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Abstract

Asymptotic theory is applied to examine solitary wave interaction for three higher-

order model equations, which represent small perturbations to integrable equations.

The higher-order equations considered are the higher-order Nonlinear Schrödinger

equation and the focusing and defocusing higher-order Hirota equations. The asymp-

totic theory, which involves a transformation, allows the straightforward determina-

tion of parameter choices, for which the higher-order equations are asymptotically

integrable, and of the higher-order phase and coordinate shifts due to the collision,

in the asymptotically integrable cases. For the higher-order Hirota equations, direct

soliton perturbation theory is also used, to determine the details of the evolving

solitary waves; in particular analytical expressions are found for the solitary wave

tails.

An important feature of the asymptotic and perturbation theories is that they

allow cross-validation of the theoretical results and also allow families of asymptotic

embedded solitons to be identified.

Numerical solutions of the governing equations are also obtained. For solitary

wave interaction, asymptotically elastic and inelastic cases are considered. When

the higher-order coefficients satisfy the appropriate algebraic relationship then the

numerical results confirm the prediction of the asymptotic theory. Numerical solu-

tions for evolving solitary waves are also used to confirm the results of the soliton

perturbation theory.
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Chapter 1

Introduction

In recent years there has been a great deal of interest in the development of soli-

tary wave solutions of higher-order model equations and in the determination of the

effects of the collision which the higher-order solitary waves suffer. The interest in

higher-order models for some physical systems occurring in oceanography and non-

linear optics results from their improved accuracy. As is well known, for a wide class

of higher-order dispersive wave equations, for which the leading order equations are

completely integrable, the higher-order equations can be asymptotically transformed

into higher-order integrable equations, to the same order of approximation. The first

significant work in soliton solutions, involving asymptotic transformations was Ko-

dama’s pioneering work [21]. By using a canonical map he obtained an approximate

Hamiltonian for the higher-order Korteweg-de Vries (KdV)

ηt + 6ηηx + ηxxx + εc1η
2ηx + εc2ηxηxx + εc3ηηxxx + εc4ηxxxxx = 0, ε ¿ 1, (1.1)

where ε is a measure of the importance of the higher-order terms and the real pa-

rameters ci depend on the physical context. The Hamiltonian was exact for the

integrable version of the higher-order KdV equation and accurate to O(ε) in the

general case, which implies that the higher-order KdV equation with arbitrary coef-

ficients is approximately integrable. The asymptotic transformation used included

a nonlocal term. More recently, Fokas and Liu [7], showed that asymptotic transfor-

mations can be developed by considering the master symmetries of the associated

integrable equation.

1



Chapter 1. Introduction 2

Marchant and Smyth [28] also transformed the higher-order KdV equation (1.1)

with arbitrary coefficients, to the associated higher-order integrable KdV equation.

In contrast to Kodama [21], a local asymptotic transformation was used. The higher-

order two-soliton solution for (1.1) was considered well before and after interaction

and found to consist of two higher-order solitary waves of (1.1), which were un-

changed in shape. Moreover, no dispersive radiation was present; hence, it was

concluded that the collision was elastic to at least O(ε). The O(ε) corrections to the

phase shifts of the higher-order solitary waves after collision were also found.

Marchant [26] applied an asymptotic transformation to the higher-order modified

equation

ηt + 24η2ηx + ηxxx + εc1η
4ηx + εc2η

3
x

+εc3η
2ηxxx + εc4ηηxηxx + εc5ηxxxxx = 0, ε ¿ 1, (1.2)

and hence examined solitary wave interaction for (1.2). The higher-order mKdV

(1.2) was asymptotically transformed to the mKdV equation (when ε = 0 in (1.2)),

when the higher-order coefficients satisfy a certain algebraic relationship. This is in

contrast to the higher-order KdV, which can be asymptotically transformed for all

choices of ci . This allowed the higher-order mKdV two-soliton solution to be found,

including predictions for the higher-order phase shifts.

This thesis considers three higher-order wave equations, the higher-order nonlin-

ear Schrödinger (NLS) equation

iωt + ωxx + ω|ω|2 + ε(c1|ω|4ω + c2ω
2ωxx + c3ωω2

x + c4|ωx|2ω
+c5|ω|2ωxx + c6ωxxxx) = 0, ε ¿ 1, (1.3)

and the higher-order Hirota equations with positive and negative signs (focusing

and defocusing)

ηt + 3α|η|2ηx ± γηxxx + ε(c1α
2|η|4ηx + c2αγ(η|ηx|2)x + c3αγη∗(ηηxx)x

+c4αγη∗ηxηxx + c5αγηηxη
∗
xx + c6γ

2η5x) = 0, ε ¿ 1, (1.4)

where the parameters α and γ are real and positive. The physical applications

of (1.3) and (1.4) are discussed in the chapters 2, 3, 4. These higher-order wave
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equations are generalized versions of a member of the integrable hierarchies, see for

example Kano [17]. Note that for ε = 0, (1.3) and (1.4) become the usual NLS

and Hirota equations, respectively. Those are integrable and are exactly solvable by

the inverse scattering transform (IST), see for example Hirota [13] and Mihalache

et. al. [31]. However, Hirota [13] developed his ‘direct method’ with which he was

able to build multi-soliton solutions of (1.3) and (1.4).

The main technique to study the effects of the the higher-order terms in the

wave equations considered in this thesis, is an extension of the normal form theory

developed by Kodama [21] and Marchant [26]. Here we would like to roughly describe

the characteristic features of this method. The idea of the method is very simple; by

using an asymptotic transformation the higher-order wave equations with arbitrary

coefficients are transformed into an integrable higher-order equation. It is shown

that the asymptotic transformation is valid if the higher-order coefficients satisfy an

algebraic relationship. Using the asymptotic transformations, one and two-soliton

solutions of the higher-order integrable equations can be transformed to one and two

higher-order solitary wave solutions for (1.3) and (1.4). For the two-soliton solutions

the transformation also allows the higher-order phase and coordinate shifts, which

the solitary waves suffer during collision, to be found analytically.

In this thesis, it is assumed that the asymptotic transformation used relate the

corresponding solutions of the integrable and higher-order equations. This is ana-

lytically and numerically verified for one and two soliton solutions considered here,

but no proof exists for more general types of solutions. However, as the transform

involves neglecting terms at second-order (O(ε2)), it is likely that any transformed

solution remains a valid solution of the higher-order equation on a timescale up to

t ∼ O( 1
ε2

).

When the asymptotic theory is not applicable, the direct soliton perturbation

method based on the IST shall be used to describe the evolution of the higher-order

solitary waves, see sections 3.4 and 4.4. Some general features of this approach can

be seen from the papers of Hereman [12] for bright solitons and Chen et. al. [3]

for dark solitons with non-vanishing boundary conditions. According to the direct

perturbation theory the solution of the inhomogeneous linear operator associated
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with the higher-order problem is expanded in the complete set of eigenfunctions

of the related homogenous linear operator. Hence, we construct the linearisation

operator for the higher-order problem by expanding the initial one-soliton solution

in powers of ε. In particular, for the higher-order Hirota equation (1.4), to solve

for the ε coefficients in the expansion, the eigenstates of the adjoint operator are

needed. For (1.4), it can be shown that the eigenfunctions of the linear operator

and adjoint operator are squared Jost solutions of the Lax equations related to the

unperturbed problems. The method allows, in order to eliminate the secular terms

in the expansion, the effects of higher-order nonlinearities on the soliton parameters

to be found. In sections 3.4 and 4.4, the solitary wave solutions of the higher-order

Hirota equation at O(ε) are found but a similar procedure could be applied to find

the solution at O(ε2) and beyond.

In chapter 2, solitary wave interaction for the higher-order NLS equation (1.3) is

examined. By using a nonlocal asymptotic transformation, (1.3) is transformed to

a higher-order member of NLS hierarchy of integrable equations, if the higher-order

coefficients satisfy a linear algebraic relationship. This transformation is used to find

the single and two-soliton solutions for (1.3) to be found. Due to the complexity

of NLS two-soliton solution, the higher-order two-soliton solutions are investigated

well before and after interaction. The interaction is shown to be elastic and higher-

order corrections to the coordinate and phase shifts, which the higher-order solitary

waves suffer, are found. The numerical simulations are considered for two different

examples; one satisfies the algebraic relationship derived from asymptotic theory,

and the other does not. For the first example which satisfies the relationship, the

numerical solutions confirm that the collision is elastic and the theoretical coordinate

and phase shifts predictions are confirmed. For the second example which does not

satisfy the relationship, a symmetric head on collision of solitary waves is considered.

For this example radiation is shed by the solitary wave collision and forms a bed on

which the solitary waves sit. The shelf height is shown to be slowly decaying (like

t−
1
2 ), which indicates that computations to calculate the final phase and coordinate

shifts are infeasible. And in the meantime, the noteworthy result is that for this

example the collision is inelastic; radiation is shed by the solitary wave collision.
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In chapter 3, solitary wave interaction and evolution for the focusing higher-

order Hirota equation, (1.4) with positive sign, is examined. For the focusing case,

bright solitons exist which propagate on a zero background. A similar procedure to

chapter 2 is used to derive the single and two-soliton higher-order solutions for (1.4).

Numerical simulations are again used to confirm the higher-order corrections to the

coordinate and phase shifts. An example which satisfies the algebraic relationship

derived from asymptotic theory is used for this purpose.

Hirota solitons are embedded in the linear wave spectrum. For the higher-order

Hirota equation (1.4), the resonant interactions between the solitary wave and the

linear radiation leads to radiation loss and the formation of a tail behind the solitary

wave. Soliton perturbation theory is used to determine the details of the evolving

wave and it’s tail. In 3.4 the soliton perturbation theory involves expanding the

ε-order solitary wave solution as a sum of the localized (discrete) and non-localized

(continuous) eigenstates of the unperturbed Hirota equation. In particular, an in-

tegral expression is found for the first-order correction to the solitary wave profile.

Moreover, an asymptotic expansion, valid for large time, allows a simple analytical

expression to be found for the solitary wave tail. It is found that a two-parameter

family of higher-order asymptotic solitons exists (when the solitary wave tail van-

ishes). An excellent comparison is found between the theoretical and numerical

solutions, for the solitary wave tail. Another noteworthy result is that the two pa-

rameter family of higher-order asymptotic embedded solitons found from perturba-

tion theory, exist when the higher-order coefficients satisfy the algebraic relationship

derived from asymptotic theory.

In chapter 4, we extend our discussion to the case of the defocusing higher-order

Hirota equation (1.4) with the negative sign. Here, for simplicity, we assume α = 2

and γ = 1 and re-scale the higher-order coefficients ci. It has been previously shown

that the defocusing Hirota equation has dark soliton solutions which are stable on

a nonzero continuous background, see for example Mahalingam and Porsezian [25]

and Li et. al. [24]. By using an asymptotic transformation the dark one-soliton

solution of the integrable higher-order Hirota equation is transformed to the dark

soliton solution of higher-order Hirota equation (1.4). For two-soliton solution of
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(1.4), it is seen that the absolute value of the two-soliton solution for defocusing

Hirota equation at |η|q can be considered as sum of the absolute values of the two

Hirota one-soliton solutions well before and after the collision. Using this fact and

asymptotic transformation derived in section 4.3, the higher-order phase shifts are

found, if the higher-order coefficients satisfy an algebraic relationship. Analogous

to the higher-order bright Hirota solitons, the direct perturbation theory is used

to study the evolution of dark higher-order Hirota solitary wave solutions. The

perturbation theory shows that a subtle and complex picture of solitary wave tail

evolution occurs.

In Appendix A, the Lax equations related to the defocusing Hirota equation

considered in section 4.4 and the Jost solutions are presented. It is shown that

the non-localized (continuous) eigenstate of the linearized operator related to the

defocusing Hirota equation is just the squared Jost solution. It is also shown that

the first Lax equation in the zero curvature representation for Hirota equation is

shared with the NLS counterpart, so a similar procedure can be used to find the

Hirota Jost solutions.

In Appendix B, the numerical scheme for the higher-order defocusing Hirota

equation, discussed in chapter 4, is presented. The numerical scheme is a hybrid

fourth order Runge-Kutta finite-difference scheme with fourth-order centered finite

differences in the spatial coordinate.

Lastly, we would like to point out that there are slight differences between nota-

tions and parameters used in each chapter.



Chapter 2

Solitary wave interaction for a

higher-order NLS equation

In this chapter solitary wave interaction for the higher-order NLS equation (1.3)

is examined. The results of this chapter appear in Hoseini and Marchant [15].

An asymptotic transformation is used to transform the higher-order NLS equation

(1.3) to a higher-order member of the NLS integrable hierarchy, if an algebraic

relationship between the higher-order coefficients is satisfied. The transformation is

used to derive the higher-order one and two-soliton solutions; in general the N-soliton

solution can be derived. It is shown that the higher-order collision is asymptotically

elastic and analytical expressions are found for the higher-order phase and coordinate

shifts. Numerical simulations of the interaction of two higher-order solitary waves are

also performed. Two examples are considered, one satisfies the algebraic relationship

derived from asymptotic theory, and the other does not. For the example which

satisfies the algebraic relationship, the numerical results confirm that the collision

is elastic. The numerical and theoretical predictions for the higher-order phase and

coordinate shifts are also in strong agreement. For the example which does not

satisfy the algebraic relationship, the numerical results show that the collision is

inelastic; radiation is shed by the solitary wave collision. As the bed of radiation

shed by the waves decays very slowly (like t−
1
2 ), it is computationally infeasible

to calculate the final phase and coordinate shifts for the inelastic example. An

asymptotic conservation law is derived and used to test the finite-difference scheme

7
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for the numerical solutions.

2.1 Introduction

One of the most important model equations in modern nonlinear science is the

nonlinear Schrödinger (NLS) equation,

iut + uxx + u|u|2 = 0. (2.1)

In the late 1960’s, the NLS equation was used to describe the modulation of weakly-

nonlinear wavetrains in deep water. It was shown by Benjamin and Feir [1] that

an uniform wavetrain is unstable to longwave perturbations. See Peregrine [35] and

Yuen and Lake [44] for reviews of fluid mechanics applications of the NLS equation.

In the optical context, the NLS equation was derived by Hasegawa and Tap-

pert [11]. It describes the evolution of the slowly varying envelope of an optical

pulse. Derived asymptotically from Maxwell’s equations it assumes slow variation

in the carrier frequency and the Kerr dependence (where the nonlinear refractive

index η = η0 + η1|w|2). The NLS equation is central to understanding soliton prop-

agation in optical fibres, which is of critical importance to the field of fibre-based

telecommunications, see for example, Wabnitz and Kodama [38].

The NLS equation is integrable; this means that a collision between NLS soli-

tons is elastic; after the collision the solitons retain their original shape with the only

memory of the collision being shifts in position and phase. The explicit N-soliton so-

lution for the NLS equation was developed using the bilinear transformation method,

see Hirota [13].

An important higher-order NLS equation was derived by Kodama [21] to describe

short pulses in optical fibres,

iut + α1uxx + α2u|u|2 + iε(β1uxxx + β2|u|2ux + β3u|u|2x) = 0, ε ¿ 1, (2.2)

where the αi and βi coefficients are all real and the βi represent the various higher-

order corrections for the short pulse. (2.2) can be asymptotically transformed to a

member of the NLS integrable hierarchy, which has the higher-order coefficients

(β1, β2, β3) = (α1, 3α2, 0). (2.3)
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Hence solitary wave collisions of (2.2) are asymptotically elastic, see Kano [17] or

Kodama [23] for details of the transformation. Hirota’s equation, the Sasa-Satsuma

equation and the derivative NLS equation are all integrable special cases of (2.2).

The focus of this chapter is the higher-order NLS equation (1.3). The higher-

order coefficients

(c1, c2, c3, c4, c5, c6) = (
3

8
,
1

4
,
3

4
,
1

2
, 1,

1

4
), (2.4)

represent the next member of the NLS integrable hierarchy, after (2.3), see Kano [17]

or Kodama and Mikhailov [23]. The higher-order NLS equation (1.3) is a generaliza-

tion of the hierarchy member (2.4) and appears as a model for classical Heisenberg

ferromagnetic spin chains, with biquadratic exchange interactions along the spin

lattice, see Kavitha and Daniel [18]. The near-continuum limit of various forms of

the discrete NLS equation are also governed by (1.3), see, for example, Dmitriev

et. al. [4] or Kivshar and Salerno [20]. Discrete NLS equations are used to model

optical waveguide arrays and Bose-Einstein condensates. Another application of

(1.3) is the numerical analysis of finite-difference schemes for the NLS equation as

the leading-order discretization error for many schemes includes higher-order terms

from (1.3).

Zhu and Yang [46] examined the weak interaction in the generalized NLS equa-

tions context where the solitary waves both stable, well-separated, and having almost

the same velocities and amplitudes. A similar collision is considered in this chapter

(see example 2 in subsection 2.3). In fact, we study interaction of equal-amplitude

solitary waves. They numerical simulated weak interaction for the generalized NLS

equation with various nonlinearities such as the cubic-quintic (by letting γ = 0

in their (3.5) the higher-order NLS (2.2) is obtained), exponential, and saturable

nonlinearities and made detailed predictions on the dynamics of their weak interac-

tions. They also analytically derived a universal system of dynamical equations for

parameters of interacting solitary waves using asymptotic methods and showed that

these dynamical equations accurately describe the weak interaction in generalized

NLS equation with arbitrary nonlinearities. Using the Karpman-Solov’ev method,

they treated the interference as a small perturbation to each solitary wave. The

evolution of a single solitary wave for the focusing and defocusing Hirota equations
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by using perturbation theory will be successfully done in chapters 3 and 4. They

also investigated the fractal-scattering phenomenon which appear in the system of

dynamical equations when its single parameter is not zero.

Frauenkron et. al. [8] considered the NLS equation perturbed by a quintic non-

linearity ((1.3) with only the parameter c1 nonzero). Physical applications for this

equation include optical waveguides in which the refractive index deviates from the

Kerr dependence. This is the case for various semiconductor and nonlinear polymer

waveguides. The collisions between two and three solitary waves was considered

using an accurate symplectic numerical method. For two solitary waves the effect

of the inelastic collision is a small radiation loss only. However, for the collision of

three solitary waves, a nontrivial energy exchange can occur between the solitary

waves.

Dmitriev et. al. [4] considered the discrete version of the NLS equation with a

small quintic perturbation. This was shown to be equivalent to the higher-order NLS

equation (1.3) with the parameters c1 and c6 nonzero. It was shown that nontrivial

inelastic behaviour can occur even when two solitary waves interact, leading to

chaotic soliton scattering. Kivshar and Salerno [20] considered the stability of a

travelling wave solution for an alternative discrete NLS model. The near-continuum

limit of their model is (1.3) with the parameters c5 and c6 both non-zero.

Kano [17] considered a higher-order NLS equation (a generalization of (1.3))

and used an asymptotic transformation to consider the interaction of bound higher-

order NLS solitary waves, governed by (1.3) with only c1 nonzero. Perturbed inverse

scattering theory was used to show the inelastic nature of the collision. Kodama and

Mikhailov [23] considered the higher-order NLS and KP equations and identified the

conditions for asymptotic integrability, by considering the existence of asymptotic

conservation laws and symmetries. An example of the inelastic interaction of bound

higher-order NLS solitary waves was also considered.

Kodama [21] described a method for the asymptotic transformation of a second-

order KdV equation (one order beyond the KdV approximation) to a member of the

KdV integrable hierarchy. Hence the second-order KdV equation is nearly integrable

and the solitary waves are asymptotic solitons. Kodama [22] considered solitary wave
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interaction for the BBM equation. This equation was transformed to a member

of the KdV integrable hierarchy plus inelastic terms at third-order. The inverse

scattering perturbation method was then used to show that the inelastic terms at

third-order generate a fifth-order change in solitary wave amplitude.

Marchant and Smyth [28] asymptotically transformed a higher-order KdV equa-

tion to an integrable member of the KdV hierarchy. The higher-order KdV two-

soliton solution was found using the transformation, including analytical expressions

for the phase shift corrections. A good comparison was found between the predicted

and numerically obtained higher-order phase shifts. Marchant [26] considered soli-

tary wave interaction for a higher-order mKdV equation via a combination of an-

alytical results, again obtained using an asymptotic transformation, and numerical

solutions.

