
University of Wollongong - Research Online
Thesis Collection

Title: A conceptual study on perceptions of information seeking activity

Author: Joseph Meloche

Year: 2006

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

 UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

Creation and Distribution of Real-time Content:
A Case Study in Provisioning Immersive Voice

Communications to Networked Games.

A thesis submitted in fulfilment of the

requirements for the award of the degree

Doctor of Philosophy

from

THE UNIVERSITY OF WOLLONGONG

by

Cong Duc Nguyen

Bachelor of Engineering (Honours Class I)

SCHOOL OF ELECTRICAL, COMPUTER

AND TELECOMMUNICATIONS ENGINEERING

2006

Abstract

The rapid increases in network bandwidth and processing power have led to tremen-

dous growth in Internet applications and changed the nature of delivering content.

From earlier web application, which is only about retrieval of pre-computed static

content, current content delivery architectures provide dynamic content and enable

personalization of content. Recent interactive entertainment applications, such as

multiplayer online games, require content to be created and distributed in real-time.

In addition, the rapid increase in processor speed has led to various proposals to put

real-time computation within or at the edge of the network that allow application

specific processing on packet flow such as multimedia transcoding and content adap-

tation. In short, these emerging applications have a common characteristics that the

contents of application flows are processed in real-time before being delivered to end

users. We refer to these as applications that require real-time content creation.

This thesis aims to develop models for real-time content creation and distribution.

We examine both network architectures for delivering content as well as server pro-

cessing resource management for content creation. We concentrate on a case study

when content creation is from a dynamic set of dispersed sources. In particular, we

examine the provision of an immersive voice communication service to massively

multiplayer online games, which requires real-time creation of audio scenes from

dynamic sets of participants. We present various delivery architectures for this ser-

vice, evaluate the performance of these architectures and provide recommendations

based on the evaluation. In addition, this thesis designs a server resource manage-

ment architecture for sharing processing resource among real-time content creation

applications.

ii

Abstract iii

Our study begins with reviewing the evolution of content distribution over the In-

ternet, ranging from simple caching proxies to content distribution networks and

personalization of content. We then discuss current and future developments of con-

tent distribution which require real-time creation and distribution of content from

dynamic sets of dispersed sources. These include state information processing and

communication information processing in distributed virtual environments. While all

networked games require state information processing, communication information

processing has been recently seen as a key to enhance the reality and attractive-

ness of the virtual environment. In particular, this thesis reviews technologies and

approaches for providing an immersive voice communication service to distributed

virtual environments. Several delivery architectures are introduced for providing this

service, namely peer-to-peer, central server, distributed locale server architecture,

and distributed proxy architecture. Furthermore, we present a realistic simulation

model that captures player distribution in the Internet and avatar distribution in the

game virtual world and specify two key performance evaluation parameters: interac-

tive delay and network bandwidth usage.

In the central server architecture, two optimization objectives are proposed for choos-

ing an optimal central server from a set of potential servers. We also propose a dy-

namic relocation of a central server in response to changes in player distribution due

to time zone differences. It is shown that relocation of the central server in response

to these changes can significantly reduce the interactive delay by up to 40% and

the network bandwidth usage by up to 50%. In addition, the optimal central server

can significantly reduce the interactive delay compared to a randomly located central

server.

In the distributed locale server architecture, the game virtual world is partitioned into

smaller areas called locales and each locale is assigned to a server. We propose two

server assignment algorithms for optimizing the latency performance of this archi-

tecture. The first algorithm is based on an Integer Linear Programming (ILP) model

which provides an exact solution to the problem but is subject to high computation

complexity. We then produce a new multi-layer graph representation of the problem

and devise a greedy heuristic based on this graph. It is shown that the greedy heuris-

Abstract iv

tics has low run time complexity and provides solutions close to the optimal (within

5% of the optimal in all cases). In addition, increasing the number of servers reduces

the latency of the distributed locale server architecture significantly compared to the

optimal central server when there is a physical/virtual world correlation. Specifi-

cally, with a reasonable number of servers, the distributed locale server architecture

can reduce the delay of the central server by 20% to 60%.

In the distributed proxy architecture, players are assigned to a close proxy and each

proxy manages the audio mixing operation on behalf of players and forwards audio

streams from players to other interested proxies. This thesis develops an ILP model

for an optimal proxy assignment and adapts the multi-layer graph approach used

earlier to devise a greedy heuristics for solving the proxy assignment problem effi-

ciently. While the ILP model is unscalable, the greedy heuristics is highly scalable

and suitable for practical implementation. This thesis also investigates the efficiency

of network multicast in different player and avatar distribution scenarios. The effect

of varying the number of proxies is also investigated.

Extensive simulation experiments are carried out to evaluate the performance of all

delivery architectures. In particular, since the distributed locale server architecture

and the distributed proxy architecture are ‘dual’ of each other, we concentrate on

comparing the performance of these. From the performance evaluation, we provide

recommendations on choosing suitable delivery architectures based on the server re-

source availability, multicast, and game’s avatar aggregation behaviors. The quantita-

tive study in this thesis will be of benefit to future immersive voice service providers

in the design of a cost effective delivery architecture for this service.

Finally, the thesis presents a resource management architecture for sharing process-

ing resources among various real-time content creation applications including the

immersive audio mixing application. Due to the inability of determining processing

times for scheduling, a processing resources scheduling algorithm called Start-time

Weighted Fair Queueing (SWFQ) is proposed. From analysis and simulation, it is

shown that SWFQ offers good fairness and delay properties compared to current

schemes. In fact, the fairness of SWFQ was comparable to Weighted Fair Queueing

(WFQ) and the delay behavior is better than Start-time Fair Queueing (SFQ).

Statement of Originality

This is to certify that the work described in this thesis is entirely my own work,

except where due reference is made in the text. I also acknowlege the guidance from

my supervisors and ideas generated from discussions with them in this work.

No work in this thesis has been submitted for a degree to any other university or

institution.

Signed

Cong Duc Nguyen

1 May, 2006

v

Acknowledgments

First of all, I would like to thank my supervisor Professor Farzad Safaei for his guid-

ance, support and encouragements during my PhD, especially through some difficult

stages of the project. I am also very grateful to Dr. Paul Boustead for his help and

support. This thesis may have not been completed without their help.

Next, I would like to express my gratitude to Professor Joe Chicharo for giving me the

opportunity to undertake this study. I am also grateful to Smart Internet Technology

Cooperative Research Center for supporting this work. I would like to thank Dr. Don

Platt for his assistance in the early stages of the project and Fariza Sabrina for her

collaboration.

I would like to thank all members of TITR lab for their encouragements and assis-

tance. In particular, I would like to thank Vinh Nguyen, Ying Que, Jeremy Brun,

Daniel Franklin and Justin Lipman.

I would like to thank Lan Nguyen, Cuong Tran and Long Nghiem for their friendship

and support during my PhD in Wollongong.

Finally, I would like to thank my family and Hang Thuy Nguyen for their encourage-

ments and support throughout my PhD.

vi

Contents

1 Introduction 1

1.1 Background . 1

1.2 Overview . 3

1.3 Contributions . 7

1.4 Publications based on Thesis . 8

2 Literature Review 10

2.1 Introduction . 10

2.2 Evolution of Content Delivery . 11

2.2.1 Proxy Caching . 12

2.2.2 Web Server Cluster . 13

2.2.3 Content Distribution Networks 14

2.2.4 Advanced Content Service Delivery 16

2.3 Future Development of Content Creation and Delivery 19

2.3.1 Multiplayer Online Games 19

2.3.2 Group Communications in Multiplayer Online Games . . . 24

2.3.3 Immersive Voice Communication in Distributed Virtual En-

vironments . 27

2.3.4 Audio Codec Technologies 32

2.4 Infrastructure Support . 37

vii

CONTENTS viii

2.4.1 Server Infrastructure . 37

2.4.2 Network Infrastructure Support 45

2.5 Conclusions . 55

2.5.1 Issues Considered in Thesis 55

3 An Immersive Audio Communication Service for Multi-Player Online
Games 57

3.1 Introduction . 57

3.2 Concept of Immersive Voice Communication Service 58

3.3 Basic Delivery Architectures . 61

3.3.1 Peer-to-peer . 61

3.3.2 Central Server . 62

3.3.3 Distributed Locale Servers 64

3.3.4 Distributed Proxies . 66

3.3.5 Discussion on peer-to-peer and server architectures 67

3.4 Framework for Performance Evaluation 68

3.4.1 Game Player Grouping Behaviors 68

3.4.2 Models of Physical Networks and Virtual World 71

3.4.3 Definition of Parameters and Assumption 75

3.5 Conclusions . 77

4 Central Server 78

4.1 Introduction . 78

4.2 Service Delivery Model . 79

4.2.1 Optimization Procedures 79

4.2.2 Relocation of a Central Server 81

4.3 Simulation Experiments . 84

CONTENTS ix

4.3.1 Simulation Setup . 84

4.3.2 Relocation of a Central Server 85

4.3.3 Comparison of Optimization Objectives 87

4.3.4 Effect of Varying Physical/Virtual World Correlation on Net-

work Resources and Delay Metrics 88

4.4 Conclusions . 90

5 Distributed Locale Server 91

5.1 Introduction . 91

5.2 Service Delivery Model . 92

5.2.1 Problem Description . 93

5.2.2 Mathematical Programming Model 94

5.2.3 Greedy Heuristic Algorithm 96

5.2.4 Impact of Avatar Movements and Player Distribution on Op-

timal Server Assignment 100

5.3 Simulation Experiments . 100

5.3.1 Simulation Setup . 100

5.3.2 Investigation of Server Assignment Algorithms 101

5.3.3 Effect of Varying Number of Servers and Physical/Virtual

World Correlation . 103

5.3.4 Effect of Varying Correlation in Interactive Delay 105

5.3.5 Network Bandwidth Requirements in Different Avatar Ag-

gregation Behaviors . 108

5.4 Conclusions . 110

6 Distributed Proxy Architecture 112

6.1 Introduction . 112

6.2 Service Delivery Model . 114

CONTENTS x

6.2.1 Proxy Location Problem 114

6.2.2 Mathematical Programming Model 115

6.2.3 Heuristic Algorithms . 118

6.2.4 Different Proxy Architectures 121

6.3 Simulation Experiments . 123

6.3.1 Simulation Setup . 123

6.3.2 Investigation of Proxy Assignment Algorithms 124

6.3.3 Investigation with Proxy Architectures for Different Player

Aggregation Behaviours 128

6.3.4 Efficiency of Multicast . 132

6.3.5 Effect of Varying Number of POPs and Servers 134

6.4 Conclusions . 136

7 Comparison of Architectures 138

7.1 Introduction . 138

7.2 Comparisons of Architectural Requirements 139

7.2.1 Server Assignment Algorithms 139

7.2.2 Impact of Avatar Movements and Player Distribution 141

7.2.3 Server Resource Requirements 142

7.3 Simulation Experiments . 142

7.3.1 Simulation Setup . 142

7.3.2 Interactive Delay . 143

7.3.3 Network Bandwidth Usage 148

7.4 Summary of Results and Recommendations 151

7.4.1 Impact of Avatar Aggregations on Delivery Architectures . . 151

7.4.2 Impact of Number of Servers 152

CONTENTS xi

7.4.3 Impact of Correlation . 152

7.4.4 Efficiency of Multicast . 153

7.4.5 Discussions on Choice of Delivery Architectures 153

8 Server Processing Resource Management 156

8.1 Introduction . 156

8.2 Server Processing Resource Management 158

8.2.1 Processing Resource Requirements of Immersive Audio Mix-

ing Operation . 158

8.2.2 Server Processing Resource Management Model 159

8.2.3 Processor Resource Scheduling 161

8.3 Start-time Weighted Fair Queueing 162

8.3.1 Packet Scheduling Disciplines in Traditional Networks . . . 164

8.3.2 Server Processing Resource Scheduling Model 165

8.3.3 Example of SWFQ . 168

8.4 Analysis of SWFQ . 169

8.4.1 Fairness Analysis . 169

8.4.2 Delay Analysis . 170

8.5 Simulation Experiments . 172

8.5.1 Simulation Setup . 172

8.5.2 Fairness of SWFQ . 173

8.5.3 Delay Properties of SWFQ 173

8.6 Conclusions . 178

9 Conclusions 183

9.1 Overview . 183

9.2 Summary of Contributions and Findings 183

CONTENTS xii

9.2.1 Classification of Architectures and Performance Evaluation

Framework . 184

9.2.2 Central Server . 184

9.2.3 Distributed Locale Servers 185

9.2.4 Distributed Proxy Architecture 185

9.2.5 Performance Comparison Evaluation 186

9.2.6 Server Resource Management 186

9.3 Thesis Recommendations . 187

9.3.1 Recommendations on Infrastructure Support 187

9.3.2 Recommendations on Delivery Architectures 188

9.4 Future Work . 189

9.4.1 Performance Evaluation Model 189

9.4.2 Experimental Investigation 191

A Proofs for SWFQ Analysis 204

A.1 Proof of Theorem 1 . 204

A.2 Proof of Theorem 2 . 205

A.3 Proof of Theorem 3 . 206

A.4 Proof of Theorem 4 . 207

B Details of Simulation Environments 209

B.1 Network Topologies . 209

B.2 Physical Network and Virtual World 212

B.2.1 Physical Networks . 212

B.2.2 Virtual World . 213

B.3 Simulation Procedures . 214

List of Figures

2.1 A content distribution network. 14

2.2 Content delivery/assembly using Edge Side Includes (ESI). 17

2.3 Example of an ESI template consisting of ESI fragments and their

expiration times. 18

2.4 Example of ICAP operation. 18

2.5 Game server architectures. 21

2.6 Example of a game virtual world 24

2.7 Basic functional elements of DICE, adapted from (Boustead et al.,

2005). 31

2.8 Angular clustering, adapted from (Boustead et al., 2005). 32

2.9 The layered Grid architecture (Foster and Kesselman, 2004). 40

2.10 Example of IP multicast and application layer multicast. 48

2.11 Illustration of a service overlay network, adapted from (Duan et al.,

2003). 49

2.12 Booster box and the deployment of booster boxes for distributed

game servers, adapted from (Rooney et al., 2003). 52

2.13 Overlay server and routing between these servers over multiple net-

work domains (Boustead et al., 2004). 53

2.14 Tunnel Switch design (Boustead et al., 2004). 54

3.1 Immersive voice communication scenario and zone definition 59

3.2 Peer-to-peer architecture for immersive audio scene creation 63

xiii

LIST OF FIGURES xiv

3.3 Central server architectures for immersive audio scene creation . . . 64

3.4 Distributed locale server architecture for immersive audio scene cre-

ation . 65

3.5 Distributed proxy server architecture for immersive audio scene cre-

ation . 67

3.6 Player behavior classification . 71

3.7 Avatar distribution in different games 73

3.8 Delay components. 76

3.9 Interactive delay and bandwidth cost metrics associated with avatar

“a”. 76

4.1 Physical/virtual world model. 81

4.2 Relocation of a central server during a transient period. 83

4.3 Effect of changes in game client distribution on the interactive delay

metric and network bandwidth usage of a fixed central server versus

the optimal central server. 86

4.4 Interactive delay comparison of the two optimization objectives in

different cluster distribution. 86

4.5 Effect of varying physical/virtual world correlation on network re-

source usage of multicast and peer-to-peer unicast versus the central

server architecture. 88

4.6 Effect of varying physical/virtual world correlation on the interactive

delay metric . 89

5.1 Graph representation of the server assignment problem and solution. 98

5.2 Server assignment results from Cplex and the greedy heuristics. . . 103

5.3 Effect of changes in number of server and physical/virtual world cor-

relation. 104

5.4 Effect of changes in correlation on interactive delay for crowd based

games. 106

5.5 Effect of changes in correlation on interactive delay for clan based

games. 107

LIST OF FIGURES xv

5.6 Bandwidth resource requirements of distributed server and peer-to-

peer versus central server for crowd/clan based games 109

5.7 Network bandwidth requirements in a loner based game 110

6.1 Graph representation of the proxy assignment problem and solution. 119

6.2 Network bandwidth usages and interactive delay calculation associ-

ated with avatar “a”. 122

6.3 Comparison of proxy assignment algorithms. 127

6.4 Effect of varying virtual/physical world correlation on network band-

width requirements in crowd/clan based games 130

6.5 Effect of varying density on network bandwidth requirements in loner

and crowd based games . 131

6.6 Effect of varying the number of POPs on network bandwidth require-

ments of proxy multicast and unicast 133

6.7 Effect of varying virtual/physical world correlation on interactive de-

lays . 134

6.8 Effect of varying number of proxies on interactive delay and network

bandwidth requirements of distributed proxy architectures 135

7.1 Comparison in interactive delays between distributed proxies and

distributed locale servers when varying the physical/virtual world

correlation. 144

7.2 Comparison in interactive delays between distributed proxies and

distributed locale servers when varying the physical/virtual world

correlation. 145

7.3 Comparison in interactive delays between distributed proxies and

distributed locale servers when varying the number of server. 146

7.4 Network bandwidth usages of distributed proxies in clan/crowd based

games when varying the physical/virtual world correlation. 149

7.5 Network bandwidth usages of distributed locale servers in clan/crowd

based games when varying the physical/virtual world correlation. . . 150

7.6 Effect of avatar density on network bandwidth usages of different

architectures . 155

LIST OF FIGURES xvi

8.1 An example of implementation of SWFQ in SWON. 158

8.2 Immersive Audio Mixing. 160

8.3 Variation in actual processing time requirements of immersive audio

scene of a Quake 3 game with five players. 160

8.4 Model of a node processing resource management. 161

8.5 Variation in actual processing time of MPEG2 data block of fixed

length for different executions (Sabrina and Jha, 2003). 163

8.6 Example of WFQ, SWFQ and SFQ. 167

8.7 Processing rates allocated to IP Forwading, Cast Encryption, and FEC.174

8.8 Maximum delays of packets in IP Forwarding (queues: 0-9), Cast

Encryption (queues: 10-19), and FEC (queues:20-29). 176

8.9 Delay performance of SWFQ and SFQ with Forward Error Coding

application. 177

8.10 Delay performance of SWFQ and SFQ with Audio mixing applications.179

8.11 Delay performance of SWFQ and SFQ with RC2 Encryption appli-

cation. 180

8.12 Delay performance of SWFQ and SFQ with MPEG2 Encoding ap-

plication. 181

B.1 Example of (a) random graph and (b) transit-stub graph. 210

List of Tables

2.1 Summary of common audio codecs and the codec-related processing

delays in IP-applications (one frame per packet), specified in ITU-T

G.114. 35

2.2 Bandwidth requirements for several common VoIP audio codecs. . . 36

4.1 Game client distribution in a day period 85

5.1 Comparison between optimal results and greedy heuristic results in

the total interactive communication delay. 102

6.1 Comparison between the optimal proxy assignment, the greedy heuris-

tics, and the simple heuristics with respect to total interactive com-

munication delay. 125

6.2 Comparison between optimal results and greedy heuristic results in

the total interactive communication delay. 128

6.3 Comparison between the greedy heuristics and the simple heuristics

in the total interactive communication delay. 128

6.4 Comparison between the greedy heuristic and the simple heuristic in

the total interactive communication delay. 129

6.5 Comparison between the greedy heuristics and the simple heuristics

in the total interactive communication delay. 129

8.1 Delay standard deviations of SWFQ and SFQ with IP Forwarding,

Cast Encryption and Solomon Forward Error Coding (msec). 175

8.2 Processing requirements of Audio Mixing, RC2 Encryption and MPEG2

Encoding. 175

xvii

LIST OF TABLES xviii

8.3 Delay standard deviations of SWFQ and SFQ with Audio Mixing,

RC2 Encryption and MPEG2 Encoding (msec). 178

B.1 Parameters used for generating the transit-stub graph. 212

List of Abbreviations

ADPCM Adaptive Differential Pulse Code Modulation

AS Autonomous System

API Application Program Interface

ASIC Application-Specific Integrated Circuit

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

CDN Content Distribution Network

CPU Central Processing Unit

CVE Collaborative Virtual Environment

DiffServ Differentiated Service

DNS Domain Name Server

FEC Forward Error Correction

FPS First Person Shooter

FPGA Field Programmable Gate Array

FIB Forwarding Information Base

GPS Generalized Processor Sharing

GT-ITM Georgia Tech Internet Topology Model

HRTF Head Related Transfer Function

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

ILP Integer Linear Programming

IP Internet Protocol

IPSec IP Security Protocol

ISP POP Internet Service Provider Point of Presence

xix

List of Abbreviations xx

LAN Local Area Network

LPC Linear Predictive Coding

LDD Latency Driven Distribution

MMOG Massively Multi-Player Online Games

MPLS Multi-Protocol Label Switching

NP Network Processor

NS-2 Network Simulator version 2

OSPF Open Shortest Path First

PGPS Packet Generalized Processor Sharing

PVN Programmable Virtual Network

QoS Quality of Service

RDD Resource Driven Distribution

RFC Request For Comment

RON Resilient Overlay Network

RSVP Resource Reservation Protocol

RTP Real Time Transport Protocol

SFQ Start-Time Fair Queueing

SON Service Overlay Network

SPF Shortest Path First

SIP Session Initiation Protocol

SWFQ Start-Time Weighted Fair Queueing

SWON Switched Overlay Network

TCP Transmission Control Protocol

UDP User Datagram Protocol

VO Virtual Organization

VPN Virtual Private Network

WAN Wide Area Network

WFQ Weighted Fair Queueing

Chapter 1

Introduction

1.1 Background

In the last two decades, the Internet has grown tremendously. In addition to the huge

increase in the network bandwidth and the number of users, the most noticeable de-

velopment of the Internet is the evolution of applications. From simple applications

such as FTP and email, the Internet now supports various applications ranging from

the world wide web and voice over IP to video streaming and multiplayer games.

Especially, there is a convergence between the Internet and entertainment applica-

tions. Entertainment applications such as multiplayer online games have become

very popular and are growing rapidly.

In addition, the nature of content delivery over the Internet has changed significantly.

From earlier web applications, which is only about retrieval of pre-computed static

content, current content delivery architectures are capable of providing dynamic con-

tent and enabling personalization of content. Recent interactive applications, such as

multiplayer online games, require creation and distribution of content in real-time.

In addition, the rapid increase in processor speeds has also led to various proposals to

put more real-time computation within the network for processing the content of ap-

plication flows. This allows application specific processing on the packet flow such

as multimedia transcoding and content adaptation.

The new applications have a common characteristic that the contents of application

1

Introduction 2

flows are processed in real-time before being delivered to end users. We refer to

these as applications that require real-time creation of content. In some cases, an ap-

plication only requires a content processing server, such as a multimedia transcoding

server, between a pair of source and destination. In other cases, such as multiplayer

online games, the processed content, such as state information, is from a dynamic set

of dispersed sources. The latter case is the focus of this thesis.

In this thesis, we concentrate on a particularly challenging class of applications that

require real-time composition of interactive multimedia content from a dynamic set

of dispersed sources. Our aim is to design a suitable server and network infras-

tructure to enable these applications and scale them to a large number of users. To

successfully deploy these applications, there are several issues to be considered in-

cluding latency, network bandwidth, and processing requirements. Among these

issues, ‘managing latency’ is the key one due to the requirement of interactive com-

munication.

In this thesis, we present a case study on the provision of an immersive voice com-

munication service for multiplayer online games that require real-time processing of

audio streams from players. We envisage that there are potential server sites located

in various geographical regions for the provision of this service. There is also net-

work infrastructure support for connecting these servers. For example, these servers

can be connected by low latency and uncongested routing paths in order to improve

the application delay performance. This thesis provides mechanisms to deploy these

servers in a way that improves application delay performance as well as network

bandwidth resources. In addition, each server may be shared by several applications.

There is a need to provide processing resource sharing mechanisms between these

applications.

This thesis aims to investigate the provision of emerging applications that require

real-time creation and distribution of content over the Internet. In particular, the

main objectives of the thesis are:

• Examine network and server architectures for the provision of an immersive

voice communication service to multiplayer online games and provide suitable

Introduction 3

server assignment algorithms for each architecture with a focus on minimizing

latency.

• Evaluate the performance of these delivery architectures with a focus on voice

communication in massively multiplayer online games.

• Design a resource management architecture for sharing processing resources

among applications that require real-time content creation at a server.

1.2 Overview

This dissertation investigates the real-time creation and distribution of content over

the Internet. The investigation focuses on a particular application, which is real-

time processing of audio streams for providing immersive voice communications to

multi-player online games. However, the results from the thesis have wider applica-

bility. Chapter 2 reviews the related work on content creation and distribution over

the Internet and network and server infrastructures to support those. In addition, we

review multiplayer online games, voice communication methods in current games,

and research efforts in providing immersive voice communication in distributed vir-

tual environments. In Chapter 3, we introduce the concept of an immersive voice

communication service for multiplayer online games and present different delivery

architectures for this services. We also present a simulation model framework that

captures the game service delivery. This is then followed by three chapters that ex-

amine different delivery architectures. Chapter 4 investigates the use of a central

server for this service. In Chapter 5, we propose two server assignment algorithms

for a distributed server architecture and evaluate the performance of these algorithms.

Chapter 6 examines the use of distributed proxies for this service and presents two

proxy assignment algorithms. An overall performance evaluation of these archi-

tectures is presented in Chapter 7. Chapter 8 presents an architecture for sharing

processing resources between the immersive audio mixing and other applications at

a server. The chapter also proposes a novel scheduling algorithm for this purpose.

Chapter 9 concludes the thesis. The remainder of this section contains more detail

summary of each chapter.

Introduction 4

Chapter 2 provides a literature review of technologies and approaches for the creation

and distribution of web contents, networked games, and approaches for providing

voice communication in virtual environments. The chapter first provides a classifi-

cation of applications that require real-time processing of content. We then review

the evolution of content distribution over the Internet, ranging from simple caching

proxies to content distribution networks and personalization/localization of content.

In addition, the chapter discusses current and future developments of content distri-

bution which requires in real-time creation and distribution of content from dynamic

set of dispersed sources. We review two major applications belonging to this cat-

egory: state information processing and communication information processing in

distributed virtual environments. For state information processing, a review of game

server architectures is presented. For communication information processing, we fo-

cus on techniques and approaches for providing immersive voice communication in

distributed virtual environments. Finally, the chapter reviews network and server in-

frastructure support for these emerging applications. In particular, we present several

overlay network architectures that enable application-level routing and quality of ser-

vice between processing servers and discuss the use of a shared server infrastructure

for service provisioning.

Chapter 3 introduces the concept of an immersive voice communication service for

multiplayer online games and describe several delivery architectures for this service.

These architectures include central server, peer-to-peer, distributed locale servers,

and distributed proxies. A simulation model framework is then proposed to capture

game delivery scenarios including player distributions in the physical network and

avatar distributions in the virtual world. Three avatar aggregation behaviours are

introduced: loner, clan, and crowd. Finally, we describe key parameters used for

the performance evaluation of delivery architectures: interactive delay and network

bandwidth usage. Some aspects of this chapter was published in (Nguyen et al.,

2004c) and (Nguyen et al., 2005a).

An investigation on the use of the central server architecture is provided in Chapter 4.

We provide two optimization objectives for choosing an optimal central server from

a set of potential servers. One minimizes the average delay from all participants to

Introduction 5

the central servers which is based only on player distribution. The other minimizes

the interactive delay metric, which requires both player distribution in the Internet

and avatar distribution in the virtual world. The chapter also proposes a dynamic

relocation of the central server in response to changes in player distribution due to

time zone differences. Finally, the performance evaluation shows the advantages of

the proposed solutions. This work was published in (Nguyen et al., 2004e).

Chapter 5 examines the use of the distributed locale server architecture. In this ar-

chitecture, the game virtual world is partitioned into smaller areas called locales and

each locale is assigned to a server. We propose an analytical model for optimiz-

ing the latency of this architecture and develop a heuristics approach based on a

graph algorithm. The analytical model is based on an Integer Linear Programming

(ILP) formulation which provides an exact solution to the problem but is subject to

high computation complexity. In the heuristic approach, we produce a new multi-

layer graph representation of the problem and devise a greedy heuristic based on

this graph. The greedy heuristic has low run time complexity and is suitable for

practical implementation. The simulation experiments show that the greedy heuristic

solution is within 5% of optimal in all cases. The simulation results also show that

the distributed locale server architecture can reduce the overall delay by around 20%

compared to an optimally located central server and can have lower network band-

width usage than the central server. Various aspects of this work were published in

(Nguyen et al., 2004c), (Safaei et al., 2005), and (Nguyen et al., 2005a).

Chapter 6 examines the performance of the distributed proxy architecture. In this ar-

chitecture, game players are assigned to proxy servers based on the physical location

of these players with respect to these servers. We formulate the server assignment

problem as an integer linear program (ILP) and propose heuristics for the problem

based on the multi-layer graph model introduced earlier. The results show that the

ILP model has a large run time complexity while the greedy heuristics is very ef-

ficient. Since audio streams are forwarded between proxies either using unicast or

multicast, the chapter then evaluates the bandwidth cost saving of network multicast

in different avatar grouping behaviours and player distribution scenarios. In addi-

tion, the effect of varying the number of proxy servers on communication delays and

Introduction 6

network bandwidth usage is investigated. The results show that multicast is effective

only when the average number of avatars in hearing ranges is large (i.e crowds). In

this situation, using multicast reduces network bandwidth usage by more than 50%

compared with unicast. The number of proxies also has significant impact on the la-

tency. If only a small number of proxies are available, the use of distributed proxies

result in higher delay than the central server. However, this delay can be reduced to

half the delay of the central server when a large number of proxies are available. Var-

ious aspects of this research were published in (Nguyen et al., 2004d) and (Nguyen

et al., 2004b), and are currently under review in (Nguyen et al., 2005b).

Chapter 7 presents an overall performance evaluation of delivery architectures. We

first highlight the architectural requirements of these architectures. Then, we carry

out simulation experiments to compare the performance of two distributed server

architectures: distributed locale servers and distributed proxies. Based on these ex-

periments and other simulation results from Chapter 4 to Chapter 6, we present a

summary of overall performance evaluations and recommendations of delivery ar-

chitectures in different game scenarios. These recommendations are given based on

server resource availability, capacity of network, multicast, and game’s avatar aggre-

gation behaviors. This work was published in (Nguyen et al., 2004a) and is currently

under review in (Nguyen et al., 2005b).

Chapter 8 presents a processing resource management architecture for sharing pro-

cessing resources among various real-time content creation applications including

the immersive audio mixing application. We first briefly describe processing re-

quirements of an immersive audio mixing server. This is followed by a discussion

in Quality of Service (QoS) provisioning issues for real-time content creation ap-

plications. Due to the inability to have a prior knowledge of processing times for

scheduling, a processing resource scheduling algorithm called Start-time Weighted

Fair Queueing (SWFQ) is proposed. From analysis and simulation, it is shown that

SWFQ offers good fairness and delay properties compared with current schemes. In

fact, the fairness of SWFQ is comparable to Weighted Fair Queueing (WFQ) and the

delay behavior is better than Start-time Fair Queueing (SFQ). Various aspects of this

research were published in (Nguyen et al., 2003a) and (Sabrina and Nguyen, 2005).

Introduction 7

Chapter 9 concludes the thesis with a summary of results and recommendations. We

also identify possible future work in this area.

1.3 Contributions

The contributions contained in this thesis are listed below.

• Extends existing models for distributing game states and applies these for

providing an immersive voice communication service to multiplayer online

games. These architectures include central server, peer-to-peer, distributed lo-

cale servers and distributed proxies (Sections 3.5).

• Develops a simulation environment that creates geographic distribution of game

players in the Internet and different avatar aggregation behaviours in the virtual

world (Section 3.6).

• Provides two optimization objectives for the central server architecture and

a mechanism to relocate the central server in response to changes in player

distribution due to time zone differences (Chapter 4).

• Develops an analytical model and a heuristics for the server assignment prob-

lem in the distributed locale servers. The analytical model is based on an in-

teger linear programming formulation which provides optimal solution but is

subject to high computation complexity (Section 5.2.2). Hence, we produce a

new multi-layer graph representation for the problem and devise a novel greedy

heuristic algorithm based on this graph (Section 5.2.3). The efficiency of the

greedy heuristic is demonstrated in simulation experiments. In addition, the

effect of varying the number of servers and avatar aggregation behavior is also

investigated (Section 5.3).

• Develops a mathematical formulation for the server assignment problem in the

proxy architecture. A heuristics for the problem is also provided and evaluated.

In addition, we examine the performance of the distributed proxy architecture

with respect to two key issues. First is the efficiency of multicast in reducing

Introduction 8

bandwidth usage in different avatar grouping behaviours and player distribu-

tion. Second is the effect of varying the number of proxies on the interactive

delay and network bandwidth usage (Chapter 6).

• An overall performance evaluation of different delivery architectures is inves-

tigated. We focus on providing a performance comparison of distributed locale

servers and distributed proxies. We also provide a performance summary and

recommendations on the applicability of these architectures in different game

delivery scenarios (Chapter 7).

• Designs a resource management mechanism for sharing processing resources

among various real-time content creation applications such as media transcod-

ing, encryption, and the immersive audio mixing application. In particular,

we propose a novel processing resource scheduling algorithm called Start-time

Weighted Fair Queuing which offers good fairness and better delay behaviour

than the current algorithm in the literature (Chapter 9).

1.4 Publications based on Thesis

C. D. Nguyen, F. Safaei, P. Boustead, “Optimal assignment of distributed servers to

virtual partitions for the provision of immersive voice communication in massively

multiplayer games,” To appear in Special Issue in Computer Communications Jour-

nal, Elsevier.

F. Safaei, P. Boustead, C. D. Nguyen, J. Brun, M. Dowlatshahi, “Latency driven dis-

tribution: infrastructure needs for participatory entertainment applications,” in IEEE

Communication Magazine on Entertainment Everywhere: System and Networking

Issues in Emerging Network-Centric Entertainment Systems, vol. 43, no. 5, May,

2005, pp. 106-112.

F. Sabrina, C. D. Nguyen, S. Jha, D. Platt, F. Safaei, “Processing resource scheduling

in programmable nodes,” in Journal of Computer Communications, Special Issue on

Activated and Programmable Internet, vol. 28, no. 6, April 2005, Elsevier, pp.

676-687.

Introduction 9

C. D. Nguyen, F. Safaei, P. Boustead, “Comparison of distributed server architec-

tures in providing immersive audio communication to massively multi-player online

games,” in Proceedings of Australian Telecommunications Network and Applica-

tions Conference (ATNAC), Sydney, Australia, December 2004, pp. 499-505, ISBN:

0-646-44190-6.

C. D. Nguyen, F. Safaei, P. Boustead, “Performance evaluation of a proxy system

for providing immersive audio communication to massively multi-player games,” in

Proceedings of 1st IEEE International Workshop on Networking Issues in Multime-

dia Entertainment (NIME’04), Globecom 2004, Dallas, TX, USA, November 2004,

pp. 192-199.

C. D. Nguyen, F. Safaei, P. Boustead, “A distributed server architecture for provid-

ing immersive audio communication to massively multi-player online games,” in

Proceedings of IEEE International Conference on Networks (ICON), Singapore,

November 2004, pp. 170-176.

C. D. Nguyen, F. Safaei, P. Boustead, “A distributed proxy system for provision-

ing immersive audio communication to massively multi-player games,” in Proceed-

ings of ACM SIGCOMM Workshop on Network and Systems Support for Games

(Netgames), Portland, Oregon, USA, August 2004, p. 166.

C. D. Nguyen, F. Safaei, D. Platt, “On the provision of immersive audio commu-

nication to massively multi-player online games,” in Proceedings of the ninth IEEE

Symposium on Computers and Communications (ISCC), Alexandria, Egypt, June

28th - July 1st 2004, pp. 1000-1005.

C. D. Nguyen, D. Platt, F. Safaei, “Design of processing resources scheduling in

programmable networks,” in Proceedings of Australian Telecommunications Net-

work and Applications Conference (ATNAC), Melbourne, Australia, December 2003,

ISBN: 0-646-42229-4.

Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the current technologies and approaches for the creation and

distribution of web and multimedia content. We focus on real-time creation and

distribution of interactive multimedia content and the infrastructure support for de-

livering these contents.

In early web applications, the delivery of content is simply about retrieval of hy-

pertext documents from a web server. As Internet applications evolve, the nature

of delivering content is also changing significantly. In many current applications,

content is often processed or customized in real-time by a server or a proxy before

being delivered to end users. This content includes web content, multimedia, state

information and communication information in distributed virtual environments. Ap-

plications that require real-time creation of content are classified as follows:

• Content personalization/localization: Advanced content service delivery en-

ables personalization of content by using application proxies located at net-

work edges. Example of these services include language translation, insertion

of regional data and personalization and customization of web pages.

• Content transformation: This class of application includes transcoding, en-

cryption/decryption and compression/decompression. Typically, a server or a

10

Literature Review 11

proxy is placed between a content source and a destination in order to seam-

lessly provide application specific processing on the packet flow in real-time.

• Real-time creation of content from dynamic sets of dispersed sources: Appli-

cations belonged to this class include state information and communication

processing in multiplayer online games and distributed virtual environments.

For example, a game server dynamically processes packets carried game state

information, generates new game state and sends back to game clients. An

audio mixing server mixes voice streams from players and sends the mixed

streams to other players within their hearing range.

The chapter is organized as follows. Section 2.2 reviews the evolution of web content

distribution. In Section 2.3, the thesis describes the current and future applications

that require real-time creation and distribution of content from a large number of

disperse sources. These include state information and communication processing in

multiplayer online games and distributed virtual environments. In Section 2.4, the

thesis reviews the server infrastructure support for these applications. Section 2.5

concludes and points out major research issues that will be considered in the thesis.

2.2 Evolution of Content Delivery

This section reviews the evolution of web content delivery over the Internet. Due to

the rapid growth of the Internet and the world wide web, several approaches have

been developed for efficient delivery of web contents. These approaches range from

simple proxy caching to web cluster servers and content distribution networks. The

objectives of these approaches are to improve the scalability of content delivery and

reduce the response time. Finally, the section introduces the concept of content ser-

vice networks (Ma et al., 2001) and several advanced techniques for enabling per-

sonalization/localization of content.

Literature Review 12

2.2.1 Proxy Caching

One of the earliest techniques to enhance the performance of web delivery is proxy

caching. Proxies are originally designed to allow network administrators to control

Internet access from within an intranet. Moreover, proxies have been used widely for

caching web documents. Cache proxies serve as repositories for frequently requested

document, hence, reduce network traffic and response time (Mahanti et al., 2000). A

cache proxy receives Hypertext Transfer Protocol (HTTP) requests from clients. The

proxy returns the cache object if the requested object is found.

The simplest caching technique for web content is the client web browser cache

which is only useful for a given user. This is the first-level caching, while caching at

a proxy is the second level cache. There are three basic approaches for proxy cache

deployment as presented in (Barish and Obraczka, 2000):

• Consumer-oriented: In this case, the Proxy cache is deployed near consumers.

Since this proxy is subject to single point of failure, there are two approaches

for alleviating this problem. The first approach is auto-configuration of browser

based on IETF Web Proxy Auto-Discovery Protocol (WPAD) (Gauthier et al.,

1999) for locating nearby proxy caches. The second approach is transparent

proxy, which intercept HTTP requests at network edges (e.g., router or layer

4 switch) and redirect these requests to suitable web cache servers. This ap-

proach eliminates the need for browser configuration but violate end-to-end

argument by not maintaining constant end-points for the flow (Gauthier et al.,

1999).

• Provider-oriented: Caches are positioned or maintained by the content provider

in order to improve access to a logical set of content such as audio and video.

For example, in the reverse proxy caching, caches are deployed near the origin

of content instead of near clients.

• At strategic points in the network: An example of this strategy is adaptive

web caching, which views caching problem as one of optimizing global data

dissemination. This scheme aims to deal with “hot spot” in the network, where

Literature Review 13

various short-lived Internet contents can become massively popular and in high

demand.

2.2.2 Web Server Cluster

To cope with a rapid increase in the number of users accessing popular web sites,

there is a need for faster and scalable web servers. One solution is to use a pool of

servers tied together to act as a single unit called a server cluster (Schroeder et al.,

2000). A server cluster provides a better cost/performance and a simpler path for

capacity extension compared with one large server.

Most of web server clusters are transparent to client browsers. Reviews of web-

cluster systems are presented in (Cardellini et al., 2002) (Bryhni et al., 2000) and

references therein. These systems consist of multiple server nodes distributed in

a local area and employ mechanisms to spread client requests among these nodes.

Various request dispatching algorithms and internal routing mechanisms have been

proposed to design and implement scalable web-server systems. The aims of these

algorithms are to achieve high throughput, load balancing, and low response times at

the web server cluster. There are three main approaches for distributing client request

to multiple servers:

• DNS-based approach: An authoritative Domain Name Server (DNS) returns

different IP addresses for the same domain name based on a list of servers cor-

responding to this web site. For load balancing purpose, requests are usually

assigned to servers in a round robin fashion.

