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Abstract

Object recognition systems based on ultrasonic sensing have significant
drawbacks in generality, resolution and speed. The objective of our research was the
development of more efficient technique(s) for ultrasonic based object recognition
through the investigation of models of acoustic backscatter, with particular emphasis on
the work of Albert Freedman. The “image pulse” model developed by Freedman
calculates the echoes generated from convex objects in an underwater environment after
insonification with a narrowband transient signal. The primary prediction of this model
is that echoes are generated at those points along a scattering body where there are step
discontinuities in the derivatives, with respect to range, of the solid angle subtended at
the transducer by the scatterer, the amplitudes of the echoes being a linear combination
of the magnitudes of said discontinuities.

We extended this model for use in an air environment using non-coincident
transmitters and receivers and conducted experiments to measure the amplitudes of the
echoes from a range of radially symmetric convex objects, at distances up to 1.4m, after
insonification with a Polaroid transducer. These amplitudes were compared to those
predicted by the model, with the results for the cones highlighting the limitations of the
theory at modelling the echoes from the geometrical shadow boundaries of objects. The
results for the spherical objects were significantly better however, with an average error
of less than 5%, suggesting that the model should be reasonably accurate at calculating
the echoes from convex objects with smoothly varying surfaces.

The extended forward model was then inverted to produce an inverse model that
would calculate the geometrical parameters of a radially symmetric scattering body
from an analysis of the echoes received after insonification of these bodies with
ultrasonic pulses at two discrete frequencies. A quantitative verification of this inverse
model with various scattering bodies proved elusive, with a low correlation between
experiment and theory, due to matrix instability and difficulties in obtaining data of
sufficient accuracy. However, qualitative trends in the data indicate that the model is
essentially correct, though very sensitive to measurement precision and media

characteristics, and there is good reason to believe that further work under more
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controlled laboratory conditions and/or a different medium would verify the model’s
validity quantitatively.

Finally, the inverse model was tested to see whether it could find a practical
application despite its quantitative limitations. In many industries, quality control
involves distinguishing between those items that are physically damaged and those that
are not, a task that the inverse model may be able to address. Using glass bulbs as the
test subjects, some with simulated physical damage and some without, we tested the
ability of the inverse model to distinguish between these two classes of objects. In all
cases, the model clearly separated the items with simulated damage from those without.

The inverse model should be of interest to workers in the field of industrial
quality control because of its potential to lead to the development of real-time
inspection systems for production lines that could perform with a higher efficiency than

the visual inspection procedures currently being employed.
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1 Introduction

1.1 Autonomous Robotics — An Overview

Robotics is a broad field which offers tantalising possibilities for the automation
of the simplest tasks currently undertaken by human labour (in the short term) and the
liberation of society from all manual labour (in the long term). It is a discipline which is
a conglomerate of several older, more established disciplines such as electrical and
electronic engineering and mechanical engineering as well as newer ones such as
artificial intelligence and acoustic & visual sensing. However, it is a field which has
lived up to only some of the promises that it has offered since it’s inception at the start
of the computer age after the Second World War. Progress in these individual fields
within robotics have not advanced at the same rate across the board, with developments
on the engineering side far outstripping that of artificial intelligence and sensing.

Advances in mechanical and electrical engineering have seen the construction of
robots with exceptional mechanical precision and flexibility. The most clichéd, but still
arguably the best, example of these, are those that can be seen in the automotive
industry where automation plays a large role on the assembly line for car
manufacturing. With pinpoint precision and flexibility that extends to multiple degrees
of freedom, these machines are very successful in doing the job that they were designed
to do - a simple, repetitive mechanical task with no variation in its motion from one
cycle to the next. But the field of robotics offers the possibilities of much more than the
production of automatons that are deaf, dumb and blind. In order for robots to increase
their scope of applicability, they have to be able to sense their surroundings, plan how to
get around these surroundings and then move about these surroundings. Such robots are

known as autonomous mobile robots.
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As stated above, the areas that are the bottleneck for progress in robotics are
those of artificial intelligence and sensing. Artificial intelligence covers many aspects of
robot behaviour including path planning, obstacle avoidance and object interaction. The
methods employed to teach robots how to do these range from conventional
programming methodologies to neural networks to genetic programming. As we’ve
already pointed out, progress in this field has been slower than expected. This is
undeniably due to the fact that in many respects we still don’t quite know what it is that
constitutes ‘intelligence’. Even psychologists are in disagreement on this issue as
evidenced by the many different variants of the Intelligence Quotient (IQ) test. A more
comprehensive understanding of how the human mind (and thus intelligence) works
may be required before we can reasonably be expected to develop software that mimics
the decision making process on a level approaching the human brain. This however, is
probably some time off.

What is of interest to us however, is the other major stumbling block of robotics,
the ability of a robot to sense its environment. There are two major threads of research
in this area, those of vision based sensing and those of acoustic based sensing. Vision
based sensing has dominated in recent years and involves analysing two dimensional
images of an environment, captured from a camera, to identify and attempt to classify
objects within the field of view. This is usually achieved by identifying the edges of
objects in an image and building up a best-estimate wire-frame outline of these objects.
From this, the types of objects, their sizes and locations can hopefully be identified.

Alternately, partial success has been achieved with neural networks that are
trained to identify particular objects in an image, although difficulty in identifying
exactly what it is that a neural network has learnt to identify has caused confusion in

some instances. One famous example of this involved an attempt to train a neural
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network to identify tanks hidden behind a forested area. Although it appeared at first
that the neural network was successful at distinguishing photos of those trees that
concealed tanks from those that did not, it later turned out that the photos of tanks
concealed behind trees were taken on a cloudy day whilst those of trees without tanks
behind them were photographed on a sunny day. In fact, the neural network had simply
learned to distinguish sunny days from cloudy ones. This story, although perhaps
apocryphal, nevertheless nicely illustrates the problem inherent in neutral network based
recognition systems, we cannot always be sure what the network is learning.

The other major thread of research for mobile robot sensing employs acoustics,
or more specifically ultrasonics. Ultrasonic sensing has been used for mobile robot
navigation for some time, an early example being that of the Meldog guide dog robot'
which used an array of acoustic sensors to localise the position of objects/obstacles. We
feel that vision based approaches can be supplemented with data obtained by acoustic
sensing methods. Acoustic sensing has far more potential than is commonly perceived.
From the world of nature we know that bats can successfully navigate caves in pitch
black darkness using acoustic echoes alone® with a degree of accuracy far surpassing
anything robot navigation is currently capable of. However, for far too long acoustic
sensing for robots has been associated with simple range finding or methods derived
from it, such as the arc model (to be discussed shortly) and as such has been often
overlooked in favour of vision. However, it’s been shown that high precision sensing
with acoustic pulses is possible. Kuc and Kleeman® have demonstrated that objects up
to 8m away from a transmitter/receiver configuration and separated by as little as 10mm
can be localised and classified with a precision of Imm and 0.1 degrees in still air. Thus

acoustics offer the possibility of highly innovative techniques for sensing the



environment and identifying specific objects within it and it is from this viewpoint that

we approach the topic.

1.2 Acoustic Sensing

The application of acoustics for sensing is almost always done in the ultrasonic
region of the acoustic spectrum. This is because the higher the frequencies used, the
more accurately range can be determined. The audible range is up to 20kHz and
ultrasonic frequencies are anything beyond that, although in practice most ultrasonic
work tends to take place above 40 kHz. A practical benefit of using ultrasonic pulses is
by virtue of them being beyond the range of human hearing, they are quiet and thus
suitable for use in urbane environments. Far more accurate range readings can be
obtained at these frequencies as well, but they require a detailed analysis of the reflected
wave, rather than a simple time of flight measurement.

The most popular approaches for ultrasonic object recognition for mobile
robotics are based on the arc model and impulse response model, although other
approaches abound®. The arc model” involves taking several range readings to an object
as the sensor moves past it. One draws arcs with a locus at the position of the
transmitter and a radius of curvature equal to the range reading obtained. By drawing
lines that intersect the tangents to these arcs we obtain an estimate of the object shape.
The problem with this method is the poor resolution of the images that result, as even
the simplest objects such as a circular bin will end up reconstructed as a polygon. The
other drawback is the speed, or lack thereof, of the method since the sensor has to move

around the object before any image can be built up.



An alternative is the impulse response method’ whereby a broadband ultrasonic
pulse irradiates the object and fourier analysis is performed on the received echo. Since
different objects will interfere with different frequencies by different amounts, the
fourier components of the returned echo will differ from one object to another. These
echoes can then be used to form a database of recognizable signals. Although a much
faster method than the former, it can obviously only be used for object recognition with

those objects that it has previously encountered and hence has limited applicability.

1.3 Modelling Acoustic Propagation

The aim of the research presented here is to take a step back and examine the
physics of scattering in an attempt to find the basic geometric characteristics that
produce the echoes observed. This will lead to the development of an inverse model that
will enable the determination of the physical characteristics of the object from a
measurement of its echo. It is envisaged that such a model could enable the
development of sensing systems that would complement current ultrasonic sensing
technology.

Models for calculating the returned echo from an object of arbitrary shape
irradiated by an acoustic wave fall roughly into two categories which we could call
analytical models and numerical models. The former essentially provide us with an
equation that relates the geometry of the object to the echo received. Because the echo
and the geometry are linked via the equation, it has the potential to be mathematically
inverted which would enable us to determine object geometry from the echo. In practice
though, for many of these models a wide range of objects can give rise to the same

echo, the many-solutions problem, making inversion useless.
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Numerical models, on the other hand, approach the problem by calculating the
entire ultrasonic wave field at small discrete time steps from the moment of initial
transmission until the moment the echo is received. Because the entire field is
recalculated for each time interval, accurate echoes can be calculated for even relatively
complex shapes. The drawback of these models is the time required for the echo
calculation, from minutes to hours with current processing speeds, but more importantly
they lack inversion potential because mathematical inversion only provides the wave-
field for the previous time step and at this stage you’ve already encountered the many-
solutions problem. Consequently, analytical models offered the best hope for our
objectives, the model of choice being that developed of A. Freedman in the late 1950’s.

Thus to sum up, our aim is to develop, test and apply models of acoustic

scattering off rigid bodies to the task of object identification.

1.4 Research Outline

In Chapter 2, we will examine the foundations of Albert Freedman’s model of
acoustic echo formation as well as providing an abridged derivation of the model itself,
with a focus on the basic assumptions that are central to the model. We’ll also provide a
qualitative or physical understanding of the processes modelled by his equation and
look at how feasible it will be to use it as a model for our needs.

The chapter that follows will outline the extensions that we’ve made to
Freedman’s model, specifically the impact of signal attenuation due to air, the
breakdown of one of the assumptions of range equivalency (see later), the polar

directivity of the transmitter, the directivity of the receiver and the non-coincidence of



the transmitter and receiver. This will provide us with an extended model that,
theoretically, should have validity in air with non-ideal transmitters and receivers.

In Chapter 4 we examine the experimental setup and the methodology that we
employed to test this extended model as well as discussing the various noise sources
that must be contended with, including environmental noise, interference from the
transducer itself and electronic noise in the chirp capture card.

In Chapter 5 we look at the results of the experiments conducted using simple
geometric shapes to test the validity of this model. In particular, we examine the results
for spheres, cones and truncated cones at various ranges to see how well the correlation
between measured echoes and the predicted ones turns out to be. We also provide an
analysis of why certain shapes perform better in these tests than others.

Chapter 6 sees the development of an inverse model of acoustic backscatter. In
particular, we examine two possible approaches to the development of this model — one
based on a time dependent method and another based on a time independent method. As
both approaches have potential strengths and weakness, we examine why we eventually
reject one of these models in favour of the other. Finally, we examine how an inverse
model can be theoretically be used to visualise a scattering body.

In Chapter 7 we choose a set of geometric objects that conform to the limitations
of the inverse model, including an exponentially shaped body, paraboloids, an ellipsoid
and others, and examine their geometries. In particular, an analysis of the location, order
and amplitude of any discontinuities along their irradiated surface.

Chapter 8 sees an examination of experiments conducted with the objects
analysed in Chapter 7 to test the validity of the inverse model, as well as an analysis of

the level of uncertainty in the predictions of the inverse model. Also discussed is the



ability of the inverse model to be put to practical use, using as an example experiments
conducted to simulate the identification of manufacturing faults in glass bulbs.

In the final chapter we summarise our results and examine areas where the
implementation of the inverse model may be beneficial, both within and without the

field of autonomous mobile robotics.

1.5 Summary of Results

Freedman’s forward model, when extended to air, is fairly accurate in
calculating the echoes from the closest points on spheres, with a higher than 96%
correlation between experiment and theory under certain conditions, and may
potentially be used for modelling the echoes from the faces of truncated cones, provided
these faces have a small enough cross-sectional area. Its limitations are that it cannot be
used for modelling the echoes from the geometrical shadow boundaries of objects, such
as the base of a cone.

The inverse model that was developed from the forward model could not be
quantitatively verified due to the coupling of an ill conditioned matrix with data of
insufficient accuracy that produced estimates with little correlation with the measured
data. However there is good reason to believe that future work under exceptionally
rigorous laboratory conditions, or within a different medium (eg. water), may verify the
model’s quantitative validity.

Finally, despite the quantitative limitations of the model, it’s general qualitative
agreement between theory and measurement was shown to have a potential practical
application by being able to distinguish between those glass bulbs that had a simulated

defect and those that did not.
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2 Freedman’s Forward Model

2.1 Background

By the mid-twentieth century, the bulk of acoustic and electromagnetic scattering
theory had confined itself to the continuous wave case, which, whilst an easier system
to model mathematically, is limited in the scope of its applicability. These models® all
follow the basic tenet that by assuming an incident wave of infinite length (ie.
continuous wave) incident upon a rigid body, field solutions can be found which satisfy
the boundary conditions at the transmitter and the scatterer. From this, the steady state
field amplitude (ie. amplitude as time approaches infinity) of the scattered wave can be
determined at any point outside the scatterer. However, this will invariably be a
sinusoidal wave of constant amplitude, which provides no information on the shape of
the scattering body. A more comprehensive examination of the wave mechanics would
need to take into account transient waves, or pulses, but precious little work had been
done in the way of transient wave theory by this stage.

Albert Freedman, aware of this deficiency in our theoretical understanding and
spurred on by advances in the fields of EM wave propagation, oil prospecting, non-
destructive testing and medical imaging, developed a theory of acoustic echo formation
that focussed on transient waves. He went on to test this model using a range of
geometrically simple objects suspended in water and his theoretical and experiment
work formed the basis for his 1961 doctoral dissertation “The Formation of Acoustic
Echoes in Fluids”’. As we will show, although Freedman’s model didn’t stand up too
well to experimental verification, due mostly to deficiencies in his experiment apparatus

rather than the theory, it provides an intuitive understanding of the mechanisms behind
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the scattering of acoustic transients. It’s for this reason that it was chosen as a suitable

theory to base an inverse model upon.

2.2 Derivation of Freedman’s Model

2.2.1 Basic Assumptions

The original derivation of the model is a rather long and detailed affair and it
would be redundant to reproduce it here. However, it’s advantageous to provide an
abridged derivation here because at several points throughout the derivation, Freedman
makes assumptions and approximations that simplify the model to an extent. Whilst
these may have seemed justified at the time, our extension of this model required us to
re-examine the validity of these assumptions and approximations and so an
understanding of how and why they were made is necessary for a thorough
understanding of the model.

Firstly, we are concerned only with the scattering of waves off single bodies since
a multi-body system, with its multiple reflections from different angles, would only
serve to complicate the dynamics. Secondly, we’ll assume that our system involves a
reflector which is static (ie. not in motion). This eliminates the need for the model to
compensate for Doppler shift, variable distances and the fluid dynamics of a body in
transit through a fluid. Since wave scattering can occur in three ways, (1) scattering
from an external surface, (2) scattering from an internal surface and (3) resonance
phenomena, the model will assume that the first mechanism dominates and (2) & (3) are
negligible. The physical assumptions that this translates to are twofold. Firstly, to

prevent internal reflections we need to assume that the object is rigid. More generally,
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we need to prevent multiple reflections, internal reflections being but one example, so a
further assumption is made that the object is convex. To prevent resonance phenomena,
we assume that the amplitudes of the acoustic waves are too small to cause any motion
in the body itself.

Several further assumptions serve to simplify our system. One is that the
wavelength used is much smaller than the dimensions and radius of curvature of the
scattering body, allowing us to use the Kirchoff approximation, an important
approximation to be elaborated upon later. The assumption also serves to reduce the
impact of creeping waves and other surface waves, which, if unchecked, would
contribute to the echo from the scattering body. Freedman surmised however that the
contributions from creeping waves would be negligible and thus would not need to be
accounted for in the model. We will show later that this assumption was flawed.

We’ll also assume that the scatterer has a smooth surface, thereby ensuring

specular, as opposed to diffuse, reflection, which is necessary to maintain to a coherent

wavefront. We’ll use the generally accepted Rayleigh criterion of %, where A = the

wavelength of the acoustic wave, as the upper limit for specular reflection. Thus, any
surface features larger than this are deemed to produce diffuse reflection. Another
assumption is that the transmitter and receiver are coincident points as opposed to
extended objects, an assumption intended to simplify the modelling of the wavefront’s
transmission and reception. We’ll also assume that the voltage at the transducer’s
terminals is directly proportional to the acoustic pressure at the transducer’s faces, an
assumption that extends to both the transmitter and receiver. This assumption of a linear
relationship is necessary because non-linearities would adversely affect our results. The
fluid medium that encompasses the transmitter, receiver and scattering body is assumed
to be non-dissipative (ie. doesn’t absorb the energy of the acoustic wave) as well as both
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homogeneous and isotropic (ie. having the same physical properties at all points and in
all directions respectively).

Finally, we’ll assume that the scattering body is in the Fraunhofer region (ie. far
field) of the transmitter and receiver, since this will allow us to model the reduction in

wave intensity with distance using the inverse square law (ie. Intensitﬂyd, . 3). To
stamce

ensure that the transmitter and receiver are indeed in the far field, the physical extent of
the source must be small compared to the distance travelled by the wave, a factor of 3 to
10 generally being considered acceptable®. This translates to ensuring that the diameter
of the transducer is small compared to the distance to the scatterer and that the size of

the scatterer is small compared to the distance to the receiver.

2.2.2 Definitions

The assumptions having been made, the terms were defined,

PF,(¢,¢) = Sensitivity of the transmitter (transducer) in direction (¢, ¢), where
P = pressure produced per unit volt at unit distance in direction ¢ = ¢ =0.
HF, (¢, ¢)= Sensitivity of the receiver (microphone) in direction (¢, ¢), where

H = voltage produced per unit pressure at unit distance in direction = ¢=0.

The transmitter and receiver are defined as being at the origin of this polar coordinate
system. It’s not shown above, but transmitters and receivers also have a directional
sensitivity to frequency. This will be taken into account when we add a directivity

function to our derived equation in the next chapter.
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For a point in the far field, the pressure p at time ¢, of the transmitted wave at

distance r in the direction (¢, ¢) is given by,

p=vPF (.o AL D @.1)

where, V' = voltage applied to the transducer,

« = angular frequency of the wave (= 271 ),

t,= instant of incidence upon the target,

= =27
k = wave number ( A ),

j = imaginary number,

and r = range to the target.
The scattering surface can be defined as ¢ = F;(r,¢) and thus at the scatterer,

EW.¢) = W Fy(r.g) = F,(r.¢)

& 5.9 = 5@ .E0.9) = F, (r.9)

Hence, the pressure p, at time ¢, of the wave incident upon an element of area ds of the

scatterer surface at distance r in the direction (¢, ¢) is given by,

p, = VPF (g SR D (22)



2.2.3 Kirchoff’s Approximation

At this stage, the Kirchoff approximation is introduced which makes the
assumption that each element ds on the scattering body will scatter incoming radiation
over a solid angle of 27 (ie. into half space). At first glance, this may seem to violate
the law of angle of incidence equalling angle of reflection. On a qualitative level
though, this approximation can be understood by appreciating that ds is of negligible
size (ie. a point) and a point reflector is incapable of reflecting incoming radiation in
any preferred direction. This assumption having been made, Kirchoff’s approximation
goes on to state that the scattering surface is composed of an infinite number of these
elemental areas, each of which reflects incoming radiation into half space.

By using the above approximation, as well as it’s prerequisite that » >> A, and
analysing boundary conditions, Freedman extended Eq. (2.2) above into the following

form,

ap. = = L exp jlan - 21) 20 g 23)

where, Ap = pressure at the receiver due to scattering off ds,

@= angle of incidence of the incoming radiation at ds.

The equation above only models the contribution from a single element, so the
next steps were the inclusion of the contributions from all elements along a strip at a
distance r to » + dr, by integrating over the strip at that distance and then the integration

of the resulting equation for all » along the length of the scatterer. The linear

2-6



relationship between acoustic pressure and receiver voltage was also factored in. The

equation he derived was,

E=-j VIZH exp( ja)t)J‘@exp( - j2kr)dr (2.4)
0 r

where, E = voltage at the receiver due to the scattered echo from the object.

W, (r)= directivity weighted solid angle subtended at the receiver by all parts of

the scattering body within the range r.

2.2.4 Solid Angle

The concept of the solid angle W (r) subtended at the receiver by part of the
scatterer is best understood by visualising a plane slicing through the scattering body at
range r, the area of intersection of the plane with the scatterer being denoted by 4(7). To
conceptualise the solid angle in this manner we assume that the scatterer is far from the
receiver, so that the locus of equidistant points from the receiver to the intersection at
range » can be approximated as a plane rather than a sphere.

Provided this range r is not in the shadow region of the scatterer (ie. a region out
of the direct line of sight of the transmitter), the solid angle W (r) for a convex object is

simply given by,

W(r) = A(r) (2.5)

2
r
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It provides a measure of how much of the space surrounding the transmitter/receiver is
occupied by the scattering body at that range, a theoretical total enclosure of the
transmitter taking the maximum value of 4 7. Eq. (2.4) however, makes mention of the
directivity weighted solid angle w (r). This is an acknowledgment that real world
transmitters/receivers are not simply coincident points in space, but have two-
dimensional extent and as such cannot emit or receive with the same sensitivity in all
directions, the reasons for which will be elaborated upon at a later stage. Fig. 2.1 shows
a typical example of the directivity of a plane piston transducer®, the characteristic lobe

pattern is a by-product of its two-dimensional structure.

