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Abstract

Asymptotic theory is applied to examine solitary wave interaction for three higher-
order model equations, which represent small perturbations to integrable equations.
The higher-order equations considered are the higher-order Nonlinear Schrédinger
equation and the focusing and defocusing higher-order Hirota equations. The asymp-
totic theory, which involves a transformation, allows the straightforward determina-
tion of parameter choices, for which the higher-order equations are asymptotically
integrable, and of the higher-order phase and coordinate shifts due to the collision,
in the asymptotically integrable cases. For the higher-order Hirota equations, direct
soliton perturbation theory is also used, to determine the details of the evolving
solitary waves; in particular analytical expressions are found for the solitary wave
tails.

An important feature of the asymptotic and perturbation theories is that they
allow cross-validation of the theoretical results and also allow families of asymptotic
embedded solitons to be identified.

Numerical solutions of the governing equations are also obtained. For solitary
wave interaction, asymptotically elastic and inelastic cases are considered. When
the higher-order coefficients satisfy the appropriate algebraic relationship then the
numerical results confirm the prediction of the asymptotic theory. Numerical solu-
tions for evolving solitary waves are also used to confirm the results of the soliton

perturbation theory.
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Chapter 1

Introduction

In recent years there has been a great deal of interest in the development of soli-
tary wave solutions of higher-order model equations and in the determination of the
effects of the collision which the higher-order solitary waves suffer. The interest in
higher-order models for some physical systems occurring in oceanography and non-
linear optics results from their improved accuracy. As is well known, for a wide class
of higher-order dispersive wave equations, for which the leading order equations are
completely integrable, the higher-order equations can be asymptotically transformed
into higher-order integrable equations, to the same order of approximation. The first
significant work in soliton solutions, involving asymptotic transformations was Ko-
dama’s pioneering work [21]. By using a canonical map he obtained an approximate

Hamiltonian for the higher-order Korteweg-de Vries (KdV)

nt + 67777:0 + 771:1:3: + 60177277:1: + 60277$77$I + 6637777969036 + Ec4nxmczz = 07 €K 17 (11)

where € is a measure of the importance of the higher-order terms and the real pa-
rameters ¢; depend on the physical context. The Hamiltonian was exact for the
integrable version of the higher-order KdV equation and accurate to O(e) in the
general case, which implies that the higher-order KdV equation with arbitrary coef-
ficients is approximately integrable. The asymptotic transformation used included
a nonlocal term. More recently, Fokas and Liu [7], showed that asymptotic transfor-
mations can be developed by considering the master symmetries of the associated

integrable equation.
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Marchant and Smyth [28] also transformed the higher-order KdV equation (1.1)
with arbitrary coefficients, to the associated higher-order integrable KdV equation.
In contrast to Kodama [21], a local asymptotic transformation was used. The higher-
order two-soliton solution for (I.1) was considered well before and after interaction
and found to consist of two higher-order solitary waves of (1.1), which were un-
changed in shape. Moreover, no dispersive radiation was present; hence, it was
concluded that the collision was elastic to at least O(e). The O(e) corrections to the
phase shifts of the higher-order solitary waves after collision were also found.

Marchant [26] applied an asymptotic transformation to the higher-order modified

equation

e + 247727733 + Nezx + 60177477:1: + 6027];?;

+€CS77277xxx + EC4ANM N z2 + €C5Nyzzxr = 07 €K 17 (12)

and hence examined solitary wave interaction for (1.2). The higher-order mKdV
(1.2) was asymptotically transformed to the mKdV equation (when € = 0 in (1.2)),
when the higher-order coefficients satisfy a certain algebraic relationship. This is in
contrast to the higher-order KdV, which can be asymptotically transformed for all
choices of ¢; . This allowed the higher-order mKdV two-soliton solution to be found,
including predictions for the higher-order phase shifts.

This thesis considers three higher-order wave equations, the higher-order nonlin-

ear Schrodinger (NLS) equation

Wi + Wee + wlw|? + e(er|w|*w + 2w Tpe + csWw? + ca|w,*w

+c5|w|2wm + c6w$zz:v) - 07 [ 1; (13)

and the higher-order Hirota equations with positive and negative signs (focusing

and defocusing)

e+ 3an|*ne £ YNawe + €(c1a®* e + coay(N[ne]*)e + 30y (Mes )

a0y e + 5NNy + 67 M52) = 0, € < 1, (1.4)

where the parameters a and ~ are real and positive. The physical applications

of (I.3) and (1.4) are discussed in the chapters 2, 3, 4. These higher-order wave
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equations are generalized versions of a member of the integrable hierarchies, see for
example Kano [I7]. Note that for e = 0, (1.3) and (1.4) become the usual NLS
and Hirota equations, respectively. Those are integrable and are exactly solvable by
the inverse scattering transform (IST), see for example Hirota [13] and Mihalache
et. al. [31]. However, Hirota [I3] developed his ‘direct method’” with which he was
able to build multi-soliton solutions of (1.3)) and (1.4).

The main technique to study the effects of the the higher-order terms in the
wave equations considered in this thesis, is an extension of the normal form theory
developed by Kodama [21] and Marchant [26]. Here we would like to roughly describe
the characteristic features of this method. The idea of the method is very simple; by
using an asymptotic transformation the higher-order wave equations with arbitrary
coefficients are transformed into an integrable higher-order equation. It is shown
that the asymptotic transformation is valid if the higher-order coefficients satisfy an
algebraic relationship. Using the asymptotic transformations, one and two-soliton
solutions of the higher-order integrable equations can be transformed to one and two
higher-order solitary wave solutions for (1.3) and (1.4). For the two-soliton solutions
the transformation also allows the higher-order phase and coordinate shifts, which
the solitary waves suffer during collision, to be found analytically.

In this thesis, it is assumed that the asymptotic transformation used relate the
corresponding solutions of the integrable and higher-order equations. This is ana-
lytically and numerically verified for one and two soliton solutions considered here,
but no proof exists for more general types of solutions. However, as the transform
involves neglecting terms at second-order (O(€?)), it is likely that any transformed
solution remains a valid solution of the higher-order equation on a timescale up to
1~ O(h)

When the asymptotic theory is not applicable, the direct soliton perturbation
method based on the IST shall be used to describe the evolution of the higher-order
solitary waves, see sections 3.4/ and 4.4. Some general features of this approach can
be seen from the papers of Hereman [12] for bright solitons and Chen et. al. [3]
for dark solitons with non-vanishing boundary conditions. According to the direct

perturbation theory the solution of the inhomogeneous linear operator associated
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with the higher-order problem is expanded in the complete set of eigenfunctions
of the related homogenous linear operator. Hence, we construct the linearisation
operator for the higher-order problem by expanding the initial one-soliton solution
in powers of €. In particular, for the higher-order Hirota equation (1.4), to solve
for the e coefficients in the expansion, the eigenstates of the adjoint operator are
needed. For (I.4)), it can be shown that the eigenfunctions of the linear operator
and adjoint operator are squared Jost solutions of the Lax equations related to the
unperturbed problems. The method allows, in order to eliminate the secular terms
in the expansion, the effects of higher-order nonlinearities on the soliton parameters
to be found. In sections 3.4/ and 4.4, the solitary wave solutions of the higher-order
Hirota equation at O(e) are found but a similar procedure could be applied to find
the solution at O(e®) and beyond.

In chapter 2| solitary wave interaction for the higher-order NLS equation (1.3)) is
examined. By using a nonlocal asymptotic transformation, (1.3) is transformed to
a higher-order member of NLS hierarchy of integrable equations, if the higher-order
coefficients satisfy a linear algebraic relationship. This transformation is used to find
the single and two-soliton solutions for (1.3) to be found. Due to the complexity
of NLS two-soliton solution, the higher-order two-soliton solutions are investigated
well before and after interaction. The interaction is shown to be elastic and higher-
order corrections to the coordinate and phase shifts, which the higher-order solitary
waves suffer, are found. The numerical simulations are considered for two different
examples; one satisfies the algebraic relationship derived from asymptotic theory,
and the other does not. For the first example which satisfies the relationship, the
numerical solutions confirm that the collision is elastic and the theoretical coordinate
and phase shifts predictions are confirmed. For the second example which does not
satisfy the relationship, a symmetric head on collision of solitary waves is considered.
For this example radiation is shed by the solitary wave collision and forms a bed on
which the solitary waves sit. The shelf height is shown to be slowly decaying (like
t‘é), which indicates that computations to calculate the final phase and coordinate
shifts are infeasible. And in the meantime, the noteworthy result is that for this

example the collision is inelastic; radiation is shed by the solitary wave collision.
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In chapter 3, solitary wave interaction and evolution for the focusing higher-
order Hirota equation, (1.4) with positive sign, is examined. For the focusing case,
bright solitons exist which propagate on a zero background. A similar procedure to
chapter [2/is used to derive the single and two-soliton higher-order solutions for (1.4).
Numerical simulations are again used to confirm the higher-order corrections to the
coordinate and phase shifts. An example which satisfies the algebraic relationship
derived from asymptotic theory is used for this purpose.

Hirota solitons are embedded in the linear wave spectrum. For the higher-order
Hirota equation (1.4), the resonant interactions between the solitary wave and the
linear radiation leads to radiation loss and the formation of a tail behind the solitary
wave. Soliton perturbation theory is used to determine the details of the evolving
wave and it’s tail. In [3.4] the soliton perturbation theory involves expanding the
e-order solitary wave solution as a sum of the localized (discrete) and non-localized
(continuous) eigenstates of the unperturbed Hirota equation. In particular, an in-
tegral expression is found for the first-order correction to the solitary wave profile.
Moreover, an asymptotic expansion, valid for large time, allows a simple analytical
expression to be found for the solitary wave tail. It is found that a two-parameter
family of higher-order asymptotic solitons exists (when the solitary wave tail van-
ishes). An excellent comparison is found between the theoretical and numerical
solutions, for the solitary wave tail. Another noteworthy result is that the two pa-
rameter family of higher-order asymptotic embedded solitons found from perturba-
tion theory, exist when the higher-order coefficients satisfy the algebraic relationship
derived from asymptotic theory.

In chapter 4, we extend our discussion to the case of the defocusing higher-order
Hirota equation (I.4) with the negative sign. Here, for simplicity, we assume o = 2
and v = 1 and re-scale the higher-order coefficients ¢;. It has been previously shown
that the defocusing Hirota equation has dark soliton solutions which are stable on
a nonzero continuous background, see for example Mahalingam and Porsezian [25]
and Li et. al. [24]. By using an asymptotic transformation the dark one-soliton
solution of the integrable higher-order Hirota equation is transformed to the dark

soliton solution of higher-order Hirota equation (I.4). For two-soliton solution of
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(L.4), it is seen that the absolute value of the two-soliton solution for defocusing
Hirota equation at |n|? can be considered as sum of the absolute values of the two
Hirota one-soliton solutions well before and after the collision. Using this fact and
asymptotic transformation derived in section 4.3, the higher-order phase shifts are
found, if the higher-order coefficients satisfy an algebraic relationship. Analogous
to the higher-order bright Hirota solitons, the direct perturbation theory is used
to study the evolution of dark higher-order Hirota solitary wave solutions. The
perturbation theory shows that a subtle and complex picture of solitary wave tail
evolution occurs.

In Appendix A, the Lax equations related to the defocusing Hirota equation
considered in section 4.4 and the Jost solutions are presented. It is shown that
the non-localized (continuous) eigenstate of the linearized operator related to the
defocusing Hirota equation is just the squared Jost solution. It is also shown that
the first Lax equation in the zero curvature representation for Hirota equation is
shared with the NLS counterpart, so a similar procedure can be used to find the
Hirota Jost solutions.

In Appendix B, the numerical scheme for the higher-order defocusing Hirota
equation, discussed in chapter |4, is presented. The numerical scheme is a hybrid
fourth order Runge-Kutta finite-difference scheme with fourth-order centered finite
differences in the spatial coordinate.

Lastly, we would like to point out that there are slight differences between nota-

tions and parameters used in each chapter.



Chapter 2

Solitary wave interaction for a

higher-order NLS equation

In this chapter solitary wave interaction for the higher-order NLS equation (1.3)
is examined. The results of this chapter appear in Hoseini and Marchant [15].
An asymptotic transformation is used to transform the higher-order NLS equation
(L.3) to a higher-order member of the NLS integrable hierarchy, if an algebraic
relationship between the higher-order coefficients is satisfied. The transformation is
used to derive the higher-order one and two-soliton solutions; in general the N-soliton
solution can be derived. It is shown that the higher-order collision is asymptotically
elastic and analytical expressions are found for the higher-order phase and coordinate
shifts. Numerical simulations of the interaction of two higher-order solitary waves are
also performed. Two examples are considered, one satisfies the algebraic relationship
derived from asymptotic theory, and the other does not. For the example which
satisfies the algebraic relationship, the numerical results confirm that the collision
is elastic. The numerical and theoretical predictions for the higher-order phase and
coordinate shifts are also in strong agreement. For the example which does not
satisfy the algebraic relationship, the numerical results show that the collision is
inelastic; radiation is shed by the solitary wave collision. As the bed of radiation
shed by the waves decays very slowly (like t_%), it is computationally infeasible
to calculate the final phase and coordinate shifts for the inelastic example. An

asymptotic conservation law is derived and used to test the finite-difference scheme

7
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for the numerical solutions.

2.1 Introduction

One of the most important model equations in modern nonlinear science is the

nonlinear Schrodinger (NLS) equation,
iUy + Uy + ulul® = 0. (2.1)

In the late 1960’s, the NLS equation was used to describe the modulation of weakly-
nonlinear wavetrains in deep water. It was shown by Benjamin and Feir [I] that
an uniform wavetrain is unstable to longwave perturbations. See Peregrine [35] and
Yuen and Lake [44] for reviews of fluid mechanics applications of the NLS equation.

In the optical context, the NLS equation was derived by Hasegawa and Tap-
pert [11]. It describes the evolution of the slowly varying envelope of an optical
pulse. Derived asymptotically from Maxwell’s equations it assumes slow variation
in the carrier frequency and the Kerr dependence (where the nonlinear refractive
index n = 19 + m1|w]?). The NLS equation is central to understanding soliton prop-
agation in optical fibres, which is of critical importance to the field of fibre-based
telecommunications, see for example, Wabnitz and Kodama [38].

The NLS equation is integrable; this means that a collision between NLS soli-
tons is elastic; after the collision the solitons retain their original shape with the only
memory of the collision being shifts in position and phase. The explicit N-soliton so-
lution for the NLS equation was developed using the bilinear transformation method,
see Hirota [13].

An important higher-order NLS equation was derived by Kodama [21] to describe

short pulses in optical fibres,
iy + Uy + Qou|ul? + i€(BrUpge + Bolul®uy, + Bulul?) =0, €< 1, (2.2)

where the «; and (; coefficients are all real and the (3; represent the various higher-
order corrections for the short pulse. (2.2) can be asymptotically transformed to a

member of the NLS integrable hierarchy, which has the higher-order coefficients

(61, B2, B3) = (a1, 3a2,0). (2.3)
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Hence solitary wave collisions of (2.2) are asymptotically elastic, see Kano [17] or
Kodama [23] for details of the transformation. Hirota’s equation, the Sasa-Satsuma
equation and the derivative NLS equation are all integrable special cases of (2.2).
The focus of this chapter is the higher-order NLS equation (1.3). The higher-
order coefficients
(¢1,c2,c3,¢4,C5,¢6) = (

11
~1,- 2.4
727 74)7 ( )

A~ w

1
747

col w

represent the next member of the NLS integrable hierarchy, after (2.3)), see Kano [17]
or Kodama and Mikhailov [23]. The higher-order NLS equation (1.3)) is a generaliza-
tion of the hierarchy member (2.4) and appears as a model for classical Heisenberg
ferromagnetic spin chains, with biquadratic exchange interactions along the spin
lattice, see Kavitha and Daniel [I§]. The near-continuum limit of various forms of
the discrete NLS equation are also governed by (1.3), see, for example, Dmitriev
et. al. [4] or Kivshar and Salerno [20]. Discrete NLS equations are used to model
optical waveguide arrays and Bose-Einstein condensates. Another application of
(1.3) is the numerical analysis of finite-difference schemes for the NLS equation as
the leading-order discretization error for many schemes includes higher-order terms
from (L.3).

Zhu and Yang [46] examined the weak interaction in the generalized NLS equa-
tions context where the solitary waves both stable, well-separated, and having almost
the same velocities and amplitudes. A similar collision is considered in this chapter
(see example 2 in subsection 2.3). In fact, we study interaction of equal-amplitude
solitary waves. They numerical simulated weak interaction for the generalized NLS
equation with various nonlinearities such as the cubic-quintic (by letting v = 0
in their (3.5) the higher-order NLS (2.2) is obtained), exponential, and saturable
nonlinearities and made detailed predictions on the dynamics of their weak interac-
tions. They also analytically derived a universal system of dynamical equations for
parameters of interacting solitary waves using asymptotic methods and showed that
these dynamical equations accurately describe the weak interaction in generalized
NLS equation with arbitrary nonlinearities. Using the Karpman-Solov’ev method,
they treated the interference as a small perturbation to each solitary wave. The

evolution of a single solitary wave for the focusing and defocusing Hirota equations
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by using perturbation theory will be successfully done in chapters 3 and 4. They
also investigated the fractal-scattering phenomenon which appear in the system of
dynamical equations when its single parameter is not zero.

Frauenkron et. al. [8] considered the NLS equation perturbed by a quintic non-
linearity ((1.3) with only the parameter ¢; nonzero). Physical applications for this
equation include optical waveguides in which the refractive index deviates from the
Kerr dependence. This is the case for various semiconductor and nonlinear polymer
waveguides. The collisions between two and three solitary waves was considered
using an accurate symplectic numerical method. For two solitary waves the effect
of the inelastic collision is a small radiation loss only. However, for the collision of
three solitary waves, a nontrivial energy exchange can occur between the solitary
waves.

Dmitriev et. al. [4] considered the discrete version of the NLS equation with a
small quintic perturbation. This was shown to be equivalent to the higher-order NLS
equation (1.3) with the parameters ¢; and c¢g nonzero. It was shown that nontrivial
inelastic behaviour can occur even when two solitary waves interact, leading to
chaotic soliton scattering. Kivshar and Salerno [20] considered the stability of a
travelling wave solution for an alternative discrete NLS model. The near-continuum
limit of their model is (1.3) with the parameters ¢ and ¢g both non-zero.