The resonant interaction between solitary waves and linear radiation has been

the subject of much recent research. This resonance can result from the linear phase

velocity being the same as the soliton velocity or from the frequency of the solitary

wave being embedded in the continuous wave spectrum. This resonance normally

leads to radiation loss from the solitary wave, special cases where no radiation loss

occurs are called embedded solitons, see Pelinovsky and Yang [33] or Champneys

et. al. [2]. The dispersion relation for the higher-order NLS equation (1.3) is ω =

k2 − εc6k
4, hence when ω = 0 the phase speed of the radiation (allowing for the

Doppler shift) will correspond to the soliton velocity. This means resonance will

occur for (1.3) when k = (εc6)
− 1

2 .

Yang and Akylas [42] considered the NLS equation with a higher-order term of

the form iuxxx. They found infinite families of embedded, double-humped solitons

and plotted the soliton profiles by solving the governing ode numerically. Their

stability was also considered numerically. It was found that for an energy increasing

perturbation the embedded solitons are stable while energy decreasing perturbations

lead to decay of the soliton. Minzoni et. al. [32] considered a higher-order NLS equa-

tion which also included the iuxxx term. They considered a double humped wave,

joined by linear radiation and used a Lagrangian averaging technique to determine

the details of the embedded soliton. They showed that the humped wave has an
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oscillatory one-sided stability.

In this chapter we consider solitary wave interaction for the higher-order NLS

equation (1.3). In section 2.2 a nonlocal asymptotic transformation is used to trans-

form (1.3) to the integrable member of the NLS hierarchy (2.4). The transformation

is valid if the higher-order coefficients satisfy a certain algebraic relationship. For

this special case higher-order single and two-soliton solutions are derived, using the

transformation. The higher-order collision is found to be asymptotically elastic for

this special case and analytical expressions are derived for both the higher-order

phase and coordinate shift corrections, due to the collision.

In section 2.3 numerical solutions are presented for two examples. For the ex-

ample of an elastic collision, the theoretical predictions of section 2.2 are confirmed.

In particular, the theoretical and numerical values for the higher-order phase and

coordinate shifts are in close agreement. For the inelastic example radiation is shed

during the collision. The coordinate and phase shifts interact with this bed of radi-

ation, which causes the shifts to continue evolving long after collision. It is shown

numerically that this bed of radiation decays like t−
1
2 , the theoretically predicted

rate. Because the rate of decay of the bed to zero height is so slow, it is computation-

ally infeasible to calculate the final, steady-state, values of the phase and coordinate

shifts. In section 2.4, the conclusion, the implications of the results found here, for

two applications of (1.3), optical waveguide arrays and finite-difference schemes for

the NLS equation, are discussed.

2.2 The asymptotic theory

We consider the transformation

u = g + ε(c1 − 3

2
c2)|g|2g + ε(c1 − 3

2
c2 +

1

2
c3 − 3

2
c6)gxx

+ε(c2 − c1 + c3 − 1

2
c4 − 3

2
c6)gx

∫ x

−∞
|g(p, t)|2dp + εxh, ε ¿ 1, (2.5)

where h = (c1 − c2 − 1

2
c6)(gxxx + 3gx|g|2),
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and g(x, t) → 0 as x → ±∞. If (2.5) is substituted into (1.3), and terms of O(ε2)

are neglected, then g(x, t) is a solution of the integrable higher-order NLS equation

igt + gxx + g|g|2 + ε
′
(
3

2
|g|4g + g2gxx + 3gg2

x + 2|gx|2g (2.6)

+4|g|2gxx + gxxxx) = 0, where ε
′
= 2ε(c1 − c2),

if the algebraic relationship

−4c1 + 4c2 + 2c3 − c4 + c5 − 6c6 = 0, (2.7)

is satisfied. Kano [17] and Kodama and Mikhailov [23] also considered an asymptotic

transformation for the higher-order NLS equation (1.3) and obtained the algebraic

relationship (2.7) for asymptotic integrability of the higher-order NLS equation.

The expression (2.5) and that of Kano [17] each contain four transformation

terms, of which three are common. The term εxh in not present in Kano [17] while

his transformation contains a term not present here. Combining the five independent

terms of (2.5) and Kano [17] lead to an expression which transforms (1.3) to the NLS

equation, subject to the condition (2.7). This is in contrast to (2.5) and Kano [17]

which both transform (1.3) to a member of the NLS integrable hierarchy.

The transformation term εxh is secular, which means that the transformation

(2.5) is only valid for x ¿ O(ε−1). However, we note the Taylor series expansion

g(x + εx
h

gx

, t) = g(x, t) + εxh, ε ¿ 1, (2.8)

so it is possible to rewrite the secular transformation term in (2.5) as a transforma-

tion of the spatial variable, x, instead. Hence, replacing g + εxh by (2.8) in (2.5)

leads to a nonsecular form of the asymptotic transformation.

As (2.6) is integrable, the collision of higher-order solitary waves of (1.3) is

asymptotically elastic when the higher-order coefficients satisfy (2.7). Dmitriev

et. al. [4] considered a version of (1.3) with ε = 1, c1 = ε, c6 = −∆τ2

6
and the

other ci all zero. The parameters ε and τ are measures of the small higher-order

nonlinearity and discreteness in their model. They find numerically that the solitary

wave collisions are almost elastic when c1 = −1.525c6. Note that with only c1 and c6

non-zero that (2.7) implies c1 = −1.5c6 for an asymptotically elastic collision. Hence

the prediction of the asymptotic theory is very close to the numerically obtained

results of Dmitriev et. al. [4].
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2.2.1 A single higher-order solitary wave

The soliton solution of the integrable higher-order NLS equation (2.6) is

g = Aeiϕ sech θ, where

ϕ = a(x− s1) + bt + ξ1, θ = κ(x− s1 − vt),

A =
√

2κ, v = 2a− 4ε
′
(a2 − κ2)a, (2.9)

b = κ2 − a2 + ε
′
(κ4 + a4 − 6κ2a2),

and A is the amplitude of the wave, κ is related to the width of the wave envelope,

v is the velocity and a and b determine the temporal and spatial dependence of the

soliton’s phase. Also, the soliton is located at x = s1 at t = 0 and ξ1 is the initial

phase. For ε
′

=0, (2.9) becomes the NLS soliton. Using the soliton (2.9) in the

transformation (2.5) gives

u = eiϕA sech θ + εeiϕ(B sech θ + C sech θ tanh θ + D sech3 θ,

+Ex sech θ + Fx sech θ tanh θ), where

B =
1√
2
κa2(3c6 + 3c2 − 2c1 − c3) +

√
2aκ2(2c3 − 3c6 − 2c1 + 2c2 − c4)

+
1√
2
κ3(6c1 − 7c2 + 2c4 − 3c3 + 3c6), (2.10)

C = i
√

2κ2a (c3 − c4 − 4c1 + 5c2) +
√

2κ3 (2c1 − 2c2 − 2c3 + c4 + 3c6) ,

D =
√

2κ3 (c3 − c4 − 2c1 + 2c2) , E =
1√
2
iaκ(a2 − 3κ2)(2c2 − 2c1 + c6),

F =
1√
2
κ2(κ2 − 3a2)(2c2 − 2c1 + c6),

and ϕ, θ and A are given by (2.9).

Using the nonsecular form of the transformation leads to a complicated implicit

form for the one-soliton solution. Algebraically, it is easier to use the form (2.5) as

the secular terms in (2.10) (with coefficients E and F ) represent phase and velocity

corrections only. Hence they can be absorbed into the phase functions θ and ϕ,

which is achieved by rescaling a and κ,

κ = κ∗(1− ε(κ∗
2 − 3a∗

2

)(c2 − c1 +
1

2
c6)), (2.11)

a = a∗(1 + ε(a∗
2 − 3κ∗

2

)(c2 − c1 +
1

2
c6)),
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where a∗ and κ∗ are the rescaled values. This rescaling process is similar to the

Poincaré-Lindstedt technique for the elimination of secular terms in the solution of

odes.

The higher-order NLS solitary wave can then be written (after using the rela-

tionship (2.7)) as (after dropping the stars)

u = Aeiϕ sech θ + εBeiϕ sech θ + εCeiϕ sech θ tanh θ + εDeiϕ sech3 θ,

where ϕ = a
[
x− s1 − εs1(a

2 − 3κ2)(c2 − c1 +
1

2
c6)

]

+bt + εaκ(−3c6 − 2c1 + 2c2 − c4 + 2c3) + ξ1, (2.12)

θ = κ
[
x− s1(1 + ε(κ2 − 3a2)(c2 − c1 +

1

2
c6)),

+εκ(2c3 − 3c6 − 2c1 + 2c2 − c4)− vt
]
,

and the various coefficients are given by

A =
√

2κ, B =

√
2

2
κa2(c2 − c4 + c3 − 6c6 + c5)

+

√
2

6
κ3(c4 + 5c2 + c3 + 5c5 − 8c1 − 18c6),

C = i
√

2κ2a (c2 − c5 − c3 + 6c6) , (2.13)

D =

√
2

3
κ3(2c1 + 12c6 − 2c2 − 2c5 − c4 − c3)

v = 2a− 4εc6(a
2 − κ2)a, b = κ2 − a2 + εc6(κ

4 + a4 − 6κ2a2).

Moreover, the higher-order solitary wave has been shifted from x = s1 to

x = s1(1 + ε(κ2 − 3a2)(c2 − c1 +
1

2
c6))− εκ(2c3 − 3c6 − 2c1 + 2c2 − c4), (2.14)

at t = 0, by the transformation. The expressions (2.12) and (2.13) agree with

the expression for a single higher-order NLS solitary wave, derived directly from

(1.3). Hence the asymptotic transformation works correctly when applied to a single

solitary wave.

2.2.2 The higher-order two-soliton solution

Here the two-soliton solution of (1.3) is examined for the elastic case when the

higher-order coefficients satisfy (2.7). The two-soliton solution of the integrable
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higher-order equation (2.6) has the explicit form as

g(x, t) =
g1(x, t)

f1(x, t)
where

f1(x, t) = cosh ϑ + sinh ϑ tanh θ1 tanh θ2

− sinh ϑ sech θ1 sech θ2 cos(ϕ1 − ϕ2), (2.15)

g1 = A1 sech θ1e
iϕ1(cos ψ1 + i sin ψ1 tanh θ2)

+A2 sech θ2e
iϕ2(cos ψ2 + i sin ψ2 tanh θ1),

ϑ =
1

2
ln

(a1 − a2)
2 + (κ1 − κ2)

2

(a1 − a2)2 + (κ1 + κ2)2
.

The various other parameters are

Aj =
√

2κj, vj = 2aj − 4ε
′
(a2

j − κ2
j)aj,

ψj = arg(κ2
j − κ2

3−j + (aj − a3−j)
2 + 2iκ3−j(aj − a3−j)), (2.16)

θj = κj(x− vjt− sj), ϕj = aj(x− sj) + bjt + ξj,

bj = κ2
j − a2

j + ε
′
(κ4

j + a4
j − 6κ2

ja
2
j), j = 1, 2.

The velocity of the jth soliton by the position sj + vjt is vj. The initial phase at

the centre of the soliton is determined by ϕj(sj, 0) = ξj. For the integrable NLS

equation when ε
′
= 0 the higher-order two-soliton solution (2.15) becomes the NLS

two-soliton solution, see Hirota [13]. The only affects of higher-order terms are on

the velocities vj and the parameters bj of the two solitons. This is similar to the

two-soliton solution of the integrable higher-order KdV equation, in which only the

velocities of the solitons have a correction term at O(ε).

Let v1 > v2 and without lose of generality we assume that the soliton with

amplitude A1 is initially well to the left of the soliton with amplitude A2. Well

before and after collision the two-soliton solution is just the supperposition of two

well separated solitons; hence the collision is elastic with no radiation being shed as

a result of the collision. However, the collision makes some changes on the phase

and coordinate shifts that the solitons suffer. In fact these are

coordinate shifts : − 2ϑ

κ1

,
2ϑ

κ2

, phase shifts : − 2ψ1, 2ψ2, (2.17)

for the waves with amplitudes A1 and A2, respectively. Of course, the coordinate

shift (2.17) represents a shift in the position of the solitary waves profiles associated
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with a change in θj while the phase shift shows a change in the phase of the wave,

ϕj.

The form of the higher-order two-soliton solution, to O(ε), which describes the

behavior of the higher-order NLS solitary waves during the interaction, is just the

integrable higher-order NLS two-soliton solution (2.15), transformed by (2.5). How-

ever, the form of the higher-order two-soliton solution is slightly complicated, so

the explicit higher-order two-soliton solution is negotiated and the nature of the

collision will be determined with the solution well before and after interaction. Well

before and after interaction, the two soliton solution (2.15) is just comprised of the

superposion of two well separated single higher-order waves (2.9). Transforming

the sum of these two solitary waves of the form (2.9) by the transformation (2.5)

gives two higher-order waves of the form (2.12) with (2.13). Hence as any cross or

product terms are zero for well separated solitons, the transformation works in the

same manner as for the single soliton.

However, the nonlocal term in the transformation (2.5), which an integral from

far behind the solitary wave to its current location, does lead to a collision dependent

term in the transformation. Hence before interaction the wave with amplitude A2 on

the right will include a term representing the integration of the wave with amplitude

A1 on the left, whilst after interaction the wave with amplitude A1 is on the right, so

it contains a terms representing the integration of the wave with amplitude A2. It can

be easily shown that the relevant integral of the wave on the left is
∫∞
−∞ |g(x, t)|2dx =

4κj (j = 1 before collision and j = 2 after) while the interaction dependent term in

the transformation is ε4κjgx. We define the phase and coordinate shifts, due to the

nonlocal term, as ξ
′
j and s

′
j. Before collision (as t → −∞) these shifts are

(ξ
′
1, ξ

′
2) = (−εΩκ1a1,−εΩa2(κ2 + 2κ1)),

(s
′
1, s

′
2) = (−εΩκ1,−εΩ(κ2 + 2κ1)), (2.18)

while after collision (as t →∞)

(ξ
′
1, ξ

′
2) = (−εΩa1(κ1 + 2κ2),−εΩa2κ2),

(s
′
1, s

′
2) = (−εΩ(κ1 + 2κ2),−εΩκ2), (2.19)

where Ω = −3c6 − 2c1 + 2c2 − c4 + 2c3.
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Taking the difference in the phase and coordinate shifts (2.18) and (2.19) and com-

bining them with the contribution from the rescaling (2.11) gives

coordinate shifts : − 2ϑ

κ1

− 2ελκ2,
2ϑ

κ2

+ 2ελκ1,

phase shifts : − 2ψ1 − 8ερκ2a2 − 2ελκ2a1, (2.20)

2ψ2 + 8ερκ1a1 + 2ελκ1a2,

where λ = (4c2 − 4c1 − 2c6 − c4 + 2c3), ρ = (c2 − c1 +
1

2
c6).

as the higher-order coordinate and phase shifts of the waves with amplitudes A1 =
√

2κ1 and A2 =
√

2κ2, respectively. For the integrable hierarchy (2.4) λ = ρ = 0 and

the higher-order shifts are all zero. Also, it is worth noting that the higher-order

corrections to the coordinate shifts are qualitatively similar to those for the higher-

order mKdV equation, see (16) of Marchant [26]. In their (16), as in (2.20), the

higher-order coordinate shift is proportional to the amplitude of the solitary wave

it has collided with.

In summary, when (2.7) is satisfied, the higher-order NLS solitary wave collision

is asymptotically elastic with the higher-order phase and coordinate shifts given by

(2.20).

2.3 Numerical results

In this section the interaction of higher-order NLS solitary waves is examined nu-

merically. This allows the theoretical results, which apply when (2.7) is satisfied, to

be verified and allows the nature of the collision to be determined for an example

not covered by the asymptotic theory.

The numerical method used here is based on a perturbation technique, similar

to that used by Zou and Su [47] or Marchant [26]. In both these applications, of

higher-order KdV and mKdV equations, the lowest-order solution, about which the

perturbation was based, is the appropriate exact two-soliton solution. This type

of numerical method is useful as it allows higher-order phase and coordinate shifts,

and any inelastic effects, to be accurately identified.
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The higher-order NLS equation (1.3) is expanded using

u = v + εp, (2.21)

where v is the two-soliton solution of the NLS equation ((2.15) and (2.16) with

ε
′

= 0) and p is the O(ε) correction term of interest here. The expansion (2.21)

is substituted into the higher-order NLS equation (1.3), which leads to a linear

NLS-type equation with forcing terms

ipt + pxx + v2p + 2|v|2p = −f, , (2.22)

where f = c1|v|4v + c2v
2vxx + c3vv2

x + c4|vx|2v + c5|v|2vxx + c6vxxxx.

The linear NLS equation (2.22) is solved by an explicit central-time central-space

finite-difference scheme with second-order accuracy. The stability of the scheme is

∆t < ∆x2/4, where ∆t and ∆x are the time and space discretizations, see Taha and

Ablowitz [37].

When solving (2.22), there is in general, a secular growth in p, due to the forcing

f not being orthogonal to the eigenfunctions of the adjoint homogeneous equation.

As we wish to only focus on the effects of the solitary wave collision we need to

ensure that no secular growth occurs for a single solitary wave. Hence we require

f = 0 well before and after the collision of the waves. The contribution to the

perturbation p, from a single higher-order NLS solitary wave (2.12), needs to be

considered. The parameter choices

(c1, c2, c3, c4, c5, c6) = (3q, 2q, 2q + 1, 1,−1, 0), (2.23)

where q =
1 + 2r

8r − 4
, r =

a2
1

2κ2
1

=
a2

2

2κ2
2

,

and (c1, c2, c3, c4, c5, c6) = (1, 0,−2, 0, 2, 0), (2.24)

are used for the numerical examples as they have no O(ε) amplitude, velocity or

phase corrections in (2.12) and (2.13). Moreover, as c6 = 0, the solitary waves for

these two special cases will not be subject to any resonance with linear radiation,

which can only occur for εc6 > 0.

The special case (2.23) satisfies (2.7), hence is asymptotically elastic and can be

used to verify the theoretical results. The special case (2.24) does not satisfy (2.7),
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hence is not covered by the asymptotic theory. For these special cases, the forcing

f = 0 well before and after collision so the perturbation p after interaction represents

only the higher-order coordinate and phase shifts, plus any inelastic effects, such as

shed radiation.

The higher-order solitary wave solution of (1.3) for the special cases (2.23) and

(2.24) is the NLS soliton

u = Aeiϕ sech θ, ϕ = ax + (κ2 − a2)t− εξ1, θ = κ(x− εs1 − 2at), (2.25)

where s1 and ξ1 are higher-order corrections to the position and phase of the solitary

wave. Applying a Taylor series expansion to (2.25) gives

u = Aeiϕ sech θ + εAeiϕ(κs1 sech θ tanh θ − iξ1 sech θ). (2.26)

Hence if O(ε) coordinate and phase shifts of s1 and ξ1 are applied to the solitary

wave then the perturbation is given by the functions p1 = Aκs1e
iϕ sech θ tanh θ

and p2 = −iAξ1e
iϕ sech θ respectively. As e−iϕ is a known analytical expression

from the NLS two-soliton solution (2.15), the quantity e−iϕp can be determined.

By considering the real and imaginary parts of e−iϕp after interaction, the higher-

order coordinate and phase shifts s1 and ξ1 can be determined, by measuring the

amplitudes of the sech tanh and sech functions, respectively.