• Server-based approach: This approach use HTTP redirection feature in accor-

dance with DNS based distribution of requests. DNS is first used to distribute

requests among a set of servers. If a request reaches an overloaded server, in-

stead of returning the page, the server responds with a HTTP message to direct

the client to a new server.

• Network-based approach: In this approach, a specialized node is deployed to

distribute HTTP request among servers in the cluster. In different system im-

plementations, this node is called by various names such as HTTP dispatcher,

Literature Review 14

US

UK

Italy

Original server

Replicated server

h

Figure 2.1 A content distribution network.

web switch, application layer switch, or layer 4-7 switch. The switch remaps

incoming HTTP requests at layer 3 or layer 2 based on information at layer

3 and 4 or layer 3 up to 7. As presented in (Schroeder et al., 2000), these

combinations result in L4/2 or L4/3 (layer 4 switching with layer 2 or 3 packet

forwarding) and L7/2 or L7/3 (layer 7 switching with layer 2 or 3 packet for-

warding).

2.2.3 Content Distribution Networks

The next advance in content distribution is to replicate web contents in various

servers or clusters in different geographical locations that are close to clients in order

to improve request latency and throughput. This solution is called a Content Distri-

bution Network (CDN), as shown in Fig. 2.1. Currently, popular commercial CDNs

include Akamai 1, Exodus 2 and Digital Island 3. Akamai comprises 15,000 servers

1Akamai, http://www.akamai.com
2Exodus, http://www.exodus.com
3Digital Island, http://www.digitalisland.com

Literature Review 15

in 1100 networks and more than 65 countries. It is claimed by Akamai that 15% of

total web traffic in the Internet is from Akamai network. In addition to enhancing the

scalability of web hosting, Akamai also enables information and applications to be

delivered from locations close to the customers.

The traditional approach (without CDNs) is to use a web server cluster for improving

the performance scalability and rely on caching proxies for reducing the number of

hits. This approach has some limitations:

• If the web server cluster is designed for peak load, the infrastructure cost will

be high and utilization is likely to be low or if the cluster is designed for average

load, the performance will be poor during peak periods.

• If the network between the web server and customers is congested, the users

will suffer from poor performance.

• The web server cluster will not be able to cope with unexpected large number

of requests referred to as “flash crowds”. The most famous example is the

1998 distribution of the Monica Lewinsky Starr report, which was successfully

delivered to 20 million Americans over a short period of time (Douglis and

Kaashoek, 2001). The first server contained the document was swamped with

requests until other sites that had successfully downloaded the document made

their own copies to spread the load.

The Starr report example demonstrated the advantage of a content distribution net-

work in response to flash crowds. By using CDNs, the service can automatically

scale without continually increasing the size of the web cluster server. In addition,

while web clusters can only reduce response times at the original server site, CDN

can improve latency and reliability of content delivery and is resilient to conges-

tion in the core of the Internet due to smaller distance from customers to replicated

servers. Also, security mechanisms are employed to ensure the content servers are

protected from attacks, thus ensuring performance stability. In addition to traditional

web contents, CDN is also suitable for value-added services such as streaming media

over the Internet (Cranor et al., 2001).

Literature Review 16

The main components of a CDN include a content delivery infrastructure and a re-

quest routing infrastructure (Green et al., 2000). The content delivery infrastructure

is a set of “surrogate servers” located at the edge of the network. The request routing

infrastructure diverts user requests to suitable surrogate servers.

The CDN surrogate servers may either replicate and deliver only selected objects

within the HTML document or the whole web site. A surrogate server also provides

dynamic content assembly, localization and personalization of content, and streaming

media on demand. In particular, dynamic content assembly is supported by using a

standard called Edge Side Includes (ESI) 4 and localization and personalization of

content is enabled by another standard called Internet Content Adaptation Protocol

(ICAP) (Elson and Cerpa, 2003).

CDNs employ some request-routing mechanisms for efficiently redirecting user re-

quests to appropriate CDN servers to reduce latency and balance load. Common

approaches include HTTP redirection, DNS redirection, and network layer. In the

case of HTTP redirection, clients are redirected to an optimal replica server via the

use of HTTP protocol response codes (Fielding et al., 1999). A client establishes

HTTP communication with one of the replica servers. The initially contacted replica

server can then either choose to accept the service or redirect the client again. In DNS

redirection (Cooper et al., 2001), a more sophisticated client to replica communica-

tions is enabled by using enhanced DNS servers. When a client resolves the name

of an origin server, an enhanced DNS server sorts the available IP addresses of the

replica servers starting with the most suitable replica and ending with the least suit-

able replica based on some metrics. In the case of network layer redirection (Agarwal

et al., 2001), anycast addresses are used for directing requests to replicated servers.

2.2.4 Advanced Content Service Delivery

The previous sections introduce several approaches for content distribution. This

section describes advanced techniques for enabling processing of content at surrogate

servers or proxies in order to provide richer services. There are two major standards:

Edge Side Includes (ESI) for dynamic content assembly at edge servers and Internet

4Edge Side Includes, http://www.esi.org/

Literature Review 17

Client
Browsers

Content Assembly/
Delivery using ESI Content Generation

ID C

ESI Fragment
Updates

Web App
Server

Databse
ES

ES

ES

ES
ES

ES

ES

ES - Edge Server

Figure 2.2 Content delivery/assembly using Edge Side Includes (ESI).

Content Adaptation Protocol (ICAP) for localization and personalization of content.

In addition, a recent content delivery concept called Content Service Networks is

also introduced.

Edge Side Includes (ESI) 5 defines a simple markup language to facilitate the dy-

namic content creation at edge servers using cached objects at these servers and dy-

namic components that are retrieved from the origin server. As indicated in Fig. 2.2,

ESI separates content delivery from content generation, thus lowering the need to

retrieve the complete pages and substantially reducing the load at content generation

infrastructure. To enable this, ESI defines a template which consists of ESI frag-

ments and their expiration times (or Time To Live TTL) as shown in Fig. 2.3. The

fragments are individually obtained from the origin server after TTL expiration.

Internet Content Adaptation Protocol (ICAP) (Elson and Cerpa, 2003) is a lightweight

protocol for adapting HTTP requests and responses that enable content localization

and adaptation in CDNs. Examples include formatting HTML for display on special

devices, language translation, and localized advertisement. Fig. 2.4 gives an example

of an ICAP language translation service operation.

1. A client requests an object from the origin server through an ICAP-client surro-

gate.

5Edge Side Includes (ESI) Overview, http://www.esi.org/overview.html

Literature Review 18

Template

Fragments

Welcome to Soccer.net

Live match
update

[TTL = 1 min]

Today News

[TTL = 1 hour]

Premier League,
Serie A, Premira Liga

Figure 2.3 Example of an ESI template consisting of ESI fragments and their expiration

times.

Client
Origin
Server

ICAP-Client
Surrogate

ICAP
Resource

1

6

5 4

3

2

Figure 2.4 Example of ICAP operation.

2. The surrogate forwards the request unchanged to the origin server.

3. The origin server responds with the partially complete HTML document which

contains a link to the ICAP language translation service.

4. The ICAP client intercepts the server’s reply and sends a request to the ICAP

resource server to obtain the translation service.

5. The final HTML document is assembled at the ICAP-client.

6. The complete translated HTML document is forwarded to the client.

While ICAP protocol enables a limited range of content localization and adaptation

Literature Review 19

service in current CDN, a new concept called Content Service Network (CSN) (Ma

et al., 2001) supports a wider range of content processing capabilities. CSN can

be viewed as an overlay network of application proxies that focuses on providing

content processing in stead of storage and caching as in current CDNs. CSN provides

a range value-added services including web content localization and personalization

as well as other applications such as streaming media transcoding. CSN aims to

provide these services for a wide range of customers including content providers,

end users, ISPs, and CDNs.

2.3 Future Development of Content Creation and De-
livery

In the previous section, we reviewed the evolution of web content distribution up

to now. The convergence of the Internet and entertainment is likely to lead to the

proliferation of interactive entertainment applications and challenges for delivering

interactive entertainment content. This type of content includes state information

in distributed virtual environments and communication information, such as voice

streams, for enhancing communication in these environments. These contents are

often created and distributed in real-time from a dynamic set of dispersed partici-

pants.

In this section, we describe the current development of multiplayer online games,

which is the most popular application in “state information processing” category. In

addition, we outline voice support systems in current multiplayer games and review

research results for enhancing this service. In particular, we describe technologies

and approaches for providing immersive voice communication to virtual environ-

ment.

2.3.1 Multiplayer Online Games

Multiplayer online games have become very attractive applications in the Internet.

Some estimates indicate that by 2009 more than 230 million people will be playing

Literature Review 20

multiplayer online games 6. Most current commercial multiplayer online games are

based on the client-server model. They can fall into two categories. In the first

category, one peer can act as a server or a stand-alone server is used. In either of

these cases, this server can only support a small number of players (typically well

under 100). In the second category, a central server in a form of a dedicated server or

a server farm is used. This type of server can support from 1000 to more than 100,000

players. This category is also called Massive Multiplayer Online Game (MMOG).

Massive multiplayer online games (MMOG) have become very popular applications

recently. A report (Aas et al., 2003) shows that the revenue for MMOG is estimated

at $635 million in 2003, and by 2005 should reach $1.8 billion. Another report by

Zona Inc. 7 shows that the number of MMOG subscribers in 2002 is about 1.6

millions in US alone, and will reach 10.9 million in 2006.

The number of participants in a single MMOG is very high and tends to increase

when the game becomes more popular. However, most of current commercial game

servers can only support few thousands players. For example, although EverQuest 8

claims to support over 100,000 players simultaneously, there are about 50 servers and

each server can only handle about 2000 players. Since each server hosts a separate

virtual world, Everquest actually supports 50 instances of the game, not a single

game with a large virtual world.

There are various works on network and server support to enhance the scalability

and latency of MMOG. To address the scalability problem, the industry has been

developing scalable server solutions for hosting MMOG. Notable examples are Ter-

azona system developed by Zona 9 and OpenSkies system developed by Cybernet

Systems10. These systems are built based on a cluster of servers. Another notable

system is Butterfly Grid 11, which uses grid computing to support a large number of

users.

6DFC Intelligence, “The Online Game Market 2004”, August 2004, http://www.dfcint.com
7Zona Inc, http://www.zona.net
8EverQuest, http://www.everquest.com
9Terazona System, http://www.zona.net

10OpenSkies System, http://www.openskies.net
11Butterfly Grid, http://www.emergentgametech.com

Literature Review 21

Server

Player

Player Player Player Player

Player

(a) Client-server

Player Player

Player

PlayerPlayer

Player

(b) Peer-to-peer

Server Server

Player

Player

Player

Player

Player

Player

(c) Distributed servers

Proxy Proxy Proxy

Player Player Player Player Player Player

Central Server
Player Player

(d) Proxy

Figure 2.5 Game server architectures.

Literature Review 22

This section outlines existing multiplayer online game architectures.

2.3.1.1 Client-server

In the client-server architecture (Fig. 2.5a), the central server processes all state in-

formation. When each player moves or does a certain game action, this command

is sent to the central server. The server collects all game commands from clients,

updates game state and sends these updates back to each client. The client machine

renders the graphic output and sound based on the new game states. This archi-

tecture is common in most commercial networked games. In the centralized server

architecture, it is easy to implement functionalities such as security and accounting.

In addition, since all game states are updated at the centralized server, global consis-

tency is always maintained. However, this architecture poses a scalability problem

and the central server is a single point of failure. Also, additional delay is introduced

since interaction between players needs to be updated via a central server.

2.3.1.2 Peer-to-peer

Currently, the peer-to-peer architecture (Fig. 2.5b) is used in some real-time strategy

games where the number of participants is small. Each game client sends its game

events to all other game clients and receives events from other clients. This approach

limits the scalability of the game due to large amount of game state information each

player need to send/receive. Hence, it is typically used for some real-time games with

a small number of participants or when participants are on a LAN. In addition, due

to direct peer-to-peer communication, this architecture is subject to cheating and se-

curity problems. The advantage of peer-to-peer architecture is lower communication

delay between game players compared to the client-server approach.

2.3.1.3 Distributed Servers

To increase the scalability of game servers distributed server architectures (Fig. 2.5c)

have been proposed in the literature in (Barrus et al., 1996) (Cronin et al., 2001) and

references therein. There are two ways for distributing game state information pro-

cessing: virtual location based partitioning and physical location based partitioning.

These architectures can reduce the scalability problem or, in some cases, reduce the

Literature Review 23

network latency compared with the central server architecture. However, there is a

need to maintain game state consistency between servers.

In virtual location based partitioning, the game virtual world is partitioned into smaller

areas called locales or zones, each area is assigned to a server. This approach is pro-

posed in (Barrus et al., 1996) and has been used for distributing game state informa-

tion among servers in the Butterfly Grid. This approach mainly aims to increase the

scalability (in terms of number of players) as servers are typically located in the same

physical location such as a server farm. In this approach, the game state consistency

needs to be maintained when avatars move across the border of two adjacent locales,

which is assigned to two different servers.

In physical location based partitioning, distribution of servers are based on the physi-

cal location of servers with respect to clients. Game clients are connected to a nearby

server as in the client-server architecture. Each server keeps its own copy of game

states and exchanges messages with other servers using a peer-to-peer architecture.

This architecture is also called a mirrored server architecture (Cronin et al., 2001),

which is a hybrid between the client-server and the peer-to-peer architecture. A key

issue of this architecture is to maintain game state consistency between servers. Sev-

eral synchronization techniques (Cronin et al., 2002a) has been proposed to minimize

the inconsistency between these servers and ensure the accurate performance of the

game. By an efficient assignment of players to close servers, this architecture could

achieve smaller latency than the client-server architecture.

2.3.1.4 Proxy-based Architecture

The work in (Mauve et al., 2002) proposes a proxy system to avoid the bottleneck

of the client-server architecture and limitation of the peer-to-peer architecture. As

shown in Fig. 2.5d, a player is either connected directly to the central server or via a

nearby proxy. The central server trusts these proxies and delegates some functionality

to these proxies. These proxies form an overlay network. Hence, this architecture

has some of the advantages of overlay networks such as congestion control by routing

traffic around the congested areas, fault detection and rerouting. Also, since proxies

are close to players, latency is improved. Proxies also prevent cheating and ensure

Literature Review 24

Figure 2.6 Example of a game virtual world

fairness between players.

2.3.2 Group Communications in Multiplayer Online Games

In most current multiplayer online games, players can communicate only by typing

a text message which will appear on the computer screen of other players. Other

players can respond to this by typing a reply message. This is very unnatural and

slow. In some fast-paced games, typing an alert message may be too slow and other

players may get killed before getting the alert. In addition, typing text would interfere

with players’ control of their characters’ movements. Voice would allow participants

to play and communicate with others at the same time.

A multiplayer online game simulates a virtual world, where each game player is rep-

resented as an avatar. Fig. 2.6 shows an example of a virtual world which consists of

several avatars. These avatars communicate to exchange information and do various

actions. Since networked games are becoming more realistic, there are more interac-

Literature Review 25

tions between players. As a result, communications play a vital role. For example, in

First Person Shooter (FPS) games, members in a team of soldiers need to talk about

tactics for an attack, give instructions for using weapons, and alert others about the

approaching enemy.

To enhance the game experience, inter-person communication is a key issue. Cur-

rently, there is a strong push by game service providers to add voice communications

to networked games. Voice communication has been implemented in some console-

based and PC-based games. Most of these voice communications are implemented

in a party-line fashion and have certain limitations. These systems’ basic features are

described in the next section.

2.3.2.1 Voice Communication Systems in Current Multiplayer Online Games

One of the common voice support systems in current networked games is the Xbox

Live 12 which was released by Microsoft in 2002. Voice communications in most

of Xbox games are typically implemented as a party line fashion. For example, in

a FPS game, there is only one voice channel for the whole game (in all against all

play) or one voice channel for each team (team-based game). A study in (Hew et al.,

2004) shows that the Xbox voice communication system lacks the ability to control

what is heard and sent through the voice channel. A number of participants felt that

various conversations in the voice channel were not intended for them. Due to only

one voice channel, they can hear incoherent speech from other players that are not in

their proximity and not of interest to them. In addition, they could neither control nor

determine who was listening to their transmission. In some games such as MotoGP

and Halo 2, Xbox Live also supports limited proximity-based voice communication,

allowing players to talk to each other if they are close to each other. In this situation

a game context, such as avatar position, is used, however, no spatial voice rendering

and distance based voice attenuation is implemented.

Voice has been implemented in some PC-based games such as Counter Strike 13.

Similar to Xbox live, the voice channel is implemented as a party line. However,

12http://www.xbox.com/en-US/live/about/features-voice.htm
13http://www.counter-strike.net/

Literature Review 26

players can call up a scoreboard menu and use mouse to choose to listen or mute

other players. This personalized option enables a player to have more control of who

is being heard. Also, there is some visual cue as avatar lips move when a player

talks. This type of conversation would be suitable for games, in which the number of

participants is small and players only need to speak to their team. In a game that has

a large number of participants, this voice communication scheme may not be suitable

as each participant may interact with many different players in a game session. This

scheme requires explicit control of the voice channel from the users. Similar to Xbox

voice communication, no game context is used and the voice is not spatially placed

nor attenuated.

SideWinder Game Voice 14 is a supplemental system that provides voice communica-

tions between players in PC-based games, regardless of the types of game they play.

This system was released by Microsoft in August, 2000. The system consists of a

special headset, a control pad and a software component that is integrated with game

player’s session. The system is game-independent and relies mainly on MSN Instant

Messenger voice chat technology. There are four voice channels, and each channel

is typically assigned to a player. A player can choose any on and off combination of

these channels by using buttons on the control pad. All player usernames will appear

in a chat room list and each player can explicitly choose who to talk to. This is simi-

lar to common chat communication. There is no linkage between game context such

as player position and team allocation with the voice support function.

In terms of delivery architectures, most current systems use peer-to-peer, which is

direct voice transport connection between users. This is similar to voice chat com-

munication in current common Instant Messenger such as MSN Messenger or Yahoo

Messenger. A voice stream from each user needs to be sent to the rest of users in

the same party-line or chat room. UDP and RTP are typically used for transporting a

voice stream. Hence, the number of sending voice streams is equal to the number of

listeners. Due to limited user access bandwidth, these systems only support a small

number of simultaneous speakers.

In short, most voice communication systems in current multiplayer online game are

14http://www.microsoft.com/presspass/features/2000/aug00/08-24gamevoice.mspx

Literature Review 27

designed for FPS or racing games with small number of users. Due to the party

line fashion of voice delivery, each player can only talk to a few people such as

members of the same team. In addition, the voice delivery is not based on spatial

location of a speaker with respect to the listener and the distance between them.

In the next section, we will describe research projects that provide more realistic

voice communication in distributed virtual environments. Since a multiplayer online

game is a particular class of distributed virtual environments, the techniques used in

distributed virtual environment are generally applicable to multiplayer online games.

2.3.3 Immersive Voice Communication in Distributed Virtual En-
vironments

This section describes various techniques and approaches in providing immersive

voice communication in Distributed Virtual Environments (DVE). These approaches

enable spatial voice communication between participants and enrich the experience

of the virtual environment. Each system design addresses different issues such as

network bandwidth limitation for the voice delivery or processing resource scalability

for performing audio mixing operations.

To provide immersive voice communication, mixing of audio streams is often re-

quired. We refer to this operation as communication information processing. In ad-

dition to “state information processing”, “communication information processing”

in distributed virtual environments has recently received considerable attention from

the research community.

Early research work on voice support for DVE emerges in the mid 1990s. At this

time, the importance of spatial audio communication alongside the 3D display of

a virtual environment is already realized. A study in (Hendrix and Barfield, 1996)

shows that addition of spatial sound significantly increases the sense of presence in

the virtual environment. Notable systems that support voice communications at this

time are Distributed Interactive Virtual Environment (DIVE) (Carlsson and Hagsand,

1993) and Scalable Platform for Interactive Environment (Spline) (Anderson et al.,

1995) (Waters et al., 1997). Although these papers have mentioned the significance

of spatial voice communications, the system design, implementation and various is-

Literature Review 28

sues related to provisioning spatial voice communications are not adequately ad-

dressed.

DIVE is one of the first DVE system that provides virtual voice conference for partic-

ipants. DIVE is based on peer-to-peer approach, where peers communicate by using

IP multicast. To address the lack of IP multicast support in many carriers, a latter

enhancement of DIVE (Frecon et al., 1999) presents an architecture called DiveBone

that uses a proxy server as an application-level multicast node. These servers form

an application-level multicast backbone. The DiveBone also provides visual analysis

of the connection architecture and network traffic for remote maintenance operation.

In Spline framework, the importance of voice immersion is addressed although the

specific design for spatial voice communications between users is not provided.

Spline uses peer-to-peer voice communication between users. If an user has ade-

quate access bandwidth, the audio mixing is done at the client computer. Otherwise,

users are connected to an access server that interfaces with the main system and

provides customized mixing for each connected user.

Several research projects in this area focus on mechanisms to support voice in DVE

through heterogenous networks such as the Internet. One example is the work in

(Radenkovic et al., 2002) (Radenkovic and Greenhalgh, 2002) that provides an audio

service for Collaborative Virtual Environments (CVEs). A technique called Dis-

tributed Partial Mixing (DPM) is used to dynamically adapt to varying numbers of

speakers and network congestion. This scheme supports optimization of bandwidth

utilization across multiple related audio streams while maintaining fairness to TCP

traffic in best effort networks. For example, when there is congestion, performing

mixing (e.g., in a server or proxy) would reduce the number of peer-to-peer audio

flows in the network. In addition, the deployment of DPM is based on application

layer multicast in which a mixing server or a client computer can be a multicast

node. The multicast trees are self-organized when clients join or leave or when net-

work condition changes (e.g., in response to congestion). Issues of deploying DPM

server over wide-area networks such as DPM placement, reconfiguration is also dis-

cussed. However, this work is mainly concerned with optimizing bandwidth, and

minimizing latency for voice communication has not been considered.

Literature Review 29

The work in (Greenhalgh and Benford, 1999) discusses the design of CVEs that

scale to large numbers of participants yet still afford spatial voice communication.

The scalability is achieved by performing operation and summarization based on

third-party objects (e.g., structuring regions, aggregate views, and dynamic crowds

of participants). The system implementation, namely Massive-2, is based on a dy-

namic and self-configuring hierarchy of multicast groups. The paper states that the

combination of third-party objects and multicast would improve the scalability of the

architecture including voice stream delivery.

The research in (Bolot and Parisis, 1998) examines issues related to adding voice

to networked games such as the MiMaze game. The paper discusses all stages of

voice communication architecture, including voice generation, voice transport, and

voice restitution. For voice generation, echo cancellation technique is discussed to

prevent the voice of remote player from being captured by the microphone. For voice

transport, the paper considers peer-to-peer voice delivery between users by using IP

multicast, UDP and RTP. For voice restitution at a listener, the paper discusses some

3D audio processing techniques and synchronization of visual and audio sources.

This research only concentrate on a peer-to-peer architecture while the use of other

delivery architectures is not addressed.

2.3.3.1 Spatial Audio Rendering Techniques

To provide immersive voice communications in DVE, spatial audio rendering tech-

niques need to be used. These techniques render the sound in a 3D environment

based on the spatial location of the sound sources with respect to the listener in the

virtual world.

For many applications, accurate spatial reproduction of sound can significantly en-

hance the visualization of 3D information. The human ear-brain interface is capa-

ble of identifying sounds in a 3D environment with remarkable accuracy. Sound

perception is based on a multiplicity of cues that include level and time differences

and direction-dependent frequency-response effects caused by sound reflection in the

outer ear, head and torso, cumulatively referred as the head-related transfer function

(HRTF) (Kyriakakis, 1998).

Literature Review 30

Review of spatial audio rendering techniques is discussed in (Kyriakakis et al., 1999)

(Kyriakakis, 1998) and references therein. There are two common methods for 3D

audio rendering that can be classified as “head related” transfer function and “non-

head related”, based on loudspeaker reproduction.

Nonhead related methods typically use multiple loudspeakers to reproduce multiple

matrixed or discrete channels to convey precisely localized sound images. This tech-

nique is also called amplitude panning which models a sound field with different

intensities according to the direction of the virtual source. 3D localization can be

achieved if there are enough speakers available (Pulkki, 1999).

Head-related transfer function (Gardner and Martin, 1994) models the spectral and

timing transformation of a sound source in free-field to the ears of the human listener,

caused by the diffractions of sound by the torso and head. Since binaural localization

synthesizes sound sources at the two ears of the listener, this technique is optimized

for playback on the two channels of the headphones. Using this approach with two

loudspeakers is possible but it requires careful crosstalk-cancellation to achieve good

localization precision (Mouchtaris et al., 2000).

2.3.3.2 Dense Immersive Communication Environment (DICE)

Researchers in our research group have developed a system design called Dense Im-

mersive Communication Environment (DICE) (Boustead et al., 2005). The project

aims to design a scalable system that delivers immersive voice communication in

crowded virtual spaces. A testbed has been implemented to provide this service for

several popular networked games.

The basic functional elements of DICE is shown in Fig. 2.7. There are two main com-

ponents: audio clients and a Scene Creation Server (SCS). An audio client installed

in each player’s computer captures voice (from microphone) and sends a single mono

audio stream to the SCS. The audio client receives up to a fixed number (k) of mono

streams with associated positional meta-data from the SCS. This meta-data is used

to spatially place each of the received mono-audio streams to create an audio scene

that corresponds, as accurately as possible, to the visual component of the virtual

Literature Review 31

Figure 2.7 Basic functional elements of DICE, adapted from (Boustead et al., 2005).

world. If the number of avatars in the participant’s hearing range is smaller than k,

the SCS merely forwards these n streams to the participant. The SCS obtains avatar

information such as position and orientation from the game server. This information

is used to build a map of avatar coordinates that is used by a control algorithm to

calculate mixing operations on audio streams. For example, the distance between a

speaker and a listener determines the weight applied to the audio stream from that

speaker, which consequently affects the volume of that speaker’s voice in the mixed

audio scene.

Since client access bandwidth is limited and the state information exchanges con-

sume a large portion of this bandwidth, k will be small in practice. As shown in Fig.

2.8, DICE uses an angular clustering approach that groups avatars into k separate

clusters and perform a spatial audio mixing operation on each of these clusters (in

the testbed implementation, k is equal to 4). The server will also calculate the cen-

tre of activity of each cluster, which is the location of an imaginary audio source of

the cluster mix. This information is then sent to the client and the client will ren-

der the audio scene by spatially placing each mixed audio at its centre of activity.

By using intelligent methods for clustering and calculation of centre of activity, giv-

ing higher weights to nearby avatars, it is possible to construct perceptually accurate

audio scenes even when the number of allowed voice streams is small.

Literature Review 32

Figure 2.8 Angular clustering, adapted from (Boustead et al., 2005).

2.3.4 Audio Codec Technologies

This section introduces audio coding technologies for multimedia streaming and stor-

age, and voice transmission over the Internet. We focus on several types of codecs

which are applicable for the transmission of voices from participants in the virtual

environment.

Key parameters that determine the characteristics of audio codecs are: sampling

frequency, bits per sample, data rate, and processing delay. A basic audio coding

scheme is Pulse Code Modulation (PCM), which is a digital representation of ana-

log signal, where the magnitude of the signal is sampled at a uniform interval and

then quantized to binary code. Using this coding scheme, uncompressed mono voice

stream is sampled at 8000 samples/sec with 8 bits/sample, resulting 64kbps data rate.

CD audio quality is sampled at 44100 samples/sec with 16 bits/sample, resulting in

1411200 bits/sec or about 1.5 Mbps (Harrington and Cassidy, 1999). Audio codecs

attempt to relatively achieve the quality of uncompressed audio with lower data rates.

There are various audio codecs for multimedia streaming and storage which are not

particularly designed for speech but audio in general. Examples are various audio

Literature Review 33

codecs that are specified in several standards developed by the Moving Picture Ex-

perts Group (MPEG) audio committee 15: MPEG1 in 1993, MPEG2 in 1994, MPEG3

in 1998, and MPEG4 in 1999. These codecs have data rates ranging from 6kbps for

low quality audio to 700kbps for CD quality audio. In addition, there are also pro-

prietary audio codecs developed outside the MPEG standardization framework, such

as Windows Media Audio (WMA) 16 from Microsoft and Real Audio (RA) 17 from

Real Networks.

These above audio codecs do not take advantage of statistical properties of human

speech for coding and are not suitable for voice transmission. The following sections

review several audio codecs used for speech compression and transmission over the

IP network.

2.3.4.1 Speech Codecs

There are two major techniques for speech compression: Adaptive Differential Pulse

Code Modulation (ADPCM) and Linear Predictive Coding (LPC). Different types of

codecs are developed based on these techniques.

The ADPCM approach uses statistical properties of human speech to make a pre-

diction about the size of the next sample based on previous information. Hence, a

transmitter sends only the difference between a real value and a predicted value. The

receiver uses the prediction algorithm and the difference to reconstruct the speech

data (Harrington and Cassidy, 1999). ADPCM codecs are currently recommended

for Voice over IP (VoIP) applications as specified by the International Telecommu-

nication Union - Telecommunication Standardization Sector (ITU-T) in G.726 18.

These codecs are sampled at 8kHz and have four different data rates: 40kbps, 32kbps,

24kbps, and 16kbps. These codecs attempt to achieve the uncompressed voice qual-

ity of PCM coding with lower bit rates.

LPC is introduced in the 1960s and is used for low bit-rate speech codecs. In LPC,

15The MPEG home page, www.chiariglione.org/mpeg.
16www.microsoft.com/windows/windowsmedia/
17www.real.com
18G.726, 40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (ADPCM) , December

1990, http://www.itu.int/rec/T-REC-G.726/en

Literature Review 34

nth sample is represented as a linear combination of a previous p plus a prediction

error. LPC coding is more complex than ADPCM and results in higher processing

delay (Harrington and Cassidy, 1999). Some common audio codecs based on the

LPC technique are:

• RPE-LPC (Residual Pulse Excited LPC): this codec is used in GSM (Group

Special Mobile) and has a data rate of 13kbps.

• CS-ACELP (Conjugate Structure - Algebraic Code Excited Linear Prediction):

this codec is standardized in ITU-T G.729 19 and has a data rate of 8kbps.

• MP-MLQ (Multi Pulse - Maximum Likelihood Quantization): This codec is

standardized in ITU-T G.723.1 20 and has a data of 6.3kbps.

These low bit-rate codecs are often recommended for voice transmission in mobile

and wireless applications.

2.3.4.2 Transmission, IP Encapsulation, Codec-Related Processing Delay, and
Bandwidth Overhead

Typically, each block of speech sample is processed into a compressed frame. This

frame is then dropped into an IP packet. IP packets are then transported by using

User Datagram Protocol (UDP) and Real-time Transport Protocol (RTP). The use

of UDP and RTP for VoIP has been standardized in the H.323 recommendation for

packet-based multimedia communications systems 21. DICE (Boustead et al., 2005),

the voice support system for the Mimaze (Bolot and Parisis, 1998), and common

Instant Messagers, such as MSN and Yahoo Messenger also use this approach.

A key parameter that affects audio codecs-related processing delay and bandwidth

transmission overhead is the number of codec frames encapsulated in an IP packet.

As specified in ITU-T G.114 22, for every coder, the delay due to audio codec-related

processing in an IP-based system with modem or ADSL access bandwidth links is:

19G.729, March 1996, http://www.itu.int/rec/T-REC-G.729/en
20G.723.1, March 1996, http://www.itu.int/rec/T-REC-G.723.1/en
21http://www.openh323.org
22G.114, One-way transmission time, May 2003, http://www.itu.int/rec/T-REC-G.114/en

Literature Review 35

Coder Rate Frame Look- Delay introduced Reference

type (kbps) size ahead by coder-related

(ms) (ms) processing (ms)

PCM 64 0.125 0 0.375 G.711

ADPCM 40 0.125 0 0.375 G.726

ADPCM 32 0.125 0 0.375 G.726

ADPCM 24 0.125 0 0.375 G.726

ADPCM 16 0.125 0 0.375 G.726

CS-ACELP 8 10 5 35 G.729

RPE-LPC 13 20 0 60 GSM 06.10 Full-rate

MP-MLQ 6.3 30 7.5 97.5 G.723.1

Table 2.1
Summary of common audio codecs and the codec-related processing delays in IP-

applications (one frame per packet), specified in ITU-T G.114.

(2N+1) x frame size + look-ahead

Where:

N : Number of frames in each IP packets.

look-ahead: the time a coder spends to look into the succeeding frame to improve

compression efficiency.

Table 2.1 shows the delay incurred by codec-related processing when only one frame

is stored in each IP packet. It is shown that ADPCM codecs have very small codec-

related processing delay. All low bit-rate codecs have large codec-related processing

delay (from 35 to 97.5ms). Also, these delays are only for the case that one frame

is stored in each IP packet. When a number of frames are stored in each IP packet,

these delay will increase proportionally.

The mount-to-ear delay for voice communication in a packet network is recom-

mended in the ITU-T G.114. The recommendation specifies that the mount-to-ear

delay of under 150ms is acceptable for most user applications. The delay in a range

from 150ms to 400ms is acceptable provided that administrators are aware of the

transmission time and the impact it has on the transmission quality of user applica-

tions. When the delay goes above 400ms, many or all users will be dissatisfied. In

addition, some VoIP providers (Flak and Stumm, 2002) recommend that users do not

Literature Review 36

Codec Codec data rate (kbps) Nominal access bandwidth (kbps)

G.711 64 87.2

G.729 8 31.2

G.723.1 6.3 21.9

G.723.1 5.3 20.8

G.726 32 55.2

G.726 24 47.2

G.728 16 31.5

Table 2.2 Bandwidth requirements for several common VoIP audio codecs.

get distracted if the mount-to-ear delay is under 200ms.

In a VoIP application, the mount-to-ear delay consists of the network delays and the

codec-related processing delay. The network delay consists of propagation delay and

delays at routers and switches in the path from the voice transmitter to the receiver.

Depending the type of codecs and the IP encapsulation scheme (e.g., frames per IP

packet), the network delay tolerance of an audio codec can be determined. This

delay is equal to the mount-to-ear delay tolerance (e.g, 150ms or 200ms) subtract the

codec-related processing delay. With this regard, among these above speech codecs,

ADPCM codecs has the smallest network delay tolerance. For example, assuming the

mount-to-ear delay tolerance is 200ms, the network delay tolerance of the ADPCM

codecs is 199.625ms while this delay for MP-MLQ codec is 102.5ms

Due to IP encapsulation, the access bandwidth requirement for transmitting an au-

dio codec is significantly higher than the codec data rate. For example, when one

audio codec frame is encapsulated in each IP packet, the bandwidth overhead for

transmitting each frame include the link layer header, IP header, UDP header, and

RTP header. Typical access bandwidth requirement of several common VoIP audio

codecs are shown in Table 2.223. As shown in the table, for low bit-rate codecs such

as G.723.1 and G.729, the actual bandwidth requirement is nearly four times of the

codec data rate. For higher bit-rate codecs such as G.726 and G.711, the bandwidth

overhead is smaller.

23Voice over IP - per call bandwidth consumption, Cisco document ID: 7934, www.cisco.com

Literature Review 37

2.3.4.3 Choices of Audio Codecs

In the previous section, various audio codecs with delay tolerance and bandwidth

requirements are presented. There is a trade-off between the codec data rate and the

speech quality and codec-related processing delay.

Low bit-rate codecs result in low speech quality, background noise, and high codec-

related processing delay. When being used in the IP network environment, the actual

bandwidth requirement is considerably higher than the codec data rate. With regard

to the immersive audio mixing application, low bit-rate audio codec is not capable of

producing good quality spatial voice representation (Bolot and Parisis, 1998) due to

the mixing operation.

DICE (Boustead et al., 2005) currently support several audio codecs. Experiments

show that ADPCM codecs (G.726) are most suitable for the immersive voice appli-

cation. In particular, the 32kbps ADPCM codec is commonly used. This audio codec

achieves reasonable level of speech compression as well as good spatial voice quality

delivered to users.

2.4 Infrastructure Support

This section reviews network and server infrastructures for the creation and distribu-

tion of real-time content. We discuss the trend of using shared server infrastructure

for deploying various services and reducing the need for capital intensive infrastruc-

ture investment. Several research results related to shared server infrastructure such

as provisioning and resource management are presented. In addition, we describe

recent technologies and approaches that provide low latency and reliable network

infrastructures to connect servers and deliver content to users, and improve the per-

formance and scalability of applications using these servers.

2.4.1 Server Infrastructure

In this section, we describe several shared server infrastructures, with a particular

focus on distributed servers that support real-time creation of content such as mul-

Literature Review 38

tiplayer online games. We also discuss issues related to provisioning and resource

management.

2.4.1.1 Shared Server Infrastructure

In the current Internet, the use of server infrastructures has become popular. In gen-

eral purpose computing, server platforms have advanced from a single central server

to cluster and grid computing. Multiple applications can run on these server in-

frastructures. In web applications, techniques has been developed to improve the

scalability (in the case of clustered web servers), or both scalability and network la-

tency (in the case of CDNs) of content delivery. In multiplayer online games, several

server hosting infrastructures such as Butterfly Grid, have been designed to improve

the scalability and reliability of the game deployment.

In addition, these server infrastructures are often shared between different applica-

tions or parties (e.g., service providers). The key benefit of shared infrastructure

for service providers is to reduce the need for capital intensive infrastructure invest-

ment. In addition, these virtual resources such as virtual server capacities can be

suitably adjusted based on the business requirements. This factor is very important

for MMOG, which require considerable infrastructure investment. Due to the diffi-

culty in predicting the success of a new MMOG, it is risky for game publishers to

deploy dedicated server and network resources. Several shared server infrastructures

that enable real-time content creation are described as follows.

An architecture called Switched Overlay Network (Boustead et al., 2004) has been

designed by researchers in our group to provide infrastructure support for the provi-

sion of scalable delay-constrained distributed applications. Example of these appli-

cations include multiplayer online games and real-time composition of multimedia

from geographically distributed sources in the Internet. SWON supports these appli-

cations by the use of a multitude of servers and the underlying network connecting

these servers. In this model, an application provider (e.g., a game service provider)

hires virtual servers from a number of server providers over a large geographical

span. Interconnection of virtual servers is done by using the underlying network

infrastructure provisioned by various network providers. By using geographically

Literature Review 39

distributed servers and efficient routing path between servers, SWON aims to im-

prove latency in communication delay between clients in interactive applications

such as multiplayer online games. The network infrastructure for connecting servers

in SWON will be discussed in more detail in Section 2.4.2.3.

The research efforts in (Whitaker et al., 2002) (Fraser et al., 2001) have developed

operating system techniques to allow different clients to share the same network

based servers securely and efficiently. This server infrastructure can be geograph-

ically distributed so that it enables clients to choose a suitable processing location for

minimizing communication latency. The research project in (Peterson et al., 2002)

investigates the use of this shared server infrastructure to form a service oriented net-

work. This research shows how distributed virtual machines can collaborate together

to form an overlay network and deliver a specific service.

The research project in (Shaikh et al., 2004) presents a prototype implementation of

a shared and on demand service platform for multiplayer online games. The system

monitors game and system performance and automatically provision server resources

in response to changes in the game workload conditions. Several performance met-

rics such as CPU utilization (including instantaneous and smoothed metrics) and

server processing latency are evaluated for resource allocation decision. The exper-

imental results show that the session arrival rate is a key factor in determining the

suitability of different metrics in provisioning. In particular, smoothed metrics can

avoid unnecessary overprovisioning in short-term workload changes but not suitable

when the session arrival rate is high. This research project demonstrates the feasi-

bility of applying utility computing concept to an infrastructure for hosting multiple

multiplayer online games as well as other business applications.

Grid Computing

A notable example of a shared server infrastructure is grid computing. Grid com-

puting technologies were originally developed to enable resource sharing within

scientific community for computationally demanding data analyses. Recently, grid

computing has shown some benefits for commercial distributed applications, such as

infrastructure for massive multiplayer games, and other e-business computing appli-

Literature Review

Figure 2.9 The layered Grid architecture (Foster and Kesselman, 2004).

cations over the Internet (Carpenter, 2003). In a grid, each participant is referred to

as a Virtual Organization (VO). Grid technologies provide mechanisms for sharing

and coordinating the use of diverse resources in VOs, and thus enable the creation

of virtual computing systems that are integrated to deliver the desired QoS (Foster

et al., 2001).

The general Grid architecture (Foster and Kesselman, 2004) is based on the principles

of the “hourglass model” as shown in Fig. 2.9. The functions of these layers are

summarized as follows.

• Fabric: At the bottom, the fabric layer provides the resources to which shared

access is mediated by Grid protocols, for example, computational resources,

storage systems, network resources, and sensors.