Kano [I7] considered a higher-order NLS equation (a generalization of (1.3))
and used an asymptotic transformation to consider the interaction of bound higher-
order NLS solitary waves, governed by (1.3) with only ¢; nonzero. Perturbed inverse
scattering theory was used to show the inelastic nature of the collision. Kodama and
Mikhailov [23] considered the higher-order NLS and KP equations and identified the
conditions for asymptotic integrability, by considering the existence of asymptotic
conservation laws and symmetries. An example of the inelastic interaction of bound
higher-order NLS solitary waves was also considered.

Kodama [21] described a method for the asymptotic transformation of a second-
order KdV equation (one order beyond the KdV approximation) to a member of the
KdV integrable hierarchy. Hence the second-order KdV equation is nearly integrable

and the solitary waves are asymptotic solitons. Kodama [22] considered solitary wave
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interaction for the BBM equation. This equation was transformed to a member
of the KdV integrable hierarchy plus inelastic terms at third-order. The inverse
scattering perturbation method was then used to show that the inelastic terms at
third-order generate a fifth-order change in solitary wave amplitude.

Marchant and Smyth [28] asymptotically transformed a higher-order KdV equa-
tion to an integrable member of the KdV hierarchy. The higher-order KdV two-
soliton solution was found using the transformation, including analytical expressions
for the phase shift corrections. A good comparison was found between the predicted
and numerically obtained higher-order phase shifts. Marchant [26] considered soli-
tary wave interaction for a higher-order mKdV equation via a combination of an-
alytical results, again obtained using an asymptotic transformation, and numerical
solutions.

The resonant interaction between solitary waves and linear radiation has been
the subject of much recent research. This resonance can result from the linear phase
velocity being the same as the soliton velocity or from the frequency of the solitary
wave being embedded in the continuous wave spectrum. This resonance normally
leads to radiation loss from the solitary wave, special cases where no radiation loss
occurs are called embedded solitons, see Pelinovsky and Yang [33] or Champneys
et. al. [2]. The dispersion relation for the higher-order NLS equation (1.3) is w =
k* — ecgk*, hence when w = 0 the phase speed of the radiation (allowing for the
Doppler shift) will correspond to the soliton velocity. This means resonance will
occur for (1.3) when k = (ecg) 2.

Yang and Akylas [42] considered the NLS equation with a higher-order term of
the form 7u,,,. They found infinite families of embedded, double-humped solitons
and plotted the soliton profiles by solving the governing ode numerically. Their
stability was also considered numerically. It was found that for an energy increasing
perturbation the embedded solitons are stable while energy decreasing perturbations
lead to decay of the soliton. Minzoni et. al. [32] considered a higher-order NLS equa-
tion which also included the iu,,, term. They considered a double humped wave,
joined by linear radiation and used a Lagrangian averaging technique to determine

the details of the embedded soliton. They showed that the humped wave has an
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oscillatory one-sided stability.

In this chapter we consider solitary wave interaction for the higher-order NLS
equation (1.3)). In section 2.2l a nonlocal asymptotic transformation is used to trans-
form (1.3) to the integrable member of the NLS hierarchy (2.4). The transformation
is valid if the higher-order coefficients satisfy a certain algebraic relationship. For
this special case higher-order single and two-soliton solutions are derived, using the
transformation. The higher-order collision is found to be asymptotically elastic for
this special case and analytical expressions are derived for both the higher-order
phase and coordinate shift corrections, due to the collision.

In section 2.3 numerical solutions are presented for two examples. For the ex-
ample of an elastic collision, the theoretical predictions of section 2.2 are confirmed.
In particular, the theoretical and numerical values for the higher-order phase and
coordinate shifts are in close agreement. For the inelastic example radiation is shed
during the collision. The coordinate and phase shifts interact with this bed of radi-
ation, which causes the shifts to continue evolving long after collision. It is shown
numerically that this bed of radiation decays like t_%, the theoretically predicted
rate. Because the rate of decay of the bed to zero height is so slow, it is computation-
ally infeasible to calculate the final, steady-state, values of the phase and coordinate
shifts. In section 2.4, the conclusion, the implications of the results found here, for
two applications of (1.3)), optical waveguide arrays and finite-difference schemes for

the NLS equation, are discussed.

2.2 The asymptotic theory

We consider the transformation

=g+ e(er — Sep)lglPg + eler — e+ meg— )
=49 612299 6122 5¢8 269m
1 3 @
+€(02_Cl+c3_§c4_§cﬁ)gx/ l9(p, )|*dp + exh, e<1,  (2.5)

1
where h = (¢; —co — 506)(%95:1: +39:|9/%),
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and g(z,t) — 0 as © — +oo. If (2.9) is substituted into (1.3)), and terms of O(e?)

are neglected, then g(x,t) is a solution of the integrable higher-order NLS equation

ig + gow + 919> + 6/(glgl“g +9°Ga0 + 3997 + 2|9:1%g (2.6)
+419|* oz + Gozes) = 0, where € = 2e(c; — ¢3),
if the algebraic relationship
—4¢y 4+ 4ey + 2c3 — ¢4 + 5 — 6cg = 0, (2.7)

is satisfied. Kano [17] and Kodama and Mikhailov [23] also considered an asymptotic
transformation for the higher-order NLS equation (1.3) and obtained the algebraic
relationship (2.7) for asymptotic integrability of the higher-order NLS equation.

The expression (2.5) and that of Kano [I7] each contain four transformation
terms, of which three are common. The term exh in not present in Kano [L7] while
his transformation contains a term not present here. Combining the five independent
terms of (2.5) and Kano [17] lead to an expression which transforms (1.3) to the NLS
equation, subject to the condition (2.7). This is in contrast to (2.5) and Kano [17]
which both transform (1.3) to a member of the NLS integrable hierarchy.

The transformation term exh is secular, which means that the transformation

(2.5) is only valid for < O(e~!). However, we note the Taylor series expansion

h
g(x +ex—,t) = g(x,t) + exh, e <1, (2.8)
Gz

so it is possible to rewrite the secular transformation term in (2.5) as a transforma-
tion of the spatial variable, x, instead. Hence, replacing g + exh by (2.8) in (2.5)
leads to a nonsecular form of the asymptotic transformation.

As (2.6) is integrable, the collision of higher-order solitary waves of (1.3)) is
asymptotically elastic when the higher-order coefficients satisfy (2.7). Dmitriev
et. al. [4] considered a version of (L.3) with ¢ = 1, ¢; = ¢, ¢5 = —ATTQ and the
other ¢; all zero. The parameters ¢ and 7 are measures of the small higher-order
nonlinearity and discreteness in their model. They find numerically that the solitary
wave collisions are almost elastic when ¢; = —1.525¢¢. Note that with only ¢; and cg
non-zero that (2.7) implies ¢; = —1.5¢¢ for an asymptotically elastic collision. Hence

the prediction of the asymptotic theory is very close to the numerically obtained

results of Dmitriev et. al. [4].
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2.2.1 A single higher-order solitary wave

The soliton solution of the integrable higher-order NLS equation (2.0) is

g = Ae*?sechf, where
p=a(x—s5)+bt+&, 0=r(x—s —ot),
A=12r, v=2a—4€¢(a® - Ka, (2.9)

b=r?—a?+ € (k! +a* — 6x%d7),

and A is the amplitude of the wave, k is related to the width of the wave envelope,
v is the velocity and a and b determine the temporal and spatial dependence of the
soliton’s phase. Also, the soliton is located at © = s; at t = 0 and &; is the initial
phase. For € =0, (2.9) becomes the NLS soliton. Using the soliton (2.9) in the

transformation (2.5)) gives

u = e? Asech 0 + ee™?(Bsech @ + C'sech f tanh 6 4 D sech® 6,
+Exsech  + Fasech 6 tanh #), where

1
B = ——=ra*(3cg + 3¢y — 2¢1 — c3) + \/5(1,%2(203 — 3¢5 — 201 + 205 — ¢4)

V2

1
+—=K"(6c; — Tca + 2¢4 — 33 + 3cq), 2.10
NG (6¢1 2 4 3 6) (2.10)
C =iV2k’a (c3 — cqg — 4cy + 5eg) + V2K? (2¢1 — 2¢9 — 2¢3 + ¢4 + 3c6)
1
D = V2K (¢35 — ¢4 — 261 + 2¢5), E = —iak(a® — 3x%)(2c, — 261 + ¢5),

V2

1
F = —kr*(k* = 3a%)(2¢c; — 2¢; + ¢),

V2

and ¢, 6 and A are given by (2.9).

Using the nonsecular form of the transformation leads to a complicated implicit
form for the one-soliton solution. Algebraically, it is easier to use the form (2.5) as
the secular terms in (2.10) (with coefficients E and F') represent phase and velocity
corrections only. Hence they can be absorbed into the phase functions # and ¢,

which is achieved by rescaling a and &,

2 2 ].
k=~r(1—€ekK" —3a" )(ca— 1+ 506)), (2.11)
* %2 %2 1
a=a"(1+e(a” -3k )(02—01—1—506)),
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where a* and k* are the rescaled values. This rescaling process is similar to the
Poincaré-Lindstedt technique for the elimination of secular terms in the solution of
odes.

The higher-order NLS solitary wave can then be written (after using the rela-

tionship (2.7)) as (after dropping the stars)

u = Ae' sech § + eBe'? sech 0 + eCe™ sech § tanh 6 + e De™ sech® 6,

where ¢ = a[z — 51 — esi1(a® — 36%)(c; — 1 + %Cﬁ)]

+bt + ear(—3ce — 2¢1 + 2¢o — ¢4 + 2¢3) + &4, (2.12)
0= wlz— (1 + €6 — 30%) (s — 1 + 5c0))

+er(2c3 — 3cg — 2¢1 + 2c9 — ¢4) — vt} ,

and the various coefficients are given by
2
A=+, B= gfmz(@ — ¢4+ c3 —6cg + c5)

2
+%_ﬁ3(04 + 5cg + ¢3 + bes — 8¢y — 18¢q),
C = ivV2K2a (cy — ¢5 — 5 + 6cg) (2.13)
2
D = §n3(201 + 12¢6 — 2¢9 — 2¢5 — ¢4 — ¢3)

v =2a — decg(a® — k*)a, b= k> —a®+ ecg(k* + a* — 6K%a?).
Moreover, the higher-order solitary wave has been shifted from x = s; to
1
= 81(1+e(k* —3a%)(ca — 1 + 506)) — €r(2c3 — 3c6 — 201 + 20 — ¢y),  (2.14)

at t = 0, by the transformation. The expressions (2.12) and (2.13) agree with
the expression for a single higher-order NLS solitary wave, derived directly from
(1.3). Hence the asymptotic transformation works correctly when applied to a single

solitary wave.

2.2.2 The higher-order two-soliton solution

Here the two-soliton solution of (I.3)) is examined for the elastic case when the

higher-order coefficients satisfy (2.7). The two-soliton solution of the integrable
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higher-order equation (2.0) has the explicit form as

gl(l',t)
T, t) =
g( ) fl('rat)
fi(x,t) = cosh ) + sinh ¥ tanh 6; tanh 6,

where

— sinh ¥ sech 0 sech 05 cos(p1 — ¥2), (2.15)
g1 = Ay sech0,e" (cos )y + isine), tanh 6s)

+ Ay sech 0ye"#2 (cos 1y + i sin 1y tanh 6,),

1 (Cll — a2)2 -+ (/‘il — 52)2
¥ =—1In .
2 (al — a2)2 + (Hl + K,Q)Q

The various other parameters are

A; =V2rk;, v, =2a; — 46/(665 — m?)aj,
’17Z)j = arg(li? — K,g_j + (aj — ag_j)2 + 2i/13_j(aj - ag_j)), (216)
Hj = Iij(l’ — ’th — Sj), QOj = CLj(I — Sj) + b]t + é'j,

bj = K3 —a; +¢€ (k) +a; —6k7a7), j=1,2.

The velocity of the jth soliton by the position s; + v;t is v;. The initial phase at
the centre of the soliton is determined by ¢;(s;,0) = ;. For the integrable NLS
equation when € = 0 the higher-order two-soliton solution (2.15) becomes the NLS
two-soliton solution, see Hirota [13]. The only affects of higher-order terms are on
the velocities v; and the parameters b; of the two solitons. This is similar to the
two-soliton solution of the integrable higher-order KdV equation, in which only the
velocities of the solitons have a correction term at O(e).

Let v; > vy and without lose of generality we assume that the soliton with
amplitude A; is initially well to the left of the soliton with amplitude A;. Well
before and after collision the two-soliton solution is just the supperposition of two
well separated solitons; hence the collision is elastic with no radiation being shed as
a result of the collision. However, the collision makes some changes on the phase
and coordinate shifts that the solitons suffer. In fact these are

29 29
coordinate shifts: — —, —, phase shifts: — 2y, 2o, (2.17)
K1 K9

for the waves with amplitudes A; and As, respectively. Of course, the coordinate

shift (2.17) represents a shift in the position of the solitary waves profiles associated
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with a change in 0; while the phase shift shows a change in the phase of the wave,
;-

The form of the higher-order two-soliton solution, to O(e), which describes the
behavior of the higher-order NLS solitary waves during the interaction, is just the
integrable higher-order NLS two-soliton solution (2.15), transformed by (2.5). How-
ever, the form of the higher-order two-soliton solution is slightly complicated, so
the explicit higher-order two-soliton solution is negotiated and the nature of the
collision will be determined with the solution well before and after interaction. Well
before and after interaction, the two soliton solution (2.15) is just comprised of the
superposion of two well separated single higher-order waves (2.9). Transforming
the sum of these two solitary waves of the form (2.9) by the transformation (2.5))
gives two higher-order waves of the form (2.12)) with (2.13). Hence as any cross or
product terms are zero for well separated solitons, the transformation works in the
same manner as for the single soliton.

However, the nonlocal term in the transformation (2.5), which an integral from
far behind the solitary wave to its current location, does lead to a collision dependent
term in the transformation. Hence before interaction the wave with amplitude A, on
the right will include a term representing the integration of the wave with amplitude
Aj on the left, whilst after interaction the wave with amplitude A, is on the right, so
it contains a terms representing the integration of the wave with amplitude A,. It can
be easily shown that the relevant integral of the wave on the left is [*_|g(z,t)[*dz =
4k; (7 = 1 before collision and j = 2 after) while the interaction dependent term in
the transformation is €4x;g,. We define the phase and coordinate shifts, due to the

nonlocal term, as §; and s;-. Before collision (as t — —o0) these shifts are

(5;, f;) = (—€Qria1, —€Qas (ke + 2K1)),

I /

(81,89) = (—€Qk1, —€Q(Ka + 2kK1)), (2.18)
while after collision (as t — o0)

(5/17 5;) = (_EQal(Kl + 252), —EQ(J,Q,‘QQ),

(51, 89) = (—€Q(k1 + 2k3), —€Qky), (2.19)

where €2 = —3cg — 2¢1 + 2¢9 — ¢4 + 2c¢5.
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Taking the difference in the phase and coordinate shifts (2.18) and (2.19) and com-

bining them with the contribution from the rescaling (2.11) gives

2
coordinate shifts : — — — 2e\kay, — + 2€AKy,
K1 K9

phase shifts :  — 2, — 8e¢proas — 2€ ka0, (2.20)

2h9 + 8€pria; + 2€AK1as,

1
where A = (4ey —4ey — 2¢6 — ¢4 + 2¢3), p=(ca—c1+ 506).

as the higher-order coordinate and phase shifts of the waves with amplitudes A; =
V2k1 and Ay = \/2ky, respectively. For the integrable hierarchy (2.4) A = p = 0 and
the higher-order shifts are all zero. Also, it is worth noting that the higher-order
corrections to the coordinate shifts are qualitatively similar to those for the higher-
order mKdV equation, see (16) of Marchant [26]. In their (16), as in (2.20), the
higher-order coordinate shift is proportional to the amplitude of the solitary wave
it has collided with.

In summary, when (2.7) is satisfied, the higher-order NLS solitary wave collision
is asymptotically elastic with the higher-order phase and coordinate shifts given by
(2.20).

2.3 Numerical results

In this section the interaction of higher-order NLS solitary waves is examined nu-
merically. This allows the theoretical results, which apply when (2.7)) is satisfied, to
be verified and allows the nature of the collision to be determined for an example
not covered by the asymptotic theory.

The numerical method used here is based on a perturbation technique, similar
to that used by Zou and Su [47] or Marchant [26]. In both these applications, of
higher-order KdV and mKdV equations, the lowest-order solution, about which the
perturbation was based, is the appropriate exact two-soliton solution. This type
of numerical method is useful as it allows higher-order phase and coordinate shifts,

and any inelastic effects, to be accurately identified.
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The higher-order NLS equation (1.3) is expanded using
u=uv+ep, (2.21)

where v is the two-soliton solution of the NLS equation ((2.15) and (2.16) with
¢ = 0) and p is the O(e) correction term of interest here. The expansion (2.21)
is substituted into the higher-order NLS equation (1.3), which leads to a linear
NLS-type equation with forcing terms

ip; + Puw + V7D + 2)0°p = — f,, (2.22)

where f = C1|'U’4U + 02U2@:m: + 0360925 + C4‘Ux|2v + 05"(}‘21)9% + C6Vraaz-

The linear NLS equation (2.22) is solved by an explicit central-time central-space
finite-difference scheme with second-order accuracy. The stability of the scheme is
At < Az?/4, where At and Az are the time and space discretizations, see Taha and
Ablowitz [37].

When solving (2.22)), there is in general, a secular growth in p, due to the forcing
f not being orthogonal to the eigenfunctions of the adjoint homogeneous equation.
As we wish to only focus on the effects of the solitary wave collision we need to
ensure that no secular growth occurs for a single solitary wave. Hence we require
f = 0 well before and after the collision of the waves. The contribution to the
perturbation p, from a single higher-order NLS solitary wave (2.12), needs to be

considered. The parameter choices

(Cly Co2, C3, C4, C5, Cﬁ) = (3q> 2Qa 2(] + 17 17 _17 0)7 (223)
1 2 2 2

where q:l, r:%z%,
8r —4 2k 2K5

and (¢, 69,03, ¢4, 05,¢6) = (1,0,—2,0,2,0), (2.24)

are used for the numerical examples as they have no O(e) amplitude, velocity or
phase corrections in (2.12) and (2.13). Moreover, as ¢g = 0, the solitary waves for
these two special cases will not be subject to any resonance with linear radiation,
which can only occur for ecg > 0.

