proxy moves 

directly towards the object. The proxy’s position is advanced until it makes contact 

with the first obstacle in its path. When the proxy encounters one or more interfering 

primitives, direct motion becomes impossible. The user can still reduce the distance of 

the proxy relative to the goal by moving the proxy along one or more of the constraint 

object surfaces. The motion is chosen to locally minimise the distance relative to the 

goal. The proxy stops when it is unable to decrease its distance relative to the goal, 

due to jamming. 

 

Figure 3.3 Motion of the virtual proxy [Ruspini 1997] 

 

 To model the interaction between virtual proxy and obstacle, a configuration 

space of the proxy (a constraint plane), namely configuration space obstacles (C-

obstacles), which consists of all the points within one proxy radius of the original 

obstacle’s surface, is defined (Figure 3.4). In this configuration space, the position of 
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the proxy is identified as a point while all C-obstacles have continuously defined 

surfaces and nonzero thickness [Ruspini 1997]. The periphery of the C-obstacles, 

namely the constraint plane, can then be formed. 

 

 

Figure 3.4 Configuration space of the proxy 

 

The difference vector between the proxy and the device position is used to 

calculate a proportional output force. In order to update the proxy position while the 

device moves within the object, the distance between the device and the proxy 

position, px − , is locally minimised. This will be subject to: 
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 Where p represents the vector from the current proxy position to the user’s 
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position, x represents the new sub-goal vector, and ,0,
^

mini ≤≤  are the unit normal 

of the constraint planes [Ruspini 1997]. 

Constraint-based rendering methods eliminate the problem of unstable haptic 

output. Since the output forces are calculated in real-time, these methods are also 

suited for dynamic environments. Because of the real-time rendering, god-object and 

proxy rendering methods are more computationally expensive than penalty-based 

rendering methods. 

 

3.5 Force feedback in Haptic-rendered Environment 

3.5.1 Spring-damper System 

In this configuration, the virtual peg is coupled with the PHANToM Premium Devices 

(that is the manipulation point) through a spring-damper system [Mathinsite (online)]. 

An ideal spring-damper system is depicted in Figure 3.5. It is composed of a mass 

attached to a spring and a damper. By applying Newton’s second law and analysing 

forces applied on the mass (free body), the following relationship can be obtained 

[Mathinsite (online)]: 

 kxFs −=                (3.3) 

 
dt
dxbxBBvFd −=−=−=

.
           (3.4) 

 2

2..

dt
xdmxmmaF ===∑            (3.5) 

where  

 k, B represent spring constant and damper constant, respectively 
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 m is the mass of the spring-system 

 Fs, Fd and ∑F represent forces applied on the spring, damper and mass 

respectively 

 a or 
..
x  is the acceleration of the mass 

 
.
x  is the velocity of the mass 

 x is the displacement of the mass relative to a fixed point of reference. 

 Combining the three motion equations, a differential equation for displacement x 

as function of time t is obtained: 

 02 2
0

.

0

..
=++ xxx ωξω              (3.6) 

where damping factor 
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m
k

=0ω . 
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Figure 3.5 Mass-Spring-Damper System [Mathinsite (online)] 

 

The peg is a dynamic rigid object in the virtual environment. The forces reacting 

on the peg are transferred to PHANToM probe through the spring-damper system. 

The virtual hole is static in the virtual environment while the peg can be moved and 

rotated (Figure 3.6) [Chen 2002a]. Forces applied on the PHANToM probe through 

the spring- damper system is described as followed: 

...
xmxBkxF ++=              (3.7) 

where the x, 
.
x , and 

..
x  represent the displacement, velocity, and acceleration of 

the peg respectively  [Chen 2005]. 
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Figure 3.6 3DOF peg-in-hole insertion virtual environment 

 

3.5.2 Force Feedback from Haptic-rendered Environment 

The force generated at each point is the sum of the normal force and the friction force 

exerted at that point, as shown in Figure 3.7 [Chen 2002b]. 

 

 

Figure 3.7 Normal force and friction force 

 

The direction of the normal force is perpendicular to the contact surface and 

points to the moving object. The magnitude of the normal force generated at each 

point is calculated by 

vbadcdkfc ⋅+⋅+⋅=             (3.8) 

where 
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 d is the depth of the point in the contacting static object 

 ad is the accumulated depth during a continuous contact between the point 

and the static object 

 v is the velocity of the object and is calculated by the current Depth minus the 

last Depth divided by the sampling time 

 k is the stiffness coefficient 

 c is the coefficient for the accumulated depth. 

 b is the damping coefficient 

The torque generated at each point is calculated by 

Dfct ×=                (3.9) 

where 

D is the distance from the contact point to the rotating centre of the object. 

The direction of the friction force is along the contact surface and opposite to the 

moving direction. The magnitude of the friction force generated at each point is 

calculated by  

zf ×= σ                         (3.10) 

where 

 z is the strain describing micro-movements between the two objects, which is 

not allowed to exceed a small value called the breakaway distance zmax. 

 σ is the stiffness relating force to strain, assuming xi is a point fixed on the 

moving object, and yi is an adhesion point on the static object, as shown in 
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Figure 3.8 [Chen 2002b].  

The following relationship is used to calculate zi by  

iii yxz −=                        (3.11) 
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Figure 3.8 Definition of the strain z 

 

3.6 Graphic-modelling Techniques 

Graphic-modelling provides vision feedback to the operator that bridges haptic-

rendering model and virtual manipulation. The graphic models are realistic and can be 

efficiently constructed. Some of the graphic-modelling techniques can also provide 

inspiration for haptic-rendering techniques. 

The Non-Uniform Rational B-Splines (NURBS) techniques, typically used in 

Computer Aided Design (CAD) environments, have also been widely deployed in 

computer graphic displays and vision or touch models acquired by robotic systems 

[Han 1996] [Chang 1997] [Ikits 2001] [Balasubramaniam 2002]. Using Non-Uniform 

Rational B-Splines (NURBS) technique, very complicated object can be modelled and 

modified locally. However, the present of the object requires a large mount of data. 
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The collision detection is also difficult to perform [Piegl1995]. 

In the first implementation of the virtual haptic-rendered peg-in-hole insertion 

project, OpenGL was used to build the peg-in-hole graphic model and GHOST SDK 

for the haptic model. The GHOST SDK (General Haptic Open Software Toolkit), 

which accompanies PHANToM, developed by SensAble Technologies for the 

PHANToM haptic interface, was used for developing interactive, 3D, and touch-

enabled environment [SensAble (online)]. The penalty-based rendering, developed 

through GHOST SDK, cooperates with OpenGL to render both visible graphic objects 

and haptic objects. VRML was employed in the final implementation of the graphic 

model, while ReachIn API was used to develop the haptic-rendering [ReachIn 

(online)]. In this case, the objects, created by proxy-based rendering method, 

developed through ReachIn API can be seen through the VRML model. 

Both OpenGL and VRML work based on the same concept that surface of the 

objects are made of quadrangle polygons. The visibility of the surface depends on the 

direction of the normal perpendicular to the surface. The order of the quadrangle 

vertexes of the surface and the direction of the normal must follow the right hand rule. 

If the normal faces the viewer, the surface is visible, otherwise it is invisible. 

 

3.7 Haptic-rendered Peg-in-hole Environment 

The peg-in-hole assembly process is used as a platform to study the concept. The peg-

in-hole insertion problem is often taken as a standard assembly problem, as it 
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concisely represents a constrained motion-force-sensitive manufacturing task with all 

the attendant issues of jamming, tight clearances, and the need for quick assembly 

times, reliability, etc.  

In the developed system, a human operator demonstrates both good and bad 

examples of the desired behaviour in the haptic virtual environment. Position and 

contact force and torque data, as well as orientation generated in the virtual 

environment combined with a priori knowledge about the task, are used to identify 

and learn the skills in the newly demonstrated tasks and then to reproduce them in a 

robotic system. The robot evaluates the controller’s performance and thus learns the 

best way to produce that behaviour. 

 

3.7.1 Penalty-based Peg-in-hole Rendering 

3.7.1.1 Haptic-rendering for 3 DOF Device 

In the previous research, the haptic-rendered virtual peg-in-hole model was developed 

for a 3 DOF haptic device by Yuxin Chen [Chen 2005]. The haptic-rendered peg-in-

hole insertion model was constructed based on penalty-based haptic-rendering method. 

This haptic-rendered model, which generates force data, is constructed using the 

TriPolyMesh and PointShell methods, developed by the GHOST SDK supplied with 

PHANToM haptic device [Chen 2005].  

The TriPolyMesh (triangle polygon mesh) method was used to construct the 

haptic model of the peg and hole. The surfaces of the virtual peg and hole were 
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formed by rotating the triangles around the coordinate centre (Figure 3.9) [Chen 

2002a].  

 

 

Figure 3.9 TriPolyMesh method 

  

The PointShell method was employed to generate force data from the haptic-

rendered model. In the PointShell method, an object is represented as a collection of a 

group of important points on their surface. The point P(x, y, z) of the curve C(x, y, z) 

in the PointShell model must be singular. The following formula must be applied: 

0),,( =zyxC                       (3.13) 
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where Cx, Cy, Cz are the partial derivatives of function C relative to x, y, z  [Chen 

2005]. 

A surface normal vector pointing inwards is assigned to every point on the 

PointShell to provide the normal force direction [Renz 2001]. Figure 3.10(a) 
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illustrates the normal vectors of a PointShell. In the PointShell developed for the peg-

in-hole insertion, the directions of the vectors assigned to singular points are not pre-

determined, as they depend on the normal of the contact surface (Figure 3.10(b)) 

[Chen 2002a]. The directions are assigned when the peg and hole are in contact. 

 

 

The developed haptic-rendered model proved quite stable when the peg-in-hole 

insertion was performed by the three degrees of freedom (3 DOFs) PHANToM 

Premium 1.0 [Chen 2005]. However, when at a later stage, the haptic device was 

upgraded to a six degrees of freedom (6 DOFs) device, PHANToM Premium 1.5, 

strong oscillation occurred during the virtual peg-in-hole insertion and consequently 

the simulation could not be carried out successfully. Force and torque data collected 

from one unsuccessful peg-in-hole insertion is depicted in Figure 3.11.  

 

 

Figure 3.10 PointShell method 
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Figure 3.11 Strong oscillation indicated by high torques 

 

Further investigation of the problem revealed that the PointShell and 

TriPolyMesh algorithms used in the model were not sufficiently accurate for operation 

with a 6 DOF haptic device.  

 

3.7.1.2 Haptic-rendered Model for 6 DOF Device 

In order to stabilise the virtual peg-in-hole insertion with tight fit for a 6 DOF haptic 

device, three new algorithms have been developed and applied to the physical model 

of the process. They include a modified PointShell algorithm, modified TriPolyMesh 

algorithm and dual-gstCylinder algorithm. 

In the modified TriPolyMesh algorithm, the haptic hole is constructed by a 

triangle polygon mesh algorithm and the haptic peg is a gstCylinder, which is a 

cylinder-shape class defined by GHOST SDK, representing a geometric primitive 

cylinder. The inside, outside and top surfaces of the hole are formed by rotating 

triangle polygons around the y-axis as shown in Figure 3.12. The gstPoints, one of a 
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variety of data types defined and used in the GHOST API, are added to the vertex of 

each triangle polygon, representing a Cartesian three-dimensional point class. A group 

of gstPoints is also added to the end edges of the peg. The gstPoint generates contact 

force and torque data when it intersects with the body of the peg. Similar to the 

previous model, the direction of the vectors assigned to each gstPoint is not 

predetermined in advance, as it depends on the normal of the contact surface. This is 

determined according to the contact position when the peg and the hole come in 

contact. The gstPoints also play an important role in approximately removing the gaps 

produced when a polygon is used instead of a circle, as illustrated in Figure 3.13. 

 

 

Figure 3.12 Modified TriPolyMesh method (a) 
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Figure 3.13 Modified TriPolyMesh method (b) 

 

In the dual-gstCylinder algorithm, the hole is constructed using two gstCylinders 

rather than triangle polygons, forming the inner and outer surfaces of the hole (Figure 

3.14). This approach is simple, and the constructed model conforms well to the shape 

of the hole and hence there is no inaccuracy in the model. The approach also offers a 

simple technique for the construction of the haptic-rendered model. Since the haptic-

rendered model is a real cylinder model, no accuracy problem is introduced according 

to the approximate cylinder created by the triangle polygon mesh algorithm. The 

gstPoints are defined for the edge of the hole and the two ends of the peg.  
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Figure 3.14 Dual-gstCylinder method 

 

In the PointShell algorithm, the hole is defined as a dynamic object created by a 

group of gstPoints, as shown in Figure 3.15. The peg is also constructed by the 

gstCylinder. The direction of the force generated at each gstPoint is normal to the 

surface of the hole at each point. The gstPoints on the hole prevents the virtual peg 

from penetrating into the inner surface of the hole.  

 

 

Figure 3.15 PointShell method 
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The developed algorithms were applied to the virtual peg-in-hole insertion 

process. The process proved stable, and no jamming was observed when the assembly 

was performed in the virtual environment with a 6 DOF PHANToM Premium 1.5.  

Some of the experimental results are illustrated in Figure 3.16－3.18. The 

variation of 11 normalised series of x, y, z, fx, fy, fz, Mx, My, Mz, Ax, Ay and Az are 

illustrated in these diagrams, where: 

• x, y, z are positions of PHANToM probe or peg in the world coordinates 

[millimetres]. 