=

FIG. 2.1. Directivity pattern of a 1.9 cm radius transducer at 50kHz.

Thus a weighting is superposed on W (r) to account for the variation in the transmitter
and receiver directivities and this is denoted as W (r), although we’ll show later that
treating the transmitter and receiver as plane pistons rather than points eliminates the

need to artificially weight the solid angle.

2.2.5 Extension from a strip of width dr to a Solid Object

The next stage of the derivation is the extension of the model to incorporate the
contributions from all strips along the scattering body within the irradiated region. We’ll

define 7 as the distance from the transmitter to the nearest part of the scattering body
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and r; as the distance to the farthest part of the scatterer that remains within line of

sight of the transmitter. W _(r) will remain zero up to a distance of 7, as the virtual
plane has yet to intersect with the scatterer up to this point and will continue to increase
in size until distance r,, after which it remains at this maximum value for all r — oo, If
the wavefront encounters a planar region on the scattering body between 1 and r;, say
r,, then w_(r) will have a finite, discontinuous increase in its magnitude at this range.
An example of such a scattering body would be a truncated cone, where W, (r,) at the
truncated front face would be a discontinuous function.

Since we need to be able to integrate over all points that may include
discontinuities, we’ll need to split up the surface into regions proceeding and regions

beyond the discontinuities and add the contributions from these regions separately.

Let’s assume the surface is continuous (ie. has no discontinuities) from =0 to r<r,

and the solid angle for this section of the scatterer being denoted W, _(r). Similarly,

Wg -

let’s assume continuity over the ranges r >r, to r — o, the solid angle for this section

being denoted w . (r). The size of the discontinuity is thus given by,

D(Ww,g,O) - D( wolgs ) Mg (r) - ng+( r) (26)

and the integral in Eq. (2.4) becomes,

0 g gdW B
Id » exp( Jj2kr)dr = lime - 0 _[ - (7 )exp(=j2kr)dr +
0
< daw. ., .
lime - 0 j L(r)exp( =j2kr)dr - DWW, g,0)exp( = j2kr,) (2.7)
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Now, given that w (r) remains constant (ie. zero) in the range 0<r <y, it

follows that @ = 0 in this range also. Similarly, over the range r, <r<oo, the
» _

solid angle remains the same (ie. it’s maximum obtained at r,) and thus a.(r) -
‘ dr

over this range as well. Thus, the limits in the integral of Eq. (2.7) are narrowed,

© EAW  (r
j—dWw(r) exp( —j2kr)dr = lim & - 0 j W) )exp(=j2kr)dr *
0 d}" n r
Tdaw. . (r
lime - 0 j Z;F()exp(=j2kr)dr -DW,,g,0)exp( —j2kr,) (2.8)

For a scatterer with multiple solid angle discontinuities in the range 7 <r<r,, the

contributions from each region between the discontinuites can be expressed as,

AW
lime -~ 0 [ 2+(;f)exp(=j2kr)dr

rg €

and by using integration by parts, Freedman was able to express the total contribution of
all regions across the scatterer as a discrete summation, where each value of n

represents a separate discontinuity,

o > dW" SR
[P o~ j2brydr = = exp(=j2kr) W (k) (2.9)

dr n=1 dr"

0

We define the nth order discontinuity in the solid angle as,
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D(Ww,g,n) = d (ng—(;i n_ ng+(r)) n= 0’1’2’3’ etC... (210)

and thus the voltage at the receiver is given by the summation of all contributions from

all regions along the scatterer where discontinuities occur,
S
E:ZZE(g,n) (2.11)

where x = the lowest derivative of w () for which a discontinuity exists at r,,

bW,.g.m) (2.12)

and E(g,n) = jVPH G2
J

exp( jar = 2kr,])

If the scattering body is sufficiently far enough away from the transmitter such
that the intensity of the wavefront varies negligibly over the extent of the scatterer, then

W (r) can be re-written as,

W, (r) = A1) 2.13)

r

m

where 7, = mean range of the discontinuities on the scattering body, given by the

midway point between the first and last discontinuities.

We define,
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DWW, ,g,n) = D(A»—Zg") (2.14)

7

m

Thus, the voltage E, at the receiver due to backscatter off the body from the

discontinuity at range 7, is given by,

_ . VPH e D(A,,g,n)
E )y — &l (2.15)
C I IO LT oy

where 8=t —2kr.

This is the final equation in the derivation of Freedman’s model. Although
Freedman went on to derive equations for special cases, this remains the highest level

general equation for his model.

2.3 Physical interpretation of Freedman’s Model

2.3.1 Interpretation of the Components of the Equation

Providing a physical, or intuitive, interpretation of Freedman’s model is best
achieved by breaking Eq. (2.15) down into several modules and generalising the role of
each. Firstly, at a fixed frequency, the term VPH is a constant of proportionality which
represents the dependence of the voltage at the receiver on the product of (a) the voltage
applied to the transmitter, (b) the transmissivity of the transmitter and (c) the sensitivity
of the receiver. The A in the denominator indicates that the amplitude of the reflected

waves from the scattering body’s surface will be smaller at lower frequencies and it’s
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presence in the equation is a product of the Kirchoff approximation. The rm2 in the
denominator is a product of the inverse distance law for geometrical spreading loss from
a point source being applied twice, since we have transmission from the source to the

range r, as well as reflection back to the receiver, again over a range r,. The

exponential term exp(j6) in Eq. (2.15) is the complex form of the solution to the wave
equation, which simply models the cyclic sinusoidal variation in wave amplitude over
time and distance. The terms within the summation represent, in the case where n = 0,
the magnitude of the direct backscatter to the receiver and in the case of higher order
components (ie. n > 0), the magnitude of the diffracted signals transmitted toward the
receiver. In air, the contributions from successively higher order terms diminish by
orders of magnitude however and so in practice only the first two, or possibly three,
terms have any relevance to the echo produced. This is wholly due to the fact that the
wave number k for an ultrasonic wave in air is very high, of the order of 10°. For other
environments where the wave number is lower, for example water at 20°C which has k
= 212 for a 50kHz wave’, the diminishment of the higher terms would be less
pronounced.

The specific role that the nth order discontinuity terms D(4,,g,n) within the

summation play in generating echoes in Freedman’s model is best illustrated by

example. The nth order discontinuity function for a discontinuity at range r,, can be

expressed as follows,
d"A d"A

D(4,,g,m) = dr”w (re-)— dr"w (74+) (2.16)
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where 7,_ and 7, represent the ranges infinitesimally prior to and beyond the

discontinuity respectively.

At an arbitrary range r, on a smoothly varying section of the scatterer’s surface,
the nth order derivative of the cross sectional area with respect to range at ranges
infinitesimally prior to and beyond r, will be the same. Hence, Eq. (2.16) will be zero,
thus there is no discontinuity and so no echo is generated. At those ranges r, where

there is a discontinuity in one of the nth order derivatives though, Eq. (2.16) will have a
non-zero value and hence an echo will be generated.

Discontinuities in cross sectional area or any of the higher order derivatives of
area with respect to range are thus responsible for the formation of echoes. Freedman
termed these echoes “image pulses”, since their structure is identical to the transmitted

pulse in all but amplitude.

2.3.2 Example: The Sphere

Take the example of a sphere as shown in Fig. 2.2 below, with a radius of a, the

point nearest to the transmitter located at » (shown inline with D(4,1,1) & D(4,1,2))

and it’s equator at located at », (shown inline with D(4,2,2)),
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Spherical Target

/ A(r)
D(A11) ’\
1st Order
2nd Order
D(A,1,2) D(A2,2)
O Echo Envelope

FIG. 2.2. Echoes from a sphere as predicted by Freedman’s model.

Freedman showed that the nth order derivatives of area with respect to range, between

r, and r,, are as follows,

A4,(r,) = ma® —(r, —rg)z) (2.17a)
dd, (r,) =2n(r, —r,) (2.17b)
dr
dzziw (r,) =-2n (2.17¢)
dr
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d’A
dr’

=(r,) =0 (2.17d)

The magnitudes of the discontinuities at », and r, are then calculated using Eq.

(2.16) and are as follows,

D(A,,7,0) =0 (2.18a)
DA, 1)) =-2m (2.18b)
D(A,,r,2) =27 (2.18¢)
D(A,,7,,0) =0 (2.18d)
D(A,,r,,) =0 (2.18¢)
D(A,,r,,2) = —27 (2.18f)

The cross sectional area of the sphere, as “seen” by a transducer located to the far
left of the sphere, is not discontinuous at any point. However, at r, the first and second
order derivatives are discontinuous and so each produces an echo. These are in phase
and superimposed to form the echo from 7. Similarly, at r,, the equator of the sphere,
the second order derivative is discontinuous and an echo should originate from there
too, at least in theory. It will be shown later though, that no echo will be generated at the

equator, despite the predictions of Freedman’s model.



2.4 Feasibility of Freedman’s Model

Having examined the model from a theoretical standpoint, the question remains as
to how feasible the model is for our purposes. Since our objective is the development of
an inverse model, the fact that it’s an analytical model makes it an ideal candidate, since
only analytical equations can be inverted. The experimental evidence to support it is
tenuous at best however. Freedman conducted a series of experiments in an underwater
environment whereby large steel spheres were irradiated with acoustic pulses. The
received echoes verified the model on a qualitative level, in that they came from those
parts of the spheres that the model predicted, but the noise in the signals was between
20 to 30% and so conclusions couldn’t be drawn as to the quantitative validity of the
model. Freedman also speculated that internal penetration of the target by the pulse may
have corrupted the results. Unfortunately, no follow up research on this model was
published in the years following the publication of his thesis, by either Freedman
himself or others in the field. Nevertheless, despite the absence of any concrete
experimental verification of the model, it is a model with a solid theoretical grounding
and as such deserved to be followed up with further research, as this thesis has done.

The other issue that affects the feasibility of the model is the role that the
assumptions made in the derivation have played in limiting its scope. Some of the
assumptions made are reasonable and are of no concern, such as the requirement that
the model deals with only one object at a time, the scattering body is static, the distance
to the receiver is far, etc... Others however, such as assuming the system is within a
non-dissipative fluid medium and the transducer and receiver are coincident points are
problematic. However, these issues can all be dealt with by extending the model to
account for these deviations from ideal conditions and this is the topic of the following

chapter.
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3 Extensions to Freedman’s Model

We now have a simple model for calculating the echo received from a scattering

body produced by one or more discontinuities at a range 7, on the body. But

Freedman’s model, as it stands, is idealised in that it only works for objects in media
with negligible energy attenuating properties, such as water, using a coincident point
source transmitter and receiver. To enable the model to work in a gas, specifically air,
with real transducers and receivers, which may be non-coincident, we need to

compensate for several factors. These are, (a) attenuation due to air, (b) breakdown of

. 2 =2 . .. . ..
the assumption r, ~ =r, °, (c) polar directivity of the transducer, (d) directivity of the

receiver and (e) non-coincidence of the transmitter and receiver. Although (c) and (d)
do not represent additions to the model, as Freedman already accounts for transmitter
and receiver directivities, we will provide an alternate method for calculating them.
Finally, the real component of the model needs to be extracted, since this corresponds to

the physically observable signal.

3.1 Signal Attenuation Due to Air

Several mechanisms are responsible for the loss in energy of a wave travelling
through air. Apart from the obvious geometrical spreading loss, which Freedman’s
model accounts for, atmospheric absorption causes the wave to decay exponentially
with range. In the frequency range of interest to us (around 50 kHz), this absorption is

due primarily to the vibrational relaxation of oxygen molecules'.
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The atmospheric absorption experienced by a wave scattered at a range 7, is

incorporated into the model by the addition of the term exp(=2r,a) into Eq. (2.15),

g =i POH)

g

o\ D(4,,8,n)
-2 gy — e
- ) exp( r,a +1 )HZ:;‘ Q2ik)’

(3.1)
The new term is the attenuation factor and a is the absorption coefficient. The

path length 2r, is used because the radiation travels from the transmitter to the

scattering object and then reflected back to the receiver over the same distance. Note
also that from this point onward the designation for the imaginary number will be

represented by scientific standard of i rather than the engineering standard of ;.

The absorption coefficient @ can be determined either theoretically or
experimentally. Theoretical values can be determined using the series of equations
specified by the American national standard method for calculating attenuation in air’.
At the frequencies we use, these give us an absorption coefficient accurate to within
10%. Given that the amplitude of a spherical wave travelling through an attenuating

medium is given by E :M, where E, is a constant of proportionality, the

r
amplitudes of the wave at two distinct ranges 7 and r», would be given by

and E, - £y exp(=ar,) respectively. These equations can be
n r,

g = Lo exp(zan)

1

rearranged and equated to produce the following,

Er
ln( 1%2’”2)

r,—n

a= (3.2)
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Experimental values can therefore be determined by positioning the receiver at

two distinct ranges 7, and 7, from the transmitter and inserting the amplitudes of the
received waves E, and E, into Eq. (3.2),

Now, the voltage £ can only be measured to within an 0.8% accuracy in 95% of
cases, for reasons to be outlined later. In the worst-case scenario of E, being 0.8% too
large and E, being 0.8% too small, the absorption coefficient will be in error by 10%.
Consequently, both the experimental and theoretical methods can only claim accuracy
to within 10% and so the method chosen is arbitrary. Since the absorption coefficient

can be calculated relatively quickly with the aid of a mathematical package, provided

environmental conditions are known, we chose the theoretical approach.

3.2 Breakdown of r,” =r,” assumption

To simplify the derivation of the model, Freedman assumed that the object was
sufficiently far from the transducer that the ranges to different points on the scatterer

could reasonably be approximated with the mean range r,, for the purposes of

calculating the geometrical spreading loss. At ranges of less than two meters though,
this approximation clearly does not hold when we are dealing with objects of up to 0.1m
in size.

An analysis of Freedman’s derivation reveals though that the approximation is
only necessary if one treats the separate echoes coming from different points on the

scatterer as all belonging to the same wave train. If we treat each echo as a separate
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entity, we can justifiably use the exact range r, instead of , . Hence we can replace 7,

with 7, in Eq. (3.1) to give us,

E :iwexp(—2rg0+i9)z D(Aw’g:n)

3.3
¢ r A =  (2ik)" (3-3)

As an example of how this changes the predictions of the model, for a typical
0.1m radius sphere at a distance of 0.8m, with an absorption coefficient of 0.2, there is a
15% increase in the amplitude of the calculated echo over that predicted by the original

model.

3.3 Polar directivity of the transducer

Because the transducer is not a point source but is instead analogous to an
oscillating plane piston, there will be an angular variation in the intensity of the sound
pressure about the transducer. This occurs because the field at any point is a summation
of waves coming from different points across the face of the transducer. Consequently,
not all waves arrive in phase and we get interference, producing the characteristic series
of maxima and minima. Measurements conducted at the Fraunhofer Institute in Stuttgart
in an anechoic chamber confirmed that the radiating plane piston is an accurate model
of a chirping transducer, the model becoming invalid only when the transducer
transmits continuously, due to streaming effects'".

We’ve used a Polaroid transducer with a radius of 1.9cm in our experiments and

it’s directivity field, calculated using the plane piston model'?, shown previously in Fig.
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2.1. The central lobe insonifies a region of 150 around the axis of the transducer, giving

it a total coverage of 30°. From Fig. 2.1 though it is clear that the field strength falls off
rapidly once we deviate from the axis. Consequently, when modelling the echo
generated from a point on an extended object we need to take into account the
diminished field strength of the incoming radiation at that point.

Freedman’s model compensates for the directivity of the transducer, as well as the
receiver, by requiring that the reflecting area A(r) on extended scatterers be weighted
for directivity, to give us 4, (r). This addresses the problem in an indirect manner by
retaining an assumption of uniform directivity in transmission and reception, by virtue
of the model’s point source approximation, and replacing the true area with the notion
of a pseudo area. Our approach is to retain the true area and instead replace the
assumption of uniform directivity with a model governing the directivity of the field.
Although mathematically both approaches are ultimately equivalent, the strength of the
latter is that it is physically and intuitively valid also. This is because it doesn’t require
the introduction of the abstract notion of a pseudo area and doesn’t retain an incorrect
model of the directivity of the transducer.

The directivity field of a plane piston is given by the following®,

_ 2], (kasing)

3.4
kasin @ (34

J£¢2

where k= 2 n% = wave number of the transmitted wave

J, = Bessel function of the first order.
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The factor P(f) in Freedman’s model represents the transducer’s capacity for
transmission with it’s value denoting the pressure produced at one meter along the axis,
per volt applied to the transducer, for a given frequency. To incorporate the directivity
of the transducer into Freedman’s model, we need to scale this factor with Eq. (3.4).

The resulting model follows,

_ VPOB@H() s D(A,g.m)
E, _zTexp(—zrg a+le)§(2i—:;f (3.5)

Scaling Eq. (3.4) in this manner is only valid if the scatterer is radially symmetric
about its axis, where the directivity is constant around the perimeter of all strips from »
to  + dr along the length on the scatterer. In the more general case where the directivity
pattern is not constant around the perimeter of each of these strips, for a non-radially
symmetric object, the directivity term would have had to have been included within the
integral for each r to » + dr contribution to the total echo. However, this model will
only be applied to radially symmetric objects and as such the scaling we have applied is
valid.

For echoes originating from points along the axis, the directivity takes on unit
value. Echoes from points off the axis are now compensated for by taking into account

the angle they make with it.

3.4 Directivity of the receiver

There are two distinct transmitter/receiver configurations that we use throughout

the course of our research, the so-called “coincident” case being when the transmitter
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and receiver are, as the name suggests, coincident. This occurs when the transmitter and
receiver are the same device and in our work this is achieved by switching the Polaroid
transducer into reception mode after initial transmission. The opposing configuration,
labelled the “non-coincident” case occurs when the transmitter and receiver are different
devices separated by a small distance. In this case, the transmitter is still the Polaroid
transducer, but the receiver is a 7mm diameter Bruel & Kjaer condenser microphone
(type 4135), separated from the transducer by 44mm.

Freedman’s model assumes that the receiver is not an extended object and as such
has a uniform directivity in reception. By virtue of it’s small size, this assumption holds

true for the condenser microphone with it’s directivity relatively uniform over the range

of angles (-49 to +100) that it receives echoes from". Consequently, the directivity of
the receiver is not an issue for non-coincident set-ups.

For the coincident cases though, when we use the Polaroid transducer for
reception, the directivity of the transducer must be accounted for. The angular
sensitivity of the transducer in reception mode is exactly the same as it is in
transmission mode and is governed by Eq. (3.4). This is because the directivity is a
function of the transducer’s geometry, which remains the same in both cases and so the
directivity doesn’t change.

The factor H(f) in Freedman’s model represents the receiver’s sensitivity in the
direction of the axis, for a given frequency. To incorporate the receiver’s directivity into
the model, we need to scale this factor with Eq. (3.4). The resulting model is given in

Eq. (3.6),

= DB DHDBAD oy (s 1 4 16)y DM (3.6)

E =
! roA = Qiky'
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As stated earlier, when using the microphone, the directivity takes on unit value to

indicate uniformity.

3.5 Non-coincident Transmitter and Receiver

Freedman’s model assumes that the transmitter and receiver are coincident. The

advantage of this is that when dealing with echoes originating from a ring of radially

equidistant points around the axis, such as the base of a cone, the echoes from each

point will all arrive at the receiver in phase. This eliminates the problem of wave

interference. However, for non-coincident configurations, which constitute 50% of

cases in our research, this assumption doesn’t hold and needs to be compensated for.

To examine the effect of unchecked interference, we measured the maximum

amplitude of echoes from the base of a cone as the microphone was shifted

progressively further away from the transducer. The results are shown in Fig. 3.1. below

and show a sinusoidal variation in amplitude which is characteristic of an interference

pattern.
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FIG. 3.1. Maximum amplitude of the echo versus separation of the microphone from the centre of the

transducer.
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As mentioned before, for coincident cases the transducer doubles as both a
transmitter and receiver, satisfying the above assumption and so interference is not an
issue in these cases. For the remainder though, the problem is minimised by aligning the
axis of the scatterer with a point midway between the centre of the transducer and the
microphone, as shown in Fig 3.2 below. This ensures that the path lengths L from the
transducer to the scatterer and then to the microphone remain equal at all times,

ensuring that the echoes arrive in phase.

FIG. 3.2. Alignment of the scatterer to ensure equal path lengths for the transmitted and reflected waves.

Also, A(r) as sensed from the vantage point of the receiver will be different in the non-
coincident case to that of the coincident one since the received echo no longer
propagates along the object axis. Because the model, being based upon an assumption
of transmitter/receiver coincidence, does not account for this, it will manifest itself as a
discrepancy in the results. By aligning the scattering body in the manner shown in Fig.
3.2, the deviation of A(r) from the coincident case, as sensed at the receiver, is at least

minimised due to the reduction of the angle between the object’s axis and the trajectory
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of the received echo of path length L. The impact, or lack thereof, of the deviation in
A(r) from the coincident case upon the results for non-coincident configurations will be

discussed in section 5.2.

3.6 Extraction of the Real Component

Although waves are regularly represented by complex equations, the measurement
process can only detect the real component. Consequently, before we can utilise Eq.

(3.6), we need to extract its real part. This is given in Eq. (3.7),

il)cost9—%2)sin 0) (3.7)

E, =4(/) ok ;

%2)'811(@ exp(—ng O'XD(O) sind—
Te

A factor G, signifying gain, has been added to account for any amplification that

may be applied to the received signal. In Eq. (3.7) the factors P(f), H(f) and A, which

weuse A= /f to calculate, have been combined into a single function A(f) which is

defined:

_P(HHS)
A

A= (3.8)

The negative sign in the function above is there simply to alter the form of the terms in
the parentheses of Eq. (3.7) from (X + Y + Z) to the more economical (X -Y —Z)
form.

