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Abstract 

 
Object recognition systems based on ultrasonic sensing have significant 

drawbacks in generality, resolution and speed. The objective of our research was the 

development of more efficient technique(s) for ultrasonic based object recognition 

through the investigation of models of acoustic backscatter, with particular emphasis on 

the work of Albert Freedman. The “image pulse” model developed by Freedman 

calculates the echoes generated from convex objects in an underwater environment after 

insonification with a narrowband transient signal. The primary prediction of this model 

is that echoes are generated at those points along a scattering body where there are step 

discontinuities in the derivatives, with respect to range, of the solid angle subtended at 

the transducer by the scatterer, the amplitudes of the echoes being a linear combination 

of the magnitudes of said discontinuities. 

We extended this model for use in an air environment using non-coincident 

transmitters and receivers and conducted experiments to measure the amplitudes of the 

echoes from a range of radially symmetric convex objects, at distances up to 1.4m, after 

insonification with a Polaroid transducer. These amplitudes were compared to those 

predicted by the model, with the results for the cones highlighting the limitations of the 

theory at modelling the echoes from the geometrical shadow boundaries of objects. The 

results for the spherical objects were significantly better however, with an average error 

of less than 5%, suggesting that the model should be reasonably accurate at calculating 

the echoes from convex objects with smoothly varying surfaces. 

The extended forward model was then inverted to produce an inverse model that 

would calculate the geometrical parameters of a radially symmetric scattering body 

from an analysis of the echoes received after insonification of these bodies with 

ultrasonic pulses at two discrete frequencies. A quantitative verification of this inverse 

model with various scattering bodies proved elusive, with a low correlation between 

experiment and theory, due to matrix instability and difficulties in obtaining data of 

sufficient accuracy. However, qualitative trends in the data indicate that the model is 

essentially correct, though very sensitive to measurement precision and media 

characteristics, and there is good reason to believe that further work under more 
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controlled laboratory conditions and/or a different medium would verify the model’s 

validity quantitatively. 

Finally, the inverse model was tested to see whether it could find a practical 

application despite its quantitative limitations. In many industries, quality control 

involves distinguishing between those items that are physically damaged and those that 

are not, a task that the inverse model may be able to address. Using glass bulbs as the 

test subjects, some with simulated physical damage and some without, we tested the 

ability of the inverse model to distinguish between these two classes of objects. In all 

cases, the model clearly separated the items with simulated damage from those without.  

The inverse model should be of interest to workers in the field of industrial 

quality control because of its potential to lead to the development of real-time 

inspection systems for production lines that could perform with a higher efficiency than 

the visual inspection procedures currently being employed. 
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1 Introduction 
 

1.1 Autonomous Robotics – An Overview 

 
Robotics is a broad field which offers tantalising possibilities for the automation 

of the simplest tasks currently undertaken by human labour (in the short term) and the 

liberation of society from all manual labour (in the long term). It is a discipline which is 

a conglomerate of several older, more established disciplines such as electrical and 

electronic engineering and mechanical engineering as well as newer ones such as 

artificial intelligence and acoustic & visual sensing. However, it is a field which has 

lived up to only some of the promises that it has offered since it’s inception at the start 

of the computer age after the Second World War. Progress in these individual fields 

within robotics have not advanced at the same rate across the board, with developments 

on the engineering side far outstripping that of artificial intelligence and sensing. 

Advances in mechanical and electrical engineering have seen the construction of 

robots with exceptional mechanical precision and flexibility.  The most clichéd, but still 

arguably the best, example of these, are those that can be seen in the automotive 

industry where automation plays a large role on the assembly line for car 

manufacturing. With pinpoint precision and flexibility that extends to multiple degrees 

of freedom, these machines are very successful in doing the job that they were designed 

to do - a simple, repetitive mechanical task with no variation in its motion from one 

cycle to the next. But the field of robotics offers the possibilities of much more than the 

production of automatons that are deaf, dumb and blind. In order for robots to increase 

their scope of applicability, they have to be able to sense their surroundings, plan how to 

get around these surroundings and then move about these surroundings. Such robots are 

known as autonomous mobile robots. 
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As stated above, the areas that are the bottleneck for progress in robotics are 

those of artificial intelligence and sensing. Artificial intelligence covers many aspects of 

robot behaviour including path planning, obstacle avoidance and object interaction. The 

methods employed to teach robots how to do these range from conventional 

programming methodologies to neural networks to genetic programming. As we’ve 

already pointed out, progress in this field has been slower than expected. This is 

undeniably due to the fact that in many respects we still don’t quite know what it is that 

constitutes ‘intelligence’. Even psychologists are in disagreement on this issue as 

evidenced by the many different variants of the Intelligence Quotient (IQ) test. A more 

comprehensive understanding of how the human mind (and thus intelligence) works 

may be required before we can reasonably be expected to develop software that mimics 

the decision making process on a level approaching the human brain. This however, is 

probably some time off. 

What is of interest to us however, is the other major stumbling block of robotics, 

the ability of a robot to sense its environment. There are two major threads of research 

in this area, those of vision based sensing and those of acoustic based sensing. Vision 

based sensing has dominated in recent years and involves analysing two dimensional 

images of an environment, captured from a camera, to identify and attempt to classify 

objects within the field of view. This is usually achieved by identifying the edges of 

objects in an image and building up a best-estimate wire-frame outline of these objects. 

From this, the types of objects, their sizes and locations can hopefully be identified. 

Alternately, partial success has been achieved with neural networks that are 

trained to identify particular objects in an image, although difficulty in identifying 

exactly what it is that a neural network has learnt to identify has caused confusion in 

some instances. One famous example of this involved an attempt to train a neural 



 1-3

network to identify tanks hidden behind a forested area. Although it appeared at first 

that the neural network was successful at distinguishing photos of those trees that 

concealed tanks from those that did not, it later turned out that the photos of tanks 

concealed behind trees were taken on a cloudy day whilst those of trees without tanks 

behind them were photographed on a sunny day. In fact, the neural network had simply 

learned to distinguish sunny days from cloudy ones. This story, although perhaps 

apocryphal, nevertheless nicely illustrates the problem inherent in neutral network based 

recognition systems, we cannot always be sure what the network is learning. 

The other major thread of research for mobile robot sensing employs acoustics, 

or more specifically ultrasonics. Ultrasonic sensing has been used for mobile robot 

navigation for some time, an early example being that of the Meldog guide dog robot1 

which used an array of acoustic sensors to localise the position of objects/obstacles. We 

feel that vision based approaches can be supplemented with data obtained by acoustic 

sensing methods. Acoustic sensing has far more potential than is commonly perceived. 

From the world of nature we know that bats can successfully navigate caves in pitch 

black darkness using acoustic echoes alone2 with a degree of accuracy far surpassing 

anything robot navigation is currently capable of. However, for far too long acoustic 

sensing for robots has been associated with simple range finding or methods derived 

from it, such as the arc model (to be discussed shortly) and as such has been often 

overlooked in favour of vision. However, it’s been shown that high precision sensing 

with acoustic pulses is possible. Kuc and Kleeman3 have demonstrated that objects up 

to 8m away from a transmitter/receiver configuration and separated by as little as 10mm 

can be localised and classified with a precision of 1mm and 0.1 degrees in still air. Thus 

acoustics offer the possibility of highly innovative techniques for sensing the 
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environment and identifying specific objects within it and it is from this viewpoint that 

we approach the topic. 

 

1.2 Acoustic Sensing 

 
The application of acoustics for sensing is almost always done in the ultrasonic 

region of the acoustic spectrum. This is because the higher the frequencies used, the 

more accurately range can be determined. The audible range is up to 20kHz and 

ultrasonic frequencies are anything beyond that, although in practice most ultrasonic 

work tends to take place above 40 kHz. A practical benefit of using ultrasonic pulses is 

by virtue of them being beyond the range of human hearing, they are quiet and thus 

suitable for use in urbane environments. Far more accurate range readings can be 

obtained at these frequencies as well, but they require a detailed analysis of the reflected 

wave, rather than a simple time of flight measurement. 

The most popular approaches for ultrasonic object recognition for mobile 

robotics are based on the arc model and impulse response model, although other 

approaches abound4. The arc model4 involves taking several range readings to an object 

as the sensor moves past it. One draws arcs with a locus at the position of the 

transmitter and a radius of curvature equal to the range reading obtained.  By drawing 

lines that intersect the tangents to these arcs we obtain an estimate of the object shape. 

The problem with this method is the poor resolution of the images that result, as even 

the simplest objects such as a circular bin will end up reconstructed as a polygon. The 

other drawback is the speed, or lack thereof, of the method since the sensor has to move 

around the object before any image can be built up. 



 1-5

An alternative is the impulse response method5 whereby a broadband ultrasonic 

pulse irradiates the object and fourier analysis is performed on the received echo. Since 

different objects will interfere with different frequencies by different amounts, the 

fourier components of the returned echo will differ from one object to another. These 

echoes can then be used to form a database of recognizable signals. Although a much 

faster method than the former, it can obviously only be used for object recognition with 

those objects that it has previously encountered and hence has limited applicability. 

 

1.3 Modelling Acoustic Propagation 

 
The aim of the research presented here is to take a step back and examine the 

physics of scattering in an attempt to find the basic geometric characteristics that 

produce the echoes observed. This will lead to the development of an inverse model that 

will enable the determination of the physical characteristics of the object from a 

measurement of its echo. It is envisaged that such a model could enable the 

development of sensing systems that would complement current ultrasonic sensing 

technology. 

Models for calculating the returned echo from an object of arbitrary shape 

irradiated by an acoustic wave fall roughly into two categories which we could call 

analytical models and numerical models. The former essentially provide us with an 

equation that relates the geometry of the object to the echo received. Because the echo 

and the geometry are linked via the equation, it has the potential to be mathematically 

inverted which would enable us to determine object geometry from the echo. In practice 

though, for many of these models a wide range of objects can give rise to the same 

echo, the many-solutions problem, making inversion useless. 
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Numerical models, on the other hand, approach the problem by calculating the 

entire ultrasonic wave field at small discrete time steps from the moment of initial 

transmission until the moment the echo is received. Because the entire field is 

recalculated for each time interval, accurate echoes can be calculated for even relatively 

complex shapes. The drawback of these models is the time required for the echo 

calculation, from minutes to hours with current processing speeds, but more importantly 

they lack inversion potential because mathematical inversion only provides the wave-

field for the previous time step and at this stage you’ve already encountered the many-

solutions problem. Consequently, analytical models offered the best hope for our 

objectives, the model of choice being that developed of A. Freedman in the late 1950’s. 

Thus to sum up, our aim is to develop, test and apply models of acoustic 

scattering off rigid bodies to the task of object identification. 

 

1.4 Research Outline 

 
In Chapter 2, we will examine the foundations of Albert Freedman’s model of 

acoustic echo formation as well as providing an abridged derivation of the model itself, 

with a focus on the basic assumptions that are central to the model. We’ll also provide a 

qualitative or physical understanding of the processes modelled by his equation and 

look at how feasible it will be to use it as a model for our needs. 

The chapter that follows will outline the extensions that we’ve made to 

Freedman’s model, specifically the impact of signal attenuation due to air, the 

breakdown of one of the assumptions of range equivalency (see later), the polar 

directivity of the transmitter, the directivity of the receiver and the non-coincidence of 
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the transmitter and receiver. This will provide us with an extended model that, 

theoretically, should have validity in air with non-ideal transmitters and receivers. 

In Chapter 4 we examine the experimental setup and the methodology that we 

employed to test this extended model as well as discussing the various noise sources 

that must be contended with, including environmental noise, interference from the 

transducer itself and electronic noise in the chirp capture card. 

In Chapter 5 we look at the results of the experiments conducted using simple 

geometric shapes to test the validity of this model. In particular, we examine the results 

for spheres, cones and truncated cones at various ranges to see how well the correlation 

between measured echoes and the predicted ones turns out to be. We also provide an 

analysis of why certain shapes perform better in these tests than others. 

Chapter 6 sees the development of an inverse model of acoustic backscatter. In 

particular, we examine two possible approaches to the development of this model – one 

based on a time dependent method and another based on a time independent method. As 

both approaches have potential strengths and weakness, we examine why we eventually 

reject one of these models in favour of the other. Finally, we examine how an inverse 

model can be theoretically be used to visualise a scattering body. 

In Chapter 7 we choose a set of geometric objects that conform to the limitations 

of the inverse model, including an exponentially shaped body, paraboloids, an ellipsoid 

and others, and examine their geometries. In particular, an analysis of the location, order 

and amplitude of any discontinuities along their irradiated surface. 

Chapter 8 sees an examination of experiments conducted with the objects 

analysed in Chapter 7 to test the validity of the inverse model, as well as an analysis of 

the level of uncertainty in the predictions of the inverse model. Also discussed is the 
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ability of the inverse model to be put to practical use, using as an example experiments 

conducted to simulate the identification of manufacturing faults in glass bulbs. 

In the final chapter we summarise our results and examine areas where the 

implementation of the inverse model may be beneficial, both within and without the 

field of autonomous mobile robotics. 

 

1.5 Summary of Results 

 
Freedman’s forward model, when extended to air, is fairly accurate in 

calculating the echoes from the closest points on spheres, with a higher than 96% 

correlation between experiment and theory under certain conditions, and may 

potentially be used for modelling the echoes from the faces of truncated cones, provided 

these faces have a small enough cross-sectional area. Its limitations are that it cannot be 

used for modelling the echoes from the geometrical shadow boundaries of objects, such 

as the base of a cone. 

The inverse model that was developed from the forward model could not be 

quantitatively verified due to the coupling of an ill conditioned matrix with data of 

insufficient accuracy that produced estimates with little correlation with the measured 

data. However there is good reason to believe that future work under exceptionally 

rigorous laboratory conditions, or within a different medium (eg. water), may verify the 

model’s quantitative validity. 

Finally, despite the quantitative limitations of the model, it’s general qualitative 

agreement between theory and measurement was shown to have a potential practical 

application by being able to distinguish between those glass bulbs that had a simulated 

defect and those that did not. 
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2 Freedman’s Forward Model 
 

2.1 Background 
 

By the mid-twentieth century, the bulk of acoustic and electromagnetic scattering 

theory had confined itself to the continuous wave case, which, whilst an easier system 

to model mathematically, is limited in the scope of its applicability. These models6 all 

follow the basic tenet that by assuming an incident wave of infinite length (ie. 

continuous wave) incident upon a rigid body, field solutions can be found which satisfy 

the boundary conditions at the transmitter and the scatterer. From this, the steady state 

field amplitude (ie. amplitude as time approaches infinity) of the scattered wave can be 

determined at any point outside the scatterer. However, this will invariably be a 

sinusoidal wave of constant amplitude, which provides no information on the shape of 

the scattering body. A more comprehensive examination of the wave mechanics would 

need to take into account transient waves, or pulses, but precious little work had been 

done in the way of transient wave theory by this stage. 

Albert Freedman, aware of this deficiency in our theoretical understanding and 

spurred on by advances in the fields of EM wave propagation, oil prospecting, non-

destructive testing and medical imaging, developed a theory of acoustic echo formation 

that focussed on transient waves. He went on to test this model using a range of 

geometrically simple objects suspended in water and his theoretical and experiment 

work formed the basis for his 1961 doctoral dissertation “The Formation of Acoustic 

Echoes in Fluids”7. As we will show, although Freedman’s model didn’t stand up too 

well to experimental verification, due mostly to deficiencies in his experiment apparatus 

rather than the theory, it provides an intuitive understanding of the mechanisms behind 
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the scattering of acoustic transients. It’s for this reason that it was chosen as a suitable 

theory to base an inverse model upon. 

 

2.2 Derivation of Freedman’s Model 

 

2.2.1 Basic Assumptions 
 
 

The original derivation of the model is a rather long and detailed affair and it 

would be redundant to reproduce it here. However, it’s advantageous to provide an 

abridged derivation here because at several points throughout the derivation, Freedman 

makes assumptions and approximations that simplify the model to an extent. Whilst 

these may have seemed justified at the time, our extension of this model required us to 

re-examine the validity of these assumptions and approximations and so an 

understanding of how and why they were made is necessary for a thorough 

understanding of the model. 

Firstly, we are concerned only with the scattering of waves off single bodies since 

a multi-body system, with its multiple reflections from different angles, would only 

serve to complicate the dynamics. Secondly, we’ll assume that our system involves a 

reflector which is static (ie. not in motion). This eliminates the need for the model to 

compensate for Doppler shift, variable distances and the fluid dynamics of a body in 

transit through a fluid. Since wave scattering can occur in three ways, (1) scattering 

from an external surface, (2) scattering from an internal surface and (3) resonance 

phenomena, the model will assume that the first mechanism dominates and (2) & (3) are 

negligible. The physical assumptions that this translates to are twofold. Firstly, to 

prevent internal reflections we need to assume that the object is rigid. More generally, 



 2-3

we need to prevent multiple reflections, internal reflections being but one example, so a 

further assumption is made that the object is convex. To prevent resonance phenomena, 

we assume that the amplitudes of the acoustic waves are too small to cause any motion 

in the body itself. 

Several further assumptions serve to simplify our system. One is that the 

wavelength used is much smaller than the dimensions and radius of curvature of the 

scattering body, allowing us to use the Kirchoff approximation, an important 

approximation to be elaborated upon later. The assumption also serves to reduce the 

impact of creeping waves and other surface waves, which, if unchecked, would 

contribute to the echo from the scattering body. Freedman surmised however that the 

contributions from creeping waves would be negligible and thus would not need to be 

accounted for in the model. We will show later that this assumption was flawed. 

We’ll also assume that the scatterer has a smooth surface, thereby ensuring 

specular, as opposed to diffuse, reflection, which is necessary to maintain to a coherent 

wavefront. We’ll use the generally accepted Rayleigh criterion of λ
4, where λ  = the 

wavelength of the acoustic wave, as the upper limit for specular reflection. Thus, any 

surface features larger than this are deemed to produce diffuse reflection. Another 

assumption is that the transmitter and receiver are coincident points as opposed to 

extended objects, an assumption intended to simplify the modelling of the wavefront’s 

transmission and reception. We’ll also assume that the voltage at the transducer’s 

terminals is directly proportional to the acoustic pressure at the transducer’s faces, an 

assumption that extends to both the transmitter and receiver. This assumption of a linear 

relationship is necessary because non-linearities would adversely affect our results. The 

fluid medium that encompasses the transmitter, receiver and scattering body is assumed 

to be non-dissipative (ie. doesn’t absorb the energy of the acoustic wave) as well as both 
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homogeneous and isotropic (ie. having the same physical properties at all points and in 

all directions respectively). 

Finally, we’ll assume that the scattering body is in the Fraunhofer region (ie. far 

field) of the transmitter and receiver, since this will allow us to model the reduction in 

wave intensity with distance using the inverse square law (ie. Intensity∝ 1
distamce2

). To 

ensure that the transmitter and receiver are indeed in the far field, the physical extent of 

the source must be small compared to the distance travelled by the wave, a factor of 3 to 

10 generally being considered acceptable8. This translates to ensuring that the diameter 

of the transducer is small compared to the distance to the scatterer and that the size of 

the scatterer is small compared to the distance to the receiver. 

 

2.2.2 Definitions 
 
 

The assumptions having been made, the terms were defined, 

 

PF1(ψ,φ)  = Sensitivity of the transmitter (transducer) in direction (ψ,φ), where 

P  = pressure produced per unit volt at unit distance in direction ψ = φ= 0. 

HF 2 (ψ,φ) = Sensitivity of the receiver (microphone) in direction (ψ,φ), where 

H  = voltage produced per unit pressure at unit distance in direction ψ = φ = 0. 

 

The transmitter and receiver are defined as being at the origin of this polar coordinate 

system. It’s not shown above, but transmitters and receivers also have a directional 

sensitivity to frequency. This will be taken into account when we add a directivity 

function to our derived equation in the next chapter. 
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For a point in the far field, the pressure p  at time ti  of the transmitted wave at 

distance r  in the direction (ψ,φ) is given by, 

 

   p = VPF1(ψ,φ) exp( j[ωt i − kr ])
r

    (2.1) 

 

where, V = voltage applied to the transducer, 

ω = angular frequency of the wave ( = fπ2 ), 

 it = instant of incidence upon the target, 

 k = wave number ( = λ
π2 ), 

 j = imaginary number, 

and  r = range to the target. 

 

The scattering surface can be defined as φ = F3(r,ψ) and thus at the scatterer, 

 

F1(ψ,φ) = F1(ψ, F3 (r,ψ )) = Fp (r,ψ )  

& F2 (ψ,φ) = F2 (ψ, F3 (r,ψ )) = FH (r,ψ )  

  

Hence, the pressure pi  at time ti  of the wave incident upon an element of area ds of the 

scatterer surface at distance r  in the direction (ψ,φ) is given by, 

 

  pi = VPF p (r,ψ )) exp( j[ωt i − kr ])
r

     (2.2) 
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2.2.3 Kirchoff’s Approximation 
 
 

At this stage, the Kirchoff approximation is introduced which makes the 

assumption that each element ds on the scattering body will scatter incoming radiation 

over a solid angle of 2π (ie. into half space). At first glance, this may seem to violate 

the law of angle of incidence equalling angle of reflection. On a qualitative level 

though, this approximation can be understood by appreciating that ds is of negligible 

size (ie. a point) and a point reflector is incapable of reflecting incoming radiation in 

any preferred direction. This assumption having been made, Kirchoff’s approximation 

goes on to state that the scattering surface is composed of an infinite number of these 

elemental areas, each of which reflects incoming radiation into half space. 

 By using the above approximation, as well as it’s prerequisite that r >> λ , and 

analysing boundary conditions, Freedman extended Eq. (2.2) above into the following 

form, 

 

 ∆ps = − j VP
λ

exp( j[ωt − 2kr ])
Fp (r,ψ ) cos ϕ

r 2 ds     (2.3) 

 

where,  ∆ps= pressure at the receiver due to scattering off ds, 

    ϕ = angle of incidence of the incoming radiation at ds. 

 

The equation above only models the contribution from a single element, so the 

next steps were the inclusion of the contributions from all elements along a strip at a 

distance r to r + dr, by integrating over the strip at that distance and then the integration 

of the resulting equation for all r along the length of the scatterer. The linear 
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relationship between acoustic pressure and receiver voltage was also factored in. The 

equation he derived was, 

 

   ∫
∞

−−=
0

)2exp(
)(

)exp( drkrj
dr

rdWtjVPHjE wω
λ

   (2.4) 

  

where, E = voltage at the receiver due to the scattered echo from the object. 

 )(rW w = directivity weighted solid angle subtended at the receiver by all parts of 

     the scattering body within the range r. 

 

2.2.4 Solid Angle 
 
 

The concept of the solid angle W (r)  subtended at the receiver by part of the 

scatterer is best understood by visualising a plane slicing through the scattering body at 

range r, the area of intersection of the plane with the scatterer being denoted by A(r). To 

conceptualise the solid angle in this manner we assume that the scatterer is far from the 

receiver, so that the locus of equidistant points from the receiver to the intersection at 

range r can be approximated as a plane rather than a sphere. 

Provided this range r is not in the shadow region of the scatterer (ie. a region out 

of the direct line of sight of the transmitter), the solid angle W (r)  for a convex object is 

simply given by, 

 

2

)()(
r

rArW =       (2.5) 
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It provides a measure of how much of the space surrounding the transmitter/receiver is 

occupied by the scattering body at that range, a theoretical total enclosure of the 

transmitter taking the maximum value of 4π. Eq. (2.4) however, makes mention of the 

directivity weighted solid angle )(rW w . This is an acknowledgment that real world 

transmitters/receivers are not simply coincident points in space, but have two-

dimensional extent and as such cannot emit or receive with the same sensitivity in all 

directions, the reasons for which will be elaborated upon at a later stage. Fig. 2.1 shows 

a typical example of the directivity of a plane piston transducer8, the characteristic lobe 

pattern is a by-product of its two-dimensional structure. 

 

   

 

  FIG. 2.1. Directivity pattern of a 1.9 cm radius transducer at 50kHz. 

 

 Thus a weighting is superposed on W (r)  to account for the variation in the transmitter 

and receiver directivities and this is denoted as Ww (r), although we’ll show later that 

treating the transmitter and receiver as plane pistons rather than points eliminates the 

need to artificially weight the solid angle. 

 

2.2.5 Extension from a strip of width dr to a Solid Object 
 

 
 The next stage of the derivation is the extension of the model to incorporate the 

contributions from all strips along the scattering body within the irradiated region. We’ll 

define r1 as the distance from the transmitter to the nearest part of the scattering body 
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and rf  as the distance to the farthest part of the scatterer that remains within line of 

sight of the transmitter. Ww (r) will remain zero up to a distance of r1, as the virtual 

plane has yet to intersect with the scatterer up to this point and will continue to increase 

in size until distance rf , after which it remains at this maximum value for all r → ∞. If 

the wavefront encounters a planar region on the scattering body between r1 and rf , say 

rg , then )(rW w  will have a finite, discontinuous increase in its magnitude at this range. 

An example of such a scattering body would be a truncated cone, where Ww(rg )  at the 

truncated front face would be a discontinuous function.  