• fx, fy, fz are reaction forces in the world reference frame from PHANToM 

[Newtons], 

• Mx, My, Mz are reaction torques in the world reference frame from 

PHANToM [Newton*millimetres]. 

• Ax, Ay, Az are equivalent rotations of the current rotation matrix (orientation) 

based on successive rotations around the x, y, z axes. Angles are in radians 

and a right-hand rule is used. 
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Figure 3.16 Results of using Modified TriPolyMesh method 
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Figure 3.17 Results of using Dual-gstCylinder method 
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Figure 3.18 Results of using PointShell method 
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3.7.2 Application of Proxy-based method to Peg-in-hole Insertion 

Figure 3.19 shows the developed virtual environment using proxy-based rendering 

process for the peg-in-hole insertion process. The peg is a dynamic rigid object in the 

haptic-rendered virtual environment. The force and torque reacting to the peg are 

transferred to PHANToM Premium 1.5 through the spring-damper system. The hole is 

static in the environment, while the peg can be translated and rotated.  

 

 

Figure 3.19 6 DOF Peg-in-hole haptic virtual environment 

  

The haptic-rendered model of the peg-in-hole assembly insertion generating force 

and torque data is constructed using the virtual proxy method [Ruspini 1997]. The 

virtual rigid peg is defined as a virtual proxy and controlled by the physical ReachIn 

probe in the haptic-rendered virtual environment. The position of the virtual proxy is 

changed according to alteration in the probe’s position. 

The surfaces of the peg and the hole are constructed using polygons. This results 



 78

in numerical errors, which can produce gaps in the common edge of the peg and hole.  

The size of the virtual proxy is chosen large enough to prevent it from falling into the 

gaps. 

The force generated at the proxy is the sum of the normal and the friction forces. 

The generated torque is the product of the contact force vector applied at the contact 

point and the distance vector from the contact point to the rotating centre of the object 

[McNeely 1999; Renz 2001]. The full rotation of the proxy is recorded 

as ( )θ,,, zyx fff . This describes an arbitrary rotation about an axis vector, where 

( )zyx fff ,,  are the axis vectors and θ  is the angle in radians in the right-handed 

direction. The axis vector is of unit length. The rotation matrix is calculated by: 
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Where θθ cos1−=v , θθ cos=c , θθ sin=s   [Niku 2001] 

Figure 3.20 shows the position, force and torque data as well as the change in the 

rotation angle from the last step to the current, obtained from the haptic-rendered 

virtual environment. 
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Figure 3.20 Training data obtained from the virtual environment 

 

3.8 Summary 

In this chapter, the backgrounds of haptic concept and two popular Haptic-rendering 

technologies have been reviewed. The haptic-rendered virtual environment, including 

PHANToM, GHOST SDK, VRML and ReachIn API, has been described. Penalty-

based rendering and proxy-based rendering methods, based on surface rendering 
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technology, employed in the peg-in-hole insertion procedure, as case studies of the 

haptic-rendered virtual environment, have been studied. The algorithms used to 

calculate the collision force and torque of peg and hole have been described. The 

generated force and torque data from the haptic-rendered virtual environment have 

also been presented. 
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CHAPTER 4 SKILL ACQUISITION 

 

4.1 Introduction 

The paradigm proposed to acquire manipulation skills from a haptic-rendered virtual 

manipulation is introduced and studied in this chapter. The deployed skill acquisition 

methods are primarily based on behavioural cloning methods. Manipulation states are 

generalized offline by peg and hole’s physical contact relations or statistic methods, 

such as Fuzzy Clustering algorithms, according to the characteristics of the generated 

manipulation data. Hidden Markov Model is used to estimate the next optimal state, in 

another word the optimal state sequence. These approaches are described in detail and 

their main characteristics are highlighted. 

 

4.2 Background 

Traditional control theory uses a mathematical model of a physical process to predict 

its behaviour and adopt appropriate control actions. Unfortunately, either many 

processes are too complicated to be accurately modelled or there is insufficient 

information available about the process environment.  

Heuristic methods, such as artificial neural networks, genetic algorithms, fuzzy 

control, expert systems and reinforcement learning have been developed to replicate 

the human ability to control and monitor a process without a need to mathematically 

model it. These methods, contrary to the ability of a human operator, have their own 
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strengths and limitations. Each method is more appropriate for a particular application 

and might prove ineffective for another.  

Moreover, controlling a complex dynamic system, such as a robot, a plane or a 

crane, usually requires a skilled operator with full understanding of its operation. 

Some machine learning methods, such as artificial neural networks, genetic 

algorithms and reinforcement learning, do not use prior knowledge about the system 

to be controlled. This results in a low successful learning rate, low robustness, a 

considerable amount of time-consuming experimentations with the dynamic system, 

and difficult interpretation and comprehensibility of the system. However, a human 

operator usually learns initial strategies from their prior knowledge of the system or 

from demonstrations by experienced operators.  

Donald Michie [Michie 1993] introduced the concept of behavioural cloning, 

aiming at deploying the skills of an expert operator to generate a generic automatic 

control algorithm using heuristic and machine learning techniques. This method was 

originally motivated by the difficulties encountered in getting expert controllers to 

produce detailed explanations of their skills. A skilled operator’s control traces are 

used as examples for machine learning algorithms to reconstruct the control strategy 

that the operator executes subconsciously. In general, there are two goals in 

behavioural cloning. One is to generate “good performance” clones, which can 

reliably carry out the control task. Another is to generate “meaningful” clones, which 

can help to achieve a better understanding of the human operator’s subconscious skill 
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[Urbancic 1994]. Behavioural cloning has been successfully used in a number of 

domains. These include pole balancing, production-line scheduling [Kerr 1994], 

piloting [Bain 1999; Sammut 1992], and operating cranes [Suc 2000]. These 

experiments are reviewed by Bratko [Bratko 1998].  

Decision trees or regression trees are often used in inducing behaviour cloning 

controllers. Such clones do provide some insight into the control strategy. However, in 

general, they lack the conceptual structure that would clearly reflect the causal 

relations in the domain and the goal structure of the control strategy [Suc 1998]. 

Clones in the form of decision trees do not explicitly show any time ordering between 

events in the controlled system and the actions taken. Although successful clones have 

been induced in the form of decision trees or regression trees, such as C4.5 [Esmaili 

1995; Pearce 1999] and locally weighted regression [Suc 1998], the following 

problems have generally been observed with this approach [Suc 1998]: 

(a) Behaviour cloning controllers are not stable with regard to small changes in 

the control task.  

(b) The proportion of successful controllers induced is low, typically below 

50%. 

(c) Induced clone controllers lack the typical elements of human control 

strategies such as goals, subgoals, phases and causality, and hence cannot 

adequately generalise the human skill. 

The logic-based machine learning method uses the background knowledge, which 
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is known prior to learning. For example, Inductive Logic Programming (ILP) 

[Muggleton 1992] is a kind of logical-based machine learning. Some experiments 

with ILP were performed in the control task modeling a pilot flying a F-16 flight 

simulation on a leveled left turn [Camacho 1995], but the results were generally not 

better than those using decision or regression trees. 

Some behavioural cloning approaches employed from traditional control theory 

have also proved effective. In Suc [Suc 1997], cloning controllers take the form of 

Linear Quadratic (LQ) controllers with subgoals, where in the subgoals are 

automatically induced from the operator’s control traces. The reconstruction of a 

human operator’s skill exploits some elements of the theory of Linear Quadratic 

Regulator problems [Bertsekas 1987]. Both the dynamics of the system and the 

example behavioural traces are considered in the learning process. The system model 

control skills suggested by Isaac [Isaac 2003] are separated into a reactive level and 

an anticipatory level, that is, the learning of traditional PID (Proportional Integral 

Derivative) controllers as rule sets and combining them into a goal-directed 

hierarchical framework. These approaches have significantly improved both the 

clones’ robustness in regards to changes in the control task, and the yield of the 

cloning process. However, this approach still has difficulties in domains with 

significant nonlinearities. 
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4.3 Perception Module 

The basic skills are derived and structured by the perception module. It derives the 

basic skills from the training data produced through manipulation in the virtual 

environment and stores them in models which can generate outputs according to 

inputs. These models can also be viewed as databases that store the skills. The skills 

stored in the database or in the model are used by the planning module to control the 

manipulator. Skills in the database can be further augmented by the skills learned 

online during physical manipulation by the manipulator. 

The human performs manipulations by choosing from a limited but possibly large 

repertoire of movement primitives or basic skills. A manipulation task usually consists 

of a sequence of basic skills. Identification of these basic skills and mapping them on 

to an equivalent series of robot manipulation primitives form the core of an algorithm 

for skill acquisition and transfer of those skills from the human to a robotic 

manipulator. Such skill-based manipulation is an effective way for a robotic 

manipulator to execute a complex task. 

The basic skills are defined according to the contact-state transition of a task, 

independent from the configuration of a manipulator [Nakamura 1996]. In a virtual 

manipulation environment, the basic skills can be also identified by the contact states 

and state changes [Onda 1995; Takamatsu 1999]. Using this approach, the basic skills 

can be automatically extracted from the manipulation carried out in the virtual 

environment. 
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The structure of the Perception Module of this project is illustrated in Figure 4.1. 

In the first step, the training data, generated from the haptic-rendered virtual 

environment, are refined by removing noise data and compressing highly correlated 

vectors. In the second step, manipulation states are generalized either by peg and 

hole’s physical contact relations or by some Fuzzy Clustering algorithms. In the third 

step, Hidden Markov Model is applied to estimate the optimal state sequence. The 

physical peg-in-hole assembly can start from any predefined manipulation state. 

Optimal state sequence can then be used to estimate the next optimal state to follow. 

The Locally Weighted Regression (LWR) method is encoded as the approximator for 

the trajectories in each state during physical manipulation. The initial locally weighted 

regression learning modules are developed by the online training data generated from 

the haptic-rendered virtual environment. These locally weighted regression learning 

modules will be also improved in real-time by the data generated from the physical 

peg-in-hole assembly procedure. 

 



 87

Figure 4.1 Structure of the Perception Module 
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4.3.1 Noise Removal 

The training data generated from the haptic-rendered virtual environment may include 

inconsistent or unintended actions. These data must be identified and removed from 

the training data in the Perception Module before skill acquisition analysis. 

The noise in the data is removed before the analysis. The following algorithm 

[Kaiser 1996] is applied to refine the data, in which u is the action vector: 

1. Remove irrelevant actions that do not enhance an action. This is defined 

by 0, ≥≤ ssu δδ , where sδ is an application-specific threshold. 

2. Remove the operator’s rough control. If the differences between two 

continuous actions are too large, their average value will be used instead.  

 

4.3.2 Data Compression 

In some situations, the dimension of the input vector is large, but the components of 

the vectors are highly correlated (redundant). It is useful in this situation to reduce the 

dimension of the input vectors. An effective procedure for performing this operation is 

Principal Component Analysis (PCA) [Smith 2002]. This approach generates the 

following outcomes: 

(a) It orthogonalises the components of the input vectors so that they are 

uncorrelated with each other. 

(b) It orders the resulting orthogonal components and principal components, so 

that those with the largest variation come first. 
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(c) It eliminates those components that contribute the least to the variation in 

the data set.  

Principal Component Analysis (PCA) is a classical statistical method which 

identifies patterns in data and expresses the data to highlight their similarities and 

differences. It is a common technique for finding patterns in data of high dimension. 

Once these patterns in the data have been found, the data can be compressed. The 

method is based on linear transformation which has been widely used in data analysis 

and compression and has found popular use in face recognition and image 

compression. 

The process of human-to-robot skill transfer usually involves recording many task 

states and sensory information. This results in a large number of dimensions in the 

recording of human skills data and low efficiency due to the presence of redundant 

data. Reduction in the dimension of data helps to interpret and understand the data 

more effectively. In addition, it increases the efficiency of the machine learning 

algorithms. 

Principal Component Analysis is based on the statistical representation of a 

random variable. The aim is to find a set of M orthogonal vectors in the data space 

that account for as much data variance as possible. Projecting the data from its 

original N-dimensional space onto the M-dimensional subspace spanned by these 

vectors results in a dimensionality reduction that often retains most of the intrinsic 

information in the data [Smith 2002]. 
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For given a set of training vectors x from the n dimensional input space Rn,  

))(),...,(),(()( 21 knkkk txtxtxtX =           (4.3) 

where tk is the kth observation time, the Principal Component Analysis looks for 

y1(tk), which is a linear combination of the components of X(tk) 

11 )()( λ×= kk tXty              (4.4) 

so that the approximation to X 
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The residuals, λ2 can be found using the same method. In general, 
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where εk is the residual. 

Examples of how to compress two-dimensional data set into one-dimension by 

applying Principal Component Analysis algorithm, are shown in Figure 4.2. Specific 

steps of the method are described respectively. 
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a. Original data 
b. Normalised data with the 

eigenvectors of the 
covariance matrix 

c. Rotate the data 

  
d. New data points by applying the PCA 

using both eigenvectors 
e. The reconstruction from the data 

derived using only a single eigenvector 
Figure 4.2 PCA example 

 

The learning data received from the Manipulation Task Planner Module was 

refined before being passed to the Learning Module.  

 

4.4 Trajectory Cloning by Data Mining Tools 

As the first attempt in this research, the data mining tool See5 was applied in offline 

analysis on one hundred groups of data, which are collected from the haptic-rendered 

virtual environment. The peg-in-hole assembly task was used as the case study 

application. The dataset was recorded in the form of (position, force, torque, 

orientation), as input into the Perception Module. Output of the Perception Module 
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are the sensor feedbacks to the control motor controlling the peg, which includes the 

motions for example, forward, backward and rotation, etc. 