We can combine terms in this manner because the individual factors need not be

measured independently, for a given frequency, then combined in order to calibrate the
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model. Instead, by measuring the echo from an object of known dimensions at a given
range, we can insert the echo amplitude, scatterer's discontinuity values, range,
frequency and calculated values of speed of sound and attenuation, from the
environmental conditions, into Eq. (3.7) to determine A(f). Since A(f) is independent of
the scattering body, the calibrated model is thus suitable for use with a range of objects
at a range of distances, provided we use the same frequency that was used to calibrate
the model and the speed of sound remains the same.

The extensions to the model having been made, we can now examine the

procedures required to test it’s validity.



4 Experimental Design

There are several components that constitute the experimental apparatus. Firstly,
the 12-bit chirp (transient wave) generator card within the Macintosh PowerPC
designed by Michael Milway & Assoc. Prof. Phillip McKerrow of the University of
Wollongong. The output voltage of this card is controlled via a custom designed
software package by Benjamin Stanley', also of the University of Wollongong, that
enables variation of the significant parameters, such as the maximum voltage (0 to 5
Volts in amplitude), number of wave cycles, frequency, etc., to allow production of a
sine wave with the desired envelope. The software also has the ability to produce
sawtooth and square waves, and impulses, but since our model is based upon the
scattering of monotonic (single frequency) waves, we’ve had no need to employ non-
sinusoidal waves in our research.

For non-coincident measurements (ie. the transducer and receiver are at different
point in space), we produce a 10 to 20 cycle wave with an amplitude of four volts, at a
frequency of 50 kHz. A wave with 10 to 20 cycles is an acceptable compromise
between the need to keep the transient short enough to prevent overlapping of echoes
from separate discontinuities and the need to keep it long enough for it to be considered
generally monotonic. A transient wave can never be truly monotonic (only continuous
waves have this distinction) because any transient is effectively a convolution between
an impulse function and a continuous wave. The impulse function is responsible for
high frequency components being present in the transient wave but if the impulse
function is long enough, in our case the equivalent of approximately 10 — 20 cycles of

the continuous wave, then the higher frequencies are negligible. An amplitude of four
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volts, slightly below the maximum voltage of five, was chosen because the output was
found to be non-linear when the maximum value was chosen.

The analog signal produced by the card, by virtue of the digital to analog
converter at it's output, is fed through to an amplifier with a gain of 30 and a 150 volt
bias is then added. The amplified signal is then applied to a 44mm diameter Polaroid
transducer and transmission follows. The entire experimental set-up is shown in Fig. 4.1

below,

FIG. 4.1. Experimental set-up used for chirp transmission and echo reception.

After transmission commences, the first few cycles of the transmitted wave
steadily increase in amplitude, since the transducer cannot respond instantaneously to
the applied voltage, and by the fifth or sixth cycle the wave has reached it’s maximum
value. This can be seen in Fig. 4.2, the captured echo from the front face of a large

truncated cone (100mm height, 197mm base diameter and 149mm truncated face

42



diameter) at a range of 800mm for a non-coincident transmitter and receiver. The last
several cycles of the wave, not shown in Fig. 4.2 but visible in Fig. 4.3, are the result of

“ring down” after the applied voltage has terminated and these decay exponentially.

/\/\A/\MN\M
m.u,sec\/ VVVVYUY

Time of arrival (usec)

FIG. 4.2. Echo from the front face of the large truncated cone at a range of 800mm for a non-coincident

transmitter and receiver.

Eg(Volts)

1 volt \/ v \V/
10 psec Time of arrival (usec)

FIG. 4.3. Echo from the front face of the large truncated cone at a range of 800mm for a coincident

transmitter and receiver.

For coincident measurements, where the Polaroid transducer acts as both
transmitter and receiver, the process differs in that the initial output of the chirp card is a
step function which drops from five volts to zero within 0.2 5. At the transducer, this
causes the AC voltage applied to drop from 300 volts to zero almost instantaneously
causing the transducer to exponentially ring down at it's natural frequency of
approximately 55 kHz. Typically, the transmission in this case contains one or two

well-defined cycles at the start of the wave and a number of trailing cycles that are
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progressively buried in noise. This is shown in Fig. 4.3, the echo from the front face of
the large truncated cone at a range of 800mm for a coincident transmitter and receiver.
A signal such as this, with only one or two well-defined cycles, deviates from the
assumption of monotonicity required by Freedman’s model, but does not risk the
interference issues that may arise with the non-coincident set-up. It is difficult to
speculate at this stage which of these two factors will prove more important to the

accuracy of the model.
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FIG. 4.4. Echoes from a medium sized truncated cone at a range of 600mm for a non-coincident

transmitter and receiver.

The echo from the scattering body is received via the ultrasonic microphone, with
a corresponding preamplifier, in the non-coincident case and the transducer in the

coincident case, which goes into reception mode immediately after the step function is
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applied. In both cases, the signal is then optionally amplified before being sampled at 1
MHz with 12-bit resolution by a chirp capture card designed by Michael Milway &
Assoc. Prof. Phillip McKerrow of the University of Wollongong. This card is also
within the Macintosh PowerPC and is controlled via the same custom software that was
used for controlling the chirp generator card. The signal is then displayed on screen and
exported to a file for later analysis with a mathematical package.

Fig. 4.4 shows a received signal that includes two echoes from the one object, in
this case the echoes from a medium sized truncated cone (100mm height, 197mm base
diameter and 97mm truncated face diameter) at 600mm for a non-coincident transmitter
and receiver. The larger echo is from the truncated face of the cone and the second,
smaller echo is from its base. The transmitted pulse was shorter than usual to ensure no
overlap between the two echoes. This was done for illustrative purposes only, to clearly
delineate between the two echoes. In practice though, short-duration pulses don’t satisfy
the requirement of monotonicity and so would not be used, the co-incident case being
the exception, as already pointed out. In our experiments, described in the following
chapter, we actually used pulses of longer duration, at least 10 cycles, to ensure

montonicity.

4.1 Noise Minimisation

Due to the weak echoes that we often have to deal with in this research,
localisation and minimisation of noise sources is an essential prerequisite. The low
intensity of the reflected echoes is not only a result of the physical limitations of our
equipment, but also a symptom of Freedman’s model itself. The amplitude of the

(n+1)th order image pulse, represented by the (n+1)th order term within Eq. (3.7), is
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typically at least two orders of magnitude smaller than the nth. Consequently, we need a
signal with a high signal to noise ratio in order to see the higher order contributions.
The noise that we’ll examine here comes from three main sources: the

environment, the transducer and the chirp capture card.

A. Environment

In the lab environment under which our research was done, short-term
fluctuations in air pressure from drafts, doors opening/closing, power supply fans,
people walking, etc. can cause variations in amplitude of the received echo by up to
10% between any two successive measurements. Specifically, we found that the
standard deviation for any sample of amplitude measurements was approximately 3%.
What this figure implies is that, assuming a normal distribution, for any single
amplitude measurement, there’s a 68% chance that it’s within 3% (one standard
deviation) of the population mean and a 95% chance that it’s within 6% (two standard
deviations) of the mean, the “population mean” here representing the amplitude one
would expect in the absence of random noise sources. It also implies that for a small
number of measurements, less than 5%, the deviation of the amplitude from the mean
would be greater than 6%, in some cases as high as 10% as observed.

Since we need a relatively accurate measure of amplitude to work with, it would
be advantageous for us to obtain an estimate of the population mean of the amplitude, as
this figure represents the amplitude devoid of the influence of random noise. To obtain
this we take a sample of amplitude measurements, calculate the mean and repeat the
procedure several times, producing several estimates of the population mean in the
process. These estimates constitute a distribution of means with a standard deviation

that varies depending on the sample size used, with larger sample sizes obviously
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producing smaller standard deviations and thus a more accurate estimate of the
population mean.

Using a sample size of 50, which is to say we average the amplitudes of the
echoes from 50 readings, the standard deviation of the distribution of means is only
0.4%. What this implies is that when we average 50 echoes, our estimate of the
population mean of the amplitude is accurate to within 0.4% in 68% of cases and
accurate to within 0.8% in more than 95% of cases. Thus a sample size of 50 was
deemed adequate for the task at hand and in all of our subsequent measurements we
averaged over a minimum of 50 echoes before analysing the results. In each case, the
measurements were completed within 30 seconds because the capture software was able
to average the echoes in real time.

Over the course of several minutes, the environmental conditions in a room, such
as temperature, pressure and humidity, can and do change. In a laboratory environment
this is primarily due to air conditioner cycles. Also, over a period of several hours these
same conditions will drift due to atmospheric changes occurring over the normal course
of the daily cycle. This will affect the time of flight, via the speed of sound, and
amplitude, via attenuation factor, of an echo. The model is designed to compensate for
these changes provided we know what the environmental conditions are at the time of

measurement. Thus, continual monitoring of these conditions is required.

B. Transducer

As we mentioned earlier, the final cycles of the transmitted wave are the result of
“ring down” after the voltage applied to the transducer has terminated and these cycles
decay exponentially. This decay is very long however and often the ringing will not

have completely attenuated by the time the echo arrives. When the transducer is being
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used as a receiver, the ring down signal will be superimposed on the incoming echo,
consequently interfering with the received signal. When the microphone is used for
reception, it will pick up the ring down signal via one of the outer side lobes (see Fig.
2.1), again resulting in corruption of the signal. To solve this problem, the ring down
signal, which is fairly repeatable, is recorded separately in the absence of any scattering
body and later on, as part of the echo analysis, subtracted from the measured echo. This
also has the advantage of cancelling any extraneous echoes, from objects in the
environment unaccounted for, which may be present in the signal.

A different problem, which reveals itself only after several hours, is the slow but
significant reduction over time in the amplitude of the received echo from a scatterer.
This was measured from a reference target and the results, given in Fig. 4.5, show a 4%
reduction within one hour and 18% over seven hours, after which the amplitude no
longer decreases significantly. We concluded, after isolating the source of the drift to
the transducer itself, that the changes are a result of the transducer losing it’s ability
over time to produce a given pressure for a given voltage. We believe this reduction in
transmissivity may be due to the mylar film used in the transducer stretching under a

constant 150V bias and losing it's rigidity as a consequence.
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FIG. 4.5. Variation in measured amplitude with time of the echo from a target.
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To compensate for this drift we switched off the bias to the transducer between
measurements. This relieves the tension on the mylar film between transmissions and

allows it to restore it's rigidity.

C. Chirp capture card

The capture card is a host for several potential noise sources. Because the card is
in close proximity to the chirp generator card, as well as numerous electronic
components within the host computer, the potential for electromagnetic interference is
great. To minimise this, we used coaxial cable for the wiring between the input socket
and the analogue to digital converter (ADC). The ADC itself was shielded by copper
plates to prevent interference from external and on-board noise sources. Initial
prototypes for these cards didn’t include these enhancements and the resulting noise
was appreciable.

The capture card begins sampling the incoming signal as soon as the generator
card begins transmitting. Because we are superimposing the echoes in real time though,
for the purpose of averaging them in order to increase the signal to noise ratio, the
incoming waves must be in phase with one another, otherwise they will experience
interference. As a consequence, the circuit was designed to ensure that the start of the
transmit and receive cycles are synchronised to start on the same edge of the signal, to
prevent phase mismatch.

Finally, the sampling rate of the ADC places a constraint on the accuracy of the
captured signal. At a sampling frequency of 1 MHz, a typical 50 kHz wave will be
sampled 20 times per cycle, or every 18°. Since our objective is to measure the

amplitude of the peaks, for reasons to be outlined shortly, the best case scenario, in
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terms of accuracy, occurs when the wave is sampled exactly at it’s peaks. The worst
case is when the sampling occurs at a separation of 9° on either side of the peak,
leading to an inaccuracy in the measured peak of 1.2%. To resolve this issue, we use
interpolation'® to reconstruct the shape of the wave between the sample points. This is
done with the aid of a mathematical package during the analysis stage, an example of

which can be seen in Appendix A.5 (a).

4.2 Echo Analysis

The capture software allows us to export the returned signal to a file for later
analysis with Mathematica. Once the file is imported into Mathematica, the first step is
to cut out the unnecessary parts of the trace. Since a typical trace consists of an
appreciable period of no signal followed by the echo and then no signal again, it is
advantageous to remove the regions that are not part of the main echo since it will
reduce processing time markedly later on. Once this is done, the trace of the signal
received in the absence of any scattering body is imported and subtracted from the echo,
as outlined previously. Appendix A.5 (a) contains an example of this process also. This
second trace must be obtained within a very short time after the initial echo was
recorded, when the temperature, pressure and humidity are still almost the same as
when the initial trace was taken, otherwise changes in these environmental conditions
will adversely affect the accuracy of this method.

Interpolation of the processed echo follows and we’ve chosen to interpolate ten
points per sample, giving us a virtual sampling frequency of 10 MHz. The interpolation
1s more accurate when the wave is monotonic and of constant magnitude. Consequently,

the highest accuracy in the interpolated echo occurs in its central region, where the
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wave’s magnitude has stabilised and ring-down has yet to begin. This stable central
region has the added advantage of conforming more closely to Freedman’s assumption
of a non-varying echo envelope. Since the objective of our work is to compare the
measured amplitude with the predicted amplitude of the echo at a point in time, we need
to find an appropriate region within the echo from which to select our measurement
point. For the reasons detailed above, the central region of the echo is the most
appealing for this. The appropriate tools within the mathematical package are then used
to determine the maximum value of the newly interpolated echo. This will always be a
positive peak located within the central region. Now that we have the measured value of

E,, we can turn our attention to using the model to calculate a theoretical value of E, .

By this stage, we know, or can easily calculate, almost all of the factors that are

needed for calculating the theoretical value of E,. The only unknown remaining is the

phase to be used within the trigonometric functions. To determine the phase we utilise
the fact that for the three trigonometric terms in Eq. (3.7), one will always dominate the
others. To determine which term dominates, prior knowledge of the wave number and
the nth order discontinuities of the scatterer are required, in order to calculate the
coefficients for the trigonometric terms. Consequently, if the cosine term dominates,
then the positive peaks of the echo correspond to phases of 27mm where n=1,2,3, etc. If

one of the sine terms dominate, then the positive peaks correspond to phases of

2/ + % where n=1,2,3, etc. Even though we don’t know the value of n

corresponding to the peak that we measured, it doesn’t matter because the trigonometric
function takes on unit value for all integer values of n. Thus, the value that one uses is
arbitrary, provided it’s an integer.

The treatment given above assumes that the non-dominant terms play a negligible

role in affecting the phase of the wave. Is this assumption valid though? By plotting the
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echo, as predicted by the model, for several typical cases of spheres, cones and
truncated cones, we find that when the non-dominant terms are included, the phases of
the positive peaks deviate from those predicted above by less than 2°. This corresponds
to a deviation in the amplitude of less than 0.06%, confirming the validity of our
assumptions.

Once the phase has been chosen, the predicted amplitude of the peak in question
can be calculated and compared with its measured counterpart. The next chapter will

detail the results of such comparisons for a variety of objects at different ranges.
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5 Results and Analysis

For the experimental work, we used spheres, regular cones and truncated cones
of varying dimensions at ranges of 800mm, 1000mm and 1400mm, accurate to within
Imm. The range is defined as the distance from the face of the transducer to the point(s)
on the scatterer from which the echo originates. For example, when discussing the echo
from the base of a 100mm high cone, a range of 1000mm refers to the distance from the
transducer to the base, as opposed to the distance to the vertex, which would be only
900mm.

The spheres we’ve used have diameters of 100mm, 150mm and 200mm. The
regular cones have a height (distance from base to vertex) of 100mm and base diameters
of 100mm, 150mm and 197mm. The truncated cones have a height (distance from base
to truncated face) of 100mm, base diameter of 197mm and truncated face diameters of
52mm, 97mm and 149mm. Unless stated otherwise, for each class of scatterer (ie.
sphere, regular cone or truncated cone), the model was calibrated with a member of that
class positioned at the greatest distance.

In our experiments the smallest member was always used, but the choice is
arbitrary provided that the object is at least several wavelengths wide in order to satisfy
Kirchoff’s approximation’. For example, when dealing with spheres, the model was
calibrated with the 100mm diameter sphere at 1400mm. The reason for calibrating with
an object at the greatest distance is that the far field approximation, which is central to
the model, is most accurate when dealing with scatterers that are as far as possible from
the source of the wave. Consequently, the calibration constant 4(f) is most accurate

when obtained from an object at the greatest range.
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Even though A4(f) is independent of the geometry of the scattering body and so
once calibrated could be used for other object classes, this presumes that all
measurements are to be taken within a short time span because A(f) is dependent upon
the speed of sound, which varies with temperature. In our experiments though, the set of
measurements for each object class were taken on different days, with different
temperatures, necessitating the recalibration of the model for each new set.

All objects were mounted on a precision positioner with three degrees of freedom that
has a range limit of 1.5m. Data for all figures used in this section, pertaining to

measured and predicted amplitudes, are provided in Appendix A.4.

5.1 Experimental Results

A. Spheres

As stated earlier, it was suspected that despite the predictions of Freedman’s
model, the equator of a sphere may not generate an image pulse when insonified. The
reason for this is that Freedman assumes that the contributions from the geometrical
shadow region, generally known as “creeping waves”, are negligible at the high
frequencies we’ve used. Rudgers'® though, claimed that for the case of a sphere, these
contributions are equal in magnitude and the inverse of those generated by Freedman’s
mechanism, the net result being a cancellation of the equator echo.

To test Rudgers’ assertion, we captured the echo from a sphere and analysed the

region where the image pulse from the equator should be. Given that the equator’s echo

would be extremely weak, only % ka that of the stronger echo from the closest point

on the sphere, it was necessary to use an amplification of 10°in order to see it, if it
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existed. Despite the noise floor being significantly lower than the predicted amplitude of
the equator’s echo, no echo was observed, confirming Rudgers’ analysis.

Consequently, the results presented here are only for the echoes from the closest
points on the spheres. The discontinuity equations for the closest point on a sphere of

radius a were given previously,

D(A,,7,0) =0 (2.182)
D(A,,r,))=-2m (2.18b)
D(A,,r,2) =27 (2.18¢)

The results of comparing the measured and predicted amplitudes of the echoes are given
in Fig. 5.1 for the case of a non-coincident transmitter & receiver and in Fig. 5.2 for the

coincident case.
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FIG. 5.1. Measured and predicted amplitudes of echoes from spheres of diameter d when the transmitter

and receiver aren’t coincident.
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FIG. 5.2. Measured and predicted amplitudes of echoes from spheres of diameter d when the transmitter

and receiver are coincident.

Note that the difference in amplitudes for Figs. 5.1 & 5.2 are a consequence of
(a) different transmission mechanisms being used for the coincident & non-coincident
cases and (b) differing levels of amplification applied to the captured signal. For the
non-coincident case, the predictions deviated from the measured amplitudes by an
average of 4.7%, the worst case being 13%. The coincident case provided better results
though, with the predictions deviating from the measured amplitudes by an average of

only 3.3%, the greatest error being 10%.

B. Regular Cones

Freedman’s model predicts that two echoes should be generated from an

insonified regular cone, one from its vertex and the other from its base. The base echo is
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readily observable but the image pulse from the vertex cannot be seen. This is because it
is a point and so has a negligible reflecting area, the consequence being that what little

echo there is, is buried in noise despite attempts to see it with amplifications as high as

10° . The discontinuity equations for the vertex of a regular cone’ are given below,

D(A,,7.,0) =0 (5.1a)
D(4,,71) =0 (5.1b)
D(A,,r,,2) = -2ntan* y (5.1¢)

The only non-zero contribution to the echo is from the second order discontinuity, but
as we know, its contribution is several orders of magnitude smaller than the lower order
terms, resulting in a near negligible contribution to the observable echo. Thus, we can
only present the results involving the echo from the base.

The discontinuity equations for the base of a regular cone’ are given below,

D(A,,7,,0) =0 (5.20)
D(A,,r,1) = mtan’ y (5.2b)
D(A,,r,,2) = 2mtan’ y (5.2¢)

where £ is the cone’s height and ) is the angle between it’s central axis and any line
connecting the vertex to the rim.

A comparison between the measured and predicted amplitudes of the echoes is
given in Fig. 5.3 for the case of a non-coincident transmitter & receiver and in Fig. 5.4

for the coincident case. For the results presented in Fig. 5.3, the model was not
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calibrated at 1400mm as per usual but at 800mm because the echo had been too weak,
allowing noise to dominate, thus rendering it unsuitable for use as a calibrating signal.
Also, high amplification was employed to compensate for the weak echo, hence the
larger than usual voltages of the captured signals.

For the non-coincident case, the predictions are, on average, almost twice the
size of their measured counterparts, the most extreme case being more than 3.6 times
the measured value. The coincident case proved no better, with the average prediction
being more than three times the measured value, the most extreme case taking it to five
times. The results from the smallest cone were an exception to this, having predicted
values smaller than those measured.

Later we will discuss the reasons why these predictions deviate so markedly

from the measured values.

' Measured
-~ Predicted
d =0.100m d =0.150m d=0.197m
0.25
0.20
0}
i 0.15
(4]
T
=
g
= 0.10
0.05 - .
0.00
08 1.0 14 08 1.0 14 08 10 14

Range (m)

FIG. 5.3. Measured and predicted amplitudes of echoes from the bases of regular cones of base diameter

d when the transmitter and receiver aren’t coincident.

5-6



' Measured

-- Predicted
d =0.100m d=0.150m d=0.197m
2.50
2.00 -
)
° 1.50 -
2
ek]
©
=
S 100}
g -
0.50 |
0.00
08 10 14 08 10 14 08 10 14

Range (m)

FIG. 5.4. Measured and predicted amplitudes of echoes from the bases of regular cones of base diameter

d when the transmitter and receiver are coincident.

C. Truncated Cones

As with a regular cone, Freedman’s model predicts that two echoes will be
generated when a truncated cone is insonified. One will originate from the base and will
be identical to that generated by a regular cone with the same shaped base. The other
will come from the truncated face and will be significantly strong, given the large
reflecting area of the face. As the mechanism of echo formation at the base of a
truncated cone is identical to that at the base of a regular cone, we need not examine it
again. Instead we will focus on the echo produced by the truncated face.