Since we need to be able to integrate over all points that may include 

discontinuities, we’ll need to split up the surface into regions proceeding and regions 

beyond the discontinuities and add the contributions from these regions separately. 

Let’s assume the surface is continuous (ie. has no discontinuities) from r = 0 to r < rg  

and the solid angle for this section of the scatterer being denoted Wwg−(r) . Similarly, 

let’s assume continuity over the ranges r > rg  to r → ∞, the solid angle for this section 

being denoted )(rW wg + . The size of the discontinuity is thus given by,  

 

D(W w , g,0)  = D(Ww,rg ,0) = W wg − (r) − W wg + (r)    (2.6) 

 

and the integral in Eq. (2.4) becomes, 

 

=−∫
∞

0

)2exp(
)(

drkrj
dr

rdW w ∫
−

− −→
ε

ε
gr

wg drkrj
dr

rdW

0

)2exp(
)(

0lim  + 

       ∫
∞

+

+ −→
ε

ε
gr

wg drkrj
dr

rdW
)2exp(

)(
0lim  - )2exp()0,,( gw krjgWD −  (2.7) 
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Now, given that )(rW w  remains constant (ie. zero) in the range 0 < r < r1, it 

follows that 
dr

rdW w )(  = 0 in this range also. Similarly, over the range rf < r < ∞, the 

solid angle remains the same (ie. it’s maximum obtained at rf ) and thus 
dr

rdW w )(  = 0 

over this range as well. Thus, the limits in the integral of Eq. (2.7) are narrowed, 

 

=−∫
∞

0

)2exp(
)(

drkrj
dr

rdW w ∫
−

− −→
ε

ε
gr

r

wg drkrj
dr

rdW

1

)2exp(
)(

0lim  + 

      ∫
+

+ −→
f

g

r

r

wg drkrj
dr

rdW

ε

ε )2exp(
)(

0lim  - )2exp()0,,( gw krjgWD −  (2.8) 

  

For a scatterer with multiple solid angle discontinuities in the range r1 < r < rf , the 

contributions from each region between the discontinuites can be expressed as, 

 

   ∫
−

+

−
+

−→
ε

ε

ε
1

)2exp(
)(

0lim
g

g

r

r

wg drkrj
dr

rdW  

 

and by using integration by parts, Freedman was able to express the total contribution of 

all regions across the scatterer as a discrete summation, where each value of n 

represents a separate discontinuity, 

 

=−∫
∞

0

)2exp()( drkrj
dr

rdW w  ∑
∞

=

−−−
1

)2()()2exp(
n

n
n

w
n

kj
dr

rdWkrj  (2.9) 

 

We define the nth order discontinuity in the solid angle as, 
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  ),,( ngWD w  = ( )
n

wgwg
n

dr
rWrWd )()( +− −  n = 0,1,2,3, etc...         (2.10) 

 

and thus the voltage at the receiver is given by the summation of all contributions from 

all regions along the scatterer where discontinuities occur, 

 

    ∑∑
=

∞

=

=
f

g xn
ngEE

1
),(                (2.11) 

 

where  x = the lowest derivative of )(rW w  for which a discontinuity exists at rg , 

    and ),( ngE  = 
n

w
g kj

ngWD
krtjVPHj

)2(
),,(

])2[exp( −ω
λ

              (2.12) 

 

If the scattering body is sufficiently far enough away from the transmitter such 

that the intensity of the wavefront varies negligibly over the extent of the scatterer, then 

)(rW w  can be re-written as, 

 

    )(rW w  = 
2

)(

m

w

r
rA                (2.13) 

 

 where rm  = mean range of the discontinuities on the scattering body, given by the 

midway point between the first and last discontinuities. 

 

We define, 
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    ),,( ngWD w  = 
2

),,(

m

w

r
ngAD               (2.14) 

 

Thus, the voltage Eg  at the receiver due to backscatter off the body from the 

discontinuity at range rg  is given by, 

 

    gE  = ∑
∞

=0
2 )2(

),,(
)exp(

n
n

w

m kj
ngADj

r
VPHj θ
λ

              (2.15) 

  

 where θ =ωt −2kr. 

 

This is the final equation in the derivation of Freedman’s model. Although 

Freedman went on to derive equations for special cases, this remains the highest level 

general equation for his model. 

 

2.3 Physical interpretation of Freedman’s Model 
 

2.3.1 Interpretation of the Components of the Equation 
 
 

Providing a physical, or intuitive, interpretation of Freedman’s model is best 

achieved by breaking Eq. (2.15) down into several modules and generalising the role of 

each. Firstly, at a fixed frequency, the term VPH is a constant of proportionality which 

represents the dependence of the voltage at the receiver on the product of (a) the voltage 

applied to the transmitter, (b) the transmissivity of the transmitter and (c) the sensitivity 

of the receiver. The λ  in the denominator indicates that the amplitude of the reflected 

waves from the scattering body’s surface will be smaller at lower frequencies and it’s 
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presence in the equation is a product of the Kirchoff approximation. The rm
2  in the 

denominator is a product of the inverse distance law for geometrical spreading loss from 

a point source being applied twice, since we have transmission from the source to the 

range mr  as well as reflection back to the receiver, again over a range mr . The 

exponential term exp( jθ) in Eq. (2.15) is the complex form of the solution to the wave 

equation, which simply models the cyclic sinusoidal variation in wave amplitude over 

time and distance. The terms within the summation represent, in the case where n = 0, 

the magnitude of the direct backscatter to the receiver and in the case of higher order 

components (ie. n > 0), the magnitude of the diffracted signals transmitted toward the 

receiver. In air, the contributions from successively higher order terms diminish by 

orders of magnitude however and so in practice only the first two, or possibly three, 

terms have any relevance to the echo produced. This is wholly due to the fact that the 

wave number k for an ultrasonic wave in air is very high, of the order of 103. For other 

environments where the wave number is lower, for example water at 20oC which has k 

= 212 for a 50kHz wave9, the diminishment of the higher terms would be less 

pronounced. 

The specific role that the nth order discontinuity terms ),,( ngAD w  within the 

summation play in generating echoes in Freedman’s model is best illustrated by 

example. The nth order discontinuity function for a discontinuity at range gr , can be 

expressed as follows, 

 

)()(),,( +− −= gn
w

n

gn
w

n

w r
dr

Ad
r

dr
Ad

ngAD              (2.16) 
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where rg− and rg + represent the ranges infinitesimally prior to and beyond the 

discontinuity respectively. 

At an arbitrary range xr  on a smoothly varying section of the scatterer’s surface, 

the nth order derivative of the cross sectional area with respect to range at ranges 

infinitesimally prior to and beyond xr  will be the same. Hence, Eq. (2.16) will be zero, 

thus there is no discontinuity and so no echo is generated. At those ranges xr  where 

there is a discontinuity in one of the nth order derivatives though, Eq. (2.16) will have a 

non-zero value and hence an echo will be generated. 

Discontinuities in cross sectional area or any of the higher order derivatives of 

area with respect to range are thus responsible for the formation of echoes. Freedman 

termed these echoes “image pulses”, since their structure is identical to the transmitted 

pulse in all but amplitude. 

 

2.3.2 Example: The Sphere 
 
 

Take the example of a sphere as shown in Fig. 2.2 below, with a radius of a, the 

point nearest to the transmitter located at 1r  (shown inline with D(A,1,1) & D(A,1,2)) 

and it’s equator at located at 2r  (shown inline with D(A,2,2)), 
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FIG. 2.2. Echoes from a sphere as predicted by Freedman’s model. 

 

Freedman showed that the nth order derivatives of area with respect to range, between 

1r  and 2r , are as follows, 

 

   )( gw rA  = ))(( 2
2

2
grra −−π                         (2.17a) 

   )( g
w r

dr
dA

 = )(2 2 grr −π              (2.17b) 

   )(2

2

g
w r

dr
Ad

 = π2−                (2.17c) 
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   )(3

3

g
w r

dr
Ad

 = 0               (2.17d) 

 

The magnitudes of the discontinuities at r1  and r2 are then calculated using Eq. 

(2.16) and are as follows, 

 

    )0,,( 1rAD w  = 0              (2.18a) 

)1,,( 1rAD w  = aπ2−                (2.18b) 

)2,,( 1rAD w  = π2               (2.18c) 

)0,,( 2rAD w  = 0              (2.18d) 

)1,,( 2rAD w  = 0              (2.18e) 

)2,,( 2rAD w  = π2−               (2.18f) 

 

The cross sectional area of the sphere, as “seen” by a transducer located to the far 

left of the sphere, is not discontinuous at any point. However, at r1  the first and second 

order derivatives are discontinuous and so each produces an echo. These are in phase 

and superimposed to form the echo from 1r . Similarly, at 2r , the equator of the sphere, 

the second order derivative is discontinuous and an echo should originate from there 

too, at least in theory. It will be shown later though, that no echo will be generated at the 

equator, despite the predictions of Freedman’s model. 
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2.4 Feasibility of Freedman’s Model 
 

Having examined the model from a theoretical standpoint, the question remains as 

to how feasible the model is for our purposes. Since our objective is the development of 

an inverse model, the fact that it’s an analytical model makes it an ideal candidate, since 

only analytical equations can be inverted. The experimental evidence to support it is 

tenuous at best however. Freedman conducted a series of experiments in an underwater 

environment whereby large steel spheres were irradiated with acoustic pulses. The 

received echoes verified the model on a qualitative level, in that they came from those 

parts of the spheres that the model predicted, but the noise in the signals was between 

20 to 30% and so conclusions couldn’t be drawn as to the quantitative validity of the 

model. Freedman also speculated that internal penetration of the target by the pulse may 

have corrupted the results. Unfortunately, no follow up research on this model was 

published in the years following the publication of his thesis, by either Freedman 

himself or others in the field. Nevertheless, despite the absence of any concrete 

experimental verification of the model, it is a model with a solid theoretical grounding 

and as such deserved to be followed up with further research, as this thesis has done. 

The other issue that affects the feasibility of the model is the role that the 

assumptions made in the derivation have played in limiting its scope. Some of the 

assumptions made are reasonable and are of no concern, such as the requirement that 

the model deals with only one object at a time, the scattering body is static, the distance 

to the receiver is far, etc... Others however, such as assuming the system is within a 

non-dissipative fluid medium and the transducer and receiver are coincident points are 

problematic. However, these issues can all be dealt with by extending the model to 

account for these deviations from ideal conditions and this is the topic of the following 

chapter. 
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3 Extensions to Freedman’s Model 
 
 

We now have a simple model for calculating the echo received from a scattering 

body produced by one or more discontinuities at a range rg  on the body. But 

Freedman’s model, as it stands, is idealised in that it only works for objects in media 

with negligible energy attenuating properties, such as water, using a coincident point 

source transmitter and receiver. To enable the model to work in a gas, specifically air, 

with real transducers and receivers, which may be non-coincident, we need to 

compensate for several factors. These are, (a) attenuation due to air, (b) breakdown of 

the assumption 22 −− ≈ gm rr , (c) polar directivity of the transducer, (d) directivity of the 

receiver and (e) non-coincidence of the transmitter and receiver. Although (c) and (d) 

do not represent additions to the model, as Freedman already accounts for transmitter 

and receiver directivities, we will provide an alternate method for calculating them. 

Finally, the real component of the model needs to be extracted, since this corresponds to 

the physically observable signal. 

 

3.1 Signal Attenuation Due to Air 
 

Several mechanisms are responsible for the loss in energy of a wave travelling 

through air. Apart from the obvious geometrical spreading loss, which Freedman’s 

model accounts for, atmospheric absorption causes the wave to decay exponentially 

with range. In the frequency range of interest to us (around 50 kHz), this absorption is 

due primarily to the vibrational relaxation of oxygen molecules10. 



      3-2

The atmospheric absorption experienced by a wave scattered at a range rg  is 

incorporated into the model by the addition of the term exp(−2rgα ) into Eq. (2.15), 

 

  ( )∑
=

+−=
0

2 )2(
),,(

2exp)()(
n

n
w

g
m

g ik
ngADir

r
fHfVPiE θα

λ
               (3.1) 

 

The new term is the attenuation factor and α  is the absorption coefficient. The 

path length gr2  is used because the radiation travels from the transmitter to the 

scattering object and then reflected back to the receiver over the same distance. Note 

also that from this point onward the designation for the imaginary number will be 

represented by scientific standard of i  rather than the engineering standard of j . 

The absorption coefficient α  can be determined either theoretically or 

experimentally. Theoretical values can be determined using the series of equations 

specified by the American national standard method for calculating attenuation in air9. 

At the frequencies we use, these give us an absorption coefficient accurate to within 

10%. Given that the amplitude of a spherical wave travelling through an attenuating 

medium is given by 
r
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Experimental values can therefore be determined by positioning the receiver at 

two distinct ranges 1r  and 2r  from the transmitter and inserting the amplitudes of the 

received waves 21  and EE  into Eq. (3.2), 

Now, the voltage E can only be measured to within an 0.8% accuracy in 95% of 

cases, for reasons to be outlined later. In the worst-case scenario of 1E  being 0.8% too 

large and 2E  being 0.8% too small, the absorption coefficient will be in error by 10%. 

Consequently, both the experimental and theoretical methods can only claim accuracy 

to within 10% and so the method chosen is arbitrary. Since the absorption coefficient 

can be calculated relatively quickly with the aid of a mathematical package, provided 

environmental conditions are known, we chose the theoretical approach. 

 

3.2 Breakdown of 2
g

2
m rr −− ≈  assumption 

 
To simplify the derivation of the model, Freedman assumed that the object was 

sufficiently far from the transducer that the ranges to different points on the scatterer 

could reasonably be approximated with the mean range mr , for the purposes of 

calculating the geometrical spreading loss. At ranges of less than two meters though, 

this approximation clearly does not hold when we are dealing with objects of up to 0.1m 

in size.  

An analysis of Freedman’s derivation reveals though that the approximation is 

only necessary if one treats the separate echoes coming from different points on the 

scatterer as all belonging to the same wave train. If we treat each echo as a separate 
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entity, we can justifiably use the exact range gr  instead of mr . Hence we can replace mr  

with gr  in Eq. (3.1) to give us, 
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As an example of how this changes the predictions of the model, for a typical 

0.1m radius sphere at a distance of 0.8m, with an absorption coefficient of 0.2, there is a 

15% increase in the amplitude of the calculated echo over that predicted by the original 

model. 

 

3.3 Polar directivity of the transducer 
 

Because the transducer is not a point source but is instead analogous to an 

oscillating plane piston, there will be an angular variation in the intensity of the sound 

pressure about the transducer. This occurs because the field at any point is a summation 

of waves coming from different points across the face of the transducer. Consequently, 

not all waves arrive in phase and we get interference, producing the characteristic series 

of maxima and minima. Measurements conducted at the Fraunhofer Institute in Stuttgart 

in an anechoic chamber confirmed that the radiating plane piston is an accurate model 

of a chirping transducer, the model becoming invalid only when the transducer 

transmits continuously, due to streaming effects11. 

We’ve used a Polaroid transducer with a radius of 1.9cm in our experiments and 

it’s directivity field, calculated using the plane piston model12, shown previously in Fig. 
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2.1. The central lobe insonifies a region of 15o around the axis of the transducer, giving 

it a total coverage of 30o. From Fig. 2.1 though it is clear that the field strength falls off 

rapidly once we deviate from the axis. Consequently, when modelling the echo 

generated from a point on an extended object we need to take into account the 

diminished field strength of the incoming radiation at that point. 

Freedman’s model compensates for the directivity of the transducer, as well as the 

receiver, by requiring that the reflecting area A(r) on extended scatterers be weighted 

for directivity, to give us Aw (r) . This addresses the problem in an indirect manner by 

retaining an assumption of uniform directivity in transmission and reception, by virtue 

of the model’s point source approximation, and replacing the true area with the notion 

of a pseudo area. Our approach is to retain the true area and instead replace the 

assumption of uniform directivity with a model governing the directivity of the field. 

Although mathematically both approaches are ultimately equivalent, the strength of the 

latter is that it is physically and intuitively valid also. This is because it doesn’t require 

the introduction of the abstract notion of a pseudo area and doesn’t retain an incorrect 

model of the directivity of the transducer. 

The directivity field of a plane piston is given by the following8, 

 

   β(φ) =
2J1 ka sinφ( )

kasinφ
               (3.4) 

 

where k = 2πf
c  = wave number of the transmitted wave 

 J1 = Bessel function of the first order. 
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The factor P(f) in Freedman’s model represents the transducer’s capacity for 

transmission with it’s value denoting the pressure produced at one meter along the axis, 

per volt applied to the transducer, for a given frequency. To incorporate the directivity 

of the transducer into Freedman’s model, we need to scale this factor with Eq. (3.4). 

The resulting model follows, 

 

  Eg = i
VP( f )βP (φ)H( f )

rg
2λ

exp −2rgα + iθ( ) D(A,g,n)
(2ik)n

n=0
∑                (3.5) 

 

Scaling Eq. (3.4) in this manner is only valid if the scatterer is radially symmetric 

about its axis, where the directivity is constant around the perimeter of all strips from r 

to r + dr along the length on the scatterer. In the more general case where the directivity 

pattern is not constant around the perimeter of each of these strips, for a non-radially 

symmetric object, the directivity term would have had to have been included within the 

integral for each r to r + dr contribution to the total echo.  However, this model will 

only be applied to radially symmetric objects and as such the scaling we have applied is 

valid. 

For echoes originating from points along the axis, the directivity takes on unit 

value. Echoes from points off the axis are now compensated for by taking into account 

the angle they make with it. 

 

3.4 Directivity of the receiver 
 

There are two distinct transmitter/receiver configurations that we use throughout 

the course of our research, the so-called “coincident” case being when the transmitter 
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and receiver are, as the name suggests, coincident. This occurs when the transmitter and 

receiver are the same device and in our work this is achieved by switching the Polaroid 

transducer into reception mode after initial transmission. The opposing configuration, 

labelled the “non-coincident” case occurs when the transmitter and receiver are different 

devices separated by a small distance. In this case, the transmitter is still the Polaroid 

transducer, but the receiver is a 7mm diameter Bruel & Kjaer condenser microphone 

(type 4135), separated from the transducer by 44mm. 

Freedman’s model assumes that the receiver is not an extended object and as such 

has a uniform directivity in reception. By virtue of it’s small size, this assumption holds 

true for the condenser microphone with it’s directivity relatively uniform over the range 

of angles (-4o to +10o) that it receives echoes from13. Consequently, the directivity of 

the receiver is not an issue for non-coincident set-ups. 

For the coincident cases though, when we use the Polaroid transducer for 

reception, the directivity of the transducer must be accounted for. The angular 

sensitivity of the transducer in reception mode is exactly the same as it is in 

transmission mode and is governed by Eq. (3.4). This is because the directivity is a 

function of the transducer’s geometry, which remains the same in both cases and so the 

directivity doesn’t change. 

The factor H(f) in Freedman’s model represents the receiver’s sensitivity in the 

direction of the axis, for a given frequency. To incorporate the receiver’s directivity into 

the model, we need to scale this factor with Eq. (3.4). The resulting model is given in 

Eq. (3.6), 

 

  Eg = i VP( f )βP (φ)H( f )βH(φ)
rg

2λ
exp −2rgα + iθ( ) D(A,g,n)

(2ik)n
n=0
∑                (3.6) 
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As stated earlier, when using the microphone, the directivity takes on unit value to 

indicate uniformity. 

 

3.5 Non-coincident Transmitter and Receiver 

 
Freedman’s model assumes that the transmitter and receiver are coincident. The 

advantage of this is that when dealing with echoes originating from a ring of radially 

equidistant points around the axis, such as the base of a cone, the echoes from each 

point will all arrive at the receiver in phase. This eliminates the problem of wave 

interference. However, for non-coincident configurations, which constitute 50% of 

cases in our research, this assumption doesn’t hold and needs to be compensated for. 

To examine the effect of unchecked interference, we measured the maximum 

amplitude of echoes from the base of a cone as the microphone was shifted 

progressively further away from the transducer. The results are shown in Fig. 3.1. below 

and show a sinusoidal variation in amplitude which is characteristic of an interference 

pattern.  
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FIG. 3.1. Maximum amplitude of the echo versus separation of the microphone from the centre of the 

transducer. 
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As mentioned before, for coincident cases the transducer doubles as both a 

transmitter and receiver, satisfying the above assumption and so interference is not an 

issue in these cases. For the remainder though, the problem is minimised by aligning the 

axis of the scatterer with a point midway between the centre of the transducer and the 

microphone, as shown in Fig 3.2 below. This ensures that the path lengths L from the 

transducer to the scatterer and then to the microphone remain equal at all times, 

ensuring that the echoes arrive in phase. 

 

 

FIG. 3.2. Alignment of the scatterer to ensure equal path lengths for the transmitted and reflected waves. 

 

Also, A(r) as sensed from the vantage point of the receiver will be different in the non-

coincident case to that of the coincident one since the received echo no longer 

propagates along the object axis. Because the model, being based upon an assumption 

of transmitter/receiver coincidence, does not account for this, it will manifest itself as a 

discrepancy in the results. By aligning the scattering body in the manner shown in Fig. 

3.2, the deviation of A(r) from the coincident case, as sensed at the receiver, is at least 

minimised due to the reduction of the angle between the object’s axis and the trajectory 
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of the received echo of path length L. The impact, or lack thereof, of the deviation in 

A(r) from the coincident case upon the results for non-coincident configurations will be 

discussed in section 5.2. 

 

3.6 Extraction of the Real Component 

 
Although waves are regularly represented by complex equations, the measurement 

process can only detect the real component. Consequently, before we can utilise Eq. 

(3.6), we need to extract its real part. This is given in Eq. (3.7), 

 

 

Εg = A( f ) GVβP(φ)βH (φ)
rg

2 exp −2rgα( ) D(0)sinθ( − D(1)
2k

cosθ − D(2)
4k 2 sinθ)

                                                 

               (3.7) 

 

A factor G, signifying gain, has been added to account for any amplification that 

may be applied to the received signal. In Eq. (3.7) the factors P(f), H(f) and λ , which 

we use λ = c
f  to calculate, have been combined into a single function A(f) which is 

defined: 

    A( f ) = − P( f )H( f )
λ

                                                

     (3.8) 

The negative sign in the function above is there simply to alter the form of the terms in 

the parentheses of Eq. (3.7) from (–X + Y + Z) to the more economical (X – Y – Z) 

form. 

 We can combine terms in this manner because the individual factors need not be 

measured independently, for a given frequency, then combined in order to calibrate the 
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model. Instead, by measuring the echo from an object of known dimensions at a given 

range, we can insert the echo amplitude, scatterer's discontinuity values, range, 

frequency and calculated values of speed of sound and attenuation, from the 

environmental conditions, into Eq. (3.7) to determine A(f). Since A(f) is independent of 

the scattering body, the calibrated model is thus suitable for use with a range of objects 

at a range of distances, provided we use the same frequency that was used to calibrate 

the model and the speed of sound remains the same. 

 The extensions to the model having been made, we can now examine the 

procedures required to test it’s validity. 
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4 Experimental Design 
 
 

There are several components that constitute the experimental apparatus. Firstly, 

the 12-bit chirp (transient wave) generator card within the Macintosh PowerPC 

designed by Michael Milway & Assoc. Prof. Phillip McKerrow of the University of 

Wollongong. The output voltage of this card is controlled via a custom designed 

software package by Benjamin Stanley13, also of the University of Wollongong, that 

enables variation of the significant parameters, such as the maximum voltage (0 to 5 

Volts in amplitude), number of wave cycles, frequency, etc., to allow production of a 

sine wave with the desired envelope. The software also has the ability to produce 

sawtooth and square waves, and impulses, but since our model is based upon the 

scattering of monotonic (single frequency) waves, we’ve had no need to employ non-

sinusoidal waves in our research. 

For non-coincident measurements (ie. the transducer and receiver are at different 

point in space), we produce a 10 to 20 cycle wave with an amplitude of four volts, at a 

frequency of 50 kHz. A wave with 10 to 20 cycles is an acceptable compromise 

between the need to keep the transient short enough to prevent overlapping of echoes 

from separate discontinuities and the need to keep it long enough for it to be considered 

generally monotonic. A transient wave can never be truly monotonic (only continuous 

waves have this distinction) because any transient is effectively a convolution between 

an impulse function and a continuous wave. The impulse function is responsible for 

high frequency components being present in the transient wave but if the impulse 

function is long enough, in our case the equivalent of approximately 10 – 20 cycles of 

the continuous wave, then the higher frequencies are negligible. An amplitude of four 
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volts, slightly below the maximum voltage of five, was chosen because the output was 

found to be non-linear when the maximum value was chosen.  

The analog signal produced by the card, by virtue of the digital to analog 

converter at it's output, is fed through to an amplifier with a gain of 30 and a 150 volt 

bias is then added. The amplified signal is then applied to a 44mm diameter Polaroid 

transducer and transmission follows. The entire experimental set-up is shown in Fig. 4.1 

below, 

 

 

   FIG. 4.1. Experimental set-up used for chirp transmission and echo reception. 