One hundred groups of successful peg-in-hole assembly tasks were performed. 

The experimental data, including position, force and torque information obtained by 

manually controlling the virtual haptic-rendered peg-in-hole assembly model by the 

PHANToM were recorded in a data base. The characteristics of insertion were varied 

for each insertion as much as possible. For example, operations were performed at 

different speeds, some with less reliability, experiencing occasional oscillations and 

collisions in some cases. Some insertions were performed conservatively and slowly 

to potentially avoiding oscillation of the dynamic peg and damaging the peg and the 

hole in physical insertion. Oscillation of the dynamic peg in the virtual 

haptic-rendered environment, caused by the gravity of the peg and the vibration of 

operator’s hand when handling the haptic probe, can strongly preclude learning of the 

manipulation skills. It, however, does not adversely affect the insertion process in the 

virtual environment. Any damage caused by collision between the peg and the hole 

can be avoided by the ReachIn maximum force and torque settings. The constraints 

imposed by this algorithm are scaled to match the limitations of the physical sensor. 

The recorded data is interpreted as noise when there are force or torque signals 

present in the signal without any collision or jamming between the peg and hole. 

Another kind of noise data can be removed by comparing the data points with the 

Mathematical Expectation of force and torque at certain positions. For example, 
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wrong force or torque directions with large or small values are sum of the real force or 

torque value and noise caused by rough control of the operator. Such data is removed 

from the training set. 

Two methods are used in generating the optimum trajectory, namely, General 

Strategy and Short Strategy.  

In the General Strategy method, the Mathematical Expectation of force and 

torque data, )),(( torqueforcefE n , is estimated at every position np .  

In this case, the force and torque data are random discrete values. Following 

formula is used to calculate the Mathematical Expectation of the one hundred groups 

of force and torque data at every position np : 

),()),((rP)),(( torqueforceftorqueforcefobtorqueforcefE n
n

nn ⋅= ∑  (4.8) 

Where )),((Pr torqueforcefob n  is the corresponding probability of the force and 

torque data at any position np  and ),( torqueforcefn  is the force and torque data at 

that position. 

This trajectory provides a general strategy for the operation of the operator. The 

force and torque results are illustrated in Figure 4.3. The noise positions are removed 

by employing the method introduced in section 4.3.1. The abnormal positions, which 

are the positions recorded in the one hundred individual peg-in-hole assembly tasks, 

but appears less than 10 times (less than 10%) in overall position data base, are 

removed. The most frequent 2695 positions, appeared in the one hundred attempts, are 

used as the testing position sample, while the Mathematical Expectation force and 
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torque value at this position is depicted accordingly. 

 

Figure 4.3 Mathematical expectations of force and torque data 

 



 95

In the Short Strategy method, after the removal of the noise, the trace with the 

shortest time is chosen. The force and torque results are depicted in Figure 4.4. 

 

Figure 4.4 Fastest operation result 
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Since, the trace is sampled at a frequency of 30Hz, a successful trace typically 

lasts approximately between 40s to 130s, providing about 1200 to 4000 samples. 

Strategies for faster operators are more complex. This can vary from one operator to 

another, requiring more advanced skills to decrease oscillations and large collisions 

due to high acceleration. Hence, the General Strategy produces better results than the 

Short Strategy in this application. 

The C4.5 algorithm in the data mining tool See5 (Windows version) is used to 

generate the symbolic rules from the data obtained from virtual environment. The 

rules specify basic skills by deriving the assembly trajectories according to the desired 

goal or responses. By choosing the “Ruleset” selection as the goal of the algorithm, 

the decision trees as “if－then statements” are generated. The rules can be easily 

converted into C language. 

The See5 operates based on two input files: the Names file and Data file. The 

Data file contains the recorded data set in the format of (position, force, torque, 

orientation). The Names file, which describes the attributes and classes, contains the 

recorded attributes and classes of the force and torque data. Since it is important to 

know the current position of the robot tool tip and the direction of the next movement, 

the directions of the force and torque signals are more important than their magnitudes. 

Hence, the attribute values of force and torque are defined as negative, positive, N/A 

and zero. The classes file defines the actions which should be taken by robot on a 
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particular condition. It includes Forward, Stop, Backward, Right, Left, Backward－

Right and Backward－Left. The generated rule has a typical format as shown below: 

Rule 1:  

        fy = Negative 

        ->  class Backward 

Rule 2:  

        fx = Positive 

        fy = Negative 

        tz = Positive 

        ->  class Backward-Right 

…… 

Default class: Forward 

The C4.5 algorithm is often used in inducing behaviour cloning controllers. This 

cloning method can provide some insight into the manipulation strategy. However, 

this kind of method cannot reflect the causal relationships in the manipulation 

procedure and the goal structure of the manipulation strategy. Hence, the conceptual 

structure is not comprehensive. Moreover, this kind of method does not explicitly 

show any time ordering between events in the controlled system and the actions taken.  

In the following sections, more innovative algorithms will be employed to 

identify different manipulation states in order to reflect the overall manipulation 

control strategy. 
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4.5 Trajectory Cloning using Manipulation State Classification 

The trajectory cloning, widely used in behavioural cloning technology, is employed in 

this work as a major method for classifying different manipulation states. When the 

trajectory constraints, groups of dataset, are recorded in a database and then analysed, 

the characteristic of each manipulation state can be easily generalized. Moreover, 

cloning different trajectories in different manipulation states will be much easier than 

cloning of the entire manipulation trajectory. Since in the same state, trajectory 

constraints are more similar than that of the entire manipulation trajectory, different 

machine learning algorithms can be used in different states to clone the trajectories. In 

contrast to cloning entire trajectory as discussed in section 4.5, generalising different 

state characteristics is more accurate and time efficient. This section has its focus on 

algorithms which can identify different manipulation state characteristics. 

The Hidden Markov Models is applied to the offline data obtained from the 

haptic-rendered virtual environment to acquire the basic skills applied by the human 

operator during virtual manipulation. The data and the generalized three groups of 

state characteristics by three different methods, namely the physical contact 

relationships, the Fuzzy Gustafson-Kessel clustering algorithm and the Competitive 

Agglomeration algorithm, are used to generate three optimal state sequences 

individually.  
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4.5.1 Manipulation States Classification by Physical Contact 

Relationships 

The basic skills are defined according to the contact-state transition of a task, 

independent from the configuration of a manipulator [Nakamura 1996]. In a virtual 

manipulation environment, the basic skills can be also identified by the contact states 

and state changes [Onda 1995; Takamatsu 1999]. Using this approach, the basic skills 

can be automatically extracted form the manipulation carried out in the virtual 

environment. 

In the first stage, the peg-in-hole insertion procedure is classified into several 

states according to the peg and hole’s contact relationships. In order to express the 

geometric information of the peg and hole, the edges and surfaces of the peg and hole 

are indexed by symbols. As shown in the Figure 4.5, P and H represent the peg and 

the hole respectively, whereas e is the edge, s is the surface and o is the outer platform 

surface of the hole. 

The recorded training data is classified into several sub-databases and an index is 

assigned to each according to the peg and hole’s contact relationships. When the peg 

and hole’s contact states correspond to one of those states, the input information is 

directly indexed to a specific sub-training data. This streamlines and speeds up the 

search of the training database.  
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Figure 4.5 Peg and hole indexed by symbols 

 

The contact relations of the peg-in-hole assembly state classifications are shown 

in Table 4.1. When there is no peg and hole contact, this kind of contact relationship is 

grouped as state one. The differences between similar contact states, such as peg left 

edge to the hole outer right surface and peg right edge to the hole outer left surface 

and so on, are simply distinguished by force and torque directions, which can be 

grouped as one state. Hence, the peg edge and hole outer surface contact, peg edge 

and hole inner surface contact, peg edge and hole edge contact, peg surface and hole 

edge contact, and peg surface and hole inner surface contact can be grouped as state 

two, state three, state four, state five and state six respectively.  

All the remaining states are the jamming states. State seven is a two-point contact 

state in which the point on the peg edge touches the hole inner surface and hole edge 

contacts peg surface. State eight is a two point-contact state that the peg edge touches 

the hole edge. State nine is a three-point contact state in which the peg-edge touches 



 101

the hole-edge as well the hole inner surface. Variations in the hole angles and the peg 

position can transfer the system from jamming state to non-jamming state.  

 

State Contact Condition (6 DOF) Condition (3 DOF) 

1 No contact 0 0 

2 One-contact (Pe , Ho) (Pe , Ho) 

3 One-contact (Ps , He) (Ps , He) 

4 One-contact (Pe , Hs) (Pe , Hs) 

5 One-contact (Pe , He) State 2 or 4 

6 One-contact (Ps , Hs) Never happen 

7 Two-contact (Pe , Hs) & (Ps , He) (Pe , Hs) & (Ps , He) 

8 Two-contact (Pe , He)  Never happen 

9 Three-contact (Pe , He) & (Ps , He)  Never happen 

Table 4.1 6 DOF assembly classification 

 

The physical system has only three degrees of freedom (3 DOFs) compared to six 

degrees of freedom (6 DOFs) in the virtual model. This implies that that some of the 

states defined in the haptic-rendered virtual environment do not have any direct 

correspondence in the physical system. For example, the state 6 defined in Table 4.1 

will never happen in the three degrees of freedom (3 DOFs) physical system. It 

requires the axes of the peg and hole to be parallel and have a distance of 0.05 mm 
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which is impossible in practice. The centre of the circular outer platform will always 

be on the axis or the extension axis of the peg. The contact states 8 and 9 cannot 

happen in the physical system either. As shown in Figure 4.6, such a scenario requires 

points b and c to be the contact points on the edges of the peg and the hole, and point 

a on the hole edge would have come into the peg, which is impossible in the real life. 

The contact state 5, the one-point contact scenario which happens between the peg 

and the hole edge is quite unlikely. This can be further grouped into contact states 2 or 

4 depending on the directions of the force and the torque. 

 

Figure 4.6 Supposed state 8 or 9 

  

Hence, the contact state relationships in the three degrees of freedom (3 DOFs) 

physical system can be depicted as shown in Table 4.2. Manipulation states are also 

redefined. 
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State Contact Condition (3 DOF) 

1 No contact 0 

2 One contact (Pe , Ho) 

3 One contact (Ps , He) 

4 One contact (Pe , Hs) 

5 Two contacts (Pe , Hs) & (Ps , He) 

Table 4.2 3 DOF assembly classification 

 

The peg-in-hole insertion procedure is illustrated in Figure 4.7. The contact states 

are modelled using their kinematic constraints. The contact configurations correspond 

to the discrete states of a discrete event system. 

 

 

Figure 4.7 Peg-in-hole contact states 

  

The state classification result along with the peg position and force and torque values 

of one successful peg-in-hole insertion operation is depicted in Figure 4.8. The 

generated state characteristics will be used to generate optimal state sequences using 

the Hidden Markov Model as described section 4.7. 
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Figure 4.8 State classification result by physical contact state 
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4.5.2 Manipulation States Classification by Fuzzy Clustering 

Algorithm 

Instead of obtaining the basic skills from the contact-state transition of a task, they can 

be obtained from in virtual environment using statistical methods. 

Fuzzy clustering algorithms are described in this section. These methods use 

statistic analysis of a large amount of data, for example, the data generated from a 

haptic-rendered virtual environment, and divide them into clusters according to their 

common characteristics. The fuzzy c-means algorithm (FCM) as the basic fuzzy 

clustering method will be introduced. The Fuzzy Gustafson-Kessel (FGK) algorithm 

and Competitive Agglomeration (CA) algorithm, as some variations of FCM designed 

to produce optimal group number of clusters will be then described. 

 

4.5.2.1 Fuzzy c-means Clustering Algorithm 

The fuzzy c-means algorithm (FCM) is a widely used fuzzy clustering algorithm 

[Bezdek 1981]. All other fuzzy clustering algorithms are evolved from the fuzzy 

c-means algorithm. It is important to have a detailed understanding of this algorithm. 

This algorithm divides a given dataset RxxX n ⊆= },...{ 1  into c clusters by 

minimising the following function: 
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empty; ∑
=

=
n

j
iju

1
1 for all },...,1{ nj∈ , which ensures that the sum of the membership 

degrees for each datum equals 1, where ]1,0[∈iju  is the membership degree of 

datum xj to cluster i, )( ic=β  is the prototype of cluster i, ci is the centre of cluster i, 

and ),( ji xd β  is the distance between datum xj and prototype iβ . The nc×  matrix 

][ ijuU =  is also called the fuzzy partition matrix and the parameter m is called the 

fuzzifier. Usually m is chosen as two. 

The fuzzy c-means algorithm divides a given dataset X into c clusters of equal 

size and shape. The shape of the clusters depends on the distance function ),(2
ji xcd . 

Using the Euclidean distance as the most commonly used option, the data is divided 

into c spherical clusters. 

Although the fuzzy c-means algorithm is widely used, it fails for some 

classification tasks. If the shape of the clusters is not spherical or if the clusters differ 

considerably in their size, the result of the fuzzy c-means algorithm is often not very 

intuitive and only poorly fits the data. Another problem of the fuzzy c-means 

algorithm is its sensitivity to noise and outliers. This sensitivity is caused by training 

every datum with the same weight and thus the same influence on the classification 

result [Ahmed 2002]. 

