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ABSTRACT 

 

Traditional railway foundations or substructures, consisting of one or two granular 

layers overlying a subgrade or natural formation, have become increasingly overloaded 

in recent years due to the utilisation of faster and heavier trains. During this period, 

there has been little, if any, re-engineering of the substructure in Australia, resulting in 

maintenance cycles becoming more frequent and increasingly expensive. Finding 

economical and practical techniques for enhancing the stability and safety of the 

substructure, thereby ensuring a capacity for supporting further increases in load, is vital 

in securing the long-term viability of the railway industry.  

 

The load bearing ballast is located directly below the sleepers and is responsible for 

limiting the stresses projected onto the weaker subgrade and preventing train-induced 

sleeper movement. Two significant ballast problems arising from increasing axle loads 

are differential settlement and degradation. It is thought that substructure enhancement 

can be attained and these problems largely curtailed through the manipulation of the 

level of effective confining pressure supporting the ballast layer.  

 

To investigate this possibility, a series of large-scale, high-frequency, drained, cyclic 

triaxial tests were conducted to examine the deformation (permanent and resilient) and 

degradation response of railway ballast. It was identified that the level of lateral 

confining pressure should be considered as an important design parameter. Two of the 

major benefits arising from increased confinement are reduced lateral movement 

(spreading) and vertical settlement resulting in improved line and level, and superior 

track stiffness and associated enhancements in ride comfort for passengers. The major 
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drawback in the event of excessive confinement is unacceptable levels of particle 

breakage. The experimental results indicated, however, that insufficient confining 

pressure is as damaging in terms of particle breakdown as excessive pressure, and that 

minimal degradation will be achieved at some intermediate value. For maximum 

deviator stress magnitudes of 230, 500 and 750 kPa, ‘optimum’ breakage conditions 

were encountered within the confining pressure ranges 15 – 65, 25 – 95, and 50 – 140 

kPa, respectively.    

 

Practical methods of increasing the in-situ track confinement are suggested and 

evaluated in terms of ease of installation, effectiveness and cost. It is concluded that the 

more superior methods of achieving increased confining pressure are by reinforcing the 

ballast using geosynthetics, or by increasing the effective overburden pressure through 

increased shoulder and/or crib height or via the achievement of a higher initial ballast 

density (greater compaction).  
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