The special case (2.23) satisfies (2.7), hence is asymptotically elastic and can be

used to verify the theoretical results. The special case (2.24) does not satisfy (2.7),
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hence is not covered by the asymptotic theory. For these special cases, the forcing
f = 0 well before and after collision so the perturbation p after interaction represents
only the higher-order coordinate and phase shifts, plus any inelastic effects, such as
shed radiation.

The higher-order solitary wave solution of (1.3) for the special cases (2.23) and

(2.24)) is the NLS soliton
u= Ae"’sechl, ¢ =ax+ (k* —a’)t —e&, 0= r(x—es, — 2at), (2.25)

where s; and &; are higher-order corrections to the position and phase of the solitary

wave. Applying a Taylor series expansion to (2.25) gives
u = Ae"? sech § + eAe™ (ks sech § tanh § — i€ sech ). (2.26)

Hence if O(e) coordinate and phase shifts of s; and & are applied to the solitary
wave then the perturbation is given by the functions p; = Ars;e™ sechtanh @
and py, = —iA&e¥ sech respectively. As e is a known analytical expression
from the NLS two-soliton solution (2.15), the quantity e *p can be determined.
By considering the real and imaginary parts of e~*p after interaction, the higher-
order coordinate and phase shifts s; and & can be determined, by measuring the
amplitudes of the sech tanh and sech functions, respectively.

The averaged quantity

+0oo €
/ (Jul* + 5@5]u\4)da:, where a5 = (co + ¢35 — ¢5), (2.27)

is asymptotically conserved by the higher-order NLS equation (1.3). The quantity
lu|? is deemed mass density by some authors and energy density by others. In the
optical context it relates to conservation of norm or photon number while in the
water wave context it is energy. Here, for simplicity, the quantity |u|* is deemed
mass density, even though it does not physically represent mass. Also note that
(2.27) represents an averaged asymptotic mass density so the mass density |u]? is
only conserved if a5 = 0. If the mass of the system is written as My + eM;, then the
equation for the first-order mass, at O(e), is

[e’e] “+00
M, :/ (9% + Po)da = ag — %/ o], (2.28)

oo
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where v is a solution of the NLS equation and ag is a constant. The expression
(2.28) for the first-order mass is equivalent to the expression developed in [38] for
the adiabatic variation of energy in a perturbed NLS equation, see their (65). For
the special cases of solitary wave interactions considered here there are no O(e)
corrections to the solitary wave’s profile, so M; = 0 for a single solitary wave. Hence
before interaction the constant ag is chosen so that M is initially zero. During
interaction the quartic term in (2.28) will cause the first-order mass M; to vary
before returning to zero after interaction.

Hence mass is not conserved during a collision of higher-order NLS solitary waves,
but is conserved, if times well before and after the collision (as t — 4o0) are
considered. This is similar to the result in Marchant [20] in which mass was not
conserved during a collision of higher-order mKdV solitary waves, but was conserved
well before and after collision.

Example 1 is of the higher-order NLS equation (1.3) with coefficients (2.23)),
hence it satisfies (2.7) and is asymptotically elastic. The parameters of the two

solitary waves are chosen as

1 1
(ﬁlaala 31761) = (ﬁv %7 _2070)7
1 1

(I{Q,CL2752,§2) = (m,—ﬁ,Q0,0) (229)

The wave on the left is located at = —20 initially and has amplitude A; = 1 and
moves to the right with velocity 0.816. The wave on the right is located at x = 20
initially and has amplitude A, = 0.5 and moves to the left with velocity 0.408. The
initial phases, §;, of both waves are zero. Hence this is an example of a head-on
collision between the two waves. As A; > A, the waves with amplitudes A; and A,
will be referred to as the larger and smaller waves, respectively, in the discussion of
results in this section.

Initially the perturbation p = 0, which corresponds to a time well before interac-
tion. The forced linear NLS-type equation (2.22) is solved numerically, from ¢ = 0
up until £ = 60, which represents a time well after interaction. The spatial and
temporal grid spacings used are Az = 2.5 x 1072 and At = 1.5625 x 1074

Figure (2.1) shows the absolute value of the perturbation, |p|, for example 1 at
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Figure 2.1: |p| at t = 60 for example 1

time t = 60. The figure shows that after interaction |p| comprises two, well separated
humps, which represent the phase and coordinate shifts of the two solitary waves.
From (2.26) we know that the coordinate shift is described by the sech tanh curve
while the phase shift is described by the sech curve, so clearly the magnitude of the
coordinate shift, relative to the phase shift, is much greater for the larger wave than
the smaller wave.

Figure (2.2) shows the real and imaginary parts of pe™*, at t = 60 for example
1. The perturbation has been scaled to eliminate the phase e?# of the wave, so that
real and imaginary parts represent the coordinate and phase shifts respectively.
Also note that the expressions for the larger and smaller waves have been scaled by
slightly different forms of the phase, as the NLS solitons suffer a phase shift of the
form (2.17). It can be seen from figure (2.2) that the real part is anti-symmetric and
the imaginary part is symmetric. Moreover, fitting sech # tanh § and sech 6 curves
to the numerical profiles, by using least squares, verifies that the numerical profiles
are the same, to graphical accuracy, as the phase and coordinate shifts (2.20).

The numerical estimates of the higher-order phase and coordinate shifts are

obtained by measuring the amplitudes of the symmetric and antisymmetric curves in
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Figure 2.2: Real (solid lines) and imaginary parts (dashed lines) of pe=* at ¢ = 60

for example 1

figure (2.2). The amplitudes are also measured using values of Az and At double the
values quoted above. Richardson extrapolation is then used to obtain a converged
estimate of the phase and coordinate phase shifts. The numerically obtained phase
shifts are —8.67x 10~° and —0.8660278 for the larger and smaller waves, respectively.
The corresponding theoretical predictions from (2.20)) are 0 and —0.8660254. For
the coordinate shifts the numerical predictions are —0.7067908 and 1.414196, while
the theoretical predictions are —0.7071068 and 1.414214, for the larger and smaller
waves, respectively. In absolute terms the largest error is 3 x 10~%. The errors are
extremely small, verifying the theoretical predictions and confirming the accuracy
of the numerical scheme.

Examination of the free surface behind, in front of, and in between the solitary
waves after interaction shows that p is essentially flat, with no dispersive wave
train produced. The amplitude of the largest oscillation in |p| behind the waves
is O(107°). Richardson extrapolation indicates the converged amplitudes of the
oscillations are O(107%), confirming that it is merely a result of the discretization.

Hence, no dispersive wave train occurs as a result of the collision, so it is elastic to
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O(e).

For example 1 a5 = 0, hence mass is conserved during the collision. As the
amplitude and velocity corrections are zero, (2.28) indicates that the first-order
mass, M, is zero throughout the interaction of the higher-order waves. The values
of M are calculated numerically from the finite-difference solution at each time step,
by using Simpson’s method. The numerical results indicate, that for the spatial and
time-discretizations used, that the magnitude of M, is never greater than 5.1 x 1073,
This represents an extremely small change to the total mass of 4(k1 + ko) = 4.2426,
of the interacting solitary waves. Moreover, Richardson extrapolation indicates the
converged value of M, is no greater than 1.1 x 10~%. Hence the numerical scheme
conserves the mass extremely accurately throughout the interaction.

In summary, it can be seen that the theoretical predictions have been confirmed
for this example. The numerical results show that the collision is asymptotically
elastic to O(€) and the numerical estimates for the higher-order phase and coordinate
shifts are extremely close to the theoretical predictions (2.20)). These results also
show that the numerical scheme is an extremely accurate method of determining
the phase and coordinate shifts, which will now be used for the special case (2.24),
which is not asymptotically elastic.

Example 2 is of the higher-order NLS equation (1.3) with coefficients (2.24),
hence it does not satisfy the algebraic condition (2.7) and the asymptotic theory of

§2.2 does not apply. The solitary wave parameters are given by

<H17a1,81,£1> = (%,?,-20,0),
(hnanon @) = (S =Y 20,0) 2:0)

The amplitudes of the waves are unity, the velocities are £2.45 and the waves are
located at x = 20 initially. Hence, this represents a symmetric head on collision
of solitary waves. A symmetric collision is chosen for analysis as only the solution
in x > 0 needs to be calculated and = = 0 is the centre point of the radiation shelf.
The values of Az =5 x 1072 and At =4 x 107,

Figure (2.3) shows the absolute value of the perturbation, |p|, for example 2 at

times ¢ = 20,50 and 70. Due to the symmetry only the solution x > 0 is shown,
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Figure 2.3: |p|, at ¢t = 20, 50 and 70, for example 2

hence only the hump corresponding to the right moving solitary wave is visible.
For this example the collision is inelastic and it can be clearly seen that the hump
is sitting on a bed of radiation, which was shed during the collision. The height
of the radiation bed is decreasing with time, as |p(0,t)| is 0.55, 0.28 and 0.23 at
the times t = 20,50 and 70. Moreover, it can been that the amplitudes of the
hump, corresponding to the phase and coordinate shifts, is increasing with time.
The maximum values of |p| are 2.15, 4.5 and 8.47, for the three different humps
shown in figure (2.3).

Figure (2.4) shows the logarithm of the shelf height [p| at x = 0 versus the
logarithm of time ¢, up to ¢ = 150. for example 2. This figure shows the rate of
decrease of the shelf height with time. The slope of the curve is —0.53, at t = 150.
Hence, at long time, the shelf height is decaying at close to the theoretically expected
slope, of —0.5. See, for example, Gordon [10)], whose theoretical solutions show that
radiative perturbations of the NLS equation suffer a t2 decay rate. The similarity
solution for the NLS equation has the form u = ¢~z f (zt~2), which also illustrates
the appropriate decay rate of the shelf.

Fitting the numerical data gives the shelf height as p(0,t) = 2.214¢7%5%. For the
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steady-state coordinate and phase shifts to be obtained the shelf height must be
close to zero. For example, requiring the shelf height |p| < 1 x 1073 and using the
fitted power law relationship, implies that time ¢t > 6,700, to obtain steady-state
values, well beyond the limit of what is computationally feasible.

Figure (2.5) shows the logarithms of the phase and coordinate shifts, versus the
logarithm of time ¢, up to ¢ = 200. These shifts are related to the amplitudes of
the real and imaginary parts of pe~* . with the absolute values of the shifts being
used. The curves show that both the phase and coordinate shifts are increasing
in an approximately linear manner at ¢ = 200. At this time |p(0)| ~ 0.13, hence
the phase and coordinate shifts are still evolving as they interact with the bed of
radiation. Note that the solitary waves have completed interacting at time ¢ ~ 15,
so the forcing term f = 0 for In(t) > 2.7. Hence the growth of the phase and
coordinate shifts shown in Figure 2. 5 is not due to secular forcing terms in f.

As explained above, it is not practical to numerically determine the steady-state
phase and coordinate shifts, as the steady-states are approached at very long times.
Moreover, the perturbation method used here is valid for p < O(e™!). Hence at
long times, the validity of the perturbation method will break down, as the growth
in the magnitude of the phase and coordinate shifts causes |p| to reach O(e™!).

Inelastic collisions of higher-order NLS solitary waves are quite different to in-
elastic collisions for the higher-order KdV (or mKdV) equation. The linear NLS
group velocity is ¢, = 2k, while the linear KAV group velocity is ¢, = —3k?. Hence,
the radiation shed at the point of a NLS collision will propagate in both the positive
and negative z-directions, forming the shelf on which the solitary waves (and its
associated hump) must propagate.

For the KdV equation the radiation shed at the point of collision will only propa-
gate in the negative z-direction whilst the solitary waves (and the humps associated
with the phase shifts) propagate in the positive z-direction (the KdV equation is a
model for unidirectional propagation). So, for the KdV (or mKdV) equation, sepa-
ration of the radiation and the solitary waves occurs at a much faster rate, than for
the NLS equation, and the phase shifts due to the inelastic collision can be numer-

ically determined. See, for example, Marchant [26], who tabulated the phase shifts
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My

Figure 2.6: The first-order mass My, versus ¢, during the interaction, for example 2

for an inelastic higher-order mKdV equation.

Also note that alternative approaches to calculating the higher-order phase and
coordinate shifts are the inverse scattering perturbation method or a direct multi-
soliton perturbation theory. See, for example, Matsuno [30] who determined phase
shifts for a higher-order Benjamin-Ono equation by a direct perturbation method.

Figure (2.6) shows the first-order mass Mj, versus time ¢, for example 2. Shown
is the solution of (2.28) with v the NLS two-soliton solution. The direct numerical
calculation of My, from the finite-difference solution is not shown as it is the same as
(2.28) to graphical accuracy. For this example a; = —4, hence mass is not conserved.
The first-order mass M, is not zero through the interaction, but increases up to a
maximum value of 15.4522 at time ¢ ~ 8.2. The variation between this prediction for
the mass, and that from the numerical scheme, is very small, being only 9.1 x 1074
or 0.06%. Hence the numerical scheme accurately predicts the first-order mass

throughout the collision.



2.4. Conclusion 29

2.4 Conclusion

An asymptotic transformation has been applied to a higher-order NLS equation
(L3). It is found that the higher-order NLS solitary waves are asymptotic solitons
when an algebraic relationship (2.7) involving the higher-order coefficients is sat-
isfied. Analytical expressions for the higher-order phase and coordinate shifts are
determined.

Numerical solutions of the higher-order NLS equation confirm the asymptotic
results, namely, the elastic nature of the collision and the values of the higher-order
phase and coordinate shifts. Moreover, numerical solutions, for an example not
satisfying (2.7) shows strong evidence of inelastic behaviour, via the shedding of
radiation. Final steady-state phase and coordinate shifts, after collision, could not
be determined numerically because the bed of radiation on which each travels decays
very slowly.

The numerical results presented here show the effects of an inelastic higher-
order NLS collision are long-lasting. Moreover, the numerical results of Frauenkron
et. al. [8] and Dmitriev et. al. [4], who solved their version of the higher-order
NLS equation directly, also found strong inelastic effects, such as chaotic soliton
scattering. For many physical applications strong or long-lasting inelastic effects
may not be desirable, in which case it is important for the higher-order parameters
to satisfy (2.7). This could be achieved by tuning the physical system in some
manner to vary the higher-order parameters. One telecommunications example, is
of a coupled optical fibre array, which is governed by (1.3) in the near-continuum
limit. In this case the higher-order parameters could be varied by doping the fibre
appropriately, in order to change its properties.

This work may also form a useful tool in the numerical analysis of finite-difference
schemes for the NLS equation. For some schemes the leading-order truncation error
is higher-order terms from (1.3). Inelastic effects, due to the discretization, should
be avoided, hence a numerical scheme which satisfies the condition for asymptotic
integrability (2.7) is highly desirable. Moreover, the numerical errors in the phase

shifts can be easily estimated, using (2.20).



Chapter 3

Bright solitary wave interaction
and evolution for a higher-order

focusing Hirota equation

In this chapter, bright solitary wave interaction and evolution for the higher-order
focusing Hirota equation (1.4)) is examined. The results of this chapter appear in Ho-
seini and Marchant [14]. Similar to the higher-order NLS equation (1.3), the higher-
order Hirota equation is asymptotically transformed to a higher-order member of
the NLS hierarchy of integrable equations, if the higher-order coefficients satisfy a
certain algebraic relationship. The transformation is used to derive higher-order
one and two bright soliton solutions. It is shown that the interaction is asymp-
totically elastic and the higher-order corrections to the coordinate and phase shifts
are derived. For the higher-order Hirota equation considered here, resonance occurs
between the solitary waves and linear radiation, so soliton perturbation theory is
used to determine the details of the evolving wave and its tail. An analytical ex-
pression for the solitary wave tail is derived and it is found that the tail vanishes
when the the algebraic relationship from the asymptotic theory is satisfied. Hence a
two-parameter family of higher-order asymptotic embedded solitons exists. A com-
parison between the theoretical predictions and numerical solutions shows strong
agreement for both solitary wave interaction, where the higher-order coordinate and

phase shifts are compared, and solitary wave evolution, with comparisons made of

30
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the solitary wave tail.

3.1 Introduction

The Hirota equation is an integrable equation which has a number of physical ap-
plications, such as the propagation of optical pulses in nematic liquid crystal waveg-
uides, see Rodriguez et. al. [30], and for a certain parameter regime, femtosecond

pulse propagation in optical fibres, see Yang [41]. The focusing Hirota equation is

where the parameters . and 7 are positive real constants. As mentioned above it is
integrable, see Hirota [13] for a derivation of the N-soliton solution. Note that, for
simplicity, in this chapter the notions ‘soliton’ and ‘solitary wave’ are used instead
of ‘bright soliton” and ‘bright solitary wave’, respectively.

The Hirota equation is closely related to both the NLS and modified KdV
(mKdV) equations, as it is a complex generalization of the mKdV equation and
it is part of the NLS hierarchy of integrable equations. Also, its soliton solution
has a very similar form to the NLS soliton. The Hirota equation is also called
the complex modified KdV (cmKdV) equation although this name is shared with a
non-integrable variant, in which the nonlinear term in (3.1) is replaced by (|n|*n)..
The non-integrable cmKdV equation has physical applications such as Langmuir
solitons in a plasma, see Dysthe et. al. [5], and transverse waves in a elastic solid,
see Erbay [0].

Hasegawa and Tappert [11] derived the NLS equation to describe the evolution
of the slowly varying envelope of an optical pulse. Again, for the higher-order NLS
equation (2.2) (with e = 1), if 3410 = oy and (3 = 0, then the higher-order NLS
equation (2.2) reduces to the Hirota equation (3.1) via a gauge transformation, see
Gilson et. al. [9].

The higher-order focusing Hirota equation

0+ 3an*ne + Vaae + €(c1a®n]* 0z + 20y ([0 *)e + c3avn* (M2 )

a0V NNz + 5OV + €67 M52) =0, € < 1, (3.2)
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is considered in this chapter, where starred quantities are complex conjugates and
€ is a measure of the importance of the higher-order terms. If the higher-order

coefficients are given by

2 2 2 2
(01762,03704705706) = (175,57 570, B)v (3-3)

then (3.2) is a member of the NLS integrable hierarchy, see Kano [17]. Hence (3.2)
represents a generalization of a member of the integrable hierarchy (3.3).

