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Abstract 

The aim of this thesis was to study the thin film of magnesium diboride (MgB2) 

superconductor based on PLD synthesis technique.  The MgB2
 
is a very simple binary 

compound with a number of surprising properties. The discovery of superconductivity 

with a critical temperature (Tc) of 39 K in bulk MgB2 in January 2001 has attracted a 

huge research interests worldwide in this material. In a hope to substitute MgB2 

superconducting electronics for low temperature superconducting electronics and 

compete with high temperature superconductors, the preparation techniques of MgB2 

thin films need to be advanced from a material engineering point of view. On the 

other hand, new studies regarding the different behaviours of MgB2 thin films and 

MgB2 bulks will assist the scientific community to better understand the physics in 

this superconductor.    

We began the study with in situ MgB2 film preparation using normal on-axis 

geometry. The in situ annealing conditions of pulsed laser deposited MgB2 films were 

studied. We found that the superconducting properties depend in a crucial way on the 

annealing conditions: temperature, heating rate and time. We tested the Tc dependence 

of the in situ annealed MgB2 films by changing various process parameters, including 

laser energy density, target-substrate distance, background gas, annealing 

temperatures, heating rates and dwell times. The film processing conditions were 

optimized and good quality in situ films were obtained routinely, with good 

reproducibility. The hysteresis loops of magnetic moment versus applied field at 

different temperatures indicate a weak field dependence in high fields. Magneto-

optical imaging of the films showed quite homogeneous magnetic flux penetration, 

indicating structural homogeneity. The films without annealing show no 

superconductivity.  
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Another method using ex situ annealing has also been tested for a better 

crystallization of the MgB2 film, as well as for reference purposes. In the ex situ 

annealing process, we first deposited boron precursor film on a sapphire substrate and 

then wrapped it in Ta foil and sealed it in a stainless steel tube together with pure Mg 

pellets, under protective Ar atmosphere. The tube was then annealed in tube furnace 

and kept at 900ºC for 30 min. With this method, we obtained ex-situ MgB2 films of 

comparable quality as those reported so far in the literature, and used them as a 

benchmark to test possible improvements in MgB2 thin film technology based on 

PLD. 

Significant differences in properties between the in situ films and ex situ films 

were found. The ex situ annealed MgB2 film has a Tc onset of 38.1K, while the in situ 

film has a suppressed Tc onset of 34.5K.  The resistivity at 40K for the in situ film is 

larger than that of the ex situ film by a factor of 6. The residual resistivity ratios are 

1.1 and 2.1 for the in situ and ex situ films respectively. The field dependence of the 

resistivity-temperature curves has been measured. A large slope of the Hc2-T curve 

was obtained for the in situ annealed film. The Jc-H curves of the in situ film show a 

much weaker field dependence than those of the ex situ film, attributable to stronger 

flux pinning in the in situ film. The microstructural differences between the two types 

of films are observed by AFM and TEM. The small-grain (<60nm) size and a high 

oxygen level detected in the in situ annealed MgB2 films may be decisive for the 

significant improvement of Jc and Hc2. 

In order to enhance the performance of the MgB2 films, various amounts of Si up 

to a level of 18wt% were added into MgB2 thin films fabricated by pulsed laser 

deposition. Si was introduced into the PLD MgB2 films by sequential ablation of a 

stoichiometric MgB2 target and a Si target. The Tc's of the Si added MgB2 thin films 
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were tested. A Jc enhancement was observed in the Si added MgB2 films. For the 

~3.5wt% Si addition, the best enhancement circumstance, the magnetic critical current 

density (Jc) of the film at 5K was increased by 50% as compared to the undoped film. 

The slope of Hirr(T) and Hc2(T) curves of the 3.5wt% Si added MgB2 film was slightly 

higher than that for the undoped film.  

For the application in superconducting electronics, the surface smoothness of the 

MgB2 thin film is of crucial importance. We pioneered an off-axis deposition 

geometry in the PLD MgB2 films preparation. Highly smooth and c-axis oriented 

superconducting MgB2 thin films were successfully achieved with a off-axis 

geometry. The films were deposited on Al2O3-C substrates, aligned perpendicular to a 

stoichiometric MgB2 target in a 120 mTorr high purity Ar background gas. An in situ 

annealing was carried out at 650℃ for 1 min in a 760 Torr Ar atmosphere. Despite the 

short annealing time, an x-ray θ-2θ scan shows fairly good crystallization, according 

to the clear c-axis oriented peaks for the films. Both atomic force microscopy and the 

x-ray diffraction results indicated that the crystallite size is less than 50nm. The root 

mean square roughness of our off-axis film was ~4 nm in a 5×5 µm
2
 area. The zero 

resistance Tc value of the best off-axis film reached 32.2 K with a narrow transition 

width of 0.9 K. The films showed no anisotropy in Hc2-T curves when parallel and 

perpendicular fields were applied relative to the film surface. The slope of Hc2-T 

curves is ~1 T/K, which is still among the highest reported values.   