• Resource and connectivity protocols: The narrow neck of the hourglass de-

fines a small set of resources and connectivity protocols, which facilitate the

sharing of individual resources. The number of protocols in this layer is small

compared to the fabric layer and the collective services and user applications

layers. Communication protocols in this layer enable exchange of data be-

Literature Review 41

tween fabric layer resources. In current Grid architectures, these protocols are

mainly drawn from the TCP/IP protocol stacks: specifically, the Internet (IP

and ICMP), transport (TCP, UDP), and applications (DNS, OSPF, RSVP).

• Collective services: This layer contains protocols and services not associated

with any one specific resource but instead capturing interactions across col-

lections of resources. Some of the major functions of this layer are: Direc-

tory services to allow VO participants discover the existence and properties of

VO resources; Coallocation, scheduling, and brokering services to allow VO

participants to reqest the allocation of resources; Monitoring and diagnosis

services to support the monitoring of VO resources.

• User applications This layer comprises user applications that operate within a

VO environment.

An example of a grid computing system that is specifically designed for massive

multiplayer games is the Butterfly Grid 24. The grid has two main locations in East

and West of USA, each location has a large number of servers. Multiple games can

be hosted by the grid. The grid provides on-demand computing and allows game

service providers to avoid huge up-front server infrastructure investment. In each

game, the virtual world can be partitioned into smaller areas, each is handled by a

server in the grid. As claimed by the Butterfly Grid, this approach can enable the

game to scale up to a million participants. The server structure itself is also scalable

since new servers can be inexpensively added to the grid.

2.4.1.2 Server Provisioning

Provisioning is a key issue in shared server infrastructure for supporting multiple ap-

plications and customers. The purpose of provisioning is to choose a suitable server

or a set of servers for each application or customer. There are various performance

metrics to be considered for provisioning. These include server load, server cost,

network cost and network latency. When servers are located at the same location

(e.g., a cluster of server), the provisioning decision is mainly based on load bal-

24Butterfly Grid, http://www.emergentgametech.com

Literature Review 42

ancing and load sharing purposes. On the other hand, when servers are located in

different parts of the Internet, apart from server resources, the latency and network

cost between these servers and between servers and clients are also key provision-

ing factors. In this section, we outline some research in provisioning geographically

distributed servers.

The research in (Safaei et al., 2001) presents a resource provisioning model for a

shared server infrastructure that supports a large number of service providers. This

model enables the provision of both network bandwidth and computation resources

efficiently. In particular, the optimization algorithm in this model configures each ser-

vice (e.g., video transcoding) with a suitable server or a suitable set of servers based

on the network cost between the clients and the servers and the processing cost for

initiating the service at each server. A related research in (Choi et al., 2003) presents

a general approach to the problem of configuring path for content transformation

applications (e.g., transcoding and compression/decompression) which requires in-

termediate processing in the network. The path configuration is based on shortest

path routing algorithms which consider both processing cost at a server and network

link cost in both capacity-constrained and unconstrained approaches. This research

study enables efficient use of network and computation resources by configuring ap-

plication sessions with suitable servers and routing paths.

Another study in (Choi and Shavitt, 2003) discusses general problem of placing

servers for different services in the network. For each service session, this study

considers the network costs that connecting participants to a server and a cost of ini-

tiating the service at each server. The authors formalize the problem of optimally

placing servers and introduce approximation algorithms. A new angle of this study

is to look at two interesting problems: finding a limited number of servers to obtain

the maximum gain, and finding the minimum number of servers needed to achieve a

given level of service. As it will be shown later in the thesis, the number of servers

also has a significant effect on the latency of distributed game service architectures.

In CDNs, there is a need to choose optimal locations for replicating web objects.

There are considerable research results on replica placement algorithms for CDNs,

aiming to optimize latencies and costs based on client information and potential

Literature Review 43

server distribution. The research in (Qiu et al., 2001) proposes several placement

algorithms that use workload information, such as client latency and request rates, to

make placement decisions. Another study in (Cronin et al., 2002b) proposes place-

ment algorithms subject to the constraint that replicas can be placed only at certain

locations. The work in (Nguyen et al., 2003b) proposes an optimization model to

provision multiple CDNs in a shared infrastructure.

The provisioning of distributed game servers have been discussed in (Lui and Chan,

2002) (Ta and Zhou, 2003) and references therein. These research efforts provide

mechanisms to partition the game virtual world to smaller areas and assign each area

to a suitable servers. However, these works are mainly concerned with load balancing

and load sharing purposes. The provisioning of geographically distributed servers for

improving latency for the game is not addressed.

In short, most of provisioning approaches for shared server infrastructure are based

on a cost model with an emphasis on optimizing resource usage. There are some re-

search that considers delay such as client latency when retrieving content in a CDN.

However, to the best of our knowledge, the provision of delay-constrained interactive

applications such as multiplayer online games and communication information pro-

cessing for these games is not adequately addressed. Especially, in MMOG, there are

various provisioning issues need to be considered including resource scalability and

latency in group communication. There is a need for specific studies on the provision

of multiplayer online games and voice communication support for these games.

2.4.1.3 Server Resource Management

In a shared server, sharing of server resources between different applications and

users is a key issue. There have been various techniques and approaches for the

management of server resources. Depending on the type of applications running on

a shared server, each system has a different way of managing resources.

There are several commercial server systems that support virtual hosting. These

include the Solaris resource manager 25, Ensim ServerXchange 26, and Apache virtual

25Solaris resource manager, http://www.sun.com/blueprints
26Ensim ServerXchange, http://www.ensim.com

Literature Review 44

hosts 27. These systems allow several web servers to be hosted in the same physical

server and provide low-level support for partitioning resources. Each web server is

allocated a portion of server resource which may include CPU time, memory, and

network bandwidth.

In addition, research projects in (Banga and Druschel, 1999) (Reumann et al., 2000)

and references therein have proposed several server resource management schemes.

These schemes aim to provide more fine-grained and application-specific control

of server resources compared with general-purpose server operating system. They

can fall to two categories: resource-oriented and service-oriented. The research in

(Banga and Druschel, 1999) creates a new operating system abstraction called a re-

source container which encompasses basic CPU and network shares allocated to

each customer (e.g., a company web site). This is referred to as resource-oriented

since the resource binding and scheduling threads is based on multiplexing among

different resource containers. On the other hand, researchers in (Reumann et al.,

2000) proposes a service-oriented approach where resources are managed based on

types of services. In this approach, per-service resource partitioning is used and each

service may be shared among different customers.

In server resource management, scheduling of processing resource is a key task. Tra-

ditional operating system generally use time sharing scheduling algorithms, which

allocate CPU resources among processes based on average time sharing. For the pro-

cessing of real-time content transformation such as video compression/decompression

and media transcoding, time sharing algorithms may not be efficient. Since switch-

ing between different applications based on average CPU time, the processing of a

packet may stop and resume after a period of time. This may cause large processing

overhead as well as a substantial server processing delay which is not acceptable for

real-time applications.

As a result, researchers have proposed several packet-based processing resource

scheduling algorithms for real-time applications. In this case, a packet or a video

frame is the smallest processing unit for scheduling. Current packet scheduling algo-

rithms used in network bandwidth provisioning often rely on obtaining packet length

27Apache virtual host documentation, http://httpd.apache.org/docs/vhosts/

Literature Review 45

from the packet header to determine the scheduling decision. However, it is gener-

ally difficult to determine packet processing time in advance for processing resource

scheduling. Several approaches has been proposed to address this problem. Research

efforts in (Pappu and Wolf, 2002) (Sabrina and Jha, 2003) and references therein

use estimation of a packet processing time for scheduling. This may be suitable for

a limited number of applications. For other applications, it is possible to design a

packet scheduling algorithm without using prior knowledge of processing time as

demonstrated in (Goyal et al., 1996). A trade-off of this approach is a higher delay

penalty. In short, this is an interesting area of research and need to be addressed fur-

ther. Especially, there is a need to investigate the server sharing policy for emerging

applications that require real-time content creation.

2.4.2 Network Infrastructure Support

Real-time contents including game state information and communication informa-

tion (e.g., audio streams) often require certain QoS metrics such as low latency and

low loss rate. As discussed earlier, to improve the scalability and latency of real-

time content creation and delivery, there is a trend of moving from the central server

model to a distributed server model. In a distributed server infrastructure, a multitude

of servers are located in different locations in the Internet and may be shared among

different applications.

In this section, we describe technologies and approaches for connecting these servers

to deliver services. We focus on overlay networking approaches which are based on

implementation of functionality at end systems and requires no change in the under-

lying network. These approaches provide features that are not available in current IP

network such as application-level routing and multicast.

2.4.2.1 Overlay Networks

A simple but expensive approach for providing QoS connectivity between servers

is to use a virtual private network. A Virtual Private Network (VPN) connects ge-

ographically dispersed sites with security and/or QoS capabilities (Gleeson et al.,

2000). However, deploying a VPN requires a network provider to configure routers/switches

Literature Review 46

in order to set up topology and QoS links. In addition, it is also difficult and expen-

sive to deploy VPN infrastructure across many different network domains.

An overlay network is defined as a network of nodes and virtual links that operates

on top of an existing network in order to provide a new service that is not available

from that existing network (Stoica, 2004). The advantage of an overlay network is

that it provides a new service without changing software/protocols in the underlying

networks. This general definition of overlay networks is very broad. For example,

an VPN can be considered as an overlay network of IP network to provide security

and/or QoS capabilities. Hence, this section will concentrate only on recent overlay

network approaches to implement advanced network services that are not available

in the current IP network. Specifically, recently, academics and industry have put

tremendous efforts into the use of overlays as a fundamental approach for devel-

oping new network functionality (e.g., multicast) and improving performance and

availability of existing applications (e.g., by using application-layer routing).

An example of an overlay network that focuses on fault detection and fast rerouting

is Resilient Overlay Network (RON) (Andersen et al., 2001). RON consists of a mul-

titude of nodes located in different locations in the Internet. These nodes monitor the

functioning and quality of Internet paths among themselves, and use this information

to decide whether to route packets directly over the Internet path or over other RON

nodes, optimizing application-specific routing metrics. Measurements in this work

shows that RON was able to detect, recover and route flows from path outages in

less than twenty seconds on average while today’s wide-area routing protocols such

as BGP take at least several minutes. Furthermore, RON was able to improve the

loss rate, latency or throughput perceived by data transfers. As indicated in (Mauve

et al., 2002), a game proxy system can utilize RON approach for fault detection and

rerouting between proxies for improving game performance.

An overlay architecture called OverQoS (Subramanian et al., 2004) aims to improve

the loss rate and network bandwidth in multimedia delivery and multiplayer on-

line games. This architecture uses an abstraction called Control Loss Virtual Link

(CLVL), which provides statistical loss guarantees to a traffic aggregate between two

overlay nodes at varying network conditions. CLVL detect packet losses and retrans-

Literature Review 47

mit them between overlay nodes, improve packet losses at application levels. Also,

it enables overlay nodes to control the bandwidth and loss allocations among the in-

dividual flows within a CLVL. The advantage of this architecture is demonstrated

in two applications. First, RealServer 28 can use OverQoS to improve the quality

of multimedia delivery by protecting more important frames at the expense of less

important ones. Second, a multiplayer game such as Counterstrike can use this ar-

chitecture to avoid frame drops and prevent end-hosts from getting disconnected in

the presence of high loss rates. The trade-off is the redundancy bandwidth overhead.

Multicast is important for group communication in DVE. Although IP multicast was

introduced in the late 1980s, it has not been widely deployed in the Internet due to

its scalability, network management, deployment and support for higher layer func-

tionality (Chu et al., 2000). Mbone was one of the earliest overlay networks on the

Internet that uses a tunnelling technique to do multicast between geographically dis-

joint areas where IP multicast was possible. MBone is an outgrowth of the first IETF

”audiocast” experiment in 1992 (Casner and Deering, 1992), in which live audio was

multicast from the IETF meeting site to destinations around the world. IP multicast

packets are encapsulated for transmission through tunnels so they appear as unicast

packets to intervening routers that do not support IP multicast. When these packets

arrive at the other end, encapsulating IP headers are removed and these packets are

forwarded based on the IP multicast headers.

Recently, several projects in (Chu et al., 2001) (Banerjee et al., 2002) and references

therein have developed a number overlay multicast architectures as an alternative to

IP multicast. As shown in Fig. 2.10, in overlay multicast (also known as application

layer multicast), multicast functionality is implemented at end systems while IP mul-

ticast functionality is implemented at IP routers. Each of the overlay nodes acts as

an intermediate IP router to efficiently distribute content along a pre-defined mesh or

tree. Overlay multicast is generally proposed for media streaming and content deliv-

ery. In multiplayer online games, overlay multicast can be used for distributing state

information and communication information between servers in a distributed game

server architecture or between proxies in a game proxy system.

28Helix Universal Server, www.real.com

Literature Review 48

Host Router Host Router

(a) IP Multicast (b) Application Layer Multicast

Figure 2.10 Example of IP multicast and application layer multicast.

The previous overlay architectures are built over the best-effort Internet without any

QoS support from the underlying infrastructure. The service overlay network (SON)

(Duan et al., 2003) framework provides end-to-end value-added Internet services by

purchasing bandwidth with certain QoS guarantees from individual network domains

via bilateral service level agreement to build a logical end-to-end service delivery in-

frastructure on top of the existing data transport network. As shown in Fig. 2.11,

a SON can request bandwidth guarantees between any two service gateways across

a network domain. Relying on the bilateral SLAs, a SON can deliver end-to-end

QoS service to its users via appropriate provisioning and service-specific resource

management. In this way, the SON architecture decouples application services from

network services, hence, reducing the complexity of network service management

and control. The network domains are simply concerned with provisioning of data

transport service according to SLAs. On the other hand, due to its service aware-

ness, a SON can deploy service specific provisioning, resource management and

QoS control mechanisms to optimize its operation for its service. SON architecture

is particularly applicable to the distribution of delay sensitive real-time content across

geographically dispersed network domains in the Internet.

Literature Review 49

Figure 2.11 Illustration of a service overlay network, adapted from (Duan et al., 2003).

2.4.2.2 Middle-aware Support Overlay

Various functions are required at each overlay node. These may include packet clas-

sifier, application level routing and filtering. The implementation of these functions

in the architectures discussed earlier such as OverQoS (Subramanian et al., 2004)

and RON(Andersen et al., 2001) are based on software at end systems. These im-

plementations are suitable for a small-scale overlay network. Other implementations

are possible.

The community has settled on the name of middleboxes (Carpenter and Brim, 2002)

to refer to a device that implement the above functionalities. Middlebox is loosely

defined as any intermediary box performing functions apart from normal, standard

functions of an IP router on the data path between a source host and destination

host. A range of middlebox functions include: address translation, packet classifier,

proxies, firewall, and application level routing. These boxes are typically located

at network edges and implemented in an ASIC or in software. While an ASIC re-

Literature Review 50

duces the functional flexibility, software implementation has limited throughput and

may not be suitable for large-scale applications that require high throughput. These

applications may include caching, filtering and forwarding game events in massive

multiplayer online games, and intelligent forwarding for large-scale peer-to-peer sys-

tems

Recent research projects advocate the use of network processor to build middleboxes

which is a mid-point between an ASIC (a pure hardware solution) and pure software

solution. The research efforts in (Bauer et al., 2002) (Rooney et al., 2003) develop a

programmable network middleware support called a “booster box” for building over-

lay networks to support large distributed applications, including scalable servers for

massively multiplayer games and large peer-to-peer systems. As indicated in Fig.

2.12a, a booster box is a general purpose computation platform with an interface

that allows application specific logic to configure the underlying packet forwarding

engine. It consists of two abstraction layers: a booster layer and a data-forwarding

layer. The booster layer consists of a set of boosters, each booster is a combination

of application-specific logic and generic booster library functions. The library con-

tains the API through which boosters can call the data layer operations. The booster

control point coordinates the boosters and manages any data that is common to all

of them. The data forwarding layer does simple forwarding as well as copying or

diverting selected traffic to the booster layer and is implemented by using network

processors.

As an example, a booster can contain game application specific codes for intelligent

forwarding of game events. When a packet containing game events arrive at the

booster box, the packet classifier at the data forwarding layer determines whether

this packet belongs to a particular booster. After the packet is identified, the game

specific codes located in the booster will trigger the operation on this packet at the

data forwarding layer, such as whether to copy or forward the packet to a suitable

destination. This operation is done by the API contained in the booster library. By

implementing this intelligent forwarding at various booster boxes located at network

edges, game state events are handled locally, hence, the scalability and response

time are improved. Therefore, in this case, booster box is said to ”boost” the game

Literature Review 51

performance compared to current approaches of using game servers alone.

Different booster boxes located in various locations in the Internet form a booster

overlay network (BON) (Bauer et al., 2002). This overlay network can provide rout-

ing functions for low-delay and high throughput traffic. A number of applications

can be hosted in BON including multiplayer online games. These applications share

the BON base topology but can have different endpoints in BON. BON is particu-

larly suitable for enhancing the scalability and reliability of massively multiplayer

online games. As shown in Fig. 2.12b, booster boxes are used for supporting a dis-

tributed game server architecture. Each booster serves a number of game clients in

its network vicinity and perform caching, filtering, forwarding, and redirecting game

events in a game specific way.

2.4.2.3 Switched Overlay Network

In section 2.4.1.1, the Switched Overlay Network (SWON) (Boustead et al., 2004)

has been introduced as an architecture that enable the use of shared server infrastruc-

ture. This section describes the network support for connecting servers and enabling

application level routing in SWON.

Fig. 2.13 shows an example where an application provider purchases differen types

of QoS guarantees in each network domains depending on the service availability,

cost and application requirements. There are two mechanisms for interconnection of

servers: Internet connectivity and overlay connectivity. Internet connectivity is the

direct Internet routed path between servers. Overlay connectivity is established by

the creation of tunnels between server sites. SWON allows applications to choose

between these two connections according to their requirements such as latency.

The use of QoS overlay paths over Internet paths is supported by the fact that many

default paths in the Internet have potential alternate paths with much lower latencies.

This is investigated in the work in (Savage et al., 1999) which shows a measurement-

based study comparing the performance seen using the “default” path taken in the

Internet with the potential performance available using some alternate paths. The re-

sults show that, for 30-80% of the cases, there is an alternate path with superior qual-

Literature Review 52

(a) Distributed game servers with booster boxes

Figure 2.12 Booster box and the deployment of booster boxes for distributed game servers,

adapted from (Rooney et al., 2003).

Literature Review 53

Figure 2.13 Overlay server and routing between these servers over multiple network domains

(Boustead et al., 2004).

ity. In particular, these alternate paths can provide lower round-trip latency and/or

lower loss rate. This is due to the fact that current wide-area routing protocols, such

as BGP, are mainly concerned with the exchange of connectivity information and do

not incorporate measures of round-trip time or loss rate into account. In addition,

economic considerations can also limit routing options as some parts of the Internet

refuse to carry traffic without a contractual agreement (Savage et al., 1999).

To enable application controlled Quality of Service, packet forwarding capabilities

are required at server sites. This allows an application provider to control packet for-

warding of their flows depending on the application requirements, e.g., by using an

overlay path or on Internet path. In addition to controlling the QoS routing of flows,

other packet operations can be considered at server sites including multicasting, re-

quest routing and fast session redirection.

In order to provide switching over a shared server infrastructure, a hardware based

implementation called tunnel switch is proposed. Compared to software based imple-

Literature Review 54

Figure 2.14 Tunnel Switch design (Boustead et al., 2004).

mentation, this hardware based implementation can provide lower packet forwarding

delay and better scalability. By using the tunnel switch, SWON provides a secure

virtual switch for each application provider, allows them to have application level

control of hardware packet forwarding, duplication, filtering and so forth. As shown

in Fig. 2.14, the switch has two ports, one connected to a server farm and the other

one connected to the network provider. Each application provider owns a set of tun-

nels and one or more virtual servers within the server farm. Examples of operations

of the tunnel switch for each application provider are shown in Fig. 2.14. These

include: 1 - Switching between different tunnels; 2 - Switching between a tunnel

and a virtual server; 3 - Switching between a tunnel and an Internet routed path; 4 -

Switching between a virtual server and an Internet routed path.

SWON uses two levels of forwarding granularity by using two types of labels: for-

warding labels and application labels. A forwarding label is set when a packet comes

to the edge of SWON based on the destination address. The application provider may

purchase a set of forwarding labels at each tunnel switch and use these to create an

overlay. The application label is based on application information in layer 3 to layer

7 (e.g., the characteristic of a flow: real-time or non-realtime). Switching based on

application labels increases the granularity of forwarding, allowing each application

provider to have different QoS treatments for their own flows. For example, real-time

Literature Review 55

flows are switched to low latency uncongested paths while best effort flows may go

to a longer path with possible presence of congestion. SWON allows each applica-

tion provider to have their own label space and provides an API for each application

provider to change the label table. As a result, each application has their own cus-

tomized routing and can dynamically change the forwarding of their flows based on

application requirements.

2.5 Conclusions

This chapter reviews the evolution of web content distribution, future development of

content creation and delivery, and the infrastructure support to enable this develop-

ment. We first describe the evolution of web content distribution that includes proxy

caching, web clusters, content distribution networks and advanced content services.

We then discuss the future development of content creation and delivery which re-

quires real-time creation and delivery of content from a dynamic set of dispersed

sources. This includes state information and communication information processing

in distributed virtual environments. Finally, we describe server and network infras-

tructure for supporting this future development. In particular, we discuss the use of

shared server infrastructures and describe approaches in provisioning and resource

management of shared servers for supporting content creation and distribution. In

addition, several overlay networking approaches are introduced to provide network

support to connect servers and deliver content.

2.5.1 Issues Considered in Thesis

Deficiencies in existing literature and the issues considered in this thesis to address

these deficiencies are presented as follows.

• Evaluate different delivery architectures for the provision of immersive voice

communications to multiplayer online games based on existing game server

architectures.

• A game simulation model for MMOG which consists of player distribution

Literature Review 56

in the Internet and different avatar distributions in the virtual world does not

appear to be available in the literature. This thesis will provide this model.

• The provision of an immersive voice communication service to MMOG has

not been adequately examined in the literature. A key issue in provisioning

is how to assign players to servers. This thesis will devise server assignment

algorithms for each of the proposed delivery architectures.

• There are several server assignment algorithms for distributed game server ar-

chitectures. However, these algorithms are designed for load balancing and

load sharing purposes. This thesis aims to design new server assignment algo-

rithms with the emphasis on minimizing latency of group communication in

the game.

• A quantitative investigation of different delivery architectures for the provision

of an immersive voice communication service has not been carried out in the

literature. This thesis will evaluate the performance of these delivery architec-

tures.

• Several research projects have examined packet-based processing resource schedul-

ing algorithms for content transformation applications such as multimedia transcod-

ing and encryption. With the inclusion of the immersive audio mixing applica-

tion, it is important to investigate the sharing of this application and other con-

tent creation applications. This thesis will design a new processing resource

scheduling algorithm and examine the performance of this algorithm in pro-

viding resource sharing for various applications that require real-time content

creation.

Chapter 3

An Immersive Audio Communication
Service for Multi-Player Online
Games

3.1 Introduction

As discussed in Chapter 2, there have been various research efforts in providing im-

mersive voice communications to distributed virtual environments. However, a com-

plete classification of delivery architectures as well as quantitative performance eval-

uation of these architectures do not appear to be available in the literature. Hence, this

chapter introduces different delivery architectures for the provision of an immersive

voice communication service to multiplayer online games. We outline main func-

tions, advantages, and limitations of each architecture. This chapter also presents a

game simulation model for evaluating the performance of these architectures.

This chapter is organized as follows. Section 3.2 introduces the concept of an im-

mersive voice communication service for multiplayer online games. In Section 3.3,

we introduce several delivery architectures for this service and describe limitations

and advantages of each architecture. In Section 3.4, a simulation model framework

is proposed to capture game delivery scenarios including player distributions in the

physical network and avatar distributions in the virtual world. This section also de-

scribes key parameters and assumptions used for the performance study of delivery

57

An Immersive Audio Communication Service for Multi-Player Online Games 58

architectures. Finally, conclusions are drawn in Section 3.5.

3.2 Concept of Immersive Voice Communication Ser-
vice

We believe that certain classes of multiplayer online games will be far more attrac-

tive if immersive voice communications can be provided to game players. Using this

service, an avatar can hear voices of the avatars it talks to as well as the background

sound of other avatars in its area of interest or hearing range. Creating a personalised

mix of voices of other avatars produces the audio scene, spatially placed and attenu-

ated according to the distance to the listener. This means that a player can hear the

sound coming from the direction of the speaker. The volume of the sound is adjusted

based on the virtual world distance between the speaker and the listener.

Although accuracy is desired, there is variation among the avatars about the impor-

tance of different audio signals. Let us define the interactive zone as the immediate

vicinity of the avatar where active communicative interaction may take place, while

the background zone as the region outside the interactive zone stretched to the limits

of hearing range. In Fig. 3.1, the interactive zone is denoted as a small circle around

each avatar and the background zone is denoted as a larger circle.

In reality, a player can hear a loud noise from large distance or the sound propagation

can be blocked by virtual environment subjects such as walls and buildings. Hence,

the interactive and background zone are not constant but depend on the magnitude

of the sound sources and the structure of the virtual environment. This presents

a number of challenges in developing an accurate simulation model of the virtual

world. Therefore, we assume the constant sound excitation volume for the ease of

modelling and we make this assumption as an initial attempt of a difficult piece of

work.

Naturally, any audio information outside the hearing range can safely be ignored.

But the important question is whether a realistic creation of the background zone is

needed. In some cases, the user may only be interested in the interactive zone. The

An Immersive Audio Communication Service for Multi-Player Online Games 59

(a) Immersive voice in a crowd scenario

1
a c

b

RZ

2
g i

h

3
d

e

f

RI Virtual Cafe

(b) Zone definition

Figure 3.1 Immersive voice communication scenario and zone definition

An Immersive Audio Communication Service for Multi-Player Online Games 60

background audio scene, therefore, appears as ’noise’ and can either be blocked or

simulated by a background chatter of suitable volume. However, there are situations

where the multi-person voice communication is either the primary purpose of gath-

ering in the virtual space or at least a very important means for achieving the actual

goal. This will be particulary important for the genres of social games and inter-

active entertainment. Natural multi-person communication is often characterised by

the presence of multiple simultaneous conversations among the people gathered in

an environment such as a cocktail party, cafe, foyer of a conference, or market place.

The ability to pick up interesting conversations in one’s vicinity and join these groups

or simply be aware of the peripheral discussions is critical to our sense of satisfac-

tion of being in the presence of a crowd. The current style of audio teleconferencing,

when a strict protocol of ’one at a time’ for conversation has to be followed, may

be too restrictive for crowded virtual spaces. We, therefore, believe that at least in

certain situations, realistic presentation of the background audio zone is desirable,

if not critical and this is a key differentiator of the immersive audio communication

service compared to the existing solutions. Nevertheless, even in these situations, it

is reasonable to assume that the accuracy requirements (in terms of delay and spatial

placement) are more stringent for the interactive zone compared to the background

zone.

Scalable provision of the immersive voice communication service for large virtual

environments and over a large-scale infrastructure is extremely demanding on net-

work and processing resources. The audio mix must be suitably composed from the

relevant sources (avatars in one’s hearing range) and personalised based on the per-

spective of each individual. A separate mixing computation is therefore needed for

each participant. All this should be done in real-time and delivered with tolerable

delay and reasonable quality. The application is also highly dynamic as people move

(in some cases very frequently) in the virtual environment. This implies changes in

the sources of audio signal that needs to be mixed for any given avatar.

We anticipate that the early commercial deployment of the immersive voice com-

munication service will be for enhancing the networked multi-player games. In the

future, the underlying technology can be used for creation of many applications in-

An Immersive Audio Communication Service for Multi-Player Online Games 61

cluding collaborative working environments, teleconferencing services, and the like.

A useful perspective is to view this as the next generation of voice communication,

enabling multi-person audio communication capability (as opposed to telephony that

is primarily person-to-person).

3.3 Basic Delivery Architectures

This section introduces basic architectures for delivering the immersive voice com-

munication service to multiplayer online games. While these architectures can be

applied to multiplayer online games in general, we focus on evaluating these ar-

chitectures for massively multiplayer online games, which have a large geographic

distribution of participants and are more challenging in terms of design require-

ments. The following architectures are considered for provisioning the immersive

voice communication service: peer-to-peer, central server, distributed locale servers,

and distributed proxies.

3.3.1 Peer-to-peer

In the peer-to-peer delivery architecture, all audio scenes are created on participants’

devices. Each participant receives audio signal flows associated with all other avatars

in his/her interactive and background zones. The relative position and state of the

virtual environment is obtained from the state server(s). Using this information, the

client device performs the appropriate spatial audio placement operation. The peer-

to-peer unicast delivery architecture is shown in Fig. 3.2.

This solution will, in many cases, provide a best-case delay for the immersive audio

communication environment (assuming shortest path and low congestion routes). It

also has the advantage of using free or cheap computation power within the client

devices and having no single point of failure. However, this architecture faces seri-

ous bandwidth inefficiency and scalability problems. If there are a large number of

avatars in the interactive zone and background zone of an audio scene, a large number

of peer-to-peer audio flows are required, resulting in high core and access network

bandwidth usage, congestion, and scalability problems, as shown in Fig. 3.2. With

An Immersive Audio Communication Service for Multi-Player Online Games 62

limited access bandwidth such as modem, or ADSL, assuming reasonable quality

audio data rate of 16 kb/s, the peer-to-peer architecture can cause serious scalability

problems in both upstream and downstream directions.

If multicasting is used at edge nodes, a game client only needs to send one audio flow,

but still needs to receive all audio streams from other clients in her/his hearing range.

The dynamic movement of avatars in the virtual world can cause frequent changes in

multicast groups, which may make the control complexity of multicast outweigh the

bandwidth cost saving.

An additional disadvantage of the peer-to-peer architecture is that security and anonymity

is reduced by the fact that this method of delivery may reveal participants’ IP ad-

dresses to others.

In addition, there are other variants of peer-to-peer where some peers are elected

to act as partial servers for others. However, these variants of peer-to-peer are not

considered in this thesis since the peers that are elected to work as partial servers for

others will require higher access bandwidth. Also, when these peers leave the game,

dynamic redirection of audio flows for all other peers will be required for delivering

the partial audio mix.

3.3.2 Central Server

Using a central server to deliver the immersive audio scene is shown in Fig. 3.3. In

order to create the audio scene, voice is streamed from each of the client devices to

the central server. All voice mixing is done at the central server. The central server

uses these streams in conjunction with avatar position information to create an im-

mersive audio scene from the perspective of every avatar. An immersive audio scene

may consist of multiple streams and these streams are sent back to each participant.

In this scheme, the core network bandwidth usage scales linearly with respect to the

number of participants and there are no scalability issues with respect to the access

bandwidth. The implementation of security, privacy, billing and other policies is also

possible.

The use of a central server for the provision of an immersive audio service for a

An Immersive Audio Communication Service for Multi-Player Online Games 63

a

b

d

e

f

i h

g

c

1
a c

b

2
g i

h

3
d

e

f

Virtual World

Physical Network

Figure 3.2 Peer-to-peer architecture for immersive audio scene creation

MMOG will introduce higher delays for voice streams since they are routed via one

central server. However, this architecture has low core network bandwidth usage.

The problem of access bandwidth in peer-to-peer is eliminated since each user only

need to send one stream to the central server and receive a small number of streams

from the server. In addition, as all audio flows are processed at a centralized server,

summarization of audio flows from a group of avatars to a single source can be reused

as demonstrated in (Boustead et al., 2005).

It is interesting to note that the use of a central server for state information can be

tolerable since games can be written to be less tightly delay constrained than first

person shooter games such as Quake and Half Life. In addition, state information

delay and jitter can be compensated for, in many cases, by using techniques such as

“dead reckoning” to ensure smooth graphics (Singhal and Zyda, 1999). In networked

games, ”dead reckoning” is a technique that estimates a game object position based

on previous positional and speed information. This technique is implemented by

broadcasting the position and speed of each moving object. When the movement

An Immersive Audio Communication Service for Multi-Player Online Games 64

a

b

d

e

f

i h

g

c

1
a c

b

2
g i

h

3
d

e

f

Virtual World

Physical Network

US

UK

Italy

Figure 3.3 Central server architectures for immersive audio scene creation

packet is received, the game client interpolates the object’s current position. This can

be referred to as client-side prediction. There is also a server-side rollback technique

(Bernier, 2001). In this technique, due to the latency between game players and the

game server, when receiving a game event from a player, the server moves the state

of the game virtual world back to the time when the game action was invoked at

the player. After processing the game event, the server moves the state back to its

current condition. In short, game state interactivity such as moving, shooting, scene

rendering can make use of latency compensation technique. However, no such tech-

niques exist to compensate for delays in voice streams that are used for interactive

conversation.

3.3.3 Distributed Locale Servers

Fig. 3.4 shows the basic operation of the distributed locale server architecture. These

servers form a server overlay network. The virtual world is partitioned into locales,

and the audio mixing operations in each locale is performed by one server. It is pos-

An Immersive Audio Communication Service for Multi-Player Online Games 65

a

b

d

e

f

i h

g

c

1
a c

b

2
g i

h

3
d

e

f

Virtual World

Physical Network

US

UK

Italy

Figure 3.4 Distributed locale server architecture for immersive audio scene creation

sible to assign one server to more than one locale. Avatars in each locale only need

to send their audio stream to the server assigned to that locale. If avatars in two ad-

jacent locales, which are assigned to two different servers, are in the hearing range

of each other, the two servers need to exchange the required audio streams (shown

as broken lines in Fig. 3.4). When servers are located in different geographical

regions, distributed locale servers may provide better delay performance compared

with the central server, especially when people from a particular geographical loca-

tion aggregate as a group in the virtual world. In this situation, an optimal server

assignment algorithm is crucial to optimize the delay performance of this architec-

ture. Since computations are distributed, this architecture is more scalable than the

central server and has no single point of failure. Finally, similar to the central server

architecture, implementation of security, privacy, and billing is also possible.

An Immersive Audio Communication Service for Multi-Player Online Games 66

3.3.4 Distributed Proxies

Fig. 3.5 shows the basic operation of a distributed proxy architecture, in which, game

players in each geographic region are connected to a close proxy. These proxies form

an overlay network. These proxies also communicate with the game state server(s)

to obtain the state of the virtual environment, such as avatar positions. Based on

this information, these proxies manage the audio mixing operation on behalf of their

clients. In particular, each proxy is responsible for receiving audio streams and mix-

ing these streams to create an audio scene for each of its clients. They also forward

audio streams to other interested proxies that need these streams for their clients’

audio scenes. Similar to the peer-to-peer architecture, the proxies can send audio

streams in either unicast or multicast.

The distributed proxy architecture solves the access bandwidth problem of the peer-

to-peer architecture since it has a similar access bandwidth requirement to the cen-

tral server architecture. In addition, security and privacy of players may be improved

compared with the peer-to-peer architecture. For example, a proxy can hide a player’s

identity such as IP address. Once an IP address is known, it is possible for a mali-

cious user to concentrate on the player’s computer for the purpose of cracking it.

In addition, IP address information can be used to make the computer a target of a

Denial of Service attack.

In terms of delay, if a proxy is located at every POP, the distributed proxy architecture

has a similar delay performance to the peer-to-peer architecture. This scenario is

idealized and we expect that in reality, the number of proxies will be smaller than

the number of POPs. Since computations are distributed, the proxy system is more

scalable than the central server and has no single point of failure. If a proxy fails,

audio streams to/from game players associated with this proxy can be rerouted to the

next closest proxy. However, this architecture needs a very dynamic connectivity and

interaction management between proxies.

An Immersive Audio Communication Service for Multi-Player Online Games 67

a

b

d

e

f

i h

g

1
a c

b

2
g i

h

3
d

e

f

Virtual World

US

UK

Italy

Physical Network

c

Figure 3.5 Distributed proxy server architecture for immersive audio scene creation

3.3.5 Discussion on peer-to-peer and server architectures

The peer-to-peer architecture and the server architectures have some advantages and

disadvantages in terms of network bandwidth and delays. While the evaluation of

network delay and core network bandwidth of the peer-to-peer architecture and the

server architectures will be provided in the following chapters of the thesis, this sec-

tion will discuss some interaction between server/peer-to-peer architectures in terms

of current users’s access bandwidth and audio codecs.

In a server architecture, a client computer only needs to send/receive up to a small

number of mono voice streams. Typically, when a game client has only two speakers

connected to the computer or headphone, two streams are adequate. In addition, this

number can be set up at the server based on the client available access bandwidth.

The disadvantage of server architectures is the additional delays as all voice streams

need to be routed through servers. Depending on the network size and network de-

lays, if the overall delay of a server architecture is below the acceptable end-to-end

An Immersive Audio Communication Service for Multi-Player Online Games 68

delay tolerance (e.g., 150ms or 200ms), a server architecture would be acceptable.

On the other hand, the peer-to-peer architecture has low delay as voice stream are

sent directly among participants. One problem with the peer-to-peer architecture is

the scalability of the access bandwidth. In the peer-to-peer architecture, a participant

needs to send/receive all voice streams to/from players in the hearing range. Assum-

ing the ADPCM 32kbps codec (currently used in DICE) is used, each audio stream

will require an access bandwidth of 55.3 kbps (noted in Table 2.2) in both upload and

download streams. In addition, game state information also adds some traffic to the

access link bandwidth. If a current ADSL user has a upload bandwidth of 256kbps,

this access bandwidth will be a limitation when the number of players in the hearing

range is larger than 4.

Furthermore, users often experience lower access bandwidth than the scheme of-

fered from ISPs. For example, a measurement study from TerraCall 1 shows that

with 56kbps, 64kbps, and 256kbps subscribed schemes, users normally get 32kbps,

54kbps, and 216kbps continuous data bandwidth, respectively. This will put more

pressure on the access bandwidth problem of the peer-to-peer architecture.

3.4 Framework for Performance Evaluation

3.4.1 Game Player Grouping Behaviors

This section classifies differences in group formation behaviours in games in order to

understand and develop the best strategies for delivery of immersive audio streams.

This classification is only applicable when each participant controls only one avatar

(First Person Shooters or Role Playing Games). Situations where players control

many avatars (strategy games) are not considered since immersion may not be pos-

sible. As a player controls many avatars at the same time, it is difficult to identify

the actual position of the player in the virtual environment in order to render the

immersive voice communication

1ISP’s, bandwidth and compression selection for your softphone, White paper,

http://www.terracall.com/

An Immersive Audio Communication Service for Multi-Player Online Games 69

Group formation behaviour is heavily game dependent as a result of different laws,

rules and even game culture. Some virtual worlds encourage different types of player

grouping and audio interaction. As an example, in a social virtual environment, old

friends may gather in a small virtual pub for a chat. In a war game, thousands of

players may gather from all around the world in a massive army. Note that, even

within a given game, avatars may follow different grouping behaviours.

Audio flows need to be delivered to users in the real world based on the location of

their avatars in the virtual world. Therefore, the positions in both the real and the vir-

tual world are of concern. The avatars positions in the virtual world will determine

the subsets of participants who are in the hearing range of each other. The partici-

pants’s positions in the real world will affect the delays, resource cost, and routing of

audio streams.

Therefore, there are two attributes that can influence the audio delivery delay and

architecture.

• The number of avatars in a group: avatar density will affect resource require-

ments both in terms of network bandwidth and computation.

• Geographical spread of avatars within a group: players may aggregate in “cul-

tural” groups. Since a culture (such as a language or nationality) is often linked

with one or few geographical locations, some groups may have one or few pre-

ferred geographical locations of their participants.

For different types of games, we envisage that there are a range of avatar group-

ing patterns, referred to as game grouping behaviors. The following terminology is

proposed to capture this range of game grouping behaviors:

• Loners represent isolated avatars which are relatively far away from each other

and have low chance of interaction.

• A clan represents a medium size group, such as a hunting group, which is very

common in online game. A clan typically consists of up to 20 avatars.

An Immersive Audio Communication Service for Multi-Player Online Games 70

• A crowd represents a very large group, such as a stadium or a market place. A

crowd typically consists of 50 avatars or more.

Fig. 3.6 summarizes the different player grouping behaviors. The horizontal axis

represents the number of avatars in each group. The vertical axis represents the

geographical spread of participants in a group. If participants are all coming from

a small number of locations, the group is geographically close. On the other hand,

if they come from all around the world, the group is geographically spread. This

parameter does not really affect loners, since their audio interaction always stays

limited. However it can have a very significant influence on clans and crowds in

terms of audio delivery delay and required resources.

An example of a geographically spread crowd is a virtual marketplace, while a ge-

ographically close crowd could be a virtual stadium where people from the same

country support their national team. A clan of friends could be geographically close

if they physically know each other and live in the same region or geographically

spread if they became friends on-line.