Marchant [26] examined solitary wave interaction for a higher-order mKdV equa-
tion (obtained by taking 7 to be real in (3.2)). The higher-order equation was
asymptotically transformed to the mKdV equation, when the higher-order coeffi-
cients satisfy an algebraic relationship. This allowed the higher-order mKdV two-
soliton solution to be found, including predictions for the higher-order phase shifts.
Numerical modelling of the interaction of two higher-order waves, for elastic and
inelastic examples, confirmed the theoretical predictions.

Marchant [27] considered the interaction of the higher-order mKdV solitons on
a nonzero mean level. By using an asymptotic transformation, valid if the higher-
order coefficients satisfy an algebraic relationship, he examined the collision between
solitary waves with sech-type and algebraic (which only exist on a non-zero mean
level) profiles. The transformation was used to show that the higher-order collision
is asymptotically elastic and to derive the higher-order phase shifts. He also numer-
ically showed that for the example covered by the asymptotic theory, the collision is
elastic and the theoretical predictions for higher-order phase shifts were confirmed
by numerical simulations. For the example not covered by the asymptotic theory,
the interaction was shown numerically to be inelastic.

The resonant interaction between solitary waves and linear radiation can result
from the linear phase velocity being the same as the soliton velocity or from the
frequency of the solitary wave being embedded in the linear wave spectrum. This
resonance normally leads to radiation loss and the formation of a tail behind the
solitary wave. Special cases where the tail vanishes and no radiation loss occurs are
called embedded solitons, see Pelinovsky and Yang [33] or Champneys et. al. [2].

The Hirota equation (3.1) has a two-parameter soliton family, with arbitrary

amplitude and velocity, which are embedded in the linear wave spectrum. Rodriguez
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et. al. [36] explains why these embedded solitons do not emit radiation and proves
their stability. Yang [41] considered solitary wave evolution for a higher-order Hirota

equation of the form

N+ 6|0°1% + Neww + ie(cr|n*n + can(n]?)z), €< 1. (3.4)

Using perturbation theory he found that there exists a one-parameter family, of
arbitrary amplitude, of embedded solitons. An expression for the amplitude of the
solitary wave tail and ordinary differential equations (odes), describing the evolution
of the wave amplitude and frequency, were found. Pelinovsky and Yang [34] also
considered the higher-order Hirota equation (3.4) and performed a comprehensive
stability analysis.

In this chapter we examine solitary wave interaction and evolution for the higher-
order Hirota equation (3.2). In section 3.2 a nonlocal asymptotic transformation is
used to transform (3.2)) to the integrable member of the NLS hierarchy (3.3). The
asymptotic transformation for the higher-order Hirota equation (3.2) is valid if the
algebraic relationship

3
C1 — 503 —Cq4 — C5 + 5C6 = 0, (35)

is satisfied. In section 3.2 higher-order single and two-soliton solutions are derived,
using the transformation. For the single wave, the transformation predicts the ex-
istence of a two-parameter family of higher-order asymptotic embedded solitons.
For the two-soliton collision the higher-order collision is found to be asymptotically
elastic and analytical expressions are derived for both the higher-order phase and
coordinate shifts, due to the collision. The asymptotic transformation represents a
technique for analysing higher-order two-soliton collisions which is simpler to apply
than alternative approaches, such as perturbation methods based on inverse scat-
tering. Moreover, it establishes the existence of the embedded soliton family in a
simple manner.

In section 3.3 numerical solutions are presented for an elastic collision of higher-
order Hirota solitary waves. In particular, the theoretical and numerical values for
the higher-order phase and coordinate shifts are in close agreement.

In section 3.4/ soliton perturbation theory is used to derive the details of an
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evolving solitary wave, governed by (3.2). An analytical expression is found for the
solitary wave tail. An excellent comparison is found between the theoretical and
numerical solutions, for the solitary wave tail. Moreover, the perturbation theory
shows that the tail vanishes when (3.5) is satisfied and confirms the existence of the
two-parameter family of higher-order asymptotic embedded solitons. This provides
cross-validation of both theoretical approaches as the algebraic relationship (3.5)

occurs in both the asymptotic transformation and the soliton perturbation method.

3.2 Asymptotic theory for solitary wave interac-
tion
If the transformation

€
n=1v+—(2c; —4ecy — c3+ 10¢s — 405)|1/1|2¢

12
+%<261 —2¢y — 203 + 506 - 305)1%1 (36)
o xX
—1—1—;(201 — 2¢9 — beg 4+ 20¢g — 205)%;/ | (p, t)\de,

—00

TIt—§(201—202—03—205)£L', E=1x, ek,

where ¥ (z,t) — 0 as & — 400, is substituted into (3.2) and terms of O(¢?) are ne-
glected, then v (x,t) is a solution of the higher-order member of the Hirota hierarchy

of integrable equations

/ 2¢
Ur + 3|V P + Yiheee + € P Y] e + ?EOW(M?/J&\Q)&

!/ /

2€ . 2e . 2e
+?04W (Vibee)e + ?OM/J VYehee + 1—572%5 =0, (3.7)

/ 15
where € = ?6(201 —2¢y — 3+ 4cg — 2¢5) < 1,

if the algebraic relationship (3.5) is satisfied. Note that this transformation is an
appropriate combination of (2.5) used for the higher-order NLS equation and that
for the KdV equation, see Marchant and Smyth [28].

The form of transformation (3.0) is appropriate for solutions which approach
zero far up and downstream, such as the solitary wave solutions considered here.

For other forms of solutions, such as periodic solutions, the nonlocal term in the
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transformation (3.0) needs to be modified slightly. The form of the transforma-
tion is qualitatively similar to the transformation (2.5). Note that a similar form
of transformation (3.0) was used for a higher-order KdV equation, see Marchant
and Smyth [28], and a higher-order mKdV equation, see Marchant [26]. For ex-
ample, when 7 and ¢ are real, (3.0) is equivalent to the transformation used by
Marchant [26]. By appropriate scalings of the higher-order coefficients, the alge-
braic relationship (3.5) becomes the algebraic relation found by Marchant [20] for

the higher-order mKdV equation (see his (6)).

3.2.1 A single higher-order soliton

The soliton solution of the integrable higher-order Hirota equation (3.7) is

. 27 . 1
1 = Ae¥sech, where A= (—7)557

a
p=a(l—br—s)+po, 0=r(§—s—07) (3-8)
2, 1
v =v(k* — 3a®) + 3¢ 7 (a* + 5/14 — 2a*k?),
2, 45,1
b=(3k% —a?) + Z€y*(za* + k* — 2a%K?).

3 5

A is the amplitude of the wave, k is related to the width of the wave envelope and
and v is the velocity. The parameter a is the wavenumber of the phase and b is
related to the frequency of the phase. Also the soliton is at £ = s at t = 0 and ¢
is the initial phase. For € = 0, (3.8) becomes the Hirota soliton which moves to the
right when x? > 3a® + € 2~a*, and to the left when x? < 3a® + € 2ya’.

Using (3.8) in the transformation (3.0) gives
n = Ae" sech f + eAe’¥(Bsech § + C'sech § tanh @ + D sech® §),
where B = %(—202 + 2¢1 + 20cg — Heg — 2c5)ak

+%(202 — 201 — 506 + 203 + 3C5)a,2 + %(363 - 1506 — 65)1‘62,

C= %(—201 + 265 + 5z — 206 + 2¢5) K2 (3.9)
iy 7 2
+E(1OC6 +2¢9 — 3 — 2¢1 +4es)ak, D = 5(1006 — 3 — C)K”,
2
o =al[(1+ %(201 — 3 — 2cy — 2¢5)(K* — %))x — bt — s8] + o,

2
0=k[(1-— %(201 —c3 — 2cy — 2¢5)(a® — %))x — ot — s).
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We rescale a and « by

a = a'(1+ Z( K- a3 )(2e1 — ¢3 — 2¢5 — 2¢5)), (3.10)
ko= (1= D@ = )26 — e — 26 — 265)),

where a* and x* are the rescaled values. This gives, after dropping the stars, the

higher-order Hirota wave in the form

n = Ae* sechf + eAe'?(Bsech § 4 C sech § tanh  + D sech® §),

2
A= (07) K, D—3(1006—C3—Cg)/€,

B = 172(201 —2¢y — 10¢g + c3)a® + 172(703 —30cg — 2¢1 + 2¢3)K2,
C = €(1006 +2¢9 — 3 — 201 + 4es)ak
2
v =alr—s(l— %(H - %)(201 — 3 —2c9 — 2¢5))
-I—%(ch — 209 4+ 20c6 — bez — 2¢5)k — bt] + o, (3.11)
€y K2
0=rlr—s(l14+— 1 (a® — 3)(201 — 3 — 209 — 2¢5))

+%(201 — 209 + 20cg — bez — 2¢5)k — vt],

v =(k? — 3a?) + ev’c(k* + 5a* — 10K%a?),

b=~(3k* — a®) + ey’cs(a* + 5k* — 10K%a?).

The higher-order Hirota solitary wave (3.11)), derived using the transformation (3.6)),
is the same as that found directly, if (3.5)) is satisfied. Note that the transformation
has shifted the wave from £ = s at 7 =0 to

2

Va2 %)(201 —3— 20— 205)] — %(2@ —2¢5+20c5— ey — 2c5)k, (3.12)

s1
=s[l+

att =0. Asnp — 0 as  — +oo in (3.11) it is a localised higher-order solitary wave.
Hence when (3.5)) is satisfied a two-parameter family of higher-order asymptotic
embedded solitons exists. When (3.5) is not true, then mass and energy are shed,
see section 3.4 for a derivation of the solitary wave tail. The condition (3.5) does
not imply that exact higher-order embedded solitons occur as a tail is likely to form

at second-order, O(€?), for waves satisfying (3.5).
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3.2.2 The higher-order two-soliton solution

In this section the two-soliton solution of the higher-order Hirota equation (3.2)),
with coefficients satisfying (3.5)), is found. The two-soliton solution of the integrable

higher-order Hirota equation (3.7) is

Ve = g,

cosh ¥ + sinh ¥}(tanh 6y tanh 6 — sech 0; sech 0, cos (1 — ¢2)),

where (£, 7) =

(€, 7) = Ajsech 01e"' (cos by + i sine); tanh 6y) (3.13)

+ Ay sech 0572 (cos 1y + i sin 1y tanh 6,),
9 lln (a1 — ag)* + (k1 — /4:2)2‘
2 (a1 —a2)? + (K1 + k2)?

The various other parameters (for j = 1,2) are

2’)/ 1
Aj=()2mg, 05 = w5(8 — v = 85), 95 = a;(€ = b;T — ) + o,
1/1]‘ = arg(n? — lﬁgfj + (CL]‘ — Clg_j)2 + 2il€3_j(aj — ag_j))7 (314)

2, 1
0 =20 = 36) & 5E7Ma] + 5 = 245,

2, ,1
by =(3k] — aj) + g€ (S aj + k) — 2a517),

see Hirota [13]. Note that the two-soliton solution (3.13) is similar to (2.15). The
velocity of the jth soliton is v; and its position is s; at 7 = 0. The initial phase
at the centre of the soliton is ¢;(s;,0) = ¢o,. When € = 0 it becomes the Hirota
two-soliton solution. The higher-order terms only affect the velocities v; and the
parameters b; of the two solitons. This is similar to the two-soliton solution of the
integrable higher-order KdV and mKdV equations, for which only the velocities
have a correction term at O(e). Also, the Hirota two-soliton solution is remarkably
similar to the form of the NLS two-soliton solution.

The phase and coordinate shifts for the higher-order integrable equation are

29 29 2 2
coordinate shifts: —, ——, phase shifts: ﬂ, —E,
K1 Ra aq Qs

(3.15)
for the waves with amplitudes A; and A,, respectively. The coordinate shift refers
to a shift in the position of the wave envelope (associated with a change in 6;) while

the phase shift refers to a change in the phase of the wave, ¢;.
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The higher-order two-soliton solution, to O(e), describing the interaction of two
higher-order Hirota solitons is just the integrable higher-order Hirota two-soliton
solution (3.13), transformed by (3.0). The collision is considered well before and
after interaction, where it is comprised of the sum of two well separated single
higher-order waves (3.8). Substituting the sum of these two solitary waves of the
form (3.8) into the transformation (3.0) gives two higher-order waves of the form
(3.11).

However, the nonlocal term in (3.0) does lead to a collision dependent term in the
transformation. The nonlocal term is an integral from far behind the solitary wave to
its current location. The relevant integral of the wave on the left is [ |i(z,t)[*dz =
(), (j = 1 before collision and j = 2 after) and the interaction dependent term in
the transformation is (%)mﬂ/}m. This term represents both a coordinate and phase

shift at higher-order. Also, there is a contribution from the rescaling (3.10), to the

higher-order coordinate and phase shifts. Combining these contributions gives

. . 20 1 20 1
coordinate shifts : — — —evrou, —— + —€yR1 4,
K1 3 ) 3
2 1 1
phase shifts : 2 + —eyka(ay + 2a9)p — =€k A\, (3.16)
aq 3@1 3
2 1 1
—ﬂ — —evk1(ag + 2a1)p + —eyr A,
ag 3as 3

where = —20cg +4c3, p = 2c; —c3 — 2¢o — 2cs5,
A = —2¢cy + 2¢1 + 20cg — Heg — 25,

as the higher-order coordinate and phase shifts of the waves with amplitudes A;
and Aj, respectively. For the member of the NLS integrable hierarchy (3.3), then
i =p=A =0 and the higher-order shifts are all zero. Also, when a1 = ay = 0
and (3.2) becomes a higher-order mKdV equation, the higher-order corrections to
the coordinate shifts are the same as those for the higher-order mKdV equation, see
(16) of Marchant [20]. In his (16), as in (3.10), the higher-order coordinate shift is
proportional to the amplitude of the solitary wave it has collided with.

In summary, when (3.5) is satisfied, the higher-order Hirota solitary wave colli-
sion is asymptotically elastic, to first-order, with the higher-order phase and coordi-
nate shifts given by (3.16)). Inelastic effects, due to the collision, are likely to occur

at second-order.
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3.3 Numerical interaction of solitary waves

In this subsection the interaction of higher-order Hirota solitary waves is examined
numerically. This allows the theoretical results for a solitary wave collision, which
apply when (3.5) is satisfied, to be verified. The numerical method used is similar
to section 2.3l

The higher-order Hirota equation (3.2)) is expanded using
n=u+ ep, (3.17)

where u is the two-soliton solution of the Hirota equation (¢ = 0 in (3.13)) and p is
the O(e) correction term of interest here. The expansion (3.17) is substituted into
the higher-order Hirota equation (3.2)), which gives a linear KdV-type equation by

the form

Pt + VDaza + 3a|u|2pz + Sauump* + 30[u>kuxp - _f7
where f = crollultu, + caory(ulus )y + cxoy (uigg)y (318)

2
YU Up Uy + CzOYUULU,, + CoY Usy-

To avoid secular terms the contribution to the perturbation p, from a single higher-
order Hirota wave (3.2)) needs to be considered. In general asymptotic solitons, which
occur when (3.5) is satisfied, have O(e€) corrections to their amplitude, velocity and

other parameters. However, the special case

(c1,ca, 3, ¢4, C5,C6) = (3 — g, —2+0,2—-03,-3+23,3—03,0), (3.19)
(1+30) a?  a’
h = — 5: _— = —
where [ 1t0)’ 2R

has no O(e) corrections to the amplitude, velocity or the parameter b, in (3.11).
Hence (3.19) is used for the numerical study of solitary wave interaction, using
(3.18). The linear KdV-type equation (3.18) is solved by an implicit, three level,
finite-difference scheme with second-order accuracy and unconditional stability. The
special case (3.19), which satisfies (3.5)), shows an asymptotically elastic and shall be
employed to verify the theoretical results (3.10) obtained in[3.2.2 for the higher-order

coordinate and phase shifts. For this special case the forcing f = 0 well before after
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collision so the the perturbation p after interaction only represents the higher-order
coordinate and phase shifts. The higher-order solution for the special case (3.19) is

the Hirota soliton
n = Ae?sech, ¢ =a(r—bt—ely), 0=r(r—vt—ely), (3.20)

where A; and A, are higher-order corrections to the position and phase of the solitary
wave. The description after (2.20) details how the higher-order corrections A; and
A5 can be measured from the solution of (3.18)).
The higher-order Hirota equation (3.2) asymptotically conserves the averaged
quantity
e eay 2
/OO (In|* + Tc7|77$| )dx, where c; = (ca — 2c3+ ¢4+ c5). (3.21)
In the optical context it implies the conservation of photon number, see Yang [41].
Here we assign it no physical meaning but, for simplicity, call |n|*> mass density.
Note that (3.21) represents an asymptotic mass density as the mass density is only
conserved if ¢; = 0. If the mass of the system is written as My + eM;, then the
equation for the first-order mass is
e _ ary ee 2
M, = /_OO (pu + pu)dr = cg — - /_Oo |uy|*dx, (3.22)
where wu is an solution of the Hirota equation (in the example here, the two-soliton
solution) and cg is a constant. For the special case considered here there are no
O(e) corrections to the solitary wave’s profile, so M; = 0 for a single solitary wave.
Hence before interaction the constant cg is chosen so that M; is initially zero. Dur-
ing interaction the term |u,|* in (3.22) will cause the first-order mass M; to vary
before returning to zero after interaction. The expression (3.22) will be used as an
additional check on the accuracy of the numerical results.
Example 1 is of the higher-order Hirota equation (3.2) with a = 2, v = 1
and coefficients (3.19), hence it satisfies (3.5) and is asymptotically elastic. The
parameters of the two solitons are (k1,a1) = (1,2) and (ka,a2) = (3,1), 80 6 =4

and the higher-order coefficients are chosen as

17 3 3 11 2
(01702703704705766) = (1—(),5,—5,37570)‘ (3-23)
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Figure 3.1: |p| at t = 7 for example 1

The spatial and temporal grid spacings used are Az =1 x 1072 and At = 1 x 1074
Initially the perturbation p = 0 at time ¢ = 0, which corresponds to a time well
before interaction of the solitary waves.