The averaged quantity

∫ +∞

−∞
(|u|2 +

ε

2
a5|u|4)dx, where a5 = (c2 + c3 − c5), (2.27)

is asymptotically conserved by the higher-order NLS equation (1.3). The quantity

|u|2 is deemed mass density by some authors and energy density by others. In the

optical context it relates to conservation of norm or photon number while in the

water wave context it is energy. Here, for simplicity, the quantity |u|2 is deemed

mass density, even though it does not physically represent mass. Also note that

(2.27) represents an averaged asymptotic mass density so the mass density |u|2 is

only conserved if a5 = 0. If the mass of the system is written as M0 + εM1, then the

equation for the first-order mass, at O(ε), is

M1 =

∫ ∞

−∞
(pv + pv)dx = a6 − a5

2

∫ +∞

−∞
|v|4dx, (2.28)
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where v is a solution of the NLS equation and a6 is a constant. The expression

(2.28) for the first-order mass is equivalent to the expression developed in [38] for

the adiabatic variation of energy in a perturbed NLS equation, see their (65). For

the special cases of solitary wave interactions considered here there are no O(ε)

corrections to the solitary wave’s profile, so M1 = 0 for a single solitary wave. Hence

before interaction the constant a6 is chosen so that M1 is initially zero. During

interaction the quartic term in (2.28) will cause the first-order mass M1 to vary

before returning to zero after interaction.

Hence mass is not conserved during a collision of higher-order NLS solitary waves,

but is conserved, if times well before and after the collision (as t → ±∞) are

considered. This is similar to the result in Marchant [26] in which mass was not

conserved during a collision of higher-order mKdV solitary waves, but was conserved

well before and after collision.

Example 1 is of the higher-order NLS equation (1.3) with coefficients (2.23),

hence it satisfies (2.7) and is asymptotically elastic. The parameters of the two

solitary waves are chosen as

(κ1, a1, s1, ξ1) = (
1√
2
,

1√
6
,−20, 0),

(κ2, a2, s2, ξ2) = (
1

2
√

2
,− 1

2
√

6
, 20, 0). (2.29)

The wave on the left is located at x = −20 initially and has amplitude A1 = 1 and

moves to the right with velocity 0.816. The wave on the right is located at x = 20

initially and has amplitude A2 = 0.5 and moves to the left with velocity 0.408. The

initial phases, ξj, of both waves are zero. Hence this is an example of a head-on

collision between the two waves. As A1 > A2 the waves with amplitudes A1 and A2

will be referred to as the larger and smaller waves, respectively, in the discussion of

results in this section.

Initially the perturbation p = 0, which corresponds to a time well before interac-

tion. The forced linear NLS-type equation (2.22) is solved numerically, from t = 0

up until t = 60, which represents a time well after interaction. The spatial and

temporal grid spacings used are 4x = 2.5× 10−2 and 4t = 1.5625× 10−4.

Figure (2.1) shows the absolute value of the perturbation, |p|, for example 1 at
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Figure 2.1: |p| at t = 60 for example 1

time t = 60. The figure shows that after interaction |p| comprises two, well separated

humps, which represent the phase and coordinate shifts of the two solitary waves.

From (2.26) we know that the coordinate shift is described by the sech tanh curve

while the phase shift is described by the sech curve, so clearly the magnitude of the

coordinate shift, relative to the phase shift, is much greater for the larger wave than

the smaller wave.

Figure (2.2) shows the real and imaginary parts of pe−iϕ, at t = 60 for example

1. The perturbation has been scaled to eliminate the phase eiϕ of the wave, so that

real and imaginary parts represent the coordinate and phase shifts respectively.

Also note that the expressions for the larger and smaller waves have been scaled by

slightly different forms of the phase, as the NLS solitons suffer a phase shift of the

form (2.17). It can be seen from figure (2.2) that the real part is anti-symmetric and

the imaginary part is symmetric. Moreover, fitting sech θ tanh θ and sech θ curves

to the numerical profiles, by using least squares, verifies that the numerical profiles

are the same, to graphical accuracy, as the phase and coordinate shifts (2.26).

The numerical estimates of the higher-order phase and coordinate shifts are

obtained by measuring the amplitudes of the symmetric and antisymmetric curves in
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Figure 2.2: Real (solid lines) and imaginary parts (dashed lines) of pe−iϕ at t = 60

for example 1

figure (2.2). The amplitudes are also measured using values of4x and4t double the

values quoted above. Richardson extrapolation is then used to obtain a converged

estimate of the phase and coordinate phase shifts. The numerically obtained phase

shifts are −8.67×10−5 and −0.8660278 for the larger and smaller waves, respectively.

The corresponding theoretical predictions from (2.20) are 0 and −0.8660254. For

the coordinate shifts the numerical predictions are −0.7067908 and 1.414196, while

the theoretical predictions are −0.7071068 and 1.414214, for the larger and smaller

waves, respectively. In absolute terms the largest error is 3 × 10−4. The errors are

extremely small, verifying the theoretical predictions and confirming the accuracy

of the numerical scheme.

Examination of the free surface behind, in front of, and in between the solitary

waves after interaction shows that p is essentially flat, with no dispersive wave

train produced. The amplitude of the largest oscillation in |p| behind the waves

is O(10−5). Richardson extrapolation indicates the converged amplitudes of the

oscillations are O(10−6), confirming that it is merely a result of the discretization.

Hence, no dispersive wave train occurs as a result of the collision, so it is elastic to
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O(ε).

For example 1 a5 = 0, hence mass is conserved during the collision. As the

amplitude and velocity corrections are zero, (2.28) indicates that the first-order

mass, M1, is zero throughout the interaction of the higher-order waves. The values

of M1 are calculated numerically from the finite-difference solution at each time step,

by using Simpson’s method. The numerical results indicate, that for the spatial and

time-discretizations used, that the magnitude of M1 is never greater than 5.1×10−3.

This represents an extremely small change to the total mass of 4(κ1 + κ2) = 4.2426,

of the interacting solitary waves. Moreover, Richardson extrapolation indicates the

converged value of M1 is no greater than 1.1 × 10−4. Hence the numerical scheme

conserves the mass extremely accurately throughout the interaction.

In summary, it can be seen that the theoretical predictions have been confirmed

for this example. The numerical results show that the collision is asymptotically

elastic to O(ε) and the numerical estimates for the higher-order phase and coordinate

shifts are extremely close to the theoretical predictions (2.20). These results also

show that the numerical scheme is an extremely accurate method of determining

the phase and coordinate shifts, which will now be used for the special case (2.24),

which is not asymptotically elastic.

Example 2 is of the higher-order NLS equation (1.3) with coefficients (2.24),

hence it does not satisfy the algebraic condition (2.7) and the asymptotic theory of

§2.2 does not apply. The solitary wave parameters are given by

(κ1, a1, s1, ξ1) = (
1√
2
,

√
6

2
,−20, 0),

(κ2, a2, s2, ξ2) = (
1√
2
,−
√

6

2
, 20, 0). (2.30)

The amplitudes of the waves are unity, the velocities are ±2.45 and the waves are

located at x = ±20 initially. Hence, this represents a symmetric head on collision

of solitary waves. A symmetric collision is chosen for analysis as only the solution

in x ≥ 0 needs to be calculated and x = 0 is the centre point of the radiation shelf.

The values of ∆x = 5× 10−2 and ∆t = 4× 10−4.

Figure (2.3) shows the absolute value of the perturbation, |p|, for example 2 at

times t = 20, 50 and 70. Due to the symmetry only the solution x ≥ 0 is shown,
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Figure 2.3: |p|, at t = 20, 50 and 70, for example 2

hence only the hump corresponding to the right moving solitary wave is visible.

For this example the collision is inelastic and it can be clearly seen that the hump

is sitting on a bed of radiation, which was shed during the collision. The height

of the radiation bed is decreasing with time, as |p(0, t)| is 0.55, 0.28 and 0.23 at

the times t = 20, 50 and 70. Moreover, it can been that the amplitudes of the

hump, corresponding to the phase and coordinate shifts, is increasing with time.

The maximum values of |p| are 2.15, 4.5 and 8.47, for the three different humps

shown in figure (2.3).

Figure (2.4) shows the logarithm of the shelf height |p| at x = 0 versus the

logarithm of time t, up to t = 150. for example 2. This figure shows the rate of

decrease of the shelf height with time. The slope of the curve is −0.53, at t = 150.

Hence, at long time, the shelf height is decaying at close to the theoretically expected

slope, of −0.5. See, for example, Gordon [10], whose theoretical solutions show that

radiative perturbations of the NLS equation suffer a t−
1
2 decay rate. The similarity

solution for the NLS equation has the form u = t−
1
2 f(xt−

1
2 ), which also illustrates

the appropriate decay rate of the shelf.

Fitting the numerical data gives the shelf height as p(0, t) = 2.214t−0.53. For the
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Figure 2.4: The logarithm of the shelf height |p(0, t)|, versus the logarithm of time

t, up to t = 150, for example 2.
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shifts, versus the logarithm of time t, up to t = 200, for example 2
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steady-state coordinate and phase shifts to be obtained the shelf height must be

close to zero. For example, requiring the shelf height |p| < 1 × 10−3 and using the

fitted power law relationship, implies that time t > 6, 700, to obtain steady-state

values, well beyond the limit of what is computationally feasible.

Figure (2.5) shows the logarithms of the phase and coordinate shifts, versus the

logarithm of time t, up to t = 200. These shifts are related to the amplitudes of

the real and imaginary parts of pe−iϕ, with the absolute values of the shifts being

used. The curves show that both the phase and coordinate shifts are increasing

in an approximately linear manner at t = 200. At this time |p(0)| ≈ 0.13, hence

the phase and coordinate shifts are still evolving as they interact with the bed of

radiation. Note that the solitary waves have completed interacting at time t ≈ 15,

so the forcing term f = 0 for ln(t) > 2.7. Hence the growth of the phase and

coordinate shifts shown in Figure 2. 5 is not due to secular forcing terms in f .

As explained above, it is not practical to numerically determine the steady-state

phase and coordinate shifts, as the steady-states are approached at very long times.

Moreover, the perturbation method used here is valid for p ¿ O(ε−1). Hence at

long times, the validity of the perturbation method will break down, as the growth

in the magnitude of the phase and coordinate shifts causes |p| to reach O(ε−1).

Inelastic collisions of higher-order NLS solitary waves are quite different to in-

elastic collisions for the higher-order KdV (or mKdV) equation. The linear NLS

group velocity is cg = 2k, while the linear KdV group velocity is cg = −3k2. Hence,

the radiation shed at the point of a NLS collision will propagate in both the positive

and negative x-directions, forming the shelf on which the solitary waves (and its

associated hump) must propagate.

For the KdV equation the radiation shed at the point of collision will only propa-

gate in the negative x-direction whilst the solitary waves (and the humps associated

with the phase shifts) propagate in the positive x-direction (the KdV equation is a

model for unidirectional propagation). So, for the KdV (or mKdV) equation, sepa-

ration of the radiation and the solitary waves occurs at a much faster rate, than for

the NLS equation, and the phase shifts due to the inelastic collision can be numer-

ically determined. See, for example, Marchant [26], who tabulated the phase shifts
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Figure 2.6: The first-order mass M1, versus t, during the interaction, for example 2

for an inelastic higher-order mKdV equation.

Also note that alternative approaches to calculating the higher-order phase and

coordinate shifts are the inverse scattering perturbation method or a direct multi-

soliton perturbation theory. See, for example, Matsuno [30] who determined phase

shifts for a higher-order Benjamin-Ono equation by a direct perturbation method.

Figure (2.6) shows the first-order mass M1, versus time t, for example 2. Shown

is the solution of (2.28) with v the NLS two-soliton solution. The direct numerical

calculation of M1, from the finite-difference solution is not shown as it is the same as

(2.28) to graphical accuracy. For this example a5 = −4, hence mass is not conserved.

The first-order mass M1 is not zero through the interaction, but increases up to a

maximum value of 15.4522 at time t ≈ 8.2. The variation between this prediction for

the mass, and that from the numerical scheme, is very small, being only 9.1× 10−4

or 0.06%. Hence the numerical scheme accurately predicts the first-order mass

throughout the collision.
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2.4 Conclusion

An asymptotic transformation has been applied to a higher-order NLS equation

(1.3). It is found that the higher-order NLS solitary waves are asymptotic solitons

when an algebraic relationship (2.7) involving the higher-order coefficients is sat-

isfied. Analytical expressions for the higher-order phase and coordinate shifts are

determined.

Numerical solutions of the higher-order NLS equation confirm the asymptotic

results, namely, the elastic nature of the collision and the values of the higher-order

phase and coordinate shifts. Moreover, numerical solutions, for an example not

satisfying (2.7) shows strong evidence of inelastic behaviour, via the shedding of

radiation. Final steady-state phase and coordinate shifts, after collision, could not

be determined numerically because the bed of radiation on which each travels decays

very slowly.

The numerical results presented here show the effects of an inelastic higher-

order NLS collision are long-lasting. Moreover, the numerical results of Frauenkron

et. al. [8] and Dmitriev et. al. [4], who solved their version of the higher-order

NLS equation directly, also found strong inelastic effects, such as chaotic soliton

scattering. For many physical applications strong or long-lasting inelastic effects

may not be desirable, in which case it is important for the higher-order parameters

to satisfy (2.7). This could be achieved by tuning the physical system in some

manner to vary the higher-order parameters. One telecommunications example, is

of a coupled optical fibre array, which is governed by (1.3) in the near-continuum

limit. In this case the higher-order parameters could be varied by doping the fibre

appropriately, in order to change its properties.

This work may also form a useful tool in the numerical analysis of finite-difference

schemes for the NLS equation. For some schemes the leading-order truncation error

is higher-order terms from (1.3). Inelastic effects, due to the discretization, should

be avoided, hence a numerical scheme which satisfies the condition for asymptotic

integrability (2.7) is highly desirable. Moreover, the numerical errors in the phase

shifts can be easily estimated, using (2.20).



Chapter 3

Bright solitary wave interaction

and evolution for a higher-order

focusing Hirota equation

In this chapter, bright solitary wave interaction and evolution for the higher-order

focusing Hirota equation (1.4) is examined. The results of this chapter appear in Ho-

seini and Marchant [14]. Similar to the higher-order NLS equation (1.3), the higher-

order Hirota equation is asymptotically transformed to a higher-order member of

the NLS hierarchy of integrable equations, if the higher-order coefficients satisfy a

certain algebraic relationship. The transformation is used to derive higher-order

one and two bright soliton solutions. It is shown that the interaction is asymp-

totically elastic and the higher-order corrections to the coordinate and phase shifts

are derived. For the higher-order Hirota equation considered here, resonance occurs

between the solitary waves and linear radiation, so soliton perturbation theory is

used to determine the details of the evolving wave and its tail. An analytical ex-

pression for the solitary wave tail is derived and it is found that the tail vanishes

when the the algebraic relationship from the asymptotic theory is satisfied. Hence a

two-parameter family of higher-order asymptotic embedded solitons exists. A com-

parison between the theoretical predictions and numerical solutions shows strong

agreement for both solitary wave interaction, where the higher-order coordinate and

phase shifts are compared, and solitary wave evolution, with comparisons made of

30
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the solitary wave tail.

3.1 Introduction

The Hirota equation is an integrable equation which has a number of physical ap-

plications, such as the propagation of optical pulses in nematic liquid crystal waveg-

uides, see Rodriguez et. al. [36], and for a certain parameter regime, femtosecond

pulse propagation in optical fibres, see Yang [41]. The focusing Hirota equation is

ηt + 3α|η|2ηx + γηxxx = 0, (3.1)

where the parameters α and γ are positive real constants. As mentioned above it is

integrable, see Hirota [13] for a derivation of the N-soliton solution. Note that, for

simplicity, in this chapter the notions ‘soliton’ and ‘solitary wave’ are used instead

of ‘bright soliton’ and ‘bright solitary wave’, respectively.

The Hirota equation is closely related to both the NLS and modified KdV

(mKdV) equations, as it is a complex generalization of the mKdV equation and

it is part of the NLS hierarchy of integrable equations. Also, its soliton solution

has a very similar form to the NLS soliton. The Hirota equation is also called

the complex modified KdV (cmKdV) equation although this name is shared with a

non-integrable variant, in which the nonlinear term in (3.1) is replaced by (|η|2η)x.

The non-integrable cmKdV equation has physical applications such as Langmuir

solitons in a plasma, see Dysthe et. al. [5], and transverse waves in a elastic solid,

see Erbay [6].

Hasegawa and Tappert [11] derived the NLS equation to describe the evolution

of the slowly varying envelope of an optical pulse. Again, for the higher-order NLS

equation (2.2) (with ε = 1), if 3β1α2 = β2α1 and β3 = 0, then the higher-order NLS

equation (2.2) reduces to the Hirota equation (3.1) via a gauge transformation, see

Gilson et. al. [9].

The higher-order focusing Hirota equation

ηt + 3α|η|2ηx + γηxxx + ε(c1α
2|η|4ηx + c2αγ(η|ηx|2)x + c3αγη∗(ηηxx)x

+c4αγη∗ηxηxx + c5αγηηxη
∗
xx + c6γ

2η5x) = 0, ε ¿ 1, (3.2)
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is considered in this chapter, where starred quantities are complex conjugates and

ε is a measure of the importance of the higher-order terms. If the higher-order

coefficients are given by

(c1, c2, c3, c4, c5, c6) = (1,
2

3
,
2

3
,
2

3
, 0,

2

15
), (3.3)

then (3.2) is a member of the NLS integrable hierarchy, see Kano [17]. Hence (3.2)

represents a generalization of a member of the integrable hierarchy (3.3).

Marchant [26] examined solitary wave interaction for a higher-order mKdV equa-

tion (obtained by taking η to be real in (3.2)). The higher-order equation was

asymptotically transformed to the mKdV equation, when the higher-order coeffi-

cients satisfy an algebraic relationship. This allowed the higher-order mKdV two-

soliton solution to be found, including predictions for the higher-order phase shifts.

Numerical modelling of the interaction of two higher-order waves, for elastic and

inelastic examples, confirmed the theoretical predictions.

Marchant [27] considered the interaction of the higher-order mKdV solitons on

a nonzero mean level. By using an asymptotic transformation, valid if the higher-

order coefficients satisfy an algebraic relationship, he examined the collision between

solitary waves with sech-type and algebraic (which only exist on a non-zero mean

level) profiles. The transformation was used to show that the higher-order collision

is asymptotically elastic and to derive the higher-order phase shifts. He also numer-

ically showed that for the example covered by the asymptotic theory, the collision is

elastic and the theoretical predictions for higher-order phase shifts were confirmed

by numerical simulations. For the example not covered by the asymptotic theory,

the interaction was shown numerically to be inelastic.

The resonant interaction between solitary waves and linear radiation can result

from the linear phase velocity being the same as the soliton velocity or from the

frequency of the solitary wave being embedded in the linear wave spectrum. This

resonance normally leads to radiation loss and the formation of a tail behind the

solitary wave. Special cases where the tail vanishes and no radiation loss occurs are

called embedded solitons, see Pelinovsky and Yang [33] or Champneys et. al. [2].

The Hirota equation (3.1) has a two-parameter soliton family, with arbitrary

amplitude and velocity, which are embedded in the linear wave spectrum. Rodriguez
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et. al. [36] explains why these embedded solitons do not emit radiation and proves

their stability. Yang [41] considered solitary wave evolution for a higher-order Hirota

equation of the form

ηt + 6|η|2ηx + ηxxx + iε(c1|η|2η + c2η(|η|2)x), ε ¿ 1. (3.4)

Using perturbation theory he found that there exists a one-parameter family, of

arbitrary amplitude, of embedded solitons. An expression for the amplitude of the

solitary wave tail and ordinary differential equations (odes), describing the evolution

of the wave amplitude and frequency, were found. Pelinovsky and Yang [34] also

considered the higher-order Hirota equation (3.4) and performed a comprehensive

stability analysis.

In this chapter we examine solitary wave interaction and evolution for the higher-

order Hirota equation (3.2). In section 3.2 a nonlocal asymptotic transformation is

used to transform (3.2) to the integrable member of the NLS hierarchy (3.3). The

asymptotic transformation for the higher-order Hirota equation (3.2) is valid if the

algebraic relationship

c1 − 3

2
c3 − c4 − c5 + 5c6 = 0, (3.5)

is satisfied. In section 3.2 higher-order single and two-soliton solutions are derived,

using the transformation. For the single wave, the transformation predicts the ex-

istence of a two-parameter family of higher-order asymptotic embedded solitons.

For the two-soliton collision the higher-order collision is found to be asymptotically

elastic and analytical expressions are derived for both the higher-order phase and

coordinate shifts, due to the collision. The asymptotic transformation represents a

technique for analysing higher-order two-soliton collisions which is simpler to apply

than alternative approaches, such as perturbation methods based on inverse scat-

tering. Moreover, it establishes the existence of the embedded soliton family in a

simple manner.