 

After transmission commences, the first few cycles of the transmitted wave 

steadily increase in amplitude, since the transducer cannot respond instantaneously to 

the applied voltage, and by the fifth or sixth cycle the wave has reached it’s maximum 

value. This can be seen in Fig. 4.2, the captured echo from the front face of a large 

truncated cone (100mm height, 197mm base diameter and 149mm truncated face 
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diameter) at a range of 800mm for a non-coincident transmitter and receiver. The last 

several cycles of the wave, not shown in Fig. 4.2 but visible in Fig. 4.3, are the result of 

“ring down” after the applied voltage has terminated and these decay exponentially. 

 

1 volt

10 µsec
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Time of arrival (µsec)  

FIG. 4.2. Echo from the front face of the large truncated cone at a range of 800mm for a non-coincident 

transmitter and receiver. 
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FIG. 4.3. Echo from the front face of the large truncated cone at a range of 800mm for a coincident 

transmitter and receiver. 

 

For coincident measurements, where the Polaroid transducer acts as both 

transmitter and receiver, the process differs in that the initial output of the chirp card is a 

step function which drops from five volts to zero within 0.2µs . At the transducer, this 

causes the AC voltage applied to drop from 300 volts to zero almost instantaneously 

causing the transducer to exponentially ring down at it's natural frequency of 

approximately 55 kHz. Typically, the transmission in this case contains one or two 

well-defined cycles at the start of the wave and a number of trailing cycles that are 
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progressively buried in noise. This is shown in Fig. 4.3, the echo from the front face of 

the large truncated cone at a range of 800mm for a coincident transmitter and receiver. 

A signal such as this, with only one or two well-defined cycles, deviates from the 

assumption of monotonicity required by Freedman’s model, but does not risk the 

interference issues that may arise with the non-coincident set-up. It is difficult to 

speculate at this stage which of these two factors will prove more important to the 

accuracy of the model. 

 

 

FIG. 4.4. Echoes from a medium sized truncated cone at a range of 600mm for a non-coincident 

transmitter and receiver. 

 

The echo from the scattering body is received via the ultrasonic microphone, with 

a corresponding preamplifier, in the non-coincident case and the transducer in the 

coincident case, which goes into reception mode immediately after the step function is 
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applied. In both cases, the signal is then optionally amplified before being sampled at 1 

MHz with 12-bit resolution by a chirp capture card designed by Michael Milway & 

Assoc. Prof. Phillip McKerrow of the University of Wollongong. This card is also 

within the Macintosh PowerPC and is controlled via the same custom software that was 

used for controlling the chirp generator card. The signal is then displayed on screen and 

exported to a file for later analysis with a mathematical package. 

Fig. 4.4 shows a received signal that includes two echoes from the one object, in 

this case the echoes from a medium sized truncated cone (100mm height, 197mm base 

diameter and 97mm truncated face diameter) at 600mm for a non-coincident transmitter 

and receiver. The larger echo is from the truncated face of the cone and the second, 

smaller echo is from its base. The transmitted pulse was shorter than usual to ensure no 

overlap between the two echoes. This was done for illustrative purposes only, to clearly 

delineate between the two echoes. In practice though, short-duration pulses don’t satisfy 

the requirement of monotonicity and so would not be used, the co-incident case being 

the exception, as already pointed out. In our experiments, described in the following 

chapter, we actually used pulses of longer duration, at least 10 cycles, to ensure 

montonicity. 

 

4.1 Noise Minimisation 
 

Due to the weak echoes that we often have to deal with in this research, 

localisation and minimisation of noise sources is an essential prerequisite. The low 

intensity of the reflected echoes is not only a result of the physical limitations of our 

equipment, but also a symptom of Freedman’s model itself. The amplitude of the 

(n+1)th order image pulse, represented by the (n+1)th order term within Eq. (3.7), is 
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typically at least two orders of magnitude smaller than the nth. Consequently, we need a 

signal with a high signal to noise ratio in order to see the higher order contributions. 

The noise that we’ll examine here comes from three main sources: the 

environment, the transducer and the chirp capture card. 

 

A. Environment 

In the lab environment under which our research was done, short-term 

fluctuations in air pressure from drafts, doors opening/closing, power supply fans, 

people walking, etc. can cause variations in amplitude of the received echo by up to 

10% between any two successive measurements. Specifically, we found that the 

standard deviation for any sample of amplitude measurements was approximately 3%. 

What this figure implies is that, assuming a normal distribution, for any single 

amplitude measurement, there’s a 68% chance that it’s within 3% (one standard 

deviation) of the population mean and a 95% chance that it’s within 6% (two standard 

deviations) of the mean, the “population mean” here representing the amplitude one 

would expect in the absence of random noise sources. It also implies that for a small 

number of measurements, less than 5%, the deviation of the amplitude from the mean 

would be greater than 6%, in some cases as high as 10% as observed. 

Since we need a relatively accurate measure of amplitude to work with, it would 

be advantageous for us to obtain an estimate of the population mean of the amplitude, as 

this figure represents the amplitude devoid of the influence of random noise. To obtain 

this we take a sample of amplitude measurements, calculate the mean and repeat the 

procedure several times, producing several estimates of the population mean in the 

process. These estimates constitute a distribution of means with a standard deviation 

that varies depending on the sample size used, with larger sample sizes obviously 



 4-7

producing smaller standard deviations and thus a more accurate estimate of the 

population mean. 

Using a sample size of 50, which is to say we average the amplitudes of the 

echoes from 50 readings, the standard deviation of the distribution of means is only 

0.4%. What this implies is that when we average 50 echoes, our estimate of the 

population mean of the amplitude is accurate to within 0.4% in 68% of cases and 

accurate to within 0.8% in more than 95% of cases. Thus a sample size of 50 was 

deemed adequate for the task at hand and in all of our subsequent measurements we 

averaged over a minimum of 50 echoes before analysing the results. In each case, the 

measurements were completed within 30 seconds because the capture software was able 

to average the echoes in real time. 

Over the course of several minutes, the environmental conditions in a room, such 

as temperature, pressure and humidity, can and do change. In a laboratory environment 

this is primarily due to air conditioner cycles. Also, over a period of several hours these 

same conditions will drift due to atmospheric changes occurring over the normal course 

of the daily cycle. This will affect the time of flight, via the speed of sound, and 

amplitude, via attenuation factor, of an echo. The model is designed to compensate for 

these changes provided we know what the environmental conditions are at the time of 

measurement. Thus, continual monitoring of these conditions is required. 

 

B. Transducer 

As we mentioned earlier, the final cycles of the transmitted wave are the result of 

“ring down” after the voltage applied to the transducer has terminated and these cycles 

decay exponentially. This decay is very long however and often the ringing will not 

have completely attenuated by the time the echo arrives. When the transducer is being 
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used as a receiver, the ring down signal will be superimposed on the incoming echo, 

consequently interfering with the received signal. When the microphone is used for 

reception, it will pick up the ring down signal via one of the outer side lobes (see Fig. 

2.1), again resulting in corruption of the signal. To solve this problem, the ring down 

signal, which is fairly repeatable, is recorded separately in the absence of any scattering 

body and later on, as part of the echo analysis, subtracted from the measured echo. This 

also has the advantage of cancelling any extraneous echoes, from objects in the 

environment unaccounted for, which may be present in the signal. 

A different problem, which reveals itself only after several hours, is the slow but 

significant reduction over time in the amplitude of the received echo from a scatterer. 

This was measured from a reference target and the results, given in Fig. 4.5, show a 4% 

reduction within one hour and 18% over seven hours, after which the amplitude no 

longer decreases significantly. We concluded, after isolating the source of the drift to 

the transducer itself, that the changes are a result of the transducer losing it’s ability 

over time to produce a given pressure for a given voltage. We believe this reduction in 

transmissivity may be due to the mylar film used in the transducer stretching under a 

constant 150V bias and losing it's rigidity as a consequence. 

 

 

 

FIG. 4.5. Variation in measured amplitude with time of the echo from a target. 



 4-9

 

To compensate for this drift we switched off the bias to the transducer between 

measurements. This relieves the tension on the mylar film between transmissions and 

allows it to restore it's rigidity. 

 

C. Chirp capture card 

The capture card is a host for several potential noise sources. Because the card is 

in close proximity to the chirp generator card, as well as numerous electronic 

components within the host computer, the potential for electromagnetic interference is 

great. To minimise this, we used coaxial cable for the wiring between the input socket 

and the analogue to digital converter (ADC). The ADC itself was shielded by copper 

plates to prevent interference from external and on-board noise sources. Initial 

prototypes for these cards didn’t include these enhancements and the resulting noise 

was appreciable. 

The capture card begins sampling the incoming signal as soon as the generator 

card begins transmitting. Because we are superimposing the echoes in real time though, 

for the purpose of averaging them in order to increase the signal to noise ratio, the 

incoming waves must be in phase with one another, otherwise they will experience 

interference. As a consequence, the circuit was designed to ensure that the start of the 

transmit and receive cycles are synchronised to start on the same edge of the signal, to 

prevent phase mismatch. 

Finally, the sampling rate of the ADC places a constraint on the accuracy of the 

captured signal. At a sampling frequency of 1 MHz, a typical 50 kHz wave will be 

sampled 20 times per cycle, or every 18o. Since our objective is to measure the 

amplitude of the peaks, for reasons to be outlined shortly, the best case scenario, in 
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terms of accuracy, occurs when the wave is sampled exactly at it’s peaks. The worst 

case is when the sampling occurs at a separation of 9o on either side of the peak, 

leading to an inaccuracy in the measured peak of 1.2%. To resolve this issue, we use 

interpolation15 to reconstruct the shape of the wave between the sample points. This is 

done with the aid of a mathematical package during the analysis stage, an example of 

which can be seen in Appendix A.5 (a). 

 

4.2 Echo Analysis 

 
The capture software allows us to export the returned signal to a file for later 

analysis with Mathematica. Once the file is imported into Mathematica, the first step is 

to cut out the unnecessary parts of the trace. Since a typical trace consists of an 

appreciable period of no signal followed by the echo and then no signal again, it is 

advantageous to remove the regions that are not part of the main echo since it will 

reduce processing time markedly later on. Once this is done, the trace of the signal 

received in the absence of any scattering body is imported and subtracted from the echo, 

as outlined previously. Appendix A.5 (a) contains an example of this process also. This 

second trace must be obtained within a very short time after the initial echo was 

recorded, when the temperature, pressure and humidity are still almost the same as 

when the initial trace was taken, otherwise changes in these environmental conditions 

will adversely affect the accuracy of this method. 

Interpolation of the processed echo follows and we’ve chosen to interpolate ten 

points per sample, giving us a virtual sampling frequency of 10 MHz. The interpolation 

is more accurate when the wave is monotonic and of constant magnitude. Consequently, 

the highest accuracy in the interpolated echo occurs in its central region, where the 
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wave’s magnitude has stabilised and ring-down has yet to begin. This stable central 

region has the added advantage of conforming more closely to Freedman’s assumption 

of a non-varying echo envelope. Since the objective of our work is to compare the 

measured amplitude with the predicted amplitude of the echo at a point in time, we need 

to find an appropriate region within the echo from which to select our measurement 

point. For the reasons detailed above, the central region of the echo is the most 

appealing for this. The appropriate tools within the mathematical package are then used 

to determine the maximum value of the newly interpolated echo. This will always be a 

positive peak located within the central region. Now that we have the measured value of 

Εg , we can turn our attention to using the model to calculate a theoretical value of Εg . 

By this stage, we know, or can easily calculate, almost all of the factors that are 

needed for calculating the theoretical value of Εg . The only unknown remaining is the 

phase to be used within the trigonometric functions. To determine the phase we utilise 

the fact that for the three trigonometric terms in Eq. (3.7), one will always dominate the 

others. To determine which term dominates, prior knowledge of the wave number and 

the nth order discontinuities of the scatterer are required, in order to calculate the 

coefficients for the trigonometric terms. Consequently, if the cosine term dominates, 

then the positive peaks of the echo correspond to phases of 2πn  where n=1,2,3, etc. If 

one of the sine terms dominate, then the positive peaks correspond to phases of 

2πn +  π
2  where n=1,2,3, etc. Even though we don’t know the value of n 

corresponding to the peak that we measured, it doesn’t matter because the trigonometric 

function takes on unit value for all integer values of n. Thus, the value that one uses is 

arbitrary, provided it’s an integer.  

The treatment given above assumes that the non-dominant terms play a negligible 

role in affecting the phase of the wave. Is this assumption valid though? By plotting the 



 4-12

echo, as predicted by the model, for several typical cases of spheres, cones and 

truncated cones, we find that when the non-dominant terms are included, the phases of 

the positive peaks deviate from those predicted above by less than 2o. This corresponds 

to a deviation in the amplitude of less than 0.06%, confirming the validity of our 

assumptions. 

Once the phase has been chosen, the predicted amplitude of the peak in question 

can be calculated and compared with its measured counterpart. The next chapter will 

detail the results of such comparisons for a variety of objects at different ranges. 
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5 Results and Analysis 
 
 

For the experimental work, we used spheres, regular cones and truncated cones 

of varying dimensions at ranges of 800mm, 1000mm and 1400mm, accurate to within 

1mm. The range is defined as the distance from the face of the transducer to the point(s) 

on the scatterer from which the echo originates. For example, when discussing the echo 

from the base of a 100mm high cone, a range of 1000mm refers to the distance from the 

transducer to the base, as opposed to the distance to the vertex, which would be only 

900mm.  

The spheres we’ve used have diameters of 100mm, 150mm and 200mm. The 

regular cones have a height (distance from base to vertex) of 100mm and base diameters 

of 100mm, 150mm and 197mm. The truncated cones have a height (distance from base 

to truncated face) of 100mm, base diameter of 197mm and truncated face diameters of 

52mm, 97mm and 149mm. Unless stated otherwise, for each class of scatterer (ie. 

sphere, regular cone or truncated cone), the model was calibrated with a member of that 

class positioned at the greatest distance.  

In our experiments the smallest member was always used, but the choice is 

arbitrary provided that the object is at least several wavelengths wide in order to satisfy 

Kirchoff’s approximation7. For example, when dealing with spheres, the model was 

calibrated with the 100mm diameter sphere at 1400mm. The reason for calibrating with 

an object at the greatest distance is that the far field approximation, which is central to 

the model, is most accurate when dealing with scatterers that are as far as possible from 

the source of the wave. Consequently, the calibration constant A(f) is most accurate 

when obtained from an object at the greatest range. 
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Even though A(f) is independent of the geometry of the scattering body and so 

once calibrated could be used for other object classes, this presumes that all 

measurements are to be taken within a short time span because A(f)  is dependent upon 

the speed of sound, which varies with temperature. In our experiments though, the set of 

measurements for each object class were taken on different days, with different 

temperatures, necessitating the recalibration of the model for each new set.  

All objects were mounted on a precision positioner with three degrees of freedom that 

has a range limit of 1.5m. Data for all figures used in this section, pertaining to 

measured and predicted amplitudes, are provided in Appendix A.4. 

 

5.1 Experimental Results 

 

A. Spheres 

 
As stated earlier, it was suspected that despite the predictions of Freedman’s 

model, the equator of a sphere may not generate an image pulse when insonified. The 

reason for this is that Freedman assumes that the contributions from the geometrical 

shadow region, generally known as “creeping waves”, are negligible at the high 

frequencies we’ve used. Rudgers16 though, claimed that for the case of a sphere, these 

contributions are equal in magnitude and the inverse of those generated by Freedman’s 

mechanism, the net result being a cancellation of the equator echo. 

To test Rudgers’ assertion, we captured the echo from a sphere and analysed the 

region where the image pulse from the equator should be. Given that the equator’s echo 

would be extremely weak, only ka2
1  that of the stronger echo from the closest point 

on the sphere, it was necessary to use an amplification of 310 in order to see it, if it 
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existed. Despite the noise floor being significantly lower than the predicted amplitude of 

the equator’s echo, no echo was observed, confirming Rudgers’ analysis. 

 Consequently, the results presented here are only for the echoes from the closest 

points on the spheres. The discontinuity equations for the closest point on a sphere of 

radius a were given previously, 

)0,,( 1rAD w  = 0        (2.18a) 

)1,,( 1rAD w  = aπ2−          (2.18b) 

)2,,( 1rAD w  = π2         (2.18c) 

 

The results of comparing the measured and predicted amplitudes of the echoes are given 

in Fig. 5.1 for the case of a non-coincident transmitter & receiver and in Fig. 5.2 for the 

coincident case.  
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  FIG. 5.1. Measured and predicted amplitudes of echoes from spheres of diameter d when the transmitter 

and receiver aren’t coincident. 
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  FIG. 5.2. Measured and predicted amplitudes of echoes from spheres of diameter d when the transmitter 

and receiver are coincident. 

 

Note that the difference in amplitudes for Figs. 5.1 & 5.2 are a consequence of 

(a) different transmission mechanisms being used for the coincident & non-coincident 

cases and (b) differing levels of amplification applied to the captured signal. For the 

non-coincident case, the predictions deviated from the measured amplitudes by an 

average of 4.7%, the worst case being 13%. The coincident case provided better results 

though, with the predictions deviating from the measured amplitudes by an average of 

only 3.3%, the greatest error being 10%. 

 

 

B. Regular Cones 

 
Freedman’s model predicts that two echoes should be generated from an 

insonified regular cone, one from its vertex and the other from its base. The base echo is 
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readily observable but the image pulse from the vertex cannot be seen. This is because it 

is a point and so has a negligible reflecting area, the consequence being that what little 

echo there is, is buried in noise despite attempts to see it with amplifications as high as 

310 . The discontinuity equations for the vertex of a regular cone7 are given below, 

 

   )0,,( 1rAD w  = 0            (5.1a) 

   )1,,( 1rAD w   = 0            (5.1b) 

  )2,,( 1rAD w  = −2π tan2 γ            (5.1c) 

 

The only non-zero contribution to the echo is from the second order discontinuity, but 

as we know, its contribution is several orders of magnitude smaller than the lower order 

terms, resulting in a near negligible contribution to the observable echo. Thus, we can 

only present the results involving the echo from the base. 

The discontinuity equations for the base of a regular cone7 are given below, 

 

   D(Aw,r2,0)  = 0            (5.2a) 

   D(Aw,r2,1)   = γπ 2tanh            (5.2b) 

   D(Aw,r2,2)  = γπ 2tan2            (5.2c) 

 

where h is the cone’s height and γ  is the angle between it’s central axis and any line 

connecting the vertex to the rim. 

A comparison between the measured and predicted amplitudes of the echoes is 

given in Fig. 5.3 for the case of a non-coincident transmitter & receiver and in Fig. 5.4 

for the coincident case. For the results presented in Fig. 5.3, the model was not 
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calibrated at 1400mm as per usual but at 800mm because the echo had been too weak, 

allowing noise to dominate, thus rendering it unsuitable for use as a calibrating signal. 

Also, high amplification was employed to compensate for the weak echo, hence the 

larger than usual voltages of the captured signals. 

For the non-coincident case, the predictions are, on average, almost twice the 

size of their measured counterparts, the most extreme case being more than 3.6 times 

the measured value. The coincident case proved no better, with the average prediction 

being more than three times the measured value, the most extreme case taking it to five 

times. The results from the smallest cone were an exception to this, having predicted 

values smaller than those measured. 

Later we will discuss the reasons why these predictions deviate so markedly 

from the measured values. 
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  FIG. 5.3. Measured and predicted amplitudes of echoes from the bases of regular cones of base diameter 

d when the transmitter and receiver aren’t coincident. 

 



 5-7

d = 0.100m                  d = 0.150m                  d = 0.197m 

0.00

0.50

1.00

1.50

2.00

2.50

0.8 1.0 1.4 0.8 1.0 1.4 0.8 1.0 1.4

Range (m)

 Measured
 Predicted

 

  FIG. 5.4. Measured and predicted amplitudes of echoes from the bases of regular cones of base diameter 

d when the transmitter and receiver are coincident. 

 

C. Truncated Cones 

 
As with a regular cone, Freedman’s model predicts that two echoes will be 

generated when a truncated cone is insonified. One will originate from the base and will 

be identical to that generated by a regular cone with the same shaped base. The other 

will come from the truncated face and will be significantly strong, given the large 

reflecting area of the face. As the mechanism of echo formation at the base of a 

truncated cone is identical to that at the base of a regular cone, we need not examine it 

again. Instead we will focus on the echo produced by the truncated face. 

The discontinuity equations for the face of a truncated cone7 follow, 

 

    )0,,( 1rAD w  = γπ 22 tan)( bh −−           (5.3a) 

    )1,,( 1rAD w  = γπ 2tan)(2 bh −−           (5.3b) 
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    )2,,( 1rAD w  = γπ 2tan2−             (5.3c) 

 

where b is the truncated cone’s height and γ  is the angle between it’s central axis and 

any line connecting the virtual vertex to the rim of the base. The virtual vertex is 

defined here as the vertex that would be present if the truncated cap could be reattached. 

The term h represents the distance from the base of the truncated cone to the virtual 

vertex. 

The measured and predicted amplitudes of the echoes are given in Fig. 5.5 for 

the case of a non-coincident transmitter and receiver and in Fig. 5.6 for the coincident 

case.  
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  FIG. 5.5. Measured and predicted amplitudes of echoes from the faces of truncated cones of truncated 

face diameter d when the transmitter and receiver aren’t coincident. 
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  FIG. 5.6. Measured and predicted amplitudes of echoes from the faces of truncated cones of truncated 

face diameter d when the transmitter and receiver are coincident. 

 

For the non-coincident case, the predicted amplitudes are, on average, 50% in error, the 

largest errors being predictions twice the size of the measured values. The coincident 

case has predicted amplitudes that are 60% too large, on average, the worst case being 

nearly three times larger than the measured value. 

In the next section we will explore the reasons why these results, like those for 

the regular cones, show such a large discrepancy between theory and measurement. 

 

5.2 Analysis 

 
The results for the echoes from the closest points on spheres clearly show that 

Freedman’s model works well for this class of object. Although the largest error was 

13%, the average error was less than 5% for non-coincident set-ups and as low as 3.3% 

for coincident ones.  
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Sources of error that affected the results were numerous. One class of potential 

error sources were physical irregularities in the scattering bodies themselves. The first 

of these were irregularities in the radii of the spheres, which were measured and found 

to be 1%. Given that the amplitude of the received echo is approximately proportional 

to the first order discontinuity, which is itself proportional to the sphere’s radius, it 

follows that such radial irregularities can account for errors of up to 1% in the echo’s 

amplitude. 

For regular cones, there are a couple of areas where irregularities in their shape 

could result in errors. The first is the slope of the cone across its surface. If 

discontinuities in this parameter occur, or in any of it’s derivatives with respect to 

range, which in this case could have occurred had the wood not been turned properly, 

they can lead to additional echoes being generated, in accordance with Freedman’s 

model. Also, since the slope of the cone at the base affects the echo generated, if there is 

a deviation in the cone’s slope near the base, then the generated echo will differ from 

that predicted. We measured the slopes of the cones and found smoothly varying and 

near negligible deviations in the slopes from their means thereby ruling out 

discontinuities as a source of error. Likewise, we found the slopes at the bases didn’t 

deviate from their overall means either. 

A second feature of cones that could have affected the results is the radii of 

curvature, or “sharpness” of the base rims. Since the echo from the base is generated by 

the process of diffraction, a curved base rim will produce an echo of lower magnitude 

than an ideal “sharp” rim. Because the wavelength we’ve used is between 6mm and 

7mm and the observed radii of curvature at the rims is never greater than about 0.5mm, 

the radii of curvature will play a negligible part in the results obtained. 
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The results for the regular cones also highlighted the limitations of Freedman’s 

model. Earlier, we discussed Rudgers16 work that showed Freedman had made an 

incorrect assumption about the negligibility of creeping waves generated at geometrical 

shadow boundaries. Because Freedman’s model doesn’t account for these waves, we 

can only speculate as to what effect they may have on echoes originating from 

geometrical shadow boundaries, such as the bases of cones. We believe the large 

deviations between the predictions of the model and the measured values for the echoes 

from the bases of cones can be attributed to these creeping waves from the shadow 

region. 

The significant deviations from theory of the measured echoes from the faces of 

the truncated cones have a different origin than that given for the bases of regular cones. 

The model assumes that the separation between the scattering body and the receiver is 

great enough to ensure that the normal vectors at all points on the truncated cone’s face 

are pointing directly towards the receiver. Under such conditions the amplitude of the 

received echo would vary linearly with the area of the truncated face, as the predicted 

echo amplitudes in Figs. 5.5 & 5.6 indicate. Because of the relative proximity of the 

transducer to the truncated cone though (1400m at most), the signal insonifying the 

truncated face is only approximated by a spherical wavefront. A more accurate 

description is that the area of this wavefront that is along the axis of the transducer is 

actually planar and equal in area to the face of the transducer, with the rest of the 

wavefront being spherical. Visual inspections of the results of wave propagation 

simulations using the Lattice Gas Model17 seem to confirm this. 