Figure (3.1) shows |p| for example 1 after interaction, at ¢ = 7. It shows that
|p| comprises two, well separated humps, which represent the phase and coordinate
shifts of the two solitary waves. Examination of the free surface behind the humps af-
ter interaction shows that it essentially flat, with no dispersive wave train produced.
The amplitude of the largest oscillation behind the symmetric and antisymmetric
waves is O(107°%). Richardson extrapolation indicates the converged amplitudes of
oscillations are O(1077), confirming that it is merely a result of the discretization.
Hence, no dispersive wave train occurs as a result of the collision, so it is elastic to
O(e).

Figure (3.2) shows the imaginary and real parts of pe™ for example 1 at t = 7.
The perturbation has been scaled to eliminate the phase e of the waves, so that the
real and imaginary parts represent the coordinate and phase shifts, respectively. It
can been seen from the figure that the real part is anti-symmetric and the imaginary

part is symmetric, corresponding to the sech tanh and sech functions of the Taylor
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Figure 3.2: Real (solid lines) and imaginary parts (dashed lines) of pe~* at t = 7

for example 1

series expansion (2.20). Also, note that the expressions for the two waves have been
scaled by slightly different forms of the phase, as Hirota solitons suffer different
phase shifts, given by (3.15).

The numerical estimates of the higher-order phase and coordinate shifts are ob-
tained by measuring the amplitudes of the symmetric and antisymmetric curves in
figure (3.2). The amplitudes are also measured using values of Az and At double the
values quoted above. Richardson extrapolation is then used to obtain a converged
estimate of the phase and coordinate phase shifts. The numerically obtained phase
shifts are —0.0671 and —1.8667 for the larger and smaller waves, respectively. The
corresponding theoretical predictions from (3.16) are —0.0667 and —1.8667. For the
coordinate shifts the numerical predictions are 0.4000 and —0.7999, while the theo-
retical predictions are 0.4 and —0.8, for the larger and smaller waves, respectively.
In absolute terms the largest error is 4 x 107%. The errors are extremely small,
verifying the theoretical predictions and confirming the accuracy of the numerical
scheme.

Figure (3.3) shows the first-order mass M, versus time ¢, for example 1. Shown
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Figure 3.3: The first-order mass M, for example 1

is the solution of (3.22) with u being the Hirota two-soliton solution. The direct
numerical calculation of M, from the finite-difference solution is not shown as it is
the same as (3.22) to graphical accuracy. The value of M; is zero well before and
after collision. As ¢; = % the first-order mass varies during the collision. It varies
in an oscillatory manner to a minimum value of —3.215614 at time ¢t = 3.58. The
difference between this prediction for mass, and that from the numerical scheme,
is very small, being only 4.16 x 10™* or 0.0129%. Hence the numerical scheme
accurately predicts the first-order mass throughout the collision. Hence mass is not
conserved during the collision but is conserved well before and after collision (as
t — +00).

In summary, it can be seen that the theoretical predictions have been confirmed
for this example. The numerical results show that the collision is asymptotically
elastic to first-order and the numerical estimates for coordinate and phase shifts are

very close to the theoretical predictions.
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3.4 Perturbation theory and solitary wave evolu-
tion

It was found in section 3.2/ that a two-parameter family of higher-order asymptotic
embedded solitons exists if (3.5)) is true. As the higher-order waves are embedded in
the linear wave spectrum, when (3.5) is not satisfied the solitary wave will decay as
radiation is shed. Here soliton perturbation theory is used to determine the details
of the evolving solitary wave, to first-order. An analytical expression is found for

the tail of the solitary wave and comparisons are made with numerical solutions.

3.4.1 The perturbation solution

There are many applications of soliton perturbation theory in the literature, see
Herman [12] for applications to perturbed KdV, NLS and mKdV equations, or Yang
and Kaup [43] for an application to a generalized NLS equation. Also, Yang [41],
outlines the application of the method to the higher-order Hirota equation (3.4).

The Hirota soliton is

2 .
Mo = (—7)%561(“9“0) sechkl, @ =M —y, 0=x—0vt—0, (3.24)

o
where v = v(k? — 3a?), A= —2y(a* + k?)a,

when &, a, 0y and g are free parameters. For the higher-order Hirota equation (3.2))

the perturbed solution can be written as

¢ t
n=e%p(0,t), 0=ux— / vdt — by, ¢ = / Adt — . (3.25)
0 0

By substituting (3.25) in the higher-order Hirota equation (3.2) we obtain

Gr + IND — VP + YPaps + 3ald[* g = —cH (), (3.26)

where H represents the perturbed terms in (3.2). The solution ¢(6,t) can be ex-

panded as a perturbation series

¢ =¢o(0) +epr(0,t)+ ..., (3.27)

which is substituted into (3.20). The soliton parameters k, a, 6y and ¢q all vary

on a slow time scale T' = et. The forms of the slow variations will be chosen to
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eliminate the secular terms in the expansion. But the main focus here is to find the
correction to the solitary wave profile ¢, which allows the tail of the solitary wave
to be determined. The expression for ¢; depends only on the perturbation terms in
H, not on any contributions from the slow time variations.

At O(e) the equation

let + i)‘¢1 + (3O‘|¢0|2 - U)¢1e + lygbleee

+7(0)¢1 + q(0)d7 = —H(¢o), (3.28)
where 70(9) = 304(;53(;509, Q(e) = 30‘¢0¢097
2y

Po = me” ¥ = (E)%/ﬁemg sech k6,

with the initial value ¢;|;—o = 0 is solved. The linear equation (3.28) can be written

in the matrix form (0, + L)wy = H where

I G(0) q(0) - o H= ). a9
g (0) G*(0) ol wy

where G(6) = YOpp9 + (3a|po|? — v)Dp + 7(0) + i),

and  wy = —H(¢o) — ¢or, + iPoPor, + Posbos, -

The technique used to solve (3.28)) is similar to that applied to the perturbed
KdV and NLS equations. The solution is expanded as the set of eigenfunctions for
the linearisation operator. These eigenfunctions are just the squared eigenstates of
the Zakharov-Shabat system with the soliton potential (see Yang [10] and Zakharov
and Shabat [45]).

It is not difficult to show that non-localized (continuous) eigenstates are

— k2 sech? kfei2a—)e

(ktanh k6 + i& — ia)?e?

—(ktanh k@ — i€ + ia)?et™
Wy = ( ¢ A ) , (3.30)
k2 sech? ke~ (2a—€)0
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and the localized (discrete) of L are

_ 2 _eia9
Wy = bo = (—’Y)% ' K sech k0, (3.31)
d)(ﬂ; « e—za@
2 —k tanh k6 + ai)e'@?
Wy = %0, = (—7)% ( ) ' kK sech k0,
b5, a (—rktanh kO — ai)e"?

27 1 (—=3a(1 — kO tanh k) — ir20)e'®?

we = (—)2 . sech k0,
a (—3a(1 — KO tanh xO) + ik20)e
2.1 [ (—2iak?0 + (k* + 3a*)(1 — k0 tanh k6))e™*®
wr = (—)2 ' sech K0,
tak 0 + (k° + 3a — kb tanh k) )e™*
a (2iak?0 + (k2 + 3a?)(1 — KO tanh k))e 0

where

LW4 = LW5 = O,
Lwe = 2ik(k* + 9a*)wy, Lwy = —2k(k* + 9a®)ws, (3.32)

LWZ = 2'19W2, LW3 = —iﬁW3,
and the parameter 1 is defined as
9 =€+ 2a)ky, k =K+ (& —a) (3.33)

Also needed are the continuous eigenfunctions of the adjoint operator L, which are
related to (3.31) and (3.30) by wi' = (—a*,b")T, i =2,..,7, where w; = (a,b)T are
the eigenfunctions in (3.31) and (3.30). Lastly, the inner product

(€0).80)) = [ 16)" g0, (330

[e.9]

needs to be defined.

The only nonzero inner products of the (bounded) eigenstates and adjoint (bounded)
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eigenstates are

12~

<W4>W6T> = Fa = —<W6,W4T>7
(ws, wg') = —%yi(li2 + 3a%) = —(we, w5 '),
(Wa, Wr') = —4—7(/4;2 +3a%) = —(wr, wy'),
(ws, wr') = —Z%ia(,‘-@2 +3a%) = —(wr, ws'), (3.35)

(w2 (0;€), w2 (0;€)) = 2mkis(€ =€),
(wa(0;€), ws'(0;¢)) = —2mkio (& — €),

where ¢ is 0-Dirac function. Let us start by expanding the first-order solitary wave

solution of (3.29) ,

Wy = /Oo [91(t; &) w2 + ga(t; &) wa]dE

oo

+h1(t)W4 + hg (t)W5 + h3<t>W6 + ]’L4(t)W7, (336)
and also right hand site of (3.29),
H= / [T1(§)wa + Ta(§)ws]dE + prwa + paws + p3we + pawr, (3.37)

in the closure of L’s eigenstates. Then it is not difficult to show that the coefficients
p;, ['1(€) and I'y(§) can be determined by applying inner product of eigenfunctions
of LT on (3.37) and then using orthogonality relations (3.35):

o= (H, w ") (ws, we') — (H, wg')(ws, wr')
(Wa, WrT)(ws, WeT) — (Wy, weT) (W5, wrl)’
Dy — (H,wo')(wq, we') — (H, we') (wa, wrl)
(Ws, Wrl)(Wy, WeT) — (W5, WeT)(Wy, wrl)’
B (H, ws") (wr, wal) — (H, wa)(wr, ws)
P = Tavg, wsl) (wr, wal) — (wa, wal) (wr, ws ) (338)
oy = (H, ws") (we, wal) — (H, wal) (we, wsT)
(Wr, wsT)(We, Wal) — (Wr, wyl)(we, wsT)’
W2 ;W3T
rg) - B2l pyg -

Substituting (3.30) and (3.37) in (3.29) leads us to the governing differential equa-
tions for coefficients h;, ¢1(£;€) and g2(¢;€)

hgt = P3, h4t = P4, hlt + 2il‘€(l‘€2 + 9@2)h3 = P1, hgt — 2/6(/62 + 9(1,2)h4 = P2, (339)
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with the initial conditions (because of (3.28))
hi(t)]i=0 = ha(t)li=0 = hs(t)]i=0 = ha(t)[i=0 = 0. (3.40)

In (3.30) the localized eigenstates’ coeflicients, h;, are secular and therefore should

be suppressed, leading to the secularity conditions
H,wy') = (H,ws") = (H,we') = (H, ws") = 0. (3.41)

Under above assumption the relations (3.38) and the equations (3.39)-(3.40) will

give
pi(t) = pa(t) = p3(t) = pa(t) = ha(t) = ho(t) = ha(t) = ha(t) =0, ¢t =0.

Thus, the e-order correction (3.30) can be written as an integral of L’s continues
eigenstates. In view of the secularity conditions (3.41), with associated initial con-
ditions
V=0 = ¥(K* = 30%), Alry=0 = —27(x* + a*)a, wolr,=0 = 0,00[r,=0 = 0, (3.42)
we obtain the effects of the correction terms on the soliton parameters as:
v = y(k*—3a%), A = —2v(k* + a?)a,
2,271 4 2 2 2
0 = 7 (—)2[bcea” + (2co — 4cg — 2¢4 + 365 + 10¢s) Kk a
o
1 4
+4—5(3201 + 10ce — 68c3 — 2¢4 — 2¢5 + 105¢6) K™ et (3.43)
2 8
0o = a72(£)%[—406a4 — §C5li2(l2 +

1
4—5,)(12&1 — 192¢3 — 48¢ — 88c5 + 420cq) ket
The quantity I'1(§) (i.e. T'2(€) =T1(§)), found using the residue theorem, is

360°T (&) = 1'72(2—”)% (4567 (A1 + Az) — K*(15A45 + 9A4) (€ — a)

§—a)

+5KA1(€ — a)® — Ay(€ — a)?] sech(™ ), (3.44)
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where the various parameters are

Ay = (—4c; + 2cy + 20c3 + 8¢y — 120c)K°a,

Ay = (—2cy + 4cs + 2¢4 + 205 — 20c6)K3a®
+(—2¢y — 12¢3 — 64 + 2¢5 + 100c)K°a,

Ay = (6cy — 12c5 — 6c4 + 25 + 60c) Kt a
+(6cg + 4es + 2¢4 + 2¢5 — 60c6)K°,

A4 = (401 — 1002 — 1603 — 464 — 465 + 120C6)HJ6.

And similar to (3.39) and (3.40), the evolution equations for continues eigen-

functions’ coefficients in expansion (3.30) are found as

g1, + g1 = T1(§), g2, — iga = I'1(§), (3.45)

when ¢1(0) = g2(0) = 0. By a simple computation one obtains

g=——5(1- e ), g2 = —gi. (3.46)

And hence, the first-order solution (3.30) has the form

Wy = /OO (g1W2 + giw3)dE. (3.47)

o0

Rearranging (3.47) gives

$1(0,1) = /_ h irl(g)(l_v—‘fm)ﬁ sech? ke~ 1672009 g¢ (3.48)

o0

- / h iFl(g)#(mtanh KO — (€ — a))?elde,

o0

as an integral expression for the first-order correction to the solitary wave profile.
It is easy to show that (3.48) satisfies in (3.28)). Note that for integrable coefficients
(3.3), the first-order solution ¢, in (3.48) is zero and therefore (3.27) becomes (3.8).

We also note that
(1 _ eiiﬁt)
lim

lim 3 = Fit, (3.49)

so the integrand of (3.48)) is singular at ¥ = 0 (£ = —2a) in the limit of large time,

as t — oo.



3.4. Perturbation theory and solitary wave evolution 50

3.4.2 The solitary wave tail

As radiation is shed from the solitary wave, it propagates in the negative x-direction,
according to ¢, = —3k?, the group velocity of the linear KdV equation. Hence for
right-moving waves, k2 > 3a?, the radiation forms a tail behind the evolving solitary
wave. For left-moving waves, 3a% > x?, and the radiation and the wave move in the
same direction, with the radiation forming a front ahead of the solitary wave. For
convenience we call the region, § < —1, the solitary wave tail for both right and
left-moving solitary waves. The asymptotic analysis considered here is similar to
that of Herman [12] (see his Appendix B) and Pelinovsky and Yang [33] (see their
section 4).

The Riemann-Lebesgue lemma implies that the integral (3.48) will decay to zero,
as t — 00, except near any singular points. Hence for large time, the leading-order
behaviour of (3.48) can be found by considering contributions near { = —2a. We
substitute the transformation £ = —2a + z/t into (3.48) and obtain

(k(£1) + 13a)?
(k2 + 9a?)

[e'¢) eich Sy eiz(v(k2+9a2)+0p)
/ dZ—/ dz ) |0‘>>17 t—>OO,
—o ? —0 <

where the + in the expression refers to the regions well in front (+) and behind (—)

¢1(0,t) ~ ie 2T (—2a) (3.50)

the solitary wave. Also we let 6/t = ¢,, an O(1) constant. Also, the integral

00 eizp
/ . dz = imsgn(p), (3.51)

is needed to evaluate (3.50). Well in front of the soliton, ¢, > 0, so both integrals
within (3.50) have the same value. So the cancellation of the two integrals implies
¢ ~ 0 well ahead of the solitary wave. This is physically consistent with the fact
that the group velocity of the linear radiation is negative.

Behind the wave we choose —y(k? + 9a?) < ¢, < 0. Then the integrals within

(3.50) have the opposite sign and

, 1 2
¢1 ~ he %% swhere h = giaw(/@2 + a2)7(1)% (3.52)
o

— 3 3
(2¢1 — 33 — 2¢4 — 205 + 1006)'% i sech( e
K 2K

) 0<<_17 t )
3ia ) e
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Figure 3.4: tail amplitude |A| versus wavenumber a and comparison with numerical

simulations

is obtained as the steady-state tail of the solitary wave at first-order. The tail (3.52)
is qualitatively similar to the expression found by Yang [41] for the tail of an evolving
solitary wave governed by (3.4). For the higher-order Hirota equation (3.4) it was
found that a one-parameter family of embedded solitons occurred for fixed values of
the wavenumber a.

Figure (3.4) shows the tail amplitude |h| versus wavenumber a for x = 0.5 (lower
curve), k = 0.75 and k = 1 (upper curve). The other parameters are o = 2, v = 1,
¢y = 1 with the other ¢; = 0. For a given value of the solitary wave amplitude
(A = & for these parameter choices) the tail amplitude is zero at wavenumber a = 0,
increases to a maximum, before decreasing to zero as a — co. When a = 0 the Hirota
soliton is the real-valued mKdV soliton. In this limit h = 0 as the higher-order
mKdV equation has localised solitary wave solutions for all choices of higher-order
coefficients. It can be also seen from the figure that the tail amplitude increases
as the wave amplitude increases. Moreover, the numerical simulations for right-
moving waves have been carried out and the comparison between the numerical tail

amplitudes and (3.52) are shown in the figure, see [3.4.3 for details of the numerical
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scheme.

For (3.2) the tail (3.52)) is zero if (3.5) is satisfied and a two-parameter family
of asymptotic embedded solitons occurs. Note that this two-parameter family only
exists up to first-order, as the second-order tail, at O(¢?), may be non-zero. The tail
amplitude (3.52) is also zero if a = 0, hence a one-parameter family of embedded
solitons (the real mKdV soliton family) also exists. This family are part of the
one-parameter family of embedded solitons found by Yang [41].

Also noteworthy is the fact that the condition (3.5) from the asymptotic trans-
formation is the condition in (3.52)) for the tail amplitude to be zero. This is the
same two-parameter family of embedded solitons identified using the asymptotic
transformation, so there is agreement between the two analytical methods.

The leading-order transient terms in the tail region will occur due to contri-

butions from (3.48) at points of stationary phase. The relevant phase of (3.48) is

1 =9+ Ecp = (€ + 2a)(K* + (€ — a)?) + &cp, (3.53)
and points of stationary phase, which occur when % =0, are
+ 1 Cp
& =+/—=(k2—3a2+ —). (3.54)
3 g
Using the method of stationary phase gives
oiap | s 1R —a)]? £y i[(9(e)+eE «
(bl ~ he " 4 qrr2 s T (55 )61[( (€5)+65 Czo)t:':zl]7 (355)

(3t|€£])29(&2)
<< —1, t— o0.