The discontinuity equations for the face of a truncated cone’ follow,

D(A,,7,0) = —m(h—b)* tan” y (5.3a)

D(A,,7,]) = =27m(h -b)tan® y (5.3b)

5-7



D(A,,r,,2) = —2mtan’ y (5.3¢)

where b is the truncated cone’s height and ) is the angle between it’s central axis and

any line connecting the virtual vertex to the rim of the base. The virtual vertex is
defined here as the vertex that would be present if the truncated cap could be reattached.
The term 4 represents the distance from the base of the truncated cone to the virtual
vertex.

The measured and predicted amplitudes of the echoes are given in Fig. 5.5 for
the case of a non-coincident transmitter and receiver and in Fig. 5.6 for the coincident

case.

' Measured
- Predicted

d =0.052m d=0.097m d=0.149m

7.00

6.00

5.00

4.00

3.00

Amplitude (Volts)

2.00

1.00 |

0.00

08 1.0 14 08 1.0 14 08 1.0 14

Range (m)

FIG. 5.5. Measured and predicted amplitudes of echoes from the faces of truncated cones of truncated

face diameter d when the transmitter and receiver aren’t coincident.
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FIG. 5.6. Measured and predicted amplitudes of echoes from the faces of truncated cones of truncated

face diameter d when the transmitter and receiver are coincident.

For the non-coincident case, the predicted amplitudes are, on average, 50% in error, the
largest errors being predictions twice the size of the measured values. The coincident
case has predicted amplitudes that are 60% too large, on average, the worst case being
nearly three times larger than the measured value.

In the next section we will explore the reasons why these results, like those for

the regular cones, show such a large discrepancy between theory and measurement.

5.2 Analysis

The results for the echoes from the closest points on spheres clearly show that
Freedman’s model works well for this class of object. Although the largest error was
13%, the average error was less than 5% for non-coincident set-ups and as low as 3.3%

for coincident ones.
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Sources of error that affected the results were numerous. One class of potential
error sources were physical irregularities in the scattering bodies themselves. The first
of these were irregularities in the radii of the spheres, which were measured and found
to be 1%. Given that the amplitude of the received echo is approximately proportional
to the first order discontinuity, which is itself proportional to the sphere’s radius, it
follows that such radial irregularities can account for errors of up to 1% in the echo’s
amplitude.

For regular cones, there are a couple of areas where irregularities in their shape
could result in errors. The first is the slope of the cone across its surface. If
discontinuities in this parameter occur, or in any of it’s derivatives with respect to
range, which in this case could have occurred had the wood not been turned properly,
they can lead to additional echoes being generated, in accordance with Freedman’s
model. Also, since the slope of the cone at the base affects the echo generated, if there is
a deviation in the cone’s slope near the base, then the generated echo will differ from
that predicted. We measured the slopes of the cones and found smoothly varying and
near negligible deviations in the slopes from their means thereby ruling out
discontinuities as a source of error. Likewise, we found the slopes at the bases didn’t
deviate from their overall means either.

A second feature of cones that could have affected the results is the radii of
curvature, or “sharpness” of the base rims. Since the echo from the base is generated by
the process of diffraction, a curved base rim will produce an echo of lower magnitude
than an ideal “sharp” rim. Because the wavelength we’ve used is between 6mm and
7mm and the observed radii of curvature at the rims is never greater than about 0.5mm,

the radii of curvature will play a negligible part in the results obtained.
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The results for the regular cones also highlighted the limitations of Freedman’s
model. Earlier, we discussed Rudgers'® work that showed Freedman had made an
incorrect assumption about the negligibility of creeping waves generated at geometrical
shadow boundaries. Because Freedman’s model doesn’t account for these waves, we
can only speculate as to what effect they may have on echoes originating from
geometrical shadow boundaries, such as the bases of cones. We believe the large
deviations between the predictions of the model and the measured values for the echoes
from the bases of cones can be attributed to these creeping waves from the shadow
region.

The significant deviations from theory of the measured echoes from the faces of
the truncated cones have a different origin than that given for the bases of regular cones.
The model assumes that the separation between the scattering body and the receiver is
great enough to ensure that the normal vectors at all points on the truncated cone’s face
are pointing directly towards the receiver. Under such conditions the amplitude of the
received echo would vary linearly with the area of the truncated face, as the predicted
echo amplitudes in Figs. 5.5 & 5.6 indicate. Because of the relative proximity of the
transducer to the truncated cone though (1400m at most), the signal insonifying the
truncated face is only approximated by a spherical wavefront. A more accurate
description is that the area of this wavefront that is along the axis of the transducer is
actually planar and equal in area to the face of the transducer, with the rest of the
wavefront being spherical. Visual inspections of the results of wave propagation
simulations using the Lattice Gas Model'” seem to confirm this.

As to be expected, the spherical regions of the wavefront incident upon the
scattering body are reflected at angles that don’t transmit them back to their source and

hence are not picked up by the receiver. The central planar region of the wavefront
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though does experience direct backscatter to the receiver. The upshot of this is that the
only region on the truncated face which contributes to the signal captured at the receiver
is that area which is irradiated with the central planar section of the wavefront.
Consequently, if the truncated face is larger than the planar section of the wavefront, the
amplitude of the echo received will be less than that predicted by the model. This is
confirmed by the results in Figs. 5.5 & 5.6 that show the amplitudes of the measured
echoes do not increase with truncated area at the same rate as the predicted amplitudes
do. Another way of interpreting this is that since the central planar region will always
contribute a constant component to the total energy reflected, irrespective of distance,
then the law governing the propagation follows a better than inverse square model. The
consequence of this is that the model can only be applied to truncated faces of very
small area, generally of the order of the area of the transducer’s face or smaller.

As with regular cones, irregularities in the slopes of the truncated cones could
have been a source of error but as with regular cones we found the slope variations to be
negligible. The radii of curvature at the rims of the truncated faces, observed to be less
than 0.5mm, are not as crucial to the results as they had been for the base rims. This is
because the dominant echoes result from direct backscatter, the diffracted echoes
making only a minor contribution.

As well as the sources of error discussed above that are specific to a class of
objects, there are general issues that could affect the results from all scatterers. One is
the model’s use of the far field approximation, which is valid only if the condition
kr>>1 is satisfied’. In these cases though, with ranges over 0.8m and wave numbers
typically near 10°, it is clear that this condition is satisfied. Even for the results of
previous experiments, not given here, which showed slightly worse agreement between

experiment and theory at ranges from 400mm to 800mm, the condition is still satisfied
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and consequently a breakdown in the far field approximation can not be blamed for the
larger discrepancies.

Small variations in the parameters of the model during the course of a set of
measurements may also affect the results. The only terms that can vary during the
course of a measurement session are the speed of sound and the absorption coefficient.

The speed of sound has a dependence on temperature that is given by the following'®:

¢ =co[T, 273 (5.4)

where ¢, = the speed of sound at 273 K = 331.6 ms-1

T, = air temperature in Kelvin.

The speed of sound also has a dependence on humidity and pressure, but the variations
in these that can occur over a measurement period of, at most, two hours, will cause a
negligible change in the speed of sound. The greatest change in temperature during any
measurement period was 2°C, the minimum and maximum temperatures being 292 K
and 298 K respectively throughout the entire series of measurements. Using Eq. (5.4),
this +2° C change represented a change in the speed of sound of +0.3%. Consequently,
the change in the inverse of ¢, which the amplitude of the echo is proportional to, would
have been - 0.3%. This is too small to produce any significant error in the calculated
echo.

The other component of the model that can be a source of experimental error is
the absorption coefficient a . Since the coefficient is rated to be accurate to within 10%,

at a typical range of 1m with a typical value of a= 0.2, the error in the attenuation
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factor will be 4%. The reality is though that an error in the absorption coefficient of
10% doesn’t mean that it can vary from one moment to the next by up to that amount.
Consequently, even if the absorption coefficient used is inaccurate by the given amount,
provided the measurements are done soon after the model is calibrated, the error in the
coefficient will be absorbed by the calibration process. On the other hand, if the model
is calibrated one day and used on another, when the environmental conditions have
changed markedly, then there is justifiable concern that the calibration is no longer
valid. For the work presented here though, all the calibration data was part of the same
set as the data used to test the model.

As discussed in section 3.5, A(7) as sensed from the vantage point of the receiver
will be different in non-coincident configurations to that of coincident ones since the
received echo no longer propagates along the objects axis. Because the model, being
based upon an assumption of transmitter/receiver coincidence, does not account for this,
it will manifest itself as a discrepancy in the results. For spherical objects this is not an
issue because A(r) doesn’t change for non-coincident transmitter/receiver
configurations, since spherical objects have no axis as such and thus are geometrically
equivalent from all vantage points. However, for echoes from the front faces of
truncated cones, as well as those from the bases of cones, A(r) will deviate from the
coincident case. The question then arises as to whether, in non-coincident cases, these
changes in A(r), despite our efforts to minimise them (see Fig 3.2), are significant
sources of error or not.

If it were the case that these deviations in A(7) produced significant errors in the
model, the results for the non-coincident cases would show a greater deviation between
experiment and theory to their coincident counterparts. What we observe however is

that for the truncated cones, the discrepancies are similar in magnitude for both the
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coincident and non-coincident cases and for the regular cones the non-coincident results
are actually better than the coincident ones. Given the rather large errors inherent in the
results for both configurations however, it would be presumptive to declare that the
deviations in A(r) in the non-coincident cases have no impact upon the results. They
may well be present, but overwhelmed by the larger sources of error. All we can
conclude is that any discrepancies that result from deviations in 4(7) are certainly not
dominant sources of error in our results.

Finally, we address one of the model’s assumptions that, without clarification,
may raise questions about the methodology employed here. Freedman’s original model
made the assumption that the range to the scatterer is very large compared to the size of
the scatterer itself, which is to say that the range doesn’t vary appreciably over the
length of the object. However, our test objects are more aptly described as being at a
moderate range rather than a large one, a necessary trade off to ensure that we receive
an echo with a high S/N ratio. Does this less than ideal range invalidate the assumption
of a large range and adversely affect Freedman’s model as a result? The answer to this
question depends on which of Freedman’s models we are referring to.

There is a high likelihood that Freedman’s model in its original form would be
comprised by this choice of a moderate range because that model made the assumption
of a large range to the scatterer (compared to the size of the scatterer) specifically so

that the approximation 7, =7, could be employed (ie. range 7, is approximately the

same as the scatterers mean range r, ) in order to simplify the formulation.
However the extended Freedman model, which is the model we use for all our

experiments, doesn’t employ the r, = r, approximation. It was dispensed with in section

3.2 (“Breakdown of r,, 7= r,  assumption”) by virtue of the fact that we treat echoes

from different parts of the scatterer as distinct echoes rather than as part of one large
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wave train as Freedman had. Since we don’t use the r, =7, approximation, we are not

held to the assumption upon which the approximation was founded, that of a large range
to the scatterer compared to the scatterers size and thus our choice of a moderate range
for our objects in no way compromises our results. We are still held to the assumption
that the scatterer is in the far field in order for us to employ Kirchoff’s approximation
though, but that is another matter and has been addressed elsewhere in the thesis.
Although the model has only been verified for spheres to within an average error
of 3.3%, with the worst case being 10%, for coincident cases, this is a significant
improvement over the results obtained by Freedman in his original work. He was able to
verify only some qualitative aspects of the model, the quantitative results being too

1920 t5 his work

noisy (20-30%) to allow conclusions to be drawn. Subsequent references
have discussed only the theoretical aspects of the model and haven’t touched upon the

failings in his experimental data. Neither has any follow up work to verify the model, in

either air or water, been done since 1962, to the best of our knowledge.

5.3 Conclusions

Although being quite accurate in determining time of flight, Freedman’s model,
when translated to air, is limited in that it cannot be used for modelling the echoes from
the geometrical shadow boundaries of objects, such as the base of a cone. It is
reasonably accurate though in calculating the echoes from the closest points on spheres
and may potentially be used for modelling the echoes from the faces of truncated cones,
provided these faces have a small area. It should also be reasonably accurate for

predicting the echoes from objects with smoothly varying convex surfaces.
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The model is of special interest to workers in the field of mobile robotics
because of it’s potential to be used as the basis for an inverse model of ultrasonic
imaging. This could lead to the development of a real-time object recognition system
that would complement current systems by specialising in the recognition of non-
concave scatterers or their modelling with equivalent symmetrical objects. Major
applications of such a system include map building by mobile robots and object
recognition on conveyor belts.

In the next section we will expand upon the forward model, using it as the

starting point for the construction of an inverse model of ultrasonic echolocation.
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6 Development of the Inverse Model

Since the forward model has been established as having validity for a select
range of objects, we can take the next step of using it to attempt the development of an
inverse model for this same range of objects. As will be shown, our inversion will lead
to the emergence of two candidate inverse models, one time independent and another
time dependent. These models do not contradict one another, they simply represent two
different ways of modelling the system. For the time dependent model, the variations of
the wave within the wave envelope at any instant are modelled, whereas the time
independent version simply models the overall shape, the envelope, of the wave. Both
have advantages and disadvantages over one another, however ultimately one of these
will prove to be flawed and the reasons for this will be discussed. Finally, we will look
at how the predictions of an inverse model could theoretically be used to build an image

of the scatterer in question.

6.1 Time Independent Inverse Model
As the basis for both inverse models, we’ll begin with the final form of the
extended forward model given in Eq. (3.7) back in Chapter 3,

D(l)

0s6-

E, = A( f)M exp(-2r,a)(D0)sind- = ’Z(z)

k sin 9) (3 7)

where A(f) = transfer function of the transducer and receiver at frequency f,
G = gain, or amplification, applied to the received signal,

V = voltage applied to the transducer,
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B,(¢) = frequency dependent directivity of the transducer,
B, (¢) = frequency dependent directivity of the receiver,

r, = range to the source of the echo,

a = frequency dependent atmospheric absorption coefficient,
D(n) = discontinuity equations for the nth order derivatives,
k = frequency dependent wave number,

and 6 = «t - 2kr , which is also obviously frequency dependent.

For reasons that will become clear, it was prudent to redefine all of the individual
elements that make up the forward model, as we’ve done above, with particular
emphasis being placed upon the frequency dependence, or otherwise, of each
component.

Now, let us simplify Eq. (3.7) above by combining several components into one

function K(f),

K(f)=

ANGVE (9B, (P)

g

exp —nga') 6.1)
To claim that K(f) is dependent solely upon frequency, as Eq. (6.1) seems to do, would
be incorrect. However, let us envision a situation under which we were to insonify a
stationary object with several different frequencies within the span of a couple of
minutes.

Firstly, the sensitivity of the transducer is dependent upon both the tension in the
Mpylar film during the chirp process as well as the frequency applied. The tension in the
Mylar would reduce negligibly over the course of a couple of minutes, especially since
we turn off the bias between measurements as a precaution against this, thus the

transducer’s sensitivity is solely dependent upon frequency in this case. Given the
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singular dependence of the receivers sensitivity upon frequency, it follows that A(f) is
dependent on frequency alone during this period.

The directivities of both the transducer and receiver are functions of the
frequency of the wave, its speed ¢ and the angular bearing ¢ of the scattering object to
their axes. The speed of sound is dependent upon environmental variables, primarily
temperature, pressure and humidity. Within the span of two minutes, these environment
conditions do not change sufficiently enough to produce a measurable change in the
speed of sound. The bearing ¢ is another constant in this scenario since the scattering
object remains stationary. Thus again we have frequency dependence alone.

Given the immobility of the scatterer, it follows that the range 7, is also a

constant during the measurement cycle. Also, the atmospheric absorption coefficient,
which has dependence upon temperature, pressure and humidity, as well as frequency,
will remain a function of frequency alone in this case, as it’s been established that these
three environmental variables will remain virtually unchanged in the two minute
measurement period. Lastly, there is the voltage applied to the transducer and the gain
applied to the signal from the receiver, both of which are deliberately held constant.
Thus from the above analysis, it’s clear that during the measurement cycle, the
function K(f) has dependence on frequency alone. Let us reformulate Eq. (3.7) into its

new form then,

E, = K(f)(D(0)sin 9-2W 56

D) .
- S
2k 4k

in 6) (6.2)

It is at this point that the forward model diverges into two streams, the first
leading to the time independent inverse model and the second to the time dependent

variant. For now though, we’ll only examine the former.
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Using trigonometric identities, the maximum value for a superposition of several

sinusoidal waves can be deduced (see Appendix A.3). This is given in Eq. (6.3) below,

2 VA
D(0)sin 8- bd) cos @ - D(22) sin H‘ = [D(O)2 + D(lz - D(O).?(2) + D(2)4 ] (6.3)
2 4k Max 4k 2k 16k

Hence, the maximum amplitude of the received signal is given by,

2 2 /2
_ .. D> _D(0).DQ2) , D) 6.4
E, (max) K(f)(D(O) = YEREor ] (6.4)

The philosophy behind formulating the forward model in terms of the maximum
value for the voltage at the receiver, rather than the voltage at the receiver at a specific @
along the wave is twofold.

Firstly, since one of the basic assumptions of Freedman’s model is that the wave
in monotonic (single-frequency), it follows that the greater the conformity to this
assumption, the greater the accuracy of the model. As no real-world acoustic waves are
truly monotonic, the best we can hope for is to select the region of the wave train that is
most monotonic. A section of the wave with the least variation in amplitude from peak
to peak is such a region and this invariably occurs in the central region of the wave.
Now, as the maximum value of the wave will also invariably be in the central region, it
follows that the maximum value measured is representative of the most monotonic
region of the wave train and hence the most accurate. Thus by simply measuring the
maximum value, we automatically hone in on the best part of the wave to measure,
without having to actually analyse the echo to see where the mid-point is, thereby

reducing processing time.
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However, the main advantage to focussing only on the maximum value is that it
results in multisampling by default. Since our capture card can only sample the wave
train once every microsecond, that amounts to only 20 samples per wave cycle, or one
sample every 18 degrees, using a 50kHz wave as a typical example. Consequently, the
peaks represented in the sampled data may have been sampled a little before or a little
after the true peaks on the wave train. However, given several adjacent peaks from the
central monotonic region sampled in this way, it’s clear that the sampled peak with the
highest value will be the one that most closely matched it’s counterpart on the wave
train. Thus, scanning for the maximum value (ie. the highest peak) in the sampled set
has automatically delivered us the most accurately sampled peak as a result.

Turning our attention back to Eq. (6.4), it can be reformulated once again as,

E vax = K( f)z( DY’ + D()* _D(0).D(2) , D(Z)Zj

4k’ 2k* 16k*

=X,(/)D(0)* + X, (/)D()* + X, (/)D(0).D(2) + X, (/)D2)* (6.5)

where, X,(f) = K(f)?,

X =20
X,(f) = %
X,(f) = %

Now, we’ve already established that were we to insonify a stationary object with

several frequencies within a short time span, the only variable affecting the resulting
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echoes would be the frequencies themselves. So let us then examine the echoes that
would result if four distinct frequencies were used in this fashion, the square of the

maximum voltages at the receiver for each case given below,

E,”(/Daar =X, (/)D(0) +X,(/)D()* + X, (/,)D(0).D2)+ X, (/,)D(2)*  (6.6)
E, (/) =X, (/2)D(O0)* + X, (/,)DU)* +X,(/,)D(0).D2)+ X, (,)D(2)*  (6.7)
E,” (/) uur =X, (/5)D(0)* + X, (f)DM)* + X,(f3)D(0).D(2) + X, (/,)D(2)*  (6.8)

E,’ (/) =X, (f)DO)* + X, (f)D1)* +X,(f)D(0).D2)+ X, (f,)D(2)*  (6.9)

Put into matrix form,

ESMDuw | [ X)) X0 X)) X, D)
ES (D || X)) X(f) X(f) X, (/)| D) (6.10)
ESwar | | X)) Xo(f) Xi(fs) X, ()| D(0).D(2)
ES U | LX) Xo(f) X(f) X,(f)] D@R)

and taking the inverse of the matrix, we end up with the following,

-1

D(0)* X\(f) X,(f) X;(f) X, ESUD) we
DO | _|X(f) X)) X () X)) |ES () | (6.11)

D0).DQ2)| | X, (f) X,(f)) Xi(f)) X,()| |ES ()
D(2) X,(f) X,(f) X(f) Xo(fD)] |E (D)

As we’ll see later in section 6.4, a comprehensive representation of the geometry
of the scatterer in question requires a knowledge of D(n) for n=1,2 & 3. With our
current approach, we would need to solve these four simultaneous equations to obtain

those. Clearly, we now have a model which, in theory, should allow us to deduce
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geometric properties, specifically D(0), D(1) & D(2), of the insonified object from an

analysis of the received echo and a knowledge of X (f,). From the definitions of the
individual components X (f) in Eq. (6.5), we can see that these components are

dependent upon the wave number k and K(f)>. As the frequency f in each case is
known to us and the speed of sound c is easily calculated from a knowledge of the
environmental conditions, which we will have, it follows that wave number £ is easily

determined for each frequency. This leaves the determination of K(f)> as the last

obstacle before X (f) can be calculated for each frequency.

One way to calculate K(f)> would be to return to the definition of K(f), given

in Eq. (6.1), and calculate it’s value at each frequency by obtaining values for each of
it’s constituent components. These components include the sensitivities and directivities
of the transducer and receiver, the voltage applied to the transducer, the gain applied to
the receiver, the range to the object and the atmospheric absorption coefficient. The
main disadvantage of this approach is that the errors, the uncertainties, in each of these
values will accumulate when combined into Eq. (6.1). Another approach which has the

advantage of being more accurate, as well as faster, is to calibrate the model with an
object of precisely known dimensions and thereby determine K(f)* directly through

measurement. Typically, we would want to choose a calibration object that has all D(n)

= 0, except for one, such as a paraboloid for instance, which has D(1) # 0, but has

discontinuities at all other orders equal to zero. In this case, we would formulate Eq.