Even when there is a cultural basis for a group, the geographical spread of players

can be varied. As an example, members of a German speaking group are likely to

be located in Germany or in a country nearby. However, in a French speaking group,

members might be located in both France and Quebec.

We do not include in this study any dynamics. More precise classification could be

done by introducing group movements in the virtual world and membership alter-

ations (joining and leaving groups). Including dynamics in this study will require an

additionally substantial amount of work. In addition to avatar aggregation behaviors

that are introduced in this section, avatar mobility patterns for different games need

to be investigated. In order to adequately understand the effect of avatar movements,

extensive simulations and modelling are required, especially with the distributed lo-

cale server architecture. In particular, in this architecture, avatar movements may

cause the current server assignment to drift from optimal. Hence, to optimize the

delay performance of this architecture, it would be necessary to reassign servers to

locales after a certain amount of time. Avatar movements have less impact on server

An Immersive Audio Communication Service for Multi-Player Online Games 71

Spread Crowd

Number of avatars per group

G
e
o

g
ra

p
h

ic
a
l

sp
re

a
d

 o
f

p
la

y
e
rs

 (
re

a
l

w
o

rl
d

)

L
o

n
e
rs

Geographically

Spread Clan

Geographically

Geographically Geographically

Close Clan Close Crowd

Figure 3.6 Player behavior classification

assignments in the central server and the distributed proxy architecture. Some hints

of the effect of avatar mobility on the distributed locale server architecture and the

distributed proxy architecture are discussed in Sections 5.2.4 and 7.2.2.

3.4.2 Models of Physical Networks and Virtual World

3.4.2.1 Physical Networks

We model the network and server topology as a graph Gp(Vp, Ep); where Vp denotes

a set of vertices, Ep denotes a set of edges; a set S ⊆ Vp denotes a set of potential

processing servers; R ⊆ Vp is a set of Internet Service Provider Points of Presence

(ISP POPs). In addition, R and S are disjoint sets and all nodes can support routing

functions. Each ISP POP has ni game clients connected to it. Each link has two met-

rics: a link cost for policy-based shortest path routing, and a link delay representing

the propagation delay between the two nodes. The number of game players located

at ISP POPs are randomly generated based on a uniform distribution. We do not con-

sider the delay from ISP POPs to game players since these delays do not depend on

the location of processing servers and can not be controlled by us. Also, this delay

An Immersive Audio Communication Service for Multi-Player Online Games 72

is fixed regardless of the choice of delivery architectures and can be considered as

a small offset to the delay result. A number of nearby ISP POPs are denoted as a

region in the physical network.

Both unicast and multicast routing are implemented. The unicast routing is imple-

mented using “shortest path” routing. This routing scheme is to model the operation

of OSPF (Moy, 1998) which is one of the current routing protocols in the Internet.

Network multicast routing is also implemented by using the shortest path algorithm.

In this case, each node in the graph is a multicast node. For each avatar, a multicast

group is formed comprising of people that need the audio stream from that avatar for

their audio scenes.

3.4.2.2 Virtual World

The virtual world is modelled as a square area of certain size, in which, avatars are

distributed according to the following distributions.

• Uniform distribution: avatar (x,y) coordinates are set according to uniform

random distribution. It results in a uniform spread of avatars in the virtual

world.

• Clustered distribution: Cluster centers are randomly placed in the virtual world.

Avatars are positioned around these centers according to normal distribution

with the mean of 0.

The above distribution is demonstrated in Fig. 3.7. In Fig. 3.7a, we model the virtual

worlds which mainly have loners as a uniform avatar distribution with low density.

Clans are modelled as small clusters, which consist of up to about 20 avatars. Crowds

are larger clusters, which consist of about 100 avatars or more. Fig. 3.7b and Fig.

3.7c shows a virtual world which consists of 250 clans and 25 crowds, respectively.

As discussed in the previous section, there may be a tendency for game players

from close geographic regions to aggregate together due to language, culture, and

lifestyle preferences. Two parameters loosely referred to as “correlation” are intro-

duced to specify how people aggregate in each clan/crowd based on their real world

An Immersive Audio Communication Service for Multi-Player Online Games 73

(a) Loners

(b) Clans

(c) Crowds

Figure 3.7 Avatar distribution in different games

An Immersive Audio Communication Service for Multi-Player Online Games 74

geographic locations.

• The low spread correlation states the probability that people in each crowd/clan

reside in a particular geographic region. This region is modelled as an ISP POP

or a number of close POPs. This type of correlation refers to geographically

close cultural groups.

• The high spread correlation states the probability that people in each clan/crowd

are from a small number of separate regions. These regions are modelled as

two random ISP POPs. This type of correlation refers to geographically spread

cultural groups.

Please note that even in high spread correlation, the participants come from a small

number of POPs, which are geographically spread. It is different from the uncorre-

lated case, where participants can be from any POP. In the performance study in the

following chapters, low spread correlation is used as the default correlation parame-

ter. High spread correlation is stated explicitly when being used.

To model these correlations, we use a correlation parameter x, 0 ≤ x ≤ 1. Each

time an avatar is populated in a clan/crowd, a random number r between 0 and 1 is

generated. If r > x, the avatar is from a randomly chosen POP. If r ≤ x, in the

case of low spread correlation, the avatar is from the POP that are correlated to that

clan/crowd. In the case of high spread correlation, the game player associated with

that avatar is randomly assigned to either of the two POPs that are correlated with that

clan/crowd. Therefore, the higher the correlation parameter is, the more people in a

particular real-world geographical region group together in the same virtual location

in the game.

Each avatar has an interactive zone, denoted as a circle radius RI , and a background

zone, denoted by a circle radius RZ (RZ > RI). In our simulations in the following

chapters, the interactive zone radius RI and the background zone radius RZ are 5m

and 20m, respectively. The positions of avatars determine a subset of participants

who are in the hearing range of each other. This information is used to optimize the

performance of each delivery architecture.

An Immersive Audio Communication Service for Multi-Player Online Games 75

3.4.3 Definition of Parameters and Assumption

In the evaluation of delivery architectures in the next four chapters, the following

assumptions are used.

For latency evaluation, we only consider propagation delays in network links, as-

suming that queueing delays and transmission delays at routers are small. These

delay components are indicated in Fig. 3.8. Audio mixing adds extra delay and is

considered in Chapter 9. In order to measure propagation delays, approaches such

as IDMap services (Francis et al., 2001) can be used to estimate distance in term of

latency between nodes in the Internet. This results in an overlay network topology

that consists of potential processing servers and participating routers.

For network bandwidth evaluation, we also assume that there is no congestion in the

core network. Also, in server-based architectures (i.e, all other architectures except

peer-to-peer), the approach in the DICE architecture (Boustead et al., 2005) is used.

In DICE, a server receives one voice stream from each participant and sends up to

a small number of mono voice streams to each participant (Boustead et al., 2005).

In our simulation, we assume that this number is equal to 2. “2” is the minimum

number of streams required for spatial voice rendering at a game client. Typically,

when a player uses a headset or a two speaker sound system, two voice streams are

adequate for rendering left-and-right spatial effect. Results for other numbers can be

determined as the network bandwidth usage is proportional to the number of voice

streams.

Two key metrics are used for the evaluation.

• Interactive delay: The interactive delay of each avatar is defined as the aver-

age communication delay from that avatar to all avatars in its interactive zone.

As an example shown in Fig. 3.9, let d1, d2 and d3 denote propagation delays

of network links, the interactive delay of avatar a is calculated as the average

delay from avatar a to avatar g and c. In each architecture, the interactive delay

metric is defined as the average interactive delay of all avatars.

• Bandwidth cost: The bandwidth cost metric is calculated based on the to-

An Immersive Audio Communication Service for Multi-Player Online Games 76

Queueing delay

Propagation delay

Server

Router Router RouterPropagation delay

Processing delay

Queueing delay

CiscoSystems
Cisco 7500 SERIES

CiscoSystems
Cisco 7500 SERIES

CiscoSystems
Cisco 7500 SERIES

Figure 3.8 Delay components.

c 1

c 2

c 3

R z

1 326c + 3c+ 3c

a

i

b
c

d

e

f

g

h

1

3

2

d

d

d

1 32 + d)/2(2d

Peer−to−peer:

+ d

Avatar a’s interactive delay:

: Interactive radiusR

R : Background radiusz

i R i

g

c
a

b

e
f

d i

h

ISP POP

ISP POP

ISP POP

Router

Network bandwidth cost

CiscoSystems
Cisco 7500SERIES

CiscoSystems
Cisco 7500SERIES

CiscoSystems
Cisco 7500SERIES

CiscoSystems
Cisco 7500SERIES

Figure 3.9 Interactive delay and bandwidth cost metrics associated with avatar “a”.

An Immersive Audio Communication Service for Multi-Player Online Games 77

tal network link costs required by all audio streams in each architecture. As

an example, Fig. 3.9 shows the bandwidth cost of the peer-to-peer architec-

ture. In the figure, let c1, c2 and c3 denote the bandwidth costs of links, the

network bandwidth requirements of different architectures for delivering the

audio stream from avatar a to all other avatars is shown.

3.5 Conclusions

This chapter first introduces the concept of an immersive voice communication ser-

vice for multiplayer online games. We describe several delivery architectures for this

service. A simulation environment is proposed to model the service delivery. This

model includes avatar distribution in the virtual world and player distribution in the

Internet. Key performance evaluation parameters are also defined. In the next four

chapters, we will provide an investigation of delivery architectures using the game

model framework introduced in this chapter.

Chapter 4

Central Server

4.1 Introduction

The central server architecture is the easiest architecture to implement. As most of

current commercial game servers use a central server, it is expected that early de-

velopment of immersive voice communication service would use this architecture.

When using this architecture, it is essential to choose a suitable server location to

minimize latency since all communications have to be routed via the server. The re-

search in (Chambers et al., 2003) presents a redirection service for multiplayer online

games based on the geographic location of players relative to servers. Based on this

service, game clients are connected to a nearby server, improving the delay perfor-

mance and network bandwidth efficiency. Similarly, latency is also the key concern

for the immersive voice communication service when using the central server archi-

tecture.

This chapter is organized as follows. Section 4.2 provides optimization procedures

for choosing a central server from a set of potential processing servers located in

different parts of the Internet. In this section, we also consider the geographic dis-

tribution of players in current multiplayer online games during a day due to time

zone differences and propose a dynamic relocation of a central server. Section 4.3

provides a simulation study to evaluate the proposed solutions. Finally, Section 4.4

concludes.

78

Central Server 79

4.2 Service Delivery Model

In this section, we propose two optimization procedures for the central server archi-

tecture. We use peer-to-peer as a reference to compare with our proposed delivery

architectures since it provides the lowest delay.

4.2.1 Optimization Procedures

In this service model, a game service provider hires a virtual central server from a

server provider (e.g., using SWON framework) to provide the immersive voice com-

munication service for the game. Depending on the game requirements such as game

player locations, the server provider will allocate an optimal server for the game.

Given game player locations in the physical network and positions of avatars in the

virtual world, the problem is to find an optimal central server for immersive audio

scene creation. Since interactive voice communication is subject to delay between

game player and the server, we propose two simple optimization objectives for plac-

ing a central server, as will be defined later.

• Minimize average latency.

• Minimize interactive delay.

The model of the physical network including ISP POPs, server sites and routers has

been introduced in Section 3.4.2. Using this model, we run Shortest Path First (SPF)

from each potential server s to all ISP POPs as a pre-processing step,. The distance

from a server to an ISP POP node i denoted as d(s, vi), and the distance from ISP

POP node i to j via the server, denoted as d(vi, s) + d(s, vj), are pre-determined.

4.2.1.1 Minimize Average Latency

Average-latency is defined as the average delay from the central server to all game

players. For each potential server s, we compute the latency from the server to each

ISP POP, weighted by the number of game players at that ISP POP. We iterate through

the set of potential servers and choose the server with the lowest average latency. For

Central Server 80

each server, the average latency is defined as follows.

∑N
i=1 d(s, vi)ni∑N

i=1 ni

(4.1)

Where:

N : Number of ISP POPs.

ni: Number of game players connected to POP i.

This procedure has the same complexity as finding shortest path in the graph. Since

computing average-latency is based on the distance from the server to an ISP POP

and the number players at that node’s proximity, the central server will be placed

near the centre of mass of game player population in the physical network regardless

of positions of avatars in the virtual world. However, a better model is to remove iso-

lated avatars from the delay calculation. This requires avatar positions in the virtual

world and will be described in the next Section.

4.2.1.2 Minimize Interactive Delay

This solution requires both game player locations in the physical network as well as

avatar positions in the virtual world. The optimization objective is to minimize the

interactive delay metric. The interactive delay of player j at ISP POP i, denoted as

Iij , is defined as follows.

Iij =

∑δij

k=1(d(vi, s) + d(s, vk))

δij

(4.2)

where

δij and vk: Number of players in the interactive zone of player j and the set of ISP

POPs that these player are connected to.

The interactive delay metric for a given server is the average interactive delay of

players, defined as follows.

I =

∑N
i=1

∑ni
j=1 Iij∑N

i=1

∑ni
j=1

(4.3)

We compute the interactive delay metric for each server, and choose the server that

provides the lowest interactive delay metric.

Central Server 81

S 1

A

2

Virtual World Physical World

C

S D

1

2

3

4

8

76

5

7

5
6

8

1

2

3

4

B

Figure 4.1 Physical/virtual world model.

The example in Fig. 4.1 shows the difference between these algorithms. In this exam-

ple, the distribution of avatars is not uniform, where some are in a sparse area, others

are in a dense area with lots of interactive communication. The network topology

is simple and idealized in order to show the differences of these algorithms. Since

minimizing average latency is based only on locations of game clients in the physical

world, server S1 is chosen. However, as only avatars 5, 6, 7, and 8, are in interactive

communication, minimizing interactive delay metric chooses server S2, instead.

4.2.2 Relocation of a Central Server

As will be shown later, it may be advantageous to change the location of a central-

ized server due to changes in player population distribution in the physical world

or perhaps even changes in distribution of avatars in the virtual world. Time zone

differences between countries can result in changes in the distribution of game par-

ticipants in different parts of the network. A study in ref. (Feng and Feng, 2003)

shows that the distribution of game players in different geographic regions, such as

Europe, America, and Asia, has distinct peak patterns in six different 4-hour blocks

during a day. In this situation, relocating the central server would achieve better delay

Central Server 82

performance.

Naturally, if relocation of a centralized server involves hardware deployment in a

different location, the time scale of relocation will be long and the cost will be sig-

nificant. We assume that the game service provider can have access to a number of

virtual servers located over the Internet. These virtual servers would represent some

kind of potential server sites, where computation resources can be shifted to. Our pri-

mary purpose in relocating a server would be improving delay performance. Since

relocating a centralized server involves some cost, we only move the server when the

improvement in delay performance outweighs the cost of moving the server.

Relocating a central server may take some time, in order of seconds or minutes. The

transition time includes rerouting audio flows to a new server as well as moving audio

scene creation states to this server. Rerouting can be approximately equal to rerouting

in overlay networks, however, the challenge is to move the state from the old server

to the new server. We expect to do it seamlessly by moving the states of a small part

of the virtual world to the new server step by step. During this handover period, the

centralized game state server may inform game clients to direct their audio flows to

the new server. These two audio processing servers exchange related information

since each server would certainly have clients that communicate with the other.

The following example shows the relocation of mixing operation from one server to

another during a transient period. In Fig. 4.2, suppose we have four players and the

input voice streams associated with these players are denoted as α1, α2, α3, and α4.

The mixing operation on these input streams is presented as follows.




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







α1

α2

α3

α4




=




A11α1 + A12α2 + A13α3 + A14α4

A21α1 + A22α2 + A23α3 + A24α4

A31α1 + A32α2 + A33α3 + A34α4

A41α1 + A42α2 + A43α3 + A44α4




=




β1

β2

β3

β4




Where:

[Aij]: Mixing coefficient matrix which stores the weights that apply to input voice

Central Server 83

Figure 4.2 Relocation of a central server during a transient period.

streams based on position of avatars in the virtual world.

β1, β2, β3, and β4: Output voice streams.

Fig. 4.2 shows the relocation from server 1 to server 2 during a transient period. It

is noted that some input streams will be forwarded to the new server and the two

servers need to exchange some partial mixed streams during the transient period.

This process can be described as a decomposition of the mixing coefficient matrix.

In the first step, α3 and α4 are forwarded to server 2. The audio mixing operation in

each server and exchanges between these two are presented as follows.

Server 1 receives α1 and α2 and provides mixing operation on these streams. This

server also receives some partial mixed streams from server 2 in order to compute β1

and β2:




A11 A12

A21 A22







α1

α2


 +




A13 A14

A23 A24







α3

α4


 =




β1

β2




Central Server 84

Similarly, the server 2 provides mixing operation on α3 and α4 and also receives

some partial mixed streams from the server 1 in order to compute β3 and β4:




A33 A34

A43 A44







α3

α4


 +




A31 A32

A41 A42







α1

α2


 =




β3

β4




In the next step, α2 is forwarded to server 2 and server 1 only receives α1 and com-

putes β1. As shown in Fig. 4.2, these two servers still need to exchange certain partial

mixed voice streams. After this step, all audio mixing operation at server 1 will be

completely transferred to server 2.

4.3 Simulation Experiments

In this simulation study, we evaluate the performance of peer-to-peer, central server,

and dynamic central server architectures. Firstly, we investigate the effect of changes

in the geographic distribution of game players on a fixed central server in terms of

network bandwidth cost and delay. We also investigate the effect of avatar distri-

bution in the virtual world on the two proposed optimization algorithms for central

servers. In addition, we compare the network bandwidth cost and the interactive de-

lay metric of the architectures discussed earlier in a range of physical/virtual world

correlation parameters.

4.3.1 Simulation Setup

We use GT-ITM topology generator 1 to model the Internet topology. Several models

are included in this package such as: random graph, hierarchical, and transit-stub.

We use transit-stub model since it is a better model of the Internet (Calvert et al.,

1997). Our intention is to model reasonably accurate network topology and game

client distributions that reflect the current MMOG delivery scenarios in the Internet.

A number of potential servers and ISP POPs are chosen randomly among a set of

vertices. The topology generator parameters are chosen such that the the maximum

propagation delay in the shortest path between two edge nodes is 300ms. This delay

is chosen based on the Internet end-to-end delay analysis in (Bovy et al., 2002). The

1Available at http://www.cc.gatech.edu/projects/gtitm/

Central Server 85

Time Peak Mid Off-peak

1 US Europe Asia

2 US Asia Europe

3 Asia US Europe

4 Asia Europe US

5 Europe Asia US

6 Europe US Asia

Table 4.1 Game client distribution in a day period

average node degree is between 3 and 4, which is typical for the Internet (Zegura

et al., 1997). Details of simulation topology is discussed in the appendix.

4.3.2 Relocation of a Central Server

In this section, we simulate geographic changes in game player population and in-

vestigate the effect of this change on the performance of a central server over time.

We use a transit-stub graph of 600 nodes, comprising of three transit domains, which

reflect three main geographic regions: North America, Europe, and Asia. Each do-

main has on average eight transit nodes, each transit node connects to three stub

Autonomous System (AS), representing the connectivity of different ASs in each

region. While the current Internet topology may comprise of more than ten thou-

sands nodes, this graph may approximate major ISP POPs in different geographical

regions where game players are connected to. Details of the simulation topology are

provided in Appendix B.

We randomly place 24 potential servers and 120 ISP POPs at these three regions.

The number of game clients at ISP POPs in each region are varied in six four-hour

blocks during a day, as shown in Table 4.1. These variations estimate the changes in

game client distribution during a day, as described in (Feng and Feng, 2003).

In our simulation, the numbers of players at each ISP POP are uniformly distributed

with the mean of 50 for peak, 25 for mid (the period between peak and off peak),

and 5 for off-peak. Avatars are uniformly populated in a 650x650m square, and

the average number of avatars in the interactive zone is 2.5 (referred as interactive

density). At each time interval, we run the optimization algorithm to choose a new

Central Server 86

R
a
ti

o
s

o
f

in
te

ra
c
ti

v
e
 d

e
la

y
 a

n
d
 n

e
tw

o
rk

 r
e
so

u
rc

e
 r

e
q
u
ir

e
m

e
n
t

o
f

th
e
 f

ix
e
d
 s

e
rv

e
r

to
 t

h
e
 o

p
ti

m
a
l

se
rv

e
r

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5 10 15 20

Delay ratio
Resource cost ratio

Time interval number

Figure 4.3 Effect of changes in game client distribution on the interactive delay metric and

network bandwidth usage of a fixed central server versus the optimal central server.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 15 20 25 30

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

Number of cluster

Min_interactive_delay
Min_average_latency

Figure 4.4 Interactive delay comparison of the two optimization objectives in different cluster

distribution.

Central Server 87

optimal central server and compare the performance of this server to the fixed server

which is the optimal server at the first interval.

Fig. 4.3 shows that the ratios of network bandwidth resource cost and interactive

delay of a fixed server to a dynamic optimal server in each time interval are from

1.1 to about 2.1. The periodic behaviour of the graph is as a result of the periodic

distribution of game clients over time. For example, after six time intervals, the

optimal server is close to the fixed server that was optimized for the first interval.

The resource cost ratio is lower than the delay ratio since it is only based on the

number of links rather than the propagation delays on the links. The same number of

links can result in a large difference in delay. Therefore, it is more efficient to shift

the fixed centralized server to a new optimal server every few hour intervals during a

day. A game service provider can monitor client distribution patterns and plan server

relocations with specific times during a day.

4.3.3 Comparison of Optimization Objectives

In the previous simulation, the two optimization algorithms described earlier in most

case choose the same central server. It is due to a uniform distribution of avatars with

high density. As a result, game clients at different ISP POPs have equal probability

of being in interactive communication, and the two algorithms get the same result.

Minimize interactive delay chooses servers with lower latency when we use cluster

distribution, in which some avatars are located in a few cluster points with high

interactive density, while others are in sparse area. In Fig. 4.4, we use the same graph

as before but populate avatars in clusters, and the number of clusters increases from

10 to 30. Since game client distribution is not changed, minimize average latency

chooses the same server. The result from Fig. 4.4 shows that minimize interactive

delay always chooses an equal or a better server with equal or lower latency. In

addition, the actual clustered avatar distribution in each simulation run does not have

a particular affect on the delay results. The purpose of the figure is to demonstrate the

advantage of minimize interactive delay over minimize average latency in different

clustering cases. Therefore, depending on types of games and avatar distribution

patterns (e.g, either cluster or uniform), minimize interactive delay can be used to

obtain a lower interactive delay.

Central Server 88

R
a
ti

o
 o

f
n
e
tw

o
rk

 b
a
n
d
w

id
th

 r
e
q
u
ir

e
m

e
n
ts

 o
f

o
th

e
r

a
rc

h
it

e
c
tu

re
s

to
 a

n
 o

p
ti

m
a
l

c
e
n
tr

a
l

se
rv

e
r

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1

Peer to peer
Multicast

Correlation

Figure 4.5 Effect of varying physical/virtual world correlation on network resource usage of

multicast and peer-to-peer unicast versus the central server architecture.

4.3.4 Effect of Varying Physical/Virtual World Correlation on
Network Resources and Delay Metrics

In the following simulations, the number of avatars are equal to 10,000, the average

number of avatars in background zone and interactive zone are 40 and 2.5, respec-

tively. The number of ISP POPs is 25. Also, shortest path network multicast routing

is used to get results for the peer-to-peer architecture using multicast.

Figure 4.5 shows the ratios of network bandwidth resource usage of multicast and

peer-to-peer to the optimal central server for a range of correlation parameters. As

indicated in the figure, these ratios reduce as the correlation parameter increases.

This is expected since the higher the correlation is, the fewer unicast flows are needed

across the networks, the less resources are used. Specifically, the cost ratio of peer-

to-peer architecture reduces from 17 at no correlation to above 2 at a correlation of

1. The cost of multicast is less than a quarter of peer-to-peer at a correlation of 1 but

increases to nearly half of peer-to-peer cost at no correlation.

Central Server 89

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.2 0.4 0.6 0.8 1

In
te

ra
c
ti

v
e
 d

e
la

y
 m

e
tr

ic
s

Correlation

Peer to peer with delay SPF
Peer to peer

Optimal central server with delay SPF
Optimal central server

Random central server with delay SPF
Random central server

Figure 4.6 Effect of varying physical/virtual world correlation on the interactive delay metric

In Figure 4.6, the interactive delay metric of different architectures (as defined in

Section 4.2.1.2) are obtained in ten simulation runs. The delay curves show the av-

erage values and error bars which indicate the maximum and minimum values of

these runs. The interactive delay is calculated based on delay shortest path routing

(indicated as “delay SPF” on the graph), and normal shortest path routing. In our

simulation model described earlier in Chapter 3, there are two network link metrics:

link cost for routing purpose, and the actual link propagation delay. The delay short-

est path routing uses the actual link propagation delay as a metric to calculate the

shortest path in terms of delay between two nodes. The normal shortest path routing

calculates shortest path based on link cost (often being set based on hop count, pol-

icy, and bandwidth cost) which reflects the operation of some current shortest path

routing protocols in the Internet, e.g, OSPF.

As shown from Figure 4.6, the interactive delay metric of an architecture using de-

lay shortest path routing (solid lines) is about 10% smaller than that using link cost

shortest path routing (broken lines). The peer-to-peer architecture has the smallest

delay, and this delay increases when the correlation decreases, as expected. Delays

Central Server 90

of centralized servers do not depend on correlation. The location of a random cen-

tral server may result in high interactive delay. Especially, as indicated from the error

bars, when a random server is far from the optimal server, the interactive delay metric

can be more than twice the optimal server.

4.4 Conclusions

This chapter investigates the use of a central server architecture to provide an immer-

sive voice communication service to multiplayer online games. We assume that the

game service provider could hire a server from a set of potential processing sites for

creating immersive audio scenes.

We provide two optimization objectives for choosing an optimal central server from

a set of potential servers. One is to minimize the average delay from all partici-

pants to the central servers which is based only on player distribution. The other is

to minimize the interactive delay metric, which requires both player distribution in

the Internet and avatar distribution in the virtual world. In most cases, these two ob-

jectives choose the same server while minimizing interactive delay may obtain more

optimal server in some avatar distribution patterns.

We propose to relocate a central server in response to changes in player distribution

due to time zone differences. The simulation results show that relocation of the

central server in response to these changes can significantly reduce the interactive

delay by up to 40% and the network bandwidth usages by up to 50%. In addition,

an optimally located central server can reduce the interactive delay of a randomly

located central server by up to 50%. Peer-to-peer has the smallest delay as expected

given no congestion and shortest path routing is used. However, in a dense virtual

environment, the network bandwidth usage of peer-to-peer can be 17 times that of

the central server architecture.

Chapter 5

Distributed Locale Server

5.1 Introduction

There are two major drivers for the distribution of applications over a network of

servers: resource driven distribution (RDD), and latency driven distribution (LDD).

The aim of RDD is to move components of the application to other servers to over-

come the processing capacity limitations in one site. If there are sufficient resources

available in one server, however, the distribution would not lead to any performance

improvement. Examples of RDD are cluster computing and grid computing. For

LDD applications, the ability to control the spatial location of the processing is of

pivotal importance. So even if the processing resource is abundant in one location,

the application will perform poorly in terms of response time and latency if it is not

distributed over a suitable set of geographically diverse servers. The immersive voice

communication service is an LDD application and we will demonstrate that the dis-

tributed locale server architecture will lead to significant improvements even when

there are abundance of processing resources in each server.

The distributed locale server architecture is similar to a distributed game server archi-

tecture based on virtual location partitioning. This game server architecture has been

proposed in several several research projects with the purpose of designing scalable

state information servers for large multiuser virtual environments including multi-

player games in references (Barrus et al., 1996) and (Diot and Gautier, 1999). In

91

Distributed Locale Server 92

this architecture, a key design issue is to efficiently distribute loads among partic-

ipating servers. Consequently, various research in load balancing and load sharing

for distributed server architectures in DVE have been carried out in (Lui and Chan,

2002) (Ta and Zhou, 2003) and references therein. The objective of load balancing

is to equalize the load among different servers. On the other hand, the objective of

load sharing is to avoid situations in which some servers are overloaded while other

servers are underloaded. These algorithms are proposed for large virtual environ-

ments such as MMOG.

These above research efforts in distributed game servers are based on resource driven

distribution and not related to LDD aspect of immersive voice communication. The

distribution of servers in this chapter is driven by latency requirements as opposed to

load balancing and load sharing. By using novel server assignment algorithms, the

improvement in latencies of the distributed locale server architecture is demonstrated.

In Section 5.2, we present a mathematical formulation for the optimal partitioning

and server assignment and develop a heuristics approach based on a graph algo-

rithm. In Section 5.3, a simulation study is carried out to evaluate our proposed

server assignment algorithms and to discuss various factors that might improve the

group communication delay. In particular, we investigate the effect of changes in

the number of servers and the correlation between distribution of avatars and game

participants on communication delays and network resource usages in different game

scenarios. Finally, we draw conclusions in Section 5.4.

5.2 Service Delivery Model

It is assumed that a game service provider can have access to a number of servers

located over the Internet. The distributed locale servers distribute computation load

associated with the voice mixing operation by partitioning the virtual world into lo-

cales and assigning each locale to one of these servers. The server computes a fixed

number of partially mixed audio streams for each avatar in that locale and send these

streams back to that avatar. Our aim is to find the optimal way to partition the virtual

world into locales and then choose the locale servers in such a way that reduces the

Distributed Locale Server 93

total delay perceived by all avatars.

5.2.1 Problem Description

We define the total interactive communication delays as delay cost. A key chal-

lenge is to design an efficient server assignment algorithm to minimize this cost. We

partition the virtual world into N square locales. Let P be the number of potential

processing servers. Each locale is processed by only one server. It is possible to

assign one server to more than one locale. If avatars in two adjacent locales, which

are assigned to two different servers, are in the hearing range of each other, the two

servers need to exchange the required audio streams. The inter-server delays in-

troduce additional delays for the group communication and also additional network

resources. The objective is to find the optimal way to partition the virtual world into

locales and then choose the locale servers in such a way that reduces the total inter-

active communication delay perceived by all avatars. We assume that each server has

enough capacity to create audio scenes for the whole game. In another word, each

server can serve infinite number of streams. The distribution of servers therefore will

be solely based on latency requirements as opposed to resource limitations (LDD as

opposed to RDD). Server resource limit can be considered later by putting capacity

constraints in the algorithms described in the next section.

We also assume that processing times at servers are negligible. The reason for this

assumption is that processing times at servers are small compared with propagation

delays. In addition, our purpose is to optimize latency based on location of servers

regardless of resource constraint at each server, while processing times at servers

often depend on the load at these servers.

Server processing times have an insignificant impact on optimizing the latency of

distributed locale servers. As we assume that each server is not overloaded, average

processing times of servers in different location are small and not significantly varied.

Hence, these processing times have insignificant impact on the optimization model

which is mainly influenced by propagation delay due to server locations. However,

comparing with the central server architecture, server processing times can result in

a small delay offset when audio scenes are computed by two different servers.

Distributed Locale Server 94

5.2.2 Mathematical Programming Model

We use the following mathematical programming formulation to model the problem.

Fist of all, the known parameters are defined as follows.

Let cs
i be the sum of delays from server s to all avatars in locale i and dst be the delay

between server s and server t. Let mij be the number of avatars in locale i that are

in interactive communication with avatars in the neighbor locale j. If locales i and

j are assigned to two different servers, say s and t, the inter-server delay cost due to

this assignment is denoted as kst
ij , and kst

ij = mijdst.

Decision variables:

xs
i =




1 if server s is chosen for locale i

0 otherwise
(5.1)

Objective function:

Minimize:
∑

1≤i≤N ;1≤s≤P

xs
i c

s
i +

∑
1≤i,j≤N ;1≤s,t≤P ;i�=j;s �=t

xs
ix

t
jk

st
ij (5.2)

subject to
P∑

s=1

xs
i = 1 ∀i : 1 ≤ i ≤ N (5.3)

This mathematical programming is non-linear. We use a simple method to linearize

it as follows. Let yst
ij be a binary decision variable that has the following property.

yst
ij =




1 if xs
i = xt

j = 1

0 otherwise
(5.4)

The former problem is transformed to the following linear programming (LP).

Minimize:
∑

1≤i≤N ;1≤s≤P

xs
i c

s
i +

∑
1≤i,j≤N ;1≤s,t≤P ;i�=j;s�=t

yst
ijk

st
ij (5.5)

subject to
P∑

s=1

xs
i = 1 ∀i : 1 ≤ i ≤ N (5.6)

yst
ij ≤ xs

i (5.7)

yst
ij ≤ xt

j (5.8)

Distributed Locale Server 95

xs
i + xt

j ≤ 1 + yst
ij (5.9)

The constraints in equation 5.11 ensure that each locale is processed by one server.

The constraints in equations 5.7, 5.8, and 5.9 are to ensure the condition in equation

5.4 is satisfied. Basically, these constraints ensure that if two adjacent locales are

assigned to two different servers, the delay cost due to inter-server communication is

taken into account. This mathematical formulation is an Integer Linear Programming

(ILP) problem.

Since there are N locales and P servers, the number of xs
i variables is NP . Each

locale may have from three to eight adjacent locales depending on position of the

locale in the virtual world. For each locale that is already assigned to a server, there

are P different server assignment possibilities for each of its adjacent locales. As a

result, the number of yst
ij decision variables is O(NP 2). Therefore, the total number

of binary decision variables for this problem, which is the sum of xs
i and yst

ij variables,

is O(NP 2).

This problem is also NP-hard. We will prove this by making a simple assumption of

parameters and show that the resulting problem is NP-hard. Let us assume that all

inter-server delay costs, denoted as kst
ij , have a value of zero. The problem can be

formulated as the following LP.

Minimize:
∑

1≤i≤N ;1≤s≤P

xs
i c

s
i (5.10)

subject to
P∑

s=1

xs
i = 1 ∀i : 1 ≤ i ≤ N (5.11)

This problem is a basic facility location problem, which is NP-hard (West, 2001).

When the problem size is large, it is crucial to devise a heuristics to solve the problem

efficiently. In the next section, we provide a greedy heuristics based on a graph

algorithm.

Distributed Locale Server 96

5.2.3 Greedy Heuristic Algorithm

5.2.3.1 Graph Representation

In order to solve this problem, we propose a multi-layer graph G = (V,E), where

|V | = PN and V = {vs
i : 1 ≤ i ≤ N ; 1 ≤ s ≤ P}. This graph has P layers cor-

responding to P servers, and each layer has N vertices corresponding to N locales.

Each vertex vs
i (vertex i in layer s) has a delay cost cs

i . If locales i and j are adjacent,

there is an edge connecting any pair of vs
i and vt

j , denoted as est
ij , which has delay cost

kst
ij . The problem is to find a subgraph G′ ⊆ G that covers N vertices corresponding

to N locales and has the minimum total vertex costs and edge costs. G′ should have

the property that if any two vertices of G are in G′, the edge connecting these vertices

is also in G′.

This graph representation is similar to graph partitioning algorithms in distributed

virtual environment (DVE) in (Lui and Chan, 2002) and (Lui et al., 1998). However,

as these algorithms are designed for load balancing the cost of each vertex (the com-

putation cost of each locale) is the same for any server since this cost only depends

on the number of avatars in that locale. The edge cost connecting two vertices are

based on the amount of information exchanges between avatars in two adjacent lo-

cales, which does not depend on location of servers assigned to these locales. If two

adjacent locales are assigned to the same server, the edge cost is zero. As a result,

only a single-layer graph is used.

In this work, the delay cost of each vertex depends on the spatial location of a server

with respect to the physical distribution of participants in that locale. In addition, the

cost of an edge connecting two vertices also depends on the servers that are assigned

to each vertex. Hence, a multi-layer graph is required to capture this behaviour.

As an example, Fig. 5.1a shows a virtual world consisting of nine locales and the

resulting 2-layer graph representation of the server assignment problem when two

servers are used. The figure also presents the optimal server assignment solution.

The vertex cost in each layer denotes the delay cost from each server to all avatars

in the locale corresponding to that vertex. For example, the delay cost from server 1

Distributed Locale Server 97

to two avatars in locale L1 is 3 while that cost associated with server 2 is 6. These

delay costs are denoted by the costs of vertices v1
1 and v2

1 in layer 1 and layer 2,

respectively. In the virtual world, the circles denote a set of avatars in adjacent locales

who communicate interactively. This results in the inter-layer edge costs in the graph.

The zero cost inter-layer edges are not shown to avoid cluttering the figure. In each

layer, all edges have zero cost (since adjacent locales are served by the same server)

and are denoted as broken lines in the figure. As shown in the figure, the costs from

server 2 to all locales are higher than those from server 1 except for locales L2, L3,

L7. Therefore, locale L3 and L7 are assigned to server 2. Locale L2 is not assigned

to server 2 since the reduction in vertex cost is 1, while the additional edge cost is 2.

All other locales are assigned to server 1.

5.2.3.2 Greedy Algorithm

In this algorithm, we aim to select a sub-graph G′ ⊆ G, that covers N vertices

and has the smallest sum of vertex costs and edge costs. First of all, we choose a

starting vertex for which the sum of the vertex cost and its outgoing edge costs is

minimum. Then, we repeat the following procedures: choose the vertex that has

the minimum sum of its vertex cost and costs of edges connecting this vertex to its

adjacent vertices in the existing sub-graph. When a vertex in one layer is added

to the sub-graph, the corresponding vertices in all other layers as well as all edges

connecting to these vertices are deleted. This is to make sure that each locale is

processed by only one server. The algorithm finishes when N vertices are covered.

The run-time complexity of this algorithm is similar to Minimum Spanning Tree

problem (Sedgewick, 1990). Hence, if an adjacency matrix is used for the graph

representation, the run-time complexity of this algorithm is O(|V |2), where |V | =

NP is the number of vertices in the multi-layer graph. If an adjacency list is used

for the graph representation, the run-time complexity of this algorithm is O((|E| +
|V |)log|V |), where E is the number of edges in the multi-layer graph.

Pseudo code:

1. Initialize

G′(Vsub, Esub) = 0;

Distributed Locale Server 98

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

1 2 3

4 5 6

7 8 9

Server 1 Server 2

Server 1 layer

Server 2 layer

1 2 3

4 5 6

7 8 9

L L L

L L L

L L L

L L L

L L L

L L L

V
V

V

VV

V

V

2
V1

1

1

2

2

2

2

1

1 8 4

6 6 8

226

234

3

3 3 5

44

1
V

V

V V

V

VV

V

1

V
7
2

8
2

9
2

6
25

2
4
2

3
2

21
2

V
7
1

8
1

9
1

4
1

5
1

1
6

1
32

1

(a) Graph representation and optimal server assignment

V 2
7

1

2

1

23

2

43 4

33

First Vertex

Final Vertex

Iteration 3

Iteration 4

Iteration 5

Iteration 7

Iteration 2

Iteration 6

Iteration 8

Iteration 1

V

V V

V

V V

V

V

4
1

5
6

1
1

1
2

1
1

1 1
8 9 2

3

(b) Construction of the sub-graph through each iteration

Figure 5.1 Graph representation of the server assignment problem and solution.

Distributed Locale Server 99

Neighbor(Vnb) = 0;

2. Choose the first vertex vs
i s.t (cs

i +
∑

kst
ij) is minimum. Add vs

i to G′ and delete all

vt
i s.t {t �= s, 1 ≤ t ≤ P} and all edges connected to these vertices.

3. While size(G′) < N do

4. Update the set of Neighbor: Vnb = {vt
j} s.t {vt

j /∈ Vsub and ∃ est
ij s.t vs

i ∈ Vsub}.

5. For each vt
j ∈ Vnb, compute costt

j = ct
j +

∑
kst

ij s.t vs
i ∈ Vsub.

6. Add vt
j to G′ s.t costtj is minimum.

7. Remove vt
j from Vnb, delete all vu

j s.t {u �= t, 1 ≤ u ≤ P} and all edges

connected to these vertices.

8. End

An example showing the operation of this heuristics is shown in Fig. 5.1. The algo-

rithm first chooses vertex v2
7 (vertex corresponding to locale L7 and server 2) since

the sum of this vertex cost and its outgoing edge costs is the minimum (this vertex

cost is 1 and its outgoing edge costs are 1). Vertex v2
7 is then added to the sub-graph

G′. Also, vertex v1
7 and all edges connected to this vertex are deleted. After vertex

v2
7 is initially chosen, the step-by-step construction of the sub-graph G′ through each

iteration of the algorithm is shown in Fig. 5.1b. The first two iterations are described

as follows.

• Iteration 1: A set of neighbors Vnb consists of vertices that are adjacent to v2
7:

v1
4 , v1

5 , v1
8 , v2

4 , v2
5 , and v1

8 . Among these vertices, v1
4 is added to G′ since the

sum of this vertex cost and the cost of the edge connecting this vertex to v2
7 is

minimum. Vertex v2
4 and all edges connected to this vertex are removed from

the graph.