As to be expected, the spherical regions of the wavefront incident upon the 

scattering body are reflected at angles that don’t transmit them back to their source and 

hence are not picked up by the receiver. The central planar region of the wavefront 
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though does experience direct backscatter to the receiver. The upshot of this is that the 

only region on the truncated face which contributes to the signal captured at the receiver 

is that area which is irradiated with the central planar section of the wavefront. 

Consequently, if the truncated face is larger than the planar section of the wavefront, the 

amplitude of the echo received will be less than that predicted by the model. This is 

confirmed by the results in Figs. 5.5 & 5.6 that show the amplitudes of the measured 

echoes do not increase with truncated area at the same rate as the predicted amplitudes 

do. Another way of interpreting this is that since the central planar region will always 

contribute a constant component to the total energy reflected, irrespective of distance, 

then the law governing the propagation follows a better than inverse square model. The 

consequence of this is that the model can only be applied to truncated faces of very 

small area, generally of the order of the area of the transducer’s face or smaller. 

As with regular cones, irregularities in the slopes of the truncated cones could 

have been a source of error but as with regular cones we found the slope variations to be 

negligible. The radii of curvature at the rims of the truncated faces, observed to be less 

than 0.5mm, are not as crucial to the results as they had been for the base rims. This is 

because the dominant echoes result from direct backscatter, the diffracted echoes 

making only a minor contribution. 

As well as the sources of error discussed above that are specific to a class of 

objects, there are general issues that could affect the results from all scatterers. One is 

the model’s use of the far field approximation, which is valid only if the condition 

kr>>1 is satisfied7. In these cases though, with ranges over 0.8m and wave numbers 

typically near 310 , it is clear that this condition is satisfied. Even for the results of 

previous experiments, not given here, which showed slightly worse agreement between 

experiment and theory at ranges from 400mm to 800mm, the condition is still satisfied 
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and consequently a breakdown in the far field approximation can not be blamed for the 

larger discrepancies. 

Small variations in the parameters of the model during the course of a set of 

measurements may also affect the results. The only terms that can vary during the 

course of a measurement session are the speed of sound and the absorption coefficient. 

The speed of sound has a dependence on temperature that is given by the following18: 

 

2730 KTcc =               (5.4) 

 

where 0c  = the speed of sound at 273 K = 331.6 ms-1 

 KT = air temperature in Kelvin. 

 

The speed of sound also has a dependence on humidity and pressure, but the variations 

in these that can occur over a measurement period of, at most, two hours, will cause a 

negligible change in the speed of sound. The greatest change in temperature during any 

measurement period was Co2 , the minimum and maximum temperatures being 292 K 

and 298 K respectively throughout the entire series of measurements. Using Eq. (5.4), 

this + Co2  change represented a change in the speed of sound of +0.3%. Consequently, 

the change in the inverse of c, which the amplitude of the echo is proportional to, would 

have been - 0.3%. This is too small to produce any significant error in the calculated 

echo. 

The other component of the model that can be a source of experimental error is 

the absorption coefficient α . Since the coefficient is rated to be accurate to within 10%, 

at a typical range of 1m with a typical value of α = 0.2, the error in the attenuation 
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factor will be 4%. The reality is though that an error in the absorption coefficient of 

10% doesn’t mean that it can vary from one moment to the next by up to that amount. 

Consequently, even if the absorption coefficient used is inaccurate by the given amount, 

provided the measurements are done soon after the model is calibrated, the error in the 

coefficient will be absorbed by the calibration process. On the other hand, if the model 

is calibrated one day and used on another, when the environmental conditions have 

changed markedly, then there is justifiable concern that the calibration is no longer 

valid. For the work presented here though, all the calibration data was part of the same 

set as the data used to test the model. 

As discussed in section 3.5, A(r) as sensed from the vantage point of the receiver 

will be different in non-coincident configurations to that of coincident ones since the 

received echo no longer propagates along the objects axis. Because the model, being 

based upon an assumption of transmitter/receiver coincidence, does not account for this, 

it will manifest itself as a discrepancy in the results. For spherical objects this is not an 

issue because A(r) doesn’t change for non-coincident transmitter/receiver 

configurations, since spherical objects have no axis as such and thus are geometrically 

equivalent from all vantage points. However, for echoes from the front faces of 

truncated cones, as well as those from the bases of cones, A(r) will deviate from the 

coincident case. The question then arises as to whether, in non-coincident cases, these 

changes in A(r), despite our efforts to minimise them (see Fig 3.2), are significant 

sources of error or not.  

If it were the case that these deviations in A(r) produced significant errors in the 

model, the results for the non-coincident cases would show a greater deviation between 

experiment and theory to their coincident counterparts. What we observe however is 

that for the truncated cones, the discrepancies are similar in magnitude for both the 
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coincident and non-coincident cases and for the regular cones the non-coincident results 

are actually better than the coincident ones. Given the rather large errors inherent in the 

results for both configurations however, it would be presumptive to declare that the 

deviations in A(r) in the non-coincident cases have no impact upon the results. They 

may well be present, but overwhelmed by the larger sources of error. All we can 

conclude is that any discrepancies that result from deviations in A(r) are certainly not 

dominant sources of error in our results. 

Finally, we address one of the model’s assumptions that, without clarification, 

may raise questions about the methodology employed here. Freedman’s original model 

made the assumption that the range to the scatterer is very large compared to the size of 

the scatterer itself, which is to say that the range doesn’t vary appreciably over the 

length of the object. However, our test objects are more aptly described as being at a 

moderate range rather than a large one, a necessary trade off to ensure that we receive 

an echo with a high S/N ratio. Does this less than ideal range invalidate the assumption 

of a large range and adversely affect Freedman’s model as a result? The answer to this 

question depends on which of Freedman’s models we are referring to. 

There is a high likelihood that Freedman’s model in its original form would be 

comprised by this choice of a moderate range because that model made the assumption 

of a large range to the scatterer (compared to the size of the scatterer) specifically so 

that the approximation rg ≈ rm  could be employed (ie. range rg  is approximately the 

same as the scatterers mean range rm ) in order to simplify the formulation.  

However the extended Freedman model, which is the model we use for all our 

experiments, doesn’t employ the rg ≈ rm  approximation. It was dispensed with in section 

3.2 (“Breakdown of 2
g

2
m rr −− ≈  assumption”) by virtue of the fact that we treat echoes 

from different parts of the scatterer as distinct echoes rather than as part of one large 
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wave train as Freedman had. Since we don’t use the rg ≈ rm  approximation, we are not 

held to the assumption upon which the approximation was founded, that of a large range 

to the scatterer compared to the scatterers size and thus our choice of a moderate range 

for our objects in no way compromises our results. We are still held to the assumption 

that the scatterer is in the far field in order for us to employ Kirchoff’s approximation 

though, but that is another matter and has been addressed elsewhere in the thesis. 

Although the model has only been verified for spheres to within an average error 

of 3.3%, with the worst case being 10%, for coincident cases, this is a significant 

improvement over the results obtained by Freedman in his original work. He was able to 

verify only some qualitative aspects of the model, the quantitative results being too 

noisy (20-30%) to allow conclusions to be drawn. Subsequent references19,20 to his work 

have discussed only the theoretical aspects of the model and haven’t touched upon the 

failings in his experimental data. Neither has any follow up work to verify the model, in 

either air or water, been done since 1962, to the best of our knowledge. 

 

5.3 Conclusions 

 
Although being quite accurate in determining time of flight, Freedman’s model, 

when translated to air, is limited in that it cannot be used for modelling the echoes from 

the geometrical shadow boundaries of objects, such as the base of a cone. It is 

reasonably accurate though in calculating the echoes from the closest points on spheres 

and may potentially be used for modelling the echoes from the faces of truncated cones, 

provided these faces have a small area. It should also be reasonably accurate for 

predicting the echoes from objects with smoothly varying convex surfaces. 
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The model is of special interest to workers in the field of mobile robotics 

because of it’s potential to be used as the basis for an inverse model of ultrasonic 

imaging. This could lead to the development of a real-time object recognition system 

that would complement current systems by specialising in the recognition of non-

concave scatterers or their modelling with equivalent symmetrical objects. Major 

applications of such a system include map building by mobile robots and object 

recognition on conveyor belts. 

 In the next section we will expand upon the forward model, using it as the 

starting point for the construction of an inverse model of ultrasonic echolocation. 
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6 Development of the Inverse Model 
 

Since the forward model has been established as having validity for a select 

range of objects, we can take the next step of using it to attempt the development of an 

inverse model for this same range of objects. As will be shown, our inversion will lead 

to the emergence of two candidate inverse models, one time independent and another 

time dependent. These models do not contradict one another, they simply represent two 

different ways of modelling the system. For the time dependent model, the variations of 

the wave within the wave envelope at any instant are modelled, whereas the time 

independent version simply models the overall shape, the envelope, of the wave. Both 

have advantages and disadvantages over one another, however ultimately one of these 

will prove to be flawed and the reasons for this will be discussed. Finally, we will look 

at how the predictions of an inverse model could theoretically be used to build an image 

of the scatterer in question. 

 

6.1 Time Independent Inverse Model 

 
As the basis for both inverse models, we’ll begin with the final form of the 

extended forward model given in Eq. (3.7) back in Chapter 3, 

 

      Εg = A( f ) GVβP(φ)βH (φ)
rg

2 exp −2rgα( ) D(0)sinθ( − D(1)
2k

cosθ − D(2)
4k 2 sinθ)

                                                 

               (3.7) 

where  A(f) = transfer function of the transducer and receiver at frequency f, 

    G = gain, or amplification, applied to the received signal, 

   V = voltage applied to the transducer, 
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      βP (φ)  = frequency dependent directivity of the transducer, 

      βH (φ) = frequency dependent directivity of the receiver, 

             rg  = range to the source of the echo, 

             α  = frequency dependent atmospheric absorption coefficient, 

         D(n) = discontinuity equations for the nth order derivatives, 

   k = frequency dependent wave number, 

       and krt 2−= ωθ , which is also obviously frequency dependent. 

 

For reasons that will become clear, it was prudent to redefine all of the individual 

elements that make up the forward model, as we’ve done above, with particular 

emphasis being placed upon the frequency dependence, or otherwise, of each 

component. 

Now, let us simplify Eq. (3.7) above by combining several components into one 

function K(f), 

  K( f ) = A( f )GVβP (φ)βH (φ)
rg

2 exp −2rgα( )
                                                 

            (6.1) 

To claim that K(f) is dependent solely upon frequency, as Eq. (6.1) seems to do, would 

be incorrect. However, let us envision a situation under which we were to insonify a 

stationary object with several different frequencies within the span of a couple of 

minutes. 

Firstly, the sensitivity of the transducer is dependent upon both the tension in the 

Mylar film during the chirp process as well as the frequency applied. The tension in the 

Mylar would reduce negligibly over the course of a couple of minutes, especially since 

we turn off the bias between measurements as a precaution against this, thus the 

transducer’s sensitivity is solely dependent upon frequency in this case. Given the 
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singular dependence of the receivers sensitivity upon frequency, it follows that A(f) is 

dependent on frequency alone during this period. 

The directivities of both the transducer and receiver are functions of the 

frequency of the wave, its speed c and the angular bearing φ of the scattering object to 

their axes. The speed of sound is dependent upon environmental variables, primarily 

temperature, pressure and humidity. Within the span of two minutes, these environment 

conditions do not change sufficiently enough to produce a measurable change in the 

speed of sound. The bearing φ is another constant in this scenario since the scattering 

object remains stationary. Thus again we have frequency dependence alone. 

Given the immobility of the scatterer, it follows that the range rg  is also a 

constant during the measurement cycle. Also, the atmospheric absorption coefficient, 

which has dependence upon temperature, pressure and humidity, as well as frequency, 

will remain a function of frequency alone in this case, as it’s been established that these 

three environmental variables will remain virtually unchanged in the two minute 

measurement period. Lastly, there is the voltage applied to the transducer and the gain 

applied to the signal from the receiver, both of which are deliberately held constant. 

Thus from the above analysis, it’s clear that during the measurement cycle, the 

function K(f) has dependence on frequency alone. Let us reformulate Eq. (3.7) into its 

new form then, 

( )
                                             

sin
4

)2(cos
2

)1(sin)0()( 2 θθθ
k

D
k

DDfKg −−=Ε             (6.2) 

It is at this point that the forward model diverges into two streams, the first 

leading to the time independent inverse model and the second to the time dependent 

variant. For now though, we’ll only examine the former. 
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Using trigonometric identities, the maximum value for a superposition of several 

sinusoidal waves can be deduced (see Appendix A.3). This is given in Eq. (6.3) below, 
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Hence, the maximum amplitude of the received signal is given by,  
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          (6.4) 

 

The philosophy behind formulating the forward model in terms of the maximum 

value for the voltage at the receiver, rather than the voltage at the receiver at a specificθ  

along the wave is twofold.  

Firstly, since one of the basic assumptions of Freedman’s model is that the wave 

in monotonic (single-frequency), it follows that the greater the conformity to this 

assumption, the greater the accuracy of the model. As no real-world acoustic waves are 

truly monotonic, the best we can hope for is to select the region of the wave train that is 

most monotonic. A section of the wave with the least variation in amplitude from peak 

to peak is such a region and this invariably occurs in the central region of the wave. 

Now, as the maximum value of the wave will also invariably be in the central region, it 

follows that the maximum value measured is representative of the most monotonic 

region of the wave train and hence the most accurate. Thus by simply measuring the 

maximum value, we automatically hone in on the best part of the wave to measure, 

without having to actually analyse the echo to see where the mid-point is, thereby 

reducing processing time. 
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However, the main advantage to focussing only on the maximum value is that it 

results in multisampling by default. Since our capture card can only sample the wave 

train once every microsecond, that amounts to only 20 samples per wave cycle, or one 

sample every 18 degrees, using a 50kHz wave as a typical example. Consequently, the 

peaks represented in the sampled data may have been sampled a little before or a little 

after the true peaks on the wave train. However, given several adjacent peaks from the 

central monotonic region sampled in this way, it’s clear that the sampled peak with the 

highest value will be the one that most closely matched it’s counterpart on the wave 

train. Thus, scanning for the maximum value (ie. the highest peak) in the sampled set 

has automatically delivered us the most accurately sampled peak as a result. 

Turning our attention back to Eq. (6.4), it can be reformulated once again as, 
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where, )(1 fX  = 2)( fK , 

 )(2 fX  = 2

2

4
)(

k
fK , 

 )(3 fX  = 2

2

2
)(

k
fK− , 

 )(4 fX  = 4

2

16
)(

k
fK  

 

Now, we’ve already established that were we to insonify a stationary object with 

several frequencies within a short time span, the only variable affecting the resulting 
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echoes would be the frequencies themselves. So let us then examine the echoes that 

would result if four distinct frequencies were used in this fashion, the square of the 

maximum voltages at the receiver for each case given below, 
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Put into matrix form, 
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      (6.10) 

 

and taking the inverse of the matrix, we end up with the following, 
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   (6.11) 

 

As we’ll see later in section 6.4, a comprehensive representation of the geometry 

of the scatterer in question requires a knowledge of D(n) for n=1,2 & 3. With our 

current approach, we would need to solve these four simultaneous equations to obtain 

those. Clearly, we now have a model which, in theory, should allow us to deduce 
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geometric properties, specifically D(0), D(1) & D(2), of the insonified object from an 

analysis of the received echo and a knowledge of )( yx fX . From the definitions of the 

individual components )( fX x  in Eq. (6.5), we can see that these components are 

dependent upon the wave number k and 2)( fK . As the frequency f in each case is 

known to us and the speed of sound c is easily calculated from a knowledge of the 

environmental conditions, which we will have, it follows that wave number k is easily 

determined for each frequency. This leaves the determination of 2)( fK  as the last 

obstacle before )( fX x  can be calculated for each frequency. 

One way to calculate 2)( fK  would be to return to the definition of )( fK , given 

in Eq. (6.1), and calculate it’s value at each frequency by obtaining values for each of 

it’s constituent components. These components include the sensitivities and directivities 

of the transducer and receiver, the voltage applied to the transducer, the gain applied to 

the receiver, the range to the object and the atmospheric absorption coefficient. The 

main disadvantage of this approach is that the errors, the uncertainties, in each of these 

values will accumulate when combined into Eq. (6.1). Another approach which has the 

advantage of being more accurate, as well as faster, is to calibrate the model with an 

object of precisely known dimensions and thereby determine 2)( fK  directly through 

measurement. Typically, we would want to choose a calibration object that has all D(n) 

= 0, except for one, such as a paraboloid for instance, which has 0)1( ≠D , but has 

discontinuities at all other orders equal to zero. In this case, we would formulate Eq. 

(6.5) as, 

            
2

2
22

4
)1()(

k
DfKMAXg =Ε            (6.12) 
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making the calculation of 2)( fK  at each frequency relatively trivial, given that all the 

other components in this equation are either easily calculated (k), easily measured 

(
MAXgΕ ) or already known ( )1(D ). Once we have 2)( fK  for each frequency, )( fX x  at 

these frequencies are easily calculated, allowing us to substitute them into Eq. (6.11) 

and thus determine the discontinuities in the scattering object. 

Unfortunately, most of these developments in the time independent inverse 

model become unravelled once some basic assumptions are implemented, which render 

the model impractical for use in an air environment. Since our forward model has been 

established as having validity only for smoothly varying objects (ie. objects that do not 

have discontinuities in D(0), but rather in D(1) and possibly D(2)), it follows that our 

inverse model should reflect this assumption. Assuming D(0) = 0, we can significantly 

simplify Eq. (6.5), 

 

 Εg
2

MAX = K( f )2 D(1)2

4k 2 + D(2)2

16k 4

 

 
 

 

 
           (6.13) 

 

Now, if one considers that in air, the wave number k of the acoustic pulse is of 

the order of 103, it follows that the second term in the summation in Eq. (6.13) will be 

106 times smaller than the first term. Needless to say, the sensitivity of our 

instrumentation is not up to the task of seeing perturbations in the echo on such a small 

scale. This additional term is therefore dropped as its contribution is negligible. 

Unfortunately though, what this leaves us with is an inverse model that is stripped down 

to such an extent that it provides no more insight than one would expect from a simple 

derivation of the backscatter according to the wave equation, 
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   Εg MAX
= K( f ) D(1)

2k
           (6.14) 

 

Even if we were to go out on a limb and consider the possibility that the model 

may have applicability in cases where D(0) ≠ 0, we ultimately end up in the same 

predicament. Let’s assume D(0) ≠ 0 and re-examine Eq. (6.5). In air, the second and 

third terms in the summation will be 106 times smaller than the first term and the last 

term will be a staggering 1012 times smaller. Consequently, all terms except the first will 

have to be dropped as they contribute nothing and we are again left with a result that is 

comparable to a simple extension of the wave equation, 

 

   Εg MAX
= K( f )D(0)           (6.15) 

 

Finally, there is the issue that the matrix in Eq. (6.10) may be non-invertible 

because we do not have singular instances of D(0) and D(2) in the simultaneous 

equations, as their product is repeated in the third term of these equations as D(0)D(2). 

For instances where the simultaneous equations in question are non-linear as is the case 

here, the correct approach would be to solve it via a least squares method. Delving into 

the methodology of this approach at this point would be redundant however, as the time 

independent model is clearly unusable for our purposes for the physical reasons listed 

above. The inevitable conclusion that is drawn from this exercise is that a time 

independent model, whilst having advantages over a time dependent model in theory, 

has possible applicability only in environments where the wave number of the acoustic 

pulse is much smaller than it is in air, such as water for example, and thus we must turn 

our attention to an alternate approach. 
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6.2 Time Dependent Inverse Model 

 
Much of what has been described above with regards to the time independent 

model also applies to the time dependent variant. Firstly however, let us return to the 

point at which the two models diverged, Eq. (6.2) and reformulate it in terms of 

functions Yn ( f ) , 

 

( )
                                             

sin
4

)2(cos
2

)1(sin)0()( 2 θθθ
k

D
k

DDfKg −−=Ε  

            =Y1( f )D(0) +Y2( f )D(1) +Y3( f )D(2)          (6.16) 

 

where,  Y1( f )  = K( f )sinθ , 

  Y2( f ) = −K( f )
2k

cosθ , 

  Y3( f ) = −K( f )
4k 2 sinθ , 

 

and,  θ = wt −2krg = 2πft −2krg  

 

As with the time independent inverse model, if we postulate a scenario whereby 

a stationary object is irradiated with several frequencies within a short time span, the 

only variable affecting the resulting echoes will be the frequencies themselves. The 

only difference between this approach and that taken earlier with the time independent 

model is that we have the added constraint of ensuring that the new variable t, the time 

index along the wave train where we measure the amplitude of the wave, must remain 

the same for all frequencies. This provides us with a constant value for t at all 
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frequencies allowing us to employ the simultaneous equations approach in essentially 

the same manner as we did earlier. The other difference is that due to the reduced 

number of terms in Eq. (6.16), we only require our object be insonified with three 

frequencies instead of four, the voltages at the receiver at time index t for each 

frequency being given below 

 

Eg ( f1) =Y1( f1)D(0) +Y2( f1)D(1) +Y3( f1)D(2)              (6.17) 

Eg ( f2) =Y1( f2)D(0) +Y2( f2)D(1) +Y3( f2)D(2)              (6.18)  

Eg ( f3) =Y1( f3)D(0) +Y2( f3)D(1) +Y3( f3)D(2)              (6.19) 

 

Put into matrix form, 
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          (6.20) 

 

and taking the inverse of the matrix, we get the following, 
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           (6.21) 

 

The approach employed for determining the individual component Yx ( fy )  is the 

same as that described previously for the time independent model. As for determining 

Eg , the only difference is that instead of obtaining the values of Eg  from a search for 

the maximum value of the wave envelope, a point along the wave train at a time index t 
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is chosen and the amplitude of the wave at this point used instead. Once these values are 

substituted into Eq. (6.21), predicted values of D(n) can be obtained. 

The only disadvantage of this approach is that it lacks the inherent 

multisampling employed by the method used for the time independent model. However, 

to compensate for the lack of sampling resolution, we employ interpolation algorithms 

to fit a curve to our sampled data, giving us a greater range of values for t to choose 

from. 

As with the time independent variant, the basic constraints on our forward model 

must be respected and applied to the inverse model as well. Thus we can assume D(0) = 

0 and modify Eq. (6.16) respectively, 

 

  Eg ( f ) =Y2( f )D(1) +Y3( f )D(2)           (6.22) 

 

where, Y2( f )  = −K( f )
2k

cosθ   &  Y3( f ) = −K( f )
4k 2 sinθ  

 

Unlike the situation we faced when we made this assumption for the time 

independent model though, this assumption does not cause us any problems as it does 

not require us to drop any terms. The reason for this is that, in air, the order of the 

second term is approximately 103 times smaller than the first. Although this is smaller 

than we’d like for accurate measurement, it is within the range of our instrumentation to 

measure variations in amplitude on this scale. Thus in conclusion, the time dependent 

inverse model can be represented by the following equation, 
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on the assumption that D(0) = 0. 

 

6.3 Mathematical Validity of the Inversion 

 
 To provide reassurance that the algebraic manipulations involved in the 

inversion were conducted correctly, we will use data gathered when experiments were 

conducted to test the validity of the inverse model (to be presented later) and plug 

inverse model predicted values for D(1) and D(2) into the forward model to see whether 

we obtain the measured echo amplitudes in return. If the model was correctly inverted, 

then the predictions of the forward model, using these values for D(1) and D(2), should 

match exactly the echoes measured. 

 An exponentially shaped scatterer had measured echo amplitudes at a range of 

40cm and time index t=0.002366s given by, 

 

E(40kHz) = 0.00234 

and E(60kHz) = 0.0159 

 

Also, the calculated values for K(f) were found to be, 

 

    K(40kHz) = 1.68 

K(60kHz) = 2.85 

 

With this data and a knowledge of the environmental conditions, we used the inverse 

model to calculate the following values for D(n), 
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D(1) = 40.7 

D(2) = 5.85 x10 4  

 

Now, whether or not these predicted values for D(1) and D(2) agree with the 

measured values is not of concern to us here, at least not yet. That is an issue for a later 

chapter when we test the accuracy of the inverse model. What concerns us here is 

whether the model was correctly inverted and if we input these predicted values for 

D(1) and D(2) into the forward model it should produce predictions for E(40kHz) and 

E(60kHz) that exactly match those measured, provided the inversion was done correctly. 

Using Eq. (6.22) as the forward model, 

 

Eg ( f ) = −K( f )
2k

D(1)cosθ − K( f )
4k 2 D(2)sinθ           (6.22) 

 

and substituting the above values for K(f), k = 2πf
c  and the predicted values of D(1) 

and D(2) into the model at both 40kHz and 60kHz, we indeed find that, as expected, we 

get,    

E(40kHz) = 0.00234 

and E(60kHz) = 0.0159 

 

confirming that the inversion is mathematically sound. 

 

6.4 Visualising the Scattering Object 

 
 Knowing values for D(1) and D(2) can only hint at the shape of the insonified 

object. To truly represent the geometry we need to build up a visual representation of 
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the scattering body using numerical methods. For the sake of generality, we’ll examine 

how this can be done in all cases, not just those for which D(0) = 0.  

