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Abstract

Biological membranes separate cells from the external milieu and compartmentalise
organelles within a cell, providing a specialised environment for many specific
biochemical processes. They exist as bilayers of amphipathic lipids arranged with their
hydrophobic moieties internalised and their hydrophilic regions directed to the
membrane surfaces. Numerous proteins are also associated with membranes and are
bound to the lipids by ionic or hydrophobic interactions. Phospholipids, however, are
the major constituent of biological membranes and thus have a large influence upon the
physical properties of the membrane and the many cellular functions membranes

participate in.

To date our understanding of membrane lipid composition has been limited to
phospholipid class or fatty acid analysis, primarily by thin layer chromatography, high
performance liquid chromatography and gas chromatography. The results obtained by
these techniques provide considerable evidence demonstrating an association between
various metabolic disorders, such as insulin resistance and obesity and skeletal muscle
phospholipid content. There is also a large pool of evidence confirming an effect of diet
and exercise on the phospholipid fatty acid content of skeletal muscle membranes.
Furthermore, these changes appear to have ameliorating effects upon the aforementioned
metabolic disorders. An understanding of alterations in whole phospholipid molecular
species induced by exercise and diet, however, is very limited. Recent advances in mass

spectrometry allow the analysis of biological membranes at this whole molecule level.

In this thesis, a comparative analysis of skeletal muscle phospholipid molecular species
profile between oxidative and glycolytic rat skeletal muscle and the effect of exercise and
diet on these profiles have been performed using electrospray ionisation mass
spectrometry (ESI-MS). Therefore, the primary aim of this thesis was to develop mass
spectrometric techniques for analysing relative changes in phospholipid molecular species
profile using a hybrid quadrupole time-of—flight (Q-ToF) mass spectrometer. To achieve
this both total lipid and phospholipid extracts from various rat tissues such as brain, liver
and skeletal muscle were obtained and used to (i) optimise instrument settings, (ii) ensure

accurate identification of phospholipid molecular species, and (iii) ensure the
iv



reproducibility of results. A normalisation procedure was then developed so that
comparative analysis between groups could be performed. This was achieved by
presenting the ion abundance of each phospholipid molecular species (after isotope
corrections) as a percentage of the total ion abundance of all identified phospholipids
within the m/z range analysed. The results obtained by the developed MS method were
then compared to those attained by established GC methods and found to be in agreement,

thus demonstrating the validity of the technique.

The methodology thus established was used to determine the effect of two exercise
training intensities on the phospholipid profile of both glycolytic and oxidative muscle
fibres of female Sprague-Dawley rats fed a standard laboratory chow diet. Animals
were divided randomly into three training groups: control, which performed no exercise
training; low intensity (8 m min") treadmill running; or high intensity (28 m min™)
treadmill running. All exercise-trained rats ran 1000 m session™, 4 days wk™' for 4 wks
and were killed 48 h after the last training bout. Exercise training was found to produce
no novel phospholipid species but was associated with significant alterations in the
relative abundance of a number of phospholipid molecular species. These changes were
more prominent in glycolytic (white vastus lateralis) than in oxidative (red vastus
lateralis) muscle fibres. The largest observed change was a decrease of approximately
20 % in the abundance of 1-stearoyl-2-docosahexaenoyl phosphatidylethanolamine
[PE(18:0,22:6), P<0.001] ions in both the low and high intensity training regimes in
glycolytic fibres. Increases in the abundance of 1-oleoyl-2-linoleoyl phopshatidic acid
[PA(18:1,18:2), P<0.001] and 1-alkenylpalmitoyl-2-linoleoyl phosphatidylethanolamine
[Plasmenyl PE(16:0,18:2), P<0.005] ions were also observed for both training regimes
in glycolytic fibres.

The same exercise protocol was then performed by Sprague-Dawley rats fed a
carbohydrate-free, high-fat diet and the skeletal muscle phospholipid molecular species
profiles analysed. In agreement with the previous study, no novel molecular species
were observed in the exercised rats yet significant changes in the relative abundance of
various phospholipid molecular species were apparent. In contrast, however, the
observed changes were more prominent in oxidative than glycolytic muscle fibres. The

largest effect of exercise was found to be an increase of approximately 28 % in 1-
v



palmitoyl-2-linoleoyl phosphatidylcholine [PC(16:0,18:2), P<0.05] ions in oxidative
muscle of rats in the low intensity training group when compared to the sedentary

animals.

The phospholipid molecular species profile was found to be similar in both the
oxidative and glycolytic muscles, however, a number of differences in the abundance of
particular molecular species were observed. Of particular interest is the higher
abundance of PE(18:0,22:6) in red vastus lateralis when compared to white vastus
lateralis. In spite of the fact that the high-fat diet was completely deficient in n-3
polyunsaturated fatty acids the ratio of PE(18:0,22:6) in oxidative to glycolytic muscle
was almost identical across both diet groups. For example, in the sedentary rats this

ratio was 1.35 for the carbohydrate diet group and 1.32 for the fat diet group.

It is concluded that exercise training results in a significant level of membrane
remodelling at the level of phospholipid molecular species and that traditional methods
used to analyse phospholipids such as TLC and GC are not able to uncover these
changes. Moreover, it is probable that the observed changes will have effects upon the
activity of various membrane bound proteins and in turn cell function. At present an
understanding of the role specific phospholipid molecular species play in membrane
function is extremely limited and further correlative and manipulative studies are
required to remedy this. It is likely that electrospray ionisation mass spectrometry will

play a significant role in these future studies.

Vi
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