On the basis of successful preparation of smooth off-axis MgB2 films, we obtained 

MgB2/Mg2Si multilayer structure by sequentially switching a stoichiometric MgB2 

target and a Si target during off-axis pulsed-laser deposition. The transmission 

electron microscope cross-sectional image of the resulting film exhibits a layered 

structure with each MgB2 layer being 40-50 nm thick and the Mg2Si inter-layers about 
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5 nm thick. A clear enhanced anisotropy in the irreversibility lines and the vortex 

activation energy was observed. Pinning and the flux flow activation energy for this 

type of film was significantly increased in parallel applied fields. 

 



 XII 

List of Figures 

Fig.1-1 MgB2
 
crystal structure.  

Fig.1-2 Experimental specific heat data (○) as a function of the reduced temperature t 

(=T/ Tc) from two groups [17, 29]. The data are compared with the BCS-normalized 

specific heat (thin curve) and also two-gap fits (thick curve). Insets: gaps 2∆L/kB Tc 

and 2∆S/kBTc versus t (dotted curves) and partial specific heat of both bands (full 

curves). 

Fig.1-3 Fermi surface of MgB2 in reciprocal space. The two cylindrical sheets are 

Fermi surfaces of σ-band. 

Fig.1-4 Calculated phase diagram of Mg and B. 

Fig.1-5 Morphology change due to relative temperature of metallic film made by 

evaporation. 

Fig.2-1 The schematics of the PLD setup used for this work. The right figure is a 3-D 

illustration of the on-axis deposition geometry for MgB2 in situ annealed film. The 

target-substrate distance is adjustable by changing the height of the heater supporting 

frame before mounting the part to the chamber. 

Fig.2-2 XRD spectrum of the stoichiometric MgB2 target. The vertical lines indicate 

the peak positions for MgB2. 

Fig.2-3 The homemade seal-in-argon apparatus for the ex situ annealing of MgB2 film.  

Fig.2-4 (left) JEOL JEM 2010 TEM at UoW; (right) Philips CM200 TEM at UNSW. 

Fig.2-5  The steps for planar TEM specimen preparation in this work.  



 XIII 

Fig. 2-6 The FIB system (FEI xP200) at UNSW and an illustration of the steps used 

for FIB preparation of a cross-sectional TEM specimen. a) Sample definition and 

rough milling, b)  Fine milling and final polish, c) Cut, d) Lift out. 

Fig.2-7 Concept of AFM and the optical lever: (left) Beam deflection system, using a 

laser and photodector to measure the beam position; (right) The SEM of a standard 

tip. 

Fig.2-8 The Dimension 3100 AFM (Digital Instruments) at UoW. 

Fig. 2-9  PPMS (left) and MPMS (right) from Quantum Design. 

Fig.2-10 Illustrations for four-probe setup for transport measurement in PPMS. The 

points labeled "I" were current contacts, and the points labeled "V" were voltage 

contacts. (Left) Magnetic field is perpendicular to the film surface circumstance. 

(Right) Magnetic field is parallel to the film surface. In both cases the testing current 

flowing in the MgB2 film is perpendicular to the applied field.   

Fig.2-11 (left) An illustration of Faraday effect and (right) a typical MOI set up. 

Fig.2-12 The MOI system in ISEM. 

Fig.3-1 The plumes from a stoichiometric MgB2 target in a 120mTorr argon 

background gas. On the left the base vacuum was 9x10
-8

 Torr, and on the right 7x10
-7

 

Tor. The laser energy was 350mJ/pulse. 

Fig.3-2 Laser plumes at different Ar pressures. a) 1x10
-6

Torr; b) 80mTorr; c) 

100mTorr; d) 120mTorr; e) 200mTorr; f) 260mTorr; g) 290 mTorr. The laser fluence 

was 350mJ/Pulse. 

Fig.3-3 The laser plume of MgB2 on-axis deposition. The argon pressure was 

120mTor, the laser fluence was 350mJ and the target-substrate distance was 23mm.  



 XIV 

Fig.3-4 The MS spectrum of Ar atmosphere for the chamber at the total pressure of 

1x10
-3

 Torr. Two argon peaks are present at 40 and 20 amu. The H2O peak is at 18 

amu, and the H2 peak is at 2 amu.  