 

4.5.2.2 Fuzzy Gustafson-Kessel Clustering Algorithm 

The Fuzzy Gustafson-Kessel algorithm (FGK) is applied to the trajectory associated with the 
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manipulation performed by the operator in the haptic virtual environment. The algorithm classifies 

the trajectory into a number of clusters, each representing a state. In the first stage of the process, 

the constraints on the state variables are learned. These constraints determine the corresponding 

desired state and choose the best trajectory to the next state. The Fuzzy Gustafson-Kessel classifier, 

obtained by training the data from the haptic-rendered virtual environment, will be used in this 

work to estimate the assembly states in online analysis. Principal Component Analysis (PCA) is 

then applied to each cluster for dimension reduction and feature extraction. The number of clusters 

is determined based on a flatness index of the clusters combined with the PCA compression rate 

[Babuska 1995]. Actions that determine the best trajectory from the current state to the next state 

are computed using knowledge of the system dynamics, acquired through the trained Hidden 

Markov Model (HMM). Locally Weighted Regression (LWR) method will be encoded as the 

online nonlinear function approximator in each cluster to generate the trajectories. 

Figure 4.9 illustrates the skill-acquisition procedure. The first row represents the 

offline training procedure. One hundred groups of data obtained from the 

haptic-rendered virtual environment are used in Fuzzy Gustafson-Kessel classifier 

training. Thin lines represent the flow of data in the training progress. The second row 

represents the online data analysis. Thick lines represent the sensory data in the 

physical assembly procedure obtained from the experimental rig. Dotted lines represent 

the use of the previously trained module. Data is refined in the Manipulation Task 

Planner Module by the algorithm introduced in Section 4.3.1. 
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Figure 4.9 Skill acquisition procedure using FGK 

 

The Fuzzy Gustafson-Kessel clustering algorithm has been widely used for fuzzy data 

analysis and pattern recognition [Babuska 1998], because it is flexible in automatically 

determining the optimal hyper-ellipsoidal cluster from the training data set. This 

algorithm uses statistical analysis of the data generated from the haptic-rendered virtual 

environment, and divides them into groups according to their common characteristic.  

A separate norm matrix Mi is calculated to determine the shape of the clusters. 

These norm matrices are updated together with the centres of the corresponding 

clusters. Therefore the prototypes of the clusters are pairs (vi, Fi). 

1/1)(det −= i
n

ii FFM             (4.10) 

where vi is the centre of the cluster and Fi is the covariance matrix, which defines 

the shapes of the clusters. The parameters vi and Fi are defined in equations 4.11 and 

4.12 respectively. 
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The Fuzzy Gustafson-Kessel clustering algorithm computes the distance to the 

prototypes as: 

)()(),(2
iji

T
ijij vzMvzvzd −−=           (4.13) 

where zj represents each data set. 

Fuzzy Gustafson-Kessel clustering algorithm searches for the partition matrix and 

the cluster prototypes in order to minimise the following function: 
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where uij is the membership degree of the data vector zj in the ith cluster. 

The prototypes are updated according to equations 4.11 and 4.12 [Hoppner 1999]: 

Principal Component Analysis (PCA) algorithm is then applied on the recorded 

data from the haptic-rendered virtual environment, because the dimension of the 

recorded data from the haptic-rendered virtual environment is large, and the 

components of the data are highly redundant. It is useful in this situation to reduce the 

dimension of the input vectors. Principal Component Analysis (PCA) is an effective 

procedure for performing this operation.  

The number of clusters must be specified before clustering. The higher the 

number of clusters, the finer will be the approximation of the nonlinearity. However, it 

will require the estimation of more parameters with higher variances. If no prior 

knowledge on the number of clusters is available, then automatic procedures can be 

applied.  

A new approach for automatic determination of the number of clusters, based on a 
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flatness index of the cluster [Babuska 1995] and Principal Component Analysis (PCA), 

has been developed in this thesis. In this approach, the eigenvalues are sorted from the 

cluster covariance matrix Ci in a descending order, niii ,2,1, λλλ ≥≥≥ L . When 

approximating the regression surface, the obtained hyperellipsoidal clusters are flat, 

that is, one of the axes is much shorter than the others. Consequently, the smallest 

eigenvalues ni ,λ  are significantly smaller than the remaining ones. In order to 

efficiently approximate the regression surface by hyperplanes, the clusters should be 

as flat as possible. The flatness index ti of a cluster is defined as a ratio between the 

smallest and the largest eigenvalues. 

1,, / iniit λλ=                (4.15) 

Where ni ,λ  and 1,iλ  are the smallest and the largest eigenvalues respectively. 

An aggregate measure value At  called the average cluster flatness is defined in 

formula (4.16)  
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              (4.16) 

The data cluster sets obtained from the Fuzzy Gustafson-Kessel Model consist of 

fourteen different parameters, including force and position variables, and could be 

investigated further in the future research. In order to reduce the dimension of the data, 

Principal Component Analysis (PCA) is applied to each cluster. The compression 

level pi,n is determined according to the error produced in the compression process.  

ninini Ddp ,,, /=               (4.17) 
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Where di,n is the most significant eigenvalue number or the remaining dimension 

numbers after compression, and Di,n is the number of original eigenvalues.  

The eigenvalue number di,n is decided by an error percentage ei. 

}ˆ{
2

iii XXe −=               (4.18) 

ei is the Frobenius norm between the compressed matrix iX̂  and original data 

matrix iX . The error tolerance E must be set before the calculation of pi,n. The 

number of clusters and the compression rate of each cluster is calculated by the 

following function: 
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            (4.19) 

The optimal values of λi,n and di,n, are found by minimising PT. 

As a result, five clusters are determined. The compression rate p and the error 

percentage e for each cluster are shown in Table 4.3. 

 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

p (e < 10%) 28.6% 21.4% 35.7% 35.7% 28.6% 

Table 4.3 Error percentage below 10% and the maximum compression rate achieved 

 

The state classification result along with peg position and force and torque values 

of one successful peg-in-hole insertion operation is depicted in Figure 4.10. The 
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generated state characteristics will be used to generate optimal state sequences by the 

Hidden Markov Model in section 4.7. 

 

Figure 4.10 State classification result by FGK 
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4.5.2.3 Competitive Agglomeration algorithm 

The Competitive Agglomeration (CA) algorithm is applied to the offline data obtained 

from the haptic-rendered virtual environment to acquire the basic skills applied by the 

human operator during virtual manipulation. It has been necessary to remove the noise 

in the data before the analysis. Data was refined in the Manipulation Task Planner 

Module by the algorithm introduced in Section 4.4.  

The algorithm classifies the trajectory into a number of clusters, each representing 

a state. In the first stage of the process, the constraints on the state variables are 

learned. These constraints determine the corresponding desired state and choose the 

best trajectory to the next state. The Competitive Agglomeration classifier, obtained 

by training the data from the haptic-rendered virtual environment, is used to estimate 

assembly states in online analysis. Actions that determine the best trajectory from the 

current state to the next state are computed using knowledge of the system dynamics, 

acquired through the trained Hidden Markov Model (HMM). Locally Weighted 

Regression (LWR) method will be encoded as the online nonlinear function 

approximator in each cluster for the trajectories. 

Figure 4.11 illustrates the skill-acquisition procedure. The first two rows represent 

the offline training procedure. One hundred groups of data obtained from the haptic 

virtual environment are used in the Competitive Agglomeration classifier training. In 

this diagram, thin lines represent the flow of data in the training progress, the third 

row represents the online data analysis, thick lines represent the sensory data in the 
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physical assembly procedure from the experimental rig, and dotted lines represent the 

use of the previously trained module.  

 

Figure 4.11 Skill acquisition procedure using CA 

 

The Competitive Agglomeration algorithm has several advantages over other 

clustering algorithms: 

(a) The clustering does not suffer from initialisation and the local minimum. 

(b) The optimal number of clusters is determined after minimisation of the 

fuzzy prototype-based object function.  

(c) The points are dynamic and can move from one cluster to another to 

minimise the fuzzy prototype-based object function. 
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(d) The algorithm can be used to find clusters of different sizes and shapes by 

using an appropriate distance measure in the fuzzy prototype-based object 

function. 

The Competitive Agglomeration (CA) algorithm commences by classifying the 

data set into a large number of clusters. As the training proceeds, clusters compete for 

survival. Those with large cardinalities survive and clusters that lose the competition 

are removed. The training process gradually decreases the number of clusters. This 

will result in an optimal number of clusters when the fuzzy prototype-based object 

function is minimised. 

Frigui and Krishnapuram [Frigui 1997] first introduced the Competitive 

Agglomeration (CA) algorithm as one of the clustering methods mostly for use in 

image segmentation. 

The Competitive Agglomeration (CA) algorithm searches the optimal cluster 

prototypes in order to minimise the following prototype-based object function: 
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where },,{ 1 NzzZ K= is a set of N data objects represented by n-dimensional 

feature vectors. ],,[ 1 MvvV K=  represents M cluster prototypes, each of which have to 

be determined, and vi is the centre of the cluster. ][ ijuU =  is the membership degree 

of the data vector zj in the ith cluster. ),(2
ij vzd , representing the distance from 
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feature vector zj to the cluster centre vi. 

The Fuzzy Maximum Likelihood Estimation (FMLE) algorithm [Gath 1989] is 

used to divide the given data sets into clusters of different sizes and different shapes. 

FMLE interprets the data set as a p-dimensional normal distribution. The distance of a 

datum to a cluster is inversely proportional to the posterior possibility (the probability 

of selecting the ith cluster given the jth feature vector) that a datum zj is the realisation 

of the ith normal distribution. 

)
2

)()(
exp())(det(),(

12
1

2
T

ijiij

i

i
ij

fzFfz
P
Fvzd

−−
=

−

     (4.22) 

∑
=

−−=
N

j

T
ijij

m
ij

i
i vzvzu

N
F

1
))((1               (4.23) 

∑
=

=
N

j
iji u

N
P

1

1                (4.24) 

The first part of the prototype-based object-function ),,( VUZJ , as the sum of 

squared distances to the prototypes weighted by constrained memberships, is used to 

control the shapes and sizes of the clusters and to obtain the compact clusters. The 

global minimum of the first component is achieved when the number of clusters M is 

equal to the number of samples N. The second part of prototype-based object 

function ),,( VUZJ , used to control the number of clusters, is the sum of squares of the 

cardinalities of the clusters. The global minimum of this part is achieved when all 

points are in one cluster. When both components are combined and α  is chosen 

properly, the final partition will minimise the sum of cluster distances and divide the 

data set into the smallest possible number of clusters.  
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The parameter α  is chosen by:  
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where θ  is the iteration number, 0η  is the initial value and τ  is a decay 

factor. 

The equation for membership iju  update is given by:  
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FMLEu  is the membership term in FMLE algorithm which takes into account 

the relative distance of the feature point to all clusters,  

Biasu  is a signed bias term which depends on the difference between the 

cardinality of the clusters of interest, and the weighted average of cardinalities from 

the point of view of feature points. 

The value of α  is initially set high and then decreased slowly in each iteration 

to help the Competitive Agglomeration algorithm to seek an appropriate partition with 

an optimal number of clusters. As the algorithm proceeds, the second part of equation 

7 enables the cluster to include as many points as possible. Through the process, a few 

clusters eventually survive and the rest disappear. 
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Figure 4.12 State classification result by CA 

 

The state classification result along with peg position and force and torque values 

of one successful peg-in-hole insertion operation is depicted in Figure 4.12. The 
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generated state characteristics will be used to generate optimal state sequences by the 

Hidden Markov Model in section 4.7. 

 

4.6 Manipulation States Learning by Hidden Markov Models 

After the manipulation states are identified by the above algorithms in the section 4.6, 

the Hidden Markov Models (HMM) is applied to the offline data obtained from the 

haptic-rendered virtual environment to acquire the basic skills applied by the human 

operator during virtual manipulation. Data is refined in the Manipulation Task Planner 

Module by the algorithm introduced in Section 4.4. The three optimal state sequences, 

employing different state classification methods respectively, will be estimated in this 

section. 

 

4.6.1 The Concept of Hidden Markov Models 

The contact states between the peg and the hole are identified using the Hidden 

Markov Models (HMM) which operates as a probability estimator defined by the 

structure ),,( πλ BA= . The three parameters of this structure are described as follows 

[Rabiner 1989]: 

• Matrix A is the state transition probability distribution matrix defined by 
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where )](|)1([ tStSPa ijij += , Nji ≤≤ ,1 . 

S denotes individual states where ],,[ 21 NSSSS L= . 

N is the number of states in HMM model. 

ija  is the time independent probability of having state jS  at time t+1 given 

that the state iS  at time t. 1=∑
j

ija  for all i. 

• Matrix B is the observation signal probability distribution matrix defined by 

],,[ 21 Nkkk bbbB L=             (4.30) 

where )](|)([ tStvPb jkjk = , Nj ≤≤1 , Mk ≤≤1 . 

M is the number of distinct observation symbols per state. The observation 

symbols correspond to the physical output of the system being modelled.  

)(tvk  is the individual visible symbols in a particular visible sequence 

)](),(),([ 21 tvtvtvV ML= . 

jkb  is the probability of monitoring a particular visible state kv  in any state 

)(tS j . 1=∑
k

jkb  for all j. 

• π  is the observed initial signal: 

][ iππ =                (4.31) 

where ])1([ ii SSP ==π , Ni ≤≤1 . 

Given appropriate values of NMBA ,,,, π , the HMM model can be used to 

observe sequence ],,,[ 21 TOOOO L= . Where tO  is one of the symbols from V, and 

T is the number of observations in the sequence. 