In section 3.3 numerical solutions are presented for an elastic collision of higher-

order Hirota solitary waves. In particular, the theoretical and numerical values for

the higher-order phase and coordinate shifts are in close agreement.

In section 3.4 soliton perturbation theory is used to derive the details of an
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evolving solitary wave, governed by (3.2). An analytical expression is found for the

solitary wave tail. An excellent comparison is found between the theoretical and

numerical solutions, for the solitary wave tail. Moreover, the perturbation theory

shows that the tail vanishes when (3.5) is satisfied and confirms the existence of the

two-parameter family of higher-order asymptotic embedded solitons. This provides

cross-validation of both theoretical approaches as the algebraic relationship (3.5)

occurs in both the asymptotic transformation and the soliton perturbation method.

3.2 Asymptotic theory for solitary wave interac-

tion

If the transformation

η = ψ +
αε

12
(2c1 − 4c2 − c3 + 10c6 − 4c5)|ψ|2ψ

+
γε

6
(2c1 − 2c2 − 2c3 + 5c6 − 3c5)ψxx (3.6)

+
αε

12
(2c1 − 2c2 − 5c3 + 20c6 − 2c5)ψx

∫ x

−∞
|ψ(p, t)|2dp,

τ = t− ε

12
(2c1 − 2c2 − c3 − 2c5)x, ξ = x, ε ¿ 1,

where ψ(x, t) → 0 as x → ±∞, is substituted into (3.2) and terms of O(ε2) are ne-

glected, then ψ(x, t) is a solution of the higher-order member of the Hirota hierarchy

of integrable equations

ψτ + 3α|ψ|2ψξ + γψξξξ + ε
′
α2|ψ|4ψξ +

2ε
′

3
αγ(ψ|ψξ|2)ξ

+
2ε

′

3
αγψ∗(ψψξξ)ξ +

2ε
′

3
αγψ∗ψξψξξ +

2ε
′

15
γ2ψ5ξ = 0, (3.7)

where ε
′
=

15ε

8
(2c1 − 2c2 − c3 + 4c6 − 2c5) ¿ 1,

if the algebraic relationship (3.5) is satisfied. Note that this transformation is an

appropriate combination of (2.5) used for the higher-order NLS equation and that

for the KdV equation, see Marchant and Smyth [28].

The form of transformation (3.6) is appropriate for solutions which approach

zero far up and downstream, such as the solitary wave solutions considered here.

For other forms of solutions, such as periodic solutions, the nonlocal term in the
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transformation (3.6) needs to be modified slightly. The form of the transforma-

tion is qualitatively similar to the transformation (2.5). Note that a similar form

of transformation (3.6) was used for a higher-order KdV equation, see Marchant

and Smyth [28], and a higher-order mKdV equation, see Marchant [26]. For ex-

ample, when η and ψ are real, (3.6) is equivalent to the transformation used by

Marchant [26]. By appropriate scalings of the higher-order coefficients, the alge-

braic relationship (3.5) becomes the algebraic relation found by Marchant [26] for

the higher-order mKdV equation (see his (6)).

3.2.1 A single higher-order soliton

The soliton solution of the integrable higher-order Hirota equation (3.7) is

ψ = Aeiϕ sech θ, where A = (
2γ

α
)

1
2 κ,

ϕ = a(ξ − bτ − s) + ϕ0, θ = κ(ξ − s− vτ), (3.8)

v = γ(κ2 − 3a2) +
2

3
ε
′
γ2(a4 +

1

5
κ4 − 2a2κ2),

b = γ(3κ2 − a2) +
2

3
ε
′
γ2(

1

5
a4 + κ4 − 2a2κ2).

A is the amplitude of the wave, κ is related to the width of the wave envelope and

and v is the velocity. The parameter a is the wavenumber of the phase and b is

related to the frequency of the phase. Also the soliton is at ξ = s at t = 0 and ϕ0

is the initial phase. For ε
′
= 0, (3.8) becomes the Hirota soliton which moves to the

right when κ2 > 3a2 + ε
′ 32
15

γa4, and to the left when κ2 < 3a2 + ε
′ 32
15

γa4.

Using (3.8) in the transformation (3.6) gives

η = Aeiϕ sech θ + εAeiϕ(B sech θ + C sech θ tanh θ + D sech3 θ),

where B =
iγ

6
(−2c2 + 2c1 + 20c6 − 5c3 − 2c5)aκ

+
γ

6
(2c2 − 2c1 − 5c6 + 2c3 + 3c5)a

2 +
γ

6
(3c3 − 15c6 − c5)κ

2,

C =
γ

6
(−2c1 + 2c2 + 5c3 − 20c6 + 2c5)κ

2 (3.9)

+
iγ

6
(10c6 + 2c2 − c3 − 2c1 + 4c5)aκ, D =

γ

3
(10c6 − c3 − c2)κ

2,

ϕ = a[(1 +
εγ

4
(2c1 − c3 − 2c2 − 2c5)(κ

2 − a2

3
))x− bt− s] + ϕ0,

θ = κ[(1− εγ

4
(2c1 − c3 − 2c2 − 2c5)(a

2 − κ2

3
))x− vt− s).
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We rescale a and κ by

a = a∗(1 +
εγ

4
(κ∗

2 − a∗
2

3
)(2c1 − c3 − 2c2 − 2c5)), (3.10)

κ = κ∗(1− εγ

4
(a∗

2 − κ∗
2

3
)(2c1 − c3 − 2c2 − 2c5)),

where a∗ and κ∗ are the rescaled values. This gives, after dropping the stars, the

higher-order Hirota wave in the form

η = Aeiϕ sech θ + εAeiϕ(B sech θ + C sech θ tanh θ + D sech3 θ),

A = (
2γ

α
)

1
2 κ, D =

γ

3
(10c6 − c3 − c2)κ

2,

B =
γ

12
(2c1 − 2c2 − 10c6 + c3)a

2 +
γ

12
(7c3 − 30c6 − 2c1 + 2c2)κ

2,

C =
iγ

6
(10c6 + 2c2 − c3 − 2c1 + 4c5)aκ,

ϕ = a[x− s(1− εγ

4
(κ2 − a2

3
)(2c1 − c3 − 2c2 − 2c5))

+
εγ

6
(2c1 − 2c2 + 20c6 − 5c3 − 2c5)κ− bt] + ϕ0, (3.11)

θ = κ[x− s(1 +
εγ

4
(a2 − κ2

3
)(2c1 − c3 − 2c2 − 2c5))

+
εγ

6
(2c1 − 2c2 + 20c6 − 5c3 − 2c5)κ− vt],

v = γ(κ2 − 3a2) + εγ2c6(κ
4 + 5a4 − 10κ2a2),

b = γ(3κ2 − a2) + εγ2c6(a
4 + 5κ4 − 10κ2a2).

The higher-order Hirota solitary wave (3.11), derived using the transformation (3.6),

is the same as that found directly, if (3.5) is satisfied. Note that the transformation

has shifted the wave from ξ = s at τ = 0 to

x = s[1+
εγ

4
(a2− κ2

3
)(2c1−c3−2c2−2c5)]− εγ

6
(2c1−2c2+20c6−5c3−2c5)κ, (3.12)

at t = 0. As η → 0 as θ → ±∞ in (3.11) it is a localised higher-order solitary wave.

Hence when (3.5) is satisfied a two-parameter family of higher-order asymptotic

embedded solitons exists. When (3.5) is not true, then mass and energy are shed,

see section 3.4 for a derivation of the solitary wave tail. The condition (3.5) does

not imply that exact higher-order embedded solitons occur as a tail is likely to form

at second-order, O(ε2), for waves satisfying (3.5).
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3.2.2 The higher-order two-soliton solution

In this section the two-soliton solution of the higher-order Hirota equation (3.2),

with coefficients satisfying (3.5), is found. The two-soliton solution of the integrable

higher-order Hirota equation (3.7) is

ψ(ξ, τ) =
Φ(ξ, τ)

Ψ(ξ, τ)
, where Ψ(ξ, τ) =

cosh ϑ + sinh ϑ(tanh θ1 tanh θ2 − sech θ1 sech θ2 cos (ϕ1 − ϕ2)),

Φ(ξ, τ) = A1 sech θ1e
iϕ1(cos ψ1 + i sin ψ1 tanh θ2) (3.13)

+A2 sech θ2e
iϕ2(cos ψ2 + i sin ψ2 tanh θ1),

ϑ =
1

2
ln

(a1 − a2)
2 + (κ1 − κ2)

2

(a1 − a2)2 + (κ1 + κ2)2
.

The various other parameters (for j = 1, 2) are

Aj = (
2γ

α
)

1
2 κj, θj = κj(ξ − vjτ − sj), ϕj = aj(ξ − bjτ − sj) + ϕ0j

,

ψj = arg(κ2
j − κ2

3−j + (aj − a3−j)
2 + 2iκ3−j(aj − a3−j)), (3.14)

vj = γ(κ2
j − 3a2

j) +
2

3
ε
′
γ2(a4

j +
1

5
κ4

j − 2a2
jκ

2
j),

bj = γ(3κ2
j − a2

j) +
2

3
ε
′
γ2(

1

5
a4

j + κ4
j − 2a2

jκ
2
j),

see Hirota [13]. Note that the two-soliton solution (3.13) is similar to (2.15). The

velocity of the jth soliton is vj and its position is sj at τ = 0. The initial phase

at the centre of the soliton is ϕj(sj, 0) = ϕ0j
. When ε

′
= 0 it becomes the Hirota

two-soliton solution. The higher-order terms only affect the velocities vj and the

parameters bj of the two solitons. This is similar to the two-soliton solution of the

integrable higher-order KdV and mKdV equations, for which only the velocities

have a correction term at O(ε). Also, the Hirota two-soliton solution is remarkably

similar to the form of the NLS two-soliton solution.

The phase and coordinate shifts for the higher-order integrable equation are

coordinate shifts :
2ϑ

κ1

, −2ϑ

κ2

, phase shifts :
2ψ1

a1

, −2ψ2

a2

, (3.15)

for the waves with amplitudes A1 and A2, respectively. The coordinate shift refers

to a shift in the position of the wave envelope (associated with a change in θj) while

the phase shift refers to a change in the phase of the wave, ϕj.
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The higher-order two-soliton solution, to O(ε), describing the interaction of two

higher-order Hirota solitons is just the integrable higher-order Hirota two-soliton

solution (3.13), transformed by (3.6). The collision is considered well before and

after interaction, where it is comprised of the sum of two well separated single

higher-order waves (3.8). Substituting the sum of these two solitary waves of the

form (3.8) into the transformation (3.6) gives two higher-order waves of the form

(3.11).

However, the nonlocal term in (3.6) does lead to a collision dependent term in the

transformation. The nonlocal term is an integral from far behind the solitary wave to

its current location. The relevant integral of the wave on the left is
∫∞
−∞ |ψ(x, t)|2dx =

(4γ
α

)κj (j = 1 before collision and j = 2 after) and the interaction dependent term in

the transformation is (4γ
α

)εκjψx. This term represents both a coordinate and phase

shift at higher-order. Also, there is a contribution from the rescaling (3.10), to the

higher-order coordinate and phase shifts. Combining these contributions gives

coordinate shifts :
2ϑ

κ1

− 1

3
εγκ2µ, −2ϑ

κ2

+
1

3
εγκ1µ,

phase shifts :
2ψ1

a1

+
1

3a1

εγκ2(a1 + 2a2)ρ− 1

3
εγκ24, (3.16)

−2ψ2

a2

− 1

3a2

εγκ1(a2 + 2a1)ρ +
1

3
εγκ14,

where µ = −20c6 + 4c3, ρ = 2c1 − c3 − 2c2 − 2c5,

4 = −2c2 + 2c1 + 20c6 − 5c3 − 2c5,

as the higher-order coordinate and phase shifts of the waves with amplitudes A1

and A2, respectively. For the member of the NLS integrable hierarchy (3.3), then

µ = ρ = 4 = 0 and the higher-order shifts are all zero. Also, when a1 = a2 = 0

and (3.2) becomes a higher-order mKdV equation, the higher-order corrections to

the coordinate shifts are the same as those for the higher-order mKdV equation, see

(16) of Marchant [26]. In his (16), as in (3.16), the higher-order coordinate shift is

proportional to the amplitude of the solitary wave it has collided with.

In summary, when (3.5) is satisfied, the higher-order Hirota solitary wave colli-

sion is asymptotically elastic, to first-order, with the higher-order phase and coordi-

nate shifts given by (3.16). Inelastic effects, due to the collision, are likely to occur

at second-order.



3.3. Numerical interaction of solitary waves 39

3.3 Numerical interaction of solitary waves

In this subsection the interaction of higher-order Hirota solitary waves is examined

numerically. This allows the theoretical results for a solitary wave collision, which

apply when (3.5) is satisfied, to be verified. The numerical method used is similar

to section 2.3.

The higher-order Hirota equation (3.2) is expanded using

η = u + εp, (3.17)

where u is the two-soliton solution of the Hirota equation (ε
′
= 0 in (3.13)) and p is

the O(ε) correction term of interest here. The expansion (3.17) is substituted into

the higher-order Hirota equation (3.2), which gives a linear KdV-type equation by

the form

pt + γpxxx + 3α|u|2px + 3αuuxp
∗ + 3αu∗uxp = −f,

where f = c1α
2|u|4ux + c2αγ(u|ux|2)x + c3αγu∗(uuxx)x (3.18)

+c4αγu∗uxuxx + c5αγuuxu
∗
xx + c6γ

2u5x.

To avoid secular terms the contribution to the perturbation p, from a single higher-

order Hirota wave (3.2) needs to be considered. In general asymptotic solitons, which

occur when (3.5) is satisfied, have O(ε) corrections to their amplitude, velocity and

other parameters. However, the special case

(c1, c2, c3, c4, c5, c6) = (3− β

2
,−2 + β, 2− β,−3 + 2β, 3− β, 0), (3.19)

where β =
(1 + 3δ)

(1 + δ)
, δ =

a2
1

κ2
1

=
a2

2

κ2
2

,

has no O(ε) corrections to the amplitude, velocity or the parameter b, in (3.11).

Hence (3.19) is used for the numerical study of solitary wave interaction, using

(3.18). The linear KdV-type equation (3.18) is solved by an implicit, three level,

finite-difference scheme with second-order accuracy and unconditional stability. The

special case (3.19), which satisfies (3.5), shows an asymptotically elastic and shall be

employed to verify the theoretical results (3.16) obtained in 3.2.2 for the higher-order

coordinate and phase shifts. For this special case the forcing f = 0 well before after
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collision so the the perturbation p after interaction only represents the higher-order

coordinate and phase shifts. The higher-order solution for the special case (3.19) is

the Hirota soliton

η = Aeiϕ sech θ, ϕ = a(x− bt− εΛ2), θ = κ(x− vt− εΛ1), (3.20)

where Λ1 and Λ2 are higher-order corrections to the position and phase of the solitary

wave. The description after (2.26) details how the higher-order corrections Λ1 and

Λ2 can be measured from the solution of (3.18).

The higher-order Hirota equation (3.2) asymptotically conserves the averaged

quantity

∫ +∞

−∞
(|η|2 +

εαγ

6
c7|ηx|2)dx, where c7 = (c2 − 2c3 + c4 + c5). (3.21)

In the optical context it implies the conservation of photon number, see Yang [41].

Here we assign it no physical meaning but, for simplicity, call |η|2 mass density.

Note that (3.21) represents an asymptotic mass density as the mass density is only

conserved if c7 = 0. If the mass of the system is written as M0 + εM1, then the

equation for the first-order mass is

M1 =

∫ +∞

−∞
(pu + pu)dx = c8 − αγ

6
c7

∫ +∞

−∞
|ux|2dx, (3.22)

where u is an solution of the Hirota equation (in the example here, the two-soliton

solution) and c8 is a constant. For the special case considered here there are no

O(ε) corrections to the solitary wave’s profile, so M1 = 0 for a single solitary wave.

Hence before interaction the constant c8 is chosen so that M1 is initially zero. Dur-

ing interaction the term |ux|2 in (3.22) will cause the first-order mass M1 to vary

before returning to zero after interaction. The expression (3.22) will be used as an

additional check on the accuracy of the numerical results.

Example 1 is of the higher-order Hirota equation (3.2) with α = 2, γ = 1

and coefficients (3.19), hence it satisfies (3.5) and is asymptotically elastic. The

parameters of the two solitons are (κ1, a1) = (1, 2) and (κ2, a2) = (1
2
, 1), so δ = 4

and the higher-order coefficients are chosen as

(c1, c2, c3, c4, c5, c6) = (
17

10
,
3

5
,−3

5
,
11

5
,
2

5
, 0). (3.23)
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Figure 3.1: |p| at t = 7 for example 1

The spatial and temporal grid spacings used are ∆x = 1× 10−3 and ∆t = 1× 10−4.

Initially the perturbation p = 0 at time t = 0, which corresponds to a time well

before interaction of the solitary waves.

Figure (3.1) shows |p| for example 1 after interaction, at t = 7. It shows that

|p| comprises two, well separated humps, which represent the phase and coordinate

shifts of the two solitary waves. Examination of the free surface behind the humps af-

ter interaction shows that it essentially flat, with no dispersive wave train produced.

The amplitude of the largest oscillation behind the symmetric and antisymmetric

waves is O(10−6). Richardson extrapolation indicates the converged amplitudes of

oscillations are O(10−7), confirming that it is merely a result of the discretization.

Hence, no dispersive wave train occurs as a result of the collision, so it is elastic to

O(ε).

Figure (3.2) shows the imaginary and real parts of pe−iϕ for example 1 at t = 7.

The perturbation has been scaled to eliminate the phase eiϕ of the waves, so that the

real and imaginary parts represent the coordinate and phase shifts, respectively. It

can been seen from the figure that the real part is anti-symmetric and the imaginary

part is symmetric, corresponding to the sech tanh and sech functions of the Taylor
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Figure 3.2: Real (solid lines) and imaginary parts (dashed lines) of pe−iϕ at t = 7

for example 1

series expansion (2.26). Also, note that the expressions for the two waves have been

scaled by slightly different forms of the phase, as Hirota solitons suffer different

phase shifts, given by (3.15).

The numerical estimates of the higher-order phase and coordinate shifts are ob-

tained by measuring the amplitudes of the symmetric and antisymmetric curves in

figure (3.2). The amplitudes are also measured using values of ∆x and ∆t double the

values quoted above. Richardson extrapolation is then used to obtain a converged

estimate of the phase and coordinate phase shifts. The numerically obtained phase

shifts are −0.0671 and −1.8667 for the larger and smaller waves, respectively. The

corresponding theoretical predictions from (3.16) are −0.0667 and −1.8667. For the

coordinate shifts the numerical predictions are 0.4000 and −0.7999, while the theo-

retical predictions are 0.4 and −0.8, for the larger and smaller waves, respectively.

In absolute terms the largest error is 4 × 10−4. The errors are extremely small,

verifying the theoretical predictions and confirming the accuracy of the numerical

scheme.

Figure (3.3) shows the first-order mass M1, versus time t, for example 1. Shown
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Figure 3.3: The first-order mass M1, for example 1

is the solution of (3.22) with u being the Hirota two-soliton solution. The direct

numerical calculation of M1, from the finite-difference solution is not shown as it is

the same as (3.22) to graphical accuracy. The value of M1 is zero well before and

after collision. As c7 = 22
5

the first-order mass varies during the collision. It varies

in an oscillatory manner to a minimum value of −3.215614 at time t = 3.58. The

difference between this prediction for mass, and that from the numerical scheme,

is very small, being only 4.16 × 10−4 or 0.0129%. Hence the numerical scheme

accurately predicts the first-order mass throughout the collision. Hence mass is not

conserved during the collision but is conserved well before and after collision (as

t → ±∞).

In summary, it can be seen that the theoretical predictions have been confirmed

for this example. The numerical results show that the collision is asymptotically

elastic to first-order and the numerical estimates for coordinate and phase shifts are

very close to the theoretical predictions.