Fig. 3-5 Tc dependence on in situ annealing temperatures. The Tc was measured by 

DC susceptibility in ZFC. The thickness of the thicker films is ~1µm; The thickness 

of the thinner films is ~0.5µm. The heating rate of both groups of films was 

~110˚C/min (rapid heating) with a 1 min dwell time, followed by a free cooling at 

50°C/min (the power is switched off). 

Fig. 3-6 Tc values of MgB2 films versus in situ annealing ramp time (bottom axis) and 

heating rate (top axis). The annealing temperature is ~680  ℃ with 1min dwell time. 

Fig. 3-7 The DC susceptibility (ZFC-FC) curves for three different target-substrate 

distances. Sample #260303 was prepared with 500 mJ/pulse laser energy and 40mm 

target-substrate distance; the #280503 was prepared with 400 mJ/pulse laser energy 

and 30mm target-substrate distance; and the #190903 was prepared with 300 mJ/pulse 

laser energy and 20mm target-substrate distance. All three films have a similar 

thickness of about 300-400 nm. 

Fig. 3-8 SEM images of laser ablated MgB2 target surface. a) A general look at the 

ablated ring  under 50x magnification. b) Central  part of the ablated ring ; c) The 

margins  of the ablated ring . d) Area adjacent to  the ablated ring .  

Fig.3-9 Area-scan EDS spectrum of the MgB2 target before and after100 pulses5 

J/cm
2
 248 nm laser ablation. a) before ablation, b) after ablation, c) on the base of the 

cones, d) on top of a cone. The inset figures are correlative SEM images of the EDS 

scanning area.  

Fig.3-10 SEM cross-section image of the in situ MgB2 film. 

Fig.3-11 AFM 3D mode image of the MgB2 film surface. Scale=500x500nm
2
 



 XV

Fig.3-12  TEM bright field image of a planar specimen for the in situ MgB2 film (a). b) 

is a SAD pattern from a  circular 500 nm area of the film. 

Fig.3-13 Magneto-optical image of the in situ MgB2 film at Ba=8.7mT at 20K after 

zero field cooling. The film size is 3x3mm
2
. The white round spots are defects in the 

MO indicator. The bright area in the upper middle part of the film is an enhanced flux 

penetration due to an accidental mechanical scratch on the MgB2 film. 

Fig.3-14 MOI images of in situ annealed film 030703, showing the flux penetration as 

a function of temperature: (a) 4 K, (b) 7 K, (c) 10K. The applied field is about 10mT 

for the three sets of observations. The sample is ~3x3 mm2 in dimentions. 

Fig.3-15 (a) Hysteresis loops of DC magnetisation for our best on-axis in situ film 

190903 at 5K(■), 10K(●), 15K(▲), and 20K(▼) respectively and (b) the calculated Jc 

of the in situ film from the magnetic hysteresis loops at 5K(■), 10K(●), 15K(▲), and 

20K(▼) respectively. (c) detailed magnetization curves at 5 K within the field range 

of 1000 Oe (0.1 T) with very fine scan of 5 Oe resolution. The inset is a magnification 

of the curve between 400 Oe and 500 Oe.  

Fig.3-16 The resistivity versus temperature curve for a typical on-axis in situ MgB2 

film. The thickness of the film is 450 nm. 

Fig.3-17 Field dependence of resistivity-temperature curves. The applied field is 

(from right to left) 0T, 0.1T, 0.5T, 1T, 2T, 3T, 4T, 5T, 6T, 7T, 8T, and 8.7T 

respectively. 

Fig.3-18 Irreversibility field and upper critical field of the in situ MgB2 film. 

Fig.3-19 Activation energy of the in situ MgB2 film. The grey lines are U0 data of 

bulk-MgB2 cited from ref [1]. 



 XVI 

Fig.3-20 EDS result of a typical in situ MgB2 film with 30K magnetic Tc. In order to 

avoid the interaction with the Al2O3 substrate, a low electron beam energy of 5kV was 

used. The Al Kα signal at 1.5 keV is not noticeable in the spectrum. 

Fig.4-1 SEM cross-section images of the two types of films. a: in situ annealed MgB2 

film; b: ex situ annealed MgB2 film on Al2O3-R substrate. 

Fig.4-2 AFM 3D images of a) the boron precursor film, the lower plane is the 

substrate; b) the ex situ annealed MgB2 film on Al2O3-R substrate; c) the ex situ film 

on Al2O3-C substrate; d) the ex situ film on 4H-SiC(0001) substrate.  