There are three basic issues in Hidden Markov Model which must be solved in 
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real world [Rabiner 1989]: 

(a) The Evaluation Problem: Gvien a HMM model with a complete probability 

estimator structure ),,( πλ BA=  and a particular sequence of visible states 

],,,[ 21 TOOOO L= , how )/( λVP , the probability of the sequence of visible 

states can be determined. 

(b) The Decoding Problem: Given a HMM model with a complete probability 

estimator structure ),,( πλ BA=  and a particular sequence of visible states 

],,,[ 21 TOOOO L= , how the most likely sequence of hidden states S that led to 

the sequence of visible states V can be determined. 

(c) The Learning Problem: Given a set of training observations of visible symbols, 

the number of states and the number of visible states, how the probabilities ija  

and jkb  required for calculating the HMM model estimator structure 

),,( πλ BA= can be determined. 

The solution of Evaluation Problem can be carried out by either HMM Forward 

algorithm or HMM Backward algorithm [Rabiner 1989].  

The probability of a sequence ],,,[ 21 TOOOO L=  of visible states produced by 

HMM model is given by: 
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where r represents a particular sequence ],,[ 21 NSSSS L=  of T hidden states. 
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Hence, equation (4.32) can be expressed as: 
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Equation (4.34) can be further simplified by defining forward variable )(tjα  

)/,,,,()( 21 λα jTj SOOOPt L=           (4.35) 

Given the HMM model λ , the probability of the partial observation sequence 

TOOO ,,, 21 L  and state jS  at time t is )(tjα . 

⎪
⎩

⎪
⎨

⎧

−
=

∑ =
)(])1([

1
0

)(

1
tObat

t

jk
N

i iji

j

α
α

otherhwise
stateinitialjt
stateinitialjt

==
≠=

&0
&0

    (4.36) 

The calculation of the Forward algorithm is given as follow: 

BEGIN initialize 0←t ， ija , jkb ， ],,,[ 21 TOOOO L=  

 FOR 1+← tt  

  )(])1([)(
1

tObatt jk
N

i ijij ∑ =
−← αα  

  UNTIL Tt =  

RETURN )()( 0 TaOP ← for the final state 

END 

Similarly, the Backward algorithm, the time-reversed version of the Forward 

algorithm, can be considered. 

The backward variable )(tiβ  can be defined as: 
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The calculation of the Backward algorithm is given as follow: 

BEGIN initialize Tt ← ， ija , jkb ， ],,,[ 21 TOOOO L=  

 FOR 1−← tt  

  )1(])1([)(
1

++← ∑ =
tObatt jk

N

j ijji ββ  

  UNTIL 1=t  

RETURN )0()( iOP β← for the initial state 

END 

The solution of Decoding Problem can be carried out by Viterbi algorithm 

[Rabiner 1989]. The Viterbi algorithm is a formal technique for finding the best state 

sequence and is applied as a dynamic programming method. It is actually very similar 

to the forward algorithm. It is likely to consider every possible path and calculate the 

probability of the visible sequence observed. The HMM Decoding algorithm is given 

as follow: 

BEGIN initialize {}←path , 0←t  

 FOR 1+← tt , 1+← jj  

  0=k , 00 =α  

  FOR 1+← jj  

   ij
N

i ijkj attObt ∑ =
−←

1
)1()()( αα  

  UNTIL Nj =  
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  )(maxarg' tj jj
α←  

  append to path 'j
S  

 UNTIL Tt =  

RETURN path 

END 

As to the solution of Learning Problem, the parameters of the Hidden Markov 

Model, including probability transition matrix A and probability density matrix B, are 

estimated based on the Baum-Welch algorithm [Rabiner 1989]. 

The reasonable re-estimation formulas employed to estimate parameters ija  and 

jkb  in the Baum-Welch algorithm for A and B are: 

• 
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where ∑ −

=

1

1
),(T

t t jiξ  is the expected number of transitions from state Si to state Sj 

at any time in the sequence.  

∑ −

=
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1
)(T

t t iγ  is the expected number of transitions from state Si at step t.  
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which calculates the ratio between the frequency that any particular symbol vk is 

observed and that for any symbol. 

The algorithm for training the Hidden Markov Model operates according to the 

pseudo code provided below: 

BEGIN initialize ija , jkb , training sequence O and convergence criterion θ 
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 DO 1+← zz  

  compute )(za  from )1( −za  and )1( −zb  

  compute )(zb  from )1( −za  and )1( −zb  

  )1()( −← zaza ijij  

  )1()( −← zbzb jkjk  

 UNTIL θ<−−−− )]1()(),1()([max
,,

zbzbzaza jkjkijijkji
 

RETURN )(zaa ijij ← ; )(zbb jkjk ←  

END 

 

4.6.2 Skill Model Construction by HMM 

The state transition probability distribution matrix A and the observation signal 

probability distribution matrix B are good representation of the inherent 

characteristics of the peg-in-hole manipulation skill. The Baum-Welch algorithm, 

discussed in the Learning problem section, will be employed to determine the matrix 

A and B. One hundred groups of data, which are generated by one hundred successful 

peg-in-hole assembling tasks and collected from the haptic-rendered virtual 

environment, are used as the training data.  

The HMM model ),,( πλ BA=  is derived from the state and the observation 

sequences. In this project, the manipulation skills identified by the physical contact 

relations of the peg-in-hole assembly and by the fuzzy clustering algorithms of the 

peg-in-hole assembly is employed as the state sequence and the observation sequence 
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respectively, and vice versa. That is when the manipulation skills are observed by the 

physical contact relations of the peg-in-hole assembly as observation sequence, the 

manipulation skills identified by Fuzzy Gustafson-Kessel algorithm and the 

Competitive Agglomeration algorithm will be used as state sequences respectively; 

when the manipulation skills are observed by the Fuzzy Gustafson-Kessel algorithm 

and the Competitive Agglomeration algorithm as observation sequence respectively, 

the manipulation skills identified by physical contact relations of the peg-in-hole 

assembly will be used as the state sequences. 

As the training result, the state transition probability distribution matrix A and the 

observation signal probability distribution matrix B of four HMM models are shown 

in Table 4.4 and Table 4.5. 

 

State sequence identified by Observation sequence observed by Result index 

Physical contact relations Fuzzy Gustafson-Kessel Result 1 

Physical contact relations Competitive Agglomeration Result 2 

Fuzzy Gustafson-Kessel Physical contact relations Result 3 

Competitive Agglomeration Physical contact relations Result 4 

Table 4.4 HMM model training results index 
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Result 
index 

Matrix A Matrix B 

Result 
1 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0375.0597.00028.0
184.0697.0110.00009.0
203.0024.0703.0001.0069.0
00378.0619.0003.0
002.0057.0095.0012.0834.0

 ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

876.0011.0113.000
020.0873.0043.0054.0010.0
066.0012.0843.00079.0
012.00202.0533.0253.0
0002.0043.00955.0

 

Result 
2 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0330.0637.00033.0
216.0646.0133.00005.0
215.0031.0704.0001.0049.0
00335.0659.0006.0
036.0069.0088.0015.0792.0

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

074.0010.0233.0339.0110.0234.0
380.0013.0474.0021.0002.0110.0
039.0002.0233.0360.0111.0255.0
044.0103.0022.0397.0433.0001.0
011.0035.0034.0332.0329.0254.0

Result 
3 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

788.0133.0029.0009.0041.0
114.0731.0137.0011.0007.0
034.0047.0839.0001.0079.0
018.0016.0135.0795.0036.0
197.0001.0074.0035.0693.0

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

769.0013.0005.0002.0211.0
012.0793.0039.00156.0
012.0104.0670.0201.0013.0
011.0038.0139.0711.0101.0
034.0011.0122.00833.0

 

Result 
4 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

779.0122.0050.0049.000
012.0663.0233.0059.0033.00
001.0221.0682.0015.0023.0058.0
030.0052.0010.0772.0133.0003.0
0002.0101.0024.0763.0110.0
00062.0113.0012.0813.0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

095.0343.0411.0078.0073.0
358.0131.0075.0337.0099.0
436.0039.0074.0117.0334.0
109.0341.0077.0276.0197.0
183.0094.0311.0002.0410.0
208.0237.0093.0119.0343.0

 

Table 4.5 HMM model training results 

 

The first two state transition probability distribution matrices A of the physical 

contact relations of the peg-in-hole assembly have produced similar results, which 

demonstrate the inherent characteristics of the peg-in-hole manipulation skill. In this 

case, in the course of determining the optimal next state, either matrix A of Result 1 or 

2 can be used. In this project, Result 1 is preferred, as the number of distinct 
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observation symbols per state, M, is 5, while in Result 2, M is 6, which takes a longer 

time to derive the parameters of the HMM model. 

The state transition diagrams, illustrating manipulation skills classified by the 

physical contact relations of the peg-in-hole assembly, by Fuzzy Gustafson-Kessel 

algorithm and by Competitive Agglomeration algorithm, are represented by the 

Hidden Markov chain of Figure 4.13, Figure 4.14, and Figure 4.15 respectively. 

 

 

Figure 4.13 Manipulation states chain using physical contact state classification 

 

Figure 4.14 Manipulation states chain using Fuzzy Gustafson-Kessel algorithm 

 

Figure 4.15 Manipulation states chain using Competitive Agglomeration algorithm 
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The validation of the four trained HMM models ),,( πλ BA=  is carried out by 

comparing the most likely sequences of hidden states derived from the state and the 

observation sequences with three different state sequences of one successful 

peg-in-hole assembly (showing in Figure 4.11, Figure 4.12, and Figure 4.13). The 

Viterbi algorithm, discussed in the decoding problem section, will be employed. 

Results are shown in Figure 4.16 (a), (b), and (c). It is obvious that the reconstructed 

state sequences are similar to the original state sequences, which has proved the four 

HMM models derived successfully. 

 

Figure 4.16 (a) Comparing the reconstructed state sequences using physical contact 
state with the original state sequences 



 130

Figure 4.16 (b) Comparing the reconstructed state sequences using Fuzzy 
Gustafson-Kessel algorithm with the original state sequences 

Figure 4.16 (c) Comparing the reconstructed state sequences using Competitive 
Agglomeration algorithm with the original state sequences 
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4.7 Trajectory Learning in Physical Experimental Rig 

The Locally Weighted Regression (LWR) method is encoded as the approximator for 

the trajectories in each manipulation state during physical manipulation [Christopher 

1997]. In most learning methods, a single global model is used to fit all the training 

data, while local models attempt to fit the training data only in a region around the 

location of the query point. Locally weighted regression uses a distance-weighted 

regression to fit nearby points, giving them a high relevance. Locally weighted 

regression is a form of lazy and memory-based learning, since it stores the training 

data in memory, performs a regression around a point of interest using only training 

data that is local to that point and finds relevant data from the database to answer a 

particular query point [Bratko 1995]. When a locally weighted linear model is 

computed, the stored data points are weighted according to the distance from the 

query point. 

The following issues are considered when locally weighted regression learning is 

applied [Christopher 1997]: 

1. Distance function: A typical distance function ),( xxd qm , the diagonally 

weighted Euclidean distance, is used to measure the relevance between the 

query point xq and each data point input vector x. 

),()()())((),( 2
qxEq

TT
q

j
jjqjqm MMdxxMMxxxxmxxd =−−=−= ∑  (27) 

mj is the feature scaling factor for the jth dimension. 

M is a diagonal matrix with Mjj=mj. 
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2. Separable criterion: a general global model can be trained to minimise the 

weighted training criterion )( qxE . 

∑ ∈
−=

qxx qq xxdKxfxfxE )),(())()((
2
1)( 2        (28) 

)(xf  is the output value corresponding to the input vector x. 

)(xf  is the global general nonlinear model. 

)),(( xxdK qm  is the Gaussian kernel function, which is used to determine the 

weight of each training example.  

)),(exp()),(( 2 xxdxxdK qmqm −=         (29) 

3. Enough data: sufficient data are needed to satisfy the statistical requirements. 

4. Labelled data: each training data point should be linked to a specific output. 

5. Representation: fixed length vectors are produced for a list of specified features. 

The following LWR training algorithm is performed when a prediction is needed 
for a query point q: 

BEGIN initialize )()()( 110 xaxaxf nnωωω L++= , 0=i , convergence criterion 

θ  

 DO 1+← ii  

  ∑ ∈
−=Δ

qxx jqi xaxfxfxxdK )())()())(,((ηω  

iii ii ωωω Δ−−← )1()(  

compute )(xf  

 UNTIL θ<−= ∑ ∈ qxx qq xxdKxfxfxE )),(())()((
2
1)( 2  

RETURN )(xf  

END 
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4.8 Summary 

The focus of this chapter has been on the acquisition of the manipulation skills. An 

overview of classical learning methods has been provided. Offline learning methods 

used in the work to develop skill models including Behavioural Cloning method, 

Fuzzy Clustering Algorithms, and Hidden Markov Model have been introduced. The 

results indicate that the Fuzzy Clustering Algorithms are rather effective in obtaining 

manipulation skills by classifying these skills into different states, while the Hidden 

Markov Model is more efficient in acquiring the optimal state sequence and 

estimating the next optimal state. On line learning algorithm, the Locally Weighted 

Regression algorithm, employed in trajectory learning in each manipulation state 

during the physical manipulation procedure, is also introduced. Validation of this 

method will be further discussed in the following chapter. 
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CHAPTER 5 VALIDATION 

 

5.1 Introduction 

The methodologies developed in this study are validated through experimental work 

and the results are reported in this chapter. The physical peg-in-hole insertion rig 

representing a typical assembly process is explained first. Various experimental set 

ups designed to validate the algorithm are then described. The experimental results 

obtained by performing the physical peg-in-hole insertion are presented and a critical 

analysis of the results is finally carried out. 