Once D(0), D(1) & D(2) are obtained for each range along the scatterer for 

which there is an echo, we can build up a picture of the scatterer in the following way. 

For the front face of the scatterer at a range r0−  we have the following equations, 

 

  D(A,0,0)  = A(r0−)  - A r( )0+            (6.24) 

  D(A,0,1)  = dA
dr

r( )0−  - dA
dr

r( )0+           (6.25) 

  D(A,0,2)  = d A
dr

r
2

2 0( )−  - d A
dr

r
2

2 0( )+           (6.26) 

 

Now, d A
dr

r
n

n ( )0−  are all zero, since r0− is the range just prior to the front face 

where there is no variation in cross sectional area. Hence, 

 

   Area at r0−= - D(A,0,0)           (6.27) 

   dA
dr

 at r0− = - D(A,0,1)            (6.28) 

   d A
dr

2

2 at r0− = - D(A,0,2)           (6.29) 

 

If we can assume that the second order derivatives remains constant over the 

range r0+ to rm−, where rm  is the range at which the next echo originates, then we can 

apply the following relations at each successive point within this range, 
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   A A
dA
dr

r rx x
x

x x+ += + −1 1( )           (6.30) 

   
dA

dr
dA
dr

d A
dr

r rx x x
x x

+
+= + −1

2

2 1( )          (6.31) 

 

Admittedly, assuming a constant second order derivative is a big assumption to 

make, but without it we cannot progress. However, even if this assumption in incorrect, 

it allows us to build up at an approximation of the object’s geometry nonetheless. 

Once A(rm−) and dA
dr

rm( )− have been calculated via the above method and 

assuming d A
dr

rm

2

2 ( )− = d A
dr

r
2

2 0( )+ , we can calculate the area and higher order rates of 

change at rm  using the following relations, 

 

  Area at rm  = A(rm−)- D(A,m,0)           (6.32) 

  dA
dr

 at rm   = dA
dr

rm( )− - D(A,m,1)           (6.33) 

d A
dr

2

2  at rm = d A
dr

rm

2

2 ( )− - D(A,m,2)           (6.34) 

 

This process is continued for all ranges at which echoes originate and thereby the shape 

of the scatterer, or at least an approximation thereof, is reconstructed. 

In the next chapter we will examine how we intend to go about verifying the 

inverse model developed in this section. 
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7 Geometric Analysis of Scattering Bodies 
 
 

To test the validity of the inverse model, we firstly needed to obtain a series of 

objects, for use as scattering bodies that have physical characteristics satisfying the 

assumptions of the model. Specifically, objects which have smoothly varying surfaces, 

no possibility of internal penetration by the ultrasonic wave and a separation between 

discontinuity points on the object such that no wave overlap from echoes would occur. 

To accomplish this, we obtained a range of solid aluminium objects with geometrically 

simple designs. The choice of which objects to use was rather arbitrary, the only criteria 

being that they represent a broad spectrum of possible objects that would fit the 

description of being smoothly varying and radially symmetric. Thus, despite the fact 

that we chose to use two paraboloids, we could just as easily have used two spheroids 

with the same justification. The choices were arbitrary. 

These were machine turned to precise dimensions, imperfections in the final 

product from this process were quoted as being under 0.2mm, well under the limit 

required by the Raleigh criterion. 

 

7.1  Exponentially Shaped Scatterer 
 

The first object has a length increasing exponentially with width, which could 

conversely be described as a width expanding logarithmically with length. It has a 

length of 10 cm and a cross-sectional area which varied from zero at its vertex to 30.2 

cm squared at its base. Its geometry was governed by Eq. (7.1) below, 
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1
4

exp)(
2

−







= rrx                (7.1) 

 

 where   )(rx  =  the length (cm) along the axis, measured from the vertex 

and  r = the radius of the cross-sectional area of the object. 

 

As Freedman’s model is focussed on the variation of cross-sectional area with 

range, it’s more appropriate for us to express the above equation with the cross-sectional 

radius being a function of range, rather than the converse. Thus we have Eq. (7.2), 

 

( )1ln4)( += xxr              (7.2) 

  

The geometry of this object is represented in Fig. 7.1 below, where the axes are 

in units of cm. Despite the hollow appearance of the rendered image below, the objects 

used were solid throughout. 
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FIG. 7.1. Representation of an aluminium object with the geometry governed by Eq. (7.1). 

 

A more useful visual representation of the structure of the object comes from a 

plot of the variation of the cross-sectional area with respect to range in Fig. 7.2 below, 
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FIG. 7.2. Plot of cross-sectional area (square cm) with respect to range (cm) for the object in Fig. 7.1. 
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As can be seen from Fig. 7.2, the cross-sectional area varies smoothly with 

range. We can therefore make a qualitative judgement at this stage that we would not 

expect to see any image pulses (ie. echoes) originating from any points along the length 

of the object (ie. in the range 0 cm < x <10 cm).  

The cross-sectional area plot shown in the figure above is governed by Eq. (7.3) 

below, 

    ( )1ln4)( += xxA π              (7.3) 

 

where A(x)  =  the cross-sectional area of the object at range x. 

 

The derivative of the equation above with respect to range yields the following, 

 

    
xdx

xdA
+

=
1
4)( π            (7.4) 

 

that we’ve plotted in Fig. 7.3 below, 
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FIG. 7.3. Derivative of the cross-sectional area with respect to range (cm) of the object in Fig. 7.1. 
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Taking the derivative of Eq. (7.4) gives us the second order derivative in Eq. 

(7.5) below, 

    
( )22

2

1
4)(
xdx

xAd
+

−= π              (7.5) 

 

that is represented in Fig. 7.4, 
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FIG. 7.4. 2nd order derivative of cross-sectional area with respect to range (cm) of object in Fig. 7.1. 

 

Now that we have the derivatives calculated, it’s quite clear from Figs. 7.2, 7.3 

& 7.4 that these are all continuous functions, which is to say that there are no step 

discontinuities in Eqs. (7.3), (7.4) & (7.5) in the range 0 cm < x <10 cm and hence no 

echoes from this region. At x = 0 cm however, there is a transition between the free 

space prior to the object, where the cross-sectional area (and it’s higher order 

derivatives) are null, and the start of the object itself. To determine whether this 

transition between the two cross-sectional profiles would result in step discontinuities 

(and echoes) at this point, or not, we can look once again at the plots shown in Figs. 7.2, 

7.3 & 7.4. 
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Inspection of Fig. 7.2 reveals a cross-sectional area along the object that has a 

value of zero at x = 0 cm. Because the size of the cross-sectional area at x = 0 cm is the 

same for the free space region as it is for the object itself, namely zero, there is no 

discontinuity in cross-sectional area at this point and hence this factor does not 

contribute to an echo. To express this quantitatively, let’s begin with Eq. (2.16) below, 

 

)()(),,( +− −= gn
w

n

gn
w

n

w r
dr

Ad
r

dr
Ad

ngAD           (2.16) 

 

where rg−  and rg+  represent the ranges infinitesimally prior to and beyond the 

discontinuity respectively.  

 

In this instance, we are dealing with the case where n = 0 and g = 0 cm. Thus, 

we have Eq. (7.6), 

 

   )()()0,0,( 00 +− −= rArAAD www              (7.6) 

 

Since )( 0−rAw  represents the cross-sectional area in the free space immediately 

prior to the start of the object, it is necessarily equal to zero. As for )( 0+rAw , we can see 

from Fig. 7.2 that at a point infinitesimally beyond x = 0 cm, the cross-sectional area 

remains zero. Since these quantities are equal (zero), Eq. (7.6) has a value of zero, 

indicating that there is no discontinuity in the cross-sectional area profile at this point 

and thus this factor would not contribute to any echoes. 

 Turning our attention to the higher order derivatives, we examine Fig. 7.3 next. 

At x = 0 cm, the derivative of the cross-sectional area with respect to range has a value 



 7-7

of π4 . Given that we’ve already established that the free space region prior the the 

scatterer has a cross-sectional profile equal to zero, at all orders, it follows that the 

transition at x = 0 cm from a cross-sectional area of zero to π4  must result in a step 

discontinuity. Expressed in terms of the discontinuity equation. 

 

   )()()1,0,( 00 +− −= r
dr

dA
r

dr
dA

AD ww
w              (7.7) 

          = (0)    -    ( π4 ). 

          = - π4  

 

Thus at x = 0 cm, there is a contribution to the echo as a result of the discontinuity in the 

profile of the derivative of the cross-sectional area with respect to range. 

 Finally, in Fig. 7.4 we can see that the second order derivative of cross-sectional 

area with respect to range has a value of - π4  at the transition point x = 0 cm. For the 

reasons outlined above, there is therefore a step discontinuity at this point. In terms of 

the discontinuity equation, 

 

   )()()2,0,( 02

2

02

2

+− −= r
dr

Ad
r

dr
Ad

AD ww
w            (7.8) 

           = 0      -     (- π4 ) 

           = π4  

 

Therefore there is also a contribution to the echo originating at x = 0 cm from the 

discontinuity in the second order derivative of cross-sectional area with respect to range. 

Despite the magnitude of the discontinuity being the same in both cases, π4 , the size of 

the contribution of each component to the total echo will differ however. This is due to 
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Freedman’s equation weighting successively higher order discontinuities several orders 

of magnitude lower than their predecessors.  

Of course, since this object, and indeed all our objects, have a sharp edge at their 

base, the transition point between the insonified and shadow regions, we would also 

expect echoes from that region. But as was pointed out earlier, our model does not 

handle such discontinuities correctly and so we limit ourselves to the echoes that 

originate at those points on the scatterer where the surface is smoothly varying, regions 

which our model handles well. Since the echoes from the base are separate from the 

front face echoes in the time domain, there is no cross contamination and we can 

effectively ignore the base echoes.  

 Thus in summary, the exponentially shaped object has a geometry with 

discontinuities in the first and second order derivatives of the cross-sectional area with 

respect to range at the position x = 0 cm. These are summarised in the table below, 

 

 
 

Table 7.1. Discontinuities on the exponentially shaped object. 

 

7.2 Paraboloid A 
 

The next object has a parabolic shape governed by the following equation, 

 

5
12)( xxr =               (7.9) 

 

Location of D(n) D(0) D(1) D(2) 
0 cm 0 - π4  π4  
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where r(x)  =  the radius of the cross-sectional area of the object at range x 

 

It has a length of 10 cm with its cross-sectional area varying from zero at it’s vertex to 

75.4 cm squared at it’s base. Its geometry is shown in Fig. 7.5 below, 
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FIG. 7.5. Representation of an aluminium object with the geometry governed by Eq. (7.9). 

 

The cross-sectional area of the figure above is given by Eq. (7.10) below, 

 

    
5

12)( xxA π=             (7.10) 
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This is represented in Fig. 7.6 below, 
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FIG. 7.6. Plot of cross-sectional area (square cm) with respect to range (cm) for the object in Fig. 7.5. 

 

Given the continuous nature of Eq. (7.10), seen clearly in Fig. 7.6, it is expected 

that no step discontinuities would be present along the length of the object and hence no 

echoes in the range 0 < x <10 cm. 

 The derivative of the cross-sectional area with respect to range of Eq. (7.10) is 

given by Eq. (7.11) below, 

 

    
5

12)( π=
dx

xdA             (7.11) 

 

A constant value for all in the range 0 cm < x <10 cm, which immediately implies that 

the second order derivative with respect to range will be zero in the same region, 

 

    0)(
2

2

=
dx

xAd             (7.12) 
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As before, since the cross-sectional area and it’s higher order derivatives with 

respect to range are continuous along the length of the scatterer, the only region where a 

Freedman image pulse may originate remains the transition point between the two cross 

sectional profiles at x = 0 cm. 

 As Eq. (7.10) and Fig 7.6 clearly demonstrate, the cross-sectional area at a point 

infinitesimally beyond x = 0 cm remains zero. As this is equivalent to the null cross-

sectional area of the free space infinitesimally prior to x = 0 cm, it follows that there is 

no difference in the cross-sectional profiles, hence no discontinuity and thus no echo 

from this component. In terms of the discontinuity equation,  

 

   )()()0,0,( 00 +− −= rArAAD www           (7.13) 

           =  (0)    -    (0) 

 

 However, as Eq. (7.11) shows, the derivative of the cross-sectional area with 

respect to range is 
5

12π  at all ranges including x = 0 cm. Given that the free space 

region prior to the scatter has a value of zero, it’s clear that this represents a sudden 

change in the profile of  
dx

xdA )(  at x = 0 cm. This step discontinuity is shown in Eq. 

(7.14), 

   )()()1,0,( 00 +− −= r
dr

dA
r

dr
dA

AD ww
w           (7.14) 

          = (0)    -    (
5

12π ). 

          = - 
5

12π  
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It follows that this step discontinuity will be responsible for the production of an image 

pulse (echo) at this point. 

  Finally, since the second order derivative with respect to range has been 

established as being zero at x = 0 cm, there is no change in the profile of 2

2 )(
dx

xAd  at this 

point and thus there is no discontinuity to concern us. 

 

   )()()2,0,( 02

2

02

2

+− −= r
dr

Ad
r

dr
Ad

AD ww
w          (7.15) 

           =  (0)      -     (0) 

 

In summary, the first parabolic object has a discontinuity in the first order derivative of 

the cross-sectional area with respect to range at x = 0 cm. These are summarised in the 

table below, 

 

 

   
Table 7.2. Discontinuities on the first parabolic object. 

 

 

7.3 Spheroid-Paraboloid 
 

The next object is a merger between a half-sphere and a paraboloid. It’s 

geometry is dictated by the following equation, 

 

220)( xxxr −=    , 0 ≤  x ≤  5 cm        (7.16) 

        )64.5(05.7 += x   , 5 <  x ≤  10 cm 

Location of D(n) D(0) D(1) D(2) 
0 cm 0 - 2.4π 0 
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where r(x)  =  the radius of the cross-sectional area of the object at range x 

 

It’s length is 10 cm with it’s cross-sectional area varying from zero at it’s vertex to 

346.4 cm squared at it’s base. Its geometry is shown in Fig. 7.7 below, 
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FIG. 7.7. Representation of an aluminium object with the geometry governed by Eq. (7.16) 

 

The cross-sectional area of Fig. 7.7 above is given by Eq. (7.17) below, 

 

  220)( xxxA ππ −=    , 0 ≤  x ≤  5 cm        (7.17) 

                  )64.5(05.7 += xπ   , 5 <  x ≤  10 cm 
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This is represented in Fig. 7.8 below, 
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FIG. 7.8. Plot of cross-sectional area (square cm) with respect to range (cm) for the object in Fig. 7.7. 

 

This object’s cross-sectional area profile differs from the others encountered 

thus far in that there is a ‘kink’ in the cross-sectional area at x = 5 cm. This is of course 

due to the fact that the object is constructed from differently shaped objects, the half-

sphere and the paraboloid, and this ‘kink’ in the profile occurs at the point of 

intersection of these two disparate shapes. Although the cross-sectional area profile 

clearly remains continuous, the change in the slope of the curve shown above indicates 

that we’d expect the higher order derivates of cross-sectional area with respect to range 

to possibly exhibit discontinuities and thus result in image pulses from this range (x = 5 

cm). This is by design of course, as we’d like to see whether it’s feasible, via inverse 

analysis, to resolve the shapes of objects with geometries that exhibit sudden changes in 

curvature along their length. 

The derivative of the cross-sectional area with respect to range of Eq. (7.17) is 

given by Eq. (7.18) below, 
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    x
dx

xdA ππ 220)( −=    , 0 ≤  x ≤  5 cm       (7.18) 

          π05.7=    , 5 <  x ≤  10 cm 

 

The plot of Eq. (7.18) is shown in Fig. 7.9 below, 
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FIG. 7.9. Derivative of the cross-sectional area with respect to range (cm) of the object in Fig. 7.7. 

 

As we suspected earlier, the change in surface curvature at x = 5 cm has resulted 

in a distinct discontinuity in the derivative of the cross-sectional area at this range, thus 

this component will result in an image pulse at that point. We’ll calculate the exact size 

of this discontinuity shortly. 

Lastly, the second order derivative of the cross-sectional area with respect to 

range is given below in Eq. (7.19), 

 

   π2)(
2

2

−=
dx

xAd    , 0 ≤  x ≤  5 cm       (7.19) 

            0=     , 5 <  x ≤  10 cm 
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One does not need a plot of Eq. (7.19) to see that at x = 5 cm there is a discontinuity of 

magnitude π2 , which will add a second contribution to the already established image 

pulse from this range. 

 We’ll turn our attention now to calculating the values for these discontinuities 

for both those at x = 5 cm as well as those that are inevitably to be expected from x = 0 

cm as per usual. For the cross-sectional area, the discontinuity equations for both 

ranges, x = 0 cm and x = 5 cm respectively, can be expressed by the following 

equations, 

         )()()0,0,( 00 +− −= rArAAD www           (7.20) 

     =  (0)  -  (0) 

 

         )()()0,5,( 55 +− −= rArAAD www            (7.21) 

     =  ( π75 )  -  ( π75 ) 

     =  0 

 

Eq. (7.20) verifies what we’ve already established via observation of Fig.7.8, that there 

are no discontinuities in the cross-sectional area profile at x = 5 cm. It also reveals that 

at the transition point x = 0 cm, there are no discontinuities either. 

 For the derivative of the cross-sectional area with respect to range, the 

discontinuity equations for both ranges are given below, 

 

)()()1,0,( 00 +− −= r
dr

dA
r

dr
dA

AD ww
w           (7.22) 

          = (0)    -    ( π20 ). 

          = - π20  
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)()()1,5,( 55 +− −= r
dr

dA
r

dr
dA

AD ww
w           (7.23) 

          = ( π10 )    -    ( π05.7 ). 

          = π95.2  

 

Clearly then, at both ranges there are discontinuities in the derivative of the cross-

sectional area profile with respect to range and hence we’ll expect image pulses to 

originate from these ranges after insonification. 

 Finally, for the second order derivative of the cross-sectional area with respect to 

range, the discontinuity equations are, 

 

)()()2,0,( 02

2

02

2

+− −= r
dr

Ad
r

dr
Ad

AD ww
w          (7.24) 

          = (0)    -    ( π2− ). 

          = π2  

 

)()()2,5,( 52

2

52

2

+− −= r
dr

Ad
r

dr
Ad

AD ww
w          (7.25) 

          = ( π2− )    -    (0). 

          = π2−  

 

Again, at both ranges there are discontinuities. However, given that we’ve already 

established that there will be echoes from the ranges x = 0 cm and x = 5 cm as a result of 

discontinuities in the first order derivative of the cross-sectional area profile with 

respect to range, the echoes that result from discontinuities in the second order will be 

several orders of magnitude smaller. 
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 To summarise our observations, the spheroid-paraboloid has discontinuities in 

both the first and second order derivatives of the cross-sectional area with respect to 

range at ranges of x = 0 cm and x = 5 cm. These are summarised in the table below, 

 

 

 

   
Table 7.3. Discontinuities on the spheroid-paraboloid. 

 

7.4 Paraboloid B 
 

The next object in the series is another paraboloid, though this time with a 

broader base. It’s geometry is governed by the following equation, 

 

xxr 9.4)( =             (7.26) 

 

where r(x)  =  the radius of the cross-sectional area of the object at range x 

 

It has a length of 10 cm with it’s cross-sectional area varying from zero at it’s vertex to 

153.9 cm squared at it’s base. It’s geometry is shown in Fig. 7.10 below, 

 

 

Location of D(n) D(0) D(1) D(2) 
0 cm 0 - 20π π2  
5 cm 0 π95.2   π2−  
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FIG. 7.10. Representation of an aluminium object with the geometry governed by Eq. (7.26). 

 

The cross-sectional area of the figure above is given by Eq. (7.10) below, 

 

    xxA π9.4)( =             (7.27) 

 

This is represented in Fig. 7.11 below, 
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FIG. 7.11. Plot of cross-sectional area (square cm) with respect to range (cm) for object in Fig. 7.10. 

 

As with the first paraboloid, the continuous nature of Eq. (7.27) leads us to 

believe that no step discontinuities would be present along the object’s length and thus 

no echoes in the range 0 < x <10 cm. 

 The derivative of the cross-sectional area with respect to range of Eq. (7.27) is 

given by Eq. (7.28) below, 

 

    π9.4)( =
dx

xdA             (7.28) 

 

A constant value for all in the range 0 cm < x <10 cm, which again immediately implies 

that the second order derivative with respect to range will be zero in the same region, 

    0)(
2

2

=
dx

xAd             (7.29) 

 

As with the previous paraboloid, since the cross-sectional area and it’s higher 

order derivatives with respect to range are continuous along the length of the scatterer, 
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the only region where a Freedman image pulse may originate remains the transition 

point between the two cross sectional profiles at x = 0 cm. 

 For the cross-sectional area, the discontinuity equation is,  

 

   )()()0,0,( 00 +− −= rArAAD www           (7.30) 

           =  (0)    -    (0) 

 

Indicating no discontinuity in the cross-sectional area profile at this point.  

As for the derivative of the cross-sectional area with respect to range, the 

discontinuity equation is thus, 

 

   )()()1,0,( 00 +− −= r
dr

dA
r

dr
dA

AD ww
w           (7.31) 

          = (0)    -    ( π9.4 ). 

          = - π9.4  

 

It follows that this step discontinuity will be responsible for the production of an image 

pulse (echo) at this point, should the object become insonified. 

  Lastly, since the second order derivative with respect to range has been 

established as being zero at x = 0 cm, then as with the first parabola before it, there is no 

change in the profile of 2

2 )(
dx

xAd  at this point and thus there is no discontinuity to 

concern us. 

   )()()2,0,( 02

2

02

2

+− −= r
dr

Ad
r

dr
Ad

AD ww
w          (7.32) 

           =  (0)      -     (0) 
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Thus in summary, the second parabolic object has only one discontinuity, this being in 

the first order derivative of the cross-sectional area with respect to range at x = 0 cm. 

These are summarised in the table below, 

 

  

 
 Table 7.4. Discontinuities on the second parabolic object. 

 

7.5 Ellipsoid 
 

The fifth object has an elliptical shape governed by the following, 

 

)10(4)( xxxr −=            (7.33) 

 

where r(x)  =  the radius of the cross-sectional area of the ellipsoid at range x 

 

Its length is only 5 cm and its cross-sectional area varies from zero at it’s vertex to 

314.2 cm squared at it’s base. Its geometry is shown in Fig. 7.12 below, 

 

Location of D(n) D(0) D(1) D(2) 
0 cm 0 - π9.4  0 
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FIG. 7.12. Representation of the aluminium object with the geometry governed by Eq. (7.33). 

 

The cross-sectional area of the figure above is given by Eq. (7.34) below, 

 

    )10(4)( xxxA −= π            (7.34) 

 

This is represented in Fig. 7.13 below, 
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FIG. 7.13. Plot of cross-sectional area (square cm) with respect to range (cm) for object in Fig. 7.12. 

 

Given the continuous nature of Eq. (7.34), seen clearly in Fig. 7.13, it is 

expected that no step discontinuities would be present along the length of the object and 

hence no echoes in the range 0 < x <10 cm. 

 The derivative of the cross-sectional area with respect to range of Eq. (7.34) is 

given by Eq. (7.35) below, 

 

    )210(4)( x
dx

xdA −= π            (7.35) 

 

This is plotted in Fig. 7.14 below, 
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FIG. 7.14. Derivative of cross-sectional area (square cm) with respect to range for object in Fig. 7.12. 

 

Clearly, the linearity of the above plot bears out our prediction of continuity in the 

derivative of the cross-sectional area with respect to range. The linearity also indicates 

that the second order derivative will be constant. Indeed, this is shown to be true in Eq. 

(7.36) below, 

    π8)(
2

2

−=
dx

xAd            (7.36) 

 

Thus, as before, since the cross-sectional area and it’s higher order derivatives with 

respect to range are continuous along the length of the scatterer, the only region where a 

Freedman image pulse may originate remains the transition point between the two cross 

sectional profiles at x = 0 cm. For the cross-sectional area, where there is no change in 

the cross-sectional profile at x = 0 cm, since both the object at this point and the free 

space region have cross-sectional areas of zero, the discontinuity equation is given 

below,  

   )()()0,0,( 00 +− −= rArAAD www           (7.37) 

           =  (0)    -    (0) 
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Hence this component will not produce an image pulse when insonified. 

 The derivative of the cross-sectional area with respect to range does not begin 

with a value of zero at x = 0 cm though. Thus, we’ll expect a discontinuity at this point 

as can be seen by the discontinuity equation below, 

 

   )()()1,0,( 00 +− −= r
dr

dA
r

dr
dA

AD ww
w           (7.38) 

          = (0)    -    ( π40 ). 

          = - π40  

 

It follows that this step discontinuity will be responsible for the production of an echo at 

this point when irradiated with an acoustic wave. 

  Finally, since the second order derivative with respect to range has been 

established as being non-zero at x = 0 cm, there will be a sudden change in the profile of 

2

2 )(
dx

xAd  at this point and thus a discontinuity will result, as shown below, 

 

   )()()2,0,( 02

2

02

2

+− −= r
dr

Ad
r

dr
Ad

AD ww
w          (7.39) 

           =  (0)      -     ( π8− ) 

           = π8  

 

 

In summary then, the ellipsoid object has discontinuities in the first and second order 

derivatives of the cross-sectional area with respect to range at the range x = 0 cm. These 

are summarised in the table below, 
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Table 7.5. Discontinuities on the ellipsoid. 