3.4. Perturbation theory and solitary wave evolution 44

3.4 Perturbation theory and solitary wave evolu-

tion

It was found in section 3.2 that a two-parameter family of higher-order asymptotic

embedded solitons exists if (3.5) is true. As the higher-order waves are embedded in

the linear wave spectrum, when (3.5) is not satisfied the solitary wave will decay as

radiation is shed. Here soliton perturbation theory is used to determine the details

of the evolving solitary wave, to first-order. An analytical expression is found for

the tail of the solitary wave and comparisons are made with numerical solutions.

3.4.1 The perturbation solution

There are many applications of soliton perturbation theory in the literature, see

Herman [12] for applications to perturbed KdV, NLS and mKdV equations, or Yang

and Kaup [43] for an application to a generalized NLS equation. Also, Yang [41],

outlines the application of the method to the higher-order Hirota equation (3.4).

The Hirota soliton is

η0 = (
2γ

α
)

1
2 κei(aθ+ϕ) sech κθ, ϕ = λt− ϕ0, θ = x− vt− θ0, (3.24)

where v = γ(κ2 − 3a2), λ = −2γ(a2 + κ2)a,

when κ, a, θ0 and ϕ0 are free parameters. For the higher-order Hirota equation (3.2)

the perturbed solution can be written as

η = eiϕφ(θ, t), θ = x−
∫ t

0

vdt− θ0, ϕ =

∫ t

0

λdt− ϕ0. (3.25)

By substituting (3.25) in the higher-order Hirota equation (3.2) we obtain

φt + iλφ− vφθ + γφθθθ + 3α|φ|2φθ = −εH(φ), (3.26)

where H represents the perturbed terms in (3.2). The solution φ(θ, t) can be ex-

panded as a perturbation series

φ = φ0(θ) + εφ1(θ, t) + . . . , (3.27)

which is substituted into (3.26). The soliton parameters κ, a, θ0 and ϕ0 all vary

on a slow time scale T = εt. The forms of the slow variations will be chosen to



3.4. Perturbation theory and solitary wave evolution 45

eliminate the secular terms in the expansion. But the main focus here is to find the

correction to the solitary wave profile φ1, which allows the tail of the solitary wave

to be determined. The expression for φ1 depends only on the perturbation terms in

H, not on any contributions from the slow time variations.

At O(ε) the equation

φ1t + iλφ1 + (3α|φ0|2 − v)φ1θ
+ γφ1θθθ

+r(θ)φ1 + q(θ)φ∗1 = −H(φ0), (3.28)

where r(θ) = 3αφ∗0φ0θ
, q(θ) = 3αφ0φ0θ

,

φ0 = η0e
−iϕ = (

2γ

α
)

1
2 κeiaθ sech κθ,

with the initial value φ1|t=0 = 0 is solved. The linear equation (3.28) can be written

in the matrix form (∂t + L)w1 = H where

L =


 G(θ) q(θ)

q∗(θ) G∗(θ)


 , w1 =


 φ1

φ∗1


 , H =


 ω1

ω∗1


 , (3.29)

where G(θ) = γ∂θθθ + (3α|φ0|2 − v)∂θ + r(θ) + iλ,

and ω1 = −H(φ0)− φ0T1
+ iφ0ϕ0T1

+ φ0θ
θ0T1

.

The technique used to solve (3.28) is similar to that applied to the perturbed

KdV and NLS equations. The solution is expanded as the set of eigenfunctions for

the linearisation operator. These eigenfunctions are just the squared eigenstates of

the Zakharov-Shabat system with the soliton potential (see Yang [40] and Zakharov

and Shabat [45]).

It is not difficult to show that non-localized (continuous) eigenstates are

w2 =


 −κ2 sech2 κθei(2a−ξ)θ

(κ tanh κθ + iξ − ia)2e−iξθ


 ,

w3 =


 −(κ tanh κθ − iξ + ia)2e+iξθ

κ2 sech2 κθe−i(2a−ξ)θ


 , (3.30)
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and the localized (discrete) of L are

w4 =


 −φ0

φ∗0


 = (

2γ

α
)

1
2


 −eiaθ

e−iaθ


 κ sech κθ, (3.31)

w5 =


 φ0θ

φ∗0θ


 = (

2γ

α
)

1
2


 (−κ tanh κθ + ai)eiaθ

(−κ tanh κθ − ai)e−iaθ


 κ sech κθ,

w6 = (
2γ

α
)

1
2


 (−3a(1− κθ tanh κθ)− iκ2θ)eiaθ

(−3a(1− κθ tanh κθ) + iκ2θ)e−iaθ


 sech κθ,

w7 = (
2γ

α
)

1
2


 (−2iaκ2θ + (κ2 + 3a2)(1− κθ tanh κθ))eiaθ

(2iaκ2θ + (κ2 + 3a2)(1− κθ tanh κθ))e−iaθ


 sech κθ,

where

Lw4 = Lw5 = 0,

Lw6 = 2iκ(κ2 + 9a2)w4, Lw7 = −2κ(κ2 + 9a2)w5, (3.32)

Lw2 = iϑw2, Lw3 = −iϑw3,

and the parameter ϑ is defined as

ϑ = γ(ξ + 2a)k1, k1 = κ2 + (ξ − a)2. (3.33)

Also needed are the continuous eigenfunctions of the adjoint operator L†, which are

related to (3.31) and (3.30) by wi
† = (−a∗, b∗)T , i = 2, .., 7, where wi = (a, b)T are

the eigenfunctions in (3.31) and (3.30). Lastly, the inner product

〈f(θ),g(θ)〉 =

∫ ∞

−∞
f(θ)Tg(θ)dθ, (3.34)

needs to be defined.

The only nonzero inner products of the (bounded) eigenstates and adjoint (bounded)
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eigenstates are

〈w4,w6
†〉 =

12γ

α
a = −〈w6,w4

†〉,

〈w5,w6
†〉 = −4γ

α
i(κ2 + 3a2) = −〈w6,w5

†〉,

〈w4,w7
†〉 = −4γ

α
(κ2 + 3a2) = −〈w7,w4

†〉,

〈w5,w7
†〉 = −4γ

α
ia(κ2 + 3a2) = −〈w7,w5

†〉, (3.35)

〈w2(θ; ξ),w2
†(θ; ξ

′
)〉 = 2πk2

1δ(ξ − ξ
′
),

〈w3(θ; ξ),w3
†(θ; ξ

′
)〉 = −2πk2

1δ(ξ − ξ
′
),

where δ is δ-Dirac function. Let us start by expanding the first-order solitary wave

solution of (3.29) ,

w1 =

∫ ∞

−∞
[g1(t; ξ)w2 + g2(t; ξ)w3]dξ

+h1(t)w4 + h2(t)w5 + h3(t)w6 + h4(t)w7, (3.36)

and also right hand site of (3.29),

H =

∫ ∞

−∞
[Γ1(ξ)w2 + Γ2(ξ)w3]dξ + p1w4 + p2w5 + p3w6 + p4w7, (3.37)

in the closure of L’s eigenstates. Then it is not difficult to show that the coefficients

pj, Γ1(ξ) and Γ2(ξ) can be determined by applying inner product of eigenfunctions

of L† on (3.37) and then using orthogonality relations (3.35):

p1 =
〈H,w7

†〉〈w5,w6
†〉 − 〈H,w6

†〉〈w5,w7
†〉

〈w4,w7
†〉〈w5,w6

†〉 − 〈w4,w6
†〉〈w5,w7

†〉 ,

p2 =
〈H,w7

†〉〈w4,w6
†〉 − 〈H,w6

†〉〈w4,w7
†〉

〈w5,w7
†〉〈w4,w6

†〉 − 〈w5,w6
†〉〈w4,w7

†〉 ,

p3 =
〈H,w5

†〉〈w7,w4
†〉 − 〈H,w4

†〉〈w7,w5
†〉

〈w6,w5
†〉〈w7,w4

†〉 − 〈w6,w4
†〉〈w7,w5

†〉 , (3.38)

p4 =
〈H,w5

†〉〈w6,w4
†〉 − 〈H,w4

†〉〈w6,w5
†〉

〈w7,w5
†〉〈w6,w4

†〉 − 〈w7,w4
†〉〈w6,w5

†〉 ,

Γ1(ξ) =
〈H,w2

†〉
2πk2

1

, Γ2(ξ) = −〈H,w3
†〉

2πk2
1

.

Substituting (3.36) and (3.37) in (3.29) leads us to the governing differential equa-

tions for coefficients hj, g1(t; ξ) and g2(t; ξ)

h3t = p3, h4t = p4, h1t + 2iκ(κ2 + 9a2)h3 = p1, h2t − 2κ(κ2 + 9a2)h4 = p2, (3.39)



3.4. Perturbation theory and solitary wave evolution 48

with the initial conditions (because of (3.28))

h1(t)|t=0 = h2(t)|t=0 = h3(t)|t=0 = h4(t)|t=0 = 0. (3.40)

In (3.36) the localized eigenstates’ coefficients, hj, are secular and therefore should

be suppressed, leading to the secularity conditions

〈H,w4
†〉 = 〈H,w5

†〉 = 〈H,w6
†〉 = 〈H,w7

†〉 = 0. (3.41)

Under above assumption the relations (3.38) and the equations (3.39)-(3.40) will

give

p1(t) = p2(t) = p3(t) = p4(t) = h1(t) = h2(t) = h3(t) = h4(t) = 0, t ≥ 0.

Thus, the ε-order correction (3.36) can be written as an integral of L’s continues

eigenstates. In view of the secularity conditions (3.41), with associated initial con-

ditions

v|T1=0 = γ(κ2 − 3a2), λ|T1=0 = −2γ(κ2 + a2)a, ϕ0|T1=0 = 0, θ0|T1=0 = 0, (3.42)

we obtain the effects of the correction terms on the soliton parameters as:

v = γ(κ2 − 3a2), λ = −2γ(κ2 + a2)a,

θ0 = γ2(
2γ

α
)

1
2 [5c6a

4 + (2c2 − 4c3 − 2c4 +
2

3
c5 + 10c6)κ

2a2

+
1

45
(32c1 + 10c2 − 68c3 − 2c4 − 2c5 + 105c6)κ

4]εt, (3.43)

ϕ0 = aγ2(
2γ

α
)

1
2 [−4c6a

4 − 8

3
c5κ

2a2 +

1

45
(128c1 − 192c3 − 48c4 − 88c5 + 420c6)κ

4]εt.

The quantity Γ1(ξ) (i.e. Γ2(ξ) = Γ1(ξ)), found using the residue theorem, is

360κ6Γ1(ξ) = iγ2(
2γ

α
)

1
2

[
45κ3(A1 + A2)− κ2(15A3 + 9A4)(ξ − a)

+5κA1(ξ − a)2 − A4(ξ − a)3
]
sech(

π(ξ − a)

2κ
), (3.44)
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where the various parameters are

A1 = (−4c1 + 2c2 + 20c3 + 8c4 − 120c6)κ
5a,

A2 = (−2c2 + 4c3 + 2c4 + 2c5 − 20c6)κ
3a3

+(−2c2 − 12c3 − 6c4 + 2c5 + 100c6)κ
5a,

A3 = (6c2 − 12c3 − 6c4 + 2c5 + 60c6)κ
4a2

+(6c2 + 4c3 + 2c4 + 2c5 − 60c6)κ
6,

A4 = (4c1 − 10c2 − 16c3 − 4c4 − 4c5 + 120c6)κ
6.

And similar to (3.39) and (3.40), the evolution equations for continues eigen-

functions’ coefficients in expansion (3.36) are found as

g1t + iϑg1 = Γ1(ξ), g2t − iϑg2 = Γ1(ξ), (3.45)

when g1(0) = g2(0) = 0. By a simple computation one obtains

g1 = −iΓ1(ξ)

ϑ
(1− e−iϑt), g2 = −g∗1. (3.46)

And hence, the first-order solution (3.36) has the form

w1 =

∫ ∞

−∞
(g1w2 + g∗1w3)dξ. (3.47)

Rearranging (3.47) gives

φ1(θ, t) =

∫ ∞

−∞
iΓ1(ξ)

(1− e−iϑt)

ϑ
κ2 sech2 κθe−i(ξ−2a)θdξ (3.48)

−
∫ ∞

−∞
iΓ1(ξ)

(1− eiϑt)

ϑ
(κ tanh κθ − i(ξ − a))2eiξθdξ,

as an integral expression for the first-order correction to the solitary wave profile.

It is easy to show that (3.48) satisfies in (3.28). Note that for integrable coefficients

(3.3), the first-order solution φ1 in (3.48) is zero and therefore (3.27) becomes (3.8).

We also note that

lim
ϑ→0

(1− e±iϑt)

ϑ
= ∓it, (3.49)

so the integrand of (3.48) is singular at ϑ = 0 (ξ = −2a) in the limit of large time,

as t →∞.
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3.4.2 The solitary wave tail

As radiation is shed from the solitary wave, it propagates in the negative x-direction,

according to cg = −3k2, the group velocity of the linear KdV equation. Hence for

right-moving waves, κ2 > 3a2, the radiation forms a tail behind the evolving solitary

wave. For left-moving waves, 3a2 > κ2, and the radiation and the wave move in the

same direction, with the radiation forming a front ahead of the solitary wave. For

convenience we call the region, θ ¿ −1, the solitary wave tail for both right and

left-moving solitary waves. The asymptotic analysis considered here is similar to

that of Herman [12] (see his Appendix B) and Pelinovsky and Yang [33] (see their

section 4).

The Riemann-Lebesgue lemma implies that the integral (3.48) will decay to zero,

as t →∞, except near any singular points. Hence for large time, the leading-order

behaviour of (3.48) can be found by considering contributions near ξ = −2a. We

substitute the transformation ξ = −2a + z/t into (3.48) and obtain

φ1(θ, t) ∼ ie−2iaθΓ1(−2a)
(κ(±1) + i3a)2

γ(κ2 + 9a2)
(3.50)

(∫ ∞

−∞

eizcp

z
dz −

∫ ∞

−∞

eiz(γ(k2+9a2)+cp)

z
dz

)
, |θ| À 1, t →∞,

where the ± in the expression refers to the regions well in front (+) and behind (−)

the solitary wave. Also we let θ/t = cp, an O(1) constant. Also, the integral

∫ ∞

−∞

eizp

z
dz = iπsgn(p), (3.51)

is needed to evaluate (3.50). Well in front of the soliton, cp > 0, so both integrals

within (3.50) have the same value. So the cancellation of the two integrals implies

φ ∼ 0 well ahead of the solitary wave. This is physically consistent with the fact

that the group velocity of the linear radiation is negative.

Behind the wave we choose −γ(k2 + 9a2) < cp < 0. Then the integrals within

(3.50) have the opposite sign and

φ1 ∼ he−2iaθ, where h =
1

5
iaπ(κ2 + a2)γ(

2γ

α
)

1
2 (3.52)

(2c1 − 3c3 − 2c4 − 2c5 + 10c6)
κ− 3ia

κ + 3ia
sech(

3πa

2κ
), θ ¿ −1, t →∞,
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Figure 3.4: tail amplitude |h| versus wavenumber a and comparison with numerical

simulations

is obtained as the steady-state tail of the solitary wave at first-order. The tail (3.52)

is qualitatively similar to the expression found by Yang [41] for the tail of an evolving

solitary wave governed by (3.4). For the higher-order Hirota equation (3.4) it was

found that a one-parameter family of embedded solitons occurred for fixed values of

the wavenumber a.

Figure (3.4) shows the tail amplitude |h| versus wavenumber a for κ = 0.5 (lower

curve), κ = 0.75 and κ = 1 (upper curve). The other parameters are α = 2, γ = 1,

c1 = 1 with the other ci = 0. For a given value of the solitary wave amplitude

(A = κ for these parameter choices) the tail amplitude is zero at wavenumber a = 0,

increases to a maximum, before decreasing to zero as a →∞. When a = 0 the Hirota

soliton is the real-valued mKdV soliton. In this limit h = 0 as the higher-order

mKdV equation has localised solitary wave solutions for all choices of higher-order

coefficients. It can be also seen from the figure that the tail amplitude increases

as the wave amplitude increases. Moreover, the numerical simulations for right-

moving waves have been carried out and the comparison between the numerical tail

amplitudes and (3.52) are shown in the figure, see 3.4.3 for details of the numerical
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scheme.

For (3.2) the tail (3.52) is zero if (3.5) is satisfied and a two-parameter family

of asymptotic embedded solitons occurs. Note that this two-parameter family only

exists up to first-order, as the second-order tail, at O(ε2), may be non-zero. The tail

amplitude (3.52) is also zero if a = 0, hence a one-parameter family of embedded

solitons (the real mKdV soliton family) also exists. This family are part of the

one-parameter family of embedded solitons found by Yang [41].

Also noteworthy is the fact that the condition (3.5) from the asymptotic trans-

formation is the condition in (3.52) for the tail amplitude to be zero. This is the

same two-parameter family of embedded solitons identified using the asymptotic

transformation, so there is agreement between the two analytical methods.

The leading-order transient terms in the tail region will occur due to contri-

butions from (3.48) at points of stationary phase. The relevant phase of (3.48) is

ϑ1 = ϑ + ξcp = γ(ξ + 2a)(κ2 + (ξ − a)2) + ξcp, (3.53)

and points of stationary phase, which occur when dϑ1

dξ
= 0, are

ξ±s = ±
√
−1

3
(κ2 − 3a2 +

cp

γ
). (3.54)

Using the method of stationary phase gives

φ1 ∼ he−2iaθ + iπ
1
2
[κ + i(ξ±s − a)]2

(3t|ξ±s |)
1
2 ϑ(ξ±s )

Γ1(ξ
±

s )ei[(ϑ(ξ±s )+ξ±s cp)t∓π
4
], (3.55)

θ ¿ −1, t →∞.

The tail (3.55) consists of the steady-state result (3.52) plus the two leading order

transient terms, which are contributions from the points of stationary phase (one

term for each of the roots (3.54)). The points of stationary phase (3.54) only exist

when cp < γ(3a2 − κ2). For left-moving waves 3a2 > κ2, and the slowly decaying

transient terms, of O(t−
1
2 ), occur along the whole of the tail (for all cp < 0). For

right-moving waves κ2 > 3a2, and the O(t−
1
2 ) transient terms only occur on the

far edge of the tail, between −γ(κ2 + 9a2) < cp < −γ(κ2 − 3a2). For the near

tail of a right moving wave the transient terms decay more quickly than those in
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Figure 3.5: The first-order correction |φ1| versus θ at t = 70 for a right-moving wave.

Shown is the perturbation solution (3.48) (solid curve) and numerical solution of

(3.2) (dashed curve)

(3.55) (presumably they are O(t−1)) and the flat steady-state tail will be quickly

approached.

The group velocity of linear radiation is cg = −3γk2, while the soliton velocity

is v = γ(κ2 − 3a2). For tails with wavenumber k = −2a, the difference between the

soliton velocity and the group velocity of shed radiation, v−cg = γ(κ2 +9a2), which

is the length of the solitary wave tail. Hence the tail length has a clear physical

meaning.

3.4.3 Numerical solutions and discussion

Figure (3.5) shows the first-order correction |φ1| versus θ at time t = 70. The

parameters are κ = 1, a = 0.1, γ = 1, α = 2, ε = 0.1, c1 = 1 and all the

other ci = 0. The perturbation solution (3.48), was solved numerically using a

high-order quadrature scheme. The higher-order Hirota equation (3.2) was solved

numerically using an implicit finite-difference scheme. The initial condition used in

the numerical scheme was a Hirota soliton. The quantity ε−1|η| is plotted from the
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Figure 3.6: The first-order correction |φ1| versus θ at t = 150 for a left-moving wave.

Shown is the perturbation solution (3.48) (solid curve) and numerical solution of

(3.2) (dashed curve)

numerical solution as it allows a comparison with the perturbation solution in the

tail region.

As κ2 > 3a2 this is an example of a right-moving wave. There is an excellent

comparison between the numerical and perturbation solutions. The figure shows

the surface elevation behind the evolving solitary wave with the flat steady-state

tail clearly visible. The amplitude of this tail, as predicted by the perturbation

solution (3.48), is |φ1| = 0.1140, which is the same as the analytical expression

(3.50) for the steady-state tail amplitude. The numerical results show that the tail

has amplitude |h| = 0.1185, a difference of about 4%.