The tail (3.55) consists of the steady-state result (3.52)) plus the two leading order
transient terms, which are contributions from the points of stationary phase (one
term for each of the roots (3.54)). The points of stationary phase (3.54) only exist
when ¢, < v(3a* — k?). For left-moving waves 3a® > k*, and the slowly decaying
transient terms, of O(t’%), occur along the whole of the tail (for all ¢, < 0). For
right-moving waves x* > 3a?, and the O(t_%) transient terms only occur on the
far edge of the tail, between —v(x? + 9a®) < ¢, < —v(k* — 3a?). For the near

tail of a right moving wave the transient terms decay more quickly than those in
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Figure 3.5: The first-order correction |¢;| versus 6 at t = 70 for a right-moving wave.
Shown is the perturbation solution (3.48) (solid curve) and numerical solution of

(3.2) (dashed curve)

(3.55) (presumably they are O(t7!)) and the flat steady-state tail will be quickly

approached.
The group velocity of linear radiation is ¢, = —3vk?, while the soliton velocity
is v = v(k? — 3a?). For tails with wavenumber k = —2a, the difference between the

soliton velocity and the group velocity of shed radiation, v —c¢, = v(k*+9a?), which
is the length of the solitary wave tail. Hence the tail length has a clear physical

meaning.

3.4.3 Numerical solutions and discussion

Figure (3.5) shows the first-order correction |¢;| versus 6 at time ¢ = 70. The
parameters are Kk = 1, a = 0.1, v = 1, « = 2, ¢ = 0.1, ¢y = 1 and all the
other ¢; = 0. The perturbation solution (3.48), was solved numerically using a
high-order quadrature scheme. The higher-order Hirota equation (3.2) was solved
numerically using an implicit finite-difference scheme. The initial condition used in

the numerical scheme was a Hirota soliton. The quantity ¢~!|n| is plotted from the
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Figure 3.6: The first-order correction |¢;| versus # at ¢t = 150 for a left-moving wave.
Shown is the perturbation solution (3.48) (solid curve) and numerical solution of

(3.2) (dashed curve)

numerical solution as it allows a comparison with the perturbation solution in the
tail region.

As k? > 3a? this is an example of a right-moving wave. There is an excellent
comparison between the numerical and perturbation solutions. The figure shows
the surface elevation behind the evolving solitary wave with the flat steady-state
tail clearly visible. The amplitude of this tail, as predicted by the perturbation
solution (3.48)), is |¢1] = 0.1140, which is the same as the analytical expression
(3.50) for the steady-state tail amplitude. The numerical results show that the tail
has amplitude |h| = 0.1185, a difference of about 4%.

The figure shows that the tail amplitude drops from its steady-state value, to
near zero at # ~ —75. The asymptotic theory implies that the length of the solitary
wave tail is (k? 4+ 9a®)t = 76.3, which is close to numerical tail length, of about 80.
The tail will be flat for § > —~(k? —3a?)t = —67.9, as no slowly-decaying transients
exist on the near tail. There is an oscillation right at the end of the tail, so again

the asymptotic result is consistent with the perturbation and numerical solutions.
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Figure (3.0) shows the first-order correction |¢;| versus 6 at time ¢t = 150. The
parameters are the same as for figure (3.5), except that a = 0.8. Shown are the
perturbation solution (3.48) and the quantity e¢~!|n| from the numerical solution of
(3.2).

The figure shows a portion of the region (=130 < 6 < —80) in front of the
left-moving solitary wave. The comparison between the numerical and perturba-
tion solutions is very good, with some slight differences in phase and amplitude
noticeable. Also the asymptotic expression (3.55) is the same as the perturbation
solution (3.48) over this region of the tail, confirming the validity of the asymptotic
expression (3.55).

In contrast to the flat tail for the right-moving wave, here the tail is highly os-
cillatory. The superposition of the steady-state tail wavelength (of A = 7/a ~ 3.93)
with the two different transient wavelengths leads to a classical beating-like phenom-
ena where the tail has multiple peaks and troughs of higher and lower amplitudes.
The steady-state tail amplitude is 7.60 x 1072, An average taken of the numerical
solution, over the range —200 < # < —50, is 7.74 x 1072, which is within 2% of the
analytical steady-state tail amplitude. The maximum amplitude (crest to trough) of
the tail oscillations is 4.56 x 1072 at ¢ = 150. As the oscillations decay like O(t2),
a relatively flat tail will not be reached until ¢ = O(10°%), when the amplitude of the
oscillations will have decayed to less than 1% of this value. Physically, the occur-
rence of slowly decaying transients on the tail of the left-moving wave, is related to
the fact the wave is moving in the same direction as its shed linear radiation, while
the right-moving wave moves in the opposite direction.

In summary the perturbation theory results, both direct numerical solutions of
(3.48) and the further asymptotic results derived from (3.48)) are in good agreement
with each other and numerical solutions of the governing pde (3.2) for examples of

right and left-moving solitary waves.
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3.5 Conclusion

Firstly, an asymptotic transformation has been applied to the higher-order Hirota
equation (3.2) when (3.5) is satisfied. Applied to a single soliton, it enables a two-
parameter family of higher-order asymptotic embedded solitons to be identified.
For a two-soliton collision it enables the details of the higher-order collision to be
determined. The higher-order collision is found to be elastic and the higher-order
coordinate and phase shifts, after interaction of the solitary waves, were also found.

Secondly, soliton perturbation theory has been applied to (3.2) with an inte-
gral expression found for the first-order correction to the solitary wave profile. An
asymptotic expansion, valid for large time, allows a simple analytical expression to
be found for the solitary wave tail. The theoretical results clearly explain the dif-
ferences which occur for right and left-moving solitary waves. A flat tail occurs for
the right-moving case while the tail for the left-moving wave is highly oscillatory,
due to slowly decaying transient terms.

The solitary wave tail is zero when (3.0) is satisfied. Hence the two-parameter
family of higher-order asymptotic embedded solitons can be identified using two dif-
ferent analytical methods, the asymptotic transformation and soliton perturbation
theory. The two analytical methods provide a useful cross-validation of the theoret-
ical results. Moreover, it illustrates the usefulness of the asymptotic transformation

in providing theoretical results in a simple manner.



Chapter 4

Gray soliton interaction and
evolution for a higher-order Hirota

equation

In contrast to the focusing Hirota equation (3.1), the defocusing Hirota equation

has dark and gray soliton solutions which are stable on a background of periodic
waves of constant amplitude. In this chapter, gray solitary wave interaction and
evolution for a higher-order defocusing Hirota equation is examined. The higher-
order Hirota equation is asymptotically transformed to a higher-order member of
the Hirota hierarchy of integrable equations, if the higher-order coefficients satisfy
an algebraic relationship. The transformation is used to derive higher-order one and
two-soliton solutions. It is shown that the interaction is asymptotically elastic and
analytical expressions for the higher-order corrections to the coordinate shifts, which
occur due to the interaction, are derived. The asymptotic theory and direct analysis
identify a three-parameter and a two-parameter family of higher-order embedded
gray solitary waves. Soliton perturbation theory is used to determine the detailed
behavior of an evolving higher-order gray Hirota solitary wave; an integral expression
for the first-order correction to the wave is found and analytical expressions for the

solitary wave tail are derived. A subtle and complex picture of the development of

57



4.1. Introduction 58

solitary wave tails emerges. For solitary wave interaction strong agreement is found
between the prediction of the asymptotic transformation and numerical solutions.
For the solitary wave evolution strong agreement is found between the theoretical
predictions of the perturbation theory, the results of the asymptotic transformation

of (4.1) and also numerical solutions.

4.1 Introduction

Dark solitons in the normal dispersive regimes, which appear as a localized inten-
sity dip on a stable or travelling wave background, have been extensively studied
by several authors. Kivshar and Luther-Davies [19] presents a historical overview
of the optical dark solitons and the physical origins of the defocusing cubic non-
linear Schrodinger (NLS) equation. By analyzing the modulational instability they
discussed the differences between bright and dark solitons and showed that small
excitations of the nonzero background wave are absolutely stable for the defocusing
NLS equation and unstable for focusing case. The stability considerations apply to
the focusing and defocusing Hirota equations also, see section 4.4.

Li et. al. [24], by applying inverse scattering transform (IST) method, and Ma-
halingam and Porsezian [25], by using the Painlevé analysis and the Hirota bi-
linearization method constructed a generalized dark solitary wave solution of the

higher-order nonlinear Schrédinger (NLS) equation

e+ i(a1ee + a2|n*n) + @3nzs + a(|0)*n)e + asn(|n|?). = 0, (4.2)

where the real coefficients, the «;, are determined by the physical model under
consideration. i et. al. [24] also showed that the absolute value (|5|) of the dark
two-soliton solution of (4.2)) can be considered as the superposition of the absolute
values of two interacting dark one-soliton solutions; the only effects of the collision
are the coordinate shifts that the solitons suffer.

The defocusing Hirota equation (4.1) considered in this chapter, has the form
(4.2) with a1 = g = 0, ag = —1, and oy = —a5 = 6. These restrictions are called
the Hirota conditions, and result in (4.2) being integrable. The defocusing Hirota

equation has a number of physical applications, such as ultrashort light pulses in
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the subpicosecond regime, whose duration is shorter than 100 femtoseconds, see
Li et. al. [24] and Mahalingam and Porsezian [25]. The defocusing Hirota equation
also is part of the NLS hierarchy of integrable equations, and its soliton solution has
a very similar form to the defocusing NLS soliton. This is similar to the relation
between the focusing Hirota and NLS equations, see Li et. al. [24].

The higher-order defocusing Hirota equation

M+ 6[0|* N — Nuwa + €(cin]* Nz + 20 *)e + 30" (M) (4.3)

+C477*nznxx + 6577775077::;1: + 6677590) = 07 €K 17

is considered in this chapter. When the higher-order coefficients are given by

1 1 1 1
(01762703764705766) = (17__ —_—, ==

373 3 05) (44)
then (4.3) is a member of the Hirota integrable hierarchy. The integrable hierarchy
is obtained using the Lax hierarchy of the Hirota equations. Hence (4.3) represents
a generalization of a member of the integrable hierarchy (4.4).

The pioneering works of Chen et. al. [3] on soliton perturbation theory for the
dark soliton of the NLS equation overcame the difficulties caused by divergency
of the perturbations to the soliton parameters. By applying the IST method, the
non-localized (continuous) eigenfunction of the linearization operator based on the
squared Jost solution, and its adjoint state, were found and, by using an appropri-
ate inner product in a manner similar to bright solitons (3.34) the orthogonality
relationships between the non-localized and localized eigenstates and their adjoint
counterparts were established. Then, as an application of Jordan’s lemma, it was
proved that the first-order correction to the solitary wave profile can be expanded
by the squared Jost solutions. Using the similarity between the first Lax pair of
the defocusing Hirota and NLS equations, the process can be extended to (4.3)), for
more details, see section 4.4 and Appendix (Al

In this chapter, we examine solitary wave interaction and evolution for the higher-
order Hirota equation (4.3). In section 4.2 the Hirota bilinearization method is
modified to find the single dark soliton solution of the defocusing Hirota equation

(4.1)). In section 4.3l a nonlocal asymptotic transformation is used to transform (4.3))
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to the integrable member of the Hirota hierarchy (4.4). Note that the asymptotic

transformation for the higher-order Hirota equation (4.3)) is valid if
c1 + 3c3 + 2¢4 + 2¢5 + 20¢s = 0, (4.5)

is satisfied. As for the bright solitary wave interaction discussed in chapter 3, the
interaction is elastic if the algebraic relationship is satisfied, but the relationship
(4.5) is different from that found for the higher-order focusing Hirota equation, see
(3.3). In section 4.3 higher-order single and two-soliton solutions are generated
explicitly, using the transformation.The higher-order two-soliton collision, is found
to be asymptotically elastic for the special case (4.5) and analytical expressions
are derived for the higher-order coordinate shifts, due to the collision. In section
4.3.3, numerical simulations of elastic higher-order gray solitary wave collisions are
presented, with the theoretical and numerical values for the higher-order coordinate
shifts in close agreement.

The bright Hirota soliton is embedded, as its frequency is embedded in the lin-
ear wave spectrum, see the discussion on p.32 in chapter (3). The gray Hirota
solitons considered here are similarly embedded in the linear wave spectrum, so the
gray Hirota solitons represent a three parameter family of embedded solitons. The
asymptotic transformation and direct solutions show that a three parameter family
of higher-order asymptotic embedded gray solutions exists, when (4.5) is satisfied.
Also, an additional two-parameter family of higher-order asymptotic embedded so-
lutions is identified.

In section 4.4, soliton perturbation theory is used to derive the details of an
evolving gray solitary wave at first-order. An integral expression for the first-order
correction to the solitary wave and explicit expressions for tail amplitudes, for dif-
ferent values of the background wave number, are found. The links between the
perturbation theory and the asymptotic transformation are explored. Also, an ex-
cellent comparison is found between the theoretical and numerical solutions for the

first-order solitary wave correction.
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4.2 The gray one-soliton solution

Here, by using Hirota bilinearization method, the single soliton solution for the

Hirota equation (4.1) is found. We consider the transformation

siopp G(T, 1)
_ ,i0(z—bt) )
e o) (4.6)

where G(z,t) is a complex valued function and F'(x,t) is a real valued function and
J is a free parameter and b shall be determined. By using the transformation (4.6)

in (4.1)), the bilinearized relations for G and F

{D; + (26* + b)D, — 3i6 D> — D3}G.F = 0,
{3D% + (6> — b)}F.F = —6|G|?, (4.7)

are found, where the Hirota bilinear operator is defined as

0 0 0 0

DIDfg= (5 = 50" = 5 T gt s (48)

The functions G and F' are defined by
G=go(1+Bg) and F=1+pfi. (4.9)
By substituting (4.9) in (4.7) and collecting S-orders, at 39, g, satisfies
{D; + (26* + b)D, — 3i6 D> — D3}go.1 =0, |go|* = é(b —6%), (4.10)

which can be solved as

— ) 2
go = M where b= 6,&2 + 52, ,uz = a? + ’{27 (4'11)

o)
and a and k are two free parameters. The coefficients of 3 and 32 lead to

{go(D? — 26D, — bD, — 3i6D? — D,) + go,(—3D? + 26> + b + 6i0D,,)
+90,. (3D — 3i0) — (D — D)go.1}(fi-1 + 1.g1) =0,
{3D; + (6% = b)} fr.1 = =3|g0* (91 + 97), (4.12)
{90(D2 — 26D, — bD,, — 3i6D2 — D;) + go,(—3D2 + 26° + b + 6i6 D,,)
+90,, (3D, — 3i6) — (D2 — Dy)go.1} f1.91 = 0,

{3D2 + (6> = b)} f1.f1 = —6|go[*|g1*,
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which can be solved by assuming

a—+ ik a4+ 1k

g1 = - fl - —‘BQH(J:—’Ut),
a—ik a— ik
where v = 30 + 6a® — 66a + 2x7. (4.13)
Hence,
n= a- mei‘p(a +iktanh k), b= 6u* + 67,
i
where ¢ =0(z —bt) + o, 0=z — vt — b, (4.14)

is the Hirota gray soliton solution. Note that (4.14) can be also derived using the
IST approach, see Li et. al. [24]. This is a gray soliton solution with three free
parameters (a, K, §). a is the minimum intensity of the wave, § is the background
wave number and k is the wavenumber of the soliton envelope. The boundary values

for (4.14) are

(a_i’%)2 ip ip
n— -—>¢% as x— —oo, n— pe¥, as r — oo,

1

hence the amplitude of the background travelling wave is p.

4.3 The asymptotic theory

Consider the transformation

€
n=1+ 6(202 — ¢ — ca+ c5) [P
—1—2—64(—01 —4eg — 3+ 204 — 4es) s (4.15)

T=1— 2—64(01 + 2¢o + 3+ 2¢5)x,

E=x—ecr [/ (|2 (p, t)|* — p?)dp + pPx — 3u*t — 36%pPt|, e< 1,

1
where c¢; = E(Cl — 2¢o + c3 + 4eqg + 2¢5).

This form of transformation is appropriate for solutions which approach a mean
level of p far up and downstream, such as the solitary wave solutions considered
here. Note that when p = 0, this transformation is qualitatively similar to that one

was used in chapter 3, for the higher-order focusing Hirota equation.



4.3. The asymptotic theory 63

When the transformation (4.15) is substituted into (4.3) and terms of O(e?)
are neglected, then ¢ (z,t) is a solution of the higher-order member of the Hirota

hierarchy of integrable equations

/

e+ 690 — heee + € [1] b — %(ililwalQ)g - %w*(wiﬂ&s)a

€ €
* 4+ = 4.1
3 P etbee 30¢£££££ 0, (4.16)

3
where € = 5(301 + 10cy — c3 — 4y + 6c5) < 1,

if the algebraic relationship (4.5) is satisfied. The integrability of (4.16) can be
shown in a similar manner to Kano [17]. In fact, the conserved quantity IQ[t),)*]
for the focusing Hirota (see his Appendix) can be modified to the conserved quantity
for (4.1) by

19, ] = / L0032 + 100et™ i + SUtets + SUR o + deerieede,

and hence the related Kg(1),1*) will be the higher-order terms in (4.16)).