 

5.2 Proposed Learning Procedure 

The paradigm developed in this work to create a skill model and used in the physical 

experimental rig is illustrated in Figure 5.1. The peg-in-hole insertion procedure is 

classified into several states by the state classifier according to the peg and hole’s 

contact relations. Different states have different online LWR learning module. 

Manipulation states are generalized offline by the peg and hole’s physical contact 

relations or Fuzzy Clustering algorithms, according to overall generated manipulation 

data characteristics. Hidden Markov Model is used to estimate the next optimal state.  

Data generated from the haptic-rendered virtual environment are first applied to the 

one of the three offline training algorithms. Then the online state classifier is created. 

The more training data applied to the algorithm, the more accurate will be the state 
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classifier. Specific indexes are assigned to each state. The index speeds up the search 

process in the physical manipulation by looking for the proper LWR online learning 

module associated with a particular state in a sub-training data set, rather than the 

whole database. 

 

Figure 5.1 Skill model used in the physical experimental rig 

 

5.3 Experimental Rig 

The physical experimental rig is the peg-in-hole insertion task which represents a 

typical assembly process. The algorithms of the Fuzzy Gustafson-Kessel (FGK), 

Competitive Agglomeration (CA), Hidden Markov Model (HMM), and Locally 

Weighted Regression (LWR) are applied to the experimental rig, which consists of a 

one degree of freedom (1 DOF) peg (the translation along the axis of the peg) and a 

two degrees of freedom (2 DOFs) hole (the pitch and yaw angles). This provides three 

degrees of freedom (3 DOFs) altogether, quite adequate to study the insertion phase of 
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the assembly process associated with the rig.  

The peg with one degree of freedom (1 DOF) is controlled by a Baldor MTE 

Series DC servo motor [Baldor (online) a] and driven by a Baldor TSD Series DC 

servo controller [Baldor (online) b]. The DC servo motor and the controller provide 

precise motion for the peg. The position of the peg is represented by pulses which are 

generated by a 14-pin Baldor DC servo motor encoder [Baldor (online) a] when an 

actuator is driving the peg. A magnitude of 50 pulses of the encoder is equivalent to a 

displacement of 0.1 mm. The position of the peg is between 0 to 50000 pulses. The 

number of pulses increases with deeper penetration of the peg into the hole. 

The hole with two degrees of freedom (2 DOFs) is controlled by two high-torque 

Sanyo Denki phase stepper motors [Sanyo (online)] and driven by two Gecko 

micro-step drives [Gecko (online)]. High-torque phase stepper motors are used to 

avoid backlash, while micro-step drives are used to control the micro-tilt motion 

instead of using a gearbox. The stepper motors and step drives together provide 

accurate tilt motion for the hole. The tilt motion is represented by steps of the two 

stepper motors controlling the hole. The maximum resolution of the stepper motor is 

0.18 degree. The maximum absolute value of steps used in this experimental rig is 25. 

Hence, this gives a maximum initial angle of 4.5 degrees (25×0.18=4.5). 

The radius of the peg and the hole are l0 mm and 10.05 mm, respectively. This 

gives a clearance of 0.05 mm between the peg and the hole. This peg-in-hole 

assembly experimental rig is used as a platform to study the concept of typical 
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assembly problem which concisely models a constrained motion-force-sensitive 

manufacturing task with all the attendant issues of jamming, tight clearances, and the 

need for quick assembly times, reliability, etc.  

The peg is fitted with a 6 DOF Lord force/torque sensor [Lord 1986] which 

consists of a transducer unit and a force/torque sensing system controller unit. The 

force unit of this Lord force/torque sensor is uf (one uf equals to 0.056448N). The 

PHANToM 1.5 haptic device can produce a maximum exertable force of up to 8.5 N 

at a nominal position, and a continuous exertable force of 3 N at a nominal position. 

Hence, in this task, when a force signal exceeds 55 uf (3.1 N) during the operation, 

the peg is stopped and moved back 0.4 mm, waiting for the hole to be aligned with the 

peg by the system, and then continues. The peg-in-hole insertion is stopped when the 

maximum force reaches 150 uf (8.5N); the force limitation of the PHANToM 1.5. In 

this situation, the operation is assumed to have failed. The Lord Force/Torque sensing 

controller unit is connected to the Host PC through a RS-232 serial port, which is 

configured for a 9600 baud rate and 8N1 (8 bits, no parity, 1 stop bit) mode. Force 

sensory signals are read into the Host PC through Com 1 port. 

The DAQ-802 data acquisition board, which is a cost-effective high-speed 

data-acquisition board for IBM-compatible ISA bus applications, is used to read the 

decoded signal generated by the decoder HCTL-2016 [Agilent (online)] connected to 

the encoder of the DC servo motor, send signals to the DC controller controlling the 

servo motor driving the peg and the stepper motors driving the hole. All of these input 
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and output signals are read into the Host PC by a DAQ-802 I/O interface card through 

a Main I/O connector and an Auxiliary connector. 

The experimental rig must be initialised first. The angles of the axes of the 

stepper motors fitted on the hole are initialised by aligning the axis of the peg with 

that of the hole. This alignment can be achieved by a successful insertion performance. 

The input to the Baldor TSD Series DC servo controller, controlling the Baldor MTE 

Series DC servo motor driving the peg, should be initialised by a zero value to ensure 

that the data from a previous experiment is cleared. This will prevent the peg from 

moving while the power is being turned on. The force/torque sensing system is 

initialised by inputting the Bias Sensor command “BS” in order to derive force/torque 

information from the force/torque sensor. The “OR” command which selects the 

Output Record mode is issued to begin the transmission of one record of force/torque 

data over the serial port. The “out of sequence” errors produced during the 

programming, that cannot input force/torque data to the serial port during the system 

running, can be overcome by the initialisation of the force/torque sensor. 

The block diagram of the purpose-built peg-in-hole physical experimental rig is 

depicted in Figure 5.2. Initially, the peg is being driven down to the hole. The position 

of the peg is measured by pulses sent from the encoder/decoder to the DAQ-802 data 

acquisition board at the same time. At 26000 pulses, the position of the peg is just 

above the hole, while the force/torque sensing system controller starts to monitor the 

force/torque by the transducer fitted on the peg and communicating with the Host PC 
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through the Com1 port at a 9600 baud rate. Hence, the peg can be driven faster when 

the position is smaller than 26000 pulses. During the peg-in-hole insertion process, if 

the maximum force/torque is below the threshold, the process is continued to 

completion. If the maximum force/torque is reached, a certain learning algorithm will 

be applied to help either the peg or the hole to continue performance. In this case, the 

peg may be moved back 0.4 mm by sending a negative signal to the Baldor TSD 

Series DC servo controller or the hole may be turned a certain angle to adjust its pitch 

angle or yaw angle. If the position of the peg is increased to more than 47000, the 

peg-in-hole insertion is considered to be completed successfully. 

 

Figure 5.2 Block diagram of the purpose-built peg-in-hole physical experimental rig 

 

5.4 Experimental Results 

The manipulator’s behaviours are cloned offline and classified into different operation 

states by peg and hole’s physical contact relations or Fuzzy Clustering algorithms, 
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according to overall generated manipulation data characteristics. Hidden Markov 

Model is used to estimate the next optimal state, as discussed in Chapter 4. Three skill 

models，based on the algorithms above, and developed to estimate different operation 

states, are used respectively in each experiment for the purpose of comparing the 

physical peg-in-hole insertion performance. The Locally Weighted Regression (LWR) 

algorithm described in Chapter 4 is applied to estimate online the required corrective 

actions in the form of the rotation angles of the hole, according to different operation 

states.  

 

5.4.1 Typical Performance 

Three typical performances of three successful peg-in-hole insertion examples, 

employing peg and hole’s physical contact relations, Fuzzy Gustafson-Kessel (FGK) 

or Competitive Agglomeration (CA) algorithm as manipulation skill state 

classification method respectively and Hidden Markov Model (HMM) as optimal next 

state estimator, are illustrated in Figures 5.3, 5.4 and 5.5. In order to compare the 

results, the same initial angles consisting of x-axis and y-axis misalignments of 2.7 

degrees were chosen for all the experiments. 

The variation of seven normalised series of force, torque, position and state 

changes for the three examples are illustrated in Figures 5.2, 5.3 and 5.4. The 

variables fx, fy, and fz represent forces along X, Y, and Z-axis whereas Mx and My are 

the torques around X and Y axes. The translation along Z-axis is represented by Z.  
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The contact state is the state change from the initial state to the goal state. 

The monitoring of the peg-in-hole insertion process starts when the peg reaches 

the surface of the hole, which is the initial position (position z = 0.7608×104mm), and 

stops at the goal position (position z = 2.9508×104mm). The force/torque data are to 

be monitored and the position is recorded every pulse time when the position reaches 

the initial position, and data-acquisition interface card starts to read the signal 

generated by the sensor and the decoder at the same time. 

The last diagram in each study shows the contact state changes from the initial 

state to the goal state. The peg cannot move along the X and Y axes due to the 

limitation on the number of degrees of freedom of the rig. Since the recording of data 

commences when the peg is close to the surface of the hole, some of the contact states 

defined in the haptic-rendered virtual environment (as described in Chapter 5) could 

not be monitored in the physical experimental rig. 

The 6 DOF virtual peg-in-hole insertion assembly process changes its rotation 

angles about X, Y or Z-axis frequently depending on the input signals received. The 

trained LWR model calculates the corresponding rotation angles (steps of the two 

stepper motors). Similar to that in the haptic-rendered virtual environment, the LWR 

model generates the signal driving the two stepper motors to perform the tilting 

adjustment of the hole. The 3 DOF physical experimental rig is relatively simpler than 

that of the system in the haptic-rendered virtual environment. Hence, in the physical 

system, a correction signal is generated to turn the hole when the peg is encountered 
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with a large force or torque. Normally this occurs in the jamming state. All the 

experiments provided in this section have a jamming state. 

 

 



 143

 

Figure 5.3 Experimental results using peg and hole’s physical contact relations as state 

classifier 
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Figure 5.4 Experimental results using Fuzzy Gustafson-Kessel algorithm as state 

classifier 
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Figure 5.5 Experimental results using Competitive Agglomeration algorithm as state 

classifier 
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Observing the results obtained in these experiments, the following conclusions 

can be drawn: 

(a) The physical experimental rig requires less time to complete the peg-in-hole 

insertion task when Competitive Agglomeration Algorithm is used. 

(b) The physical experimental rig also has less jamming state and the hole is 

aligned with the peg faster when Competitive Agglomeration Algorithm is 

used. 

(c) The peg and hole’s physical contact relationships and Fuzzy 

Gustafson-Kessel algorithm classifies the peg-in-hole insertion process into 

five states, while the Competitive Agglomeration algorithm classifies the 

insertion process into six states. The state numbers are the optimal results 

when the three algorithms are used respectively. 

(d) The peg-in-hole insertion process changes its contact states frequently when 

the peg and hole’s physical contact relationships or Competitive 

Agglomeration algorithm is used. In this case, the online state classifier plays 

a less important role than that of the LWR online learning model, while the 

peg-in-hole insertion process changes its contact states infrequently when the 

Fuzzy Gustafson-Kessel algorithm is used. In this case, the online state 

classifier is more important than the online learning model. If the wrong state 

is identified, a different online learning model is chosen, and the final result 

could be worse. 
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5.4.2 State Classifier Comparison 

In order to compare the performance of the physical experimental rig using different 

state classifiers and starting at different initial angles in the physical insertion, a series 

of studies was carried out and the results are shown in Table 5.1. The maximum 

resolution of the stepper motor is 0.18 degree. Hence, the initial angle of the hole can 

be increased by 0.18 degree. In this case, the initial angle of the hole is increased by 

0.9 degree. 