 

7.6 Fourth Order Shaped Object 
 

The last object in our series has what can only be described as a “4th order” 

geometry, so called because it’s shape is governed by the following equation, 

 

3.98
)(

4rrx =             (7.40) 

 

where )(rx  =  the length (cm) along the axis, measured from the vertex. 

 

In keeping with our decision to express the cross-sectional parameters of our objects in 

terms of range, we can reformulate this as, 

 

    4
1

15.3)( xxr =            (7.41) 

 

This object has a length of 10 cm with its cross-sectional area varying from zero at its 

vertex to 98.5 cm squared at it’s base. Its geometry is shown in Fig. 7.15, 

 

Location of D(n) D(0) D(1) D(2) 
0 cm 0 - π40  π8  
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FIG. 7.15. Representation of an aluminium object with the geometry governed by Eq. (7.41). 

 

The cross-sectional area of the figure above is given by Eq. (7.42) below, 

 

    A(x) = 9.92πx
1

2            (7.42) 

 

This is represented in Fig. 7.16 below, 
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FIG. 7.16. Plot of cross-sectional area (square cm) with respect to range (cm) for object in Fig. 7.15. 

 

This is another example of an object with a continuous cross-sectional area, 

leading us to expect that no step discontinuities would be present along the length of the 

object. 

 The derivative of the cross-sectional area with respect to range, is given by Eq. 

(7.43) below, 

 

    2
1

96.4)( −= x
dx

xdA π            (7.43) 

 

This is shown in Fig. 7.17, 
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FIG. 7.17. Derivative of cross-sectional area (square cm) with respect to range for object in Fig. 7.15. 

 

As with the cross-sectional area profile, the plot is continuous, indicating no 

discontinuities along the length of the object (ie. x > 0 cm). Of note however is the 

nature of the curve to approach infinity as it nears zero, which should have interesting 

implications for the expected discontinuity at x = 0 cm. 

 As for the second order derivative of the cross-sectional area with respect to 

range, it’s governed by, 

 

    2
3

2

2

48.2)( −−= x
dx

xAd π           (7.44) 

 

shown in Fig. 7.18 below, 
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FIG. 7.18. 2nd order derivative of cross-sectional area with respect to range (cm) for object in Fig. 7.15. 

 

Again, a continuous profile, indicating no discontinuities along the length of the object 

but the same characteristic as the first order derivative to approach infinity, albeit 

negative infinity in this case, as it nears zero. 

Given that there are no discontinuities along the length of the object, let’s 

examine the expected discontinuities at x = 0 cm. For the cross-sectional area, the 

discontinuity equation is, 

 

   )()()0,0,( 00 +− −= rArAAD www          (7.45) 

           =  (0)    -    (0) 

 

As expected, since the cross-sectional area of the object at x = 0 cm is the same as the 

the free space region, namely zero. 

 For the derivative of the cross-sectional area with respect to range however, the 

discontinuity equation has an infinity at x = 0 cm, shown in Eq. (7.46) below, 
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   )()()1,0,( 00 +− −= r
dr

dA
r

dr
dA

AD ww
w           (7.46) 

          = (0)    -    (
2

1
0

96.4 π ). 

          = (0) - ( ∞ ) 

          =  -∞  

 

It follows that this step discontinuity will be responsible for the production of an image 

pulse at this point. However, despite the first order discontinuity being of infinite 

magnitude, in practice we would, of course, observe a finite echo, albeit of large 

magnitude. The fact that an infinite first order discontinuity would be processed by the 

forward model as (incorrectly) resulting in an echo of infinite magnitude, with the 

converse holding true for the inverse model, highlights one of the limitations of the 

model.  

  The same principle holds true for the discontinuity of the second order 

derivative with respect to range, shown below, 

 

   )()()2,0,( 02

2

02

2

+− −= r
dr

Ad
r

dr
Ad

AD ww
w         (7.47) 

           =  (0)      -     (
2

3
0

48.2 π− ) 

           = ∞  

 

Again, a large contribution to the echo at x = 0 cm would be expected due to this 

discontinuity, but not an infinite one. 
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 In summary, the fourth order object has discontinuities of infinite magnitude in both the 

first and second order derivatives of cross-sectional area with respect to range at x = 0 

cm. These are summarised in the table below, 

 
   

 

 

Table 7.6. Discontinuities on the 4th order object. 

 

In the following chapter, we will examine experiments that were conducted with 

the objects listed above to test the validity of the inverse models we developed in the 

previous chapter and see how well they were able to predict the geometries of the 

objects examined in this chapter. 

Location of D(n) D(0) D(1) D(2) 
0 cm 0 - ∞   +∞  
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8 Experimental Design, Results and Analysis 
 
 

Our task was now to use the selected objects listed in the last chapter to test the 

time dependent inverse model we developed earlier. But before we could begin some 

decisions had to be made. Specifically, what two frequencies would be used and what 

range would the objects be placed at. Given that the Polaroid transducer we have been 

using has a maximum output at 50 kHz, with a gradual fall off in sensitivity above and 

below this frequency, it was decided that our chosen frequencies should fall on either 

side of this peak output. Thus we selected 40 kHz and 60 kHz as the frequencies of 

choice as they are each close enough to 50 kHz to provide a signal which is not too 

weak whilst at the same time being sufficiently separated along the spectral band in 

order that they should produce echoes that are noticeably unique from one another.  

As for the range, we selected 40cm. Even though this range is borderline for the 

validity of the Kirchoff approximation, preliminary tests showed us that the echoes at 

ranges beyond this were too weak for us to reasonably expect to see any contribution 

from any of the higher order discontinuities. As the detectable presence of these higher 

order contributions is necessary for the inverse model to work, we had to limit our range 

accordingly. This differs from our experience testing the forward model, where we were 

able to set our scattering objects at 80cm and beyond. But in that instance, we were 

dealing with a model in which the sizes of the higher order discontinuities had little 

impact upon the validity of the model being tested, given their very small magnitude. 

With the inverse model however, the situation is exactly the reverse, as one would 

expect. Plus we had the advantage of using a strong 50 kHz peak signal, unlike the 

current situation where the output at 40 kHz and 60 kHz is only approximately half as 

strong as that at 50 kHz. Thus 40cm is a reasonable compromise between ensuring that 
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the Kirchoff approximation is held true and making sure our echo is strong enough to 

analyse in detail. 

However, the general procedure for obtaining the echoes was not dissimilar to 

that employed earlier when we tested the validity of the extended forward model, save 

the differing frequencies and ranges already mentioned. Before we began taking 

readings, the region around the apparatus was checked to ensure it was clear of any 

drafts from nearby windows, doors or air conditioner vents, as these cause air 

turbulence and changes in environmental conditions. The air conditioner in the 

laboratory was switched off 15 minutes prior to the start of the experiment to give the 

temperature time to settle. A sample echo reading was taken with no scattering object 

present to ensure that there were no extraneous objects within the field of insonification, 

as these clearly show up in the echo trace when present. Other checks were also 

conducted such as ensuring that the bias on the transducer was correct (150V) and the 

amplification setting in the capture software was high enough to produce the largest 

echo without clipping. Other software settings on the chirp/capture software mimicked 

those used during the forward model tests, specifically a 10 cycle wave is emitted, the 

echo sampled at a rate of 1Mhz and the procedure repeated 100 times. This multi-

sampling is necessary for the same reasons that it was employed for the forward model 

experiments, to minimise random, short-term fluctuations in the environment.  

At this stage, the apparatus was ready and the first object was mounted at 40cm 

ready for insonification, At the conclusion of the measurement cycle for an object, the 

frequency was changed from 40kHz to 60kHz and the entire measurement cycle was 

repeated. Once the readings from the object at both frequencies had been obtained, the 

environmental conditions were recorded as we would need this information later in 

order to calculate the matrix elements used in the inverse model. The object was then 
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demounted, the next object in the series put in its place and the process repeated until all 

six objects had been examined. 

 

8.1 Experimental Results 

 

A. Determining )( fK  

 
Before we can test the predictions of the inverse model, we must firstly calculate 

the matrix elements of the model for each case in order for it to become workable. As 

stated back in Chapter 6, in order for us to calculate the matrix elements Yx ( f ) of the 

model for each frequency, we firstly need to calculate or measure )( fK . We also 

determined that the best approach, both in terms of speediness and accuracy, was to 

calibrate the model with an object of precisely known dimensions and thereby 

determine )( fK  directly through measurement, the best candidate for this being an 

object that has all D(n) = 0, except for one, such as a paraboloid for instance. We have 

two paraboloids within our set, each suitable candidates, however we’ll use the second 

of these as it has a larger discontinuity which should produce a stronger echo and thus a 

more accurate result. We could also have used any of the spheres that we employed 

previously to test the forward model, but we opted to go with the paraboloids because 

they are more finely machined and thus their geometry is known to a higher degree of 

accuracy than the spheres. 

Eq. (6.16) reduces to a simpler form in the instance where we are using a 

scatterer with all D(n) = 0 except for n = 1, 

 

            θcos
2

)1()(
k

DfKg −=Ε             (8.1) 
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For Paraboloid B, examined in section 7.4, the first order discontinuity has a value of 

−4.9π. This reduces Eq. (8.1) further to, 

 

    θπ cos45.2)(
k

fKg =Ε             (8.2) 

 

At it’s peak, when θcos =1, the voltage has a maximum value given by, 

 

    
k

fK
MAXg

π45.2)(=Ε             (8.3) 

 

and given that 
c
fk π2=  it follows that, 

 

    
f

cfK
MAXg

225.1)(=Ε             (8.4) 

 

allowing )( fK  to be determined by, 

 

    
c
f

fK MAXg

225.1
)(

Ε
=             (8.5) 

 

This can be readily calculated as the frequency f is known in each case, the maximum 

voltage 
MAXgΕ  can be measured from the data, or more accurately it’s interpolated 

counterpart, and the speed of sound c is easily calculated from a knowledge of the 

environmental conditions at the time of measurement, which we recorded. 
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 For the echo from Paraboloid B we had a recorded temperature of 22.9 OC, a 

humidity of 36.85% and a pressure of 1037.5mB. This results in a speed of sound c of 

345.0 m/s. In the 40 kHz case, the maximum voltage measured off the paraboloid was 

found to be 0.01778V, thus our value of )( fK  at this frequency is deduced thus, 

 

   K(40kHz) = (0.01778)(40000)
1.225(345.0)

=1.68            (8.6) 

 

For the 60 kHz case, the maximum was found to be 0.02009V and therefore the value of 

)( fK  is given by, 

 

   K(60kHz) = (0.02009)(60000)
1.225(345.0)

= 2.85            (8.7) 

 

These calibration constants, K(40kHz) and K(60kHz), will be used in the later sections 

to aid in the determination of the matrix elements that go up to make the inverse model, 

because for each object these matrix elements will differ. Although strictly it would be 

preferable to calibrate the model before each and every new scatterer is tested, we 

decided that this would be unnecessary. This is because the impact upon the value of 

)( fK  from the small environmental changes that occur over the entire run of 

measurements is minimal, given the rather short time span, 10 – 15 mins, during which 

the measurements are conducted. 

 

B. Selecting an appropriate time index t 
 

The general equation of the inverse model has the following form, 
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where, Y2( f )  = −K( f )
2k

cosθ   &  Y3( f )= −K( f )
4k 2 sinθ  

and θ =ωt −2krg = 2πf (t −
2rg

c
)  

 

If we invert the matrix and expand it out to its full form, we get the following, 
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where,    
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The presence of trigonometric terms in the denominators of the matrix elements have 

the consequence that an ill-chosen value of the time index t could cause all the matrix 

elements to become singularities (ie. infinite). Further, if any trigonometric terms in the 

numerators become zero, then the contribution of the associated Eg(f1) or Eg(f2) 

coefficient would vanish. This would mean that the data obtained for the amplitude 

measurement at one of the frequencies would not contribute to the calculation, which 

would diminish the accuracy of the result as a consequence and is thus to be avoided. 

The value of t should thus be chosen to strike a balance between all the terms 

such that no term is in danger of becoming either a singularity or zero. To determine 

which value(s) of t satisfy this condition optimally, we’ll examine a ratio which is the 

product of the first and second terms divided by the product of the third and fourth, 

shown in reduced form in Eq. (8.9) below, 
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The optimal choice for t, which occurs when the four matrix terms are closest to one 

another and therefore have values which are neither zero or infinite, will manifest itself 

in the ratio function as that point where the ratio is closest to one.  
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After substituting into Eq. (8.9) the values for K(f), f, k, gr  & c, for both 40kHz 

and 60kHz, we can plot the variation of this ratio function over the course of 

approximately 10 wavelengths, the typical length of a received echo. The extreme 

sensitivity of the ratio function to the choice of t at certain points is revealed in Fig 8.1 

below, 

 

0.00005 0.0001 0.00015 0.0002 0.00025

-4

-2

2

4

 

  FIG. 8.1. Variation of the ratio function R(θ ) with angle across 10 wavelengths. 

 

Given the obvious cyclic repetition of the variation, as seen above, we can focus on the 

detail within a single wavelength as representative of the greater structure of the wave 

train. This is shown in Fig. 8.2 below, 

 



 8-9

Degrees

 

  FIG. 8.2. Variation of the ratio function R(θ ) with angle across a single wavelength. 

 

The plot above has a length equivalent to one wavelength, 0 to 360 degrees, of a 40kHz 

echo. We can see that the first ‘danger spot’ occurs at approximately 30 degrees along 

the wave where the ratio approaches a singularity. There follows a stable region from 

about 60 to 120 degrees where the ratio has a magnitude of approximately one, albeit 

negative one, followed by another singularity around 150 degrees. Another danger spot 

is at 180 degrees where the ratio becomes zero. From 180 to 360 degrees these patterns 

are repeated, but inversely. As can be seen from Fig 8.1, these variations are then 

repeated throughout the rest of the wave train. 

It follows then that we should be safe, in the sense that our matrix elements are 

not in danger of veering towards infinity or zero, provided our choice for the time index 

t lies between 60 to 120 degrees (or 240 to 300 degrees, etc…) along the 40kHz wave 

train. But what range of angles does this choice for t correspond to along the secondary 

60kHz wave? Well, since the 60kHz wave has a frequency that is exactly 50% higher 
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than the 40kHz wave, clearly then the corresponding angles will be 50% higher. Thus 

the region between 60 to 120 degrees on the 40kHz wave will correspond to 90 to 180 

degrees on the 60kHz wave. Given this, the most efficient choice for the time index t is 

the location of the first peak on the 60kHz wave, since the first peak will always be at 

90 degrees, which satisfies our requirement to be within the ‘safety zone’ for 60kHz 

waves, and is quite easy to localise on the wave train. Also, this time index at 90 

degrees on the 60kHz wave will correspond to that at 60 degrees on the 40kHz wave, 

which is within the ‘safety zone’ for that wave frequency. Hence, by choosing the first 

peak on the 60kHz wave train we’ve chosen a time index t that is within both ‘safety 

zones’. 

Of course, given the cyclic repeating nature of the ratio equation, there is no 

need for the peak chosen to be the first one. Provided that the next point chosen is 

exactly 180 degrees removed from the previous, it will also fall within one of the ‘safety 

zones’ of Fig. 8.2 and as all peaks are removed from each other by 180 degrees anyway, 

it follows that any peak is a suitable candidate. It is best however to choose a peak that 

is at least 2 to 3 wavelengths into the wave train though, as this ensures that we avoid 

sampling the “ramp up” period on the wave train.  

 

C. Results 
 

After the value of t is chosen, the echo amplitudes at that time index are 

recorded for both the 40 kHz and 60 kHz echoes. These values, along with the pre-

calculated and/or recorded values for K(f), f, k, gr  & c, for both 40 kHz and 60 kHz, are 

substituted in Eq. (8.8) to produce estimates of D(1) & D(2). An example of this 

process, using the exponentially shaped scatterer, is shown in Appendix A.5 (b).  
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Data for figures used in this section, pertaining to measured and predicted 

discontinuities, are provided in Appendix A.4. The predicted first order discontinuities 

are plotted alongside the measured values calculated back in Chapter 7 and are shown 

below, 

 

D(1)

 

  FIG. 8.3. Comparison of Calculated (broken line) with Predicted (solid line) values for D(1) 

 

The data points for the sixth (and last) object (the 4th order scatterer) are unseen 

and unlabeled simply because they are far beyond the scale of the plot. Clearly, from 

observation alone, the calculated and predicted results do not match. Interestingly 

enough however, if we simply switch the sign on the predicted results, there is far 

greater correlation, as seen in Fig. 8.4 below, 
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D(1)  

  FIG. 8.4. Comparison of Calculated (broken line) with -1xPredicted (solid line) values for D(1) 

 

Further, if we scale the predicted results by dividing them by 3, the correlation is even 

more compelling, as shown in Fig. 8.5 below, 

 

D(1)  

FIG. 8.5. Comparison of Calculated (broken line) with –(1/3)x Predicted (solid line) values for D(1) 
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Thus by introducing this “calibration factor” into the model, we have significantly 

improved its accuracy. Random noise in the data used is the actual reason why this 

factor serves to improve the correlation between measurement and theory, but at this 

stage it will not be clear to the reader why this indeed the case. The details of why data 

errors can impact upon the predicted values for D(n) (and by extension the calibration 

factor) are discussed in section 8.1 (d), as well as discovering why the sign of the 

predicated values is the opposite of those calculated. 

Even though it’s not directly visible on the figure above, due to the limitations of 

scale, the 4th order scatterer has a poor correlation between the calculated and predicted 

values. The calculated value was negative infinity, but the model predicted value veers 

off to the large but not infinite value of –632. However, this poor correlation was to be 

expected because real-world objects can never have an infinite discontinuity any more 

than say, the tip of a pin can have a radius of curvature exactly equal to zero. Thus our 

predicted value is what we would have expected, a value much larger than the other 

objects, but not infinite. The only major anomaly therefore is the ellipsoid, though we 

will show later that individual anomalies hold little significance as matrix instability 

accounts for the gross characteristics of Fig. 8.5. 

 Let’s also take a look at the plot of calculated versus predicted values for the 

second order discontinuities D(2) . This is shown in Fig. 8.6 below, 
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  FIG. 8.6. Comparison of Calculated (broken line, which is too close to zero to be visible) with the 

Predicted (solid line) values for D(2) 

 

The broken line indicating the calculated, or true, values for D(2) is not visible because 

they’re limited to values under 30 (with the exception of the last object, the fourth order 

object which, as before, has a value of infinity) and the much larger values on the 

predicted line have drowned them out. If we scale the results by dividing the predicted 

values by, say, 10000, we can compare them more easily. This is shown in Fig. 8.7 

below, 

 

 

FIG. 8.7. Comparison of Calculated (broken line) with the (1/ 410 )xPredicted (solid) values for D(2) 
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Despite the obvious disparity between the calculated and predicted values for D(2) it is 

of note that the trend in the predicted values mirrors that of the calculated values, 

despite the obviously large difference in magnitude. Despite this small consolation, it’s 

clear that unlike the results obtained for D(1) we cannot use the model to make 

meaningful predictions for D(2), even when imposing a 1/10000 scaling factor. It would 

appear that the model can however be used to at least make qualitative estimates of 

general trends in the values of D(2). 

 As a final test for the model, let’s compare the calculated and predicted values 

for the discontinuities of the spheroid-paraboloid at its “crossover” region, the region 

where the object’s spheroidal surface changes to a parabolic one, 5cm from its vertex. 

This is the first test of a discontinuity that is actually on the surface of the scatterer 

rather than one that exists at the transition point from free space to a solid object. Our 

previously calculated values for the discontinuities at this point were determined in 

Chapter 7 and are given below, 

 

27.9)1,5,( =wAD             (7.23) 

28.6)2,5,( −=wAD             (7.25) 

 

The predicted discontinuities (unscaled) are given below, 

    

   21.3)1,5,( =wAD            (8.10) 

   282)2,5,( =wAD            (8.11) 
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Very poor correlation is observed with these figures. Even when applying the scaling 

factors we determined earlier, the predictions remain erroneous and in fact show even 

worse correlation, 

    

   07.1)1,5,( −=wAD            (8.12) 

   0282.0)2,5,( =wAD            (8.13) 

 

The poor results in this case are almost certainly a result, at least in part, of the very 

weak signal received from this crossover region, the signal therefore being heavily 

impacted upon by the noise floor of our system. To illustrate this problem, we present 

below the sampled wave trains for the spheroid-paraboloid at both 40 kHz and 60 kHz, 

 

Amplitude

Time (s)
 

 FIG. 8.8. 40kHz echo from the spheroid-paraboloid 

 

Amplitude

Time (s)
 

FIG. 8.9. 60kHz echo from the spheroid-paraboloid 
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The echo from the crossover region is visible as a weak secondary trace trailing the 

main echo from 0.00261s to 0.00273s. Now, we are required by the constraints of the 

model to ensure that the time index t chosen to sample the echo amplitude must be the 

same for both frequencies, so we need to choose a time index for which the echo is clear 

enough on both echoes for sampling. It’s clear that the only point on Fig. 8.8 where the 

secondary echo is clear enough to sample is at t = 0.00270ms and beyond. 

Unfortunately, this region is very weak in the 60 kHz wave trace. However, as stated 

above, we have no other choice but to use this time index. 

 The degree to which the inverse model is only partially successful, specifically 

the partial success of the model at predicting D(1), after scaling, but complete inability 

to determine D(2) accurately, discounting it’s limited qualitative success, is not 

unexpected. As we pointed out earlier, the contributions to the echo of the second order 

discontinuities are of the order of 310  times smaller than those of the first order. Given 

that the noise in the system is on a similar scale, it follows that it will be very difficult 

for these contributions to add to the signal in such a manner that they are distinct 

enough for the model to use them in a meaningful manner. 

 However, the problem of trying to explain the difference in sign between the 

calculated and predicated results hints at a more fundamental problem. With this in 

mind, we adopted a couple of changes in the methods used to manipulate the raw data 

and select the sample time t. Specifically, we decided to try fitting a sinusoidal function 

to the data rather than interpolating it, since we know that the echo will be sinusoidal in 

form. Also, we adopted the condition number of the inverse matrix as the determining 

factor for the sample time t, since this number is indicative of the sensitivity of the 

matrix, and by extension the inverse model, to inaccuracies in the data. The results of 

these changes follow. 
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D. Fitting a sinusoidal function to the echo data 

 
Because the echo received is generally sinusoidal in form, it’s reasonable to 

assume that it can be approximated by a sinusoidal function.  As before, our interest lies 

solely on the central region of this echo where the wave is essentially monotonic. The 

monotonicity of this region also aids us in our attempt to fit a sinusoidal function, since 

such a function will by necessity be single frequency. The process used to fit a function 

to our data follows. 

Using Mathematica, we create a subset of the echo data that contains only the 

central monotonic region. The echo data and its corresponding subset, for the 

exponentially shaped scatterer, are shown in Fig. 8.10 below.  

 

 

 

 

      FIG. 8.10. Original echo data (top) and it’s subset taken from the monotonic region (below). 

 

We then need to transform the structure of our data to one suitable for Mathematica’s 

equation fitting function(s). Our data is stored as a one dimensional array, a series that 

contains the instantaneous amplitude of the echo at discrete time intervals along the full 
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length of the wave train. Mathematica’s equation fitting function, NonLinearFit, 

requires a two dimensional array as one of it’s arguments. To create this array, we 

simply use successive elements of the one dimensional array and their associated time 

indexes as the co-ordinates for successive points within the two dimensional array. The 

general form of the equation to be fit to the data is then declared, which in this case is, 

 
E(t) = Asin(ωt + φ) + C           (8.14) 

where ω = 2πf  

 and    f = frequency 

 
Parameters such as A representing wave amplitude, C representing bias and φ the phase 

are all determined by NonLinearFit. Frequency is a known quantity in each instance. 

Once these parameters are determined by NonLinearFit, a plot of Eq. (8.14) is 

superimposed over a plot of the subset data to ensure it’s a valid fit. An example of such 

a superposition, for the exponentially shaped body, is shown in Fig. 8.11 below. 

 

E(V)

 t(s)

 

  FIG. 8.11. Superposition of Eq. (8.14) over the sampled data (solid points) to verify correlation. 
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In all cases Mathematica was able to provide an equation with a high correlation to the 

data. A full example of this curve-fitting process, using the exponentially shaped 

scatterer, is given in Appendix A.5 (c). 