Fig.4-3 XRD of ex situ annealed films on a) Al2O3-R and b) Al2O3-C substrates. The 

MgO signal may come from the oxidization of some excess metal Mg on the film 

surface. 

Fig.4-4 (a): Temperature dependence of resistivity for the two types of MgB2 films 

from 5K to 300K in zero field; The inset shows the transition curves between 30K and 

40K. (b): The magnetization versus temperature curves. ■: in situ film; ○: ex situ film. 

Fig.4-5 Field dependence of ρ(T) curves for a) in situ MgB2 film and b) ex situ film. 

Fig.4-6 Arrhenius plots of the resistance R(H, T) of the a) in situ and b) ex situ films.  

The applied filed is perpendicular to the film plane.   

Fig.4-7 The flux flow activation energy U0 versus applied field Ba. Two stages of 

field dependence of U0 is found in ex situ film.  

Fig.4-8 Irreversibility lines and upper critical field versus temperature curves for the 

in situ and ex situ annealed films. A): Irreversibility lines for the in situ and ex situ 

films. The data for undoped ex situ MgB2 film and oxygen alloyed MgB2 film (Ref. 

[2]) is displayed in the figure for comparison. B): Upper critical fields versus 

temperature for the two films. The data for c-axis-oriented MgB2 films from Ref. [3] 

are also shown in this figure. 

Fig.4-9 Critical current of the two types of MgB2 films calculated from M-H loops. 
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Solid symbols: in situ annealed film; lines: ex situ annealed film. The temperature is 5 

K, 10 K, 15 K, and 20 K from top to bottom, respectively. The applied field is 

perpendicular to the film plane.  

Fig.4-10 MO images for the in situ film, shown in (a), (b) and the ex situ film, shown 

in (c), (d) at 4 K. The applied field is (a) 17 mT, 1
st
 set of measurement, (b) 17 mT, 

2
nd

 set of measurement, (c) 25.5 mT, 1
st
 set of measurement, and (d) 25.5 mT, 2

nd
 set 

of measurement. 

Fig.4-11 AFM of a) the in situ and b) the ex-situ MgB2 film on Al2O3-Rsubstrate. 

Fig.4-12 EDS analysis results for the a) in situ and b) ex situ films. In order to avoid 

the interaction with the Al2O3 substrate, a low electron beam energy of 5kV was used. 

As a result, no Al signal at about 1.5 KV is detectable. Since the thickness of both 

films is similar, the difference in oxygen signal intensity can reveal the difference of 

oxygen level in the two films. 

Fig.4-13 AFM 3D image of the ex situ MgB2 film. The surface topography shows 

typical randomly oriented grains. The arrow shows a thinner part formed between two 

grains.    

Fig.5-1 AFM deflection image of Si islands on sapphire-R substrate deposited for 50 

pulses (10Hz, 5sec). The laser fluence is 300mJ/pulse.   

Fig.5-2 EDS Si mapping in the Si doped MgB2 films. The upper part contains SEM 

secondary electron images, and the lower part the distribution of Si. a: 3.5% Si 

addition, b: 11% Si addition. The arrows indicate the Si-rich spots. 

Fig.5-3 DC magnetization curves of the films with different Si doping levels. The 

applied field is 25 Oe for both ZFC and FC measurements.  

Fig.5-4 Jc values with different Si doping levels. a: at 5 K, b: at 10 K, c: at 15 K. The 

applied field Ba is perpendicular to the film plane.  
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Fig.5-5 Irreversibility lines and upper critical fields of the 3.5% Si doped and undoped 

MgB2 films.  

Fig.5-6 The resistivity versus temperature curves in fields from 0T to 8.7T. a: 

undoped film; b: 3.5wt% Si film; c: 5wt% Si film. 

Fig.5-7 The Jc and ρ40K versus Si addition level in the doped films. The solid squares 

represent the magnetic Jc at 5K and 1.5T. The open circles represent residual 

resistivity ρ40K.  

Fig.6-1 Illustration of on axis deposition and off-axis deposition. 

Fig.6-2 Kennedy 's design of the off-axis deposition of smooth YBCO film. 

Fig.6-3 Schematic Illustration of the off-axis deposition geometry for MgB2 thin film 

deposition. 