 

Initial 
Angle 

Algorithm 
Average
Testing 
Sample

Standard. 
Deviation

Testing 
Sample 

Mean 
Tilting 

Adjustment

Mean 
Jamming 

Times 

Successful
Rate 

Physical 478 5.67 6 6 70.89% 
GFK 469 5.74 6 5 92.82% (0,0) 
CA 440 5.96 5 5 67.81% 

Physical 481 6.17 6 6 75.76% 
GFK 470 5.62 7 5 86.50% (0,0.9) 
CA 440 6.03 5 4 69.25% 

Physical 481 6.14 8 5 71.46% 
GFK 471 5.62 6 4 83.57% (0,1.8) 
CA 441 5.93 6 6 58.56% 

Physical 482 5.71 5 5 65.78% 
GFK 472 5.85 6 5 92.92% (0,2.7) 
CA 443 5.80 5 4 58.22% 

Physical 482 5.57 6 6 68.12% 
GFK 473 5.77 6 6 86.62% (0,3.6) 
CA 444 6.32 6 4 61.13% 

Physical 485 5.79 7 6 71.20% 
GFK 474 5.91 7 5 91.80% (0,4.5) 
CA 443 6.34 6 4 58.25% 

Physical 479 5.88 7 5 68.90% 
GFK 470 5.74 5 5 96.44% (0.9,0.9) 
CA 439 6.18 4 4 57.18% 

(0.9,1.8) Physical 481 5.80 7 5 66.13% 
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GFK 469 5.74 5 4 94.20% 
CA 441 5.49 4 4 61.24% 

Physical 482 5.65 5 5 72.19% 
GFK 471 5.91 6 4 93.95% (0.9,2.7) 
CA 442 6.26 4 4 62.02% 

Physical 483 5.93 6 5 79.60% 
GFK 472 5.59 5 5 90.01% (0.9,3.6) 
CA 443 5.81 5 5 55.24% 

Physical 484 6.07 8 7 71.83% 
GFK 474 5.92 7 6 88.82% (0.9,4.5) 
CA 444 5.75 4 4 61.92% 

Physical 481 5.70 7 6 71.92% 
GFK 470 5.60 5 5 93.17% (1.8,1.8) 
CA 440 5.57 6 5 67.59% 

Physical 482 5.89 6 6 65.38% 
GFK 471 5.45 7 5 94.05% (1.8,2.7) 
CA 441 5.77 5 5 60.76% 

Physical 482 5.88 5 5 75.02% 
GFK 472 5.69 5 5 98.85% (1.8,3.6) 
CA 442 5.91 5 4 67.54% 

Physical 483 5.56 6 6 73.79% 
GFK 474 6.32 6 5 98.59% (1.8,4.5) 
CA 443 5.46 5 5 58.81% 

Physical 481 5.63 5 5 74.47% 
GFK 470 5.93 5 5 97.41% (2.7,2.7) 
CA 440 5.85 5 5 62.79% 

Physical 481 5.66 6 6 66.94% 
GFK 472 5.51 7 6 91.14% (2.7,3.6) 
CA 442 5.75 4 4 59.14% 

Physical 484 5.54 5 5 70.57% 
GFK 472 5.45 7 5 88.92% (2.7,4.5) 
CA 442 5.58 4 4 56.17% 

Physical 482 5.60 5 5 71.44% 
GFK 471 5.39 7 5 98.15% (3.6,3.6) 
CA 440 5.59 6 4 67.39% 

Physical 482 5.82 6 6 66.13% 
GFK 471 5.71 5 5 95.62% (3.6,4.5) 
CA 442 5.93 6 6 60.30% 

Physical 482 5.71 7 6 70.59% (4.5,4.5) 
GFK 472 6.04 6 4 90.19% 
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CA 441 5.87 5 4 67.24% 

Table 5.1 Statistical results of the physical insertion performance 

 

Comparisons of the results produced by the three algorithms are shown in a series 

of diagrams. The average runtimes for different initial states and their standard 

deviations are shown in Figures 5.6 and 5.7, respectively. Figure 5.8 shows the 

comparison of the average tilting adjustment times in different initial states. Figure 

5.9 presents the comparison of the average jamming times. Comparison of the 

successful rates of the peg-in-hole insertion performance using one of the three 

algorithms is illustrated in Figure 5.10. 

 

Figure 5.6 Average runtimes in different initial states 
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Figure 5.7 Standard deviation of the average runtimes 

 

Figure 5.8 Average tilting adjustment times in different initial states 
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Figure 5.9 Average jamming times in different initial states 

 

Figure 5.10 Successful rates of the peg-in-hole insertion performance 
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The results shown above have confirmed the conclusions drawn in Section 5.4.2. 

In addition, further observations can be made: 

(a) The actual insertion without the deployment of skills obtained from the 

haptic-rendered virtual environment has been discussed in Y. Chen’s Ph.D. 

thesis [Chen 2005]. The results showed that the average runtimes in different 

initial states are 4 time longer than that of deployment of skills obtained from 

the haptic-rendered virtual environment because of very high average tilting 

adjustment times and average jamming times. In this case, the success rate of 

the peg-in-hole insertion performance was also low. 

(b) Considering the success rate of the peg-in-hole insertion performance, the 

experiments using the Fuzzy Gustafson-Kessel (FGK) algorithm as the state 

classifier are the most satisfactory.  

(c) Considering the insertion time, using the Competitive Agglomeration (CA) 

algorithm as the state classifier results in the fastest performance. The 

success rate of the experiments is however relatively low.  

(d) As described in Chapter 4, the peg and hole’s physical contact relations 

classifier is determined by contact relationship between the peg and the hole, 

and the state number is predefined. While the Fuzzy Gustafson-Kessel (FGK) 

or Competitive Agglomeration (CA) algorithm can classify the overall 

performance into every contact state, a specific approach should be used to 

automatically determine the number of clusters. In this experiment, the fuzzy 
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clustering algorithms, which automatically determine the optimal number of 

clusters, performs better. 

(e) The overall performance of the peg-in-hole insertion, in terms of all the 

manipulation processes, depends very much on which algorithms is used. In 

complicated manipulation tasks, correctly identifying the right state in order 

to choose the correct online learning is more important. This will expend less 

running time. However, a considerable amount of offline training must be 

performed.  

(f) In addition, choosing the correct offline state training algorithm and online 

learning algorithm will improve the overall performance and avoid 

expending considerable amount of time. 

 

5.5 Summary 

The overall physical peg-in-hole insertion experimental rig has been described in 

detail in this chapter. The performance of the physical experimental rig has been 

described. The experimental validation by employing various algorithms has been 

provided by illustrating them in tables and figures. Significant discussions have 

followed. 
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CHAPTER 6 CONCLUSION AND FURTHER RESEARCH 

 

6.1 Overview 

Teaching manipulation skills to a robot by cloning human manipulation habits from a 

haptic-rendered virtual environment has been reported. The research conducted to 

explore the feasibility of such approach has been explained. The offline and online 

learning algorithms proposed to carry out the training and learning process have been 

presented. The peg-in-hole insertion which represents a typical assembly process has 

been used as a case in the study. The effectiveness of the developed strategy has been 

demonstrated and validated through a series of experiments carried out on the 

peg-in-hole insertion rig. The results obtained are quite encouraging and clearly 

highlight the strengths and weaknesses of the approach. 

 

6.2 Contributions of the Research 

The work conducted in this thesis has made a number of contributions as described in 

the following sections.  

 

6.2.1 Virtual Manipulation through 6 DOFs 

In the first implementation of the virtual manipulation environment, PHANToM 

Premium 1.0, a three degrees of freedom (3 DOFs) haptic device was used. The 

touch-enabled applications were developed based on GHOST SDK (General Haptic 
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Open Software Toolkit), a powerful C++ software tool kit, which accompanies 

PHANToM. 

The graphical model of the assembly [Chen 2002a] was constructed using 

OpenGL, whereas its physical model and the force/torque vectors generated in the 

virtual manipulation environment were modelled based on the two different 

approaches of PointShell and TriPolyMesh [Chen 2002b]. The developed system 

proved quite stable when the peg-in-hole insertion was performed using 3DOF 

PHANToM.  

In order to improve the performance of the developed system, the haptic device 

was upgraded to a six-degree of freedom PHANToM Premium 1.5. In complex 

applications in which simulation of an arbitrary object to object interaction is required, 

a six degrees of freedom (6DOF) haptic device can be a more effective tool. Applying 

the 6DOF haptic device to the developed haptic rendered virtual environment resulted 

in strong oscillation occurring during virtual peg-in-hole insertion, and preventing a 

successful insertion. 

Further investigation of the problem revealed that the PointShell and 

TriPolyMesh algorithms used in the model were not sufficiently accurate for operation 

with a 6DOF haptic device.  

In order to stabilise the virtual peg-in-hole insertion with tight fit for a 6DOF 

haptic device, three new more precise haptic-rendered models were developed. They 

included a modified PointShell algorithm, modified TriPolyMesh algorithm and 
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dual-gstCylinder algorithm. They stabilised the virtual insertion process and removed 

the oscillation observed in the system when the 3DOF haptic device was used. 

 

6.2.2 Proposed Physical Model 

The peg-in-hole assembly physical model based on three approaches of Modified 

TriPolyMesh Method, Dual-gstCylinder Method and PointShell Method suffered from 

a number of shortcomings. As the point on the peg’s penetrated into the surface of the 

hole, internal forces were generated to halt the peg advance through the hole’s surface. 

However, due to insufficient internal volume modelled for the surface, the generated 

reactive force was inadequate. Moreover, the point on the peg penetrating one side of 

the hole-surface was too close to the other side of the hole surface. As a result, the 

generated force would eventually push the point off the other side of the hole. 

The virtual proxy method was used to overcome these shortcomings [Petersik 

2002]. The virtual rigid peg was defined as a virtual proxy and was controlled by the 

physical ReachIn probe in the haptic-rendered virtual environment. The position of 

the virtual proxy was changed according to alteration in the probe’s position. The 

force and torque reacting to the peg were transferred to PHANToM Premium 1.5 

through the spring damper system. The hole was static in the environment while the 

peg could be translated and rotated. 

This approach overcame the challenges faced in developing the physical model of 

the virtual environment. It also proved to be a simple and adaptable method, 
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sufficiently generic for modelling other applications in the virtual environment. 

 

6.2.3 Concurrent Haptic and Geometric Modelling 

In the first virtual model of the peg-in-hole insertion process for the 6 DOFs device, 

the graphic and haptic models were created using OpenGL and GHOST SDK 

respectively. The process proved to be too complex and elaborate. 

The second implementation of the model was carried out based on ReachIn 

hardware platform and application programming interface from ReachIn Technologies 

[ReachIn online]. CrystalEyes shutter glasses from the Stereo Graphics Corporation 

[Stereo online] were connected to a stereo-output graphics card to provide stereo 

vision. By using this hand-immersive hardware platform, the peg-in-hole scene graph, 

haptic system and communication system between graphics and haptics were 

integrated in a consistent, seamless way. 

This approach presented a new platform for concurrent haptic and geometric 

modelling of the virtual environment and significantly simplified the model and the 

development process. 

 

6.2.4 Skill-acquisition Update 

Three behavioural cloning methods including Fuzzy Gustafson-Kessel (FGK) 

algorithm, Competitive Agglomeration (CA) algorithm, and Hidden Markov Model 

(HMM) were explored in the study as possible skill acquisition methods. 
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The peg-in-hole insertion procedure was classified into several states by the state 

classifier, according to the peg and hole’s contact relations. Different states had 

different online LWR learning modules. The acquisition of the peg-in-hole insertion 

skills was primarily based on behavioural cloning methods. Manipulation states were 

generalized offline by the peg and hole’s physical contact relations or statistical 

methods such as Fuzzy Gustafson-Kessel (FGK) algorithm, and Competitive 

Agglomeration (CA) algorithm. Hidden Markov Model was used to estimate the next 

optimal state and the optimal state sequence. Data generated from haptic-rendered 

virtual environment were first applied to one of the three offline training algorithms. 

Then the online state classifier was created by the Locally Weighted Regression 

(LWR) method. The accuracy of the state classified proved to improve with 

deployment of more training data in the development of the algorithm. The inclusion 

of larger number of training data in the algorithm resulted in more accurate state 

classifier. Specific indexes were assigned to each state. This increased the search 

speed during physical manipulation by looking for the proper LWR online learning 

module associated with a particular state in a sub-training data set, rather than the 

whole database.  

 

6.3 Further Research 

The research results described in this thesis can be further extended in a number of 

directions. Details are described in the following sections.  
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6.3.1 Physical Experimental Rig 

The haptic-rendered virtual peg-in-hole environment has six degrees of freedom, 

which is designed to simulate real situation, while the current peg-in-hole physical 

experimental rig has three degrees of freedom, which can only provide a one-degree 

of freedom peg (the translation along the axis of the peg) and a two-degrees of 

freedom hole (the pitch and yaw angles). More degrees of freedom are suggested to be 

added to the physical experimental rig in further research.  

The robot SCORBOT-ER 4u or its latest version, manufactured by Intelitek, is a 

good hardware experimental platform [Intelitek (online)]. The robot SCORBOT-ER 

4u has five degrees of freedom (5DOF) (five rotational axes + gripper), in which it 

doesn’t have yaw angle freedom. However, the hole has yaw angle freedom which can 

provide an additional one degree of freedom. The robot can be programmed to 

perform the task of picking up the peg and inserting it in the hole fixed on the work 

bench. 

The current study was carried on based on cylindrical peg and hole in which the 

roll angle around the axis of the peg is void. This physical experimental rig can be 

replaced by cuboids peg and hole to which will require the control of the roll angle as 

well.  
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6.3.2 Haptic-rendered Virtual Environment 

The current virtual manipulation environment is implemented by the ReachIn 

hardware platform and application programming interface. One PHANToM 1.5 haptic 

device is used in the research. The ReachIn hardware can provide complex, 

high-quality haptic feedback through one PHANToM haptic device or two 

PHANToM haptic devices’ cooperation. Hence, another PHANToM haptic device can 

be used in a future research study to simulate two hands on one robot or two robots 

cooperating. The PHANToM 1.5 haptic device can produce a maximum exertable 

force of up to 8.5 N at a nominal position, and a continuous exertable force of 3 N at a 

nominal position. Hence, the maximum excertable force in two PHANToM haptic 

devices’ cooperation can be doubled. 

The construction of cuboid peg-in-hole haptic-rendered virtual environment is 

suggested to be the next research step, because it is a more generic model, and 

involves the freedom of the roll angle. The current haptic-rendering algorithm, the 

virtual proxy algorithm, can still be used as the major rendering algorithm. As to more 

complex haptic models, Voxmap PointShellTM (VPSTM) software can be used to solve 

certain difficult geometry-related computing problems faster and more efficiently.. 

 

6.3.3 Machine Learning Algorithm 

The skill-acquisition models employed in this study are based on the idea of cloning 

human behaviour and manipulation trajectories. Traditional behaviour cloning, such 
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as the decision tree method, has been used in many research projects but has proven to 

have low efficiency. Statistical analysis algorithms, such as the Hidden Markov Model, 

Fuzzy Clustering, Competitive Agglomeration and Locally Weighted Regression 

algorithms have been used in this project and have performed well. The Hidden 

Markov Model, Fuzzy Clustering and Competitive Agglomeration have been used to 

train highly efficiency state classifiers, while Locally Weighted Regression has been 

used to clone trajectories of human habits in each manipulation state.  