(6.5) as,

EgzMAX :K(f)2 D4(k122 (6.12)
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making the calculation of K(f)> at each frequency relatively trivial, given that all the

other components in this equation are either easily calculated (k), easily measured

2
(E gMAX) or already known (D(1)). Once we have K( /)~ for each frequency, X (f) at

these frequencies are easily calculated, allowing us to substitute them into Eq. (6.11)
and thus determine the discontinuities in the scattering object.

Unfortunately, most of these developments in the time independent inverse
model become unravelled once some basic assumptions are implemented, which render
the model impractical for use in an air environment. Since our forward model has been
established as having validity only for smoothly varying objects (ie. objects that do not
have discontinuities in D(0), but rather in D(1) and possibly D(2)), it follows that our
inverse model should reflect this assumption. Assuming D(0) = 0, we can significantly

simplify Eq. (6.5),

€ = { 2O 2 (613

Now, if one considers that in air, the wave number & of the acoustic pulse is of
the order of 10°, it follows that the second term in the summation in Eq. (6.13) will be
10° times smaller than the first term. Needless to say, the sensitivity of our
instrumentation is not up to the task of seeing perturbations in the echo on such a small
scale. This additional term is therefore dropped as its contribution is negligible.
Unfortunately though, what this leaves us with is an inverse model that is stripped down
to such an extent that it provides no more insight than one would expect from a simple

derivation of the backscatter according to the wave equation,
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Eovux =K )%‘? (6.14)

Even if we were to go out on a limb and consider the possibility that the model
may have applicability in cases where D(0)#0, we ultimately end up in the same
predicament. Let’s assume D(0)#z0 and re-examine Eq. (6.5). In air, the second and
third terms in the summation will be 10° times smaller than the first term and the last
term will be a staggering 10" times smaller. Consequently, all terms except the first will
have to be dropped as they contribute nothing and we are again left with a result that is

comparable to a simple extension of the wave equation,

E,,.,. =K(/)D(0) (6.15)

Finally, there is the issue that the matrix in Eq. (6.10) may be non-invertible
because we do not have singular instances of D(0) and D(2) in the simultaneous
equations, as their product is repeated in the third term of these equations as D(0)D(2).
For instances where the simultaneous equations in question are non-/inear as is the case
here, the correct approach would be to solve it via a least squares method. Delving into
the methodology of this approach at this point would be redundant however, as the time
independent model is clearly unusable for our purposes for the physical reasons listed
above. The inevitable conclusion that is drawn from this exercise is that a time
independent model, whilst having advantages over a time dependent model in theory,
has possible applicability only in environments where the wave number of the acoustic
pulse is much smaller than it is in air, such as water for example, and thus we must turn

our attention to an alternate approach.
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6.2 Time Dependent Inverse Model

Much of what has been described above with regards to the time independent
model also applies to the time dependent variant. Firstly however, let us return to the
point at which the two models diverged, Eq. (6.2) and reformulate it in terms of

functions Y, (f),

E, = K(f)(D(O) sin 8- % cos @ - D(Zz) sin 9)

=Y(/)D0) + Y, (/)DD) + Y(f)D(2) (6.16)

where, Y (f) = K(f)sin6,

cosé,

Y(f) = - 2(f)

- (f)

siné,

n(f) =

and, O=wt—2kr, =27%i -2k,

As with the time independent inverse model, if we postulate a scenario whereby
a stationary object is irradiated with several frequencies within a short time span, the
only variable affecting the resulting echoes will be the frequencies themselves. The
only difference between this approach and that taken earlier with the time independent
model is that we have the added constraint of ensuring that the new variable ¢, the time
index along the wave train where we measure the amplitude of the wave, must remain

the same for all frequencies. This provides us with a constant value for ¢ at all
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frequencies allowing us to employ the simultaneous equations approach in essentially
the same manner as we did earlier. The other difference is that due to the reduced
number of terms in Eq. (6.16), we only require our object be insonified with three
frequencies instead of four, the voltages at the receiver at time index ¢ for each

frequency being given below

E,(/)=1(/)DO) + Y, (/)DD) + ¥,(/)D(2) (6.17)
E,(/2)=1(£)DO0) + X, (f,)D(D) + ¥, (/,)D(2) (6.18)
E,(f3)=1()DO) + X, (f3)D(D) + ¥, (f3)D(2) (6.19)

Put into matrix form,

EH| [nh nUh) nH)[po)
E,(f)|= %) %(h) Y(H)| DO (6.20)
E,(f)] 4(h) wn(f) L(m)Lbe)

and taking the inverse of the matrix, we get the following,

DO [%() %LU LU E,(f)
DO |=| (£ Y(f) %) |E(f5) (6.21)
D)l [%(f) %) LU E(S)

The approach employed for determining the individual component Y, (f) is the

same as that described previously for the time independent model. As for determining

E,, the only difference is that instead of obtaining the values of E, from a search for

the maximum value of the wave envelope, a point along the wave train at a time index ¢
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is chosen and the amplitude of the wave at this point used instead. Once these values are
substituted into Eq. (6.21), predicted values of D(n) can be obtained.

The only disadvantage of this approach is that it lacks the inherent
multisampling employed by the method used for the time independent model. However,
to compensate for the lack of sampling resolution, we employ interpolation algorithms
to fit a curve to our sampled data, giving us a greater range of values for ¢ to choose
from.

As with the time independent variant, the basic constraints on our forward model
must be respected and applied to the inverse model as well. Thus we can assume D(0) =

0 and modify Eq. (6.16) respectively,

E () =L(/)DD) + Y, (/)D(2) (6.22)

2

where, Y,(f) = —%cos@ & Y, (f)= _I:]Ef) sind

Unlike the situation we faced when we made this assumption for the time
independent model though, this assumption does not cause us any problems as it does
not require us to drop any terms. The reason for this is that, in air, the order of the
second term is approximately 10° times smaller than the first. Although this is smaller
than we’d like for accurate measurement, it is within the range of our instrumentation to
measure variations in amplitude on this scale. Thus in conclusion, the time dependent

inverse model can be represented by the following equation,

{D(l)}:{Yz(ﬂ) mmHEg(ﬁ)} 6.23)
D) %) B LE)
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on the assumption that D(0) = 0.

6.3 Mathematical Validity of the Inversion

To provide reassurance that the algebraic manipulations involved in the
inversion were conducted correctly, we will use data gathered when experiments were
conducted to test the validity of the inverse model (to be presented later) and plug
inverse model predicted values for D(1) and D(2) into the forward model to see whether
we obtain the measured echo amplitudes in return. If the model was correctly inverted,
then the predictions of the forward model, using these values for D(1) and D(2), should
match exactly the echoes measured.

An exponentially shaped scatterer had measured echo amplitudes at a range of

40cm and time index t=0.002366s given by,

E(40kHz) = 0.00234

and  E(60kHz) = 0.0159

Also, the calculated values for K(f) were found to be,

K(40kHz) = 1.68

K(60kHz) = 2.85

With this data and a knowledge of the environmental conditions, we used the inverse

model to calculate the following values for D(n),
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D(1)=40.7

D(2)=5.85x10"

Now, whether or not these predicted values for D(1) and D(2) agree with the
measured values is not of concern to us here, at least not yet. That is an issue for a later
chapter when we test the accuracy of the inverse model. What concerns us here is
whether the model was correctly inverted and if we input these predicted values for
D(1) and D(2) into the forward model it should produce predictions for E(40kHz) and
E(60kHz) that exactly match those measured, provided the inversion was done correctly.

Using Eq. (6.22) as the forward model,

__K() _K(H ~ 6.22
E(f)= == D()cos- =2 D(2)sing (6.22)
and substituting the above values for K(f), & :2’?% and the predicted values of D(1)

and D(2) into the model at both 40kHz and 60kHz, we indeed find that, as expected, we
get,
E(40kHz) = 0.00234

and  E(60kHz) = 0.0159

confirming that the inversion is mathematically sound.

6.4 Visualising the Scattering Object

Knowing values for D(1) and D(2) can only hint at the shape of the insonified

object. To truly represent the geometry we need to build up a visual representation of
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the scattering body using numerical methods. For the sake of generality, we’ll examine
how this can be done in all cases, not just those for which D(0) = 0.

Once D(0), D(1) & D(2) are obtained for each range along the scatterer for
which there is an echo, we can build up a picture of the scatterer in the following way.

For the front face of the scatterer at a range 7,_ we have the following equations,

D(A.0.0) = A(,) - A(r) (6.24)
dA dA
D(4,0,1) = ;(”o—) - ;(m) (6.25)
24 24
D(402) = S50 - S5 ) (6.26)

n

Now, ——(r,_) are all zero, since 7,_ is the range just prior to the front face

where there is no variation in cross sectional area. Hence,

Area at 1,_= - D(4,0,0) (6.27)
dA

— atn.=-D(4,0,]) (6.28)
2

d]"z at rO— =- D(A,O,2) (629)

If we can assume that the second order derivatives remains constant over the

range 7,, to r,_, where r, is the range at which the next echo originates, then we can

apply the following relations at each successive point within this range,
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dA,
A‘c+1 = Ax + . (rx+1 _rr) (630)
2 dl" 2

X

dA., _dA. d’A.
d';l = T (T —1) (6.31)

Admittedly, assuming a constant second order derivative is a big assumption to
make, but without it we cannot progress. However, even if this assumption in incorrect,

it allows us to build up at an approximation of the object’s geometry nonetheless.

Once A(r,.) and d—(rm_)have been calculated via the above method and
r

2 2
0 (r,-) Z%(rm) , we can calculate the area and higher order rates of

assuming

change at 7, using the following relations,

Areaat r, = A(7,_)- D(4,m,0)

(6.32)
dA dA

t =—(r_)- 6.33
dr a T dr (rm ) D(A,m,l) ( )
d* A d* A
0 at r, = o (7,-) - D(4,m,2) (6.34)

This process is continued for all ranges at which echoes originate and thereby the shape

of the scatterer, or at least an approximation thereof, is reconstructed.

In the next chapter we will examine how we intend to go about verifying the

inverse model developed in this section.
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7 Geometric Analysis of Scattering Bodies

To test the validity of the inverse model, we firstly needed to obtain a series of
objects, for use as scattering bodies that have physical characteristics satisfying the
assumptions of the model. Specifically, objects which have smoothly varying surfaces,
no possibility of internal penetration by the ultrasonic wave and a separation between
discontinuity points on the object such that no wave overlap from echoes would occur.
To accomplish this, we obtained a range of solid aluminium objects with geometrically
simple designs. The choice of which objects to use was rather arbitrary, the only criteria
being that they represent a broad spectrum of possible objects that would fit the
description of being smoothly varying and radially symmetric. Thus, despite the fact
that we chose to use two paraboloids, we could just as easily have used two spheroids
with the same justification. The choices were arbitrary.

These were machine turned to precise dimensions, imperfections in the final
product from this process were quoted as being under 0.2mm, well under the limit

required by the Raleigh criterion.

7.1 Exponentially Shaped Scatterer

The first object has a length increasing exponentially with width, which could
conversely be described as a width expanding logarithmically with length. It has a
length of 10 cm and a cross-sectional area which varied from zero at its vertex to 30.2

cm squared at its base. Its geometry was governed by Eq. (7.1) below,
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x(r)= exp(%} -1 (7.1)

where x(r) = the length (cm) along the axis, measured from the vertex

and r = the radius of the cross-sectional area of the object.

As Freedman’s model is focussed on the variation of cross-sectional area with
range, it’s more appropriate for us to express the above equation with the cross-sectional

radius being a function of range, rather than the converse. Thus we have Eq. (7.2),

r(x) =w/4ln‘x+15 (7.2)

The geometry of this object is represented in Fig. 7.1 below, where the axes are
in units of cm. Despite the hollow appearance of the rendered image below, the objects

used were solid throughout.
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FIG. 7.1. Representation of an aluminium object with the geometry governed by Eq. (7.1).

A more useful visual representation of the structure of the object comes from a

plot of the variation of the cross-sectional area with respect to range in Fig. 7.2 below,

207
15

10

2 4 6 8 10 *

FIG. 7.2. Plot of cross-sectional area (square cm) with respect to range (cm) for the object in Fig. 7.1.
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As can be seen from Fig. 7.2, the cross-sectional area varies smoothly with
range. We can therefore make a qualitative judgement at this stage that we would not
expect to see any image pulses (ie. echoes) originating from any points along the length
of the object (ie. in the range 0 cm <x <10 cm).

The cross-sectional area plot shown in the figure above is governed by Eq. (7.3)
below,

A(x) = 4nin(x +1) (7.3)

where A(x) = the cross-sectional area of the object at range x.

The derivative of the equation above with respect to range yields the following,

dA(x) _ an (7.4)
dx 1+x

that we’ve plotted in Fig. 7.3 below,

dA(x) /dx

2 4 6 8 10 %

FIG. 7.3. Derivative of the cross-sectional area with respect to range (cm) of the object in Fig. 7.1.
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Taking the derivative of Eq. (7.4) gives us the second order derivative in Eq.

(7.5) below,

d’A(x) _ -4m 5)

dx? (1 + x)2

that is represented in Fig. 7.4,

d2A(x) /dx2

FIG. 7.4. 2" order derivative of cross-sectional area with respect to range (cm) of object in Fig. 7.1.

Now that we have the derivatives calculated, it’s quite clear from Figs. 7.2, 7.3
& 7.4 that these are all continuous functions, which is to say that there are no step
discontinuities in Egs. (7.3), (7.4) & (7.5) in the range 0 cm < x <10 cm and hence no
echoes from this region. At x = 0 cm however, there is a transition between the free
space prior to the object, where the cross-sectional area (and it’s higher order
derivatives) are null, and the start of the object itself. To determine whether this
transition between the two cross-sectional profiles would result in step discontinuities
(and echoes) at this point, or not, we can look once again at the plots shown in Figs. 7.2,

7.3 & 7.4.
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Inspection of Fig. 7.2 reveals a cross-sectional area along the object that has a
value of zero at x = 0 cm. Because the size of the cross-sectional area at x = 0 cm is the
same for the free space region as it is for the object itself, namely zero, there is no
discontinuity in cross-sectional area at this point and hence this factor does not

contribute to an echo. To express this quantitatively, let’s begin with Eq. (2.16) below,

d"A d"A
D(A, ,g,n)= ~(r._)-— = (r,, 2.16
(4,.8,n) dr,,(g) drn(g) (2.16)

where r,- and 7, represent the ranges infinitesimally prior to and beyond the

discontinuity respectively.

In this instance, we are dealing with the case where » = 0 and g = 0 cm. Thus,

we have Eq. (7.6),

D(4,,0,0) = 4,(ry-) = 4, (7. (7.6)

Since A, (r,.) represents the cross-sectional area in the free space immediately
prior to the start of the object, it is necessarily equal to zero. As for 4, (r,,), we can see

from Fig. 7.2 that at a point infinitesimally beyond x = 0 cm, the cross-sectional area
remains zero. Since these quantities are equal (zero), Eq. (7.6) has a value of zero,
indicating that there is no discontinuity in the cross-sectional area profile at this point
and thus this factor would not contribute to any echoes.

Turning our attention to the higher order derivatives, we examine Fig. 7.3 next.

At x = 0 cm, the derivative of the cross-sectional area with respect to range has a value
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of 47 . Given that we’ve already established that the free space region prior the the
scatterer has a cross-sectional profile equal to zero, at all orders, it follows that the
transition at x = 0 cm from a cross-sectional area of zero to 471 must result in a step

discontinuity. Expressed in terms of the discontinuity equation.

d d

D(A,.0) = j (ry) - j (7.) (7.7)
—©0) - (4n).
=-4n

Thus at x = 0 cm, there is a contribution to the echo as a result of the discontinuity in the
profile of the derivative of the cross-sectional area with respect to range.

Finally, in Fig. 7.4 we can see that the second order derivative of cross-sectional
area with respect to range has a value of - 477 at the transition point x = 0 cm. For the
reasons outlined above, there is therefore a step discontinuity at this point. In terms of

the discontinuity equation,

d’A, d’A,
D(4,,,0,2) = 7(”0-) ‘7(%) (7.8)
=0 - (-4n)
=4n

Therefore there is also a contribution to the echo originating at x = 0 cm from the
discontinuity in the second order derivative of cross-sectional area with respect to range.
Despite the magnitude of the discontinuity being the same in both cases, 47, the size of

the contribution of each component to the total echo will differ however. This is due to
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Freedman’s equation weighting successively higher order discontinuities several orders
of magnitude lower than their predecessors.

Of course, since this object, and indeed all our objects, have a sharp edge at their
base, the transition point between the insonified and shadow regions, we would also
expect echoes from that region. But as was pointed out earlier, our model does not
handle such discontinuities correctly and so we limit ourselves to the echoes that
originate at those points on the scatterer where the surface is smoothly varying, regions
which our model handles well. Since the echoes from the base are separate from the
front face echoes in the time domain, there is no cross contamination and we can
effectively ignore the base echoes.

Thus in summary, the exponentially shaped object has a geometry with
discontinuities in the first and second order derivatives of the cross-sectional area with

respect to range at the position x = 0 cm. These are summarised in the table below,

Location of D(n) | D(0) D(1) D(2)
0 cm 0 - 4n 4n

Table 7.1. Discontinuities on the exponentially shaped object.

7.2 Paraboloid A

The next object has a parabolic shape governed by the following equation,

r(x) = lsz (79)
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where r(x) = the radius of the cross-sectional area of the object at range x

It has a length of 10 cm with its cross-sectional area varying from zero at it’s vertex to

75.4 cm squared at it’s base. Its geometry is shown in Fig. 7.5 below,

=2 4
YISO IS IIINY

T8

FIG. 7.5. Representation of an aluminium object with the geometry governed by Eq. (7.9).

The cross-sectional area of the figure above is given by Eq. (7.10) below,

A(x) _ 12 (7.10)



This is represented in Fig. 7.6 below,
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FIG. 7.6. Plot of cross-sectional area (square cm) with respect to range (cm) for the object in Fig. 7.5.

Given the continuous nature of Eq. (7.10), seen clearly in Fig. 7.6, it is expected
that no step discontinuities would be present along the length of the object and hence no
echoes in the range 0 <x <10 cm.

The derivative of the cross-sectional area with respect to range of Eq. (7.10) is

given by Eq. (7.11) below,

=== (7.11)

A constant value for all in the range 0 cm < x <10 cm, which immediately implies that

the second order derivative with respect to range will be zero in the same region,

d* A(x)
dx?

=0 (7.12)

7-10



As before, since the cross-sectional area and it’s higher order derivatives with
respect to range are continuous along the length of the scatterer, the only region where a
Freedman image pulse may originate remains the transition point between the two cross
sectional profiles at x = 0 cm.

As Eq. (7.10) and Fig 7.6 clearly demonstrate, the cross-sectional area at a point
infinitesimally beyond x = 0 cm remains zero. As this is equivalent to the null cross-
sectional area of the free space infinitesimally prior to x = 0 cm, it follows that there is
no difference in the cross-sectional profiles, hence no discontinuity and thus no echo

from this component. In terms of the discontinuity equation,

D(4,.,0,0) = 4,,(r,-) = 4, (1.) (7.13)

=0 - (0

However, as Eq. (7.11) shows, the derivative of the cross-sectional area with

.12 . . .
respect to range is ?n at all ranges including x = 0 cm. Given that the free space

region prior to the scatter has a value of zero, it’s clear that this represents a sudden

change in the profile of % at x = 0 cm. This step discontinuity is shown in Eq.
X
(7.14),
dA dA,
D(4,,0,1) = —=(ry-) —— = (ry,) (7.14)
dr dr
12n
= 0 - —_— .
0) ( s )
_ 12n
5
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It follows that this step discontinuity will be responsible for the production of an image
pulse (echo) at this point.

Finally, since the second order derivative with respect to range has been

2
established as being zero at x = 0 cm, there is no change in the profile of d dAgx) at this
X
point and thus there is no discontinuity to concern us.
d’A, d’A,
D(4,.,0,2) = 7(70-) ‘7(%) (7.15)
=0 - (©

In summary, the first parabolic object has a discontinuity in the first order derivative of
the cross-sectional area with respect to range at x = 0 cm. These are summarised in the

table below,

Location of D(n) | D(0) D(1) D(2)
0 cm 0 -24n 0

Table 7.2. Discontinuities on the first parabolic object.

7.3 Spheroid-Paraboloid

The next object is a merger between a half-sphere and a paraboloid. It’s

geometry is dictated by the following equation,

r(x) =+/20x — x* ,0<£x<5cm (7.16)
=4/7.05(x +5.64) ,5<x<10cm
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the radius of the cross-sectional area of the object at range x

where r(x)
It’s length is 10 cm with it’s cross-sectional area varying from zero at it’s vertex to

346.4 cm squared at it’s base. Its geometry is shown in Fig. 7.7 below
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FIG. 7.7. Representation of an aluminium object with the geometry governed by Eq. (7.16)

The cross-sectional area of Fig. 7.7 above is given by Eq. (7.17) below

A(x) = 207% - 7&° ,0<x<5cm

=7.05n1(x+5.64) ,5<x<10cm

(7.17)
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This is represented in Fig. 7.8 below,

2507
2007
150
100

50

2 4 6 8 10 *

FIG. 7.8. Plot of cross-sectional area (square cm) with respect to range (cm) for the object in Fig. 7.7.

This object’s cross-sectional area profile differs from the others encountered
thus far in that there is a ‘kink’ in the cross-sectional area at x = 5 cm. This is of course
due to the fact that the object is constructed from differently shaped objects, the half-
sphere and the paraboloid, and this ‘kink’ in the profile occurs at the point of
intersection of these two disparate shapes. Although the cross-sectional area profile
clearly remains continuous, the change in the slope of the curve shown above indicates
that we’d expect the higher order derivates of cross-sectional area with respect to range
to possibly exhibit discontinuities and thus result in image pulses from this range (x = 5
cm). This is by design of course, as we’d like to see whether it’s feasible, via inverse
analysis, to resolve the shapes of objects with geometries that exhibit sudden changes in
curvature along their length.

