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ABSTRACT

Current Positron Emission Tomography (PET) detectors suffer degradation in
the spatial resolution at the edges of the field of view. This occurs as a result
of the lack of depth of interaction (DOI) information which causes uncertainty in
deducing the Lines of Response (LOR) between coincident events. The Centre
for Medical Radiation Physics at the University of Wollongong has developed a
novel detector module for use in small animal PET which will provide depth of
interaction information while retaining the sensitivity of current scanners. This will
result in superior imaging together with the ability to locate smaller lesions. This
work focuses on preliminary investigations of the suitability of replacing the bulky
scintillator crystals and photomultiplier tubes of traditional PET detector modules
with compact LYSO scintillator crystals individually coupled to Si photodetectors.

Preliminary simulations focused on optimising the detector module were per-
formed using the GATE Monte Carlo package. Data from the simulations was
processed using a newly developed sinogram binning application. This application
is flexible and able to adapt to numerous detector geometries based on user input.
Depth of interaction information is automatically considered when binning the sino-
gram. Comparison of data from Monte Carlo studies processed with the sinogram
binning application and experiments using a microPET Small Animal PET scanner
are presented to illustrate the suitability of the sinogram binning application for
future Monte Carlo PET data processing.

The spatial resolution results which are provided indicate this detector module is
capable of providing superior performance to monolithic scintillator crystal detector
modules. Furthermore, notable advances can be made towards a significant reduc-

tion of the radial elongation artefact at the edges of field of view. Other parameters



which are important to the process of quantifying the performance of a small ani-
mal PET scanner are also presented including optimisation of energy windows, the

crystal size and detector configuration.
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