4.3.1 A higher-order gray one-soliton solution

The higher-order solitary wave solution of (4.3) can be found by direct substitution,

as

n = - m(a + ik tanh k0)e™? + (4.17)
i

a— 1K

€

(By + iB; tanh k6 4+ By tanh® kf 4 i B tanh® k6)e™,

where 0 = z+ecrk —s[l+ %(cl + 4y + 3 — 2¢4 + 2c5)a?
€
3
¢ = 0(x+ecrk —s[1+ %;ﬁ(cl + 4eg + 3 — 2¢4 + 2¢5)

+§5(5 —2a)(c1 + 2cy + c3 + 2¢5) + = (c2 — c4)K?] — vpt,

+i(61 + 202 + C3 + 205)(52] — bht) -+ @Yo,
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and the various parameters are

1 1
B, = g(cl + ¢ + ¢35+ ¢4 + 2¢5)K0a — E(Cl +co+c3+cy+ 05)525
1 1
+6(Cl — Cgt+C3+ 3C4 + 305):“&3 + 6(—C1 - 2C2 — 2C3 +c4 — C5)lia2,
1 1
B2 = 6(202 —C3 —cC4 + 05)/12a — 6(01 +cy+c3t+cq+ 305)5'%2)

1
Bg = éli3<—01 + Cco — 2C3 - 204 - 265),
with the velocity v, and parameter by, given by

vp = 36°+6a” — 6a + 2K
+(cra* + %(cl +2¢4 — 2c3 4 2¢5)k* + (3cy — 5 — 63 — 3cq)6%a?
+411(_Cl —2¢4 — 3c3 — 2¢5)0" + %(364 +¢1 — ¢ + 3¢5 + 5ez)ad®
+(cq — €1 — 5 + des — 262)ad — 2e3K%a® + (2¢3 — 2¢5)ak’o
(=23 + o + 5 — c4)K%6% + (12a — 60) By e, (4.18)
by = 6p*+ 62
+(cra® + (2¢4 — 2¢3 + ¢ + 2¢5)K* + (—cq + ¢ — 2¢3 — ¢5)6%a”
—i—%(—cl — 3c3 — 2¢5 — 2¢4)6" + (23 + 2¢5 + 2¢1 + 2¢4 + 2¢3)ak?d
—6c3k?a® + 12aBy + (—c1 — 2¢4 — 3cg — 2¢5)K20%)e.
The parameter By is arbitrary and represents a higher-order correction to the back-
ground wave.
For (4.17)), the first-order corrections in the background are not zero. This form
of solution can be rescaled back to a wave with a zero higher-order mean-level with

an suitable choice for By, if required. The explicit form of By for this case is
By=—Bs— 2(B, + By), for a#0. (4.19)
a

The higher-order gray one-soliton solution (4.17) can only be derived if the algebraic

relationship (4.5)) is satisfied or
2K% 4 3Kk — 62 = 0, (4.20)

is satisfied. The algebraic relationship (4.5)) is the condition for the asymptotic trans-

formation to apply and implies that a three-parameter family (4.17) of higher-order
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asymptotic embedded solitons exists. The condition (4.20)) represents a relationship
between the three free parameters. Physically (4.20) implies that the soliton velocity
is the same as the phase velocity of the background wave, i.e. v = b from (4.14) and
implies an additional two-parameter family of embedded asymptotic soliton exists.

The single soliton solution of the integrable higher-order Hirota equation (4.16])
is

a— 1K

V= ¢"?(a + ix tanh K0), (4.21)
0=¢6—s—vr, p=08&—0br—3s)+ o,
where b= 6p® 4+ 6% + (u* + %54 + 252,u2)6/, p? = a* + K%
v =3a>+2k*+3(a—0)>
2

2 1 2 1 2 /
—1—(5(52&2 + 864 + §a2n2 — 563a + 354 +a* —2a%5 — ga/izé +2a%6%)e

and 0, a and x > 0 are free parameters. The single soliton solution (4.21) is (4.14)
with the higher-order corrections to the velocity v and the parameter 0. This is
similar to NLS soliton (2.9) and Hirota bright soliton (3.8)) for higher-order integrable
equations.

The soliton solution (4.21)) is substituted into (4.15). The phases 6 and ¢ are im-
plicit. They can be made explicit by expanding in a Taylor series. Also, parameters
0, k and a are rescaled by

§=0"[1— ée(a*2 + 5*2)(01 +4co 4 c3 — 2¢4 + 2¢5)

1
—ﬂ(cl + 262 + C3 + 2C5)65*2],

1
k=rK[l— 6(01 +4dey + 3 — 2¢4 + 205)661*2
1 1
—geé*(é* —2a")(er + 2¢o + e3+ 2¢5) — g(CQ — cy)er™], (4.22)
1
a=a"[l— 6(01 + 4ey + 5 — 2¢4 + 2¢5)ea”
1

1
—geé*(é* —2a")(c1 + 2¢9 + c3 + 2¢5) — 5(02 - c4)61<*2],

which, after dropping the stars and using the algebraic relation (4.5) gives the di-
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rectly derived higher-order solitary wave (4.17)), if the choice

1 1
By = E(_Cl —Cy — 3 — ¢4 —c3)0%a + E(cl + 4y + 3 — 2¢4 + 4cs) 0K
1 1
—|—Z(01 + 2¢o + ¢35 + 2c5)da* + §(—02 + cy)Ka
1 3
_I—E(_Cl — 262 — 263 +cy — C5)(I ,

is used in (4.17). This represents the appropriate correction to the background
travelling wave that the asymptotic transformation generates. Moreover, the higher-
order solitary wave has been shifted from £ = s at 7 =0 to

x = —ecrk + s[1 + é(cl + 4y + c3 — 2¢4 + 2c5)€a’ (4.23)

1 1
+§65(5 — 2&) (Cl —+ 2C2 + c3 + 205) —+ §(C2 — C4)€/‘€2]

at t = 0.

4.3.2 The higher-order gray two-soliton solution

In this section the dark two-soliton solution of the higher-order Hirota equation
(4.3) is derived for the higher-order coefficients satisfied in (4.5). The explicit gray

two-soliton solution for the integrable Hirota hierarchy (4.4) is

Q=p[l+ ‘Ij(g’T)]ew? where (¢, 7) =

(¢, 7)
Ap(Pr (&, 7) + ¢2(&, 7) — 2p) = 4i(V + 1) (91(E, 7) — p)(P2(&, 7) — ),
O(E,T) =4 +.(V +0)*(61(&, ) — ) (2(6,7) — p), (4.24)

a; — 1K,
1
The various other parameters are

1., 2 ,
=€ =br), b= 6"+ 8" + (' + 550" + S0%)e,

CL1+CL2
)
K1+ Ko

¥
= Ay + k] = g+ R,
V 9j:£—5j—vj7'+90j,

2 1 2
v; = 36° + 6a’ + 2k7 — 66a; + (§ 654 + g@?/’i?
2

1 2 /
—553% + 5/{? + a? — 2(1;-’5 — gaj/{§5 + 2a§52)e , j=1,2,

5%? +
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where 0, aq, as, k1 and kg are free real constants, see Li et. al. [24].

The velocity of the jth soliton is v; and its position is s; at 7 = 0. When € =0, it
becomes the Hirota gray two-soliton solution. The higher order terms only affect the
velocities v; and the parameter b. This is similar to the bright two-soliton solution
of the integrable higher-order Hirota equation (3.13), for which only the velocities
have a correction term at O(e).

We assume that the soliton with minimum intensity as is initially well to the left
of the soliton with minimum intensity a;(< az) and § < (a1 + az). Hence before
interaction the wave on the left (with minimum intensity as) will overtake the other
wave after interaction. As figure [4.1 shows, well before and after collision the gray
two soliton solution (4.24) is just the sum of two well separated solitons; hence
the collision is elastic with no radiation being shed. However, the gray two-soliton

solution (4.24) can be written as

’Q’n = ’w1<€77—)‘n + Wz(fﬁ)‘n - Iun’ n= 17 27 (425)

well before and after collision, where the single soliton 9, (j = 1,2) have the form
(4.21)). The only effects of the collision are coordinate shifts that the solitons suffer,

these are

Iny In x 9
E—_ h =1—(V 1
o Tae VX1 (VD

R1Rk2
5
o)

(4.26)

Substituting the two soliton solution (4.24)) in the asymptotic transformation (4.15))

gives the higher-order two-soliton solution for (4.3), but due to the complicated form
of (4.24)), the higher-order two-soliton solution is investigated well before and after
interaction. Expression (4.25) describes the integrable Hirota two-soliton solution
(4.24) before and after interaction; using relation (4.25) , for example for |n|?, in
(4.15) gives

€ €
[n* = |771|2+|772|2—#2_§(202—C3—C4+65)N4_E(01+402+C3_204+4C5)52“2' (4.27)

Here the single higher-order solitons 7, and 7o have the form (4.17) but the trans-

formation (4.15) modifies the coordinate shifts as

—2€Crky,  2€C7Ky, (4.28)
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Coordinate

Figure 4.1: Gray soliton interaction for Hirota (4.1)) equation

for m; and 7, respectively. The coordinate shifts (4.28) are due to the integration
in the transformation over the trailing wave, which involves

/ (.t — i)dp. (4.29)

o0
Also, there is some contribution from the rescalings (4.22), to the higher-order co-

ordinate shifts. Combining these contributions gives

! ]
X 2ekoc7 + erglcg, B O ety ¢y — ey Acs, (4.30)
2/‘111 2,%2
where A = z (a1 — as)(ars — a2“1)(2CL21 ™ 22% — 35),
12 (a1K1 — agka)? + (KT — K3)?

cg = ¢ + 2¢3 + ¢3 + 2cs,

as the higher-order coordinate shifts of the slower and faster gray solitary waves,
respectively. Note that in the integrable case where the higher-order coefficients

satisfy (4.5)), then ¢; = cg = 0, and the higher-order shifts are all zero.
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4.3.3 Numerical interaction of higher-order gray solitary

waves

In section 4.3/ the effects of the interaction of higher-order gray solitary waves were
identified. The main effect of the collision is the higher-order coordinate shifts,
when the relationship (4.0) is satisfied. Here numerical interaction of the higher-
order solitary wave solutions of (4.3) are undertaken and the coordinate shifts found
in (4.30) are numerically verified. The numerical scheme is a hybrid Runge-Kutta
finite-difference scheme with fourth-order accuracy in space and time, see Appendix
Bl The spatial and temporal grid spacings used are Az = 8x1072 and At = 1x107%.
The initial higher-order solitary waves are in the form (4.17). The soliton parameters
are 0 = 0, k1 = ag = \/Tg and a1 = Ky = %, for two solitons with initial positions
s1 = —10 and sy = —25, and the perturbation parameter is € = 0.1. A constant
phase shift ¢ is applied to make the background wave in front of the trailing wave
match the background wave behind the leading wave. The O(1) coordinate shifts
(4.20) of Hirota solitons, for these parameter values, are —1.160 and 2.010 for the
slower wave (k; = ‘/73) and the faster wave (k2 = 3), respectively. Also note that
the parameter By is chosen as in (4.19), so that the backgrounds at O(e) remain
unchanged.

We consider the case where ¢; = —5 and ¢3 = ¢4 = 1 and the other ¢; = 0, which
satisfies (4.5). Numerical runs are done for cases with and without interaction. The
phase shift is taken as the difference in position between the two runs. As the grid
spacing is Az = 8 x 1072, a quadratic curve is fitted to the solitary wave peak, in
order to obtain a more accurate estimate of the coordinate shift. The positions of
the two waves at ¢t = 20, well after interaction for the slower and faster waves are
0, = 44.91 and 6, = 69.29. For numerical runs with no collisions the positions are
0] = 46.11 and 0, = 67.21, after t = 20. Hence the numerical coordinate shifts
after the interaction for the slower and faster waves are Af; = 0, — 0] = —1.20 and
NGy = 0, — 0, = 2.08. The coordinate shifts predictions from the asymptotic theory
in (4.30) are —1.19 and 2.07. An excellent agreement is achieved for the higher-

order coordinate shifts of both waves. The agreement is much better than that
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provided by the Hirota coordinate shifts (4.206)), hence the higher-order predictions
are verified.

The minimum intensities of |n|, (which occur at # = 0) for the slower wave,
before and after interaction are 0.4875 and 0.4876, respectively, with an increase in
amplitude of about 1 x 10~*. The minima for the faster wave are 0.8588 and 0.8592,
with a change about 4 x 107*. The O(¢) change in minimum intensity between
the Hirota soliton and the higher-order solitary wave is 0.5 — 0.49 =~ 0.01, as the
intensity of the Hirota soliton is just a. For the faster wave the O(e) correction to
the minimum intensity is 6 x 1072. The changes in intensity due to the collision are
much smaller than these measures of an O(e) change in intensity, hence the collision

is elastic to O(e).

4.4 Perturbation theory and solitary wave evolu-
tion

It was found from the asymptotic theory and direct calculations in section 4.3 that
a three-parameter and a two-parameter family of higher-order Hirota embedded
solitons exist if (4.5) or (4.20)) is satisfied. Here direct soliton perturbation theory
based on the Jost solution of the defocusing Hirota equation, is used to determine
the details of the evolving solitary wave, to first-order. Analytical expressions are
found for the tails of the solitary wave. It is found that tails form for two reasons; one
reason is the shedding of radiation due to non-existence of a higher-order asymptotic
embedded soliton, the second is related to first-order corrections to the background
travelling wave. Comparisons of the solitary wave tails are made with numerical

solutions and an excellent agreement is found.

4.4.1 The perturbation solution based on Jost solution

Given the similarity between the dark Hirota and NLS solitons, the technique for
analysing them is closely related. We first investigate the linear stability of the

background radiation for the Hirota equation, see Kivshar and Luther-Davies [19] for
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the application to the NLS equation. The travelling-wave solution of the defocusing

Hirota equation (4.12) is given by
n = poe*TPt 3 =6p2s + 67, (4.31)
where pg and ¢ are free parameters. To investigate the stability we substitute
n = (po + v)edn—ibtric, (4.32)

as a small excitation of the exact travelling wave solution (4.31)) in the defocusing
Hirota equation (4.1)), where the function v and derivatives of ¢ are small. By taking
ipt—iqx

vV, o~ e , the dispersion relation

(¢* — p+ 396 + 6p3q)* = 9¢°5*(¢* + 4p3), (4.33)

is obtained. Solving (4.33) gives

p=q" +3¢6% + 6piq £ 3¢5/ ¢* + 402, (4.34)

as the wave number of the perturbed wave. As p is real, small excitations of the
background wave (4.31) are absolutely stable. Note that for the focusing Hirota
equation the excitation (41.32) is unstable.

As p,q < 1 (it has been assumed the derivatives of ¢ are small), we apply a

Taylor series expansion to (4.34) and obtain
D= 6u? + 362 + 66op, (4.35)
q

as the phase velocity of the perturbation. To this level of approximation, the phase
and group velocities are equal. Hence there are two different phase velocities for
small perturbations propagating on the background wave. This is similar to the
case of the defocusing NLS equation, see (2.14) of Kivshar and Luther-Davies [19],
for which two phase velocities are also identified.

The single soliton solution (4.14) can be considered as an excitation on the
background wave (4.31) and may be formulated as

o = e (a + ik tanh k6)e00+#) (4.36)
W

© = 28(—3ad + 6% — 2r°)t — @y, O = — vt — b,

where v = 3a® + 2k? + 3(a — )%, p? = a* + K?,
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where a, k, d, g and 0y are all free parameters. Similar to (4.30), the perturbed

solution of the higher-order Hirota equation (4.3) is written

Y =en(0,t, 11, Ty,..), 0 =2 — /t vdt — 6y, © = /t Adt — pg. (4.37)
0 0

The soliton parameters x, a, 0, 0y and ¢, all vary on the slow time scales T,, =
e"t,n =1,2,... The forms of the slow variation are chosen to eliminate the secular
terms in the expansion. In fact, some integrals are divergent, hence the coefficients
of these divergent terms must be equal to zero, see for example Chen et. al. [3]. This
feature in dark soliton perturbation is different from the counterpart for the bright
soliton. In our analysis below, these slow variations, which are not explicitly shown,
are determined to let 7; in (4.49) rest on a zero mean level. Hence, the mean level
of the background (4.31)) does not change in the presence of the perturbed terms in
(4.3). The only effect of the higher-order terms on the travelling wave background
(4.31)) is a phase shift, at O(e), which is given by

B =6p20 + 6% + €b(crpg + a6’ ph — 2362 ph — 40 pi — 5625 + c60?). (4.38)

Note that the theoretical development here is for gray solitons only. For black
solitons where a = 0, the details of the analysis are slightly changed. The main
focus here is to find the first-order correction (7;) to the solitary wave profile, which
allows the tails of the solitary wave to be determined.

By substituting (4.37) in (4.3)) one obtains

M+ N1 — vng — nggo + 61109 = —€H () — €(nr, — inpor, — Mobor, ), (4.39)

where H represents the perturbed terms in (4.3). The solution (0, t,T1,T5, ...) can
be found by expanding as

n=mno(0)+en(0,t,T1,Ts,...) + ..., (4.40)

and substituting in (4.39), where initial solution 79(0) = a:f”(a—i-m tanh x0)e®?. At
the zeroth-order, the equation is satisfied automatically, and at first-order,
T, + A + (6’770‘2 - U)me — Mg + ””(9)771 + Q(Q)Tﬁ = Wy, (4'41)
where 7(0) = 6m5m0,, q(0) = 610705,

w1 = —H(10) — Moy, + 10007, + M0y00r, ;
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is obtained. The linearized equation (4.41) can be written in the matrix form (9, +
L)w; = H and is solved using the initial condition 7 |,—¢ = 0, where
G(0) q(0) ,
= . . > w1 = (nla 771)T
q'(0) G*(0)
G(@) = —Ogpp + (6|7]0|2 — U)@@ + T‘(@) + 7.

) H= (w17wT)T> (442)

It is not difficult to show that the non-localized (continuous) eigenstate of L is found
as ® =SS = (S2,82)7, where S = (S;,S5)” is a Jost solution of Hirota equation.