The figure shows that the tail amplitude drops from its steady-state value, to

near zero at θ ≈ −75. The asymptotic theory implies that the length of the solitary

wave tail is (κ2 + 9a2)t = 76.3, which is close to numerical tail length, of about 80.

The tail will be flat for θ > −γ(κ2−3a2)t = −67.9, as no slowly-decaying transients

exist on the near tail. There is an oscillation right at the end of the tail, so again

the asymptotic result is consistent with the perturbation and numerical solutions.
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Figure (3.6) shows the first-order correction |φ1| versus θ at time t = 150. The

parameters are the same as for figure (3.5), except that a = 0.8. Shown are the

perturbation solution (3.48) and the quantity ε−1|η| from the numerical solution of

(3.2).

The figure shows a portion of the region (−130 < θ < −80) in front of the

left-moving solitary wave. The comparison between the numerical and perturba-

tion solutions is very good, with some slight differences in phase and amplitude

noticeable. Also the asymptotic expression (3.55) is the same as the perturbation

solution (3.48) over this region of the tail, confirming the validity of the asymptotic

expression (3.55).

In contrast to the flat tail for the right-moving wave, here the tail is highly os-

cillatory. The superposition of the steady-state tail wavelength (of λ = π/a ≈ 3.93)

with the two different transient wavelengths leads to a classical beating-like phenom-

ena where the tail has multiple peaks and troughs of higher and lower amplitudes.

The steady-state tail amplitude is 7.60 × 10−2. An average taken of the numerical

solution, over the range −200 < θ < −50, is 7.74× 10−2, which is within 2% of the

analytical steady-state tail amplitude. The maximum amplitude (crest to trough) of

the tail oscillations is 4.56× 10−2 at t = 150. As the oscillations decay like O(t−
1
2 ),

a relatively flat tail will not be reached until t = O(106), when the amplitude of the

oscillations will have decayed to less than 1% of this value. Physically, the occur-

rence of slowly decaying transients on the tail of the left-moving wave, is related to

the fact the wave is moving in the same direction as its shed linear radiation, while

the right-moving wave moves in the opposite direction.

In summary the perturbation theory results, both direct numerical solutions of

(3.48) and the further asymptotic results derived from (3.48) are in good agreement

with each other and numerical solutions of the governing pde (3.2) for examples of

right and left-moving solitary waves.
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3.5 Conclusion

Firstly, an asymptotic transformation has been applied to the higher-order Hirota

equation (3.2) when (3.5) is satisfied. Applied to a single soliton, it enables a two-

parameter family of higher-order asymptotic embedded solitons to be identified.

For a two-soliton collision it enables the details of the higher-order collision to be

determined. The higher-order collision is found to be elastic and the higher-order

coordinate and phase shifts, after interaction of the solitary waves, were also found.

Secondly, soliton perturbation theory has been applied to (3.2) with an inte-

gral expression found for the first-order correction to the solitary wave profile. An

asymptotic expansion, valid for large time, allows a simple analytical expression to

be found for the solitary wave tail. The theoretical results clearly explain the dif-

ferences which occur for right and left-moving solitary waves. A flat tail occurs for

the right-moving case while the tail for the left-moving wave is highly oscillatory,

due to slowly decaying transient terms.

The solitary wave tail is zero when (3.5) is satisfied. Hence the two-parameter

family of higher-order asymptotic embedded solitons can be identified using two dif-

ferent analytical methods, the asymptotic transformation and soliton perturbation

theory. The two analytical methods provide a useful cross-validation of the theoret-

ical results. Moreover, it illustrates the usefulness of the asymptotic transformation

in providing theoretical results in a simple manner.



Chapter 4

Gray soliton interaction and

evolution for a higher-order Hirota

equation

In contrast to the focusing Hirota equation (3.1), the defocusing Hirota equation

ηt + 6|η|2ηx − ηxxx = 0, (4.1)

has dark and gray soliton solutions which are stable on a background of periodic

waves of constant amplitude. In this chapter, gray solitary wave interaction and

evolution for a higher-order defocusing Hirota equation is examined. The higher-

order Hirota equation is asymptotically transformed to a higher-order member of

the Hirota hierarchy of integrable equations, if the higher-order coefficients satisfy

an algebraic relationship. The transformation is used to derive higher-order one and

two-soliton solutions. It is shown that the interaction is asymptotically elastic and

analytical expressions for the higher-order corrections to the coordinate shifts, which

occur due to the interaction, are derived. The asymptotic theory and direct analysis

identify a three-parameter and a two-parameter family of higher-order embedded

gray solitary waves. Soliton perturbation theory is used to determine the detailed

behavior of an evolving higher-order gray Hirota solitary wave; an integral expression

for the first-order correction to the wave is found and analytical expressions for the

solitary wave tail are derived. A subtle and complex picture of the development of

57
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solitary wave tails emerges. For solitary wave interaction strong agreement is found

between the prediction of the asymptotic transformation and numerical solutions.

For the solitary wave evolution strong agreement is found between the theoretical

predictions of the perturbation theory, the results of the asymptotic transformation

of (4.1) and also numerical solutions.

4.1 Introduction

Dark solitons in the normal dispersive regimes, which appear as a localized inten-

sity dip on a stable or travelling wave background, have been extensively studied

by several authors. Kivshar and Luther-Davies [19] presents a historical overview

of the optical dark solitons and the physical origins of the defocusing cubic non-

linear Schrödinger (NLS) equation. By analyzing the modulational instability they

discussed the differences between bright and dark solitons and showed that small

excitations of the nonzero background wave are absolutely stable for the defocusing

NLS equation and unstable for focusing case. The stability considerations apply to

the focusing and defocusing Hirota equations also, see section 4.4.

Li et. al. [24], by applying inverse scattering transform (IST) method, and Ma-

halingam and Porsezian [25], by using the Painlevé analysis and the Hirota bi-

linearization method constructed a generalized dark solitary wave solution of the

higher-order nonlinear Schrödinger (NLS) equation

ηt + i(α1ηxx + α2|η|2η) + α3ηxxx + α4(|η|2η)x + α5η(|η|2)x = 0, (4.2)

where the real coefficients, the αi, are determined by the physical model under

consideration. Li et. al. [24] also showed that the absolute value (|η|) of the dark

two-soliton solution of (4.2) can be considered as the superposition of the absolute

values of two interacting dark one-soliton solutions; the only effects of the collision

are the coordinate shifts that the solitons suffer.

The defocusing Hirota equation (4.1) considered in this chapter, has the form

(4.2) with α1 = α2 = 0, α3 = −1, and α4 = −α5 = 6. These restrictions are called

the Hirota conditions, and result in (4.2) being integrable. The defocusing Hirota

equation has a number of physical applications, such as ultrashort light pulses in
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the subpicosecond regime, whose duration is shorter than 100 femtoseconds, see

Li et. al. [24] and Mahalingam and Porsezian [25]. The defocusing Hirota equation

also is part of the NLS hierarchy of integrable equations, and its soliton solution has

a very similar form to the defocusing NLS soliton. This is similar to the relation

between the focusing Hirota and NLS equations, see Li et. al. [24].

The higher-order defocusing Hirota equation

ηt + 6|η|2ηx − ηxxx + ε(c1|η|4ηx + c2(η|ηx|2)x + c3η
∗(ηηxx)x (4.3)

+c4η
∗ηxηxx + c5ηηxη

∗
xx + c6η5x) = 0, ε ¿ 1,

is considered in this chapter. When the higher-order coefficients are given by

(c1, c2, c3, c4, c5, c6) = (1,−1

3
,−1

3
,−1

3
, 0,

1

30
), (4.4)

then (4.3) is a member of the Hirota integrable hierarchy. The integrable hierarchy

is obtained using the Lax hierarchy of the Hirota equations. Hence (4.3) represents

a generalization of a member of the integrable hierarchy (4.4).

The pioneering works of Chen et. al. [3] on soliton perturbation theory for the

dark soliton of the NLS equation overcame the difficulties caused by divergency

of the perturbations to the soliton parameters. By applying the IST method, the

non-localized (continuous) eigenfunction of the linearization operator based on the

squared Jost solution, and its adjoint state, were found and, by using an appropri-

ate inner product in a manner similar to bright solitons (3.34) the orthogonality

relationships between the non-localized and localized eigenstates and their adjoint

counterparts were established. Then, as an application of Jordan’s lemma, it was

proved that the first-order correction to the solitary wave profile can be expanded

by the squared Jost solutions. Using the similarity between the first Lax pair of

the defocusing Hirota and NLS equations, the process can be extended to (4.3), for

more details, see section 4.4 and Appendix A.

In this chapter, we examine solitary wave interaction and evolution for the higher-

order Hirota equation (4.3). In section 4.2 the Hirota bilinearization method is

modified to find the single dark soliton solution of the defocusing Hirota equation

(4.1). In section 4.3 a nonlocal asymptotic transformation is used to transform (4.3)
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to the integrable member of the Hirota hierarchy (4.4). Note that the asymptotic

transformation for the higher-order Hirota equation (4.3) is valid if

c1 + 3c3 + 2c4 + 2c5 + 20c6 = 0, (4.5)

is satisfied. As for the bright solitary wave interaction discussed in chapter 3, the

interaction is elastic if the algebraic relationship is satisfied, but the relationship

(4.5) is different from that found for the higher-order focusing Hirota equation, see

(3.3). In section 4.3 higher-order single and two-soliton solutions are generated

explicitly, using the transformation.The higher-order two-soliton collision, is found

to be asymptotically elastic for the special case (4.5) and analytical expressions

are derived for the higher-order coordinate shifts, due to the collision. In section

4.3.3, numerical simulations of elastic higher-order gray solitary wave collisions are

presented, with the theoretical and numerical values for the higher-order coordinate

shifts in close agreement.

The bright Hirota soliton is embedded, as its frequency is embedded in the lin-

ear wave spectrum, see the discussion on p.32 in chapter (3). The gray Hirota

solitons considered here are similarly embedded in the linear wave spectrum, so the

gray Hirota solitons represent a three parameter family of embedded solitons. The

asymptotic transformation and direct solutions show that a three parameter family

of higher-order asymptotic embedded gray solutions exists, when (4.5) is satisfied.

Also, an additional two-parameter family of higher-order asymptotic embedded so-

lutions is identified.

In section 4.4, soliton perturbation theory is used to derive the details of an

evolving gray solitary wave at first-order. An integral expression for the first-order

correction to the solitary wave and explicit expressions for tail amplitudes, for dif-

ferent values of the background wave number, are found. The links between the

perturbation theory and the asymptotic transformation are explored. Also, an ex-

cellent comparison is found between the theoretical and numerical solutions for the

first-order solitary wave correction.
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4.2 The gray one-soliton solution

Here, by using Hirota bilinearization method, the single soliton solution for the

Hirota equation (4.1) is found. We consider the transformation

η = eiδ(x−bt)G(x, t)

F (x, t)
, (4.6)

where G(x, t) is a complex valued function and F (x, t) is a real valued function and

δ is a free parameter and b shall be determined. By using the transformation (4.6)

in (4.1), the bilinearized relations for G and F

{Dt + (2δ2 + b)Dx − 3iδD2
x −D3

x}G.F = 0,

{3D2
x + (δ2 − b)}F.F = −6|G|2, (4.7)

are found, where the Hirota bilinear operator is defined as

Dm
x Dn

t f.g = (
∂

∂x
− ∂

∂x1

)m(
∂

∂t
− ∂

∂t1
)nf(x, t)g(x1, t1)|x1=x,t1=t. (4.8)

The functions G and F are defined by

G = g0(1 + βg1) and F = 1 + βf1. (4.9)

By substituting (4.9) in (4.7) and collecting β-orders, at β0, g0 satisfies

{Dt + (2δ2 + b)Dx − 3iδD2
x −D3

x}g0.1 = 0, |g0|2 =
1

6
(b− δ2), (4.10)

which can be solved as

g0 =
(a− iκ)2

√
1
6
(b− δ2)

where b = 6µ2 + δ2, µ2 = a2 + κ2, (4.11)

and a and κ are two free parameters. The coefficients of β and β2 lead to

{g0(D
3
x − 2δ2Dx − bDx − 3iδD2

x −Dt) + g0x(−3D2
x + 2δ2 + b + 6iδDx)

+g0xx(3Dx − 3iδ)− (D3
x −Dt)g0.1}(f1.1 + 1.g1) = 0,

{3D2
x + (δ2 − b)}f1.1 = −3|g0|2(g1 + g∗1), (4.12)

{g0(D
3
x − 2δ2Dx − bDx − 3iδD2

x −Dt) + g0x(−3D2
x + 2δ2 + b + 6iδDx)

+g0xx(3Dx − 3iδ)− (D3
x −Dt)g0.1}f1.g1 = 0,

{3D2
x + (δ2 − b)}f1.f1 = −6|g0|2|g1|2,
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which can be solved by assuming

g1 =
a + iκ

a− iκ
, f1 =

a + iκ

a− iκ
e2κ(x−vt),

where v = 3δ2 + 6a2 − 6δa + 2κ2. (4.13)

Hence,

η =
a− iκ

µ
eiϕ(a + iκ tanh κθ), b = 6µ2 + δ2,

where ϕ = δ(x− bt) + ϕ0, θ = x− vt− θ0, (4.14)

is the Hirota gray soliton solution. Note that (4.14) can be also derived using the

IST approach, see Li et. al. [24]. This is a gray soliton solution with three free

parameters (a, κ, δ). a is the minimum intensity of the wave, δ is the background

wave number and κ is the wavenumber of the soliton envelope. The boundary values

for (4.14) are

η → (a− iκ)2

µ
eiϕ, as x → −∞, η → µeiϕ, as x →∞,

hence the amplitude of the background travelling wave is µ.

4.3 The asymptotic theory

Consider the transformation

η = ψ +
ε

6
(2c2 − c3 − c4 + c5)|ψ|2ψ

+
ε

24
(−c1 − 4c2 − c3 + 2c4 − 4c5)ψxx (4.15)

τ = t− ε

24
(c1 + 2c2 + c3 + 2c5)x,

ξ = x− εc7

[∫ x

−∞
(|ψ(p, t)|2 − µ2)dp + µ2x− 3µ4t− 3δ2µ2t

]
, ε ¿ 1,

where c7 =
1

12
(c1 − 2c2 + c3 + 4c4 + 2c5).

This form of transformation is appropriate for solutions which approach a mean

level of µ far up and downstream, such as the solitary wave solutions considered

here. Note that when µ = 0, this transformation is qualitatively similar to that one

was used in chapter 3, for the higher-order focusing Hirota equation.
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When the transformation (4.15) is substituted into (4.3) and terms of O(ε2)

are neglected, then ψ(x, t) is a solution of the higher-order member of the Hirota

hierarchy of integrable equations

ψτ + 6ψ|2ψξ − ψξξξ + ε
′|ψ|4ψξ − ε

′

3
(ψ|ψξ|2)ξ − ε

′

3
ψ∗(ψψξξ)ξ

−ε
′

3
ψ∗ψξψξξ +

ε
′

30
ψξξξξξ = 0, (4.16)

where ε
′
=

3ε

4
(3c1 + 10c2 − c3 − 4c4 + 6c5) ¿ 1,

if the algebraic relationship (4.5) is satisfied. The integrability of (4.16) can be

shown in a similar manner to Kano [17]. In fact, the conserved quantity I0
6 [ψ, ψ∗]

for the focusing Hirota (see his Appendix) can be modified to the conserved quantity

for (4.1) by

I0
6 [ψ, ψ∗] =

∫ ∞

−∞
10ψ3ψ∗

2

ψ∗ξ + 10ψψξψ
∗ψ∗ξξ + 5ψψξψ

∗2
ξ + 5ψ2

ξψ
∗ψ∗ξ + ψξξψ

∗
ξξξdξ,

and hence the related K6(ψ, ψ∗) will be the higher-order terms in (4.16).

4.3.1 A higher-order gray one-soliton solution

The higher-order solitary wave solution of (4.3) can be found by direct substitution,

as

η =
a− iκ

µ
(a + iκ tanh κθ)eiϕ + (4.17)

ε
a− iκ

µ
(B0 + iB1 tanh κθ + B2 tanh2 κθ + iB3 tanh3 κθ)eiϕ,

where θ = x + εc7κ− s[1 +
ε

6
(c1 + 4c2 + c3 − 2c4 + 2c5)a

2

+
ε

8
δ(δ − 2a)(c1 + 2c2 + c3 + 2c5) +

ε

3
(c2 − c4)κ

2]− vht,

ϕ = δ(x + εc7κ− s[1 +
ε

6
µ2(c1 + 4c2 + c3 − 2c4 + 2c5)

+
ε

24
(c1 + 2c2 + c3 + 2c5)δ

2]− bht) + ϕ0,
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and the various parameters are

B1 =
1

3
(c1 + c2 + c3 + c4 + 2c5)κδa− 1

12
(c1 + c2 + c3 + c4 + c5)δ

2κ

+
1

6
(c1 − c2 + c3 + 3c4 + 3c5)κ

3 +
1

6
(−c1 − 2c2 − 2c3 + c4 − c5)κa2,

B2 =
1

6
(2c2 − c3 − c4 + c5)κ

2a− 1

6
(c1 + c2 + c3 + c4 + 3c5)δκ

2,

B3 =
1

6
κ3(−c1 + c2 − 2c3 − 2c4 − 2c5),

with the velocity vh and parameter bh given by

vh = 3δ2 + 6a2 − 6δa + 2κ2

+(c1a
4 +

1

5
(c1 + 2c4 − 2c3 + 2c5)κ

4 + (3c2 − c5 − 6c3 − 3c4)δ
2a2

+
1

4
(−c1 − 2c4 − 3c3 − 2c5)δ

4 +
1

2
(3c4 + c1 − c2 + 3c5 + 5c3)aδ3

+(c4 − c1 − c5 + 4c3 − 2c2)a
3δ − 2c3κ

2a2 + (2c3 − 2c5)aκ2δ

+(−2c3 + c2 + c5 − c4)κ
2δ2 + (12a− 6δ)B0)ε, (4.18)

bh = 6µ2 + δ2

+(c1a
4 + (2c4 − 2c3 + c1 + 2c5)κ

4 + (−c4 + c2 − 2c3 − c5)δ
2a2

+
1

20
(−c1 − 3c3 − 2c5 − 2c4)δ

4 + (2c3 + 2c5 + 2c1 + 2c4 + 2c2)aκ2δ

−6c3κ
2a2 + 12aB0 + (−c1 − 2c4 − 3c3 − 2c5)κ

2δ2)ε.

The parameter B0 is arbitrary and represents a higher-order correction to the back-

ground wave.

For (4.17), the first-order corrections in the background are not zero. This form

of solution can be rescaled back to a wave with a zero higher-order mean-level with

an suitable choice for B0, if required. The explicit form of B0 for this case is

B0 = −B2 − κ

a
(B1 + B3), for a 6= 0. (4.19)

The higher-order gray one-soliton solution (4.17) can only be derived if the algebraic

relationship (4.5) is satisfied or

2κ2 + 3κδ − δ2 = 0, (4.20)

is satisfied. The algebraic relationship (4.5) is the condition for the asymptotic trans-

formation to apply and implies that a three-parameter family (4.17) of higher-order
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asymptotic embedded solitons exists. The condition (4.20) represents a relationship

between the three free parameters. Physically (4.20) implies that the soliton velocity

is the same as the phase velocity of the background wave, i.e. v = b from (4.14) and

implies an additional two-parameter family of embedded asymptotic soliton exists.

The single soliton solution of the integrable higher-order Hirota equation (4.16)

is

ψ =
a− iκ

µ
eiϕ(a + iκ tanh κθ), (4.21)

θ = ξ − s− vτ, ϕ = δ(ξ − bτ − s) + ϕ0,

where b = 6µ2 + δ2 + (µ4 +
1

30
δ4 +

2

3
δ2µ2)ε

′
, µ2 = a2 + κ2,

v = 3a2 + 2κ2 + 3(a− δ)2

+(
2

3
δ2κ2 +

1

6
δ4 +

2

3
a2κ2 − 2

3
δ3a +

1

5
κ4 + a4 − 2a3δ − 2

3
aκ2δ + 2a2δ2)ε

′
,

and δ, a and κ > 0 are free parameters. The single soliton solution (4.21) is (4.14)

with the higher-order corrections to the velocity v and the parameter b. This is

similar to NLS soliton (2.9) and Hirota bright soliton (3.8) for higher-order integrable

equations.