 The second alternation to our data analysis procedure relates to the use of the 

condition number to measure matrix stability. This is a more rigorous approach than the 

one employed previously. The condition number of a matrix with respect to inversion is 

a measure of how sensitive the matrix is to perturbations. The lower the condition 

number, the more stable, or well-conditioned, the matrix is. Conversely, matrices with 

large condition numbers are regarded as ill-conditioned. In the context of our inverse 

model, the order of the condition number provides a rough estimate of how many digits 

of precision are lost from our estimates of D(n) as a result of the matrix inversion. For 

example, a condition number of 3x102, having an order of two, indicates that two digits 

of precision are lost from the estimates of D(n). So, if the data used only had a precision 

of say three significant figures, then after subtracting two digits of precision we’re left 

with an estimate of D(n) precise to only one significant figure, which would be a poor 

estimate. Clearly, to avoid an outcome with low precision estimates of D(n) we require 

either a low order condition number, high precision data or preferably both. Although 

sufficient data precision will provide the necessary stability to our model, systematic 

error in the model will be evident unless the data is also accurate to the same resolution. 

For this reason, we speak of the requirements of data accuracy rather than just precision 

from this point on. The condition number of the matrix is determined by the 

Mathematica function LUDecomposition. This function accepts the matrix as an 

argument and returns three values, the third being an estimate of the condition number. 

 The principal task then is to determine the time indices at which the condition 

number is minimised. Plotting the condition number of the matrix as a function of time 



 8-21

we see that there are minima at several points along the wave train, approximately co-

incident upon echo minima and maxima. See Fig. 8.12 for an example of this for the 

exponentially shaped scatterer. 

 

CN

t(s)  

     FIG. 8.12. Condition number of the inverse matrix as a function of time. 

 

The condition number at all minima never falls far below 6x102, indicating that the 

matrix is never well conditioned and will lead to a loss in precision of two digits from 

any estimates of D(n). The significance of this is high as it severely limits the accuracy 

of our model, with the major implication of this to be discussed later. 

 Given the lack of variation in condition number across the various minima, we 

could apparently select any of the minima in the plot above as our chosen time index, as 

each will produce a matrix with minimised instability from with which we can then 

attempt to predict D(1). However, the choice of minima is important. Not apparent to us 

previously was that the sign of the predicted value of D(1) varies with the choice of 

minima. Whereas a time index at one minima may produce a negative prediction for 

D(1), the time index at the next minima will predict one roughly equal in magnitude but 
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opposite in sign to that predicted previously. For each successive minima, the sign of 

the predicted D(1) continuously flip-flops between positive and negative in this manner. 

This accounts for previous predictions of D(1) using the inverse model which resulted 

in values with a sign at odds with the measured result.  

 Given our awareness of the issue with the sign, it was a simple matter of 

collating the predictions for D(1) at each minima and then rejecting the positive valued 

solutions. This was justifiable on the grounds that D(1) can never be positive valued 

since it is a function of the cross-sectional area in air (ie. zero) minus the cross-sectional 

area of the scattering body (which can only be zero or positive valued). Hence the result 

can only be either zero or negative valued. The remaining solutions, three usually, are 

then averaged and the resulting value used as our model prediction of D(1). A full 

example of this process, using the exponentially shaped scatterer, is given in Appendix 

A.5 (c). The results for all scattering objects are given in Fig. 8.13. 

 

         Parab A    Exponent   Parab B  Spheroid            Ellipsoid        4th Order 

    D(1)  

  FIG. 8.13. Comparison of Calculated (broken line) with Predicted (solid line) values for D(1) 
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Given our new found awareness of the fundamental cause of the lack of correlation 

between theory and experiment, namely the sensitivity of the matrix to data inaccuracies 

as measured by the condition number, it is redundant to repeat our earlier attempt to 

correct the model by multiplying the inverse model predictions by a factor to provide 

better correlation. This would only work, possibly, if the inverse model suffered from a 

systematic error, but clearly this is not the case. Similarly, there was no improvement in 

the predictions for D(2) using these techniques, for the same reasons as discussed 

previously.  

 In summary then, fitting a curve to the data produced no tangible increase in 

model accuracy over the previously employed method of interpolation. The use of the 

condition number proved helpful in explaining the conundrum of the flipped sign and 

was illustrative of the lack of stability of the matrix. However, as with the curve fitting 

it provided no tangible increase in model accuracy. The reasons that these two 

techniques offered little improvement over those methods employed earlier are simply 

because their improvements to the model, if any, were far too subtle to be observed 

given the vast discrepancies between measured and predicted values. Under more ideal 

circumstances, namely when dealing with a stable matrix or with data of much higher 

accuracy, we believe that the latter techniques employed would provide more tangible 

improvements in model accuracy than those observed here. 

 

8.2 Error Analysis 

 
As outlined in section 4.1 (a), the data used was accurate to within 0.8% in 95% 

of cases. Therefore we can report data to a maximum of only three significant figures 

(three digits of precision). The condition number of just under 6x102, having an order of 
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two, results in a loss of precision of two digits from any estimates of D(n). The net 

effect of these two factors is that predictions of D(1) have a precision and accuracy of 

only one significant figure, although we need to remember that the condition number is 

only a rough estimate of the loss of precision – inspection of Fig. 8.5 indicates that the 

accuracy of the predictions for D(1) may be even lower. This alone is enough to account 

for the large discrepancy between theory and measurement we have observed and of all 

the sources of error contributing to these discrepancies, clearly it is the most significant. 

However, it is instructive to analyse the other possible sources of error that could also 

contribute, albeit on a less significant scale. 

Discounting the impact of the unstable matrix for now, could the large errors in 

the inverse model also arise from smaller deviations in the original forward model, upon 

which it’s based, and thus be compensated for? As the terms that constitute the forward 

and inverse models are the same, just rearranged, both questions are thus two sides of 

the same coin, as they relate to how small changes in these terms impact upon the 

predictions. 

Specifically, the terms in the models for which there is an associated uncertainty 

due to their capacity for variation during the course of a measurement, are listed below, 

along with their errors, 

 

Temperature T: 2 K error 

Humidity H:  2% error 

Pressure P:  1 mB error 

 

The remaining terms within the models, such as frequency, range and speed of sound 

have either negligible error, such as the former, or are functions of the environmental 
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conditions listed above, such as the latter. In either case, the only terms that are sources 

of error in the models are the environmental terms above. 

 The questions that we need to address are firstly, what impact do these 

environmental fluctuations have upon the predictions of the inverse model and 

secondly, are any of these terms sensitive enough to produce deviations of the order 

seen in the inverse model’s predictions? If the answer to the second question is yes, then 

it would be possible to apply either a scaling factor or an offset to the offending term in 

the forward model and then propagate that term through the inverse model. The end 

result would be a forward mode that is still relatively valid, assuming the modification 

to the offending term in the forward model is small, and an inverse model with higher 

correlation between theory and measurement. This would be the ideal case. 

 The most efficient way to measure the errors on the predictions of the inverse 

model is to examine the worst case scenarios for each case. Thus we plug in values for 

temperature, pressure and humidity that will produce the greatest deviations from the 

predicted values in both directions, thereby obtaining the error limits for the each case. 

For example, the exponentially shaped object has a predicted value of D(1) = -11.0. The 

worst case scenario for each term’s impact upon this prediction is as follows: 

 

Humidity = 49% + 2% = 51%,   D(1) = -11.0 

Humidity = 49% - 2% = 47%,   D(1) = -10.9 

 

It’s thus clear the humidity plays an almost negligible role in the final prediction for 

D(1). For pressure, 

 

  Pressure = 1038 mB + 1 mB = 1039,  D(1) = -11.0 

  Pressure = 1038 mB - 1 mB = 1037,  D(1) = -11.0 
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Again, a negligible impact upon the final prediction for D(1). However, when we 

examine temperature the sensitivity is quite stunning, 

 

  Temp. = 295.95 K + 2 K = 297.95 K,  D(1) = -18.1 

Temp. = 295.95 K - 2 K = 293.95 K,   D(1) = -8.5 

 

Given that the highest values of D(1) for the exponentially shaped object occur when 

both humidity and temperature are at their highest possible values, as allowed by their 

error limits, it follow that the worst case maximum for the prediction of D(1) occurs 

when Humidity = 51% and Temperature = 297.95 K (the impact of pressure being 

negligible in this case). In this instance, D(1) = -18.2. Likewise, the worst case minimum 

occurs when both of these environmental variables are at their lower limits, ie. 

Humidity = 49% and Temperature = 293.95 K, for which D(1) = -8.5. 

 This process was repeated for all objects and the comparison between the 

predicted values for D(1) and the measured/calculated values has been replotted in Fig. 

8.14 below, but this time with error bars inclusive. 
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D(1)  

  FIG. 8.14. Comparison of Calculated (broken line) with Predicted (solid line) values for D(1) with 

associated error bars. 

 

The process was also repeated for the predictions of D(2) and these results are plotted 

below, 

 

  FIG. 8.15. Comparison of Calculated (broken line, which is too close to zero to be visible) with 

Predicted (solid line) values for D(2) with associated error bars. 
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In both cases, it’s clear that the error limits on the predicted values do not encompass all 

values for D(1) and D(2) calculated by direct measurement. Thus the discrepancy 

between theory and measurement can not be explained away as simple experimental 

error.  

Further to the question of whether a small scaling or offset on one of the terms 

in the forward model could propagate through the inverse model to produce a greater 

correlation between experiment and theory, it’s clear from our above analysis that the 

only term which has any real impact upon the inverse model’s predictions is the 

temperature. So could applying an offset on the temperature in the forward model 

produce greater correlation? Unfortunately, the answer is no. It’s possible to apply a 

several degree offset to the temperature to cause one data point to correlate, but the 

other data points would not correlate and in general the correlation becomes worse than 

before.  

Thus, we concede that the lack of correlation between theory and measurement 

of the inverse model cannot be attributed to either (a) experimental error or (b) a slight 

flaw in the forward model. We have no doubt that there are flaws in the inverse model 

which hark back to those in the forward model that made it difficult for us to obtain 

reasonable predictions for the echoes from cones, namely the failure of the model to 

account for creeping waves. However, without a detailed analysis of the theory of 

creeping waves and its integration into Freedman’s model, which is beyond the scope of 

this thesis, this impact of this missing element of the model remains conjecture.  

However, we believe that the primary flaw in the model is the impact of the ill-

conditioned matrix (coupled with insufficient data accuracy) upon our predictions of 

D(1). Is this problem resolvable? The stability of the matrix can only be increased if we 

reduce the condition number by at least an order of magnitude and the only way to do 
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this would be to reduce the wave number by a similar degree. Transferring the model to 

a medium like water, for which the speed of sound is more than four times that in air, as 

well as lowering the frequency of the pulses down to the acoustic range would be 

enough to reduce the condition number by an order of magnitude. A medium such as 

steel (for non-destructive testing) with a speed of sound about 17 times that in air, 

would reduce the condition number by an even greater degree. However, the model 

would have to be further modified to compensate for the various idiosyncrasies of these 

mediums and in any event, such medium changes would defeat the purpose of our 

research, which was to construct the model as an aid for autonomous mobile robotic 

sensing. 

If we choose to restrict the model for use in an air environment only, the 

condition number cannot be altered to any appreciable degree. Consequently, the only 

way to counteract the impact of the ill-conditioned matrix would be to use data of 

exceptional accuracy. Given that our data, with its three significant figures of accuracy, 

is insufficient for the task, the question posed is then, how accurate would our data have 

to be in order for the model to be workable? Ideally, we would like our predictions of 

D(1) to be accurate to within 1%, implying an accuracy of three significant figures. 

Given that the large condition number will cause the loss of two significant figures from 

our prediction of D(1) irrespective of how accurate our data is, we would need to ensure 

that our data is accurate to at least five significant figures to result in a final prediction 

for D(1) accurate to three figures. An accuracy of five significant figures can only be 

achieved if we can ensure errors in our data of under 1/10000.  

To do this we would have to increase the accuracy of our estimate of the 

population mean of the amplitude (see section 4.1 (a)) using a higher sample size to 
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reduce the standard deviation of the distribution of sample means to within 1/10000. 

The equation governing this is given below21, 

 

  σ Ý Ý x =
σ
n

           (8.15) 

 

where  σ ÝÝx  = standard deviation of the distribution of sample means 

 σ   = standard deviation of the population (ie. the distribution of  

         measured echo amplitudes) 

   n  = sample size (ie. how many echoes are averaged to obtain the 

          estimate) 

 

In practice, to reduce the standard deviation of the distribution of sample means to 

1/10000 would still not be enough, since this would ensure that our estimate of the 

population mean of the amplitude was accurate to within 1/10000 in only 68% of cases. 

We would actually need to reduce the standard deviation to 1/20000 before we could 

safely state that the amplitude estimate is accurate to within 1/10000 in 95% of cases 

(ie. two standard deviations), which is acceptable. 

 Using Eq. (8.15) above with the standard deviation of the population of 3%, as 

determined in section 4.1 (a), and a standard deviation of the distribution of sample 

means set to our target of 1/20000, we calculate that the required sample size is 36000. 

Thus, we would need to average over almost 36000 echo samples before we could 

obtain the necessary accuracy to satisfy the matrix stability requirements of the inverse 

model. Given that 50 samples take approximately 30 seconds, 36000 samples would 

take six hours. Clearly this would not be practical. If we lowered the accuracy standard 

of our model, so that we would be satisfied with an inverse model able to make 
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predictions for D(1) accurate to only 10% (two significant figures), we would still need 

to average over 3600 echo samples, which would take 36 minutes. We need to point out 

again that because the condition number is only a rough estimate of the loss of 

precision, our calculation of the number of required samples is at best only a ball park 

figure. 

In practice, to sample the echoes for this length of time, whether it’s 36 minutes, 

or even just 15 minutes, is not feasible for a couple of reasons. Firstly, as discussed 

earlier, the Mylar film within the transducer loses its tension if the bias is applied for too 

long a period. We have measured this effect over several hours (see Fig. 4.5) but it 

begins to manifest itself within just a few minutes of continuous use. This problem is 

currently solved by using the transducer for no more than a minute at a time and then 

removing the bias for about 60 seconds. To use the transducer for 36 minutes 

continuously (let alone six hours) would inevitably cause the generated echo to reduce 

in amplitude over the course of the sampling period, as the tension in the film reduces, 

which would produce a skewed result in the mean. Another reason this is not practical is 

because environmental changes in temperature, pressure and humidity over the course 

of several minutes are non-negligible. Their impact on both time of flight, via their 

effect on the speed of sound, as well as the absorption coefficient would skew the mean 

also. It could be argued that the drift in the absorption coefficient could be accounted for 

by modelling it with the standard method for the calculation of the absorption of sound7. 

However, even with accurate measurements of the environmental conditions, the 

calculated value would only be accurate to within 10%. 

These problems are not insurmountable though. It’s possible that under more 

rigorous laboratory conditions, with far stricter environmental controls, as well as a 

different make or model of transducer, samples could be averaged for a full 36 minutes 
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without any drift in the mean. Also, if one is willing to transfer the model to either 

water, for sonar sensing, or steel, for non-destructive testing, where the condition 

number doesn’t place such high demands on the required accuracy of the data, there 

may be an application for this model. However, such prospects will have to be left to 

future workers. 

 

8.3 Practical Application of the Inverse Model 

 
In it’s current state, the inverse model is not without possible application though. 

Making allowances for the fact that the predictions of D(1) are accurate to, at most, only 

one significant figure, Fig. 8.5 indicates a general, albeit rather broad, qualitative 

correlation between theory and measurement (in most instances). So, let’s see if this can 

be applied.  

Let us put forth the hypothetical example of a factory that manufactures light 

bulbs. An obvious requirement of such a manufacturing process would be quality 

control. Specifically, the inspection and elimination of those bulbs that were damaged 

during production. The flaws may not be as obvious as a bulb that imploded due to a 

crack in the vacuum seal, but may be more subtle, such as a bulb that is slightly 

irregular in shape or has a bulge in it’s surface. Whilst visual inspection may identify 

these flawed bulbs, the process would benefit from a faster more reliable inspection 

system, one which the inverse model may provide. 

We took three standard 100W clear bayonet cap light bulbs as our test items. 

These were 10.4cm long with a maximum width of 6.2cm at the equator of the globe. In 

their untouched condition, they represented the standard shape(s) that would pass the 

quality control process. In other words, they are all identical upon visual inspection and 
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any minor faults they may have are within the specified parameters of the quality 

control process. We measured the echoes from these three bulbs in exactly the same 

manner as we tested the inverse model with the various geometric scattering bodies. 

Thus they were all located at a 40cm range, 40kHz and 60kHz waves were used, 100 

samples were taken, etc… We then repeated the process, but this time we attached small 

mounds of Blu-Tak™ onto the glass bulbs. These mounds had a height no greater than 

approximately 1mm and were spread out over a 1cm area, the height tapering near the 

circumference of the mound. An example of one of these is shown in  Fig. 8.16 below, 

 

 

  FIG. 8.16. 100W Clear Bayonet Cap Light Bulb with a 1cm square area mound of Blu-Tak™ attached 

to the glass. 

 

The purpose of adding this mound of Blu-Tak™ is of course to simulate a defect 

in the shape of the bulb. The mound may look larger than 1mm in height from the photo 

above, but that is illusory due to us seeing the aft edge of the mound through the glass. 
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The measurement cycle was repeated once more with these modified bulbs. The 

echoes obtained were run through the inverse model in the same manner as previously. 

The only difference was that in this case there was no need to calibrate the model by 

determining values for )( fK . This was because in this instance we are only interested in 

the relative values of D(1), not absolutes, as the relative values are all that are needed to 

differentiate between perfect bulbs and “faulty” ones. The results of these calculations 

are tabulated in Table A.4.10 in Appendix A.4 and plotted in Fig. 8.17 below,  

 
 

  FIG. 8.17. Comparison of the predicted relative values of D(1) for both the modified bulbs (top) and the 

untouched bulbs (bottom). 

 

The results are quite distinct. Whilst the unmodified (good) bulbs all hover very 

close to a relative magnitude of -60, the modified (bad) bulbs deviate markedly from 

these. In a real world environment, numerous measurements would be made upon the 

bulbs that pass visual inspections and from these a standard deviation for the top curve 

would be determined. Faulty bulbs would then be defined as any that fall outside this 

error limit. 
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Given that it would have been possible to distinguish between the normal and 

defective bulbs just as easily with amplitude alone as with the predictions for D(1), why 

would we apply the inverse model to this task at all? In this particular instance it’s true 

that we could have distinguished the defective bulbs from the normal ones using 

amplitude alone. However, there is nothing to indicate that this should be the case for all 

objects tested in this manner. Moreover, amplitude alone offers only a blind 

discrimination between the objects and does not provide any information as to why the 

objects are distinguishable. The inverse model, in calibrated form, at least provides an 

estimate, by virtue of D(1), of the physical structure of the object being insonified. As 

D(1) is a function of the front face of the scatter, it will vary in amplitude if the front 

face is varied to any degree, allowing discrimination of different bodies or possibly 

detecting defects. Of course, whether this information is of use to the parties performing 

the tests depends on the nature of their investigation. 

From the results given above, it would appear that the inverse model seems 

capable of detecting physical anomalies on smoothly varying objects, at least in this 

example, and as such it offers the possibility of application to industry, specifically in 

the area of quality control where, in many industries, this involves distinguishing 

between those items that are physically damaged from those that are not. However, we 

need to be aware that given the instability of the inverse model, the results presented 

cannot be interpreted as proof of a practical applicability of the model, but rather a one-

off case that apparently works but for which we cannot provide a solid basis to 

generalise to other cases.  
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9 Conclusion 
 

9.1 Contributions of this thesis 

 
We summarised the limitations of current acoustic sensing technologies and 

postulated that in order to make further progress in this area, we would need to develop 

a more sophisticated model of the wave mechanics of acoustic backscatter. We took 

Freedman’s forward model as our basis, provided an abridged derivation of this model 

that highlighted its inherent basic assumptions and gave a physical interpretation of the 

model’s mechanisms, with examples. We then made extensions to the model in order to 

expand its applicability to air environments and to systems with non-ideal 

transducer/receiver configurations. Before putting the extended model to the test, we 

made extensive progress in minimising the noise inherent to our proposed experimental 

apparatus. We also developed methodologies for both minimising external noise sources 

and data analysis.  

We then tested this extended model with a variety of distinct acoustic scatterers, 

including spheres, cones and truncated cones at ranges of 80cm, 100cm and 140cm and 

found that the model’s greatest correlation between experiment and theory occurred 

when dealing with spheres. We postulated that the models inability to account for 

creeping waves was the major cause for its lack of capacity to deal with objects that 

were not smoothly shaped. However, with an average error of less than 5% for spheres, 

we determined that the model should be reasonably accurate at calculating the echoes 

from convex objects with smoothly varying surfaces, spheres being but one example.  

We then examined the possibility of inverting the extended forward model and 

theorised two possible alternatives for inversion. The first was a model that was 
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independent of time t. Despite some advantages, we ultimately rejected it on practical 

grounds and adopted the second alternative, a time dependent model. We fully 

developed this model and devised the analysis methodology that would be applied to 

test it. We also provided an algorithm for reconstructing the shape of the scatterer using 

the predictions of the inverse model. Following this, we analysed the geometric 

properties of six finely turned geometric objects that would be our test subjects for 

verifying the inverse model. We examined the range variance, area variance, physical 

parameters and various orders of the surface curvature in each case and the locations 

and magnitudes of surface discontinuities on the scatterers were determined for each. 

We then tested the inverse model with these six scatterers at a range of 40cm 

using 40kHz and 60kHz chirps. Using two different approaches to analysing the data, 

we found that the model had little quantitative correlation between the predicted 

discontinuities and their measured values. We analysed the inverse model, found the 

primary source of the errors to be the coupling of an ill conditioned matrix with data of 

insufficient accuracy and determined the conditions under which the model should 

generate accurate results. We concluded that the inverse model could not be verified 

quantitatively with our data, but that future workers may be able to do so under more 

rigorous laboratory conditions or a switch to a different medium. 

Despite the quantitative limitations of the inverse model, we tested whether it’s 

general qualitative agreement between measurement and theory could be put to practical 

use. We conducted an experiment to simulate the type of flaws that one may expect to 

see in manufactured items emerging from a conveyor belt on a production line, in this 

case glass light bulbs. In all cases, we were able to use the model to clearly distinguish 

between the faulty and non-faulty bulbs. 
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In summary, the following are the contributions of this thesis: 
 

•  Extended Freedman’s model to expand its applicability to air environments and 

to systems with non-ideal transducer/receiver configurations and verified it via 

experimental testing. 

•  Developed the theory for an inverse model of ultrasonic echolocation based on 

the extended forward model as well as an algorithm for visualising the scattering 

target using its predictions and tested the model experimentally. 

•  Experimentally verified that the inverse model could successfully discriminate 

between simulated small defects in industrially produced items. 

 

9.2 Future Directions 

 
The automation of an increasing number of processes in industrial environments 

has many advantages. Firstly there is the cost factor. After the initial purchase of the 

system, the only costs are maintenance and, on occasion, the cost involved in 

reprogramming the system, should the need arise. There is also the issue of speed. 

Almost without exception, automated systems conduct their operation at either the same 

speed or faster than a human operator. Accuracy is another benefit, since human 

fallibility will almost always result in a small, but constant percentage of mistakes on 

the part of the operator during any given period. Finally, safety is another benefit of 

automation. In many cases, industrial environments can be hazardous work 

environments and on both ethical and financial grounds, it would be more desirable for 

a machine to undertake the associated risks rather than a person. 

Industrial inspection and quality control is one example of such a process that is 

currently dominated by human operators but would benefit from automation. The 
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inverse model developed in this research should be of interest to those working in the 

field of industrial quality control, specifically those involved in the deployment of 

inspection technologies because of it’s potential to lead to the development of real-time 

quality testing systems for production lines that could perform with a higher degree of 

accuracy and speed than the visual inspection procedures currently being employed. 

With the added benefit of being a relatively low cost solution, and the reduction in 

industrial accidents that may occur were such a system to be implemented, we feel that 

implementing the inverse model would be a step forward for industrial sensing. 

Finally, this research has raised the possibility for further research into four areas. 

Firstly, even though the development of the inverse model is mathematically sound, it is 

based on a forward model that is, to an extent, flawed. Further research into the 

extended forward model from a more theoretical approach could help shed some light 

onto what could be done to improve the model, the inclusion of creeping wave theory 

into the model being a starting point. Secondly, the limitations imposed upon the 

accuracy of the model in air, by virtue of the ill conditioned matrix, could be 

circumvented by modifying the model to work in a different medium, water for sonar-

sensing or steel for non-destructive testing. Thirdly, laboratory environments with 

exceptional control of environmental conditions could be employed to test the model’s 

validity in air. Lastly, experiments on the inverse model indicate that it may well be 

robust enough, even in its current state, to be applied to the task of industrial sensing, as 

outlined above. Further research into this area could include the development and 

implementation of an industrial sensing system that is able to separate defective items 

on a conveyor belt from to those that are undamaged. 
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A.2 Glossary of Terms 

 
 
λ  = Wavelength of the transmitted wave 

θ =ωt −2kr 

ϕ  = Angle of incidence of the incoming radiation 
 
α  = Atmospheric absorption coefficient  
 
A(f) = Frequency-dependent sensitivity of the transducer and receiver 

A(x) = Cross-sectional area of the scatterer at range x 
 
βH (φ) = Directivity of the receiver 
 
βP (φ)  = Directivity of the transducer 
 
c = Speed of sound in air 
 
D(Aw,rg ,n) = nth order discontinuity at range rg  

D(n) = nth order discontinuity (shorthand version of D(Aw,rg ,n)) 
 
E = Voltage at the receiver 

G = Gain applied to the received signal 
 
H  = Voltage produced per unit pressure at unit distance in direction θ = φ = 0 
 
J1 = Bessel function of the first order 
 
k = Wave number of the transmitted wave 
 
P  = Pressure produced per unit volt at unit distance in direction θ = φ = 0 
 
rg  = Range to the source of the echo 
 
rg− = Range infinitesimally prior to the discontinuity 

rg + = Range infinitesimally beyond the discontinuity 
 
r(x) = Radius of the cross-sectional area of the object at range x 
 
t = Instant of echo reception 
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it  = Instant of incidence upon the target 
 
V  = Voltage applied to the transducer 
 
ω  = Angular frequency of the wave 

)(rW w  = Directivity-weighted solid angle subtended at the receiver by all parts of 

      the scattering body within the range r 



 A-5

A.3 Derivation of Equation 6.3 

 
 

The following is the derivation of the maximum value equation (Eq. 6.3) used in 

Chapter 6 in the development of the time independent variant of the inverse model. Eq. 