Fig.6-4 SEM cross-sectional images of four films on Al2O3 –C substrates using 

different deposition conditions, namely (a): on-axis deposition, laser energy flux = 

300 mJ/pulse, laser repetition frequency = 10 Hz, growth rate=12 Å/sec; (b) off-axis, 

E=500mJ/pulse, F=10Hz, 16Å/sec; (c) off-axis, E=300mJ/pulse, F=10Hz, 4 Å/sec; 

and (d) shaded off-axis, E=500mJ/pulse, F=5Hz, 2 Å/sec. The scale is the same for all 

four images. 

Fig.6-5 The ZFC magnetization curves for the off-axis MgB2 films prepared with 

different annealing temperatures. The substrate temperature during deposition is 

250ºC for all the samples. The ramp time from 250ºC to the annealing temperature is 

12 min and the dwell time is 1min. 

Fig.6-6 ZFC magnetization curves of off-axis MgB2 films deposited on different 

substrate temperatures. The in situ annealing condition is the same as above-

mentioned optimized parameters.  
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Fig.6-7 Tc onset versus Tsubstrate curve (left axis) and Magnetization (right axis) versus 

Tsubstrate at 5K. The Tc and Magnetization values are extracted from ZFC 

magnetization curves at 5 K in Fig.6-6. 

Fig.6-8 AFM deflection image of a 2×2 µm
2
 area of the surface of film (d) in Fig.6-4.  

Fig.6-9 AFM cross-section profile of the off-axis film #300604V. The vertical 

distance between the highest and the lowest part indicated by arrows is 22nm.  

Fig.6-10 XRD θ-2θ pattern of the off-axis deposited film #300604V with a slow 

scanning rate of 0.2 degree/min. The vertical lines label the positions for all MgB2 

peaks in powder diffraction database. The unknown peak at 37.56º is also presents in 

the spectrum of a bare Al2O3-C substrate, so we assume it is not from the film. 

Fig.6-11  The left figure: Bright field TEM image of a planar specimen a typical off-

axis MgB2 film with a zero-resistivity Tc of 32K.  The right figure is a SAD pattern 

from a Φ500 nm area of the film 

Fig.6-12 Resistivity versus temperature for an off-axis film #300604V. The inset is an 

enlargement of the transition part.  

Fig.6-13 The field dependence of resistivity-temperature curves of the off-axis MgB2 

film #300604V in a) perpendicular (H//c axis) fields and b) parallel fields (H//a-b 

plane). 

Fig.6-14 The Arrhenius plot of resistance R(T, H) for the off-axis MgB2 film in a) 

perpendicular and b)  parallel fields. 

Fig.6-15 The activation energy U0 of flux flow versus applied field, Ba for film 

#300604V.  
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Fig.6-16 The Hc2-T curves for H // ab-plane and H ⊥ ab-plane. The Hc2 values are 

derived from transport curves using 90% ρTc values. In both H // ab-plane and H⊥ab-

plane cases, the testing current was perpendicular to the applied field. 

Fig.6-17 Magnetic Jc versus applied field for the off-axis film #300604V at different 

temperatures. The applied field is perpendicular to the film plane. It is difficult to 

estimate Jc at 5 T in low fields owing to the predominant magneto-thermal instability. 

Fig.6-18 MOI of an typical off-axis MgB2 film with a zero-resistivity Tc of 32K. 

Fig.6-19 MOI of the on-axis MgB2 film #030703 (a) 4K 3.4 mT (b) 4K 8.5 mT (c) 4K 

25.5 mT; (d) 7.5K, 5.1mT (e) 7.5K, 10.2 mT (f)7.5K, 17 mT; (g)15K, 3.4 mT (h)15K, 

10.2mT (i)15 K, 27.2 mT. 

Fig.6-20 MOI image details of a) on-axis film 7.5K 10.5mT, and b) off-axis film at         

7K 14.2 mT. 

Fig.7-1 Cross-sectional SEM image of the multilayer film. The inset is a BF TEM 

image of the multilayer film. 

Fig.7-2 TEM BF image of the multilayer film. The scale bar is 100 nm. The inset is 

an SAED of the MgB2 film, showing a clear textured grain orientation. 

Fig.7-3 Resistivity versus temperature curves of multilayer film and MgB2 film. 

Fig.7-4 Resistivity versus temperature curves of a multilayer film in: a) perpendicular 

fields; b) in parallel fields. 

Fig.7-5 The Hc2 versus T/Tc for the multilayered film and MgB2 film. 

Fig.7-6 The irreversibility fields of the multilayer film and the MgB2 film. 

Fig.7-7 The Arrhenius plot of resistance R(T, H) for the multilayer film in: a) 

perpendicular and b)  parallel fields. 
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Fig.7-8 The activation energy, U0 of flux flow versus applied field, Ba.  
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