The derivative of the cross-sectional area with respect to range of Eq. (7.17) is

given by Eq. (7.18) below,
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dA(x)

=20T-27% ,0<x<5cecm  (7.18)
dx
=7.05n ,9<x<10cm
The plot of Eq. (7.18) is shown in Fig. 7.9 below,
dA(x) /dx
60t
50+
40}
2 4 6 8 10 *

FIG. 7.9. Derivative of the cross-sectional area with respect to range (cm) of the object in Fig. 7.7.

As we suspected earlier, the change in surface curvature at x = 5 cm has resulted
in a distinct discontinuity in the derivative of the cross-sectional area at this range, thus
this component will result in an image pulse at that point. We’ll calculate the exact size
of this discontinuity shortly.

Lastly, the second order derivative of the cross-sectional area with respect to

range is given below in Eq. (7.19),

d*A(x) _ _

o 27T ,0<x
x

IN

Sem  (7.19)

=0 ,5<x<10cm
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One does not need a plot of Eq. (7.19) to see that at x = 5 cm there is a discontinuity of
magnitude 271, which will add a second contribution to the already established image
pulse from this range.

We’ll turn our attention now to calculating the values for these discontinuities
for both those at x = 5 cm as well as those that are inevitably to be expected from x = 0
cm as per usual. For the cross-sectional area, the discontinuity equations for both

ranges, x = 0 cm and x = 5 cm respectively, can be expressed by the following

equations,
D(A4,.0.0)= 4,(r,) = 4,(r,,) (7.20)
=(0) - (0)
D(4,,,5,0) = 4,(r5-) — 4, (r5,) (7.21)

(751) - (75m)

=0

Eq. (7.20) verifies what we’ve already established via observation of Fig.7.8, that there
are no discontinuities in the cross-sectional area profile at x = 5 cm. It also reveals that
at the transition point x = 0 cm, there are no discontinuities either.

For the derivative of the cross-sectional area with respect to range, the

discontinuity equations for both ranges are given below,

d d

D(4,.0) = j <r0_>—%<r0+> (7.22)
—(0) - (207).
=-207
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dA dA
" (ry) = 7.23
5 Us) T ) (7.23)

D(4,,,5,1) =
=(10n) - (7.05n).

=295n

Clearly then, at both ranges there are discontinuities in the derivative of the cross-
sectional area profile with respect to range and hence we’ll expect image pulses to
originate from these ranges after insonification.

Finally, for the second order derivative of the cross-sectional area with respect to

range, the discontinuity equations are,

2

D(4,.,0,2) = d;;“’ (r,2) —%(Vm) (7.24)
=0) - (-2n).
=12n

D(A4,.5,2) = %(VS_) —%(@) (7.25)
=(-2n) - (0).
=-2n

Again, at both ranges there are discontinuities. However, given that we’ve already
established that there will be echoes from the ranges x = 0 cm and x = 5 cm as a result of
discontinuities in the first order derivative of the cross-sectional area profile with
respect to range, the echoes that result from discontinuities in the second order will be

several orders of magnitude smaller.
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To summarise our observations, the spheroid-paraboloid has discontinuities in
both the first and second order derivatives of the cross-sectional area with respect to

range at ranges of x = 0 cm and x = 5 cm. These are summarised in the table below,

Location of D(n) | D(0) D(1) D(2)
0 cm 0 - 207 2n
S cm 0 2.95n -2n

Table 7.3. Discontinuities on the spheroid-paraboloid.

7.4 Paraboloid B

The next object in the series is another paraboloid, though this time with a

broader base. It’s geometry is governed by the following equation,

r(x) =+4.9x (7.26)
where r(x) = the radius of the cross-sectional area of the object at range x

It has a length of 10 cm with it’s cross-sectional area varying from zero at it’s vertex to

153.9 cm squared at it’s base. It’s geometry is shown in Fig. 7.10 below,
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FIG. 7.10. Representation of an aluminium object with the geometry governed by Eq. (7.26).

The cross-sectional area of the figure above is given by Eq. (7.10) below,

A(x) = 4.9 (7.27)

This is represented in Fig. 7.11 below,
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FIG. 7.11. Plot of cross-sectional area (square cm) with respect to range (cm) for object in Fig. 7.10.

As with the first paraboloid, the continuous nature of Eq. (7.27) leads us to
believe that no step discontinuities would be present along the object’s length and thus
no echoes in the range 0 <x <10 cm.

The derivative of the cross-sectional area with respect to range of Eq. (7.27) is

given by Eq. (7.28) below,

dA(x) _
dx

49 (7.28)
A constant value for all in the range 0 cm < x <10 cm, which again immediately implies

that the second order derivative with respect to range will be zero in the same region,

d” A(x) _
— =0 (7.29)

As with the previous paraboloid, since the cross-sectional area and it’s higher

order derivatives with respect to range are continuous along the length of the scatterer,
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the only region where a Freedman image pulse may originate remains the transition
point between the two cross sectional profiles at x =0 cm.

For the cross-sectional area, the discontinuity equation is,

D(A4,,0,0)= A4, (r, )~ A, (r,,) (7.30)

=0 - (0

Indicating no discontinuity in the cross-sectional area profile at this point.
As for the derivative of the cross-sectional area with respect to range, the

discontinuity equation is thus,

dA dA

D(A,,0.) === ) =— = (5.) (7.31)
=(0) - (49n).
=-49n

It follows that this step discontinuity will be responsible for the production of an image
pulse (echo) at this point, should the object become insonified.
Lastly, since the second order derivative with respect to range has been

established as being zero at x = 0 cm, then as with the first parabola before it, there is no

2
change in the profile of ddAgx) at this point and thus there is no discontinuity to
x
concern us.
d’A, d’A,
D(4,,0,2) = 0 (’”o-)_W(”m) (7.32)
=0 - (©
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Thus in summary, the second parabolic object has only one discontinuity, this being in
the first order derivative of the cross-sectional area with respect to range at x = 0 cm.

These are summarised in the table below,

Location of D(n) | D(0) D(1) D(2)
0 cm 0 -49n 0

Table 7.4. Discontinuities on the second parabolic object.

7.5 Ellipsoid

The fifth object has an elliptical shape governed by the following,

r(x) = J/4x(10 - x) (7.33)

where r(x) = the radius of the cross-sectional area of the ellipsoid at range x

Its length is only 5 cm and its cross-sectional area varies from zero at it’s vertex to

314.2 cm squared at it’s base. Its geometry is shown in Fig. 7.12 below,
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FIG. 7.12. Representation of the aluminium object with the geometry governed by Eq. (7.33).

The cross-sectional area of the figure above is given by Eq. (7.34) below,

A(x) = 47x(10 - x) (7.34)

This is represented in Fig. 7.13 below,
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FIG. 7.13. Plot of cross-sectional area (square cm) with respect to range (cm) for object in Fig. 7.12.

Given the continuous nature of Eq. (7.34), seen clearly in Fig. 7.13, it is
expected that no step discontinuities would be present along the length of the object and
hence no echoes in the range 0 <x <10 cm.

The derivative of the cross-sectional area with respect to range of Eq. (7.34) is

given by Eq. (7.35) below,
dA(x) _

== =410 - 2x) (7.35)
dx

This is plotted in Fig. 7.14 below,
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FIG. 7.14. Derivative of cross-sectional area (square cm) with respect to range for object in Fig. 7.12.

Clearly, the linearity of the above plot bears out our prediction of continuity in the
derivative of the cross-sectional area with respect to range. The linearity also indicates
that the second order derivative will be constant. Indeed, this is shown to be true in Eq.

(7.36) below,

d*A(x) __
dx?

87T (7.36)
Thus, as before, since the cross-sectional area and it’s higher order derivatives with
respect to range are continuous along the length of the scatterer, the only region where a
Freedman image pulse may originate remains the transition point between the two cross
sectional profiles at x = 0 cm. For the cross-sectional area, where there is no change in
the cross-sectional profile at x = 0 cm, since both the object at this point and the free
space region have cross-sectional areas of zero, the discontinuity equation is given
below,

D(AW,O,O) = Aw (ro—) _Aw(r0+) (737)

=0 - (©
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Hence this component will not produce an image pulse when insonified.
The derivative of the cross-sectional area with respect to range does not begin
with a value of zero at x = 0 cm though. Thus, we’ll expect a discontinuity at this point

as can be seen by the discontinuity equation below,

d dA
DO =50 () =2 (5) (7.38)
=(0) - (40n).
=-40m

It follows that this step discontinuity will be responsible for the production of an echo at
this point when irradiated with an acoustic wave.
Finally, since the second order derivative with respect to range has been

established as being non-zero at x = 0 cm, there will be a sudden change in the profile of

d? A(x)

dx?

at this point and thus a discontinuity will result, as shown below,

d’A, d’A,

D(4,,0,2) = 0 (ro_)-7(r0+) (7.39)
=0 - (=8n)
= 8n

In summary then, the ellipsoid object has discontinuities in the first and second order
derivatives of the cross-sectional area with respect to range at the range x = 0 cm. These

are summarised in the table below,
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Location of D(n) | D(0) D(1) D(2)
0cm 0 -40n 8n

Table 7.5. Discontinuities on the ellipsoid.

7.6 Fourth Order Shaped Object

The last object in our series has what can only be described as a “4™ order”

geometry, so called because it’s shape is governed by the following equation,

x(r)= (7.40)

r
98.3

where x(7) = the length (cm) along the axis, measured from the vertex.

In keeping with our decision to express the cross-sectional parameters of our objects in

terms of range, we can reformulate this as,

r(x) = 3.15x 4 (7.41)

This object has a length of 10 cm with its cross-sectional area varying from zero at its

vertex to 98.5 cm squared at it’s base. Its geometry is shown in Fig. 7.15,
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FIG. 7.15. Representation of an aluminium object with the geometry governed by Eq. (7.41).

The cross-sectional area of the figure above is given by Eq. (7.42) below,

A(x)=9.92 752 (7.42)

This is represented in Fig. 7.16 below,
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FIG. 7.16. Plot of cross-sectional area (square cm) with respect to range (cm) for object in Fig. 7.15.

This is another example of an object with a continuous cross-sectional area,
leading us to expect that no step discontinuities would be present along the length of the
object.

The derivative of the cross-sectional area with respect to range, is given by Eq.

(7.43) below,

dA(x)

= 4.967% (7.43)
dx

This is shown in Fig. 7.17,
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FIG. 7.17. Derivative of cross-sectional area (square cm) with respect to range for object in Fig. 7.15.

As with the cross-sectional area profile, the plot is continuous, indicating no
discontinuities along the length of the object (ie. x > 0 cm). Of note however is the
nature of the curve to approach infinity as it nears zero, which should have interesting
implications for the expected discontinuity at x = 0 cm.

As for the second order derivative of the cross-sectional area with respect to

range, it’s governed by,

d*A(x) _

- 0487 2 (7.44)
X

shown in Fig. 7.18 below,
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FIG. 7.18. 2™ order derivative of cross-sectional area with respect to range (cm) for object in Fig. 7.15.

Again, a continuous profile, indicating no discontinuities along the length of the object
but the same characteristic as the first order derivative to approach infinity, albeit
negative infinity in this case, as it nears zero.

Given that there are no discontinuities along the length of the object, let’s
examine the expected discontinuities at x = 0 cm. For the cross-sectional area, the

discontinuity equation is,

D(Aw ’050) = Aw (ro—) - Aw (r0+) (745)

=0 - (0

As expected, since the cross-sectional area of the object at x = 0 cm is the same as the
the free space region, namely zero.
For the derivative of the cross-sectional area with respect to range however, the

discontinuity equation has an infinity at x = 0 cm, shown in Eq. (7.46) below,
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dA, dA

D(4,.0) =T () = (1) (7.46)
4.96n
-0 - 5.
o
= (0)- ()

It follows that this step discontinuity will be responsible for the production of an image
pulse at this point. However, despite the first order discontinuity being of infinite
magnitude, in practice we would, of course, observe a finite echo, albeit of large
magnitude. The fact that an infinite first order discontinuity would be processed by the
forward model as (incorrectly) resulting in an echo of infinite magnitude, with the
converse holding true for the inverse model, highlights one of the limitations of the
model.

The same principle holds true for the discontinuity of the second order

derivative with respect to range, shown below,

2

d’A, d’A,
D(4,,,0,2) = 7(”0-) ‘7(%) (7.47)
2.48n
=0 - (‘T)
O 2
= 00

Again, a large contribution to the echo at x = 0 cm would be expected due to this

discontinuity, but not an infinite one.
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In summary, the fourth order object has discontinuities of infinite magnitude in both the
first and second order derivatives of cross-sectional area with respect to range at x = 0

cm. These are summarised in the table below,

Location of D(n) | D(0) D(1) D(2)
0 cm 0 - © + 00

Table 7.6. Discontinuities on the 4™ order object.

In the following chapter, we will examine experiments that were conducted with
the objects listed above to test the validity of the inverse models we developed in the
previous chapter and see how well they were able to predict the geometries of the

objects examined in this chapter.

7-33



8 Experimental Design, Results and Analysis

Our task was now to use the selected objects listed in the last chapter to test the
time dependent inverse model we developed earlier. But before we could begin some
decisions had to be made. Specifically, what two frequencies would be used and what
range would the objects be placed at. Given that the Polaroid transducer we have been
using has a maximum output at 50 kHz, with a gradual fall off in sensitivity above and
below this frequency, it was decided that our chosen frequencies should fall on either
side of this peak output. Thus we selected 40 kHz and 60 kHz as the frequencies of
choice as they are each close enough to 50 kHz to provide a signal which is not too
weak whilst at the same time being sufficiently separated along the spectral band in
order that they should produce echoes that are noticeably unique from one another.

As for the range, we selected 40cm. Even though this range is borderline for the
validity of the Kirchoff approximation, preliminary tests showed us that the echoes at
ranges beyond this were too weak for us to reasonably expect to see any contribution
from any of the higher order discontinuities. As the detectable presence of these higher
order contributions is necessary for the inverse model to work, we had to limit our range
accordingly. This differs from our experience testing the forward model, where we were
able to set our scattering objects at 80cm and beyond. But in that instance, we were
dealing with a model in which the sizes of the higher order discontinuities had little
impact upon the validity of the model being tested, given their very small magnitude.
With the inverse model however, the situation is exactly the reverse, as one would
expect. Plus we had the advantage of using a strong 50 kHz peak signal, unlike the
current situation where the output at 40 kHz and 60 kHz is only approximately half as
strong as that at 50 kHz. Thus 40cm is a reasonable compromise between ensuring that
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the Kirchoff approximation is held true and making sure our echo is strong enough to
analyse in detail.

However, the general procedure for obtaining the echoes was not dissimilar to
that employed earlier when we tested the validity of the extended forward model, save
the differing frequencies and ranges already mentioned. Before we began taking
readings, the region around the apparatus was checked to ensure it was clear of any
drafts from nearby windows, doors or air conditioner vents, as these cause air
turbulence and changes in environmental conditions. The air conditioner in the
laboratory was switched off 15 minutes prior to the start of the experiment to give the
temperature time to settle. A sample echo reading was taken with no scattering object
present to ensure that there were no extraneous objects within the field of insonification,
as these clearly show up in the echo trace when present. Other checks were also
conducted such as ensuring that the bias on the transducer was correct (150V) and the
amplification setting in the capture software was high enough to produce the largest
echo without clipping. Other software settings on the chirp/capture software mimicked
those used during the forward model tests, specifically a 10 cycle wave is emitted, the
echo sampled at a rate of 1Mhz and the procedure repeated 100 times. This multi-
sampling is necessary for the same reasons that it was employed for the forward model
experiments, to minimise random, short-term fluctuations in the environment.

At this stage, the apparatus was ready and the first object was mounted at 40cm
ready for insonification, At the conclusion of the measurement cycle for an object, the
frequency was changed from 40kHz to 60kHz and the entire measurement cycle was
repeated. Once the readings from the object at both frequencies had been obtained, the
environmental conditions were recorded as we would need this information later in

order to calculate the matrix elements used in the inverse model. The object was then
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demounted, the next object in the series put in its place and the process repeated until all

six objects had been examined.

8.1 Experimental Results

A. Determining K (/)

Before we can test the predictions of the inverse model, we must firstly calculate
the matrix elements of the model for each case in order for it to become workable. As
stated back in Chapter 6, in order for us to calculate the matrix elements Y (f) of the

model for each frequency, we firstly need to calculate or measure K(f). We also

determined that the best approach, both in terms of speediness and accuracy, was to
calibrate the model with an object of precisely known dimensions and thereby

determine K(f) directly through measurement, the best candidate for this being an

object that has all D(n) = 0, except for one, such as a paraboloid for instance. We have
two paraboloids within our set, each suitable candidates, however we’ll use the second
of these as it has a larger discontinuity which should produce a stronger echo and thus a
more accurate result. We could also have used any of the spheres that we employed
previously to test the forward model, but we opted to go with the paraboloids because
they are more finely machined and thus their geometry is known to a higher degree of
accuracy than the spheres.

Eq. (6.16) reduces to a simpler form in the instance where we are using a

scatterer with all D(n) = 0 except forn =1,

Eg=—K(f)Dz—(]:)COSH (8.1
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For Paraboloid B, examined in section 7.4, the first order discontinuity has a value of

—4.9 1. This reduces Eq. (8.1) further to,

E, =K(f) 2";5” cos 6 (8.2)

At it’s peak, when cos @=1, the voltage has a maximum value given by,

2.45n
EgMAX =K(f) I (83)
and given that £ = 27 it follows that,
c
1.225
E,,. =K() ; ¢ (8.4)

allowing K(f) to be determined by,

B/
= Ceaax 8.5
K 1.225¢ (8:5)

This can be readily calculated as the frequency fis known in each case, the maximum

voltage E can be measured from the data, or more accurately it’s interpolated

EMAX
counterpart, and the speed of sound c is easily calculated from a knowledge of the

environmental conditions at the time of measurement, which we recorded.



For the echo from Paraboloid B we had a recorded temperature of 22.9 °C, a
humidity of 36.85% and a pressure of 1037.5mB. This results in a speed of sound ¢ of
345.0 m/s. In the 40 kHz case, the maximum voltage measured off the paraboloid was

found to be 0.01778V, thus our value of K(f) at this frequency is deduced thus,

)= (0.01778)(40000) _ 1.68 (8.6)

K(40kHz
1.225(345.0)

For the 60 kHz case, the maximum was found to be 0.02009V and therefore the value of

K(f) is given by,

(0.02009)(60000) _ 285 (8.7)

K(60kHz) =
(OO = 5(345.0)

These calibration constants, K(40kHz) and K(60kHz), will be used in the later sections
to aid in the determination of the matrix elements that go up to make the inverse model,
because for each object these matrix elements will differ. Although strictly it would be
preferable to calibrate the model before each and every new scatterer is tested, we
decided that this would be unnecessary. This is because the impact upon the value of
K(f) from the small environmental changes that occur over the entire run of
measurements is minimal, given the rather short time span, 10 — 15 mins, during which

the measurements are conducted.

B. Selecting an appropriate time index t

The general equation of the inverse model has the following form,
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DQR)] () Y(f)] [E.(]2)

where, Y,(f) = —%lj:)cosﬁ & Y,(f)= _[:Igf)siné?

2

2r,
and 9=C<I—2krg :27(t_7)
If we invert the matrix and expand it out to its full form, we get the following,
D( A B|E
(0] 14 8T 5
D2)] |C DJE.(f)

where,

) 2r
~ 2k Sin[277, (6 - )
A= c

( 2r, . 2r, 2r ) 2r, j
K| i CosT277,(t = ~21Sinl 277, (¢ = )]~ k,Cos[27, (¢ = —2)1Sin[ 277, (¢ = )]
c c c

c

- 2r
2k, Sin[ 277, (6 = )]
B = c

[ 2r, ) 2r 2r ) 2r, j
K ()] kCos[278,(t =—5)Sin[277, (1 =—)] = k,Cos[ 277, (t =—H)ISin[ 277, (1 =—5)]
c c c c

) 2r
4k, k,"Cos[277,(t ——2)]
C= c

( 2r ) 2r 2r, 2r j
K(f,)| kCos{21,(t =~ )ISin[277, (¢ - ~ )1~ k,Cos[277,(t =~ 1Sin[277,(t =~ )]
c c c c

{D(l)} {Yz ) n(m]l{ffg(m} (6.23)
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) 2r
=4k, k,Cos[277,(t ——%)]
c

( 2r, ) 2r, 2r, 2r, J
KOS kCos{277, (1 = ~2)ISin{277, (6 = )] = k,Cos[277, (¢ = —)1Sin[ 277, (t = 2]
c c c c

The presence of trigonometric terms in the denominators of the matrix elements have
the consequence that an ill-chosen value of the time index ¢ could cause all the matrix

elements to become singularities (ie. infinite). Further, if any trigonometric terms in the
numerators become zero, then the contribution of the associated Eg(f;) or Eq(f2)

coefficient would vanish. This would mean that the data obtained for the amplitude
measurement at one of the frequencies would not contribute to the calculation, which
would diminish the accuracy of the result as a consequence and is thus to be avoided.
The value of ¢ should thus be chosen to strike a balance between all the terms
such that no term is in danger of becoming either a singularity or zero. To determine
which value(s) of ¢ satisfy this condition optimally, we’ll examine a ratio which is the
product of the first and second terms divided by the product of the third and fourth,

shown in reduced form in Eq. (8.9) below,

yy 3 2r, . 2r,
K(f))"k, Cos[217,(¢ —Tg)]Sm[Wfl(l ‘7‘%)]

R(8)= (8.9)

5. 3 2r, . 2r
K(f2) k" Cos[277, (¢ —Tg)]Sln[ﬂfz (¢ —Tg)]

The optimal choice for ¢, which occurs when the four matrix terms are closest to one
another and therefore have values which are neither zero or infinite, will manifest itself

in the ratio function as that point where the ratio is closest to one.
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After substituting into Eq. (8.9) the values for K(f), f, k, r, & c, for both 40kHz

and 60kHz, we can plot the variation of this ratio function over the course of
approximately 10 wavelengths, the typical length of a received echo. The extreme
sensitivity of the ratio function to the choice of ¢ at certain points is revealed in Fig 8.1

below,

FIG. 8.1. Variation of the ratio function R( &) with angle across 10 wavelengths.