The soliton solution (4.21) is substituted into (4.15). The phases θ and ϕ are im-

plicit. They can be made explicit by expanding in a Taylor series. Also, parameters

δ, κ and a are rescaled by

δ = δ∗[1− 1

6
ε(a∗

2

+ κ∗
2

)(c1 + 4c2 + c3 − 2c4 + 2c5)

− 1

24
(c1 + 2c2 + c3 + 2c5)εδ

∗2 ],

κ = κ∗[1− 1

6
(c1 + 4c2 + c3 − 2c4 + 2c5)εa

∗2

−1

8
εδ∗(δ∗ − 2a∗)(c1 + 2c2 + c3 + 2c5)− 1

3
(c2 − c4)εκ

∗2 ], (4.22)

a = a∗[1− 1

6
(c1 + 4c2 + c3 − 2c4 + 2c5)εa

∗2

−1

8
εδ∗(δ∗ − 2a∗)(c1 + 2c2 + c3 + 2c5)− 1

3
(c2 − c4)εκ

∗2 ],

which, after dropping the stars and using the algebraic relation (4.5) gives the di-
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rectly derived higher-order solitary wave (4.17), if the choice

B0 =
1

12
(−c1 − c2 − c3 − c4 − c5)δ

2a +
1

12
(c1 + 4c2 + c3 − 2c4 + 4c5)δκ

2

+
1

4
(c1 + 2c2 + c3 + 2c5)δa

2 +
1

3
(−c2 + c4)κ

2a

+
1

6
(−c1 − 2c2 − 2c3 + c4 − c5)a

3,

is used in (4.17). This represents the appropriate correction to the background

travelling wave that the asymptotic transformation generates. Moreover, the higher-

order solitary wave has been shifted from ξ = s at τ = 0 to

x = −εc7κ + s[1 +
1

6
(c1 + 4c2 + c3 − 2c4 + 2c5)εa

2 (4.23)

+
1

8
εδ(δ − 2a)(c1 + 2c2 + c3 + 2c5) +

1

3
(c2 − c4)εκ

2]

at t = 0.

4.3.2 The higher-order gray two-soliton solution

In this section the dark two-soliton solution of the higher-order Hirota equation

(4.3) is derived for the higher-order coefficients satisfied in (4.5). The explicit gray

two-soliton solution for the integrable Hirota hierarchy (4.4) is

Ω = µ[1 +
Ψ(ξ, τ)

Φ(ξ, τ)
]eiϕ, where Ψ(ξ, τ) =

4µ(φ1(ξ, τ) + φ2(ξ, τ)− 2µ)− 4i(∇+ i)(φ1(ξ, τ)− µ)(φ2(ξ, τ)− µ),

Φ(ξ, τ) = 4µ2 + (∇+ i)2(φ1(ξ, τ)− µ)(φ2(ξ, τ)− µ), (4.24)

φj(ξ, τ) =
aj − iκj

µ
(aj + iκj tanh κjθj), j = 1, 2.

The various other parameters are

ϕ = δ(ξ − bτ), b = 6µ2 + δ2 + (µ4 +
1

30
δ4 +

2

3
δ2µ2)ε

′
,

µ2 = a2
1 + κ2

1 = a2
2 + κ2

2,

∇ =
a1 + a2

κ1 + κ2

, θj = ξ − sj − vjτ + θ0j
,

vj = 3δ2 + 6a2
j + 2κ2

j − 6δaj + (
2

3
δ2κ2

j +
1

6
δ4 +

2

3
a2

jκ
2
j

−2

3
δ3aj +

1

5
κ4

j + a4
j − 2a3

jδ −
2

3
ajκ

2
jδ + 2a2

jδ
2)ε

′
, j = 1, 2,
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where δ, a1, a2, κ1 and κ2 are free real constants, see Li et. al. [24].

The velocity of the jth soliton is vj and its position is sj at τ = 0. When ε
′
= 0, it

becomes the Hirota gray two-soliton solution. The higher order terms only affect the

velocities vj and the parameter b. This is similar to the bright two-soliton solution

of the integrable higher-order Hirota equation (3.13), for which only the velocities

have a correction term at O(ε).

We assume that the soliton with minimum intensity a2 is initially well to the left

of the soliton with minimum intensity a1(< a2) and δ < 2
3
(a1 + a2). Hence before

interaction the wave on the left (with minimum intensity a2) will overtake the other

wave after interaction. As figure 4.1 shows, well before and after collision the gray

two soliton solution (4.24) is just the sum of two well separated solitons; hence

the collision is elastic with no radiation being shed. However, the gray two-soliton

solution (4.24) can be written as

|Ω|n = |ψ1(ξ, τ)|n + |ψ2(ξ, τ)|n − µn, n = 1, 2, ... (4.25)

well before and after collision, where the single soliton ψj, (j = 1, 2) have the form

(4.21). The only effects of the collision are coordinate shifts that the solitons suffer,

these are
ln χ

2κ1

, − ln χ

2κ2

, where χ = 1− (∇2 + 1)
κ1κ2

µ2
. (4.26)

Substituting the two soliton solution (4.24) in the asymptotic transformation (4.15)

gives the higher-order two-soliton solution for (4.3), but due to the complicated form

of (4.24), the higher-order two-soliton solution is investigated well before and after

interaction. Expression (4.25) describes the integrable Hirota two-soliton solution

(4.24) before and after interaction; using relation (4.25) , for example for |η|2, in

(4.15) gives

|η|2 = |η1|2+|η2|2−µ2− ε

3
(2c2−c3−c4+c5)µ

4− ε

12
(c1+4c2+c3−2c4+4c5)δ

2µ2. (4.27)

Here the single higher-order solitons η1 and η2 have the form (4.17) but the trans-

formation (4.15) modifies the coordinate shifts as

−2εc7κ2, 2εc7κ1, (4.28)
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Figure 4.1: Gray soliton interaction for Hirota (4.1) equation

for η1 and η2, respectively. The coordinate shifts (4.28) are due to the integration

in the transformation over the trailing wave, which involves

∫ ∞

−∞
(|Ω(p, t)|2 − µ2)dp. (4.29)

Also, there is some contribution from the rescalings (4.22), to the higher-order co-

ordinate shifts. Combining these contributions gives

ln χ

2κ1

− 2εκ2c7 + εκ2Λc8, − ln χ

2κ2

+ 2εκ1c7 − εκ1Λc8, (4.30)

where Λ =
∇
12

(a1 − a2)(a1κ2 − a2κ1)(2a1 + 2a2 − 3δ)

(a1κ1 − a2κ2)2 + (κ2
1 − κ2

2)
2

,

c8 = c1 + 2c2 + c3 + 2c5,

as the higher-order coordinate shifts of the slower and faster gray solitary waves,

respectively. Note that in the integrable case where the higher-order coefficients

satisfy (4.5), then c7 = c8 = 0, and the higher-order shifts are all zero.
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4.3.3 Numerical interaction of higher-order gray solitary

waves

In section 4.3 the effects of the interaction of higher-order gray solitary waves were

identified. The main effect of the collision is the higher-order coordinate shifts,

when the relationship (4.5) is satisfied. Here numerical interaction of the higher-

order solitary wave solutions of (4.3) are undertaken and the coordinate shifts found

in (4.30) are numerically verified. The numerical scheme is a hybrid Runge-Kutta

finite-difference scheme with fourth-order accuracy in space and time, see Appendix

B. The spatial and temporal grid spacings used are4x = 8×10−2 and4t = 1×10−4.

The initial higher-order solitary waves are in the form (4.17). The soliton parameters

are δ = 0, κ1 = a2 =
√

3
2

and a1 = κ2 = 1
2
, for two solitons with initial positions

s1 = −10 and s2 = −25, and the perturbation parameter is ε = 0.1. A constant

phase shift ϕ0 is applied to make the background wave in front of the trailing wave

match the background wave behind the leading wave. The O(1) coordinate shifts

(4.26) of Hirota solitons, for these parameter values, are −1.160 and 2.010 for the

slower wave (κ1 =
√

3
2

) and the faster wave (κ2 = 1
2
), respectively. Also note that

the parameter B0 is chosen as in (4.19), so that the backgrounds at O(ε) remain

unchanged.

We consider the case where c1 = −5 and c3 = c4 = 1 and the other ci = 0, which

satisfies (4.5). Numerical runs are done for cases with and without interaction. The

phase shift is taken as the difference in position between the two runs. As the grid

spacing is 4x = 8 × 10−2, a quadratic curve is fitted to the solitary wave peak, in

order to obtain a more accurate estimate of the coordinate shift. The positions of

the two waves at t = 20, well after interaction for the slower and faster waves are

θ
′
1 = 44.91 and θ

′
2 = 69.29. For numerical runs with no collisions the positions are

θ
′′
1 = 46.11 and θ

′′
2 = 67.21, after t = 20. Hence the numerical coordinate shifts

after the interaction for the slower and faster waves are 4θ1 = θ
′
1− θ

′′
1 = −1.20 and

4θ2 = θ
′
2−θ

′′
2 = 2.08. The coordinate shifts predictions from the asymptotic theory

in (4.30) are −1.19 and 2.07. An excellent agreement is achieved for the higher-

order coordinate shifts of both waves. The agreement is much better than that



4.4. Perturbation theory and solitary wave evolution 70

provided by the Hirota coordinate shifts (4.26), hence the higher-order predictions

are verified.

The minimum intensities of |η|, (which occur at θ = 0) for the slower wave,

before and after interaction are 0.4875 and 0.4876, respectively, with an increase in

amplitude of about 1×10−4. The minima for the faster wave are 0.8588 and 0.8592,

with a change about 4 × 10−4. The O(ε) change in minimum intensity between

the Hirota soliton and the higher-order solitary wave is 0.5 − 0.49 ≈ 0.01, as the

intensity of the Hirota soliton is just a. For the faster wave the O(ε) correction to

the minimum intensity is 6× 10−3. The changes in intensity due to the collision are

much smaller than these measures of an O(ε) change in intensity, hence the collision

is elastic to O(ε).

4.4 Perturbation theory and solitary wave evolu-

tion

It was found from the asymptotic theory and direct calculations in section 4.3 that

a three-parameter and a two-parameter family of higher-order Hirota embedded

solitons exist if (4.5) or (4.20) is satisfied. Here direct soliton perturbation theory

based on the Jost solution of the defocusing Hirota equation, is used to determine

the details of the evolving solitary wave, to first-order. Analytical expressions are

found for the tails of the solitary wave. It is found that tails form for two reasons; one

reason is the shedding of radiation due to non-existence of a higher-order asymptotic

embedded soliton, the second is related to first-order corrections to the background

travelling wave. Comparisons of the solitary wave tails are made with numerical

solutions and an excellent agreement is found.

4.4.1 The perturbation solution based on Jost solution

Given the similarity between the dark Hirota and NLS solitons, the technique for

analysing them is closely related. We first investigate the linear stability of the

background radiation for the Hirota equation, see Kivshar and Luther-Davies [19] for
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the application to the NLS equation. The travelling-wave solution of the defocusing

Hirota equation (4.12) is given by

η = ρ0e
iδx−iβt, β = 6ρ2

0δ + δ3, (4.31)

where ρ0 and δ are free parameters. To investigate the stability we substitute

η = (ρ0 + ν)eiδx−iβt+iϕ, (4.32)

as a small excitation of the exact travelling wave solution (4.31) in the defocusing

Hirota equation (4.1), where the function ν and derivatives of ϕ are small. By taking

ν, ϕ ∼ eipt−iqx, the dispersion relation

(q3 − p + 3qδ2 + 6ρ2
0q)

2 = 9q2δ2(q2 + 4ρ2
0), (4.33)

is obtained. Solving (4.33) gives

p = q3 + 3qδ2 + 6ρ2
0q ± 3qδ

√
q2 + 4ρ2

0, (4.34)

as the wave number of the perturbed wave. As p is real, small excitations of the

background wave (4.31) are absolutely stable. Note that for the focusing Hirota

equation the excitation (4.32) is unstable.

As p, q ¿ 1 (it has been assumed the derivatives of ϕ are small), we apply a

Taylor series expansion to (4.34) and obtain

p

q
= 6µ2 + 3δ2 ± 6δµ, (4.35)

as the phase velocity of the perturbation. To this level of approximation, the phase

and group velocities are equal. Hence there are two different phase velocities for

small perturbations propagating on the background wave. This is similar to the

case of the defocusing NLS equation, see (2.14) of Kivshar and Luther-Davies [19],

for which two phase velocities are also identified.

The single soliton solution (4.14) can be considered as an excitation on the

background wave (4.31) and may be formulated as

ψ0 =
a− iκ

µ
(a + iκ tanh κθ)ei(δθ+ϕ), (4.36)

ϕ = 2δ(−3aδ + δ2 − 2κ2)t− ϕ0, θ = x− vt− θ0,

where v = 3a2 + 2κ2 + 3(a− δ)2, µ2 = a2 + κ2,
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where a, κ, δ, ϕ0 and θ0 are all free parameters. Similar to (4.36), the perturbed

solution of the higher-order Hirota equation (4.3) is written

ψ = eiϕη(θ, t, T1, T2, ...), θ = x−
∫ t

0

vdt− θ0, ϕ =

∫ t

0

λdt− ϕ0. (4.37)

The soliton parameters κ, a, δ, θ0 and ϕ0 all vary on the slow time scales Tn =

εnt, n = 1, 2, ... The forms of the slow variation are chosen to eliminate the secular

terms in the expansion. In fact, some integrals are divergent, hence the coefficients

of these divergent terms must be equal to zero, see for example Chen et. al. [3]. This

feature in dark soliton perturbation is different from the counterpart for the bright

soliton. In our analysis below, these slow variations, which are not explicitly shown,

are determined to let η1 in (4.49) rest on a zero mean level. Hence, the mean level

of the background (4.31) does not change in the presence of the perturbed terms in

(4.3). The only effect of the higher-order terms on the travelling wave background

(4.31) is a phase shift, at O(ε), which is given by

β = 6ρ2
0δ + δ3 + εδ(c1ρ

4
0 + c2δ

2ρ2
0 − 2c3δ

2ρ2
0 − c4δ

2ρ2
0 − c5δ

2ρ2
0 + c6δ

4). (4.38)

Note that the theoretical development here is for gray solitons only. For black

solitons where a = 0, the details of the analysis are slightly changed. The main

focus here is to find the first-order correction (η1) to the solitary wave profile, which

allows the tails of the solitary wave to be determined.

By substituting (4.37) in (4.3) one obtains

ηt + iλη − vηθ − ηθθθ + 6|η|2ηθ = −εH(η)− ε(ηT1 − iηϕ0T1
− ηθθ0T1

), (4.39)

where H represents the perturbed terms in (4.3). The solution η(θ, t, T1, T2, ...) can

be found by expanding as

η = η0(θ) + εη1(θ, t, T1, T2, ...) + ..., (4.40)

and substituting in (4.39), where initial solution η0(θ) = a−iκ
µ

(a+ iκ tanh κθ)eiδθ. At

the zeroth-order, the equation is satisfied automatically, and at first-order,

η1t + iλη1 + (6|η0|2 − v)η1θ
− η1θθθ

+ r(θ)η1 + q(θ)η∗1 = ω1, (4.41)

where r(θ) = 6η∗0η0θ
, q(θ) = 6η0η0θ

,

ω1 = −H(η0)− η0T1
+ iη0ϕ0T1

+ η0θ
θ0T1

,
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is obtained. The linearized equation (4.41) can be written in the matrix form (∂t +

L)w1 = H and is solved using the initial condition η1|t=0 = 0, where

L =


 G(θ) q(θ)

q∗(θ) G∗(θ)


 , w1 = (η1, η

∗
1)

T , H = (ω1, ω
∗
1)

T , (4.42)

G(θ) = −∂θθθ + (6|η0|2 − v)∂θ + r(θ) + iλ.

It is not difficult to show that the non-localized (continuous) eigenstate of L is found

as Φ = S©S = (S2
1,S

2
2)

T , where S = (S1,S2)
T is a Jost solution of Hirota equation.

Thus the non-localized eigenstates can be found similar to Chen et. al. [3] by

w2 =
(a− iκ)2

µ4(α− a + iκ)2
× (4.43)


 µ2(α− a− iκ + iκ sech κθe−κθ)2ei(δ−2ω)θ

(iµ2α−1(α− a− iκ)− κ(a + iκ) sech κθe−κθ)2e−i(δ+2ω)θ


 ,

see Appendix A. The continuous eigenfunction of the adjoint operator L† = −σ2Lσ2

is also needed, where

σ2 =


 0 −i

i 0


 , (4.44)

is a Pauli matrix. It is not difficult to show that w†
2 = (−a∗, b∗)T is a continuous

eigenfunction for L† where w2 = (a, b)T is the eigenfunction for L in (4.42). Again

the inner product

〈f(θ),g(θ)〉 =

∫ ∞

−∞
f(θ)Tg(θ)dθ, (4.45)

is used to find nonzero inner products of the non-localized and localized eigenstates

and their adjoint eigenstates. Note that the forms of two localized eigenfunctions

can be determined explicitly by calculating w2|α=a+iκ and dw2

dα
|α=a+iκ.

The completeness of the set of eigenstates can be proved in an analogous manner

to the proof for the counterpart set of the NLS equation which has been presented

in Yan et. al. [39], using Green’s function theory, and in Chen et. al. [3], by using

Jordan’s lemma and in Huang et. al. [16] by applying a generalized Marchenko

equation. For example, the completeness relationships in Chen et. al. [3] (see their

section 4.1) can be extended to the Hirota equation by including eiδθ in the proof.
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The first-order solution has the form

w1 =

∫ +∞

−∞
gw2dα, where g =

iM(α)

ϑ
(1− eiϑt),

ϑ = 8ω(ξ + a− 3

2
δ)(ξ − a), M(α) = −〈H,w†

2〉
k(α)

, (4.46)

k(α) = 2π
(a− iκ)2

µ2
(
α− a− iκ

α− a + iκ
)2(1− µ2α−2),

and the auxiliary variables are defined as

ω =
1

2
(α− µ2α−1), ξ =

1

2
(α + µ2α−1). (4.47)

The quantity M(α), found using the residue theorem, is

M(α) =
i(α2 − µ2)(a + iκ)(α− a + iκ)2

360µ
× (4.48)

(α + µ6α−5)E1 + (1 + µ4α−4)E2 + (α−1 + µ2α−3)E3 + α−2E4

sinh(πω
κ

)
,

where the various coefficients are given by

E1 = −(c1 + 5c2 + 8c3 + 2c4 + 2c5 + 120c6),

E2 = (5c1 + 5c2 + 50c3 + 20c4 + 600c6)δ

+(−2c1 + 10c2 − 26c3 − 14c4 + 6c5 − 240c6)a,

E3 = (31c1 + 25c2 + 88c3 − 8c4 + 12c5 + 120c6)a
2

+(−10c1 − 100c2 + 80c3 + 50c4 − 30c5 + 600c6)aδ

+(45c2 − 90c3 − 45c4 + 15c5 − 900c6)δ
2

+(15c1 − 15c2 + 60c3)κ
2,

E4 = (−80c1 + 10c2 − 260c3 − 50c4 − 90c5 − 600c6)κ
2δ

+(−45c2 + 90c3 + 45c4 + 45c5 + 900c6)δ
3

+(90c2 − 180c3 − 90c4 − 150c5 − 1800c6)δ
2a

+(64c1 + 20c2 + 212c3 + 8c4 + 8c5 + 480c6)a
3

+(−120c1 − 30c2 − 300c3 − 30c4 + 30c5)a
2δ

+(32c1 + 20c2 + 116c3 − 16c4 + 24c5 + 240c6)aκ2.