(6.3) is shown below, 

 

 D(0)sinθ − D(1)
2k

cosθ − D(2)
4k 2 sinθ

MAX

= D(0)2 + D(1)2

4k 2 − D(0).D(2)
2k 2 + D(2)2

16k 4

 

 
 

 

 
 

1 2

           (6.3) 

 
 
 
Firstly, let X = A2 + B2    where A,B ∈ ℜ             (A.1) 
 

         and   γ = tan−1 B
A

 
 
 

 
 
                 (A.2) 

 

The square of Eq. (A.1),   X 2 = A2 + B2             (A.3) 
 

Eq. (A.2) rearranged,   B = A tanγ 
 

         = A sinγ
cosγ

             (A.4) 

 

Substituting Eq. (A.4) into (A.3), 
 

     X 2 = A2 + A2 sin2 γ
cos2 γ

 

       X 2 cos2 γ = A2(cos2 γ + sin2 γ) 

           = A2   
 

Therefore,    A2 = X 2 cos2 γ              (A.5) 

         and,    A = ±X cosγ              (A.6) 

 

 



 A-6

Substituting Eq. (A.5) into (A.3),  

 

     X 2 = X 2 cos2 γ + B2  

     X 2(1−cos2 γ) = B2  

       X 2(sin2 γ) = B2 

 

Therefore,    B2 = X 2 sin2 γ             (A.7) 

       B = ±X sinγ             (A.8) 

 

Because of the ±  term in Eq. (A.6) and (A.8), there are four possibilities for the 

maximum value of Acosθ + Bsinθ MAX . These are, 

 

(1) Acosθ + Bsinθ MAX     = X cosγcosθ + X sinγsinθ MAX  

    = X cos(γ −θ) MAX  

    = X cos(γ −θ) MAX   since X ≥ 0 ∀ A,B 

    = X     since cos(γ −θ) MAX =1 

    = A2 + B2  

 

Similarly for the others, 

 

(2)  Acosθ + Bsinθ MAX     = −X cosγcosθ + X sinγsinθ MAX  

    = −X cos(γ +θ) MAX  

    = X −cos(γ +θ) MAX  

    = X  

    = A2 + B2  

 

(3)  Acosθ + Bsinθ MAX     = X cosγcosθ − X sinγsinθ MAX  

    = X cos(γ +θ) MAX  

    = X cos(γ +θ) MAX  

    = X  

    = A2 + B2  
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(4)  Acosθ + Bsinθ MAX     = −X cosγcosθ − X sinγsinθ MAX  

    = −X cos(γ −θ) MAX  

    = X −cos(γ −θ) MAX  

    = X  

    = A2 + B2  

 

Thus, in all cases,  

   Acosθ + Bsinθ MAX = A2 + B2             (A.9) 

 

Now, let A = −D(1)
2k

   and  B = D(0) − D(2)
4k 2    and substitute these into Eq. (A.9), 

 

 Thus,         − D(1)
2k

 
 
 

 
 
 cosθ + D(0) − D(2)

4k 2

 
 
 

 
 
 sinθ

MAX

= − D(1)
2k

 
 
 

 
 
 

2

+ D(0) − D(2)
4k 2

 
 
 

 
 
 

2

 

      = D(0)2 + D(1)2

4k 2 − D(0).D(2)
2k 2 + D(2)2

16k 4

 

 
 

 

 
 

1 2

 

   

Therefore, 

           D(0)sinθ − D(1)
2k

cosθ − D(2)
4k 2 sinθ

MAX

= D(0)2 + D(1)2

4k 2 − D(0).D(2)
2k 2 + D(2)2

16k 4

 

 
 

 

 
 

1 2

 

 

                 Q.E.D. 
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A.4 Data for Selected Figures. 

 
 

Diameter (m) Range (m) Measured (V) Predicted (V) Pred./Meas.

0.100 0.800 1.95E-01 1.91E-01 0.98
1.000 9.96E-02 1.13E-01 1.13
1.400 4.90E-02 4.90E-02 1.00

0.150 0.800 2.89E-01 2.88E-01 1.00
1.000 1.75E-01 1.70E-01 0.97
1.400 7.10E-02 7.39E-02 1.04

0.200 0.800 4.14E-01 3.89E-01 0.94
1.000 2.02E-01 2.29E-01 1.13
1.400 9.98E-02 9.88E-02 0.99  

 
Table A.4.I. Data for Fig. 5.1. 
 
 
 

Diameter (m) Range (m) Measured (V) Predicted (V) Pred./Meas.

0.100 0.800 9.49E-03 1.04E-02 1.10
1.000 5.70E-03 6.07E-03 1.06
1.400 2.60E-03 2.60E-03 1.00

0.150 0.800 1.61E-02 1.57E-02 0.98
1.000 9.14E-03 9.23E-03 1.01
1.400 3.71E-03 3.94E-03 1.06

0.200 0.800 2.15E-02 2.10E-02 0.98
1.000 1.27E-02 1.23E-02 0.97
1.400 5.24E-03 5.24E-03 1.00  

 
Table A.4.2. Data for Fig. 5.2. 
 
 
 

Base Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.

0.100 0.800 4.69E-02 4.69E-02 1.00
1.000 2.37E-02 2.90E-02 1.22
1.400 1.77E-02 1.30E-02 0.74

0.150 0.800 9.34E-02 1.13E-01 1.21
1.000 2.05E-02 7.55E-02 3.69
1.400 1.48E-02 3.61E-02 2.43

0.197 0.800 1.41E-01 2.20E-01 1.56
1.000 1.04E-01 1.64E-01 1.58
1.400 3.10E-02 8.59E-02 2.77  

 
Table A.4.3. Data for Fig. 5.3. 
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Base Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.

0.100 0.800 1.28E+00 9.08E-01 0.71
1.000 8.42E-01 6.08E-01 0.72
1.400 2.91E-01 2.91E-01 1.00

0.150 0.800 1.19E+00 1.62E+00 1.37
1.000 8.20E-01 1.31E+00 1.60
1.400 4.02E-01 7.29E-01 1.81

0.197 0.800 4.89E-01 2.11E+00 4.32
1.000 4.19E-01 2.25E+00 5.36
1.400 2.93E-01 1.54E+00 5.25  

 
Table A.4.4. Data for Fig. 5.4. 
 
 
 
Trunc. Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.

0.052 0.800 7.73E-01 6.85E-01 0.89
1.000 3.81E-01 4.02E-01 1.06
1.400 1.74E-01 1.74E-01 1.00

0.097 0.800 1.27E+00 2.47E+00 1.94
1.000 8.10E-01 1.47E+00 1.81
1.400 2.64E-01 6.38E-01 2.41

0.149 0.800 3.45E+00 5.75E+00 1.66
1.000 3.36E+00 3.41E+00 1.02
1.400 1.98E+00 1.49E+00 0.75  

 
Table A.4.5. Data for Fig. 5.5. 
 
 
 
Trunc. Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.

0.052 0.800 7.82E-02 7.62E-02 0.98
1.000 4.32E-02 4.47E-02 1.04
1.400 1.92E-02 1.92E-02 1.00

0.097 0.800 1.48E-01 2.70E-01 1.82
1.000 1.02E-01 1.58E-01 1.55
1.400 4.80E-02 6.78E-02 1.41

0.149 0.800 2.91E-01 6.24E-01 2.14
1.000 2.20E-01 3.67E-01 1.67
1.400 5.78E-02 1.57E-01 2.71  

 
Table A.4.6. Data for Fig. 5.6. 
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Object Measured D(1) Predicted D(1) 
   

Paraboloid A -2.4π 37.4 
Exponential -4 π 40.7 
Paraboloid B -4.9π 66.5 

Spheroid-Paraboloid -20 π 188 
Ellipsoid -40 π 86.0 
4th Order - ∞  1900 

 
Table A.4.7. Data for Fig. 8.3. 
 
 
 

Object Measured D(2) Predicted D(2) 
   

Paraboloid A 0 -1.94 E+04 
Exponential 4 π 5.85 E+04 
Paraboloid B 0 -3.82 E+04 

Spheroid-Paraboloid 2 π -4.24 E+04 
Ellipsoid 8 π 7.84 E+04 
4th Order + ∞  7.25 E+07 

 
Table A.4.8. Data for Fig. 8.6. 
 
 
 

Object Measured D(1) Predicted D(1) 
   

Paraboloid A -2.4π -29.9 
Exponential -4 π -11.0 
Paraboloid B -4.9π -49.2 

Spheroid-Paraboloid -20 π -228 
Ellipsoid -40 π -183 
4th Order - ∞  -54.3 

 
Table A.4.9. Data for Fig. 8.13. 
 
 
 

Bulb Predicted D(1) 
  

  1A (Modified) -14.4 
  1B (Unmodified) -61.1 
  2A (Modified) -32.0 
  2B (Unmodified) -60.9 
  3A (Modified) -8.5 
  3B (Unmodified) -59.2 
 
Table A.4.10. Data for Fig. 8.17. 
 



A .5 (a) Code Segment: Noise Subtraction & Interpolation Example

Needs["TimeSeries'TimeSeries'"]
Needs["TimeSeries'TimeSeriesPlot' " ]
(* Load 1 TimeSeries1 Libraries *)

SetDirectory["C:\Mathematica\Data"]
(* Folder containing echo data *)

<< "SmallSphere80cm.echo";
(* Import the echo data *)

TimeSeriesPlot[data[[1] ] , Lines -> False] 
(* Plot the entire received signal *)

RawEcho = Shorten [ data [ [1] ] , {0.0046, 0.0047}, IndexInTime -> True]; 
TimeSeriesPlot[RawEcho, Lines -> False, PlotJoined-> True, Points-> True]; 
(* Reduce the data to only the echo itself & plot it *)

<< "SmallSphere.noise”;
(* Import the background signal (noise) data *)

TimeSeriesPlot[data[[1] ] , Lines -> False]
(* Plot the entire background noise data; note the reduced amplitude *)
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0.02

0.01 

0

-0.01

- 0 . 0 2
0 0.002 0.004 0 .006  0.008

Background = Shorten[data[[1]], {0.0046, 0.0047), IndexInTime-> True]; 
TimeSeriesPlot[Background, Lines -> False, PlotJoined-> True, Points-> True]; 
(* Reduce the noise data to the region corresponding to the echo & plot it *)

0.0046 0.00462 0.00464 0 .00466 0 .00468 0 .004 '

Echo = Plus[RawEcho, -Background];
TimeSeriesPlot[Echo, Lines-> False, PlotJoined-> True, Points -> True]
(* Subtract the background noise data from the raw echo data & plot it *)

InterEcho = ReSample [Echo, 1./ (10 10*6)]; 
(* Interpolate the sampled echo data *)
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TimeSeriesPlot[interEcho, Lines-> False, PlotJoined-> True] 
(* Plot the interpolated echo *)
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A .5 (b) Code Segment: Inverse Model Example (Original Method)

STAGE 1: Import & prepare the 40 kHz & 60 kHz echoes for analysis

(* USE SAME PROCEDURE AS SHOWN IN APPENDIX A .5 (a) *)

STAGE 2: Analyse & extract the key amplitudes from the echoes

TimeSeriesPlot[InterEcho40, Lines-> False, PlotJoined-> True]
TimeSeriesPlot[InterEcho60, Lines-> False, PlotJoined-> True]
(* Plot the 40 kHz & 60 kHz interpolated echoes *)

0.0023 0 .00235 0.0024 0.00245 0 .0025 0 .00255 0.0026

0.0023 0 .00235 0 . 0024 0 .00245 0 .0025 0 .00255 0.0026

t = 0.0023625;
(* Identify the 3 rd +ve peak on the 60 kHz wave by visual inspection *)

Echo40 = Shorten[InterEcho40, {t - 0.00001, t + 0.00001}, IndexInTime-> True]; 
Echo60 = Shorten[InterEcho60, {t - 0.00001, t + 0.00001}, IndexInTime-> True]; 
(* Narrow the data of both echoes to focus on t = 0.0023625 *)

TimeSeriesPlot[Echo40, Lines -> False, PlotJoined-> True]
TimeSeriesPlot[Echo60, Lines -> False, PlotJoined-> True]
(* Plot the data near t=0.0023625 for both echoes *)
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0.002355 0 .00236 0 .002365 0.00237

0.002355 0 .00236 0 .002365 0 .00237

t = 0.002366;
(* Identify the 3 rd +ve peak on the 60 kHz wave with greater accuracy *)

Echo40 = Shorten[InterEcho40, {t- 0.0000001, t + 0.0000001}, IndexInTime-> True]; 
Echo60 = Shorten[InterEcho60, {t - 0.00 00001, t + 0.0000001}, IndexInTime-> True]; 
(* Narrow the data of both echoes around t=0.002366 even further *)

TimeSeriesPlot[Echo40, Lines-> False, PlotJoined-> True]
TimeSeriesPlot[Echo60, Lines -> False, PlotJoined-> True]
(* Plot the data in a very narrow window about t=0.002366 for both echoes *)

BIAS40 = Block[
{d, n, avg},
d = GetListDat[InterEcho40];
n = Length[d];
avg = Apply[Plus, d] /n];

(* Calculate the bias on the 40 kHz echo *)

BIAS60 = Block[
{d, n, avg},
d = GetListDat[InterEcho60]; 
n = Length[d]; 
avg = Apply[Plus, d] /n]j 

(* Calculate the bias on the 60 kHz echo *)
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- 0 . 0077  
- 0 . 0078  
- 0 . 0079  

- 0 . 008  
- 0 . 0081  
- 0 . 0082  
-0 . 0083

0.0023659 0.00236595 0.002366 0.00236605 0.0023661

0.0023659 0.00236595 0.002366 0.00236605 0.0023661

E60 = 0.006228 - BIAS60;
(* Calculate the amplitude of 60kHz echo at t=0.002366, accounting for bias *) 

E40 = -0.00795 - BXAS40;
(* Calculate the amplitude of 40kHz echo at t=0.002366, accounting for bias *)

STAGE 3 : Calculate predicted values for D (n) using Inverse Model

Needs["D2UltrasonicModel'EnvironmentConditions'"]
(* Load 1 EnvironmentConditions’ Libraries *)

Temp = 22.8;
Humid = 48.75;
Press = 1038;
(* Environmental conditions at the time the echo was recorded *)

ENV = EnvironmentConditions[273.15 + Temp , Humid, Press]; 
c = SpeedOfSound3 [ENV] Second / Meter;
(* Calculate speed of sound c using the ’ EnvironmentConditions’ library *)

fl = 40000; 
f 2 = 60000; 
rg = 0.400; 
K1 = 1.683; 
K2 = 2.852; 
kl = (2 Pi fl)

(* Frequency of the 40 kHz wave *)
(* Frequency of the 60 kHz wave *)
(* Range to the scattering target *) 
(* K (f) at 40 kHz *)
(* K (f) at 60 kHz *)

/ c; (* Wave number at 40 kHz *)
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k2 = (2 Pi f2) / c; (* Wave number at 60 kHz *)
pi = (2 Pi fl) (t - (2rg/c)); (* Phase at t = 0.002366 for the 40 kHz wave *)
p2 = (2 Pi f2) (t - (2rg/c)); (* Phase at t = 0.002366 for the 60 kHz wave *)

y2f 1 s = - (K1 Cos [pi] ) / (2 kl)
y2f2 : = - (K2 Cos [p2] ) / (2 k2)
y3f 1 := - (Kl Sin [pi] ) / (4 kl kl)
y3f2 : = - (K2 Sin[p2] ) / (4 k2 k2)

A := {{y2f1, y3fl), {y2f2, y3f2}} 
(* Matrix in Eqn .6 .23 *)

(* Y2 (f) at 40 kHz; See Egn .6.22 *)
(* Y2 (f) at 60 kHz; See Egn .6.22 *)
(* y3 (f) at 40 kHz; See Egn .6 .22 *)
(* Y3 (f) at 60 kHz; See Egn .6.22 *)

Inverse[A].{E40, E60}
(* Predictions of the Inverse Model; D (1) & D (2) respectively *)

{ 4 0 . 6 8 2 6 ,  5 8 4 7 8 . 4 }
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A .5 (C) Code Segment: Inverse Model Example (Revised Method)

STAGE 1: Import & prepare the 40 kHz & 60 kHz echoes for analysis

(* USE SAME PROCEDURE AS IN APPENDIX A. 5 (a), BUT WITHOUT INTERPOLATING *)

STAGE 2: Fit a sinusoid (instead of interpolate) to the 40 kHz echo

TimeSeriesPlot[Echo40k, Lines -> False, PlotJoined -> True]
(* Plot the prepared 40 kHz echo *)

0.0023 0 .00235 0 . 0024 0 .00245 0 .0025 0 .00255 0.0026

CentreOfEcho40k = Shorten [ data [ [1] ] , {0.002375, 0.00250), IndexInTime -> True] ; 
TimeSeriesPlot[CentreOfEcho40k, Lines -> False, PlotJoined -> True]
(* Reduce the data to only the central monotonic region & plot it *)

0.00238 0.0024 0.00242 0 .00244 0 .00246 0 .00248 0.0025

CentreOfEcho40kYaxis = First[CentreOfEcho40k];
CentreOfEcho40kXaxis= Table[x, {x, 0.002375, 0.0025, 0.000001}];
Clear[CentreOfEcho40k]
CentreO£Echo40k = Table[{CentreOfEcho40kXaxis[[i]], CentreOfEcho40kYaxis[[i]]},

{i, 1, Length[CentreOfEcho40kYaxis]}];
(* Transform structure of data from ID  to 2 D  form as required by NonLinearFit *)
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f = 40000; (* Frequency of the echo *)
w = 2 Pi f; (* Angular frequency of the echo *)
y = A Sin[wt + Phi] +c; (* Function to fit to the data - See y::"notes" *)
y ::"notes"=
"Function "y" is a least mean squares fit to the echo, the sine function's arguments 
being of the form (wt+Phi) where w=angular frequency, t=time, Phi=phase";

<< Statistics'NonlinearFit'
(* Load the 1 NonlinearFit' function from the Statistics library *)

SinFitEcho40k= NonlinearFit[CentreOfEcho40k, y, t, {A, c. Phi}]
(* Determine the parameters of y that best fit the echo data *)

- 0 .  0 1 0 1 8 3 3 6 0  - 0 .  0 1 2 3 2 8 1  S i n [ 2 . 1 9 8 6 6  + 8 0 0 0 0  tt t]

a = Plot[SinFitEcho40k / . t -> x, {x, 0.002375, 0.0025}]; 
b = ListPlot[CentreOfEcho4 0k, PlotStyle -» PointSize[0.016]];
CheckCorrelation = Show[a, b]
(* Plot y, the data, then superimpose them to see the correlation *)
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STAGE 3 : Fit a sinusoid (instead of interpolate) to the 60 kHz echo

(* REPEAT THE ABOVE PROCEDURE WITH THE 60 KHZ ECHO *)

STAGE 4 : Analyse matrix stability & calculate D (1) with Inverse Model

Max40 = 0.01233;
Bias40=-0.01018;
Max60 = 0.01485;
Bias60 = -0.009581;
(* Amplitude & bias of the echoes determined from SinFitEcho40k & SinFitEcho60k *)

Needs["D2UltrasonicModel'EnvironmentConditions'"]
(* Load 1 EnvironmentConditions’ Libraries *)

Temp = 22.8;
Humid = 48.75;
Press = 1038;
(* Environmental conditions at the time the echo was recorded *)

ENV = EnvironmentConditions[27 3.15 + Temp , Humid, Press]; 
c = SpeedOf Sound3 [ENV] Second / Meter;
(* Calculate speed of sound c using the 1 EnvironmentConditions’ library *)

fl = 40000; 
f2 = 60000; 
rg = 0.400; 
K 1 =1.6083; 
K2 = 2.6141; 
kl = (2 Pi fl) 
k2 = (2 Pi f2)

(* Frequency of the 40 kHz wave *)
(* Frequency of the 60 kHz wave *)
(* Range to the scattering target *) 
(* K (f) at 40 kHz *)
(* K (f) at 60 kHz *)

/ c; (* Wave number at 40 kHz *)
/ c; (* Wave number at 60 kHz *)

CondNumber[time_] := Module[[E40, E60, pi, p2, y2fl, y2f2, y3fl, y3f2. A], 
E40 = (SinFitEcho40k /. t -> time) - Bias40;
E60 = (SinFitEcho60k /. t -> time) - Bias60;
pi = (2 Pi fl) (time - (2 rg / c) ) ;
p2 = (2 Pi f2) (time - (2 rg / c) ) ;
y2fl := - (Kl Cos [pi] ) / (2 kl) ;
y2f2 : = - (K2 Cos [p2] ) / (2 k2) ;
y3fl ; = - (Kl Sin [pi] ) / (4 kl kl) ;
y3f2 ; = - (K2 Sin[p2] ) / (4 k2 k2) ;
A := {(y2f1, y3fl), {y2f2, y3f2}};
Last[LUDecomposition[A]]
];

(* Calculates the condition number of the matrix *)

DlD2[time_] := Module[(E40, E60, pi, p2, y2fl, y2f2, y3fl, y3f2. A), 
E40 = (SinFitEcho40k /. t -> time) -Bias40;
E60 = (SinFitEcho60k /. t -> time) - Bias60;
pi = (2 Pi fl) (time - (2 rg / c) ) ;
p2 = (2 Pi f2) (time - (2 rg/c)) ;
y2fl : = - (Kl Cos [pi] ) / (2 kl) ;
y2f2 : = - (K2 Cos [p2] ) / (2 k2) ;
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y3 f 1 := - (K1 Sin [pi] ) / (4 kl kl) ; 
y3f2 := - (K2 Sin[p2] ) / (4 k2 k2) ;
A := {{y2f1, y3fl}, {y2f2, y3f2}};
Inverse[A].{E40, E60}
];

(* Predictions of the Inverse Model; D (1) & D (2) respectively *)

Plot[CondNumber[x], {x, 0.002375, 0.00245}, PlotRange-> {500, 1000}]
(* Plots the condition number as a function of time to identify stability maxima *)

tl = 0.0023894;
(* Identify the time index of the 1 st trough on the plot by visual inspection *)

Plot[CondNumber[x], {x, tl - 0.0000002, tl + 0.0000002}, PlotRange-> {565, 580}]
(* Plots the condition number around the first trough *)
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580 r

578 - 

576 - 

574 - 

572 - 

570 - 

568 -

0.0023893 0.0023894 0.0023895 0.0023896

tl = 0.00238938;
(* Identify the time index of 1 st trough with greater accuracy using above plot *) 

D1D2[tl]
(* Calculate predicted values for D (n) at this time index, 
where matrix is most stable *)

{ 1 3 . 4 5 0 3 ,  1 4 6 5 3 . 5 }

t2 = 0.0023992;
(* Identify the time index of the 2 nd trough on the plot by visual inspection *)

Plot[CondNumber[x], {x, t2 - 0.0000002, t2 + 0.0000002}, PlotRange-> {565, 580}]
(* Plots the condition number around the second trough *)
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580 r

578 - 

576 - 

574 - 

572 - 

570 - 

568 -

0 .0023991 0.0023992 0.0023993 0.0023994

t2 = 0.002399205;
(* Identify the time index of 2nd trough with greater accuracy using above plot *) 

D1D2[t2]
(* Calculate predicted values for D (n) at this time index, 
where matrix is most stable *)

{ - 1 0 . 9 9 2 0 ,  2 1 2 9 4 . 8 }

(* REPEAT PROCEDURE FOR ALL TROUGHS & COLLATE PREDICTIONS FOR D (1) *)

At tl, D (1) = 13.45 
At t2, D (1) = -10.99 
At t3, D (1) = 13.45 
At t4, D (1) = -10.99 
At t5, D (1) = 13.45 
At t6, D (1) = -10.99

(* Many solutions. A condition of Freedman' s model is only non­
concave objects can be used, so we can reject all positive values, 

since D (1) < 0 for non-concave objects *)

Thus, averaging D (1) at t2, t4 &t6, we get : D1 = - 1 1 . 0
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