In the future research, the feasibility of designing of a more systematic approach 

for classification of the contact states obtained from the haptic rendered virtual 

manipulation model and estimation of the assembly states during physical 

manipulation should be explored. In the current approach, the fuzzy state 

classification algorithms classify the training data into different clusters. Depending 

on different classification algorithm, different cluster shape, cluster size, and cluster 

number are produced. A large amount of training data was used in this project. The 

more training data employed, the more accurate the training result. However, the 

training time will be much longer. 14 dimensional spaces, including the force, torque, 

and position data, were recorded in this project. In the future research, the more 

complex the assembly task perform the higher dimension may be recorded. This will 

result of positive or negative dimension of the training data are recorded. Further 

analysis of the high dimension data would be, for example, leaving the positive 

dimension unchanged, doubling or halving the negative dimension weights to give the 
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training results less mistake. In this case, an effective algorithm employed to remove 

unhelpful dimensions should be developed in the next step in the further research. 

Hidden Markov Model is used to estimate the next optimal state and the optimal 

state sequence. A fully connected HMM chain will be constructed, no matter how 

complex the assembly process is, but arbitrary state transitions may be recorded in the 

more complex task in the further research project. Some similar algorithm, derived 

from Hidden Markov Model can be employed. For example, Layered hidden Markov 

model (LHHM), it is often useful to constrain the model by not allowing arbitrary 

state transitions. In the same way it can be beneficial to embed the HMM in a layered 

structure which, theoretically, may not be able to solve any problems the basic HMM 

cannot, but can solve some problems more efficiently because less training data is 

needed. It is sometimes useful to use HMMs in specific structures in order to facilitate 

learning and generalization [Oliver 2004].  

 

6.3.4 Generalisation 

The work at this stage is focused on the peg-in-hole insertion process. The algorithms 

and methodologies developed for this application should be expanded to include 

different constraint motion manipulations in the next stage of the project. This will 

assist in developing a more generic approach.  
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APPENDIX A Experimental Rig Hardware Introduction 

 

A.1 Introduction 

 The hardware employed in this project, including the stepping motors, micro-step 

drives, DC servo motor, DC servo motor encoder, DC servo controller, DAQ-802 data 

acquisition board, HCTL-2016 decoder, and Lord force/torque sensor, are introduced 

as follow. 

 

A.2 Sanyo Denki 2 Phase Stepping Motor 

 Two Sanyo Denki 2 phase 60mm square stepping motors, model no. 

103H7822-0440, were employed in the physical experimental rig to control the hole 

and provide two degrees of freedom (2 DOFs) (Figure A.1) [Sanyo (online)].  

 



Figure A.1 Sanyo Denki 2 Phase Stepping Motor [Sanyo (online)] 

 

The stepping motor has the flowing major features that suitable for the project 

[Sanyo (online)]: 

1. Compact size: H=82mm, W=60mm, D=53.88mm. 

2. High torque: 1170mNm. 2 phase hybrid rare earth magnet technology 

offering 15% to 20% more torque than standard hybrid types. 
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3. Low noise: lower noise has been realized by an optimum structure design 

employed for the motors. 

4. Simple wiring: the motor equipped with a connector promises easier system 

design (Figure A.2).  

 

Figure A.2 Sanyo Denki Motors wiring connections [Sanyo (online)] 

 

Other features include [Sanyo (online)]: 

1. Very high positional accuracy, designed for micro-steeping. 

2. The motor can be unipolar or bipolar driven. 

3. The motor can be available with integrated connector for ease of assembly, 

crimps and matching socket supplied. 

4. Supply Voltage: 4V 

Current:   2A/phase 
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Resistance:  2Ω/phase 

Inductance:  3.6mH/phase 

Weight:   770g 

 

A.3 Gecko Micro-step Drive 

The Gecko micro-step drives used in the project can provide a minimum of 0.09 

degree resolution for turning the hole and enhance the holding torque through a 

special circuit. It doesn’t need external circuits to generate and enlarge the clock and 

direction signals. The Gecko micro-step drive is illustrated in Figure A.3 [Gecko 

(online)]. 

 

 

Figure A.3 Gecko micro-step drive [Gecko (online)] 

 

The Gecko micro-step drive has the following specifications [Gecko (online)]: 

1. Supply Voltage: 24 to 80 VDC 

2. Phase Current: 1 to 7 Amps and 0.3 to 2 Amps (2 ranges) 

3. Auto Current Reduction: 33% of set current, 1 second after last Step Pulse 

4. Size: 2.5”W, 2.5”D, .85”H (63.5mm, 63.5mm, 21.5mm) 
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5. Mounting Pattern: 4 6-32 screws, 1.75” by 2.375” (44.5 mm, 60 mm) 

6. Quiescent Current: 15 Ma or less 

7. Weight: 3.6 oz. (100 gm) 

8. Step Frequency: 0 to 200 kHz 

9. Step Pulse “0” Time: 0.5 uS min (Step on falling edge) 

10. Temp: 0 to 70 C 

11. Step Pulse “1” Time: 4 uS min 

12. Humidity: 0 to 95 % (non-condensing) 

13. Direction Setup: 1 uS min (20 uS min hold time after Step edge) 

14. Power Dissipation: 1 to 18 W (1 to 7 Amps) 

The connection diagram of the Gecko micro-step drive is illustrated in Figure A.4 

[Gecko (online)] 

 



Figure A.4 Gecko micro-step drive connection diagram [Gecko (online)] 

 

A.4 Baldor DC Servo Motor 

Baldor MTE Series DC servo motor, model no. MTE-2250-AMACN, is 

employed in this project, which is used to control the peg and provide one degree of 

freedom (1 DOF). It is environmentally rugged that can provide reliability and long 

life in industrial applications. The Baldor’s DC Servo Motors are shown in Figure A.5 

[Baldor (online) a] 
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Figure A.5 The Baldor’s DC Servo Motors [Baldor (online) a] 

 

 The features of the Baldor’s DC Servo Motors include [Baldor (online) a]: 

1. Provide continuous torques from 1.9 lb.-in to 58 lb.-in. 

2. high continuous duty 155°C rotor temperature and premium moisture 

resistant. 

3. A rugged industrial housing and can be supplied with many electrical and 

mechanical options. 

4. Stock and custom design available. 

5. Superior performance down to zero speed. 

6. Ideal for applications such as X-Y tables, coil winders, machine tool, robotics, 

factory automation, labeling equipment, assembly equipment, textile, 

packaging, converting equipment, and laboratory equipment. 

 

A.5 Baldor DC Servo Motor Encoder 

 14-pin Baldor DC Servo Motor Encoder, model no. MS3102E-20-27P is used in 

the project that provides a physical link between DC motor and DC motor controller. 
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The connection diagram is shown in Figure A.6 [Baldor (online) a]. 

 

Figure A.6 14-pin Baldor DC Servo Motor Encoder connection diagram [Baldor 

(online) a] 

 

A.6 Baldor DC Servo Motor Controller 

The Baldor TSD (Twin Servo Drive) series motor controller, model no. 

TSD-050-05-1-I (Figure A.7) is employed in the project to control the one degree 
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freedom peg. The TSD series motor controller is totally enclosed, stand-alone one or 

two axes brush-type PWM servo control, utilizing the latest in FET/IGBT transistors 

for efficiency and reliability. This DC Servo Control is fully protected. It contains a 

front panel on/off switch and operates directly from 115 VAC. The TSD will power 

DC servo motors providing up to 5 amps continuous, 10 amps peak. [Baldor (online) 

b].  

Figure A.7 The Baldor TSD motor controller [Baldor (online) b] 

 The Baldor TSD series motor controller has the following features [Baldor 

(online) b]: 

1. Easily set up for velocity or torque (current) control applications. 

2. Form factor 1.01 or better. 

3. Zero deadband performance 

4. Adjustable current limits: Peaks and Continuous. 

5. Detachable screw terminal inputs (no special tools). 
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6. Panel mount enclosure ensures there are no exposed electronics. 

7. Simplified ‘start up’ as all connections are defined right on the exterior of the 

enclosure. 

8. ON/OFF main toggle switch. 

9. No audible noise with 20 kHz switching. 

10. No additional inductors required. 

11. Protection features, with LED indicators for  

i. Voltage Error 

ii. Surge Current 

iii. Over Temperature 

Typical connections of the Baldor TSD series motor controller is shown in Figure 

A.8 

 



 

Figure A.8 The Baldor TSD series motor controller typical connections 

 

A.7 Quatech DAQ-802 Data Acquisition Board 

 The Quatech's DAQ-802 data acquisition board is used to read the decoded 

signal generated by the decoder HCTL-2016 [Agilent (online)] connected to the 

encoder of the DC servo motor, send signals to the DC controller controlling the servo 

motor driving the peg and the stepper motors driving the hole. All of these input and 

output signals are read into the Host PC by a DAQ-802 I/O interface card through a 

Main I/O connector and an Auxiliary connector. 

Quatech's DAQ-802 is a low-cost data acquisition board with 12-bit resolution, 



eight analog input channels, two analog output channels, 32 digital I/O channels, and 

three 16-bit programmable counter/timers (Figure A.9). The maximum sampling rate 

is 40 kS/sec for A/D with internal or external triggering [DAQ (online)]. 

 

Figure A.9 Quatech DAQ-802 Data Acquisition Board [DAQ (online)] 

 

The DAQ-802 provides eight differential analog inputs. It has a bipolar input 

range with software programmable gains of 1, 2, 4, and 8 (DAQ-802), and has auto 

zeroing and a self-calibrating facility for A/D conversion. The main D-37 connector is 

for analog I/O, control lines, and eight digital I/O channels. A second auxiliary D-37 

connector, requiring an additional slot in the PC, is provided for an additional 24 

digital I/O lines from an 8255 programmable peripheral interface chip (Figure A.10) 

[DAQ (online)]. 
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Figure A.10 DAQ-802 mainD-37 connector and auxiliary D-37 connector [DAQ 

(online)] 

 

A 2K Data FIFO is available that provides a cushion for the data stream coming 

from the output of the A/D converter. This protects data integrity when using an 

interrupt routine under Windows or other operating systems. Scan List capability is 

also provided for scanning the input channels with their corresponding gains. 

Sequential scanning between any two channels can be programmed. The DAQ-802 

can be installed in any available I/O base address location without conflict with 

presently installed devices. The board can be enabled or disabled through software 

manipulation. The interrupt levels are register selectable through software from IRQ 

2-7, 10-12, 14, and 15 [DAQ (online)]. 

 Features of the DAQ-802 Data Acquisition Board include [DAQ (online)]: 

1. 40 kS/sec sampling, 12-bit analog input resolution. 

2. Eight differential analog inputs. 
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3. Two 12-bit D/A channels, three 16-bit timer/ counters and 32 channels digital 

I/O. 

4. Self calibrating and auto zeroing. 

5. Channel scan capability with various gain for each channel. 

6. 2K Data FIFO buffer. 

7. Programmable gains of 1, 2, 4, and 8. 

8. Interrupt handling capability. 

9. Drivers supplied for third-party software. 

 

A.8 HCTL-2016 decoder 

The HCTL-2016 decoder [Agilent (online)] provides a physical link between the 

Baldor DC Servo Motor Encoder and the DAQ-802 data acquisition board in order to 

obtain the position information. The pinouts are shown in Figure A.11. CHA and CHB 

read signals from the DC servo motor through the motor encoder. The 12/1A-bit 

position latch is read through an 8-bit output port (D0-D7) in 2 sequential bytes. At 

first, both OE and SEL pins are set low via DAQ-802, and read in high byte of 

position. Then, SEL pin is set high via DAQ-802 and read in low byte of position. 

Finally, high and low bytes are combined to produce a 16 bit word. 

 



 

Figure A.11 HCTL-2016 pinouts 

 

A.9 Lord force/torque sensor 

 The force/torque data is obtained by Lord Force/Torque (F/T) sensing system, 

which consists of a transducer unit and a system controller unit. 

 In this project, the F/T system is connected to the computer through RS232 serial 

port, which is configured at 9600 baud rate and 8N1 (8bits, noparity, 1 stop bit) mode. 

The commands issued through the serial port are as follow: 

 FT: Select resolved force/torque data 

In response to this commend, forces and torques applied on the transducer 

unit are resolved into three Cartesian force components fx, fy, fz and three 

Cartesian torque components tx, ty, tz. The force/torque components are 

represented as a six-element vector, F=(fx, fy, fz, tx, ty, tz). 

 OA: Output ASCII on the serial port 

In response to this command, the F/T system will output continuous data in 



ASCII mode. If FT type is selected, F/T system records are transmitted as 

strings of 37 characters. The first character is ‘0’ or ‘1’ representing the strain 

gauge saturation flag. Following are the six Cartesian force/torque 

components, each is expressed as a decimal number, right-hand justified in a 

six character field. 

 OR: Output one data record in ASCII mode 

In response to this command, output record is in the same format as OA 

command, but only one data record is issued (one force/torque components 

vector). 

 BS: Remove bias 

Normally, force/torque data output is biased by gravitational loading due to 

the weight of the end effector, work piece and any attached cables or hoses. 

For task where these effects are constant (the orientation of the end effector 

remains fixed with respect to the gravity vector), BS command can be used to 

remove this bias. This command establishes the current Transducer Unit load 

as bias to be subtracted from all subsequent force/torque output. 
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