• Iteration 2: Vnb consists of vertices that are adjacent to either of v2
7 or v1

4: v1
1 ,

v1
2 , v1

5 , v1
8 , v2

1 , v2
2 , v2

5 , v2
8 . Among these vertices, v1

1 is added to G′ since the sum

of this vertex cost and the costs of all edges connecting this vertex to v2
7 and v1

4

is minimum. Vertex v2
1 and all edges connected to this vertex are removed.

In the following iterations, v1
2 , v1

5 , v1
9 , v1

8 , v1
6 , and finally, v2

3 are added to G′. The

vertex costs and edge costs of the final sub-graph represent the total delay cost of

Distributed Locale Server 100

that server assignment solution.

If we need to consider the maximum load of each server, additional constraints are

required for the ILP model. For the greedy heuristics, a constraint can be put in step

4 of the algorithm. A vertex is added to the Neighbor set only when the server corre-

sponding to that vertex is not overloaded. In addition, the server load is incremented

each time a vertex within the associated layer of that server is added to the sub-graph

G′ in step 6.

5.2.4 Impact of Avatar Movements and Player Distribution on
Optimal Server Assignment

Movements of avatars in the virtual world change the composition of locales. This

means that as time goes by, the current assignments of locales to servers drifts from

optimal. In this situation, re-assignment of locales to servers are necessary to reduce

the total delay cost.

While avatar movements may occur constantly, joining and leaving the game by par-

ticipants tend to occur on a longer time scale. Especially, game players in diverse

geographical regions tend to join and leave the game in different times during a day

(Feng and Feng, 2003) due to time zone differences. In addition to avatar move-

ments in the virtual world, this behavior may also affect optimal server allocation.

Changes in geographic-time distribution of players may require a new assignment

of distributed locale servers. However, we expect that the impact of this distribu-

tion on the distributed locale servers is not significant to that of the central server

architecture.

5.3 Simulation Experiments

5.3.1 Simulation Setup

GT-ITM topology generator 1 is used to model the Internet topology. Specifically,

we use a transit-stub graph of 600 nodes, comprising of three transit domains, which

1Available at http://www.cc.gatech.edu/projects/gtitm/

Distributed Locale Server 101

reflect three main geographic regions: North America, Europe, and Asia. Each do-

main has on average eight transit nodes, each transit node connects to three stub

Autonomous Systems (AS), representing the connectivity of different ASs in each

region. We randomly place 24 potential servers and 100 ISP POPs in these three

regions. Each ISP POP has a uniform random number of game clients connected.

Unless otherwise stated, the simulation results are generated with an average of 50

game players per POP. The topology generator parameters are chosen such that the

maximum propagation delay in the shortest path between two nodes is 300ms. The

average number of avatars in each avatar’s interactive zone in crowd/clan based vir-

tual world is 2.5. The number of crowds/clans in a crowd/clan based virtual world is

50 and 250, respectively.

5.3.2 Investigation of Server Assignment Algorithms

In the following simulations, we compare our proposed greedy heuristics with the

optimal results from the ILP model. The optimal results are obtained using Cplex

optimization software 2. The heuristic algorithm is implemented in C++ and an ad-

jacency matrix is used for the multi-layer graph representation. These algorithms are

run on a Pentium IV 2Ghz Linux server with 1.5GB of RAM. We partition the virtual

world into different numbers of locales, run the two server assignment algorithms,

and calculate the total interactive communication delays for both cluster (25 crowds)

and uniform distributions. In these simulations we assume the correlation parameter

to be equal to 0.5. In uniform distribution, we divide the virtual world into 25 squares,

and the correlation parameter specifies how people aggregate in each of these squares

based on their real-world geographic locations. The number of potential processing

servers is 16.

As shown in Table 5.1, the results from the greedy heuristics are within 5% of opti-

mal. However, the greedy heuristic has significantly lower running times. In partic-

ular, the run-time complexity of the greedy heuristics can be up to a hundred times

lower than the ILP model. Hence, the ILP model may not be suitable for large prob-

lems.

2Cplex optimization software, available at http://www.ilog.com

Distributed Locale Server 102

Number of locales Optimal Time Greedy Time Gap(%)

16 371733 0.47(s) 372066 < 0.01(s) 0.09

36 355418 1.32(s) 355590 0.05(s) 0.05

64 340376 0.74(s) 340544 0.17(s) 0.05

100 324588 3.8(s) 324588 0.45(s) 0

400 321744 670(s) 324075 8.94(s) 0.72

900 313041 30h24m 320773 70.1(s) 2.47

1225 n/a n/a 316496 147(s) n/a

(a) Uniform

Number of locales Optimal Time Greedy Time Gap(%)

16 375160 0.23(s) 375160 < 0.01(s) 0

36 360761 0.46(s) 360852 0.04(s) 0.04

64 360392 0.60(s) 360542 0.17(s) 0.04

100 356572 5(s) 357042 0.43(s) 0.13

400 346074 77(s) 349397 7.88(s) 0.9

900 337340 3940(s) 343556 56.1(s) 1.8

1225 n/a n/a 337420 114(s) n/a

(b) Cluster

Table 5.1
Comparison between optimal results and greedy heuristic results in the total interactive com-

munication delay.

Fig. 5.2 shows the close match between the two algorithms in a uniform distribu-

tion virtual world partitioned into 64 locales and a cluster distribution virtual world

partitioned into 100 locales. Each square represents a locale and the number in each

square represents the server number that is assigned to that locale. The difference

between the greedy heuristics and optimal result is highlighted by shading locales

for which the greedy heuristics has provided a different result.

It is also shown that increasing the number of locales reduces the delay cost. As

indicated in Table 5.1, the delay cost is reduced by nearly 20% in uniform distribution

and about 10% in cluster distribution when the number of locales is increased from 16

to 900. This is expected since reducing the size of locale would improve granularity

of assigning servers based on the delay requirement of each avatar.

Distributed Locale Server 103

� �
� �
� �� � � � �

� � �
� � �� � �

� � �
� � �

� �
� � � � �� � �

	 	 	
	 	 	

Greedy heuristics Optimal result from Cplex

5

0

4 9 9 3 9 2

9 9 7

9 7 2

7 7 7 7 7 7 7

7 1 7 7 7 7 7

7 0

8 8 10 1010

10 10 10

111411

13 13 13

13

13

10 10 10

8 8 8 10 10 10 10 10

5

0

4 9 9 3 9 2

9 9 7 2

9 7 2

7 7 7 7 7 7 7

7 1 7 7 7 7 7

7 0

8 8 10 1010

10 10 10 10

111411

13 13 13

13

13

10 10 10

8 8 8 10 10 10 10 10

7

8

13

13

7

7

6

13

13

7

7

6

(a) Uniform

� �� �

� �� �

� �� �� �� � � � �� � �
� �� �

� � �� � �� �� � � � �� � �
� �� �

� �� �� �� � � � �� � �
� � �� � �

10 10

10

7 7 7 0 0 0 2 14 14

7 7 0 0 2 14 14

7 1 1 1 10 10 14

6 2 4 10 10 10 4

6 5 5 10 10 10

0 5 5 5 4 2

10 10 10 3 0 2 0

10 10 10

10 10

13 13 10 10 3 0 0

10 2 2 2 2 7 7 7

10 10 2 2 2 0 5 7 7 8

2

10 10

10

10

0 7 7 7 0 0 0 2 14 14

7 7 0 0 2 14 14

7 1 1 1 10 10 14

6 2 4 10 10 10 4

6 2 5 5 10 10 10

0 5 5 5 4 2

10 10 10 3 0 2 0

10 10 10

10 10

13 13 10 10 3 0 0

10 2 2 2 2 7 7 7

10 10 2 2 2 0 5 7 7 8

12

2

Greedy heuristics

2 7

7

2

6

2

2 7 7

2 710

2 2 2

2 2 6

10 10 210

7

2

2

22

2

10

10 10

Optimal result from Cplex

(a) Cluster

Figure 5.2 Server assignment results from Cplex and the greedy heuristics.

5.3.3 Effect of Varying Number of Servers and Physical/Virtual
World Correlation

In this experiment, we investigate the effect of varying the ratio of the number of

distributed servers to the number of POPs and virtual/physical world correlation on

interactive delay. We compare the communication delay when increasing the number

of distributed servers to that of using an optimal central server. An optimal central

server is chosen among 24 potential servers. The delay cost of the optimal central

server is the sum of propagation delays from all game players to that server. As

Distributed Locale Server 104

R
a
ti

o
 o

f
c
o
m

m
u
n
ic

a
ti

o
n
 d

e
la

y
 f

o
r

d
is

tr
ib

u
te

d
 s

e
rv

e
rs

o
v
e
r

th
a
t

o
f

a
n
 o

p
ti

m
a
l

c
e
n
tr

a
l

se
rv

e
r

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20

Correlation = 1
Correlation = 0.75

Correlation = 0.5
Correlation = 0.25

Correlation = 0

Number of distributed servers

(a) Loner based distribution

R
a
ti

o
s

o
f

in
te

ra
c
ti

v
e
 d

e
la

y
 o

f
d
is

tr
ib

u
te

d

lo
c
a
le

 s
e
rv

e
rs

 o
v
e
r

th
a
t

o
f

a
n
 o

p
ti

m
a
l

c
e
n
tr

a
l

se
rv

e
r

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20

Correlation = 1
Correlation = 0.75

Correlation = 0.5
Correlation = 0.25

Correlation = 0

Number of distributed servers

(b) Crowd based distribution

Figure 5.3 Effect of changes in number of server and physical/virtual world correlation.

Distributed Locale Server 105

shown in Fig. 5.3, at high correlation parameters, increasing the number of dis-

tributed servers would reduce avatar communication delays considerably. When all

24 servers are used, the delay cost of the distributed server architecture is reduced by

approximately 60% and 20% at a correlation value of 1 and 0.5, respectively. How-

ever, at low correlation, this improvement is less significant. In addition, when the

number of servers goes above certain value, approximately one eighth of the number

of POPs, further improvements in delay costs are very small. This result can be taken

into consideration in a real deployment scenario. Deploying a large number of server

sites will result in a significantly high cost. Hence, a service provider may choose

a limited number of server sites based on the number of POPs that the majority of

players are connected to.

5.3.4 Effect of Varying Correlation in Interactive Delay

In the following experiments, the effect of changes in physical/virtual world correla-

tion on the interactive delays and network bandwidth requirements of the distributed

locale server architecture is investigated. Simulations were carried out to evaluate the

performance of peer-to-peer, central server, and distributed locale server architecture

under different avatar grouping behaviors. In the delay performance comparison, the

peer-to-peer architecture with no network congestion, which has the lowest delay,

is used as a benchmark. In the network bandwidth resource usage comparison, the

central server architecture is used as a benchmark.

In crowd/clan based virtual world simulation, we denote low (high) spread crowds

or clans if the low (high) spread correlation is used respectively. As shown in Fig.

5.4, in crowd based games, the interactive delay of the centralized server architecture

does not depend on correlation, while the interactive delay of the distributed locale

server architecture is reduced when the correlation increases. For the low spread

correlation, the interactive delay of the distributed architecture is reduced by about

60% and 20% at correlation of 1 and 0.5, respectively, and it closely follows the “best

case” peer-to-peer delay. For the high spread correlation, the delay improvement of

the distributed architecture is less than that of the low spread type due to a large

physical distance between any two random POPs, which have participants in that

Distributed Locale Server 106

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

Peer to peer
Central server

Distributed server

Correlation

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(a) Low spread crowds

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

Peer to peer
Central server

Distributed server

Correlation

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(b) High spread crowds

Figure 5.4 Effect of changes in correlation on interactive delay for crowd based games.

Distributed Locale Server 107

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

Peer to peer
Central server

Distributed server

Correlation

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(a) Low spread clans

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

Peer to peer
Central server

Distributed server

Correlation

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(b) High spread clans

Figure 5.5 Effect of changes in correlation on interactive delay for clan based games.

Distributed Locale Server 108

crowd. A similar behaviour is shown for clan scenarios in Fig. 5.5.

5.3.5 Network Bandwidth Requirements in Different Avatar Ag-
gregation Behaviors

The following simulations show the network bandwidth requirements based on dif-

ferent avatar grouping behaviours. The network bandwidth usage of the central

server architecture is used as a benchmark.

Fig. 5.6 shows the bandwidth requirement ratios of the distributed server architecture

and peer-to-peer architecture versus the central server architecture for both crowd

based and clan based games with respect to the two types of correlation. It is shown

that the low spread correlation case results in smaller network resource usage than

the high spread correlation, as expected. With the low spread correlation, the band-

width requirement of the distributed server architecture is nearly 40% and 20% be-

low that of the centralized server architecture in a crowd based virtual world and clan

based virtual world at a correlation of 1, respectively. It is noted from Fig. 5.6b that

crowds require nearly twice the bandwidth resource of clans due to larger number of

avatars in each avatar’s hearing range. In addition, even at the highest correlations,

the network bandwidth requirements for both crowds and clans in the peer-to-peer

architecture are still above three times that of the centralized server architecture.

The impact of avatar density on network bandwidth requirements is shown in Fig.

5.7. In this experiment, we simulate a loner based virtual world, in which, the aver-

age number of avatars in hearing ranges is varied from 0.5 to 5, and the correlation

parameter is equal to 0. As indicated in the figure, the ratio of network bandwidth

requirement of the peer-to-peer architecture over the central server architecture in-

creases linearly from under 0.5 to about 2. The network bandwidth requirement of

the distributed locale server architecture is approximately equal to that of the cen-

tral server architecture. In short, in loner based game, the bandwidth usage of the

peer-to-peer architecture is low and not much different from the other architectures.

Distributed Locale Server 109

R
a
ti

o
 o

f
n

e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

t
o

f

d
is

tr
ib

u
te

d
 s

e
rv

e
rs

 o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

Crowd 1
Crowd 2

Clan 1
Clan 2

Correlation

(a) Distributed server

R
a
ti

o
 o

f
n

e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

t

o
f

p
e
e
r−

to
−

p
e
e
r

o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

Low spread crowd
High spread crowd

Low spread clan
High spread clan

Correlation

(b) Peer-to-peer

Figure 5.6 Bandwidth resource requirements of distributed server and peer-to-peer versus

central server for crowd/clan based games

Distributed Locale Server 110

R
a
ti

o
 o

f
n
e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

t
o

f
d

is
tr

ib
u

te
d

lo
c
a
le

 s
e
rv

e
r

a
n
d
 p

e
e
r−

to
−

p
e
e
r

o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0

 0.5

 1

 1.5

 2

 2.5

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Distributed server
Peer to peer

Number of avatars within hearing range

Figure 5.7 Network bandwidth requirements in a loner based game

5.4 Conclusions

In this chapter, we propose a distributed server architecture to improve the com-

munication delay perceived by users and increase scalability of an immersive voice

communication service. Two algorithms are proposed to optimize the performance

of this architecture. We first formulate the server assignment problem as an integer

linear program. This algorithm provides an exact solution to the problem but would

have high computational complexity when the problem size increases. Hence, we

produce a multi-layer graph representation of the problem. Based on this graph, we

devise a greedy heuristics which has comparable performance to the optimal algo-

rithm and low computation complexity. In particular, the results from the greedy

heuristics are within 5% of optimal in all cases examined in our investigation.

Distributed Locale Server 111

We present the result of our analysis and simulation and discuss various factors that

might improve the group audio communication delay. In particular, we investigate

the effect of changes in the number of servers and the correlation between distri-

bution of avatars and game participants on communication delays and network re-

source usage. From a simulation study of different avatar aggregation behaviours, it

is demonstrated that our distributed locale server architecture can reduce the overall

delay by around 20% compared to an optimally located central server and can have

lower network bandwidth usage than the central server architecture. Also, increas-

ing number of servers would enhance the delay performance of the distributed locale

server compared with the central server. However, when the number of servers goes

above certain values, approximately one fifth the number of POPs, further improve-

ments in the delays are very small. In addition, the interactive delay is reduced when

there is more correlation between distribution of avatar and game participants.

The avatar density in games does not affect the performance of central and distributed

locale servers but has a strong impact on network bandwidth usage in the peer-to-

peer architecture. In crowd/clan based virtual world, the network bandwidth usage

of peer-to-peer are considerably larger than the central server and distributed locale

server architectures. On the other hand, in loner based virtual worlds, the network

bandwidth usage of peer-to-peer is low and comparable to the central server archi-

tecture.

Although peer-to-peer has lowest delay, its core and access bandwidth requirement

is a critical limitation in parts of the virtual world with clans and crowds. In addition,

there is a trade off between network bandwidth usage and latency in these archi-

tectures. While peer-to-peer results in lowest delay but highest network bandwidth

usage, distributed locale server compromises between these two. Distributed locale

servers outperform the central server in both latency and network bandwidth usages,

especially when there is virtual world/physical network correlation. These factors

should be taken into account in the design of a cost effective delivery architectures

for different games.

Chapter 6

Distributed Proxy Architecture

6.1 Introduction

This chapter investigates the use of distributed proxies for providing an immersive

voice communication service for massively multiplayer online games. Distributed

proxies solve the access bandwidth problem of the peer-to-peer architecture while

still maintaining low latencies. Peer-to-peer can be considered as a special case of

distributed proxies where each proxy is placed at a game client computer. In this

chapter, to address limited access bandwidth problem of the peer-to-peer architec-

ture, we envisage that proxy servers are placed at network edges and have high band-

width connections to the Internet.

This architecture is related to distributed game server using physical partitioning

(mirrored server architectures) and distributed game proxies, which are discussed in

Section 2.3.1. In all of these architectures, game clients are connected to the closest

server. However, there are differences in the way information is exchanged between

servers.

In the mirrored server architectures, each server has to maintain a copy of the game

state and dynamically exchange messages to maintain the game state consistency.

On the other hand, in the the case of immersive audio processing, each proxy server

only needs to forward audio streams to other interested proxies based on avatar po-

sitions. These interactions are commonly less dynamic than those in the mirrored

112

Distributed Proxy Architecture 113

game server architectures.

In distributed game proxies, each proxy does not need to maintain a copy of the whole

game state. Instead, each proxy only process some functionality, as delegated from

the central server. Hence, this architecture is more closely related to the distributed

proxy used for immersive audio processing described in this chapter. A distributed

game proxy system in (Mauve et al., 2002) has similar advantages to the architec-

ture presented in this chapter, including robustness, minimizing network delays and

privacy.

To minimize communication latency in the game, a key issue is provisioning of proxy

servers. There have been various research studies in optimal placement of proxy

caches and other proxy services in (Qiu et al., 2001) (Cronin et al., 2002b) (Choi

and Shavitt, 2003) and references therein. A specific study on the provision of proxy

servers for an immersive voice communication service is essential.

In either the peer-to-peer or distributed proxy architecture, one of the key issues is to

define groups of avatars in hearing range and update the change of these groups due

to avatar movements. This requires dissemination of avatar grouping information to

each peer or proxy. This information is then used to determine how audio streams

are sent to other proxies. The dissemination techniques are discussed in (Zou et al.,

2001) and references therein.

In addition, transmissions of voice streams can be either performed by unicast or

multicast. Multicast has been used for transmitting state information in multiplayer

online games in (Diot and Gautier, 1999) and references therein. A general study

of the cost of network multicast compared to unicast is presented in (Chuang and

Sirbu, 2001). There is a need to provide more specific study of multicast cost saving

in delivering the immersive voice communication service in different network game

scenarios.

In this chapter, we investigate the use of the distributed proxy architecture for pro-

viding an immersive voice communication service to MMOG. In Section 6.2, we

describe the proxy location problem and formulate the problem using an Integer Lin-

Distributed Proxy Architecture 114

ear Programming model. We also devise a greedy heuristics for the problem based

on a graph algorithm. Different proxy architectures with choices of unicast and mul-

ticast implementation are also discussed. Simulation results are presented in Section

6.3. In these simulations, we compare the performance of the Integer Linear Pro-

gramming model and the heuristics. We also evaluate the bandwidth cost saving

of network multicast in the distributed proxy architecture based on different avatar

grouping behaviours and player distribution scenarios. In addition, the effects of

varying the number of proxy servers on communication delays and network band-

width usage are investigated. Conclusions are drawn in Section 6.4.

6.2 Service Delivery Model

6.2.1 Proxy Location Problem

It is envisaged that a game service provider can have access to a multitude of servers

located in different parts of the Internet. These servers are deployed as distributed

proxies for providing an immersive communication service to the game. We assume

that players are connected to N ISP POPs and there are P potential proxy servers.

The proxy assignment is based on physical location of players so that all players

connected to an ISP POP will be assigned to the same proxy. The problem is to

assign N ISP POP to P proxies in a way that minimizes communication delay in the

game.

The distribution of proxy servers in this architecture is based on the physical world

partitioning as all players from each ISP POP are assigned to a proxy. On the other

hand, in the distributed locale server architecture, the distribution of servers is based

on the virtual world partitioning since all players in each locale are assigned to the

same server.

A simple solution is to assign players at each ISP POP to the closest proxy. This

solution does not require avatar position in the virtual world which determines com-

munication groups in the game. However, this solution may not provide an optimal

proxy assignment. We refer to this solution as a simple heuristics. In the next section,

Distributed Proxy Architecture 115

we provide other algorithms that use the knowledge of communication groups in the

game to minimize latency.

We assume that each proxy has enough capacity to server all players. Hence, the

assignments of players to proxies are mainly based on latency optimization, not due

to resource constraints. It is also assumed that processing time for creating audio

scenes at proxies are negligible. The reason for this assumption is that processing

times at proxies are small compared with propagation delays. Also, we focus on

optimizing latency based on locations of proxies regardless of the resource constraint

at each proxy, while processing times at proxies often depend on the load at these

proxies.

Since we assume that each proxy is not overloaded, processing times at proxies are

small and not varied. Therefore, these processing times does not have major impact

on the optimization of the distributed proxy architecture which is mainly based on

proxy locations.

6.2.2 Mathematical Programming Model

We use the following mathematical formulation to model the proxy location problem.

Fist of all, the known parameters are defined as follows.

cs
i : The delay cost from ISP POP i and proxy s which is defined as the delay between

ISP POP i and proxy s multiplied by the number of players connected to this ISP

POP.

kst
ij : The inter-proxy delay cost occurs when proxy s is assigned to ISP POP i and

proxy t is assigned to ISP POP j. This delay cost is defined as the delay between

the two proxies multiplied by the number of players located at ISP POP i that are in

communication with other players located at ISP POP j.

Decision variables:

xs
i =




1 if proxy s is chosen for ISP POP i

0 otherwise
(6.1)

Distributed Proxy Architecture 116

The objective is to minimize the total interactive communication delay of the game.

The objective function is defined as follows:

Minimize:
∑

1≤i≤N ;1≤s≤P

xs
i c

s
i +

∑
1≤i,j≤N ;1≤s,t≤P ;i�=j;s�=t

xs
ix

t
jk

st
ij (6.2)

subject to
P∑

s=1

xs
i = 1 ∀i : 1 ≤ i ≤ N (6.3)

It is interesting to see that this mathematical programming formulation is similar to

the formulation for server assignment problem in distributed locale servers in Section

5.2.2. This is not surprising as the two problems have many common features. Since

this formulation is non-linear we use a similar method to the previous problem in

order to linearize it as follows.

Let yst
ij be a binary decision variable that has the following property.

yst
ij =




1 if xs
i = xt

j = 1

0 otherwise
(6.4)

The former problem is transformed to the following linear programming (LP).

Minimize:
∑

1≤i≤N ;1≤s≤P

xs
i c

s
i +

∑
1≤i,j≤N ;1≤s,t≤P ;i�=j;s �=t

yst
ijk

st
ij (6.5)

subject to
P∑

s=1

xs
i = 1 ∀i : 1 ≤ i ≤ N (6.6)

yst
ij ≤ xs

i (6.7)

yst
ij ≤ xt

j (6.8)

xs
i + xt

j ≤ 1 + yst
ij (6.9)

The constraints in equation 6.6 ensure that each ISP POP is assigned to one proxy.

The constraints in equations 6.7, 6.8, and 6.9 are to ensure the condition in equa-

tion 6.4 is satisfied. Basically, these constraints ensure that if players connected to

different proxies are in interactive communication, the delay cost due to inter-proxy

communication is taken into account. This mathematical formulation is an Integer

Linear Programming (ILP) problem.

Distributed Proxy Architecture 117

If we consider a scenario that a game service provider only has a budget for m prox-

ies (m < P), additional variables and constraints are required. Let zs be a binary

variable, the following constraints are needed:

zs ≥ xs
i (6.10)

P∑
s=1

zs ≤ m (6.11)

The constraints in equation 6.10 are to ensure that if a server is assigned to an ISP

POP, this proxy is counted. The constraints in equation 6.11 are to ensure that only

maximum of m proxies are used.

As there are N ISP POPs and P proxies, the number of xs
i variables is NP . The

number of yst
ij variables depends the number of communications exchanges between

players assigned to different proxies. For each ISP POP that is already assigned to a

proxy, there are P different assignment possibilities of other ISP POP. As a result, the

number of yst
ij is O(NP 2). Therefore, the total number of binary decision variables

for this problem, which is the sum of xs
i and yst

ij variables, is O(NP 2).

We expect that the number of binary variables for this problem can be large due

to the large number of communication exchanges between players located at these

POPs. For example, in an extreme case, the number of audio flow exchanges can

be N(N − 1)/2. This is different from the case of the distributed locale server

architecture in which each locale only has a maximum number of eight adjacent

locales. As a result, the number of yst
ij variables in the ILP model for the distributed

proxy architecture can be considerably larger than that in the distributed locale server

architecture, given the same number of servers and ISP POPs/locales.

Similar to the analytical model in Section 5.2.2, this problem is also NP-hard. The

proof can be carried out in a similar method as in Section 5.2.2. When the size of the

problem is large, it is necessary to design a heuristics for solving the problem more

efficiently. In the next section, we will provide a greedy heuristics for this problem

based on a graph algorithm.

Distributed Proxy Architecture 118

6.2.3 Heuristic Algorithms

6.2.3.1 Graph Representation

We use a multi-layer graph model which is somewhat similar to the multi-layer graph

in Section 5.2.3.1. The graph is G = (V,E), where |V | = PN and V = {vs
i : 1 ≤

i ≤ N ; 1 ≤ s ≤ P}. This graph has P layers corresponding to P proxies, and each

layer has N vertices corresponding to N ISP POPs. Each vertex vs
i (vertex i in layer

s) has a delay cost cs
i . In each layer, all vertices are connected in full-mesh by edges

with zero cost. There are inter-layer edges connecting any pair of vs
i and vt

j , denoted

as est
ij , given that i �= j and s �= t. The cost of the edge connecting vertex i in layer s

and vertex j in layer t is kst
ij . Similar to the model in Section 5.2.3.1, the problem is

to find a subgraph G′ ⊆ G that covers N vertices corresponding to N ISP POPs and

has the minimum total vertex costs and edge costs.

Fig. 6.1 shows a two layer graph which represents the problem of assigning 6 ISP

POPs to two proxies. All vertices in each layer are connected in full-mesh by zero

cost edges, denoted as broken lines. Zero cost inter-layer edges are not shown to

avoid cluttering the figure. In addition, this multi-layer graph is slightly different

from the previous multi-layer graph model in Section 5.2.3.1. In this model, vertices

are connected in full-mesh (except there is no inter-layer edges connecting vs
i and

vt
i). On the other hand, in the previous model, only vertices that represent adjacent

locales are connected as shown in Fig. 5.1.

6.2.3.2 Greedy Heuristics

In this section, we propose a greedy heuristics which is relatively similar to the

heuristic algorithm for the distributed locale server architecture in Section 5.2.3.2.

The aim is to find a sub-graph G′ ⊆ G that covers N vertices and has the smallest

sum of vertex cost and edge costs. To begin with, we choose the first vertex for which

the sum of the vertex cost and its outgoing edge costs is minimum. Then, we repeat

the following procedures: choose the vertex that has the minimum sum of its vertex

cost and cost of edges connecting this vertex to all vertices in the existing sub-graph.

When a vertex in one layer is added to the sub-graph, the corresponding vertices in

Distributed Proxy Architecture 119

1v1

v1
2

1v3

v1
4

v1
5

v1
6

2

9

2 9

7

4

6 4

1

8 7

6

1 1

2
2

11

Proxy 1 layer

Proxy 2 layer

1

v2
v3

v4

v5
v6

2

2 2

2

22

v

(a) Graph representation and optimal proxy assignment

v 2
1

2

4

4

1

8

6

1
1

2

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 1

v

v

v 2

v 2

v 2

2
1

5
1

3

4

6

First Vertex

Final Vertex

(b) Construction of the sub-graph through each iteration

Figure 6.1 Graph representation of the proxy assignment problem and solution.

Distributed Proxy Architecture 120

all other layers as well as all edges connecting to these vertices are deleted. The

algorithm finishes when N vertices are covered. The pseudo code for the algorithm

is presented as follows.

Pseudo code:

1. Initialize

G′(Vsub, Esub) = 0;

2. Choose the first vertex vs
i s.t (cs

i +
∑

kst
ij) is minimum. Add vs

i to G′ and remove

all vt
i s.t {t �= s, 1 ≤ t ≤ P} and all edges connected to these vertices from G.

3. While size(G′) < N do

4. For each vt
j ∈ G, compute costt

j = ct
j +

∑
kst

ij s.t vs
i ∈ Vsub.

5. Add vt
j to G′ s.t costtj is minimum.

6. Remove vt
j from G, remove all vu

j s.t {u �= t, 1 ≤ u ≤ P} and all edges

connected to these vertices from G.

7. End

This pseudo code is slightly different from the pseudo code for the heuristic algo-

rithm in Section 5.2.3.2. Since vertices in the layer graph are connected in full-mesh

(except vertices representing the same ISP POP in different layers of the graph), there

is no need to maintain a set of neighbors to G′ as in the previous algorithm. In each

iteration, the next vertex is selected from any vertex in G.

This algorithm has a similar run-time complexity to the heuristic algorithm in Section

5.2.3.2. If an adjacency matrix is used for the graph representation, the run-time

complexity is O(|V |2), where |V | = NP is the number of vertices in the multi-

layer graph. If an adjacency list is used for the graph representation, the run-time

complexity of this algorithm is O((|E| + |V |)log|V |), where E is the number of

edges in the multi-layer graph. Since this graph is almost full-mesh, the number of

edges is considerably larger than the number of vertices. Hence, it is more efficient

to use an adjacency matrix for the graph representation as the run-time complexity

in this method does not depend on the number of edges.

The example in Fig. 6.1 shows the operation of this heuristic. The algorithm first

Distributed Proxy Architecture 121

chooses vertex v2
1 and removes v1

1 and all edges connected to this vertex from G. In

the first iteration, the algorithm searches the rest of the vertices in G and choose v1
2

since it has the minimum sum of its vertex cost and cost of the edge connecting this

vertex to v2
1 . v2

2 and all edges connecting to this vertex is removed from G. In the

second iteration, the algorithm searches the rest of vertices in G and chooses v1
5 as it

has the minimum sum of its vertex cost and costs of the edges connecting this vertex

to v2
1 and v1

2 . In the following iteration, v2
3 , v2

4 , and finally, v2
6 are added to G′.

If we need to consider the maximum load of each proxy, additional constraints are

required for the ILP model. For the greedy heuristics, a constraint can be put in step

4 of the algorithm. A vertex is considered only when the proxy corresponding to

that vertex is not overloaded. In addition, the proxy load is incremented each time a

vertex within the associated layer of that proxy is added to the sub-graph G′ in step

5.

6.2.4 Different Proxy Architectures

There are two methods for forwarding audio streams among proxies: unicast and

multicast. As an example, Fig. 6.2 compares the core network bandwidth usages

of the peer-to-peer architecture with unicast routing (peer-to-peer), distributed proxy

architectures using unicast routing (proxy unicast) and multicast routing (proxy mul-

ticast). In the figure, c1, c2 and c3 denote the bandwidth costs of links. The figure

shows the network bandwidth requirements of different architectures for delivering

the audio stream from avatar a to all other avatars. As shown from the figure, the

peer-to-peer architecture uses most resources, proxy unicast uses less, and proxy

multicast uses the least. The quantitative comparison of network bandwidth usages

of these architectures in different game delivery scenarios will be provided in the

simulation study in the next section.

There are two approaches for implementing multicast for group communication: IP

multicast and application layer multicast. In IP multicast (Deering, 1989), multicast

functions are implemented at IP routers. The router makes a copy of IP packet and

forward it to other links as indicated by a multicast tree. However, IP multicast has

not been commercially implemented widely in the Internet due to the lack of mul-

Distributed Proxy Architecture 122

c 1

c 2

c 3

12c + c + c32

Ri

c

b

e

f

d

h
g

i
a

Rz

Proxy

Proxy

Router

Proxy

Proxy unicast:
Proxy multicast: c1 + c + c

1 32

2 3

a

i

b
c

d

e

f

g

h

6c + 3c

1

3

2

d

d

d

1 32 + d)/2

Core network bandwidth usages

(2d

Peer−to−peer: + 3c

+ d

Avatar a’s interactive delay:

: Interactive radiusR

R : Background radiusz

i

CiscoSystems
Cisco 7500SERIES

Figure 6.2 Network bandwidth usages and interactive delay calculation associated with

avatar “a”.

Distributed Proxy Architecture 123

ticast support in routers in various Internet domains. In application layer multicast,

all multicast functionality including membership management and packet replication

are implemented at end systems instead of routers. These architectures are currently

deployed for media streaming and transmission of content from an original server to

replicated servers in a CDN. Application layer multicast does not require changes to

the underlying network, thus, the deployment is faster compared to IP multicast. In

addition, application layer multicast maintain stateless nature of the network while

IP multicast needs to maintain per group state information at IP routers.

In this thesis, we consider IP multicast which is the most efficient and effective ap-

proach. As IP multicast also has better bandwidth saving than application layer mul-

ticast, the network bandwidth study of IP multicast can be used as a benchmark for

application layer multicast.

6.3 Simulation Experiments

In this simulation study, the following issues are investigated:

• Comparison of different proxy assignment algorithms.

• Efficiency of network multicast.

• Impact of varying the number of proxies.

• Comparison of network bandwidth usages in different architectures.

6.3.1 Simulation Setup

We use GT-ITM topology generator to model the Internet topology. A transit-stub

graph of 5000 nodes, with an average node degree of 3.9, is generated for the sim-

ulations. This topology is larger than the 600 node topology used in chapters 4 and

5 due to the number of proxies in this simulations can be large (from 50 to 100).

Details of this topology is provided in Appendix B.

Distributed Proxy Architecture 124

In this topology, ISP POPs are randomly chosen among the set of nodes, and the

number of game players located at these POPs are randomly generated based on

a uniform distribution. The topology generator parameters are chosen such that the

maximum propagation delay in the shortest path between two nodes is 300ms. Unless

otherwise stated, the numbers of POPs and game players are 100 and 5000, respec-

tively, and the physical/virtual world correlation is 0. The number of crowds/clans in

a crowd/clan based virtual world is 50 and 250, respectively.

We simulate two proxy distribution scenarios and also vary the number of proxies

and ISP POPs in each scenario. In the first scenario, proxies are deployed at random

locations in the network. In the second scenario, we envisage that proxies are often

placed at the edge of the network close to ISP POP. Hence, in the simulation, a num-

ber of proxies are randomly chosen from the set of ISP POPs. If a service provider

has a budget for a large number of proxies, it is possible to deploy a proxy at each ISP

POP. In this case, the distributed proxy architecture provides the lowest interactive

communication delay.

We compare the performance of the distributed proxy architecture with the central

server architecture and the peer-to-peer architecture. In the central server architec-

ture, an optimal central server is chosen among a set of potential servers with the

objective to minimize the average delay from all game players to that server as de-

scribed in Chapter 4.

6.3.2 Investigation of Proxy Assignment Algorithms

In this section, we compare the performance of three proxy assignment algorithms

proposed in the previous section. These include the integer linear programming

model for optimal server assignment, the greedy heuristics, and the simple heuris-

tics. For each algorithm, we calculate the total communication delay cost as defined

in Section 6.2.2. Cplex optimization software 1 is used for solving the ILP model.

The greedy heuristics is implemented in C++. We measure the running times of the

ILP model and the greedy heuristics on a Pentium IV 2Ghz Linux server with 1.5GB

of RAM.

1Cplex optimization software, available at http://www.ilog.com

Distributed Proxy Architecture 125

Proxies Variables Optimal Time Greedy Time Gap(%) Simple Gap(%)

3 1125 111784 0.08(s) 116030 <0.01(s) 3.7 120333 7.7

5 3625 80003 5.6(s) 80477 <0.01(s) 0.6 87586 9.5

7 7525 97989 5min24s 103757 <0.01(s) 5.8 110449 13

10 16000 76618 30min12s 80346 <0.01(s) 4.8 81704 6.6

Table 6.1
Comparison between the optimal proxy assignment, the greedy heuristics, and the simple

heuristics with respect to total interactive communication delay.

In the first experiment, we simulate a simple scenario in which the number of ISP

POPs is 25 and the number of potential proxy servers is 10, and the number of players

is 1000. These proxies are randomly chosen among network nodes. Table 6.1 shows

the total interactive communication delay (in ms) when using the proposed proxy

assignment algorithms. The gaps show the differences (in %) between each of these

heuristics and the optimal results. It is shown that the greedy heuristics performs

considerably better than the simple heuristics. The ILP model provides the lowest

delay but is not scalable. Specifically, it takes more than 30 minutes for Cplex to

solve a simple scenario which consists of only 25 POPs and 10 proxies. In this case,

the running time for the greedy heuristics is less than 10ms.

Fig. 6.3 shows the actual assignments of each algorithm when there are three poten-

tial proxies. The position of 25 ISP POPs and three proxies are shown although the

network topology is not shown to avoid cluttering the figure. It is shown that there are

interesting differences in the way each algorithm assigns ISP POPs to proxies. The

ILP model may assign ISP POPs to a farther proxy with the objective to minimize

the overall communication delay. On the other hand, the simple heuristics strictly

assigns ISP POP to the closest proxy, regardless of the delay between these proxies

and audio flow exchanges between them. The greedy heuristics provides a solution

that lies between the optimal result and the simple heuristics.

It is also noted that the ILP model only uses two proxies out of three available prox-

ies. It is due to the fact that the ILP model ensures optimal delay performance of

the distributed proxy architecture, regardless of the number of proxy servers actually

used. As it will be shown later, when using simple heuristics for proxy assignment,

the performance of the distributed proxy architecture may be worse than the opti-

Distributed Proxy Architecture 126

mal central server when only a small number of proxies are available. In the worst

case, due to unsuitable position of potential proxies with respect to ISP POPs, the

ILP model may choose only one proxy server and this architecture become a central

server architecture.

In the simple heuristics assignment in Fig. 6.3c, it is interesting to see that physical

distance does not always correlate to delay in routing path. An ISP POP that is

physically closer to one proxy may be assigned to another proxy which is closer in

terms of routing path latency. This is due to the network topology that connects these

nodes.

In the second experiment, we increase the number of POPs to 100 and the number

of potential proxies to 25. Proxies are randomly chosen from network nodes. Table

6.2 compares the performance of the ILP model and the greedy heuristics. The table

shows that the ILP is very unscalable as the running time of this algorithm increases

from about 3 seconds to more than 58 hours when the number of proxies increases

from 3 to 5. Table 6.3 shows the superior performance of the greedy heuristics com-

pared with the simple heuristics. The gap between these algorithms ranges from 11%

to above 31%. In addition, the greedy heuristics has very low running time and is

very scalable.

In the third experiment, the number of potential proxies is increased to 50 and these

proxies are located at ISP POPs. Table 6.4 shows the results when there are 100

POPs while Table 6.5 shows the results when there are 50 POPs. As shown from

the table, the greedy heuristics still shows superior performance compared with the

simple heuristics. However, when the number of available proxies is large, the gap

between the greedy heuristics and the simple heuristics is smaller. Especially, when

the number of proxies gets close to the number of ISP POPs, the simple heuristics

becomes more effective, as expected, and gets close to the performance of the greedy

heuristics. Finally, it is further demonstrated that the running time of the greedy

heuristics is still low even when the number of proxies increases up to 50.

Distributed Proxy Architecture 127

(a) Optimal

(b) Greedy Heuristics

(c) Simple Heuristics

Proxy 1 ISP POPs assigned to Proxy 1

ISP POPs assigned to Proxy 2

ISP POPs assigned to Proxy 3Proxy 3

Proxy 2

Figure 6.3 Comparison of proxy assignment algorithms.

Distributed Proxy Architecture 128

Number of proxies Variables Optimal Time Greedy Time Gap(%)

2 4434 500324 0.3(s) 507919 0.01(s) 1.5

3 13200 480611 3.37(s) 529323 0.02(s) 10

5 42840 374020 58h20min 426650 0.06(s) 14

Table 6.2
Comparison between optimal results and greedy heuristic results in the total interactive com-

munication delay.