Given the obvious cyclic repetition of the variation, as seen above, we can focus on the
detail within a single wavelength as representative of the greater structure of the wave

train. This is shown in Fig. 8.2 below,
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FIG. 8.2. Variation of the ratio function R( &) with angle across a single wavelength.

The plot above has a length equivalent to one wavelength, 0 to 360 degrees, of a 40kHz
echo. We can see that the first ‘danger spot’ occurs at approximately 30 degrees along
the wave where the ratio approaches a singularity. There follows a stable region from
about 60 to 120 degrees where the ratio has a magnitude of approximately one, albeit
negative one, followed by another singularity around 150 degrees. Another danger spot
is at 180 degrees where the ratio becomes zero. From 180 to 360 degrees these patterns
are repeated, but inversely. As can be seen from Fig 8.1, these variations are then
repeated throughout the rest of the wave train.

It follows then that we should be safe, in the sense that our matrix elements are
not in danger of veering towards infinity or zero, provided our choice for the time index
t lies between 60 to 120 degrees (or 240 to 300 degrees, etc...) along the 40kHz wave
train. But what range of angles does this choice for ¢ correspond to along the secondary

60kHz wave? Well, since the 60kHz wave has a frequency that is exactly 50% higher
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than the 40kHz wave, clearly then the corresponding angles will be 50% higher. Thus
the region between 60 to 120 degrees on the 40kHz wave will correspond to 90 to 180
degrees on the 60kHz wave. Given this, the most efficient choice for the time index ¢ is
the location of the first peak on the 60kHz wave, since the first peak will always be at
90 degrees, which satisfies our requirement to be within the ‘safety zone’ for 60kHz
waves, and is quite easy to localise on the wave train. Also, this time index at 90
degrees on the 60kHz wave will correspond to that at 60 degrees on the 40kHz wave,
which is within the ‘safety zone’ for that wave frequency. Hence, by choosing the first
peak on the 60kHz wave train we’ve chosen a time index ¢ that is within both ‘safety
zones’.

Of course, given the cyclic repeating nature of the ratio equation, there is no
need for the peak chosen to be the first one. Provided that the next point chosen is
exactly 180 degrees removed from the previous, it will also fall within one of the ‘safety
zones’ of Fig. 8.2 and as all peaks are removed from each other by 180 degrees anyway,
it follows that any peak is a suitable candidate. It is best however to choose a peak that
is at least 2 to 3 wavelengths into the wave train though, as this ensures that we avoid

sampling the “ramp up” period on the wave train.

C. Results

After the value of ¢ is chosen, the echo amplitudes at that time index are
recorded for both the 40 kHz and 60 kHz echoes. These values, along with the pre-

calculated and/or recorded values for K(f), f, k, r, & c, for both 40 kHz and 60 kHz, are

substituted in Eq. (8.8) to produce estimates of D(1) & D(2). An example of this

process, using the exponentially shaped scatterer, is shown in Appendix A.5 (b).
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Data for figures used in this section, pertaining to measured and predicted
discontinuities, are provided in Appendix A.4. The predicted first order discontinuities

are plotted alongside the measured values calculated back in Chapter 7 and are shown

below,
D(1)
200 b Spheroid
Ellip=soid
Parab &
Farab & ;E:ngn?nt.l . L , L . L L
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FIG. 8.3. Comparison of Calculated (broken line) with Predicted (solid line) values for D(1)

The data points for the sixth (and last) object (the 4™ order scatterer) are unseen
and unlabeled simply because they are far beyond the scale of the plot. Clearly, from
observation alone, the calculated and predicted results do not match. Interestingly
enough however, if we simply switch the sign on the predicted results, there is far

greater correlation, as seen in Fig. 8.4 below,
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FIG. 8.4. Comparison of Calculated (broken line) with -1xPredicted (solid line) values for D(1)

Further, if we scale the predicted results by dividing them by 3, the correlation is even

more compelling, as shown in Fig. 8.5 below,

---------------------- S  Ellipscid &

-100
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FIG. 8.5. Comparison of Calculated (broken line) with —(1/3)x Predicted (solid line) values for D(1)
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Thus by introducing this “calibration factor” into the model, we have significantly
improved its accuracy. Random noise in the data used is the actual reason why this
factor serves to improve the correlation between measurement and theory, but at this
stage it will not be clear to the reader why this indeed the case. The details of why data
errors can impact upon the predicted values for D(n) (and by extension the calibration
factor) are discussed in section 8.1 (d), as well as discovering why the sign of the
predicated values is the opposite of those calculated.

Even though it’s not directly visible on the figure above, due to the limitations of
scale, the 4™ order scatterer has a poor correlation between the calculated and predicted
values. The calculated value was negative infinity, but the model predicted value veers
off to the large but not infinite value of —632. However, this poor correlation was to be
expected because real-world objects can never have an infinite discontinuity any more
than say, the tip of a pin can have a radius of curvature exactly equal to zero. Thus our
predicted value is what we would have expected, a value much larger than the other
objects, but not infinite. The only major anomaly therefore is the ellipsoid, though we
will show later that individual anomalies hold little significance as matrix instability
accounts for the gross characteristics of Fig. 8.5.

Let’s also take a look at the plot of calculated versus predicted values for the

second order discontinuities D(2) . This is shown in Fig. 8.6 below,
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FIG. 8.6. Comparison of Calculated (broken line, which is too close to zero to be visible) with the

Predicted (solid line) values for D(2)

The broken line indicating the calculated, or true, values for D(2) is not visible because
they’re limited to values under 30 (with the exception of the last object, the fourth order
object which, as before, has a value of infinity) and the much larger values on the
predicted line have drowned them out. If we scale the results by dividing the predicted
values by, say, 10000, we can compare them more easily. This is shown in Fig. 8.7

below,
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FIG. 8.7. Comparison of Calculated (broken line) with the (1/10* )xPredicted (solid) values for D(2)
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Despite the obvious disparity between the calculated and predicted values for D(2) it is
of note that the trend in the predicted values mirrors that of the calculated values,
despite the obviously large difference in magnitude. Despite this small consolation, it’s
clear that unlike the results obtained for D(/) we cannot use the model to make
meaningful predictions for D(2), even when imposing a 1/10000 scaling factor. It would
appear that the model can however be used to at least make qualitative estimates of
general trends in the values of D(2).

As a final test for the model, let’s compare the calculated and predicted values
for the discontinuities of the spheroid-paraboloid at its “crossover” region, the region
where the object’s spheroidal surface changes to a parabolic one, Scm from its vertex.
This is the first test of a discontinuity that is actually on the surface of the scatterer
rather than one that exists at the transition point from free space to a solid object. Our
previously calculated values for the discontinuities at this point were determined in

Chapter 7 and are given below,

D(4,,5,])=9.27 (7.23)

D(4,.,5,2) = —6.28 (7.25)

The predicted discontinuities (unscaled) are given below,

D(4,,5])=3.21 (8.10)

D(4,.,5,2) =282 (8.11)
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Very poor correlation is observed with these figures. Even when applying the scaling

factors we determined earlier, the predictions remain erroneous and in fact show even

worse correlation,
D(A4,,5,1) =-1.07 (8.12)

D(4,,5,2) = 0.0282 (8.13)

The poor results in this case are almost certainly a result, at least in part, of the very
weak signal received from this crossover region, the signal therefore being heavily
impacted upon by the noise floor of our system. To illustrate this problem, we present

below the sampled wave trains for the spheroid-paraboloid at both 40 kHz and 60 kHz,
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FIG. 8.9. 60kHz echo from the spheroid-paraboloid
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The echo from the crossover region is visible as a weak secondary trace trailing the
main echo from 0.00261s to 0.00273s. Now, we are required by the constraints of the
model to ensure that the time index ¢ chosen to sample the echo amplitude must be the
same for both frequencies, so we need to choose a time index for which the echo is clear
enough on both echoes for sampling. It’s clear that the only point on Fig. 8.8 where the
secondary echo is clear enough to sample is at ¢ = 0.00270ms and beyond.
Unfortunately, this region is very weak in the 60 kHz wave trace. However, as stated
above, we have no other choice but to use this time index.

The degree to which the inverse model is only partially successful, specifically
the partial success of the model at predicting D(1), after scaling, but complete inability
to determine D(2) accurately, discounting it’s limited qualitative success, is not
unexpected. As we pointed out earlier, the contributions to the echo of the second order
discontinuities are of the order of 10° times smaller than those of the first order. Given
that the noise in the system is on a similar scale, it follows that it will be very difficult
for these contributions to add to the signal in such a manner that they are distinct
enough for the model to use them in a meaningful manner.

However, the problem of trying to explain the difference in sign between the
calculated and predicated results hints at a more fundamental problem. With this in
mind, we adopted a couple of changes in the methods used to manipulate the raw data
and select the sample time z. Specifically, we decided to try fitting a sinusoidal function
to the data rather than interpolating it, since we know that the echo will be sinusoidal in
form. Also, we adopted the condition number of the inverse matrix as the determining
factor for the sample time ¢, since this number is indicative of the sensitivity of the
matrix, and by extension the inverse model, to inaccuracies in the data. The results of

these changes follow.
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D. Fitting a sinusoidal function to the echo data

Because the echo received is generally sinusoidal in form, it’s reasonable to
assume that it can be approximated by a sinusoidal function. As before, our interest lies
solely on the central region of this echo where the wave is essentially monotonic. The
monotonicity of this region also aids us in our attempt to fit a sinusoidal function, since
such a function will by necessity be single frequency. The process used to fit a function
to our data follows.

Using Mathematica, we create a subset of the echo data that contains only the

central monotonic region. The echo data and its corresponding subset, for the

exponentially shaped scatterer, are shown in Fig. 8.10 below.
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FIG. 8.10. Original echo data (top) and it’s subset taken from the monotonic region (below).

We then need to transform the structure of our data to one suitable for Mathematica’s
equation fitting function(s). Our data is stored as a one dimensional array, a series that

contains the instantaneous amplitude of the echo at discrete time intervals along the full
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length of the wave train. Mathematica’s equation fitting function, NonLinearFit,
requires a two dimensional array as one of it’s arguments. To create this array, we
simply use successive elements of the one dimensional array and their associated time
indexes as the co-ordinates for successive points within the two dimensional array. The

general form of the equation to be fit to the data is then declared, which in this case is,

E(t)=Asin(at + ¢)+C (8.14)
where w =271

and f = frequency

Parameters such as 4 representing wave amplitude, C representing bias and ¢ the phase
are all determined by NonLinearFit. Frequency is a known quantity in each instance.
Once these parameters are determined by NonLinearFit, a plot of Eq. (8.14) is
superimposed over a plot of the subset data to ensure it’s a valid fit. An example of such

a superposition, for the exponentially shaped body, is shown in Fig. 8.11 below.
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FIG. 8.11. Superposition of Eq. (8.14) over the sampled data (solid points) to verify correlation.
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In all cases Mathematica was able to provide an equation with a high correlation to the
data. A full example of this curve-fitting process, using the exponentially shaped
scatterer, is given in Appendix A.5 (¢).

The second alternation to our data analysis procedure relates to the use of the
condition number to measure matrix stability. This is a more rigorous approach than the
one employed previously. The condition number of a matrix with respect to inversion is
a measure of how sensitive the matrix is to perturbations. The lower the condition
number, the more stable, or well-conditioned, the matrix is. Conversely, matrices with
large condition numbers are regarded as ill-conditioned. In the context of our inverse
model, the order of the condition number provides a rough estimate of how many digits
of precision are lost from our estimates of D(n) as a result of the matrix inversion. For
example, a condition number of 3x107, having an order of two, indicates that two digits
of precision are lost from the estimates of D(n). So, if the data used only had a precision
of say three significant figures, then after subtracting two digits of precision we’re left
with an estimate of D(n) precise to only one significant figure, which would be a poor
estimate. Clearly, to avoid an outcome with low precision estimates of D(n) we require
either a low order condition number, high precision data or preferably both. Although
sufficient data precision will provide the necessary stability to our model, systematic
error in the model will be evident unless the data is also accurate to the same resolution.
For this reason, we speak of the requirements of data accuracy rather than just precision
from this point on. The condition number of the matrix is determined by the
Mathematica function LUDecomposition. This function accepts the matrix as an
argument and returns three values, the third being an estimate of the condition number.

The principal task then is to determine the time indices at which the condition

number is minimised. Plotting the condition number of the matrix as a function of time
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we see that there are minima at several points along the wave train, approximately co-
incident upon echo minima and maxima. See Fig. 8.12 for an example of this for the

exponentially shaped scatterer.
oo
[ oN
anp F

som -

To0q |-

B0/

1 1 1 1
t(s
0. 00E28E 0.00g249 0.00Eal 0. 0ngas 0. 0ngar D.0nEed ( )

FIG. 8.12. Condition number of the inverse matrix as a function of time.

The condition number at all minima never falls far below 6x10?, indicating that the
matrix is never well conditioned and will lead to a loss in precision of two digits from
any estimates of D(n). The significance of this is high as it severely limits the accuracy
of our model, with the major implication of this to be discussed later.

Given the lack of variation in condition number across the various minima, we
could apparently select any of the minima in the plot above as our chosen time index, as
each will produce a matrix with minimised instability from with which we can then
attempt to predict D(1). However, the choice of minima is important. Not apparent to us
previously was that the sign of the predicted value of D(7) varies with the choice of
minima. Whereas a time index at one minima may produce a negative prediction for

D(1), the time index at the next minima will predict one roughly equal in magnitude but
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opposite in sign to that predicted previously. For each successive minima, the sign of
the predicted D(1) continuously flip-flops between positive and negative in this manner.
This accounts for previous predictions of D(7) using the inverse model which resulted
in values with a sign at odds with the measured result.

Given our awareness of the issue with the sign, it was a simple matter of
collating the predictions for D(7) at each minima and then rejecting the positive valued
solutions. This was justifiable on the grounds that D(/) can never be positive valued
since it is a function of the cross-sectional area in air (ie. zero) minus the cross-sectional
area of the scattering body (which can only be zero or positive valued). Hence the result
can only be either zero or negative valued. The remaining solutions, three usually, are
then averaged and the resulting value used as our model prediction of D(7). A full
example of this process, using the exponentially shaped scatterer, is given in Appendix

A.5 (c). The results for all scattering objects are given in Fig. 8.13.
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FIG. 8.13. Comparison of Calculated (broken line) with Predicted (solid line) values for D(1)
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Given our new found awareness of the fundamental cause of the lack of correlation
between theory and experiment, namely the sensitivity of the matrix to data inaccuracies
as measured by the condition number, it is redundant to repeat our earlier attempt to
correct the model by multiplying the inverse model predictions by a factor to provide
better correlation. This would only work, possibly, if the inverse model suffered from a
systematic error, but clearly this is not the case. Similarly, there was no improvement in
the predictions for D(2) using these techniques, for the same reasons as discussed
previously.

In summary then, fitting a curve to the data produced no tangible increase in
model accuracy over the previously employed method of interpolation. The use of the
condition number proved helpful in explaining the conundrum of the flipped sign and
was illustrative of the lack of stability of the matrix. However, as with the curve fitting
it provided no tangible increase in model accuracy. The reasons that these two
techniques offered little improvement over those methods employed earlier are simply
because their improvements to the model, if any, were far too subtle to be observed
given the vast discrepancies between measured and predicted values. Under more ideal
circumstances, namely when dealing with a stable matrix or with data of much higher
accuracy, we believe that the latter techniques employed would provide more tangible

improvements in model accuracy than those observed here.

8.2 Error Analysis

As outlined in section 4.1 (a), the data used was accurate to within 0.8% in 95%
of cases. Therefore we can report data to a maximum of only three significant figures

(three digits of precision). The condition number of just under 6x10?, having an order of
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two, results in a loss of precision of two digits from any estimates of D(n). The net
effect of these two factors is that predictions of D(7) have a precision and accuracy of
only one significant figure, although we need to remember that the condition number is
only a rough estimate of the loss of precision — inspection of Fig. 8.5 indicates that the
accuracy of the predictions for D(/) may be even lower. This alone is enough to account
for the large discrepancy between theory and measurement we have observed and of all
the sources of error contributing to these discrepancies, clearly it is the most significant.
However, it is instructive to analyse the other possible sources of error that could also
contribute, albeit on a less significant scale.

Discounting the impact of the unstable matrix for now, could the large errors in
the inverse model also arise from smaller deviations in the original forward model, upon
which it’s based, and thus be compensated for? As the terms that constitute the forward
and inverse models are the same, just rearranged, both questions are thus two sides of
the same coin, as they relate to how small changes in these terms impact upon the
predictions.

Specifically, the terms in the models for which there is an associated uncertainty
due to their capacity for variation during the course of a measurement, are listed below,

along with their errors,

Temperature T: 2 K error
Humidity H: 2% error
Pressure P: 1 mB error

The remaining terms within the models, such as frequency, range and speed of sound

have either negligible error, such as the former, or are functions of the environmental
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conditions listed above, such as the latter. In either case, the only terms that are sources
of error in the models are the environmental terms above.

The questions that we need to address are firstly, what impact do these
environmental fluctuations have upon the predictions of the inverse model and
secondly, are any of these terms sensitive enough to produce deviations of the order
seen in the inverse model’s predictions? If the answer to the second question is yes, then
it would be possible to apply either a scaling factor or an offset to the offending term in
the forward model and then propagate that term through the inverse model. The end
result would be a forward mode that is still relatively valid, assuming the modification
to the offending term in the forward model is small, and an inverse model with higher
correlation between theory and measurement. This would be the ideal case.

The most efficient way to measure the errors on the predictions of the inverse
model is to examine the worst case scenarios for each case. Thus we plug in values for
temperature, pressure and humidity that will produce the greatest deviations from the
predicted values in both directions, thereby obtaining the error limits for the each case.
For example, the exponentially shaped object has a predicted value of D(7) =-11.0. The

worst case scenario for each term’s impact upon this prediction is as follows:

Humidity = 49% + 2% = 51%, D(1)=-11.0

Humidity = 49% - 2% = 47%, D(1)=-10.9

It’s thus clear the humidity plays an almost negligible role in the final prediction for

D(1). For pressure,

Pressure = 1038 mB + 1 mB = 1039, D(l)=-11.0
Pressure = 1038 mB - 1 mB = 1037, D(1)=-11.0
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Again, a negligible impact upon the final prediction for D(I/). However, when we

examine temperature the sensitivity is quite stunning,

Temp. = 295.95 K + 2 K = 297.95 K, D(1)=-18.1

Temp. =295.95K - 2 K = 293.95 K, D(1)=-8.5

Given that the highest values of D(1) for the exponentially shaped object occur when
both humidity and temperature are at their highest possible values, as allowed by their
error limits, it follow that the worst case maximum for the prediction of D(1) occurs
when Humidity = 51% and Temperature = 297.95 K (the impact of pressure being
negligible in this case). In this instance, D(1) = -18.2. Likewise, the worst case minimum
occurs when both of these environmental variables are at their lower limits, ie.
Humidity = 49% and Temperature = 293.95 K, for which D(1) = -8.5.

This process was repeated for all objects and the comparison between the
predicted values for D(1) and the measured/calculated values has been replotted in Fig.

8.14 below, but this time with error bars inclusive.
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FIG. 8.14. Comparison of Calculated (broken line) with Predicted (solid line) values for D(1) with

associated error bars.

The process was also repeated for the predictions of D(2) and these results are plotted

below,
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FIG. 8.15. Comparison of Calculated (broken line, which is too close to zero to be visible) with

Predicted (solid line) values for D(2) with associated error bars.
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In both cases, it’s clear that the error limits on the predicted values do not encompass all
values for D(1) and D(2) calculated by direct measurement. Thus the discrepancy
between theory and measurement can not be explained away as simple experimental
error.

Further to the question of whether a small scaling or offset on one of the terms
in the forward model could propagate through the inverse model to produce a greater
correlation between experiment and theory, it’s clear from our above analysis that the
only term which has any real impact upon the inverse model’s predictions is the
temperature. So could applying an offset on the temperature in the forward model
produce greater correlation? Unfortunately, the answer is no. It’s possible to apply a
several degree offset to the temperature to cause one data point to correlate, but the
other data points would not correlate and in general the correlation becomes worse than
before.

Thus, we concede that the lack of correlation between theory and measurement
of the inverse model cannot be attributed to either (a) experimental error or (b) a slight
flaw in the forward model. We have no doubt that there are flaws in the inverse model
which hark back to those in the forward model that made it difficult for us to obtain
reasonable predictions for the echoes from cones, namely the failure of the model to
account for creeping waves. However, without a detailed analysis of the theory of
creeping waves and its integration into Freedman’s model, which is beyond the scope of
this thesis, this impact of this missing element of the model remains conjecture.

However, we believe that the primary flaw in the model is the impact of the ill-
conditioned matrix (coupled with insufficient data accuracy) upon our predictions of
D(1). Is this problem resolvable? The stability of the matrix can only be increased if we

reduce the condition number by at least an order of magnitude and the only way to do
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this would be to reduce the wave number by a similar degree. Transferring the model to
a medium like water, for which the speed of sound is more than four times that in air, as
well as lowering the frequency of the pulses down to the acoustic range would be
enough to reduce the condition number by an order of magnitude. A medium such as
steel (for non-destructive testing) with a speed of sound about 17 times that in air,
would reduce the condition number by an even greater degree. However, the model
would have to be further modified to compensate for the various idiosyncrasies of these
mediums and in any event, such medium changes would defeat the purpose of our
research, which was to construct the model as an aid for autonomous mobile robotic
sensing.