And finally, (4.46) gives

η1(θ, t) =
i(a− iκ)2

µ2

∫ +∞

−∞

M

ϑ

(1− eiϑt)

(α− a + iκ)2
× (4.49)

(α− a− iκ + iκ sech κθe−κθ)2ei(δ−2ω)θdα,
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which is qualitatively similar to the second integral in the first-order correction to

the bright Hirota solitary wave profile in (3.48). We note the limit (3.49), so the

integrand of (4.49) is singular at ϑ = 0 as t →∞.

4.4.2 The solitary wave tail

In contrast to the bright Hirota solitons, dark solitons are right-moving only. The

analysis below shows that the evolution of the solitary wave tails for the higher-order

defocusing Hirota equation is subtle and complicated. For some parameter ranges,

tails only appear in front of the soliton, whilst for other parameter choices tails

appear in front of and behind the solitary wave. For bright solitons non-zero tails

only occur when embedded asymptotic solitons do not exist and hence radiation is

shed. For gray solitons tails also occur for another reason; the first-order correction

of the background wave, well ahead and behind the solitary wave. The asymptotic

analysis considered here is similar to that of section 3.4.2, and references therein.

The contribution to (4.49) for large time comes entirely from the neighborhood

of the singularities. Note that for

δ ∈ I = [
2

3
(a− µ),

2

3
(a + µ)], (4.50)

the leading expression for (4.49) can be found by considering the singular points

α = ±µ, and for δ ∈ Ic, the extra singular points

α = −a +
3

2
δ ± 1

2
(9δ2 − 12aδ − 4κ2)

1
2 ≡ α±c , (4.51)

are needed. Hence when δ ∈ I, there are two singular points and when δ ∈ Ic, there

are four. We suppose µδ ≥ 0 and define the quantities

S± = (µ± (a− 3

2
δ))(µ∓ a), h±tail =

π

4

(a− iκ)2

µ2

M(±µ)

S±
(
±µ− a− iκ

±µ− a + iκ
)2. (4.52)

The length of the solitary wave tails is 4S±, while their respective amplitudes are

h±tail. It should be noted that when µδ < 0, the procedure is slightly modified by

replacing h±tail and S± in (4.52) by h∓tail and S∓.

For δ ∈ I we begin our analysis by making the substitution α = ±µ + z/t and

obtain

η1 ∼ i

2π
h±taile

iδθ

∫ +∞

−∞
(
e−2izcp − e−2iz(cp−4S±)

z
)dz, (4.53)
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where cp = θ/t is an O(1) constant. Using the integral (3.51), well behind of the

soliton, θ ¿ −1 and cp < 0, so both integrals within (4.53) have the same value. So

the cancellation of the two integrals implies η1 ∼ 0 well behind the solitary wave.

Hence tails only form ahead of the solitary wave for δ ∈ I.

Ahead of the wave (θ À 1, t →∞), we choose two intervals, 0 < cp < 4S+ and

4S+ < cp < 4S−. Then the leading-order expression for (4.49) has the form as

η1 ∼




(h+
tail + h−tail)e

iδθ, 0 < cp < 4S+,

h−taile
iδθ, 4S+ < cp < 4S−.

(4.54)

We note that for particular case δ = 0, (i.e. S+ = S−), η1 over the second tail’s

region vanishes and (4.54) yields a single tail which propagates ahead of the solitary

wave.

The length of the solitary wave tails 4S±, is the difference between the soliton

velocity (4.13) and the phase velocity of perturbations on the background wave

(4.35). The two tails correspond to the two different phase velocities in (4.35).

Moreover, for δ ∈ I, both background phase velocities are greater than the soliton

velocity, so tails only form ahead of the wave.

For δ ∈ Ic a similar procedure for large time yields

η1 ∼




h−taile
iδθ + h±c ei(δ−4±1 )θ + T+, 0 < cp < 4S−,

−( bµ−a+iκ
bµ−a−iκ

)2h+
taile

iδθ + T−, 4S+ < cp < 0,
(4.55)

where b = sgn(δµ). A new tail component is now generated ahead of the solitary

wave. Its amplitude is

h±c =
iδ(a− iκ)π

10µ

(α±c − a− iκ)2

α±3

c (4±
2 − 2a)4±

1

(c1 + 3c3 + 2c4 + 2c5 + 20c6)×

[(4
S+S−

κ2
− 3µ2)α±c + µ24±

2 ]
2κ2 + 3aδ − δ2

sinh(
π4±1
2κ

)
, (4.56)

where 4±
1 = α±

2
c −µ2

α±c
, 4±

2 = α±
2

c +µ2

α±c
. Note that in (4.55),

h±c = 0, in 4
4+2

1

4+
2

(4+
2 − 2a) < cp < 4S−, (4.57)

if
4+2

1

4+
2

(4+
2 − 2a) < S−.
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The fact that tails now occur in front of and behind the soliton is due to one of

the phase velocities (4.35) now being less than the soliton velocity, while the other

is greater than the soliton velocity. Moreover the tail in front of the soliton now

consists of components with three different wavenumbers, hence the long-time tail

is oscillatory in nature. In contrast, behind the solitary wave the long-time tail will

be flat, as it consists of a component with a single wavenumber.

The two leading transient terms are calculated from contributions at points of

stationary phase. The relevant phase of (4.49) is ϑ1 = ϑ − 2ωcp, which has the

stationary point when ϑ
′
1 = dϑ1

dα
= R

α4 = 0, where

R = 3α6 − 6δα5 + (6δa− cp + µ2 − 4a2)α4 +

µ2(6δa− cp + µ2 − 4a2)α2 − 6δµ4α + 3µ6. (4.58)

Due to the high order of the polynomial R in (4.58), the solutions of R are found

numerically for constant parameters a, k, δ and different values of cp. It is not difficult

to show that µ2

αs
is a stationary point when αs is a stationary point. Numerical

solutions of R show that for finite cp, which is analyzed here, there are just two

roots for R. Using the method of stationary phase gives

T± = −i
(2π)

1
2

t
1
2

(a− iκ)2

µ2|ϑ′′1(αs)| 12
M(αs)

ϑ(αs)(αs − a + iκ)2
[(αs − a∓ iκ)2 (4.59)

ei(ϑ1(αs)t±sgn(ϑ
′′
1 (αs))

π
4
) − (

µ2

αs

− a∓ iκ)2e−i(ϑ1(αs)t±sgn(ϑ
′′
1 (αs))

π
4
)]eiδθ.

It is noteworthy that the tail component h±c vanishes if (4.5) or (4.20) is satisfied.

These conditions imply the existence of higher-order asymptotic embedded solitons,

hence the tail components h±c are associated with radiation shedding due to lin-

ear resonance. The other tail components, with amplitudes h±tail, have the same

wavenumber, δ, as the background wave, so can be associated with corrections to

the background wave at first-order.

4.4.3 Numerical solutions and discussion

In this section (4.3) is solved numerically and compared with the numerical solution

of η1 in (4.49). The main analytical features of the solitary tails, for different values
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Figure 4.2: The first-order correction |η1| versus θ at t = 3 for wavenumber δ = 0.

Shown is the perturbation solution (4.49) (dashed curve) and numerical solution of

(4.3) (solid curve)

of wavenumber δ, are also verified. For all the examples we choose ε = 0.05 and use

the soliton parameters κ = a =
√

2 and µ = 2. The perturbation solution (4.49),

is solved numerically by a higher-order quadrature scheme, and the higher-order

Hirota equation (4.3), is solved using the fourth-order hybrid scheme, see Appendix

B. The spatial and temporal gridspacings used are the same as in section 4.3.3. The

quantity ε−1|η− η0| is plotted from the numerical solution as it allows a comparison

with the perturbation solution in the tail region. Note that η0 has the form (4.14)

with b modified to include the higher phase corrections of the background radiation

(4.38).

For the first example, we choose δ = 0 ∈ I. Figure (4.2) shows the first-order

correction |η1| versus θ at time t = 3. The higher-order coefficients used are c1 =

c4 = 1 with all the other ci = 0. There is an excellent comparison between the

numerical and perturbation solutions. The figure shows the surface elevation ahead

the evolving solitary wave with the flat steady-state tail clearly visible. For this
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example the tail is

(h+
tail + h−tail)e

iδθ =
2iκ5aµ

9S+S−
(−2c2 + c4 + c3 − c5). (4.60)

The amplitude of this tail, as predicted by the perturbation solution (4.49), is |η1| =
0.89, which is the same as the analytical expression (4.60) for the steady-state tail

amplitude. The numerical results that show that the tail has amplitude of 0.924, a

difference of about 3%. The maximum amplitude of the real part of the numerical

tail is 5 × 10−4, which represents a small error compared with the analytical tail

amplitude (4.60), which has a real zero part.

The asymptotic theory implies that the length of the solitary wave tail is 4tS+ ≈
24, which matches closely with the numerical results. For this example ,where δ = 0,

there is only one phase velocity in (4.35), so only one tail forms. Moreover, as (4.35)

is greater than the soliton velocity, the tail only forms in front of the wave.

This example does not satisfy (4.5), but for examples which do satisfy (4.5), the

long time expression for η1 is not the first-order correction to the embedded solitary

wave profile (4.17). This is because the embedded solitary waves have first-order

corrections to the background wave in front of and behind the wave, whilst the

evolving wave (for δ ∈ I) only has first-order corrections in front of the wave.

The special case, where c2 = c4 = 1, c5 = −1 and the other ci = 0, has no

higher-order corrections to the background level in (4.17), so η1 = 0. In this case

the perturbation theory predicts no tails occur and the perturbation and asymptotic

theories correspond.

Figure (4.3) shows the first-order correction |η1| versus θ at t = 3, for δ = 1 ∈ I,

and c1 = 1, with the other ci = 0. The other soliton parameters are the same as for

figure (4.2). Again, tails only appear in front of solitary wave. The figure shows the

region in front of the moving solitary profile. For this example δ 6= 0, so the two

distinct phase velocities (4.35) result in two different tail regions. The comparison

between the numerical and perturbation solutions is again very good, with some

very slight differences in amplitude and phase. The tail closest to the wave occurs

in the region 0 < θ < 4tS+ ≈ 13.45, with amplitude |h+
tail + h−tail| = 0.387. The

numerical amplitude is 0.375, which is a difference of about 3%.
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Figure 4.3: The first-order correction |η1| versus θ at t = 3 for wavenumber δ = 1.

Shown is the perturbation solution (4.49) (dashed curve) and numerical solution of

(4.3) (solid curve)

The second tail region which occurs in 13.45 ≈ 4tS+ < θ < 4tS− ≈ 85.45,

the average taken of the numerical solution is 0.762, which is within 0.4% of the

analytical steady-state tail amplitude of 0.766. Some oscillations occur on the second

tail. These oscillations represent a undular bore, which links together the different

amplitudes of the two tails, see, for example, Marchant and Smyth [29].

Lastly, we investigate the tail evolution for an example of δ ∈ Ic. The parameters

and numerical scheme are the same as the figure (4.3) except we choose δ = −1.

Similar to figure (4.3), the figure (4.4) shows a schematic of the first-order solution

|η1| versus θ at t = 3. Shown are the perturbation solution (4.49) and the quantity

ε−1|η − η0| from the numerical solution of (4.3).

Again, the numerical solution is very close to the perturbation solution (4.49),

with slight phase and amplitude differences. The average taken of the numerical

solution over the tail for θ ¿ −1, is 0.8668. As µδ < 0, the corresponding pertur-

bation theory prediction is |(−µ−a+iκ
−µ−a−iκ

)2h+
tail| = 0.8608, a difference of about 0.6%.

A similar average taken in front of the solitary wave is 0.8044, which is about 1%
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Figure 4.4: The first-order correction |η1| versus θ at t = 3 for wavenumber δ = −1.

Shown is the perturbation solution (4.49) (dashed curve) and numerical solution of

(4.3) (solid curve)

different from the perturbation theory prediction of |h−tail| = 0.8133. Note that for

this example, the h±c contributions are negligible. In fact the amplitudes of h+
c , h−c

for figure (4.4) is O(10−2).

For this example, the solution velocity lies between the two phase velocities

(4.35), so tails occur behind and in front of the solitary wave.

The figure shows that the numerical tails occur between −40 6 θ 6 35. The

asymptotic results (4.55) yields tail length of 4tS+ = −37.5 and 4tS− ≈ 34.5,

which are very close to the numerical values. In contrast to the flat tails for the

wavenumbers δ ∈ I, the tails here are highly oscillatory. In front of the soliton, the

superposition of the steady-state tail components of different wavenumbers with the

transients of form (4.59) leads to a classical beating-like phenomena where the tail

has multiple peaks and troughs of higher and lower amplitudes. For the tail behind

the soliton the oscillations, generated by T− form a undular bore, which links the

mean level of zero, well behind the solitary wave, with tail amplitude of |h−tail|. The

maximum amplitude (crest to trough) of the oscillations behind the soliton is 0.33
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at t = 3. As the oscillations decay like O(t−
1
2 ), a relatively flat tail will not be

reached until t = O(106), when the amplitude of the oscillation will have decayed

to less than 1% of this value.

In summary, for a number of examples the soliton perturbation theory (both

analytical results and direct numerical solutions of (4.49)), the results from the

asymptotic transformation (4.49), and numerical solutions of the governing pde

(4.3) are in good agreement.

4.5 Conclusion

An asymptotic transformation and soliton perturbation theory have been used to

investigate the interaction and evolution of the gray solitons of a higher-order Hirota

equation. It is found that the higher-order solitary waves are asymptotic embedded

solitons when an algebraic relationship (4.5) involving the higher-order coefficients

is satisfied. An additional two-parameter family of asymptotic embedded solitary

waves, which exist when (4.20) is satisfied, is also identified. By using the asymptotic

theory the higher-order coordinate shifts, after interaction of the solitary waves, were

also found. Numerical simulations of the higher-order gray solitary wave interaction

confirm these coordinate shift corrections.

The soliton perturbation theory has been applied to evaluate the higher-order

gray soliton profile for Hirota equation with an integral expression found for the

first-order correction to the solitary wave profile. Asymptotic expansions, valid for

large time, allows analytical expressions to be found for the solitary wave tails for the

two different parameter regions. An extremely complicated picture of tail evolution

emerges. In some cases, tails only form in front of the solitary wave, while in other

cases they occur on both sides of the wave. Moreover, tails form for two reasons;

shedding of radiation due to linear resonance and corrections to the background

wave at first-order.



Appendix A

Lax equations and Jost solutions

for Hirota equation

In this Appendix the Lax pairs and Jost solutions for the defocusing Hirota equation

(4.1) are presented. In section 4.4.1 it is shown that the non-localised (continuous)

eigenfunction (4.43) of the linearized operator L (4.42) is just the squared Jost

solution of the Hirota equation.

It can be shown that the representation of Hirota equation in terms of the so-

called Lax equations is

Sx = MS, St = NS, where S = (S1(x, t),S2(x, t))T (A.0.1)

and the Lax pair is

M = −i(ξ − 1

2
δ)σ3 + U,

N = 4i(ξ − 1

2
δ)3σ3 − 4(ξ − 1

2
δ)2U + 2i(ξ − 1

2
δ)(U2 + Ux)σ3

−2U3 + Uxx + UUx − UxU, (A.0.2)

where U =


 0 η

η∗ 0


 , and σ3 =


 1 0

0 −1




is a Pauli matrix. It is easy to verify that Hirota equation is tantamount to the zero

curvature representation Mt −Nx + [M,N] = 0 of the Lax equations (A.0.1). Now

the affine auxiliary parameter α is introduced to make ω =
√

ξ2 − µ2 as a single-

valued function. Hence the parameters ω and ξ are functions of α as in (4.47). As

83
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x →∞ (i.e., η → µeiδx) the Jost solution of (A.0.1) approaches

E+(x, α) = e
1
2
iδxσ3


 1 −iµα−1

iµα−1 1


 e−iωxσ3 , (A.0.3)

and as x → −∞ the asymptotic solution can be chosen as E−(x, α) = e
1
2
iθsσ3E+(x, α),

where, θs, the phase difference between each end of the boundary values, is deter-

mined as

η → µeiθs , as x → −∞. (A.0.4)

In other words the relationships between the Jost solutions of the Lax pair (A.0.1)

and the asymptotic solutions E+(x, α) and E−(x, α) can be found as

Ψ(x, α) = (ψ̃(x, α), ψ(x, α)) → E+(x, α) as x → +∞,

Φ(x, α) = (φ(x, α), φ̃(x, α)) → E−(x, α) as x → −∞. (A.0.5)

Also noteworthy is that the asymptotic behavior of Jost solutions (A.0.3) are exactly

the same as NLS equation counterparts. This equivalence is resulted from the fact

that the first Lax equation (A.0.1) and (A.0.2) are common for the Hirota and NLS

equations. For example, in the single-soliton case (i.e. µ2eiθs = (a − iκ)2), the

explicit expressions of the Jost solutions can be found as

ψ(x, α) =


 (−iµα−1 − κ

α−α∗1
e

1
2
iθs sech κxe−κx)ei( 1

2
δ+ω)x

(1− iκ
α−α∗1

sech κxe−κx)e−i( 1
2
δ−ω)x


 ,

φ(x, α) =


 (α−α1

α−α∗1
e

1
2
iθs + iκ

α−α∗1
e

1
2
iθs sech κxe−κx)ei( 1

2
δ−ω)x

(iµα−1 α−α1

α−α∗1
e

1
2
iθs − κ

α−α∗1
sech κxe−κx)e−i( 1

2
δ+ω)x


 ,

and

φ̃(x, α) = −iµα−1φ(x, µ2α−1), ψ̃(x, α) = iµα−1ψ(x, µ2α−1),

where α1 = a + iκ, see Chen et. al. [3].



Appendix B

The numerical scheme for the

higher-order defocusing Hirota

equation

The numerical solutions for the higher-order defocusing Hirota equation (4.3) were

obtained by using fourth-order centered finite differences in the spatial coordinate

x and a fourth-order Runge-Kutta method for the temporal coordinate t. The

numerical scheme described below is stable for reasonable choices of the space and

time discretization units 4x and 4t. Various straight finite-difference methods

considered by the authors were found to be unstable for nearly all nonzero values of

ε.

Given that the solution at the time ti is

ηi,j = η(xj = j4x, ti = i4t), (j = 1, ..., M), (B.0.1)

then the numerical solution at time ti+1 is given by

ηi+1,j = ηi,j +
1

6
(ka

i,j + 2kb
i,j + 2kc

i,j + kd
i,j) + D(xj), (j = 1, ..., M), (B.0.2)

where the various functions are

ka
i,j = 4tf(ηi,j), kb

i,j = 4tf(ηi,j + 1
2
ka

i,j), (B.0.3)

kc
i,j = 4tf(ηi,j + 1

2
kb

i,j), kd
i,j = 4tf(ηi,j + kc

i,j),
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and D(x) is the damping function used at the boundaries, so the boundaries do not

affect the wave evolution being studied. The function f is the finite-differenced form

of all the terms in (4.3) involving spatial derivatives,

f(pi,j) = − |pi,j|2
124x

(6 + εc1|pi,j|2)A1 − 1

84x3
(−1 + εc3|pi,j|2)A3

−ε(c2 + c5)pi,j

1244x3
A∗

2A1 −
ε(c3 + c4)p

∗
i,j

1244x3
A2A1 (B.0.4)

− εc2pi,j

1244x3
A2A

∗
1 −

εc2

1244x3
|A1|2A1 − εc5

64x5
A4,

where the fourth-order centered finite-difference formulas are given by

A1 = pi,j−2 − 8pi,j−1 + 8pi,j+1 − pi,j+2,

A2 = −pi,j−2 + 16pi,j−1 − 30pi,j + 16pi,j+1 − pi,j+2,

A3 = pi,j−3 − 8pi,j−2 + 13pi,j−1 − 13pi,j+1 + 8pi,j+2 − pi,j+3,

A4 = pi,j−4 − 9pi,j−3 + 26pi,j−2 − 29pi,j−1 + 29pi,j+1 − 26pi,j+2

+9pi,j+3 − pi,j+4.

The function

D(xj) = sech2[(j − 1)
4x

10
] + sech2[(j −M)

4x

10
], (B.0.5)

damps the boundary values to zero which stops the reflection of the small-amplitude

dispersive radiation back into the solution domain. The accuracy of the numerical

method is fourth-order in time and space i.e. O(4t4,4x4).
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