Number of proxies Greedy Time Simple Gap(%)

2 507919 0.01(s) 565921 11.4

3 529323 0.02(s) 630886 19.2

5 426650 0.06(s) 561545 31.6

10 350412 0.24(s) 391674 11.8

15 408794 0.51(s) 474542 16.1

20 393401 0.87(s) 436987 11.1

25 374864 1.3(s) 419541 11.9

Table 6.3
Comparison between the greedy heuristics and the simple heuristics in the total interactive

communication delay.

6.3.3 Investigation with Proxy Architectures for Different Player
Aggregation Behaviours

In this section, we investigate the bandwidth saving of multicast when varying vir-

tual/physical world correlation in crowd/clan based games. In the following simula-

tions, a proxy is located at each ISP POP. We calculate the network bandwidth usage

of the peer-to-peer architecture and the proxy multicast architecture.

Fig. 6.4 shows the network bandwidth requirements of the peer-to-peer architecture

and the proxy multicast architecture when the correlation increases from 0 to 1. As

the correlation increases, there are fewer audio flow exchanges between ISP POPs

and the network bandwidth usages of both architectures decrease considerably. In

particular, in crowd based games, the bandwidth usage ratio of peer-to-peer over

an optimal central server decreases from above 20 at no correlation to about 6 at

a correlation of 1. The bandwidth usage ratio of proxy multicast over an optimal

central server also decreases from 8 at no correlation to 1 at a correlation of 1. In

addition, when using proxy multicast, the network bandwidth usage is reduced by

Distributed Proxy Architecture 129

Number of proxies Greedy Time Simple Gap(%)

2 465818 0.02(s) 495067 6.2

3 513879 0.03(s) 575849 12.1

10 553966 0.35(s) 641702 15.9

20 459463 1.41(s) 533199 16

30 454349 2.12(s) 522272 15

40 418743 3.7(s) 444598 6.2

50 424455 6.87(s) 441280 4

Table 6.4
Comparison between the greedy heuristic and the simple heuristic in the total interactive

communication delay.

Number of proxies Greedy Time Simple Gap(%)

2 440946 <0.01(s) 544444 23.5

5 458035 0.01(s) 533251 16.4

10 466955 0.06(s) 481700 3.2

20 369131 0.21(s) 397349 7.7

30 357900 0.47(s) 376559 5.2

40 346293 0.82(s) 361841 4.5

50 343464 1.37(s) 343498 0

Table 6.5
Comparison between the greedy heuristics and the simple heuristics in the total interactive

communication delay.

more than 50%, at low correlation, and by about 75%, at high correlation, compared

with the peer-to-peer architecture. The bandwidth requirements in clan-based games

are smaller (due to smaller numbers of avatars within hearing range) and follow a

similar characteristic to crowd-based games.

In the second experiment, we study the effect of varying avatar density on the net-

work bandwidth requirements of peer-to-peer, proxy unicast and proxy multicast.

The results show that the avatar density does not affect the network bandwidth usage

of a central server. As shown in Fig. 6.5a, in a loner based virtual world, the band-

width usages of peer-to-peer and proxy unicast are similar. When the average number

of avatars within hearing ranges is varied from 0.5 to 5, the ratio of bandwidth usage

of peer-to-peer/proxy unicast over the central server architecture increases linearly

from 0.2 to about 2. Proxy multicast bandwidth requirement increases almost lin-

Distributed Proxy Architecture 130

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

ts
 o

f
p

ro
x

y

m
u

lt
ic

a
st

 a
n

d
 p

e
e
r−

to
−

p
e
e
r

o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.2 0.4 0.6 0.8 1

Crowd peer−to−peer

Clan peer−to−peer

Correlation

Crowd proxy multicast

Clan proxy multicast

Figure 6.4 Effect of varying virtual/physical world correlation on network bandwidth re-

quirements in crowd/clan based games

early, and is only slightly lower than that of peer-to-peer. The bandwidth saving of

multicast here is not significant due to a large number of small multicast groups.

On the other hand, the bandwidth saving of multicast is more significant in a clan/crowd

based game due to a larger number of avatars in each multicast group. As indicated in

Fig. 6.5b, when the average number of avatars within hearing range in a clan/crowd

based virtual world is varied from 5 to 50, the network bandwidth requirement ratio

of peer-to-peer versus central server increases linearly from 2 to nearly 20. How-

ever, the bandwidth requirement of proxy multicast is significantly lower, especially,

at high avatar densities. Specifically, at high densities, the network bandwidth us-

ages of proxy unicast and proxy multicast are reduced by 25% and more than 50%,

Distributed Proxy Architecture 131

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

ts
 o

f
d

is
tr

ib
u

te
d

p
ro

x
y

 a
n

d
 p

e
e
r−

to
−

p
e
e
r

o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0

 0.5

 1

 1.5

 2

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Proxy multicast
Proxy unicast
Peer−to−peer

Number of avatars within hearing range

(a) Loners

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n
d
w

id
th

 r
e
q
u
ir

e
m

e
n
ts

 o
f

d
is

tr
ib

u
te

d

p
ro

x
y
 a

n
d
 p

e
e
r−

to
−

p
e
e
r

o
v
e
r

th
a
t

o
f

a
n
 o

p
ti

m
a
l

c
e
n
tr

a
l

se
rv

e
r

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45 50

Proxy multicast
Proxy unicast
Peer−to−peer

Number of avatars within hearing range

(b) Clans and Crowds

Figure 6.5 Effect of varying density on network bandwidth requirements in loner and crowd

based games

Distributed Proxy Architecture 132

respectively, compared with the peer-to-peer architecture.

6.3.4 Efficiency of Multicast

The results in the previous section show that multicast is more suitable for games

with crowds and large clans, and not effective for loner based games. In addition,

when the number of avatars in hearing range is large, it is more likely that some of

avatars are connected to the same proxy, therefore, the bandwidth usage of proxy

unicast is lower than that of peer-to-peer.

We investigate the effect of game players distribution on bandwidth requirements of

proxy unicast and proxy multicast architectures by varying the number of POPs that

game players are connected to in a crowd based game. We assume that there is a

proxy deployed at each POP and the correlation is set to 0. The results indicate that

the network bandwidth usage of the peer-to-peer architecture does not depend on

the number of POPs since a player needs to send separate audio streams to listeners

who resides at the same POPs. However, a proxy only needs to send one streams

for listeners connected to another proxy. Hence, assuming that a proxy is located

at each ISP POP, the number of ISP POPs has a considerable effect on the network

bandwidth usage of the distributed proxy architecture.

As indicated in Fig. 6.6b, the bandwidth saving of proxy multicast less significant

when game players are connected to a large number of POPs. When game players

are connected to a small number of POPs, there are more overlaps in each multicast

group, therefore, the advantage of multicast is more significant. Specifically, the

bandwidth saving of multicast improves by three times when the number of POPs

decreases from 500 to 10. In addition, as shown in Fig. 6.6a, the network bandwidth

usage of proxy unicast also reduces by five times when the number of POPs reduces

from 500 to 10. However, in most cases, the network bandwidth usage of proxy

unicast architecture is about twice that of proxy multicast.

Distributed Proxy Architecture 133

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

ts
 o

f

p
ro

x
y

 u
n

ic
a
st

 o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35 40 45 50

10 POPs
50 POPs

500 POPs

Avatars within hearing range

(a) Proxy unicast

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n
d
w

id
th

 r
e
q
u
ir

e
m

e
n
ts

 o
f

p
ro

x
y
 m

u
lt

ic
a
st

 o
v
e
r

th
a
t

o
f

a
n
 o

p
ti

m
a
l

c
e
n
tr

a
l

se
rv

e
r

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45 50

10 POPs
50 POPs

500 POPs

Avatars within hearing range

(b) Proxy multicast

Figure 6.6 Effect of varying the number of POPs on network bandwidth requirements of

proxy multicast and unicast

Distributed Proxy Architecture 134

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1

Central server

50 proxies
10 proxies

100 proxies

Correlation

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

Figure 6.7 Effect of varying virtual/physical world correlation on interactive delays

6.3.5 Effect of Varying Number of POPs and Servers

In this section, we investigate the effect of varying the number of proxy servers for a

range of correlation parameters. The number of proxies is chosen as 10, 50, and 100

(the latter is equal to the number of POPs). These proxies are located at ISP POPs

and simple heuristics is used for proxy assignment. As shown in Fig. 6.7, while

the delay of the central server does not depend on the correlation, the delay of the

proxy architecture reduces when the correlation increases. When a proxy is located

at every POP, the distributed proxy architecture has the smallest delay due to direct

routing paths between POPs. When the number of proxies is half of the number of

POPs (50 proxies), the interactive delay of the proxy architecture increases but is

still significantly lower than that of the central server, especially, at high correlation.

However, when the number of proxies is one tenth the number of POPs (10 proxies),

this delay increases significantly and is even higher than the interactive delay of the

central server when the correlation is under 0.5.

Fig. 6.8 investigates the interactive delay and network bandwidth requirements of

the distributed proxy architecture in a crowd based game when the number of prox-

Distributed Proxy Architecture 135

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

Central server
Distributed proxies

Number of distributed proxies

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(a) Interactive delay

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n
d
w

id
th

 r
e
q
u
ir

e
m

e
n
ts

 o
f

d
is

tr
ib

u
te

d

p
ro

x
y

 a
n

d
 p

e
e
r−

to
−

p
e
e
r

o
v
e
r

th
a
t

o
f

a
n
 o

p
ti

m
a
l

c
e
n
tr

a
l

se
rv

e
r

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100

Proxy multicast
Proxy unicast
Peer−to−peer

Number of distributed proxies

(b) Network bandwidth requirements

Figure 6.8 Effect of varying number of proxies on interactive delay and network bandwidth

requirements of distributed proxy architectures

Distributed Proxy Architecture 136

ies is varied from 10 to 100 and the physical/virtual world correlation is 0.5. As

indicated in Fig. 6.8a, when the number of proxies is reduced, the interactive delay

increases significantly from just above half of the delay of the central server to nearly

one. This is due to the fact that when the number of proxy servers is reduced, the dis-

tances from proxies to some POPs are increased. As a result, longer routing paths are

required between two POPs when audio flows are routed through these proxies. On

the other hand, as shown in Fig. 6.8b, when the number of proxies is reduced from

100 to 10, the network bandwidth requirements of proxy unicast and proxy multicast

decrease linearly by about 60% and 50%, respectively. In this case, since only one

audio stream is required from a POP to a proxy for each player’s voice transmission,

reducing the number of proxies will reduce the bandwidth usages of proxy unicast

and proxy multicast.

6.4 Conclusions

In this chapter, several proxy assignment algorithms are proposed for the distributed

proxy architecture. We first formulate the proxy assignment problem as an Integer

Linear Program. This formulation provides optimal proxy assignment but has a very

high computation complexity. Hence, we adapt the multi-layer graph representation

proposed in Chapter 5 and devise a greedy heuristics based on this graph. The sim-

ulation results show that the greedy heuristics has good delay performance and low

run time complexity. This heuristics also performs considerably better than a simple

heuristics which assigns each ISP POP to the closest proxy.

In addition, a quantitative simulation study has been carried out to evaluate the band-

width saving of network multicast in the distributed proxy architectures in different

avatar grouping behaviours and player distribution scenarios. The effect of vary-

ing the number of proxy servers on communication delays and network bandwidth

usages are also investigated.

Multicast is effective only when the average number of avatars in hearing ranges is

large (i.e crowds). In these scenarios, when game players are connected to a small

number of ISP POPs, the bandwidth cost saving of multicast is significant. How-

Distributed Proxy Architecture 137

ever, when game players are widely spread, the efficiency of multicast is reduced

significantly. The proxy unicast architecture also has smaller bandwidth usage than

the peer-to-peer architecture, especially when game players are connected to a small

number of POPs. This is due to the fact that peer-to-peer can send multiple copies of

the same stream to other players connected to the same POPs. Although this band-

width usage reduction is not as significant as multicast, the proxy unicast is worth

being considered since the implementation of network multicast over large-scale in-

frastructure is a costly task.

The number of proxies has a significant impact on the latency. If only a small number

of proxies are available (e.g., less than one tenth of the number of POPs) distributed

proxies can have higher delay than the central server when using the simple heuris-

tics for proxy assignment. However, if a large number of proxy servers are available

over the Internet, the distributed proxy architecture would be a cost effective delivery

architecture since it reduces the delay of the central server architecture and solves

access bandwidth problems of the peer-to-peer architecture. This scenario is possi-

ble since ISPs are generally willing to put game servers (or proxy servers) in their

networks in order to attract more game players (or Internet service subscribers), and

increase their revenues.

Chapter 7

Comparison of Architectures

7.1 Introduction

In Chapter 3, we introduced two distributed server architectures for the creation of

immersive audio scenes. The first architecture is distributed locale servers, which

is based on partitioning the virtual world to smaller areas called locales and assign-

ing each locale to a server. In the second architecture, a group of participants in a

given geographical location are assigned to a nearby server. This server, which is

referred to as a proxy, is responsible for the creation of audio scenes for its attached

participants. This architecture is referred to as the distributed proxy architecture. In

essence, these two architectures are ‘dual’ of each other; one based on partitioning of

virtual world (into locales) and the other based on the partitioning of physical world

(into geographical regions) and then assigning a suitable server to each partition.

The main focus of this chapter is to provide a quantitative comparison of the perfor-

mance of these two distributed architectures in different game delivery scenarios. A

simulation study is carried out to address the following key questions:

• With the same number of servers, which architecture will provide better delay

performance.

• What is the effect of increasing the number of servers on the performance of

each architecture.

138

Comparison of Architectures 139

• What are the advantages and disadvantages of these architectures under various

avatar aggregation behaviours.

In addition, in previous chapters, comparative results between each of these two

architectures with the central server and the peer-to-peer architecture have been pro-

vided. In this chapter, we present a summary of the performance evaluation of differ-

ent deliver architectures and recommendations on the effective deployment of these

architectures in different scenarios.

The rest of this chapter is organized as follows: In Section 7.2, we compare require-

ments of different delivery architectures. Performance evaluation of these architec-

tures is presented in Section 7.3. Finally, in Section 7.4, we provide a summary of

overall performance evaluations and recommendations of delivery architectures in

different game scenarios. In particular, these recommendations are given based on

the server resource availability, game’s avatar aggregation behaviors, physical/virtual

world correlation and multicast.

7.2 Comparisons of Architectural Requirements

7.2.1 Server Assignment Algorithms

It is assumed that a game service provider can have access to a number of servers lo-

cated over the Internet. The provider could choose a server site based on distribution

of participants. Since latency is very important in interactive communication, players

need to be assigned to servers efficiently in order to minimize communication delays.

In Chapter 4, we introduced two simple optimization objectives for choosing the

optimal central server. The server selected is the nearest possible server site to the

‘centre of mass’ (in terms of network delay) of participants whose avatars are not

isolated. In distributed server architectures, server assignment is a more complex

problem.

In Chapter 5, we produced an integer linear programming (ILP) formulation and a

greedy heuristic for optimal server assignment in the distributed locale server archi-

Comparison of Architectures 140

tecture. Our optimization algorithms assign servers to locales in a way that minimizes

total communication delay perceived by avatars. In Chapter 6, we devised an ILP,

a greedy heuristics, and a simple heuristics for server assignment in the distributed

proxy architecture. Since these two architectures are dual of each other, there are

some similarities in server assignment algorithms of these architectures.

It is interesting to see that the ILP model in each of these two distributed server ar-

chitectures has the same mathematical characteristics. The differences are only in

the ways decision variables represent in each architecture. For example, in the dis-

tributed locale server architecture, xs
i denote whether server s is chosen for locale

i while these variables denote whether proxy s is chosen for ISP POP i in the dis-

tributed proxy architecture. In the distributed locale server architecture, yst
ij denote

communication between players in adjacent locales while in the distributed proxy

architecture, they denotes communication exchanges between players assigned to

different proxies.

However, as discussed in Section 6.2.2, with the same number of locale/ISP POPs

and servers/proxies, the ILP model for the distributed proxy architecture often has

larger number of variables, hence, is more difficult to solve. This is due to a larger

number of interaction between players located in different ISP POPs compared to that

between players in adjacent locales. Simulation results in Section 5.3 and Section

6.3 also shows that the ILP model for the distributed locale server architecture has a

significantly lower run time. However, for large problems, heuristics are required for

both architectures.

The heuristics for both of these distributed server architectures are based on a multi-

layer graph algorithms. The results show that the greedy heuristics for the distributed

proxy architecture runs faster than the heuristics for the distributed locale servers

since it does not need to maintain a set of neighbor nodes as discussed in Section

6.2.3. However, the gap between this algorithm and optimal result is larger than

that between the greedy heuristics and optimal result in the distributed locale server

architecture. In addition, a common approach of deploying proxy servers is to assign

participants to the closest proxy. We refer to this as a simple heuristics. This approach

does not require any knowledge of avatar distribution in the virtual world.

Comparison of Architectures 141

7.2.2 Impact of Avatar Movements and Player Distribution

Avatar movements have no impact on the central server architecture. In the dis-

tributed locale server architecture, movements of avatars in the virtual world change

the composition of locales. This means that as time goes by, the current partition and

assignments of locales to servers drifts from optimal. In this situation, re-assignment

of locales to servers is necessary to reduce the communication delay.

While avatar movements may occur constantly, joining and leaving the game by

participants tend to occur on a longer time scale. It is known that players tend to join

the game in late afternoon and evening in the geographic areas where the players

come from (Armitage, 2001). Especially, the research in (Feng and Feng, 2003)

shows that game players in different geographical regions tend to join and leave the

game in few different time blocks during a day due to time zone differences between

these regions. In addition to avatar movements, this behavior may also affect optimal

server allocation.

Avatar movements have less impact on distributed proxies since each player is as-

signed to the same proxy all the time. However, when each player moves and comes

into hearing ranges of new players, the audio stream from that player must be routed

to the proxies associated with all these players. In addition, that player also has to re-

ceive all audio streams from these players. As a result, the distributed proxy architec-

ture requires very dynamic interactions between proxy servers for sending/receiving

audio flows.

Changes in the distribution of game participants in diverse geographical regions due

to time zone differences may affect the location of the optimal central server as dis-

cussed in Chapter 4. In distributed locale servers, these changes may lead to the

need to reevaluate optimal assignment of locales to servers. In distributed proxies,

newly-joined participants are just connected to the closest proxies, at least based on

the simple heuristics. This does not affect the current server assignment.

Comparison of Architectures 142

7.2.3 Server Resource Requirements

There are two key resources that should be considered at each server site: server

network bandwidth and server processing capacity. Server network bandwidth is

the bandwidth of the connection from the server to the Internet. For example, if a

server is located in a high speed LAN, the server network bandwidth is limited by the

bandwidth connection from that LAN to the Internet. The server processing capacity

sets a limit on the number of participants the server can support. Computing an audio

scene for each participant requires certain amount of computation resource and the

total computation resource requirement is proportional to the number of players. The

server network bandwidth requirement is also proportional to the number of players

connected to the server.

To provide the immersive voice service for MMOG, the central server architecture

requires very high processing power and server network bandwidth. The distribution

of servers in distributed server architectures does not only enhance the processing

scalability but also reduces the server network bandwidth requirements compared to

the central server architecture.

7.3 Simulation Experiments

7.3.1 Simulation Setup

The GT-ITM topology generator is used to model the Internet topology. In particular,

we use a transit-stub graph of 5000 nodes, comprising of five transit domains, with

the average node degree of 3.9, representing five different geographic regions. Each

transit domain has on average ten transit nodes, each transit node connects to nine

stub Autonomous Systems (ASs), representing the connectivity of different ASs in

each region. We randomly place two ISP POPs at nine stub ASs belonging to each

transit nodes, which results in 100 ISP POPs widely spread on the network. The

number of game players connected to each POP is randomly generated based on a

uniform distribution with an average of 50. Potential servers are randomly placed

in these regions. The topology generator parameters are chosen such that the the

Comparison of Architectures 143

maximum propagation delay in the shortest path between two nodes is 300ms. Unless

otherwise stated, the following parameters are used for simulations. The average

number of avatars in an avatar’s interactive zone in crowd/clan based virtual world

is 2 and the physical/virtual world correlation is zero. The number of crowds and

clans is 50 and 250, respectively. Details of simulation conditions are provided in

Appendix B.

In each architecture, we aim to obtain an optimal server assignment or close solution

to an optimal result. In the distributed locale server architecture, Cplex optimization

software 1 is used to solve the ILP problem in order to achieve optimal server as-

signments. In distributed proxy architecture, the greedy heuristics is used for proxy

assignment since it is not possible to solve by the ILP model. The simple heuristics

is also used in some scenarios where proxy servers are deployed at ISP POPs. In

the central server architecture, an optimal central server is chosen among a set of

potential servers.

7.3.2 Interactive Delay

In the first experiment, we randomly select 50 potential servers from all of the 5000

network nodes. We simulate three scenarios in which the number of servers in each

scenario is set to 5, 20, and 50. In each scenario, we also vary the physical/virtual

world correlation parameters. An optimal central server is chosen from the set of

selected distributed servers. Fig. 7.1 shows the delay performance of the distributed

locale server architecture and the distributed proxy architecture in each simulation

scenario. As shown from the figure, these two architectures result in relatively sim-

ilar delay performance. At no correlation, the interactive delay of these architecture

is similar to that of the central server architecture. This delay reduces considerably

when either the correlation increases or the number of servers is increased. In par-

ticular, when 50 servers are deployed, the interactive delay of the distributed proxy

architecture is reduced by more than 50% at a correlation of 1. The distributed lo-

cale server architecture has slightly lower delay when the number of servers is 5 and

20, and the correlation is in a range from 0.2 to 0.7. However, when 50 servers are

1Cplex optimization software, available at http://www.ilog.com

Comparison of Architectures 144

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 0.2 0.4 0.6 0.8 1

Distributed proxy
Distributed locale server

Central server

Correlations

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(a) 5 servers

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 0.2 0.4 0.6 0.8 1

Distributed proxy
Distributed locale server

Central server

Correlations

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(b) 20 servers

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 0.2 0.4 0.6 0.8 1

Distributed proxy
Distributed locale server

Central server

Correlations

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(c) 50 servers

Figure 7.1 Comparison in interactive delays between distributed proxies and distributed lo-

cale servers when varying the physical/virtual world correlation.

Comparison of Architectures 145

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

Distributed proxy (simple)
Distributed proxy (greedy)

Distributed locale server
Central server

Correlations

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(a) 5 servers

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

Distributed proxy (simple)
Distributed proxy (greedy)

Distributed locale server
Central server

Correlations

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(b) 20 servers

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

Distributed proxy (simple)
Distributed proxy (greedy)

Distributed locale server
Central server

Correlations

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(c) 50 servers

Figure 7.2 Comparison in interactive delays between distributed proxies and distributed lo-

cale servers when varying the physical/virtual world correlation.

Comparison of Architectures 146

 110

 120

 130

 140

 150

 160

 170

 5 10 15 20 25 30 35 40 45 50

Distributed proxy (simple)
Distributed proxy (greedy)

Distributed locale server
Central server

Number of servers

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(a) Physical/virtual world correlation of 0

 100

 110

 120

 130

 140

 150

 160

 5 10 15 20 25 30 35 40 45 50

Distributed proxy (simple)
Distributed proxy (greedy)

Distributed locale server
Central server

Number of servers

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(b) Physical/virtual world correlation of 0.5

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35 40 45 50

Distributed proxy (simple)
Distributed proxy (greedy)

Distributed locale server
Central server

Number of servers

In
te

ra
c
ti

v
e
 d

e
la

y
 (

m
s)

(c) Physical/virtual world correlation of 1

Figure 7.3 Comparison in interactive delays between distributed proxies and distributed lo-

cale servers when varying the number of server.

Comparison of Architectures 147

used, the distributed proxy architecture has slightly lower delay, especially when the

correlation is above 0.6.

We repeat a similar experiment as the previous one except potential servers in this

case are selected from ISP POPs. This is to address the fact that proxies are often

deployed at network edges. We expect this scenario is more favorable for the dis-

tributed proxy architecture. In the distributed proxy architecture, we use both simple

heuristics and greedy heuristics for proxy assignment. The results are shown in Fig.

7.2. In the distributed proxy architecture, using greedy heuristics for proxy assign-

ment results in smaller delay than the simple heuristics in all cases. The distributed

proxy architecture using greedy heuristics also had equal or smaller delay than the

distributed locale server architecture in all cases. It is observed that both of the dis-

tributed proxy architectures provide lower delay than the distributed locale server

architecture when there are a large number of servers. However, when the number

of servers is small (one twentieth the number of POPs), the distributed locale server

architecture has better delay performance than distributed proxy using simple heuris-

tics in this case. This is due to the fact that the gap between the simple heuristics and

the greedy heuristics is large when only a small number of servers are used. The

distributed proxy and distributed locale server architectures have relatively similar

delay performance when medium number of servers (one fifth the number of POPs)

are used. While distributed proxies perform better than distributed locale servers

when there are a large number of servers (half the number of POPs).

In the third experiment, we compare the delay performance of distributed proxies

and distributed locale servers when varying the number of servers. Fig. 7.3 shows

the interactive delay of these architectures when varying the number of servers at

physical/virtual world correlation parameters of 0, 0.5 and 1. As indicated in the

figure, at no correlation, distributed locale servers have similar interactive delay to

the central server and increasing the number of servers does not improve the delay

performance. On the other hand, at no correlation, when only five servers are used,

the interactive delay of distributed proxy architecture is about 20% higher than the

central server’s interactive delay. This delay is 20% lower than the central server’s

delay when fifty servers are deployed. At correlation of 0.5, the delay of distributed

Comparison of Architectures 148

locale server is reduced by about 15% when the number of servers increases from 5

to 50. The delay of the distributed proxy architecture reduces from 10% above the

central server’s interactive delay to about 30% below that delay. At correlation of

1, the interactive delays of both architectures are about 50% lower than the central

server’s interactive delay when the number of server exceeds 20. In addition, the

distributed proxy architecture has smaller delay than distributed locale server in this

case.

It is shown that increasing the number of servers reduces delays in both architec-

tures. However, this effect on each architecture is different. Due to our optimization

algorithm, the distributed locale server architecture always achieves equal or smaller

delay than the central server, regardless of the number of servers. In distributed lo-

cale servers, when the number of servers goes above certain value, approximately

one fifth of the number of POPs, further improvements in the interactive delays are

very small. The delay of distributed proxy architecture depends considerably on the

number of servers. When the number of servers is small (under one tenth the number

of POPs), distributed proxy could have higher delay than the central server due to

large distances between some proxies and POPs.

7.3.3 Network Bandwidth Usage

In the following simulations, we aim to evaluate the network bandwidth usage of

different architectures. While the interactive delay of each delivery architecture does

not depend on game player grouping behaviors, the network bandwidth usages de-

pend considerably on these behaviors. Fig. 7.4 shows the network bandwidth usages

of proxy multicast, proxy unicast and peer-to-peer in clan/crowd based games. In

all these architectures, the network bandwidth usage decreases as the correlation is

increased. This is expected since the higher the correlation is, the fewer audio flows

are needed across the network, and less resources are used. The results indicate

that distributed proxies reduce the core network bandwidth usage of the peer-to-peer

architecture, especially at high correlation. However, at low correlation, the proxy

unicast still uses up to eight times the network bandwidth of the central server in a

crowd based games. Network bandwidth usages are smaller in clan based games due

Comparison of Architectures 149

p
ro

x
ie

s
a
n
d
 p

e
e
r−

to
−

p
e
e
r

o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

R
a
ti

o
s

o
f

th
e
 n

e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

t
o

f
d

is
tr

ib
u

te
d

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

Proxy multicast
Proxy unicast
Peer−to−peer

Correlations

(a) Clans

R
a
ti

o
s

o
f

th
e
 n

e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

t
o

f
d

is
tr

ib
u

te
d

p
ro

x
ie

s
a
n

d
 p

e
e
r−

to
−

p
e
e
r

o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

Proxy multicast
Proxy unicast
Peer−to−peer

Correlations

(b) Crowds

Figure 7.4 Network bandwidth usages of distributed proxies in clan/crowd based games

when varying the physical/virtual world correlation.

Comparison of Architectures 150

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

t
o

f

d
is

tr
ib

u
te

d
 l

o
c
a
le

 s
e
rv

e
rs

 o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.2 0.4 0.6 0.8 1

Correlations

Clan
Crowd

Figure 7.5 Network bandwidth usages of distributed locale servers in clan/crowd based

games when varying the physical/virtual world correlation.

to smaller numbers of avatars in hearing range. Multicast only reduces the network

bandwidth usages of proxy unicast by up to 50%. With the implementation of net-

work multicast, distributed proxy architecture still uses four times the bandwidth of

the central server.

On the other hand, as indicated in Fig. 7.5, the distributed locale server architecture

uses relatively equal or less network bandwidth resources than the central server ar-

chitecture. At low correlation, the distributed locale server architecture has relatively

similar network bandwidth usage compared to the central server. When the correla-

tion is increased to 1, the bandwidth usage of the distributed locale server architecture

is reduced by more than 20%.

Furthermore, the network bandwidth usage of the distributed locale server architec-

ture does not increase as avatar density increases. This is the distinct advantage of

Comparison of Architectures 151

the distributed locale server architecture over the distributed proxy architecture. As

indicated in Fig. 7.6a, in a loner based game, while the network bandwidth usages of

proxy architectures increase almost linear with avatar density, the network bandwidth

usage of distributed locale server remains at relatively the same level with the cen-

tral server. The network bandwidth usage of the distributed proxy architecture and

peer-to-peer are low in this case due to small numbers of avatars in hearing range.

As indicated in Fig. 7.6b, in a clan/crowd based game, the network resource require-

ments of the distributed proxy and peer-to-peer architectures increase significantly as

avatar density increases. However, the network bandwidth usage of the distributed

locale server architecture is still relatively similar to that of the central server.

7.4 Summary of Results and Recommendations

In this chapter, we have compared characteristics of different delivery architectures.

The chapter also provides simulation experiments to investigate the performance of

two ‘dual’ distributed server architectures in a range of avatar grouping behaviours

and server distribution scenarios. This Section presents an overall performance sum-

mary of delivery architectures. This summary also includes some results from simu-

lation experiments in previous chapters (from Chapter 4 to Chapter 6).

7.4.1 Impact of Avatar Aggregations on Delivery Architectures

Avatar aggregation behaviours have insignificant impact on network bandwidth us-

age of the central server architecture and distributed locale server architecture. The

network bandwidth usage of central server is low and does not increase with avatar

density. Since a central server sends a maximum of fixed number of audio streams

(e.g, 2 streams in our simulations) to each participant, when the number of avatars

in hearing range exceeds this number, the number of voice streams are unchanged.

The network bandwidth usages of distributed locale servers are equal or less than the

central server, depending on the correlation.

On the other hand, the network bandwidth usage of peer-to-peer and distributed prox-

ies increases linearly with avatar density. These usages are low and not much differ-

Comparison of Architectures 152

ent from the central server in loner based virtual world but increase tremendously in

clan/crowd based virtual worlds. In particular, the network bandwidth usage of peer-

to-peer and distributed proxies can increase up to 20 and 15 times of the bandwidth

usage of central server, respectively.

7.4.2 Impact of Number of Servers

The performance of distributed locale servers and distributed proxies are dependent

on the number of available servers. In distributed locale server, the interactive delay

goes down as the number of servers increases. This delay is similar to the central

server’s delay when a small number of servers is used but is reduced by up to 60%

when a large number of servers is used. However, the incremental delay improvement

is insignificant when the number of servers exceeds certain values, approximately

one fifth the number of POPs.

On the other hand, the number of proxies has a significant impact on the latency.

When only a small number of proxies available (e.g., less than one tenth of the num-

ber of POPs) distributed proxies can even have higher delay than the central server.

This delay is reduced as the number of proxies increases and drops by nearly 50%

when proxies are available at all POPs.

7.4.3 Impact of Correlation

Virtual/physical world correlation does not have any impact on the central server

but does have significant effect on the performance of all other architectures. When

the correlation increases, communication between players in the virtual world are

among physically closer participants. Hence, both the network bandwidth usage and

the interactive delay of these architecture are reduced.

In particular, the interactive delay of each of distributed server architectures is re-

duced by up 60% when correlation is increased from 0 to 1. In this situation, the

network bandwidth usage of distributed locale servers is reduced by up to 40%. Cor-

relation has more impact on the network bandwidth usage of peer-to-peer and dis-

tributed proxies. Specifically, when the correlation increases from 0 to 1, the band-

Comparison of Architectures 153

width usage of peer-to-peer is reduced by 70% and 80% in crowd and clan based

virtual world, respectively.

7.4.4 Efficiency of Multicast

There are two attributes that affect the efficiency of multicast: avatar density and the

spread of game participants. Multicast is effective only when the average number

of avatars in hearing ranges is large (i.e crowds). In these scenarios, when game

players are connected to a small number of ISP POPs, the bandwidth cost saving

of multicast is significant. However, when game players are widely spread in the

Internet, the efficiency of multicast is reduced.

The proxy unicast architecture also has lower bandwidth usage than the peer-to-peer

architecture, especially when game players are connected to a small number of POPs.

Although this bandwidth usage reduction is not as significant as multicast, the proxy

unicast is worth considering since network multicast is not available Internet wide.

7.4.5 Discussions on Choice of Delivery Architectures

When all architectures are taken into consideration, the following suggestions are

presented:

• For loner based games, the peer-to-peer architecture would be favored due to

low delays in direct paths between avatars, however, security/anonymity issues

must be addressed.

• For games consisting of crowds and clans, both distributed server architectures

are suitable, especially, when there is a correlation between the virtual world

and the physical world. In this case, if delay is the key constraint, the dis-

tributed proxy architecture is favored. If bandwidth is the key constraint, the

distributed locale architecture is more suitable.

With regard to the two ‘dual’ distributed server architectures, our results indicate that

if a large number of servers are available over the Internet, both of these architectures

are cost-effective since they reduce the delay of the central server architecture. This

Comparison of Architectures 154

scenario is possible since ISPs are generally willing to put servers in their networks in

order to attract more game players (or Internet service subscribers) and increase their

revenues. Furthermore, if a small number of servers are available, distributed locale

server would be the choice while distributed proxy architecture is more suitable when

a large number of servers are available. In addition, the distributed locale server

architecture has better bandwidth efficiency than the distributed proxy architecture,

especially in games that have high avatar density.

In many games, where all different player characteristics may be apparent in different

parts of a virtual world, a hybrid architecture should be considered, in which, parts of

the virtual world that mainly consist of loners would use the peer-to-peer architecture,

while crowds or clans would either use one of these distributed server architectures.

Also, this architecture requires a dynamic signalling of a hybrid system, and the

evaluation of this architecture is future work.

Comparison of Architectures 155

R
a
ti

o
s

o
f

th
e
 n

e
tw

o
rk

 b
a
n

d
w

id
th

 r
e
q

u
ir

e
m

e
n

t
o

f
a
ll

a
ll

 a
rc

h
it

e
c
tu

re
s

o
v

e
r

th
a
t

o
f

a
n

 o
p

ti
m

a
l

c
e
n

tr
a
l

se
rv

e
r

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10 11

Distributed locale server
Proxy multicast

Proxy unicast
Peer−to−peer

Number of avatars within hearing range

(a) Loners

R
a
ti

o
s

o
f

n
e
tw

o
rk

 b
a
n
d
w

id
th

 r
e
q
u
ir

e
m

e
n
t

o
f

a
ll

 a
rc

h
ic

te
c
tu

re
s

o
v
e
r

th
a
t

o
f

a
n
 o

p
ti

m
a
l

c
e
n
tr

a
l

se
rv

e
r

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30 35 40 45 50

Distributed locale server
Proxy multicast

Proxy unicast
Peer−to−peer

Number of avatars within hearing range

(b) Clans and Crowds

Figure 7.6 Effect of avatar density on network bandwidth usages of different architectures

Chapter 8

Server Processing Resource
Management

8.1 Introduction

In previous chapters, we have evaluated different architectures to provide the im-

mersive voice communication service to MMOG using two basic performance met-

rics: network bandwidth costs and delays. However, the delay metric does not take

into account processing delays at audio mixing servers. While efficient server as-

signment and adequate bandwidth provisioning can minimize propagation delay and

network transmission delay, the audio mixing delay is strictly correlated to the QoS

management at each server. Minimizing server processing delay is essential for the

immersive audio communication service.

In Chapter 2, we have reviewed various architectures that can enable real-time pro-

cessing of packets in the network. This type of processing enables contents to be

created or manipulated in real-time for end-user requirements. In these architectures,

network processors or server farms are attached to network nodes in order to pro-

vide computation for a number of applications. These applications are referred to as

real-time content creation applications. These applications include network-based

processing applications such as transcoding, encryption as well as the proposed im-

mersive audio mixing application.

156

Server Processing Resource Management 157

These applications need to share the server processing capacity at network nodes

since it would be expensive to deploy a single server for each application in a large

number of network locations. SWON (Boustead et al., 2004) architecture is partic-

ularly suitable for this purpose. By using SWON, a service provider only needs to

reserve certain capacity at the server farm in the form of virtual servers and install

required software and configure that virtual server to support its application. We en-

visage that the deployment of the immersive audio services for a number of network

games will significantly benefit from using SWON.

In this chapter, we introduce a processing resource scheduling algorithm called Start-

time Weighted Fair Queueing (SWFQ). As discussed in previous chapters, the delay

performance of distributed locale server and distributed proxy architecture will im-

prove when there are a large number of servers. Deploying a large number of servers

at various location in the Internet for a single game would be very expensive. Us-

ing SWFQ, each server can be effectively shared between different real-time content

creation applications. As shown in Fig. 8.1, a service provider can deploy a server in-

frastructure using SWON and use SWFQ to provide processing resource sharing for

immersive audio scene creation among several different games. Once a server assign-

ment algorithm chooses a suitable set of server sites, processing resource reservation

is made at each server site based on the number of players assigned to that server.

In addition, due to movement of avatars and player joining or leaving the game, the

processing resource requirement of an audio scene creation at a server may change.

This change can be addressed by renegotiating resource reservation and assigning a

new scheduling weight for the application.

This chapter is concerned with designing an efficient processing resource scheduler

at a server farm to minimize delays and ensure fair processing resource allocation

between applications that require real-time creation of content. In Section 8.2.1,

we first briefly describe requirements of the immersive audio mixing operations at a

server and discuss several approaches for processing resource management for appli-

cations that require real-time content creation. In Section 8.3, we discuss the design

of SWFQ. Section 8.4 presents an analysis of this algorithm. Finally, in Section 8.5,

simulation experiments are carried out to evaluate the performance of this algorithm

Server Processing Resource Management 158

CPU

CPU
CPU

Players

Network Domains

CPU
CPU

SWON Server Site

ISP POP

Players

SWFQ
SWFQ SWFQ

SWFQ

SWFQ

CiscoSystems
Cisco 7500 SERIES

CiscoSystems
Cisco 7500 SERIES

CiscoSystems
Cisco 7500 SERIES

CiscoSystems
Cisco 7500 SERIES

CiscoSystems
Cisco 7500 SERIES

Figure 8.1 An example of implementation of SWFQ in SWON.

in a wide range of applications. Section 8.1 gives an implementation scenario of

SWFQ and Section 8.6 concludes.

8.2 Server Processing Resource Management

8.2.1 Processing Resource Requirements of Immersive Audio Mix-
ing Operation

Fig. 8.2 shows an outline of an immersive audio mixing processor. Packets arriv-

ing from different audio streams are buffered. For each computation time interval, a

packet in each stream is selected for mixing to produce the audio scene. The com-

puting requirements will depend on the number of players in the game which is

strictly correlated to the number of audio streams sent to the processor. Even when

the number of players is unchanged, the computation requirements for audio scenes

are dependent on several factors: 1) Number of audio packets successfully reach-

ing the server; 2) Positions of avatars which determine what mixing operations (e.g.,

Server Processing Resource Management 159

additions and multiplications) are performed on these packets. 3) Contents of these

packets depending on state of conversation (e.g., packet representing silence state or

talk spurts).

Researchers in our research group have implemented an immersive audio mixing

server for several games including Quake 3 and Wolfenstein Enemy Territory. We

carried out an experiment on a Quake 3 game of five participants and used a Celeron

1.2 GHz server for computing immersive audio scenes for these players. In this

experiment, an ADPCM codec with 32kbps data rate is used. The server buffers

audio packets from players and computes an audio scene at every 32 ms interval

and sends the results back to each player (Boustead et al., 2005). At each interval,

the relative position of each avatar used for computing audio scenes and a server

processing time is recorded. Fig. 8.3 shows the server processing times of computing

audio scenes for the game during 5000 intervals or 160 seconds of the game. The

computation times vary significantly from 1.7 ms to 5.5 ms.