If we choose to restrict the model for use in an air environment only, the
condition number cannot be altered to any appreciable degree. Consequently, the only
way to counteract the impact of the ill-conditioned matrix would be to use data of
exceptional accuracy. Given that our data, with its three significant figures of accuracy,
is insufficient for the task, the question posed is then, how accurate would our data have
to be in order for the model to be workable? Ideally, we would like our predictions of
D(1) to be accurate to within 1%, implying an accuracy of three significant figures.
Given that the large condition number will cause the loss of two significant figures from
our prediction of D(1) irrespective of how accurate our data is, we would need to ensure
that our data is accurate to at least five significant figures to result in a final prediction
for D(1) accurate to three figures. An accuracy of five significant figures can only be
achieved if we can ensure errors in our data of under 1/10000.

To do this we would have to increase the accuracy of our estimate of the

population mean of the amplitude (see section 4.1 (a)) using a higher sample size to

8-29



reduce the standard deviation of the distribution of sample means to within 1/10000.

The equation governing this is given below”',

(8.15)

_ o
U)Y_W

where 0y = standard deviation of the distribution of sample means
o = standard deviation of the population (ie. the distribution of
measured echo amplitudes)
n = sample size (ie. how many echoes are averaged to obtain the

estimate)

In practice, to reduce the standard deviation of the distribution of sample means to
1/10000 would still not be enough, since this would ensure that our estimate of the
population mean of the amplitude was accurate to within 1/10000 in only 68% of cases.
We would actually need to reduce the standard deviation to 1/20000 before we could
safely state that the amplitude estimate is accurate to within 1/10000 in 95% of cases
(ie. two standard deviations), which is acceptable.

Using Eq. (8.15) above with the standard deviation of the population of 3%, as
determined in section 4.1 (a), and a standard deviation of the distribution of sample
means set to our target of 1/20000, we calculate that the required sample size is 36000.
Thus, we would need to average over almost 36000 echo samples before we could
obtain the necessary accuracy to satisfy the matrix stability requirements of the inverse
model. Given that 50 samples take approximately 30 seconds, 36000 samples would
take six hours. Clearly this would not be practical. If we lowered the accuracy standard

of our model, so that we would be satisfied with an inverse model able to make
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predictions for D(1) accurate to only 10% (two significant figures), we would still need
to average over 3600 echo samples, which would take 36 minutes. We need to point out
again that because the condition number is only a rough estimate of the loss of
precision, our calculation of the number of required samples is at best only a ball park
figure.

In practice, to sample the echoes for this length of time, whether it’s 36 minutes,
or even just 15 minutes, is not feasible for a couple of reasons. Firstly, as discussed
earlier, the Mylar film within the transducer loses its tension if the bias is applied for too
long a period. We have measured this effect over several hours (see Fig. 4.5) but it
begins to manifest itself within just a few minutes of continuous use. This problem is
currently solved by using the transducer for no more than a minute at a time and then
removing the bias for about 60 seconds. To use the transducer for 36 minutes
continuously (let alone six hours) would inevitably cause the generated echo to reduce
in amplitude over the course of the sampling period, as the tension in the film reduces,
which would produce a skewed result in the mean. Another reason this is not practical is
because environmental changes in temperature, pressure and humidity over the course
of several minutes are non-negligible. Their impact on both time of flight, via their
effect on the speed of sound, as well as the absorption coefficient would skew the mean
also. It could be argued that the drift in the absorption coefficient could be accounted for
by modelling it with the standard method for the calculation of the absorption of sound’.
However, even with accurate measurements of the environmental conditions, the
calculated value would only be accurate to within 10%.

These problems are not insurmountable though. It’s possible that under more
rigorous laboratory conditions, with far stricter environmental controls, as well as a

different make or model of transducer, samples could be averaged for a full 36 minutes
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without any drift in the mean. Also, if one is willing to transfer the model to either
water, for sonar sensing, or steel, for non-destructive testing, where the condition
number doesn’t place such high demands on the required accuracy of the data, there
may be an application for this model. However, such prospects will have to be left to

future workers.

8.3 Practical Application of the Inverse Model

In it’s current state, the inverse model is not without possible application though.
Making allowances for the fact that the predictions of D(1) are accurate to, at most, only
one significant figure, Fig. 8.5 indicates a general, albeit rather broad, qualitative
correlation between theory and measurement (in most instances). So, let’s see if this can
be applied.

Let us put forth the hypothetical example of a factory that manufactures light
bulbs. An obvious requirement of such a manufacturing process would be quality
control. Specifically, the inspection and elimination of those bulbs that were damaged
during production. The flaws may not be as obvious as a bulb that imploded due to a
crack in the vacuum seal, but may be more subtle, such as a bulb that is slightly
irregular in shape or has a bulge in it’s surface. Whilst visual inspection may identify
these flawed bulbs, the process would benefit from a faster more reliable inspection
system, one which the inverse model may provide.

We took three standard 100W clear bayonet cap light bulbs as our test items.
These were 10.4cm long with a maximum width of 6.2cm at the equator of the globe. In
their untouched condition, they represented the standard shape(s) that would pass the

quality control process. In other words, they are all identical upon visual inspection and
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any minor faults they may have are within the specified parameters of the quality
control process. We measured the echoes from these three bulbs in exactly the same
manner as we tested the inverse model with the various geometric scattering bodies.
Thus they were all located at a 40cm range, 40kHz and 60kHz waves were used, 100
samples were taken, etc... We then repeated the process, but this time we attached small
mounds of Blu-Tak™ onto the glass bulbs. These mounds had a height no greater than
approximately 1mm and were spread out over a 1cm area, the height tapering near the

circumference of the mound. An example of one of these is shown in Fig. 8.16 below,

FIG. 8.16. 100W Clear Bayonet Cap Light Bulb with a 1cm square area mound of Blu-Tak™ attached

to the glass.

The purpose of adding this mound of Blu-Tak™ is of course to simulate a defect
in the shape of the bulb. The mound may look larger than 1mm in height from the photo

above, but that is illusory due to us seeing the aft edge of the mound through the glass.
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The measurement cycle was repeated once more with these modified bulbs. The
echoes obtained were run through the inverse model in the same manner as previously.
The only difference was that in this case there was no need to calibrate the model by

determining values for K( /). This was because in this instance we are only interested in

the relative values of D(1), not absolutes, as the relative values are all that are needed to
differentiate between perfect bulbs and “faulty” ones. The results of these calculations

are tabulated in Table A.4.10 in Appendix A.4 and plotted in Fig. 8.17 below,
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FIG. 8.17. Comparison of the predicted relative values of D(1) for both the modified bulbs (top) and the

untouched bulbs (bottom).

The results are quite distinct. Whilst the unmodified (good) bulbs all hover very
close to a relative magnitude of -60, the modified (bad) bulbs deviate markedly from
these. In a real world environment, numerous measurements would be made upon the
bulbs that pass visual inspections and from these a standard deviation for the top curve
would be determined. Faulty bulbs would then be defined as any that fall outside this

error limit.
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Given that it would have been possible to distinguish between the normal and
defective bulbs just as easily with amplitude alone as with the predictions for D(7), why
would we apply the inverse model to this task at all? In this particular instance it’s true
that we could have distinguished the defective bulbs from the normal ones using
amplitude alone. However, there is nothing to indicate that this should be the case for all
objects tested in this manner. Moreover, amplitude alone offers only a blind
discrimination between the objects and does not provide any information as to why the
objects are distinguishable. The inverse model, in calibrated form, at least provides an
estimate, by virtue of D(1), of the physical structure of the object being insonified. As
D(1) is a function of the front face of the scatter, it will vary in amplitude if the front
face is varied to any degree, allowing discrimination of different bodies or possibly
detecting defects. Of course, whether this information is of use to the parties performing
the tests depends on the nature of their investigation.

From the results given above, it would appear that the inverse model seems
capable of detecting physical anomalies on smoothly varying objects, at least in this
example, and as such it offers the possibility of application to industry, specifically in
the area of quality control where, in many industries, this involves distinguishing
between those items that are physically damaged from those that are not. However, we
need to be aware that given the instability of the inverse model, the results presented
cannot be interpreted as proof of a practical applicability of the model, but rather a one-
off case that apparently works but for which we cannot provide a solid basis to

generalise to other cases.
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9 Conclusion

9.1 Contributions of this thesis

We summarised the limitations of current acoustic sensing technologies and
postulated that in order to make further progress in this area, we would need to develop
a more sophisticated model of the wave mechanics of acoustic backscatter. We took
Freedman’s forward model as our basis, provided an abridged derivation of this model
that highlighted its inherent basic assumptions and gave a physical interpretation of the
model’s mechanisms, with examples. We then made extensions to the model in order to
expand its applicability to air environments and to systems with non-ideal
transducer/receiver configurations. Before putting the extended model to the test, we
made extensive progress in minimising the noise inherent to our proposed experimental
apparatus. We also developed methodologies for both minimising external noise sources
and data analysis.

We then tested this extended model with a variety of distinct acoustic scatterers,
including spheres, cones and truncated cones at ranges of 80cm, 100cm and 140cm and
found that the model’s greatest correlation between experiment and theory occurred
when dealing with spheres. We postulated that the models inability to account for
creeping waves was the major cause for its lack of capacity to deal with objects that
were not smoothly shaped. However, with an average error of less than 5% for spheres,
we determined that the model should be reasonably accurate at calculating the echoes
from convex objects with smoothly varying surfaces, spheres being but one example.

We then examined the possibility of inverting the extended forward model and

theorised two possible alternatives for inversion. The first was a model that was

9-1



independent of time . Despite some advantages, we ultimately rejected it on practical
grounds and adopted the second alternative, a time dependent model. We fully
developed this model and devised the analysis methodology that would be applied to
test it. We also provided an algorithm for reconstructing the shape of the scatterer using
the predictions of the inverse model. Following this, we analysed the geometric
properties of six finely turned geometric objects that would be our test subjects for
verifying the inverse model. We examined the range variance, area variance, physical
parameters and various orders of the surface curvature in each case and the locations
and magnitudes of surface discontinuities on the scatterers were determined for each.

We then tested the inverse model with these six scatterers at a range of 40cm
using 40kHz and 60kHz chirps. Using two different approaches to analysing the data,
we found that the model had little quantitative correlation between the predicted
discontinuities and their measured values. We analysed the inverse model, found the
primary source of the errors to be the coupling of an ill conditioned matrix with data of
insufficient accuracy and determined the conditions under which the model should
generate accurate results. We concluded that the inverse model could not be verified
quantitatively with our data, but that future workers may be able to do so under more
rigorous laboratory conditions or a switch to a different medium.

Despite the quantitative limitations of the inverse model, we tested whether it’s
general qualitative agreement between measurement and theory could be put to practical
use. We conducted an experiment to simulate the type of flaws that one may expect to
see in manufactured items emerging from a conveyor belt on a production line, in this
case glass light bulbs. In all cases, we were able to use the model to clearly distinguish

between the faulty and non-faulty bulbs.
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In summary, the following are the contributions of this thesis:

* Extended Freedman’s model to expand its applicability to air environments and
to systems with non-ideal transducer/receiver configurations and verified it via
experimental testing.

* Developed the theory for an inverse model of ultrasonic echolocation based on
the extended forward model as well as an algorithm for visualising the scattering
target using its predictions and tested the model experimentally.

* Experimentally verified that the inverse model could successfully discriminate

between simulated small defects in industrially produced items.

9.2 Future Directions

The automation of an increasing number of processes in industrial environments
has many advantages. Firstly there is the cost factor. After the initial purchase of the
system, the only costs are maintenance and, on occasion, the cost involved in
reprogramming the system, should the need arise. There is also the issue of speed.
Almost without exception, automated systems conduct their operation at either the same
speed or faster than a human operator. Accuracy is another benefit, since human
fallibility will almost always result in a small, but constant percentage of mistakes on
the part of the operator during any given period. Finally, safety is another benefit of
automation. In many cases, industrial environments can be hazardous work
environments and on both ethical and financial grounds, it would be more desirable for
a machine to undertake the associated risks rather than a person.

Industrial inspection and quality control is one example of such a process that is

currently dominated by human operators but would benefit from automation. The
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inverse model developed in this research should be of interest to those working in the
field of industrial quality control, specifically those involved in the deployment of
inspection technologies because of it’s potential to lead to the development of real-time
quality testing systems for production lines that could perform with a higher degree of
accuracy and speed than the visual inspection procedures currently being employed.
With the added benefit of being a relatively low cost solution, and the reduction in
industrial accidents that may occur were such a system to be implemented, we feel that
implementing the inverse model would be a step forward for industrial sensing.

Finally, this research has raised the possibility for further research into four areas.
Firstly, even though the development of the inverse model is mathematically sound, it is
based on a forward model that is, to an extent, flawed. Further research into the
extended forward model from a more theoretical approach could help shed some light
onto what could be done to improve the model, the inclusion of creeping wave theory
into the model being a starting point. Secondly, the limitations imposed upon the
accuracy of the model in air, by virtue of the ill conditioned matrix, could be
circumvented by modifying the model to work in a different medium, water for sonar-
sensing or steel for non-destructive testing. Thirdly, laboratory environments with
exceptional control of environmental conditions could be employed to test the model’s
validity in air. Lastly, experiments on the inverse model indicate that it may well be
robust enough, even in its current state, to be applied to the task of industrial sensing, as
outlined above. Further research into this area could include the development and
implementation of an industrial sensing system that is able to separate defective items

on a conveyor belt from to those that are undamaged.
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A.2 Glossary of Terms

A = Wavelength of the transmitted wave
0=t —2kr
@ = Angle of incidence of the incoming radiation
a = Atmospheric absorption coefficient
A(f) = Frequency-dependent sensitivity of the transducer and receiver
A(x) = Cross-sectional area of the scatterer at range x
B,,(¢) = Directivity of the receiver
B,(¢) = Directivity of the transducer
¢ = Speed of sound in air
D(A,,r,,n) = nth order discontinuity at range r,
D(n) = nth order discontinuity (shorthand version of D(4,,,r,,n))
E = Voltage at the receiver
G = Gain applied to the received signal
H = Voltage produced per unit pressure at unit distance in direction d=¢=0
J, = Bessel function of the first order
k = Wave number of the transmitted wave
P = Pressure produced per unit volt at unit distance in direction = ¢ =0

r, = Range to the source of the echo
r,- = Range infinitesimally prior to the discontinuity
r,. = Range infinitesimally beyond the discontinuity

r(x) = Radius of the cross-sectional area of the object at range x

t = Instant of echo reception
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t, = Instant of incidence upon the target

V= Voltage applied to the transducer
« = Angular frequency of the wave

W, (r) = Directivity-weighted solid angle subtended at the receiver by all parts of

the scattering body within the range



A.3 Derivation of Equation 6.3

The following is the derivation of the maximum value equation (Eq. 6.3) used in
Chapter 6 in the development of the time independent variant of the inverse model. Eq.

(6.3) is shown below,

2 2 /2
D(0)sin G- @cos G- D(22) sin% :(D(O)z + D(l)2 - D(0)12)(2) + D(2)4 ] (6.3)
2k 4k M 4k 2k 16k

Firstly, let X=+4"+B° where A4,B [1] (A.1)
and y= tan_l[éJ (A.2)
A
The square of Eq. (A.1), X =4*+ B’ (A.3)
Eq. (A.2) rearranged, B=Atany
= 43 (A4)
cosy

Substituting Eq. (A.4) into (A.3),

X =4+ 42 Sinzy
cos’ y

X?cos” y= A*(cos® y+sin’ ))

:A2
Therefore, A* =X cos’ y (A.5)
and, A=%Xcosy (A.6)



Substituting Eq. (A.5) into (A.3),

X?=X?cos’ y+ B?
X*(1-cos’ y) =B’
X?(sin® y) = B

Therefore, B*=X’sin’y (A.7)
B=+Xsiny (A.8)

Because of the + term in Eq. (A.6) and (A.8), there are four possibilities for the

maximum value of |A cos@+ Bsin 61 i These are,

(1) |dcos@+Bsinf,, = |Xcosycos@+ Xsinysinf, .
= [Xcos(y =),
= X|cos(y=6)|,,,, since X 20 [4,B
=X since [cos(y-6),,,, =1

— [ A2 + BZ
Similarly for the others,

(2) |Acos9+ BsinﬂMAX = |—XcosycosH+XsinysinﬂMAX
- |_XCOS(V+ 9)|MAX
:XI_COS(y+ 6)|MAX
=X

— IA2+B2

(3) |A cos@+ Bsinﬂ = |Xcos ycos@— Xsin ysinﬂ
- |XCOS(y+ 9)|MAX
:XICOS(y+ H)|MAX

=X

_ 1A2+Bz

MAX MAX



4) |Acos9+ BsinﬂMAX = |—XcosycosH—XsinysinﬂMAX

= |-Xcos(y-0),,,,
:XI_COS(V_ H)|MAX
=X
— A ,AZ + B2
Thus, in all cases,
|AcosH+ BsinﬂMAXZ \A® + B’ (A.9)
Now, let 4 = —%}? and B=D(0)- Dgczz) and substitute these into Eq. (A.9),

8- (37 o5
2k 4k ix 2k 4k

DU’ _DODQ) , D(2>2Y 2
4k’ 2K 16k*

= (D(O)2 +

Therefore,

DU’ _DODO) , D(zfj/ 2

D(0)sinf— D) cos@- D(22) sin«% = (D(O)2 +— 2 2
2k 4k o 4k 2%k 16k

Q.E.D.
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A.4 Data for Selected Figures.

Diameter (m) Range (m) Measured (V) Predicted (V) Pred./Meas.
0.100 0.800 1.95E-01 1.91E-01 0.98
1.000 9.96E-02 1.13E-01 1.13
1.400 4.90E-02 4.90E-02 1.00
0.150 0.800 2.89E-01 2.88E-01 1.00
1.000 1.75E-01 1.70E-01 0.97
1.400 7.10E-02 7.39E-02 1.04
0.200 0.800 4.14E-01 3.89E-01 0.94
1.000 2.02E-01 2.29E-01 1.13
1.400 9.98E-02 9.88E-02 0.99
Table A.4.l. Data for Fig. 5.1.
Diameter (m) Range (m) Measured (V) Predicted (V) Pred./Meas.
0.100 0.800 9.49E-03 1.04E-02 1.10
1.000 5.70E-03 6.07E-03 1.06
1.400 2.60E-03 2.60E-03 1.00
0.150 0.800 1.61E-02 1.57E-02 0.98
1.000 9.14E-03 9.23E-03 1.01
1.400 3.71E-03 3.94E-03 1.06
0.200 0.800 2.15E-02 2.10E-02 0.98
1.000 1.27E-02 1.23E-02 0.97
1.400 5.24E-03 5.24E-03 1.00
Table A.4.2. Data for Fig. 5.2.
Base Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.
0.100 0.800 4.69E-02 4.69E-02 1.00
1.000 2.37E-02 2.90E-02 1.22
1.400 1.77E-02 1.30E-02 0.74
0.150 0.800 9.34E-02 1.13E-01 1.21
1.000 2.05E-02 7.55E-02 3.69
1.400 1.48E-02 3.61E-02 2.43
0.197 0.800 1.41E-01 2.20E-01 1.56
1.000 1.04E-01 1.64E-01 1.58
1.400 3.10E-02 8.59E-02 2.77

Table A.4.3. Data for Fig. 5.3.
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Base Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.
0.100 0.800 1.28E+00 9.08E-01 0.71
1.000 8.42E-01 6.08E-01 0.72
1.400 2.91E-01 2.91E-01 1.00
0.150 0.800 1.19E+00 1.62E+00 1.37
1.000 8.20E-01 1.31E+00 1.60
1.400 4.02E-01 7.29E-01 1.81
0.197 0.800 4.89E-01 2.11E+00 4.32
1.000 4.19E-01 2.25E+00 5.36
1.400 2.93E-01 1.54E+00 5.25
Table A.4.4. Data for Fig. 5.4.
Trunc. Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.
0.052 0.800 7.73E-01 6.85E-01 0.89
1.000 3.81E-01 4.02E-01 1.06
1.400 1.74E-01 1.74E-01 1.00
0.097 0.800 1.27E+00 2.47E+00 1.94
1.000 8.10E-01 1.47E+00 1.81
1.400 2.64E-01 6.38E-01 2.41
0.149 0.800 3.45E+00 5.75E+00 1.66
1.000 3.36E+00 3.41E+00 1.02
1.400 1.98E+00 1.49E+00 0.75
Table A.4.5. Data for Fig. 5.5.
Trunc. Diam. (m) Range (m) Measured (V) Predicted (V) Pred./Meas.
0.052 0.800 7.82E-02 7.62E-02 0.98
1.000 4.32E-02 4.47E-02 1.04
1.400 1.92E-02 1.92E-02 1.00
0.097 0.800 1.48E-01 2.70E-01 1.82
1.000 1.02E-01 1.58E-01 1.55
1.400 4.80E-02 6.78E-02 1.41
0.149 0.800 2.91E-01 6.24E-01 214
1.000 2.20E-01 3.67E-01 1.67
1.400 5.78E-02 1.57E-01 2.7

Table A.4.6. Data for Fig. 5.6.
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Object Measured D(1) Predicted D(1)
Paraboloid A 2471 374
Exponential -4 71 40.7
Paraboloid B -4.971 66.5

Spheroid-Paraboloid -20 71 188
Ellipsoid -40 71 86.0
4" Order -0 1900

Table A.4.7. Data for Fig. 8.3.

Object Measured D(2) Predicted D(2)
Paraboloid A 0 -1.94 E+04
Exponential 47 5.85 E+04
Paraboloid B 0 -3.82 E+04

Spheroid-Paraboloid 27 -4.24 E+04

Ellipsoid 871 7.84 E+04

4" Order +00 7.25 E+07

Table A.4.8. Data for Fig. 8.6.

Object Measured D(1) Predicted D(1)
Paraboloid A 2471 -29.9
Exponential -4 7 -11.0
Paraboloid B 4971 -49.2

Spheroid-Paraboloid -20 71 -228
Ellipsoid -40 71 -183
4" Order -00 -54.3

Table A.4.9. Data for Fig. 8.13.

Bulb Predicted D(1)
1A (Modified) -14.4
1B (Unmodified) -61.1
2A (Modified) -32.0
2B (Unmodified) -60.9
3A (Modified) -8.5
3B (Unmodified) -59.2

Table A.4.10. Data for Fig. 8.17.
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