These variances are due to movements of avatars and conversation patterns. For ex-

ample, when avatars are close to each other, the numbers of avatars in hearing ranges

increase, and the computation requirement for that audio scene also increases. Even

when there is no movement of avatars, the computation requirement also depends on

the conversation patterns such as talk spurt or continuous chatter which determines

the number of audio packets presenting actively speaking state delivered to the server

at each interval. In massive multiplayer online games, the processing requirement of

audio mixing for the game may have similar behavior.

8.2.2 Server Processing Resource Management Model

8.2.2.1 Classification of Applications

The basic model of a processing resource scheduler at a server site (e.g, a SWON

server site) is shown in Figure 8.4. In this model, a processing server is connected

to a router or switch. Packets belonging to different real-time content creation appli-

cations are delivered to the server. These packets are buffered and placed in a queue

for processing at the processor scheduler. After being processed, they come back to

Server Processing Resource Management 160

Audio mixingIncoming audio streams Mixed audio streams

Buffer

C
P

U

Figure 8.2 Immersive Audio Mixing.

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Packet number

P
ro

c
e
ss

in
g
 t

im
e
s

(m
se

c
)

Min: 1.7 msec, Max: 5.5 msec, Mean: 2.7 msec, Median: 2.5 msec

Figure 8.3 Variation in actual processing time requirements of immersive audio scene of a

Quake 3 game with five players.

the router/switch for transmission.

Applications that require real-time processing of content can be classified into two

classes: header processing applications and payload processing applications. In

header processing applications, processing only involves read and write operations of

packet headers. Examples of header processing applications are IP forwarding, trans-

port layer classification and QoS routing. On the other hand, in payload processing

applications, read and write operations can be performed on packet payload. Exam-

Server Processing Resource Management 161

Switch/Router

Buffer allocation for

different applications

Processing resource reservation

and sharing policy

Incoming traffic

CPU

Outgoing traffic

Figure 8.4 Model of a node processing resource management.

ples of payload processing applications are packet compression, packet transcoding,

encryption and decryption. Immersive audio mixing is also a payload processing ap-

plication. For this application, the server processes the contents of all audio packets

arrived from players and computes individual audio scene packets for each player.

8.2.3 Processor Resource Scheduling

In Section 2.4.1.3, we reviewed several techniques and approaches for server re-

source management. Depending on the type of applications running on a server,

each approach has a different way of managing processing resource. We also dis-

cussed the problem of sharing processing resource among different content creation

applications. Current research efforts aim to design suitable packet-based process-

ing resource schedulers for these application instead of time sharing as in traditional

operating systems.

The server node architectures in (Campbell et al., 1999) (Peterson, 2001) enforce

isolation of packet processing between flows or threads for security and account-

ing purposes. However, QoS scheduling and admission control are not specified.

The work in (Qie et al., 2001) discusses the problem of scheduling computation re-

sources in a software-based router but relies on the assumption that processing times

Server Processing Resource Management 162

of packets are pre-determined. Galtier et al. (Galtier et al., 2001) shows that the

prediction of packet execution times in an experimental test bed can have large mean

errors.

The research in (Pappu and Wolf, 2002) shows that the processing load of some

networking applications are predictable and correlated to the packet sizes. This ob-

served correlation is then used for specifying processing resource reservations, and

scheduling based on estimation of each packet processing times. However, in general

purpose processing, it is hard to determine the processing time of an arbitrary packet.

In addition, processing load and operating system scheduling of a server can have

some impact on packet processing time. Experiments in (Sabrina and Jha, 2003) on

three payload processing applications, MPEG2 Encoder, RC2 Encryption and RC2

Decryption running on a Linux server shows that processing times can vary although

the data sizes are the same for all executions. As an example, Fig. 8.5 shows the

variation in actual processing times of a MPEG2 data block of 24576 bytes in 1000

repetitive executions on a Pentium 4, 1.8 GHz processor. In this experiment, there

is no other process running except those belonging to operating system processes.

It is demonstrated that the processing times of identical frames can be different due

to operating system process scheduling. In addition, as indicated in Section 8.2.1,

processing requirements of computing audio scenes can vary significantly even when

the number of players is unchanged.

In short, in real-time content creation applications, it is generally hard to determine

execution times of packets for scheduling. In the next section, a processing resource

scheduling algorithm is introduced to address this problem.

8.3 Start-time Weighted Fair Queueing

One of the key problems for scheduling processing resource is the inability to deter-

mine execution times of packets from information in headers for scheduling. There-

fore, it is difficult to maintain the fair share of processing resources among applica-

tions and provide bounds on the processing latency. In bandwidth resource schedul-

Server Processing Resource Management 163

Figure 8.5 Variation in actual processing time of MPEG2 data block of fixed length for

different executions (Sabrina and Jha, 2003).

ing, most fair scheduling schemes rely on obtaining the packet length in the packet

header to determine the scheduling decision among different sessions. In process-

ing resource scheduling, each packet carries codes, which can take different times to

process at servers.

Traditional operating systems use time sharing and context switching for processing

resource sharing. However, in network processing, the smallest unit of processing is

a complete packet. In many cases, context switching cannot be considered because

saving and recovering processing state will cause large processing overhead. In addi-

tion, erroneous or malicious packets can overuse CPU resources, therefore, penalize

other applications and reduce CPU performance considerably.

In this section, we first review basic packet scheduling disciplines that are used in

traditional network for bandwidth scheduling. Then, we introduce SWFQ and show

that it offers good fairness and delay properties without the knowledge of each packet

processing time in advance for scheduling. We propose to use this scheduling algo-

rithm to concurrently support a wide range of applications including:

• An application that require QoS, such as a bound on latency and an average

Server Processing Resource Management 164

processing rate, can do processing resource reservation based on an estimated

average processing requirement of that application.

• Other applications that do not require QoS guarantees, can receive fair proces-

sor sharing on a best-effort basis.

8.3.1 Packet Scheduling Disciplines in Traditional Networks

This section briefly describes the fundamental design of packet scheduling disci-

plines in traditional networks. Generalized Processor Sharing (GPS) (Parekh and

Gallager, 1993) is an ideal scheduling discipline based on a fluid flow model in which

the traffic is infinitely divisible and each session is serviced simultaneously accord-

ing to its weight. In packet-switched networks, however, the minimum service unit

is a packet and only one traffic stream can receive service at a time. Therefore, most

packet fair queuing (PFQ) algorithms are based on approximating GPS.

PFQ algorithms often simulate GPS by assigning virtual finishing times for packets

as if GPS was running. Packets from different sessions are placed in different logical

queues and stamped with virtual finishing times. Packets from the head of session

queues will be selected to be scheduled based on the increasing order of the virtual

finishing times. Computing virtual finishing times requires the size of packets from

packet headers. Most PFQ algorithms have the same way of updating virtual fin-

ishing times of packets (pk
i) based on the system virtual time, denoted as V (t), as

follows.

F k
i = max{F k−1

i , V (ak
i)} +

Lk
i

φi

(8.1)

where:

pk
i : Packet number k in session i.

φi: Weight of session i.

F k
i : Virtual finishing time of packet pk

i .

ak
i : Arrival time of packet of packet pk

i .

Lk
i : Length of packet pk

i .

The virtual finishing time F k
i represents a normalized amount of service, with respect

to its share, that session i has received right after packet k is served. When a PFQ

Server Processing Resource Management 165

algorithm schedules packets in increasing order of virtual finishing times, it aims

to equalize the normalized amount of services of all backlogged sessions. The role

of the system virtual time is to compute virtual finishing times of packets arriving

at unbacklogged sessions in order to equalize the normalized services of these ses-

sions with current backlogged sessions. The differences in defining system virtual

time functions in packet fair queueing algorithms result in different implementation

complexities, fairness measurements, and delay behavior.

Basically, there are two major approaches for updating the system virtual time.

• Simulating Generalized Processor Sharing (GPS): This approach is used in

Weighted Fair Queuing (WFQ) (Demers et al., 1990), Packet Generalized

Processor Sharing (PGPS) (Parekh and Gallager, 1993), and Worst-case Fair

Weighted Fair Queuing + (WF2Q+) (Bennett and Zhang, 1997). These schemes

use or estimate the system virtual function VGPS(t) that reflects the normalized

service each backlogged session should receive under GPS by time t. For ex-

ample, in WFQ and PGPS, the system virtual time is defined as

V (t + τ) = V (t) +
τ∑

i∈B(t) φi

(8.2)

where B(t) is the set of current backlogged sessions at time t. In this equation,

the slope of the system virtual time is inverse proportional to the number of

backlogged sessions, therefore, it allows sessions to receive more service when

the number of backlogged sessions decreases, and vice versa.

• Self-clocking: This approach is used in Self-Clock Fair Queueing (SCFQ)

(Golestani, 1994) and Start-time Fair Queueing (SFQ) (Goyal et al., 1997).

This approach has low complexity of maintaining the system virtual time but

experiences higher worst case delay.

8.3.2 Server Processing Resource Scheduling Model

From equation 8.1, if we define start time Sk
i = max{F k−1

i , V (ak
i)}, it can represent

the amount of service, normalized to its service share, session i has received before

Server Processing Resource Management 166

packet k is served. If a server chooses to schedule packets in increasing order of

start times, it should be able to provide equivalent performance to scheduling using

finishing times. Therefore, we design a PFQ algorithm based on start times since it

would not require packet lengths in advance. For scheduling based on finishing times

or start times, the system virtual time is important to compute finishing or start times

of packets arriving at unbacklogged sessions. We present a general methodology to

design PFQ algorithms based on start times as follows.

Consider a model of a processor scheduler serving N sessions which have packets

with different execution time requirements. Due to unknown processing require-

ments of packets, only one pair of Si and Fi is maintained for each session queue i.

When packet pk
i arrives at the head of session i queue, the start time is computed as

follows. 


Si = max{Fi, V (ak
i)} if session i queue is empty

Si = Fi otherwise
(8.3)

The finishing time Fi is updated only when this packet, which has processing cost

P k
i , has been processed.

Fi = Si +
P k

i

φi

(8.4)

This finishing time is then used to compute the start time of the next packet in session

i as shown in equation 2. In order to avoid malicious packets that can overuse CPU

resources, we define P max
i as the maximum allowed processing size of packets in

session i.

Using this model, we propose a PFQ algorithm called Start-time Weighted Fair

Queueing (SWFQ). SWFQ uses the same system virtual time used in WFQ, but

schedules packets in increasing order of start times. SWFQ is a generalization of

a scheme called Fair Queueing based on starting time (FQS) which is introduced

in (Greenberg and Madras, 1992) and is based on uniform processor sharing.

One of the existing PFQ algorithms in the literature that can also be used for pro-

cessing resource scheduling in this model is Start-time Fair Queueing (SFQ) (Goyal

et al., 1997). In SFQ, the system virtual time is defined as the start time of the current

packet in service and is updated each time a packet begins service. The main attrac-

Server Processing Resource Management 167

� � � �� � � �� � � �� � � �
20���

�
4

� � � � �� � � � �� � � � �� � � � �
25��	

	
5

� � �� � �
15 ��

45� � � �� � � �� � � �� � � �

20���
�
420� � �� � �� � �� � �

15

10 20 5

10 20 5

� � � �� � � �� � � �� � � �
205���

�
4� � � � �� � � � �� � � � �� � � � �

252010 ���
�

� � �� � �� � �� � �
15� � � �� � � �� � � �� � � � !

!
" " "" " "# # ## # #

$$%
%

&&'
' (()

)
* * * * ** * * * *+ + + + ++ + + + +

24; 20;0

25; 5; 0

29;4;0

5 4

SWFQ

,,
,
--
-/ / / / // / / / // / / / /

00
0
11
1

25 535

202439

42934

4

10 255

WFQ

Finishing Times Packet Size

Start Times

Scheduling based on increasing order of finishing times

Scheduling based on increasing order of start times

(a)

2 22 24 44 45 55 56 66 6
7 77 77 77 78 88 88 88 89 99 99 99 9: :: :: :: :

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;< < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < <

= = = = = = = = = = = = = = = = == = = = = = = = = = = = = = = = == = = = = = = = = = = = = = = = == = = = = = = = = = = = = = = = => > > > > > > > > > > > > > > > >> > > > > > > > > > > > > > > > >> > > > > > > > > > > > > > > > >> > > > > > > > > > > > > > > > > ? ?? ?@ @@ @ A AA AA AA A
B BB BB BB B C C CC C CC C CC C C

D D DD D DD D DD D D
E E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E EF F F F F F F F F F F F F F F FF F F F F F F F F F F F F F F FF F F F F F F F F F F F F F F FF F F F F F F F F F F F F F F FF F F F F F F F F F F F F F F F

G GG GH HH H

I II IK KK K
L LL LL LL LM MM MM M N NN NN NN N

O OO OO O

P PP PP PP PQ QQ QQ Q

R RR RS SS S

T TT TU UU U V V VV V V
W W WW W W

X X X X X X X X X X X X X X X X XX X X X X X X X X X X X X X X X XX X X X X X X X X X X X X X X X XX X X X X X X X X X X X X X X X XX X X X X X X X X X X X X X X X XY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Z Z ZZ Z ZZ Z ZZ Z ZZ Z Z
[[[[[[[[[[[[\ \ \\ \ \\ \ \]]]]]] ^ ^ ^^ ^ ^^ ^ ^

_ _ __ _ __ _ _
` ` `` ` `` ` `` ` `` ` `a a aa a aa a aa a ab b bb b bb b bb b bb b bc cc cc cc c d d dd d dd d dd d dd d d

e ee ee ee ef f ff f ff f f
g g gg g gg g g

h h hh h hh h h
i i ii i ii i i

j j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j jj j j j j j j j j j j j j j j jk k k k k k k k k k k k k k k kk k k k k k k k k k k k k k k kk k k k k k k k k k k k k k k kk k k k k k k k k k k k k k k kk k k k k k k k k k k k k k k kl l ll l ll l ll l lm mm mm mn n n n n n n n n n n n n n n n nn n n n n n n n n n n n n n n n nn n n n n n n n n n n n n n n n nn n n n n n n n n n n n n n n n no o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o

Flow 2

Flow 3

Flow 4

Flow 5

Flow 6

WFQ

SWFQ

SFQ

Flow 1

0 1 2 3 10 28

(b)

Figure 8.6 Example of WFQ, SWFQ and SFQ.

Server Processing Resource Management 168

tive feature of SFQ is the simplicity of maintaining the system virtual time. However,

one problem with SFQ is that the system virtual time is constant for some period of

time if packets from backlogged connections have the same start times. During this

time, if some new connections become backlogged, the start times of packets be-

longing to these connections will be set to equal to start times of packets that already

backlogged in this period. This may result in larger delay in processing packets from

already backlogged sessions. This behavior can be seen in the analysis carried out

by Bennett and Hui Zhang in (Bennett and Zhang, 1997) and the example shown in

the next section.

8.3.3 Example of SWFQ

In this section, we provide examples to compare basic operations of SWFQ with

WFQ and SFQ. Fig. 8.6a shows how WFQ and SWFQ compute finishing times

and start times to enable fair service ordering. In WFQ, the packet size is known,

hence the first packets of these three flows are assigned with appropriate finishing

times based on packet sizes. These finishing times are 5, 20, and 4, respectively.

Hence, these packets are scheduled in an increasing order of finishing time which is

the same to the service finishing order in GPS. On the other hand, in SWFQ, due to

unknown processing time, the start times of the first packet of these three flows are

set to 0. In the worst case, SWFQ may misorder the first packet of a busy session

compared to the service finishing order in GPS (the service processing order of the

first three packet should be 4-5-20 instead of 20-5-4). Therefore, SWFQ has different

properties compared to WFQ that we will analyze in the next session.

In SFQ, the system virtual time is defined as the start time of the current packet

in service and is updated each time a packet begins service. Therefore, the system

virtual time will stop advancing for a period of time if a burst of packets arrives at

empty queues in a short interval, resulting in larger delays to packets from already

backlogged sessions. This behavior is demonstrated in Fig. 8.6b, which shows the

arrival sequences and service orders of packets in six flows, each reserving the same

rates (φi = 1/6). The server capacity is 1 unit/s; the costs of packets p1
1 and p1

6 are

10 units; the costs of other packets are 1 unit. At time t = 0, p1
1 arrives, followed by

Server Processing Resource Management 169

p1
2 just after t = 0. Packets p1

3, p1
4, p1

5, and p1
6 arrive at time t = 1, t = 2, t = 3, and

just before t = 10, respectively.

In SWFQ, during the processing time interval of p1
1, the system virtual times in-

creases from V (0) = 0 to V (10) = 14.9, and the start times of p1
2, p1

3, p1
4, p2

2, p1
5, p2

3,

p2
4, p2

5, and p1
6 are 0, 3, 5, 6, 6.5, 9, 11, 12.5, and 14.9, respectively. Consequently,

the service order of SWFQ is similar to WFQ, in which the service of each session

finishes in the same order as if GPS was running. In SFQ, the system virtual time

remains unchanged when p1
1 is in service. Therefore, p1

2, p1
3, p1

4, p1
5, and p1

6 have the

same start times equal to 0 and are selected arbitrarily. As shown in Figure 2b, in the

worst case, SFQ can misoder packet considerably, resulting in large delays to early

arrived packets such as p1
2. We will show later in simulations that SWFQ can improve

the delay behavior of SFQ due to its more accurate system virtual time.

8.4 Analysis of SWFQ

8.4.1 Fairness Analysis

In this section, we analyze the throughput of SWFQ compared with WFQ. We will

show that SWFQ has a fairness equally comparable to WFQ. Since WFQ is widely

known as a fair packet scheduling algorithm in the literature, it is proven that SWFQ

is also a fair scheduling algorithm.

Theorem 1 For all time t and sessions i,

Ŵi(0, t) − Wi(0, t) ≤ P max (8.5)

where:

Ŵi(0, t): Work done in the SWFQ server in the time interval (0, t).

Wi(0, t): Work done in the GPS server in the time interval (0, t).

Pmax: Maximum processing size of a packet in the system.

This theorem shows the maximum amount of service by which a session under

SWFQ can exceed GPS. Because GPS and SWFQ are both work-conserving, they

Server Processing Resource Management 170

have the same busy period. Therefore, it is sufficient to prove the result for each busy

period. Without loss of generality, we prove the theorem in the Appendix A.1 with

the assumption that session i is constantly backlogged in interval (0, t).

Theorem 2 For all time t and sessions i,

Wi(0, t) − Ŵi(0, t) ≤ min((N − 1)P max, ri max
1≤n≤N

(
Pn

rn

)) (8.6)

where:

r: Server rate.

ri: Reserved rate of session i.

Pn: Processing size of a packet in session n.

N : Number of sessions sharing the server.

The theorem states the maximum amount of service that a session under SWFQ can

lag GPS. The proof is given in the Appendix A.2.

It is interesting to see that the bound on the throughput discrepancy of SWFQ and

WFQ compared to GPS are the same but in opposite directions. From the result of

the analysis in (Rexford et al., 1995), WFQ can lead GPS by the same amount as

SWFQ can lag GPS in Theorem 2. In addition, from the result of Theorem 1, SWFQ

can lead GPS by the same amount that WFQ can lag GPS in (Parekh and Gallager,

1993). Therefore, SWFQ has comparable fairness to WFQ.

8.4.2 Delay Analysis

8.4.2.1 Delay Guarantee

In this section, we analyze the delay bounds on packets in different application flows

in SWFQ.

Theorem 3 For all sessions i,

LSWFQ(pk
i) ≤ EAT (pk

i) +
∑

n∈B(t),n�=i

Pmax
n

r
+

Pmax
i

r
(8.7)

Server Processing Resource Management 171

where:

LSWFQ(pk
i): Delay guarantee for packet pk

i .

EAT (pk
i): Expected arrival time of packet pk

i .

EAT (pk
i) is defined as

EAT (pk
i) = max{a(pk

i), EAT (pk−1
i) +

P k−1
i

ri

} (8.8)

where EAT (p0
i) = −∞.

The delay guarantee for packet pk
i is the bound on the departure time of that packet

based on its expected arrival time (EAT) (Goyal and Vin, 1997) (Xie and Lam, 1995).

The proof of this Theorem is given in the Appendix A.3.

For WFQ, this delay guarantee, given in (Goyal et al., 1997), is,

EAT (pk
i) +

P max
i

ri
+ P max

r

Note that, since the delay guarantee here is independent of the traffic source spec-

ification, it is not the delay bound. If session rates are controlled, e.g. by a leaky

bucket, the delay bound can be derived from this delay guarantee (Xie and Lam,

1995) (Goyal et al., 1995).

The attractive feature of PFQ using finishing times like WFQ is the ability to guar-

antee a delay to a session flow based on the flow’s properties such as the reserved

rate ri and the maximum packet processing size P max
i . On the other hand, the de-

lay guarantees of SWFQ depend on the maximum processing size of packets in all

backlogged sessions at the server. In some situations, SWFQ can provide smaller

delay guarantees than WFQ. For example, consider session i that has larger P max
i

compared with other sessions and all sessions reserve the same rate. It follows that,

∑
n∈B(t),n�=i

(
Pmax

n

r
) <

Pmax
i

ri

(8.9)

As a result,

LSWFQ(pk
i) < LWFQ(pk

i) (8.10)

Server Processing Resource Management 172

In short, although SWFQ does not have the attractive delay guarantee feature of

WFQ, it can provide predictable delay guarantees which can be acceptable in the

context of processing resources scheduling. For real-time content creation, this delay

bound is a key for minimizing processing delay as well as delay jitter at a server.

8.4.2.2 Delay Bound

The delay bound can be derived from the delay guarantee under some assumption of

packet processing requirements of a flow and packet arrival process. Let A(pk
i) be

the actual arrival time of packet pk
i . We assume that actual processing requirements

of packets in flow i conforms to the following arrival function AP (ti, t2):

AP (t1, t2) ≤ δi + ri(t2 − t1) (8.11)

where:

δi: Maximum burst (in term of processing requirement).

The delay bound is determined as follows.

Theorem 4 For all sessions i, the delay bound is

LSWFQ(pk
i) − A(pk

i) ≤
δi

ri

− pk
i

ri

+
∑

n∈B(t),n�=i

Pmax
n

r
+

Pmax
i

r
(8.12)

The proof of this Theorem can be found in Appendix A.4

8.5 Simulation Experiments

8.5.1 Simulation Setup

In order to demonstrate the properties of SWFQ, we have modified the Network

Simulator version 2 (ns-2) (Fall and Varadhan, 2002) to implement SWFQ and SFQ,

and to support simulations of several real-time content creation applications.

In the first and second experiment, we simulate three network processing applica-

tions that are defined in (Pappu and Wolf, 2002): IP Forwarding (header processing)

with very low processing cost per packet; Cast Encryption with medium processing

Server Processing Resource Management 173

cost per packet; and Forward Error Coding (FEC) with very high processing cost per

packet. The processing requirements of packets for each application have been cal-

culated to approximate real applications on the test bed in (Pappu and Wolf, 2002).

The capacity of the server is set to 2000Mcc/s (Million CPU cycles per second) and

processing costs of IP Forwarding packets, Cast Encryption packets and FEC packets

are uniformly distributed at 0.01Mcc, 0.116Mcc and 1.90Mcc, respectively. Simula-

tions are carried out under three schedulers: SFQ, SWFQ, and WFQ.

In the third experiment, we simulate another set of three applications: immersive au-

dio mixing, MPEG2 Encoder and RC2 encryption. Processing requirements of audio

mixing application was based on the traces of playing games in Section 8.2.1. Raw

data from this traces are used this experiment. The traces of processing requirements

of MPEG2 encoder application and RC2 encryption application are from (Sabrina

and Jha, 2003).

8.5.2 Fairness of SWFQ

To evaluate the fairness of SWFQ, in the first simulation, we simulate ten IP For-

warding flows, five Cast Encryption flows, and two Forward Error Coding flows with

the respective weights for each application flow being 1, 2, and 5. Each flow sends

packets at random time interval and the average time interval is set based on the

reserved rate. The processing rates are measured by averaging over a small time

window which is set about 20 times the average time interval in each application

flow. As shown in Fig. 8.7, the rate plots of the three applications under these sched-

ulers are similar in small time intervals, therefore, it is demonstrated that SFQ and

SWFQ have comparable fairness and throughput guarantees to WFQ.

8.5.3 Delay Properties of SWFQ

To compare the delay properties of SWFQ with SFQ and WFQ, in the second simula-

tion, we simulate a total of 30 flows for IP Forwarding, Cast Encryption and Forward

Error Coding, ten flows for each application. Each flow reserves the same processing

rate, and sends packets randomly at specified average time intervals to just saturate

its share. The sum of average processing rates of all flows is just under the server

Server Processing Resource Management 174

FEC

Cast Encryption

IP Forwarding

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9 10

Time (sec)

R
a
te

 M
c
c
/s

(a) SFQ

FEC

Cast Encryption

IP Forwarding

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9 10

Time (sec)

R
a
te

 M
c
c
/s

(b) SWFQ

FEC

Cast Encryption

IP Forwarding

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9 10

Time (sec)

R
a
te

 M
c
c
/s

(c) WFQ

Figure 8.7 Processing rates allocated to IP Forwading, Cast Encryption, and FEC.

Server Processing Resource Management 175

Schedulers IP Forwarding Cast Encryption Forward Error Coding

SFQ 1.24 1.27 1.54

SWFQ 0.75 1.08 1.13

Table 8.1
Delay standard deviations of SWFQ and SFQ with IP Forwarding, Cast Encryption and

Solomon Forward Error Coding (msec).

Parameters Audio Mixing RC2 Encryption MPEG2 Encoding

Processing Times 1.7 - 5.5 ms 1 - 3 ms 18 - 35 ms

Weights 1 1 3

Table 8.2
Processing requirements of Audio Mixing, RC2 Encryption and MPEG2 Encoding.

capacity. Therefore, the delays measured are mainly due to scheduling not due to

queueing backlog. The results in Fig. 8.8 and Fig. 8.9 show that SWFQ provides

lower maximum delays to all application flows, especially, to FEC application flows,

when compared with SFQ. As illustrated in Table 8.1, SWFQ also gives smaller delay

standard deviations than SFQ for all applications flows, especially, for IP Forward-

ing and FEC flows. Reduction in delay standard deviations would reduce the delay

jitters.

We expect that SWFQ would give better delay behavior due to its more accurate sys-

tem virtual time, especially, where variations in processing requirements of packets

are large (IP forwarding and FEC packets). During the processing time of a FEC

packet, since the system virtual time in SFQ remains constant, packets arriving at

empty session queues during this time can have start times equal to this FEC packet,

and thus, are transmitted before packets waiting in backlogged sessions. As a result,

packets waiting in backlogged sessions experience larger delays. Fig. 8.8 shows that

WFQ provide smaller maximum delays than SWFQ and SFQ for application flows

that have low processing time per packet to reserved rate ratio. However, SWFQ can

provide lower maximum delays for FEC packets when compared with WFQ. This

behavior was mentioned in the discussion on delay guarantees earlier.

In the third simulation, we simulate 30 applications including ten audio mixing ap-

Server Processing Resource Management 176

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30

SFQ
SWFQ

WFQ

D
e
la

y
 (

m
se

c
)

Flow Number

IP Forwarding Cast Encryption FEC

Figure 8.8 Maximum delays of packets in IP Forwarding (queues: 0-9), Cast Encryption

(queues: 10-19), and FEC (queues:20-29).

Server Processing Resource Management 177

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300

Packet number

D
e
la

y
 (

m
se

c
)

SWFQ (Max delay: 5.7 msec)

(a) SWFQ

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300

Packet number

D
e
la

y
 (

m
se

c
)

SFQ (Max delay: 16.4 msec)

(b) SFQ

Figure 8.9 Delay performance of SWFQ and SFQ with Forward Error Coding application.

Server Processing Resource Management 178

Schedulers Audio Mixing RC2 Encryption MPEG2 Encoding

SFQ 6.88 7.07 5.72

SWFQ 5.36 5.83 4.13

Table 8.3
Delay standard deviations of SWFQ and SFQ with Audio Mixing, RC2 Encryption and

MPEG2 Encoding (msec).

plications, ten RC2 encryption application flows and ten MPEG2 Encoder applica-

tion flows. The processing requirements of each application and reserved processing

weights at the server are shown in Table 8.2. In each applications, packets arrive at

the server randomly with specified average time interval. The sum of average pro-

cessing requirements of these applications are just under server capacity so that the

delays measured are mainly due to scheduling not queueing backlog.

As shown in Figures 8.10 - 8.12, SWFQ also provides smaller maximum delays

than SFQ in all three applications. In particular, SWFQ can reduce the maximum

delays of audio mixing, RC2 encryption and MPEG2 encoding by 42%, 33% and

59%, respectively. Table 8.3 also shows the reduction in delay standard deviation of

SWFQ compared with SFQ.

Another simulation study in (Sabrina and Nguyen, 2005) on three applications,

namely MPEG2, RC2 encryption and RC2 decryption, also shows the advantage of

SWFQ over SFQ in reducing the worst case delay. In particular, by using SWFQ, the

worst case delay can be reduced by 23% for MPEG2 flow, 72% for RC2 decryption

data flow and 60% for RC2 encryption data flow compared with the delays achieved

when using SFQ.

8.6 Conclusions

In this chapter, we present a processing resource management architecture for sup-

porting the immersive audio mixing application as well as other real-time content

creation applications. We first briefly describe processing requirements of an immer-

sive audio mixing server. Then, a classification of applications with processing re-

Server Processing Resource Management 179

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

Packet number

P
ro

c
e
ss

in
g
 t

im
e
s

(m
se

c
)

SWFQ (Max delay: 35.7 msec)

(a) SWFQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

Packet number

P
ro

c
e
ss

in
g
 t

im
e
s

(m
se

c
)

SFQ (Max delay: 61.5 msec)

(b) SFQ

Figure 8.10 Delay performance of SWFQ and SFQ with Audio mixing applications.

Server Processing Resource Management 180

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

Packet number

P
ro

c
e
ss

in
g
 t

im
e
s

(m
se

c
)

SWFQ (Max delay: 38.6 msec)

(a) SWFQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

Packet number

P
ro

c
e
ss

in
g
 t

im
e
s

(m
se

c
)

SFQ (Max delay: 57.8 msec)

(b) SFQ

Figure 8.11 Delay performance of SWFQ and SFQ with RC2 Encryption application.

Server Processing Resource Management 181

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

Packet number

P
ro

c
e
ss

in
g

 t
im

e
s

(m
se

c
)

SWFQ (Max delay: 28.5 msec)

(a) SWFQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

Packet number

P
ro

c
e
ss

in
g

 t
im

e
s

(m
se

c
)

SFQ (Max delay: 69.6 msec)

(b) SFQ

Figure 8.12 Delay performance of SWFQ and SFQ with MPEG2 Encoding application.

Server Processing Resource Management 182

source requirements and QoS provisioning issues are discussed. Due to the inability

of determining processing times for scheduling, a processing resources scheduling

algorithm called Start-time Weighted Fair Queueing is proposed.

This chapter also describes how SWFQ can be used in accordance with SWON to im-

prove the cost of delivery and latency of the immersive voice communication service.

In particular, we assume that a SWON switch is connected to a high-performance

processing server which could be running a particular operating system. SWFQ can

be implemented at the switch, which schedules packets from different real-time ap-

plication flows and deliver these to the server for processing. Since end-to-end

From analysis and simulation, it is shown that SWFQ offers good fairness and delay

properties. In fact, the fairness of SWFQ is comparable to WFQ and the delay behav-

ior is better than SFQ. In particular, simulations on various applications shows that

SWFQ can reduce the worst case delay up to 60% compared with SFQ. We propose

to use SWFQ for processing resources scheduling to support QoS in two categories:

processing resource reservation and best-effort.

Chapter 9

Conclusions

9.1 Overview

In the current Internet, various emerging applications require real-time creation and

distribution of content. This thesis concentrates on the provision of an immersive

voice communication service to massive multiplayer online games, which requires

real-time creation of audio scenes and large-scale distribution of audio streams. We

present several delivery architectures for this service and provide suitable server as-

signment algorithms for each architecture. This thesis evaluates the performance

of these architectures in different game delivery scenarios. In addition, we develop

a suitable server processing resource management for sharing processing resources

among various real-time content creation applications including the immersive audio

mixing application. In this chapter, we provide a summary of the main contributions

and findings throughout thesis, recommendations from the thesis, and future work.

9.2 Summary of Contributions and Findings

The main contribution of the thesis is the investigation of different delivery architec-

tures for providing an immersive voice communication service to multiplayer online

games. We develop suitable server assignment algorithms of each architecture and

evaluate the performance of delivery architectures using these algorithms. Another

contribution of the thesis is the development of a processing resource scheduling

183

Conclusions 184

algorithm for managing resource sharing between the immersive audio mixing appli-

cation and other real-time content creation applications. This section describes main

contributions throughout the thesis.

9.2.1 Classification of Architectures and Performance Evaluation
Framework

The thesis evaluates different delivery architectures for the provision of immersive

voice communications to multiplayer online games based on existing game server

architectures. These architectures include peer-to-peer, central server, distributed

locale servers, and distributed proxies. We describes the main characteristics, and

advantages and limitations of these delivery architectures.

In addition, this thesis develops a game simulation model for massively multiplayer

online games. The model consists of player distribution in the Internet and different

avatar distribution in the virtual world. We also introduce key parameters for the

performance evaluation of delivery architectures. This game simulation model does

not appear to be available in the literature.

9.2.2 Central Server

The central server architecture is used in most current massively multiplayer online

games. The contribution of this thesis is to investigate the best strategy when using

a central server for creating immersive audio scenes for the game. We assume that

a game service provider can have access to a multitude of potential processing sites

and propose two optimization objectives for choosing an optimal central server from

this set. This thesis also proposes a dynamic relocation of a central server in response

to changes in player distribution due to time zone differences. The simulation results

show that relocation of the central server in response to these changes can signifi-

cantly reduce the interactive delay by up to 40% and the network bandwidth usage

by up to 50%. In addition, the optimal central server can reduce the interactive delay

of a randomly located central server by up to 50%.

Conclusions 185

9.2.3 Distributed Locale Servers

In the distributed locale server, we develop an Integer Linear Programming (ILP)

model and the greedy heuristics for solving the server assignment problem. These

algorithms are developed for optimizing communication delay in the game while re-

lated research efforts in the literature mainly consider load balancing and load sharing

among a distributed set of servers. This is a major contribution of this thesis.

A significant contribution in this research is the development of a new multi-layer

graph model for efficiently solving the ILP problem by transforming the problem

to a graph problem. A greedy heuristics is developed by using this graph and has

significantly lower computation complexity compared to the ILP model. In addition,

simulation results show that the greedy heuristic solutions are within 5% of the opti-

mal in all cases. As it will be shown later, this multi-layer graph is also applicable to

the proxy assignment problem in the distributed proxy architecture. We believe that

this multi-layer graph approach can be applicable to other problems in the literature.

By using these proposed server assignment algorithms, the distributed locale server

architecture improves the performance of the central server significantly. In par-

ticular, it is shown that increasing the number of servers reduces the latency of the

optimal central server significantly when there is a physical/virtual world correlation.

With a reasonable number of servers, the use of distributed locale servers can reduce

by up to 60% (average of 20%) the delay of the central server. In addition, distributed

locale servers outperform the central server in both latency and network bandwidth

usage, especially when there is virtual world/physical network correlation.

9.2.4 Distributed Proxy Architecture

In the distributed proxy architecture, a key contribution of this thesis is the devel-

opment of proxy assignment algorithms. While several research projects in the lit-

erature have proposed a proxy-based system for networked games, the provision of

these systems based on the game characteristics including player distribution and

avatar distribution is not adequately addressed. There are several related research

studies in proxy location problems, however, these are mainly designed for web con-

Conclusions 186

tent and can not be applied for the distributed proxy architecture in this thesis.

We first develop an ILP model for optimal proxy assignment. This ILP model has

the same mathematical characteristics as the ILP for the distributed locale servers

but is different in the way decision variables are represented. We again adapt the

multi-layer graph approach and devise a greedy heuristics for solving the problem.

The results show that the ILP model is very unscalable while the greedy heuristics

is highly efficient. The greedy heuristics is also significantly more accurate than a

common approach of assigning a player to the closest proxy.

Another contribution in the distributed proxy architecture is the evaluation of the

bandwidth saving of network multicast. The simulation experiments show that mul-

ticast is effective only when the average number of avatars in hearing range is more

than 20 (i.e large clan or crowd). In this situation, multicast can reduce the network

bandwidth of unicast by 50%. In these scenarios, when game players are connected

to a small number of ISP POPs, multicast is more effective. However, when game

players are widely spread, the efficiency of multicast is reduced significantly.

9.2.5 Performance Comparison Evaluation

Another major contribution of this thesis is the performance evaluation of all de-

livery architectures. Extensive simulation experiments have been carried out. This

quantitative study will be of benefit to future immersive voice service providers in

the design of a cost effective delivery architecture for this service. From this study,

we provide recommendations on choosing suitable delivery architectures based on

the server resource availability, multicast, and game’s avatar aggregation behaviors.

These recommendations are summarized in the next section.

9.2.6 Server Resource Management

The last contribution of the thesis is the design of a resource management architecture

for sharing processing resources among various real-time content creation applica-

tions such as media transcoding, encryption, and the immersive audio mixing ap-

plication. We propose a processing resource scheduling algorithm called Start-time

Conclusions 187

Weighted Fair Queueing (SWFQ). From analysis and simulation, it was shown that

SWFQ offers good fairness and delay properties compared with current schemes.

In fact, the fairness of SWFQ was comparable to Weighted Fair Queueing (WFQ)

and the delay behavior is better than Start-time Fair Queueing (SFQ). In particular,

SWFQ can reduce the worst case delay of SFQ by up to 60%.

9.3 Thesis Recommendations

9.3.1 Recommendations on Infrastructure Support

As discussed in Chapter 2, it would be costly for each immersive voice service

provider to deploy its own hardware infrastructure. We envisage that a shared server

infrastructure is suitable for providing the network and server infrastructure for vari-

ous immersive voice service providers (i.e, those providing this service for different

games). One of shared server infrastructures of interest is the SWON architecture

(Boustead et al., 2004). SWON is particularly suitable for those that provide the

immersive voice service to MMOG. Two key characteristics of MMOG are: 1 - The

number of participants ranges from several hundreds to more than ten thousands and

those numbers tend to increase significantly when the games become popular; 2 -

Participants are from widely diverse geographical locations. These characteristics

can be effectively addressed by SWON.

In addition to the economic benefit of using shared infrastructure, two key advantages

of using SWON are:

• Scalability and dynamic adjustment: An immersive voice service provider for

a particular game can hire virtual servers from SWON’s server farms. The

capacity of these virtual servers and the number of virtual servers can be dy-

namically adjust based on the game requirement.

• Latency driven distribution: The use of distributed virtual servers from SWON’s

server farms located in large geographic span are particularly suitable for the

distributed locale server and distributed proxy architecture.

Conclusions 188

In terms of server assignments, both optimization objectives provided in Chapter 4

are suitable for the central server architecture. Relocation of a central server between

two SWON servers is also possible. In distributed locale server and distributed proxy

architectures, both greedy heuristics are suitable for practical implementation.

In each SWON server site, SWFQ can be implemented for supporting various real-

time content creation applications in two QoS categories: processing resource reser-

vation and best-effort. Depending on the number of players assigned to a SWON

server, a game service provider can reserve a certain amount of processing resource.

9.3.2 Recommendations on Delivery Architectures

From the work performed in this thesis, we propose the following recommendations.

• Avatar Aggregation Behaviors

For loner based games, the peer-to-peer architecture would be favored but se-

curity need to be addressed. For clan/crowd based games, both distributed

server architectures are suitable, especially, when there is a correlation between

the virtual world and the physical world. In this case, the distributed proxy ar-

chitecture provides lower delay than the distributed locale server architecture

but requires larger amount of network bandwidth. A hybrid architecture may

be considered in scenarios in which, parts of the virtual world that mainly con-

sist of loners would use the peer-to-peer architecture, while crowds or clans

would use one of these distributed server architectures.

• Bandwidth Resource Availability

In addition to avatar aggregation behaviours, resource availability should be

taken into consideration. While loner based games should use peer-to-peer, in

clan/crowd based games, distributed locale servers and the central server are

more suitable when the network bandwidth is scarce. When the core bandwidth

is not a constraint, distributed proxies are more suitable.

• Server Availability

Conclusions 189

When only a small number of servers is available, central server and distributed

locale servers are more suitable than distributed proxies. When a large number

of server is available, distributed proxies are more suitable due to lower latency

performance.

• Physical/Virtual World Correlation

When there is physical/virtual world correlations, distributed server architec-

tures and peer-to-peer are more suitable than the central server architecture.

• Multicast

With respect to the distributed proxy architecture, multicast is only effective

when the number of avatars in hearing range is large. In addition, if game

players are connected to a small number of ISP POPs, the bandwidth saving

of multicast is more significant. When game players are widely spread, the

efficiency of multicast is reduced considerably.

9.4 Future Work

The work in this thesis provides a clear path for future work. This section presents

opening research issues for further investigation.

9.4.1 Performance Evaluation Model

Mobility

We have not considered movements of avatars in our analysis. In distributed locale

servers, due to avatar movements, the current assignment of locales to server can

drift from optimal. As time goes by, it is necessary to rerun server assignment al-

gorithms to re-assign locales to servers. An interesting future work is to introduce

avatar movement patterns and investigate how often we need to reassign servers and

portions of audio streams need to be rerouted.

Resources Constraints

Conclusions 190

While latency is the key priority in interactive entertainment applications, deploy-

ments need to cope with the availability of resources including server processing

capacity and bandwidth. Since our model of each delivery architecture focuses on

latency optimization a future extension of this work is to add server resource con-

straints into the model. For the central server and distributed proxies, it is easy to

add into the model by doing some simple checks. The extension of server assign-

ment algorithms for distributed locale servers and distributed proxies, which con-

sider resource constraints, has been also outlined in Section 5.2.3 and Section 6.2.3,

respectively.

In addition, due to limited server capacity, server processing delay may need to be

considered. This delay can vary depending on each server load and utilization. Our

proposed optimization algorithms do not consider this delay. For the distributed

locale server and distributed proxy architectures, designing new optimization algo-

rithms that takes into account these delays will be an interesting future work.

Multiple Game Service Provisioning Model

In practice, the server infrastructure may need to provision the immersive voice com-

munication service to several games simultaneously. In this scenario, it is necessary

to develop new provisioning algorithms that take into account server resource limits,

player distributions and avatar distributions of all these games. Each game service

provider can decide to hire a virtual central server or distributed virtual servers de-

pending on the game’s requirement and player distribution. It is up to the server

providers to assign servers to these games in a way that satisfies the performances of

these games and also optimizes the server provider’s resource usages. The provisions

can be done in parallel (where the service is initiated for all these games at the same

time) or in sequence depending on each game’s service request time. Developing

mechanisms and optimization algorithms for these provisions will be an interesting

area of work.

Evaluation based on Real Physical/Virtual World

It is an interesting future work to evaluate the performance of delivery architectures

Conclusions 191

based on the current Internet topology and actual avatar positions and player distri-

bution obtained from a current MMOG. Mapnet 1 can be used to create the Internet

backbone consisting of link bandwidth and delay of multiple international backbone

providers. Avatar positions and players’ IP addresses can be obtained from a cur-

rent MMOG game server. Players’ IP addresses can be translated to geographical

locations by using some software such as IP Locator 2. The combination of player

geographical locations and the Internet topology obtained from Mapnet will give a

realistic model of the game physical world.

9.4.2 Experimental Investigation

The future work is to build a test bed to implement these architectures in the Inter-

net. The test bed will consist of a number of server located in different geographical

regions. Implementations of these architectures for providing immersive voice com-

munications to a current network game will be an interesting future work. This will

enable us to have Internet wide trials and obtain experimental delay measurements

and user perception of voice quality.

Another interesting experimental work is to implement SWFQ in a server and inves-

tigate its use for sharing processing resources among several immersive voice mixing

applications and other applications such transcoding and encryption. Experimental

delay and fairness measurements from this would prove practical advantages of this

algorithm.

1Mapnet, http://www.caida.org/tools/visualization/mapnet/
2IP Locator, http://www.geobytes.com/IpLocator.htm

Bibliography

Aas, T. A., Brown, S., Green, B., and Motte, S. (2003). Show me the money! Rev-

enue models for massively multiplayer games. Game developers conference.

available at www.gdconf.com/archives/2003/.

Agarwal, G., Chah, R., and Walrand, J. (2001). Content distribution using network

layer anycast. In Proceedings of Second IEEE Workshop on Internet Applica-

tions, pages 124–132.

Andersen, D., Balakrishnan, H., Kaashoek, F., and Morris, R. (2001). Resilient over-

lay networks. In Proc. 18th ACM Symposium on Operating Systems Principles,

pages 131–145.

Anderson, D. B., Barrus, J. W., Howard, J. H., Rich, C., Shen, C., and Waters, R. C.

(1995). Building multi-user interactive multimedia environments at MERL.

IEEE Multimedia, 2(4):77–82.

Armitage, G. (2001). Sensitivity of Quake3 player to network latency. SIGCOMM

Internet Measurement Workshop. Poster.

Banerjee, S., Bhattacharjee, B., and Kommareddy, C. (2002). Scalable Application

Layer Multicast. In Proc. SIGCOMM.

Banga, G. and Druschel, P. (1999). Resource containers: a new facility for resource

management in server systems. In Proc. of the 3rd Symposium on Operating

Systems Design and Implementation. ACM.

Barish, G. and Obraczka, K. (2000). World wide web caching: trends and techniques.

IEEE Communication Magazine.

192

BIBLIOGRAPHY 193

Barrus, D. B., Waters, R., and Anderson, D. B. (1996). Locales: Supporting large

multiuser virtual environments. Computer Graphics and Applications, IEEE,

16(6):50–57.

Bauer, D., Rooney, S., and Scotton, P. (2002). Network infrastructure for massively

distributed games. In Proceedings of the first workshop on network and system

support for games, pages 36–43. ACM Press.

Bennett, J. C. R. and Zhang, H. (1997). Hierarchical packet fair queueing algorithms.

IEEE/ACM Transactions on Networking, 5(5):675–689.

Bernier, Y. (2001). Latency compensating methods in client/server in-game protocol

design and optimization. In 2001 Game Developers Conference, San Francisco,

California.

Bolot, J. C. and Parisis, S. F. (1998). Adding voice to distributed games on the

Internet. In the Proceedings of Seventeenth Annual Joint Conference of the

IEEE Computer and Communication Societies, pages 480–487.

Boustead, P., Safaei, F., and Dowlatshahi, M. (2005). DICE: Internet delivery of

immersive voice communication for crowded virtual spaces. In Proceeding of

IEEE International Conference on Virtual Reality, pages 35–41, Bonn, Ger-

many. IEEE.

Boustead, P., Safaei, F., and Nguyen, V. (2004). Switched overlay networks (SWON):

switching support for a global network of virtual servers. Technical report,

Smart Internet Technology CRC, http://www.titr.uow.edu.au/ paul/SWON1.pdf.

Bovy, C., Mertodimedjo, H., Hooghiemstra, G., Uijterwaal, H., and Mieghem, P.

(2002). Analysis of end-to-end delay measurements in internet. Technical re-

port, RIPE, http://www.ripe.net/test-traffic.

Bryhni, H., Klovning, E., and Kure, O. (2000). A comparison of load balancing

techniques for scalable web servers. IEEE Network, pages 58–64.

Calvert, K. L., Doar, M. B., and Zegura, E. W. (1997). Modeling Internet Topology.

IEEE Communication Magazine, 35(6):160–163.

BIBLIOGRAPHY 194

Campbell, A. T., De Meer, H. G., Kounavis, M. E., Miki, K., Vincente, J. B., and

Villela, D. (1999). A survey of programmable networks. Computer Communi-

cation Review, 29(2):7–23.

Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. S. (2002). The state of

the art in locally distributed web-server systems. ACM Computing Surveys,

34(2):263–311.

Carlsson, C. and Hagsand, O. (1993). DIVE - a multiuser virtual reality system. In

IEEE Virtual Reality Annual Intl. Symp., pages 394–400. IEEE.

Carpenter, B. (2003). What is grid computing? Technical Report 11, Internet Society,

http://www.isoc.org/briefings/011/. Grid Computing ISOC Member Briefing.

Carpenter, B. and Brim, S. (2002). Middleboxes: Taxonomy and Issues. Request for

Comments 3234, IETF Network Working Group.

Casner, S. and Deering, S. (1992). The first IETF Internet audiocast. ACM Computer

Communication Review, 22(3):92–97.

Chambers, C., Feng, W., and Feng, W. (2003). A geographic redirection service for

on-line games. In Proceedings of the eleventh ACM international conference on

Multimedia, pages 227 – 230. ACM.

Choi, S. and Shavitt, Y. (2003). Proxy location problems and their generalization.

In Proceedings of the 23rd International Conference on Distributed Computing

Systems Workshops (ICDCSW’03), pages 898–904.

Choi, S. Y., Turner, J. S., and Wolf, T. (2003). Configuring Sessions in Programmable

Networks. Computer Networks, 41:269–284.

Chu, Y., Rao, S. G., Seshan, S., and Zhang, H. (2001). Enabling Conferencing

applications on the Internet using overlay multicast architecture. In Proc. ACM

SIGCOMM. ACM Press.

Chu, Y., Rao, S. G., and Zhang, H. (2000). A case for end system multicast. In

Proceedings of the 2000 ACM SIGMETRICS international conference on Mea-

surement and modeling of computer systems, pages 1–12. ACM.

BIBLIOGRAPHY 195

Chuang, J. C. I. and Sirbu, M. A. (2001). Pricing multicast communication: a cost-

based approach. Telecommunication Systems, 17(3):281–297.

Cooper, I., Melve, I., and Tomlinson, G. (2001). Internet web replication and caching

taxonomy. Request for Comments 3040, IETF Network Working Group.

Cranor, C. D., Green, M., Kalmanek, C., Shur, D., Sibal, S., Van der Merwe, J. E.,

and Sreenan, C. J. (2001). Enhanced streaming services in a content distribution

network. IEEE Internet Computing, pages 66–75.

Cronin, E., Filstrup, B., Kurc, A., and Jamin, S. (2002a). An Ecient Synchronization

Mechanism for Mirrored Game Architectures. In Proc. NetGames 2002, pages

67–73. ACM.

Cronin, E., Filstrup, B., and Kurc, A. R. (2001). A distributed multiplayer game

server system. Technical report, UM EECS589 Course Project Report, cite-

seer.ist.psu.edu/cronin01distributed.html.

Cronin, E., Jamin, S., Jin, C., Kurc, A. R., Raz, D., and Shavitt, Y. (2002b). Con-

strained mirror placement on the Internet. IEEE Journal on Selected Areas in

Communications, 20(7).

Deering (1989). Host extensions for IP multicasting. Request for Comments 1112,

IETF Network Working Group.

Demers, A., Keshav, S., and Shenker, S. (1990). Analysis and simulation of a fair

queueing algorithm. Internetworking: Research and Experience, 1(1):3–26.

Diot, C. and Gautier, L. (July/August 1999). A distributed architecture for multi-

player interactive applications on the internet. IEEE Networks magazine, pages

6–15.

Douglis, F. and Kaashoek, M. (2001). Scalable Internet Services. IEEE Internet

Computing, pages 36–37.

Duan, Z., Zhang, Z.-L., and Hou, Y. T. (2003). Service overlay networks: slas,

qos, and bandwidth provisioning. IEEE/ACM Transactions on Networking,

11(6):870–883.

BIBLIOGRAPHY 196

Elson, J. and Cerpa, A. (2003). Internet Content Adaptation Protocol (ICAP). Re-

quest for comments, IETF, RFC 3507.

Fall, K. and Varadhan, K. (2002). The ns manual. The VINT Project,

http://www.isi.edu/nsnam/ns/.

Feng, W.-c. and Feng, W.-c. (2003). On the geographic distribution of on-line game

servers and players. In Proceedings of the second workshop on network and

system support for games. ACM Press.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-

Lee, T. (1999). Hypertext Transfer Protocol – HTTP/1.1. Request for Comments

2616, IETF Network Working Group.

Flak, T. and Stumm, M. (2002). Challenges In Providing Carrier-Grade

Telephony Over Broadband Wireless Networks. Internet Telephony.

http://www.tmcnet.com/it/0502/0502fso.htm.

Foster, I. and Kesselman, C. (2004). The Grid: blueprint for a new computing in-

frastructure. Morgan Kaufmann Publishers, second edition.

Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the Grid: Enabling

scalable virtual organizations. Intl. Journal of High Performance Computing

Applications, 15(3):200–222.

Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. (2001).

IDMaps: a global Internet host distance estimation service. IEEE/ACM Trans-

actions on Networking, 9(5):525–540.

Fraser, K., Hand, S., Harris, T., Leslie, I., and Pratt, I. (2001). The XenoServer

computing infrastructure. Technical report, Cambridge University.

Frecon, E., Greenhalgh, C., and Stenius, M. (1999). The DiveBone - an application-

level network architecture for Internet-based CVEs. In VRST, pages 58–65.

ACM.

Galtier, V., Mills, K. L., Carlinet, Y., Bush, S. F., and Kulkarni, A. B. (2001). Pre-

dicting and controlling resource usage in a heterogeneous active network. In

BIBLIOGRAPHY 197

Proceedings of the Third International Workshop on Active Middleware Ser-

vices, pages 35–44.

Gardner, B. and Martin, K. (1994). HRTF measurements of a KEMAR dummy-head

microphone. Technical Report Technical Report 280, MIT Media Lab.

Gauthier, P., Cohen, J., Dunsmuir, M., and Perkins, C. (1999). Web Proxy Auto-

Discovery Protocol. Technical report, IETF.

Gleeson, I., Lin, A., Heinanen, J., Armitage, G., and Malis, A. (2000). A framework

for IP based virtual private networks. Request For Comment RFC 2764, IETF

Network Working Group.

Golestani, S. J. (1994). A self-clocked fair queueing scheme for broadband applica-

tions. In Proceedings of IEEE INFOCOM ’94, pages 636–646.

Goyal, P., Guo, X., and Vin, H. M. (1996). A hierarchical CPU scheduler for multi-

media operating systems. In Proc. of Operating System Design and Implemen-

tation, pages 107–122.

Goyal, P., Lam, S., and Vin, H. (1995). Determining end-to-end delay bounds in

heterogeneous networks. In Proc. Workshop on Networks and Operating System

Support for Digital Audio and Video, pages 287–298.

Goyal, P. and Vin, H. M. (1997). Generalized Guaranteed Rate Scheduling Algo-

rithms: A Framework. IEEE/ACM Transactions on Networking, 5(4):561–571.

Goyal, P., Vin, H. M., and Cheng, H. (1997). Start-time fair queueing: A schedul-

ing algorithm for integrated services packet switching networks. IEEE/ACM

Transactions on Networking, 5(5):690–704.

Green, M., Cain, B., Tomlison, G., and Thomas, S. (2000). CDN peering

architectural overview. Technical report, IETF Network Working Group,

http://quimby.gnus.org/internet-drafts/draft-green-cdnp-gen-arch-02.txt.

Greenberg, A. G. and Madras, N. (1992). How fair is fair queuing? Journal of the

Association for Computing Machinery, 39(3):568–598.

BIBLIOGRAPHY 198

Greenhalgh, C. and Benford, S. (1999). Supporting rich and dynamic communication

in large-scale collaborative virtual environments. Presence: Teleoperators and

Virtual Environments, 8(1):14–35. MIT Press.

Harrington, J. and Cassidy, S. (1999). Techniques in Speech Acoustics. Kluwer.

Hendrix, C. and Barfield, W. (1996). Presence within virtual environments as a

function of visual display parameters. Presence, 5(3):274–289. MIT Press.

Hew, K., Gibbs, M. R., and Wadley, G. (2004). Usability and sociability of Xbox Live

voice channel. In Proc. of Australian Workshop on Interactive Entertainment

(IE2004), pages 51–58.

Kyriakakis, C. (1998). Fundamental and technological limitations of immersive au-

dio systems. Proceedings of the IEEE, 86(5):941–951.

Kyriakakis, C., Tsakalides, P., and Holman, T. (1999). Surrounded by sound. IEEE

Signal processing magazine, 16(1):55–66.

Lui, J. and Chan, M. (2002). An efficient partitioning algorithm for Distributed

Virtual Environment Systems. IEEE Transactions on Parallel and Ditributed

Systems, 13(3):193–211.

Lui, J. C. S., So, O. K. Y., Chan, M. F., and Tam, T. S. (1998). Dynamic parti-

tioning for a Distributed Virtual Environment. In Proceedings of the 3rd High

Performance Computing Asia Conference (HPC Asia’98).

Ma, W. Y., Shen, B., and Brassil, J. (2001). Content Services Network: the archi-

tecture and protocols. In the Proceedings of the 6th International Workshop on

Web Caching and Content Distribution, pages 83–101, Boston, Massachusetts.

Mahanti, A., Williamson, C., and Eager, D. (2000). Traffic analysis of a web proxy

caching hierachy. IEEE Network, pages 16–23.

Mauve, M., Fischer, S., and Widmer, J. (2002). A generic proxy system for net-

worked computer games. In Proceedings of the first workshop on network and

system support for games, pages 25–28. ACM Press.

BIBLIOGRAPHY 199

Mouchtaris, A., Reveliotis, P., and Kyriakakis, C. (2000). Inverse filter design for im-

mersive audio rendering over loudspeakers. IEEE Transactions on Multimedia,

2(2):77–87.

Moy, J. (1998). OSPF version 2. Request for Comments 2328, IETF Network Work-

ing Group.

Nguyen, C. D., Platt, D., and Safaei, F. (2003a). Design of processing re-

sources scheduling in programmable networks. In Proceedings of Australian

Telecommunications Network and Applications Conference (ATNAC), Mel-

bourne. ISBN: 0-646-42229-4.

Nguyen, C. D., Safaei, F., and Boustead, P. (2004a). Comparison of distributed server

architectures in providing immersive audio communication to massively multi-

player online games. In Proceedings of Australian Telecommunications Network

and Applications Conference (ATNAC), pages 499–505, Sydney. ISBN: 0-646-

44190-6.

Nguyen, C. D., Safaei, F., and Boustead, P. (2004b). A distributed proxy system for

provisioning immersive audio communication to massively multi-player games.

In Proceedings of ACM SIGCOMM Workshop on Network and Systems Support

for Games (Netgames), page 166, Portland, Oregon, USA. ACM Press.

Nguyen, C. D., Safaei, F., and Boustead, P. (2004c). A distributed server architecture

for providing immersive audio communication to massively multi-player online

games. In Proceedings of IEEE International Conference on Networks (ICON),

pages 170–176, Singapre. IEEE.

Nguyen, C. D., Safaei, F., and Boustead, P. (2004d). Performance evaluation of

a proxy system for providing immersive audio communication to massively

multi-player games. In Proceedings of 1st IEEE International Workshop on

Networking Issues in Multimedia Entertainment (NIME’04), Globecom 2004,

pages 192–199, Dallas, TX, USA. IEEE.

Nguyen, C. D., Safaei, F., and Boustead, P. (2005a). Optimal assignment of dis-

tributed servers to virtual partitions for the provision of immersive voice com-

BIBLIOGRAPHY 200

munication in massively multiplayer games. To appear in Special Issue in Com-

puter Communications Journal, Elsevier.

Nguyen, C. D., Safaei, F., Boustead, P., and Brun, J. (2005b). An investigation

of network and server architectures for the provision of immersive audio com-

munications to massively multi-player online games. Submitted to IEEE/ACM

Transactions on Networking.

Nguyen, C. D., Safaei, F., and Platt, D. (2004e). On the provision of immersive

audio communication to massive multi-player online games. In Proceeding of

the Ninth IEEE Symposium on Computers and Communications, pages 1000–

1005, Alexandria, Egypt. IEEE Computer Society.

Nguyen, T. V., Chou, C. T., and Boustead, P. (2003b). Provisioning CDN over Shared

Infrastructure. In Proceedings of IEEE ICON, pages 119–124, Sydney.

Pappu, P. and Wolf, T. (2002). Scheduling processing resources in programmable

routers. In Proceedings of IEEE INFOCOM 2002, pages 104–112.

Parekh, A. K. and Gallager, R. G. (1993). A generalized processor sharing ap-

proach to flow control in integrated services networks: The single-node case.

IEEE/ACM Transactions on Networking, 1(3):344–357.

Peterson, L. (2001). NodeOS interface specification. Technical report, AN Node OS

Working Group.

Peterson, L., Anderson, T., Culler, D., and Roscoe, T. (2002). A blueprint for intro-

ducing disruptive technology into the Internet. In 1st Workshop on Hot Topics

in Networks (Hotnets-1), Princeton, New Jersey, USA.

Pulkki, V. (1999). Uniform spreading of amplitude panned virtual sources. In Pro-

ceedings of IEEE Workshop on Applications of Signal Processing to Audio and

Acoustics.

Qie, X., Bavier, A., Peterson, L., and Karlin, S. (2001). Scheduling computations

on a software-based router. In Proc.IEEE Joint International Conference on

Measurement & Modeling of Computer Systems (SIGMETRICS), Cambridge.

IEEE.

BIBLIOGRAPHY 201

Qiu, L., Padmanabhan, V. N., and Voelker, G. M. (2001). On the placement of web

server replicas. In IEEE INFOCOM, pages 1587–1596.

Radenkovic, M. and Greenhalgh, C. (2002). Multi-party Distributed Audio Service

with TCP Fairness. In Proceedings of ACM Multimedia 2002, pages 11–20.

ACM.

Radenkovic, M., Greenhalgh, C., and Benford, S. (2002). Deployment issues for

multi-user audio support in CVEs. In ACM Symposium on Virtual Reality Soft-

ware and Technology, pages 179–185.

Reumann, J., Mehra, A., Shin, K. G., and Kandlur, D. (2000). Virtual service: a

new abstraction for server consolidation. In Proc. of the 2000 USENIX Annual

Technical Conference.

Rexford, J., Greenberg, A., and Bonomi, F. (1995). A fair leaky-bucket shaper for

ATM networks. Technical report.

Rooney, S., Bauer, D., and Scotton, P. (2003). Efficient programmable middleboxes

for scaling large distributed applications. In Proc. IEEE OpenArch, pages 65–

74.

Sabrina, F. and Jha, S. (2003). Scheduling resources in programmable and active

networks based on adaptive estimation. In Proceedings of the 28th Annual IEEE

International Conference on Local Computer Networks, pages 2–11.

Sabrina, F. and Nguyen, C. D. (2005). et al., Processing resource scheduling in

programmable nodes. Elsevier Computer Communication Journal, 28(6).

Safaei, F., Boustead, P., Nguyen, C. D., Brun, J., and Dowlatshahi, M. (2005). La-

tency driven distribution: infrastructure needs for participatory entertainment

applications. in IEEE Communication Magazine, Special Issue on Network Sup-

port for Interactive Entertainment Applications, 43(5).

Safaei, F., Ouveysi, I., Zukerman, M., and Pattie, R. (March 2001). Carrier-scale

programmable networks: wholesaler platform and resource optimization. IEEE

Journal on Selected Areas in Communications, 19(3):566–573.

BIBLIOGRAPHY 202

Savage, S., Collins, A., Hoffman, E., Snell, J., and Anderson, T. (1999). The end-to-

end effects of Internet path selection. In Proc. ACM SIGCOMM, pages 289–299.

Schroeder, T., Goddard, S., and Ramamurthy, B. (2000). Scalable web server clus-

tering technologies. IEEE Network, 14:38–45.

Sedgewick, R. (1990). Algorithms in C. Addison-Wesley.

Shaikh, A., Sahu, S., Rosu, M., Shea, M., and Saha, D. (2004). Implementation of a

service platform for online games. In SIGCOMM’04 Workshop on Network and

System Support for Networked Games, pages 106–110.

Singhal, S. and Zyda, M. (1999). Networked virtual environments design and imple-

mentation. ACM Press.

Stoica, I. (2004). Overlay networks. http://www.cs.virginia.edu/ cs757/slidespdf/757-

09-overlay.pdf.

Subramanian, L., Stoica, I., Balakrishnan, H., and Katz, R. (2004). OverQoS: an

overlay based architecture for enhancing internet QoS. In Proc. of First Sym-

posium on Networked Systems Design and Implementation (NSDI’04), pages

71–84. Usenix.

Ta, N. B. D. and Zhou, S. (2003). A dynamic load sharing algorithm for massively

multiplayer online games. In Proceedings of the IEEE International Conference

on Networks, pages 131–136.

Waters, R. C., Anderson, D. B., Barrus, J. W., Brogan, D., Casey, M., McKeown,

S., Nitta, T., Sterns, I., and Yerazunis, W. (1997). Diamond park and Spline: a

social virtual reality system with 3D animation, spoken interaction, and runtime

modifiability. Presence, 6(4):461–481. MIT Press.

Waxman, B. (1988). Routing of multipoint connections. IEEE Journal on Selected

Areas on Communications, 6(9):1617–1622.

West, D. B. (2001). Introduction to graph theory. Prentice Hall.

BIBLIOGRAPHY 203

Whitaker, A., Shaw, M., and Gribble, S. (2002). Scale and performance in the delani

isolation kernel. In Proc. of the Fifth Symposium on Operating Systems Designs

and Implementation, Boston, MA.

Xie, G. G. and Lam, S. S. (1995). Delay guarantee of virtual clock server. IEEE/ACM

Transactions on Networking, 3(6):683–689.

Zegura, E., Calvert, K., and Donahoo, M. (1997). A quantitative comparison of

graph-based models for Internet topology. IEEE/ACM Transactions in Network-

ing, 5(6):770–783.

Zou, L., Ammar, M., and Diot, C. (2001). An evaluation of grouping techniques for

state dissemination in networked multi-user games. In Proc. 9th International

Workshop on Modeling, Analysis, and Simulation of Computer and Telecommu-

nication Systems (MASCOTS), pages 33–40.

Appendix A

Proofs for SWFQ Analysis

A.1 Proof of Theorem 1

We use a similar method to the one in (Greenberg and Madras, 1992) to prove the

result. Firstly, we prove the following lemma.

Lemma 1 Suppose a packet just finished processing in SWFQ at time t. Then, the

minimum start time of packets in current backlogged sessions at time t called Sj is

always determined for scheduling and Sj ≤ V (t).

This lemma can be proved by contradiction. In the GPS system, all backlogged

sessions receive the same normalize service, which is equal to the system virtual

time V (t). In SWFQ, by serving packets in increasing order of start times, the system

attempts to make the normalize service of each session equal to V(t). If all sessions

in SWFQ have start times larger than V (t), it means that all the sessions have been

serviced more than it should have in the GPS server. Consequently, the work done

in SWFQ will be higher than in GPS, which is impossible since both servers are

work-conserving. When Lemma 1 is satisfied, the proof is carried out as follows.

Let k be the maximum number of packets in session i, whose service in GPS begins

no later than time t. Since packet pk+1
i has not started service in GPS at time t,

we have Sk+1
i ≥ V (t). Let t1 be the time SWFQ server begins to process packet

pk+1
i . From the result of Lemma 1, we have V (t1) ≥ Sk+1

i . As a result, we have

204

Proofs for SWFQ Analysis 205

V (t1) ≥ V (t). Since V (t) is an increasing function, it follows that t1 ≥ t. Therefore,

Wi(0, t) ≥
k−1∑
j=1

P j
i ≥

k∑
j=1

P j
i − Pmax ≥ Ŵi(0, t) − P max

A.2 Proof of Theorem 2

We adapt the method of proof in (Rexford et al., 1995) for WFQ to prove the result

for SWFQ. As shown in Theorem 1, if each of (N −1) sessions in SWFQ leads GPS

by Pmax, then one session will lag GPS by (N −1)P max. This bound is too large for

many cases, we can prove a much smaller bound as follows.

It is noted that the throughput discrepancy is maximum when a packet starts service

in SWFQ. Let tki and t̂ki be the time packet pk
i starts service in GPS and SWFQ,

respectively. We only need to consider the case tk
i ≤ t̂ki ; otherwise, Wi(0, t̂

k
i) ≤

Ŵi(0, t̂
k
i). Therefore,

Wi(0, t̂
k
i) = Wi(0, t

k
i) + Wi(t

k
i , t̂

k
i)

≤ Ŵi(0, t̂
k
i) + ri(V (t̂ki) − Sk

i) (A.1)

At time t̂ki , since session i receives more service in GPS than in SWFQ, there must

be a session j receiving more service in SWFQ than in GPS. Let pm
j be the packet

at the head of session j queue at time t̂ki . As packet pm−1
j must have finished service

before packet k starts service in SWFQ, we have

Sm−1
j ≤ Sk

i (A.2)

Since packet pm
j has not started at time t̂ki in SWFQ, and session j is receiving more

service in SWFQ than in GPS, we also have

V (t̂ki) ≤ Sm
j (A.3)

Applying these results into (7), we get,

Wi(0, t̂
k
i) − Ŵi(0, t̂

k
i) ≤ ri(S

m
j − Sm−1

j)

≤ ri

Pm−1
j

rj

≤ ri max
1≤n≤N

(
Pn

rn

) (A.4)

Proofs for SWFQ Analysis 206

Combining the two cases, we have,

Wi(0, t) − Ŵi(0, t) ≤ min((N − 1)P max, ri max
1≤n≤N

(
Pn

rn

)) (A.5)

A.3 Proof of Theorem 3

Let us denote dk
i and d̂k

i as the departure times of packet pk
i in GPS and SWFQ,

respectively. We have, 


dk
i = tki +

P k
i

riρ

d̂k
i = t̂ki +

P k
i

r

(A.6)

Where ρ = r∑
i∈B(t)

ri
, and it represents the ratio of the service rate a session currently

receiving to the service rate of that session when all sessions are backlogged in the

GPS system.

d̂k
i − dk

i = (t̂ki − tki) + (
P k

i

r
− P k

i

riρ
) (A.7)

We only need to consider the case tk
i ≤ t̂ki ; otherwise, d̂k

i ≤ dk
i . Since Wi(0, t

k
i) =

Ŵi(0, t̂
k
i), we have,

Ŵi(t
k
i , t̂

k
i) = Wi(0, t

k
i) − Ŵi(0, t

k
i) (A.8)

Combining (14) with the result of Theorem 2, we have,

Ŵi(t
k
i , t̂

k
i) ≤

∑
n∈B(t),n�=i

(Pmax
n) (A.9)

The worst case delay occurs when the service of session i under SWFQ lag GPS by

the maximum amount. As discussed in the proof of Theorem 2, it occurs when all

other backlogged sessions in SWFQ lead GPS, only session i in SWFQ lags GPS.

Therefore, in interval (tk
i , t̂

k
i), the normalize service of session i is lower than all

other backlogged sessions in SWFQ. Therefore, session i must receive service con-

tinuously in this interval. Consequently,

t̂ki − tki ≤ ∑
n∈B(t),n�=i

Pmax
n

r
(A.10)

The delay guarantee for GPS, given in (Goyal and Vin, 1997), is,

dk
i = LGPS(pk

i) ≤ EAT (pk
i) +

P k
i

riρ
(A.11)

Proofs for SWFQ Analysis 207

Combining (13) (16) and (17), we have,

LSWFQ(pk
i) = d̂k

i ≤ EAT (pk
i) +

∑
n∈B(t),n�=i

Pmax
n

r
+

P k
i

r
(A.12)

A.4 Proof of Theorem 4

To derive the delay bound, we need to derive the bound between EAT (pk
i) and A(pk

i).

Let Si be the set of packet indexes in flow i that has the follow property.

Si = {n|n > 0 ∩ (EAT (pn−1
i) +

P n−1
i

ri
) ≤ A(pn

i)}

For each packet pk
i , ∃j : j ≤ k that is the largest integer belonging to Si. From the

property of Si above and the definition of Expected Arrival Time, we have,

EAT (pk
i) = A(pj

i) +
n=k−j−1∑

n=0

P j+n
i

ri

(A.13)

The sum in the above equation is the actual processing requirements of those packets

indexing from j to k. Therefore,

EAT (pk
i) = A(pj

i) +
AP (A(pj

i), A(pk−1
i))

ri

(A.14)

From the definition of AP function, we have

AP (A(pj
i), A(pk

i)) ≤ δi + ri(A(pk
i) − A(pj

i)) (A.15)

As a result,

AP (A(pj
i), A(pk−1

i)) ≤ δi + ri(A(pk
i) − A(pj

i)) − P k
i (A.16)

From Equation A.14 and A.16 we have

EAT (pk
i) ≤ A(pj

i) +
δi

ri

+ A(pk
i) − A(pj

i) −
P k

i

ri

(A.17)

Therefore,

EAT (pk
i) − A(pk

i) ≤
δi

ri

− P k
i

ri

(A.18)

Proofs for SWFQ Analysis 208

Combining the above equation and the delay guarantee EAT (pk
i) derived in Theorem

3, the delay bound is

LSWFQ(pk
i) − A(pk

i) ≤
δi

ri

− pk
i

ri

+
∑

n∈B(t),n�=i

Pmax
n

r
+

Pmax
i

r
(A.19)

Appendix B

Details of Simulation Environments

B.1 Network Topologies

The network topologies used in simulations are generated by using GT-ITM topol-

ogy generator package (Calvert et al., 1997). There are three major graph models

included in this package: random graph, hierarchical graph, and transit-stub graph.

Basically, these models are different in the ways nodes and edges are generated and

distributed on a two-dimension plane.

In a random graph, edges are probabilistically added to a given set of nodes with

no structure among nodes. There are several favours of random graphs including:

pure random, Waxman model (Waxman, 1988), and other variations to the Waxman

model. In a pure random graph, edges are probabilistically added to nodes with a

fixed probability p. In the Waxman model, an edge from node u to node v are added

with the following probability.

P (u, v) = αe−d/(βL) (B.1)

This model is more realistic for modelling a real network compared with the pure

random graph model. An example of a random graph is illustrated in Figure B.1b.

The above random graphs are also referred to as a flat graph model since there is no

structure among the nodes. This does not closely capture real internetworks, in which

some nodes are more likely to be connected than others. The hierarchical graph

209

Details of Simulation Environments 210

(a)

Transit Domains

Stub Domains

Multi−homed Stub

Stub−Stub edge

(b)

Figure B.1 Example of (a) random graph and (b) transit-stub graph.

Details of Simulation Environments 211

model attempts to capture this feature of real internetworks. In a N-level hierarchical

graph, beginning with a connected graph (constructed by a random method), each

node is iteratively replaced by a connected graph. The edges of the original graph

is re-attached to nodes in the original graph. This is done N times and the resulting

graph has a N-level hierarchy among nodes.

The transit-stub model is based on the hierarchical graph generation method that fo-

cuses on modelling the Internet topology. In this method, a connected graph is first

generated using a random graph generation method. Each node of this graph rep-

resents a backbone topology of one transit domain. Then, within a transit domain,

a number of random connected graphs are generated to represent different stub do-

mains. These transit and stub domains represent transit and stub autonomous systems

(AS) in the Internet. An example of a transit-stub graph is shown in Figure B.1b.

There are two transit-stub graphs used for modelling the physical network topologies

in simulations in the thesis. Details of these graphs’s parameters are listed in the

Table B.1.

Each network edge is associated with two metrics: a routing policy cost and an Eu-

clidean distance between the two nodes. The routing policy costs are automatically

set by the GT-ITM package to represent the general routing characteristic of the In-

ternet (Zegura et al., 1997):

• If node u and v are in the same domain, the shortest path between them remains

within that domain.

• If node u in domain U and node v in domain V , the path from u to v goes from

U , through zero or more transit domains, to V

The Euclidean distance is used for representing the link propagation delay. In a

preprocessing process, the maximum end-to-end delay in the shortest path between

any two nodes is determined. The maximum end-to-end delay is then adjusted to

be equal to 300ms, which is based on the Internet delay analysis in (Bovy et al.,

2002). In order to make this delay equal to 300ms, all link delays are multiplied by

an arbitrary constant.

Details of Simulation Environments 212

Parameter Meaning Value
T Number of transit domains 3

Nt Average nodes per transit domain 8

K Average stub domains per transit node 3

Ns Average nodes per stub domain 8

n Total number of nodes 600

Node degree 2m/n, where m is the number of edges 4

(a) 600 nodes

Parameter Meaning Value
T Number of transit domain 5

Nt Average nodes per transit domain 10

K Average stub domains per transit node 9

Ns Average nodes per stub domain 11

n Total number of nodes 5000

Node degree 2m/n, where m is the number of edges 3.9

(b) 5000 nodes

Table B.1 Parameters used for generating the transit-stub graph.

B.2 Physical Network and Virtual World

The model of the physical network and the virtual world has been described in Chap-

ter 3. This section provides additional details to the description.

B.2.1 Physical Networks

The physical network consists of routers, ISP POPs and potential processing servers.

ISP POPs and potential processing servers are randomly chosen from the set of

nodes. All nodes can support routing function. The shortest path routing is imple-

mented based on Dijkstra’s algorithm which uses routing policy cost as the routing

metric. After running these algorithms, the delay between nodes and the path con-

necting them are stored in several matrices.

Shortest path multicast is also implemented based on Dijkstra’s algorithm. In this im-

plementation, it is assumed that all nodes can support multicast routing. The purpose

Details of Simulation Environments 213

of this multicast implementation is to store all multicast trees from each node to all

other nodes. Hence, when multicast is used to deliver audio streams from each avatar

to all other avatars in the background zone, the bandwidth cost saving of multicast

can be determined and compared with the approach of using unicast.

Players are connected to ISP POPs. The number of players assigned to each ISP

POPs is chosen randomly according to a uniform distribution. For example, in Chap-

ter 4, the number of players connected to each ISP POPs is uniformly distributed in

a range from 25 to 75, with an average value of 50.

B.2.2 Virtual World

There are three avatar grouping behaviours in the virtual world: loner, clan, and

crowd. The graphic representations of these virtual worlds are provided in Chapter

3. This section describes additional details of parameters used for generating the

virtual world.

The virtual world is modelled as a square size N . Each avatar has a coordinate (x, y),

where 0 < x; y < N . Avatar’s coordinates are generated according to the following

function.

• Loners: In each time that an avatar is placed, x and y are assigned with a

random number in (0, N), according to a uniform distribution.

• Clans & Crowds: Clans and Crowd are modelled as clusters. Firstly, a number

of cluster centers are randomly generated in the virtual world in a uniform

distribution (similar to the way loners are generated). In each cluster, avatars

are placed around the center according to a normal distribution with the mean

of 0. For example, let (a, b) be the coordinate of a cluster center, L be the

cluster size, avatar’s coordinates (x, y) are chosen as follows.

(x, y) = (a + normaldist(−L,L)), b + normaldist(−L,L)) (B.2)

In particular, the above normal distribution has the mean of 0, the variance of 2, and

the standard deviation of 1.4. Due to this normal distribution, in each cluster, the

avatar density reduces when the distance to the cluster’s center increases.

Details of Simulation Environments 214

In all simulations, the interactive zone radius RI and the background zone radius RZ

are chosen to be 5 and 20, respectively. The average avatar density depends on the

size of the virtual world N and the size of cluster L. As an example, in a crowd

virtual world that consists of 50 crowds, N and L are chosen to be 4000 and 200,

respectively. In this case, the interactive avatar density (average number of avatars in

the interactive zone) is 2.5. Varying L will result in different avatar densities.

B.3 Simulation Procedures

While some simulation parameters and procedures have been described in simulation

setup in each simulation experiment, this section provides additional details of the

simulation procedures.

In simulation experiments in each chapter, either the 600 node or 5000 node topology

discussed earlier will be used. This network topology is fixed in the set of experi-

ments in each chapter.

At the beginning of a simulation, a number of ISP POPs and potential processing

servers are randomly chosen from the set of nodes. The result of this assignment as

well as delays between nodes are stored in several matrices. Players are randomly

assigned to ISP POPs. Hence, the virtual world is created based on an avatar aggrega-

tion method and the correlation parameter. Avatar position in the virtual world, clan

or crowd, the relation between avatars and players, interactive zones, and background

zones are stored in several matrices.

After that, optimization modules read the above parameters and calculate solutions

for the server assignments. In the case of using Cplex, an input file is produced to

capture all required parameters. This input file is read by Cplex and output file from

Cplex are analyzed for representing a solution. In the case of using heuristics, the

heuristics modules written in C++ read all these parameters and calculate solutions.

Finally, solutions are analysed and the results are outputted to the graph. Unless

otherwise stated, each point of the result in a graph is associated with one simulation

of a physical world and a virtual world with one server assignment scheme. When

Details of Simulation Environments 215

several simulations are run for a set of result, error bars are plotted.

In each simulation, a set of result is often plotted based on varying some parameters.

Key parameters that are varied in each simulation include: physical/virtual world

correlation, avatar density, the number of servers or proxies, and the number of POPs.

When a parameter is varied, each optimization module recalculates a new server

assignment solution and the evaluation results are repeatedly obtained.

	University of Wollongong - Research Online
	Copyright warning
	Title page
	Abstract
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Chapter seven
	Chapter eight
	Chapter nine
	Bibliography
	Appendices

	Please see print copy for Figure 2:
	7: Please see print copy for Figure 2.8
	9: Please see print copy for Figure 2.9
	11: Please see print copy for Figure 2.11
	12: Please see print copy for Figure 2.12
	13: Please see print copy for Figure 2.13
	14: Please see print copy for Figure 2.14

	Please see print copy for Figure 8:
	5: Please see print copy for Figure 8.5