Thus the non-localized eigenstates can be found similar to Chen et. al. [3] by

(a —ir)?
— 4.43
hE pa —a+ik)? % ( )

1 (o — a — ik + ik sech fe=r0)2i(0—2w)0

(ip*a= (o — a — ik) — K(a + ir) sech ke~ "0)2e 1 (0+2w)0

see Appendix A. The continuous eigenfunction of the adjoint operator LT = —oy Lo

is also needed, where
09 = s (444)
is a Pauli matrix. It is not difficult to show that Wg = (—a*,b*)T is a continuous

eigenfunction for LT where wy = (a,b)T is the eigenfunction for L in (4.42). Again

the inner product
(€6).(0) = [ £(6)"g(0)as (4.85
is used to find nonzero inner products of the non-localized and localized eigenstates

and their adjoint eigenstates. Note that the forms of two localized eigenfunctions

can be determined explicitly by calculating ws|y4—q1i and %’a:am-

The completeness of the set of eigenstates can be proved in an analogous manner
to the proof for the counterpart set of the NLS equation which has been presented
in Yan et. al. [39], using Green’s function theory, and in Chen et. al. [3], by using
Jordan’s lemma and in Huang et. al. [16] by applying a generalized Marchenko
equation. For example, the completeness relationships in Chen et. al. [3] (see their
i50

section 4.1) can be extended to the Hirota equation by including €’ in the proof.
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The first-order solution has the form

+o00 ", |
Wi = / gw2da7 Where g = ! 19(0{)(1 _ 6“%)7

(e}

9 = 8uw(E +a— ;5)@5 —a), M(a)=— (4.46)

(a—z’fﬁ)Q(a—a—m
112
and the auxiliary variables are defined as

L -9 21_ 2 -2
(a) =2 SO - a7,

w= %(oz —pfat), €= %(a + pPah). (4.47)

The quantity M («), found using the residue theorem, is
i(a? — p?)(a+ik)(a — a+ik)? y
360,
(a+ pba™)Ey + (1 + pla ™) Ey + (a7t + p2a™3)Es + a2 B,
sinh(7) ’

where the various coefficients are given by

M(a) = (4.48)

Ey = —(c1 +5¢9 4 8¢z + 2¢4 + 2¢5 + 120¢4),

Ey = (5¢1 + 5cg + 50e3 + 20¢y + 600¢6)0
+(—2¢1 + 10cy — 26¢3 — 14¢q + 6¢5 — 240¢6)a,

Es = (3lc; + 25¢y + 88¢c3 — 8¢y + 12¢5 + 120¢6)a’
+(—10¢; — 100¢y + 80c¢3 4 50¢4 — 30c¢;5 + 600cq)ad
+(45¢y — 90c3 — 45¢4 + 15¢5 — 900c¢q)?
+(15¢; — 15¢5 + 60c3) K2,

E, = (—80c; 4+ 10¢y — 260c3 — 50¢4 — 90c5 — 60006)/€25
+(—45¢9 + 90cs + 45¢4 + 45¢5 + 900c¢q)5°
+(90cy — 180c3 — 90c4 — 150¢5 — 1800c¢6)0%a
+(64c; + 20cy + 212¢5 + 8cy + 8cs + 480¢q)a’
+(—120¢; — 30c; — 300c5 — 30cy + 30c¢5)a’s
+(32¢; + 20cy + 116¢3 — 16¢4 + 24c5 + 240cs)ak’.

And finally, (4.46)) gives
ila—ik)? [T M (1—¢")
t) = ——M—M— R
m(0,¢) 12 V¥ (0 —a+ik)? 8

—00

(v — a — ik + ik sech ke ") 2020 g

(4.49)
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which is qualitatively similar to the second integral in the first-order correction to
the bright Hirota solitary wave profile in (3.48). We note the limit (3.49), so the

integrand of (4.49) is singular at ¥ =0 as t — oc.

4.4.2 The solitary wave tail

In contrast to the bright Hirota solitons, dark solitons are right-moving only. The
analysis below shows that the evolution of the solitary wave tails for the higher-order
defocusing Hirota equation is subtle and complicated. For some parameter ranges,
tails only appear in front of the soliton, whilst for other parameter choices tails
appear in front of and behind the solitary wave. For bright solitons non-zero tails
only occur when embedded asymptotic solitons do not exist and hence radiation is
shed. For gray solitons tails also occur for another reason; the first-order correction
of the background wave, well ahead and behind the solitary wave. The asymptotic
analysis considered here is similar to that of section [3.4.2, and references therein.

The contribution to (4.49) for large time comes entirely from the neighborhood
of the singularities. Note that for

2 2

sel=[la-p)3

3 (a+p), (4.50)

the leading expression for (4.49) can be found by considering the singular points

a = +u, and for § € I¢, the extra singular points

3.1 !
a=-—a+;0+ 5(952 —12ad0 — 4K?)2 = o, (4.51)

are needed. Hence when ¢ € I, there are two singular points and when § € I¢, there
are four. We suppose 0 > 0 and define the quantities

7 (a—ir)> M(£p) , +p—a—ik

3
+_ _ 2 £ _ 2
S = (uk (0= 3T a), Wy =g (L) (452)

The length of the solitary wave tails is 45%, while their respective amplitudes are
hiﬂ. It should be noted that when pd < 0, the procedure is slightly modified by
replacing ki, and S* in (4.52) by hf, and ST.

For § € I we begin our analysis by making the substitution o = £pu + z/t and

obtain

; ) +oo —2izc, _ ,—2iz(cp—4STE)
M~ o hE / ( ¢ )z, (4.53)
T _

0o z
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where ¢, = 0/t is an O(1) constant. Using the integral (3.51), well behind of the
soliton, # < —1 and ¢, < 0, so both integrals within (4.53)) have the same value. So
the cancellation of the two integrals implies 1; ~ 0 well behind the solitary wave.
Hence tails only form ahead of the solitary wave for § € I.

Ahead of the wave (0 > 1, t — 00), we choose two intervals, 0 < ¢, < 45T and

45T < ¢, < 45~. Then the leading-order expression for (4.49) has the form as
(Bt + hg)e, 0<c, < 48T,
e~ (4.54)
hoa€e?, 45T < ¢, <457,
We note that for particular case § = 0, (i.e. ST = S7), n; over the second tail’s
region vanishes and (4.54) yields a single tail which propagates ahead of the solitary
wave.

The length of the solitary wave tails 4S¥, is the difference between the soliton
velocity (4.13) and the phase velocity of perturbations on the background wave
(4.35). The two tails correspond to the two different phase velocities in (4.35).
Moreover, for € I, both background phase velocities are greater than the soliton
velocity, so tails only form ahead of the wave.

For o € I¢ a similar procedure for large time yields

hi €% + hEe0-200 LT 0 < ¢, < 457,

bu—atir\2 150 _ 4
(bu a— m) htaﬂel +T ) 457 < Cp < 07

where b = sgn(dp). A new tail component is now generated ahead of the solitary
wave. Its amplitude is

+

i0(a —ik)m (aFf —a —ir)?

hf = 0 = Eﬂi 200 (c1 + 3cs3 + 2¢4 + 2¢5 + 20¢q) X
c 2
StS— 2 2+ 300 — 2
(420 — 3p2)at + p2AF 20 20 (4.56)
. AN
K? sinh(=2)

+2 9 +2 2 .
where AT = s, Ay = O‘a% Note that in (4.55),
c C

AF _
hEf =0, in 4A+ (AT —2a) <c, <457, (4.57)

. Af -
if AQL(A;—Za)<5’ .
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The fact that tails now occur in front of and behind the soliton is due to one of
the phase velocities (4.35) now being less than the soliton velocity, while the other
is greater than the soliton velocity. Moreover the tail in front of the soliton now
consists of components with three different wavenumbers, hence the long-time tail
is oscillatory in nature. In contrast, behind the solitary wave the long-time tail will
be flat, as it consists of a component with a single wavenumber.

The two leading transient terms are calculated from contributions at points of
stationary phase. The relevant phase of (4.49) is ¥y = ¥ — 2wc,, which has the

_ dd;

stationary point when ¥, = o= a—% = 0, where

R =3a%—66a° + (65a — ¢, + p* — 4a*)a* +

p2(65a — ¢, + p* — 4a*)a® — 66uta + 3u°. (4.58)

Due to the high order of the polynomial R in (4.58)), the solutions of R are found
numerically for constant parameters a, k, ¢ and different values of ¢,. It is not difficult
to show that Z—2 is a stationary point when g is a stationary point. Numerical
solutions of R show that for finite c,, which is analyzed here, there are just two

roots for R. Using the method of stationary phase gives

1
2m)2 —iK)? M(as
Tt - ;207 (@ _ i) () (o, —aFir)® (459
tz 129 ()| V(as)(as — a +ik)
1! 2 1"
ei(ﬂl(as)tisgn(ﬁl (as) ) _ (_ —aF Z'K)Qefi(ﬁﬂas)tisgn(ﬂl (as))g)]ewo.

s

It is noteworthy that the tail component hE vanishes if (4.5) or (4.20) is satisfied.
These conditions imply the existence of higher-order asymptotic embedded solitons,

hence the tail components h: are associated with radiation shedding due to lin-

+

s have the same

ear resonance. The other tail components, with amplitudes A
wavenumber, §, as the background wave, so can be associated with corrections to

the background wave at first-order.

4.4.3 Numerical solutions and discussion

In this section (4.3) is solved numerically and compared with the numerical solution

of ny in (4.49). The main analytical features of the solitary tails, for different values
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Figure 4.2: The first-order correction || versus 6 at t = 3 for wavenumber ¢ = 0.
Shown is the perturbation solution (4.49) (dashed curve) and numerical solution of

(4.3) (solid curve)

of wavenumber ¢, are also verified. For all the examples we choose € = 0.05 and use
the soliton parameters k = a = v/2 and p = 2. The perturbation solution (4.49),
is solved numerically by a higher-order quadrature scheme, and the higher-order
Hirota equation (4.3), is solved using the fourth-order hybrid scheme, see Appendix
Bl The spatial and temporal gridspacings used are the same as in section [4.3.3. The
quantity e~ t|n — | is plotted from the numerical solution as it allows a comparison
with the perturbation solution in the tail region. Note that 7 has the form (4.14)
with b modified to include the higher phase corrections of the background radiation
(4.38]).

For the first example, we choose § = 0 € I. Figure (4.2) shows the first-order
correction |n| versus 0 at time ¢ = 3. The higher-order coefficients used are ¢; =
¢y = 1 with all the other ¢; = 0. There is an excellent comparison between the
numerical and perturbation solutions. The figure shows the surface elevation ahead

the evolving solitary wave with the flat steady-state tail clearly visible. For this
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example the tail is

: 2ik5a
(it + ht_ail)euse = 95+Sl_L (—2ca + ¢4 +c3 — ¢5). (4.60)

The amplitude of this tail, as predicted by the perturbation solution (4.49), is || =
0.89, which is the same as the analytical expression (4.60) for the steady-state tail
amplitude. The numerical results that show that the tail has amplitude of 0.924, a
difference of about 3%. The maximum amplitude of the real part of the numerical
tail is 5 x 10™%, which represents a small error compared with the analytical tail
amplitude (4.60), which has a real zero part.

The asymptotic theory implies that the length of the solitary wave tail is 4tS™ =
24, which matches closely with the numerical results. For this example ,where 6 = 0,
there is only one phase velocity in (4.35), so only one tail forms. Moreover, as (4.35))
is greater than the soliton velocity, the tail only forms in front of the wave.

This example does not satisfy (4.5), but for examples which do satisfy (4.5), the
long time expression for n; is not the first-order correction to the embedded solitary
wave profile (4.17). This is because the embedded solitary waves have first-order
corrections to the background wave in front of and behind the wave, whilst the
evolving wave (for § € I) only has first-order corrections in front of the wave.

The special case, where ¢co = ¢4 = 1, ¢5 = —1 and the other ¢; = 0, has no
higher-order corrections to the background level in (4.17), so 7; = 0. In this case
the perturbation theory predicts no tails occur and the perturbation and asymptotic
theories correspond.

Figure (4.3) shows the first-order correction |n;| versus § at t =3, for6 =1 € I,
and c¢; = 1, with the other ¢; = 0. The other soliton parameters are the same as for
figure (4.2)). Again, tails only appear in front of solitary wave. The figure shows the
region in front of the moving solitary profile. For this example § # 0, so the two
distinct phase velocities (4.35) result in two different tail regions. The comparison
between the numerical and perturbation solutions is again very good, with some
very slight differences in amplitude and phase. The tail closest to the wave occurs
in the region 0 < 6 < 4tST ~ 13.45, with amplitude |, + h,,| = 0.387. The

numerical amplitude is 0.375, which is a difference of about 3%.
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Figure 4.3: The first-order correction || versus 6 at t = 3 for wavenumber ¢ = 1.
Shown is the perturbation solution (4.49) (dashed curve) and numerical solution of

(4.3) (solid curve)

The second tail region which occurs in 13.45 ~ 4tSt < 0 < 4tS~ =~ 85.45,
the average taken of the numerical solution is 0.762, which is within 0.4% of the
analytical steady-state tail amplitude of 0.766. Some oscillations occur on the second
tail. These oscillations represent a undular bore, which links together the different
amplitudes of the two tails, see, for example, Marchant and Smyth [29].

Lastly, we investigate the tail evolution for an example of § € I¢. The parameters
and numerical scheme are the same as the figure (4.3) except we choose § = —1.
Similar to figure (4.3), the figure (4.4) shows a schematic of the first-order solution
|m| versus 6 at ¢ = 3. Shown are the perturbation solution (4.49) and the quantity
e n — no| from the numerical solution of (4.3).

Again, the numerical solution is very close to the perturbation solution (4.49),
with slight phase and amplitude differences. The average taken of the numerical
solution over the tail for # < —1, is 0.8668. As pd < 0, the corresponding pertur-

bation theory prediction is \(:Z:—Zi’;’:)%g;ﬂ] = 0.8608, a difference of about 0.6%.

A similar average taken in front of the solitary wave is 0.8044, which is about 1%
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Figure 4.4: The first-order correction |n;| versus 6 at ¢ = 3 for wavenumber 6 = —1.
Shown is the perturbation solution (4.49) (dashed curve) and numerical solution of

(4.3) (solid curve)

different from the perturbation theory prediction of |k, | = 0.8133. Note that for
this example, the hE contributions are negligible. In fact the amplitudes of h}, h_
for figure (4.4) is O(1072).

For this example, the solution velocity lies between the two phase velocities
(4.35), so tails occur behind and in front of the solitary wave.

The figure shows that the numerical tails occur between —40 < 6 < 35. The
asymptotic results (4.55) yields tail length of 4tST = —37.5 and 4tS~ ~ 34.5,
which are very close to the numerical values. In contrast to the flat tails for the
wavenumbers § € I, the tails here are highly oscillatory. In front of the soliton, the
superposition of the steady-state tail components of different wavenumbers with the
transients of form (4.59) leads to a classical beating-like phenomena where the tail
has multiple peaks and troughs of higher and lower amplitudes. For the tail behind
the soliton the oscillations, generated by T~ form a undular bore, which links the

mean level of zero, well behind the solitary wave, with tail amplitude of |k The

tail|

maximum amplitude (crest to trough) of the oscillations behind the soliton is 0.33
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at t = 3. As the oscillations decay like O(t72), a relatively flat tail will not be
reached until ¢ = O(10°), when the amplitude of the oscillation will have decayed
to less than 1% of this value.

In summary, for a number of examples the soliton perturbation theory (both
analytical results and direct numerical solutions of (4.49)), the results from the
asymptotic transformation (4.49), and numerical solutions of the governing pde

(4.3) are in good agreement.

4.5 Conclusion

An asymptotic transformation and soliton perturbation theory have been used to
investigate the interaction and evolution of the gray solitons of a higher-order Hirota
equation. It is found that the higher-order solitary waves are asymptotic embedded
solitons when an algebraic relationship (4.5) involving the higher-order coefficients
is satisfied. An additional two-parameter family of asymptotic embedded solitary
waves, which exist when (4.20) is satisfied, is also identified. By using the asymptotic
theory the higher-order coordinate shifts, after interaction of the solitary waves, were
also found. Numerical simulations of the higher-order gray solitary wave interaction
confirm these coordinate shift corrections.

The soliton perturbation theory has been applied to evaluate the higher-order
gray soliton profile for Hirota equation with an integral expression found for the
first-order correction to the solitary wave profile. Asymptotic expansions, valid for
large time, allows analytical expressions to be found for the solitary wave tails for the
two different parameter regions. An extremely complicated picture of tail evolution
emerges. In some cases, tails only form in front of the solitary wave, while in other
cases they occur on both sides of the wave. Moreover, tails form for two reasons;
shedding of radiation due to linear resonance and corrections to the background

wave at first-order.



Appendix A

Lax equations and Jost solutions

for Hirota equation

In this Appendix the Lax pairs and Jost solutions for the defocusing Hirota equation
(4.1) are presented. In section 4.4.1 it is shown that the non-localised (continuous)
eigenfunction (4.43) of the linearized operator L (4.42) is just the squared Jost
solution of the Hirota equation.

It can be shown that the representation of Hirota equation in terms of the so-

called Lax equations is
S, =MS, S,=NS, where S = (S;(x,t),Ss(z, 1) (A.0.1)
and the Lax pair is

1
M = —Z(f — 5(5)0’3 + U7

N = 4i(¢ — %5)30—3 4 %5)2(] 2 — %5)(U2 + U)o

—2U% 4+ Uy + UU, — U, U, (A.0.2)
i 1 0
where U = , and 03 =
n* 0 0 —1

is a Pauli matrix. It is easy to verify that Hirota equation is tantamount to the zero
curvature representation M; — N, + [M, N] = 0 of the Lax equations (A.0.1). Now
the affine auxiliary parameter « is introduced to make w = /&2 — u? as a single-

valued function. Hence the parameters w and £ are functions of a as in (4.47). As

33
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x — oo (i.e., n — ue®®) the Jost solution of (A.0.1) approaches
. 1 —ipa! ,
B, (z,q) = 2?0773 H e, (A.0.3)
ipo! 1

and as © — —oo the asymptotic solution can be chosen as E_(z, o) = €27 E_ (z, a),
where, 6, the phase difference between each end of the boundary values, is deter-
mined as

n— e, as x — —oo. (A.0.4)

In other words the relationships between the Jost solutions of the Lax pair (A.0.1)

and the asymptotic solutions E, (z,«) and E_(z,«) can be found as

U(r,a) = (Y(z,a),Y(z,a)) = Ei(r,a) as x — +o0,
d(z,a) = (¢(z,0),0(x,a)) — E_(z,a) as x — —o0. (A.0.5)

Also noteworthy is that the asymptotic behavior of Jost solutions (A.0.3) are exactly
the same as NLS equation counterparts. This equivalence is resulted from the fact
that the first Lax equation (A.0.1) and (A.0.2) are common for the Hirota and NLS
equations. For example, in the single-soliton case (i.e. p2e®® = (a — ix)?), the

explicit expressions of the Jost solutions can be found as

(—ipat — —5_e2is goch ke T)ei(z0tw)e
— a—ag
7/1(95, CK) - )

(1 — =i sech ke )¢ i(20-w)

*
a—0y

o 1 e L _ (L5
(a a1€2z95 4 ZKZ*€27,65 sech ke mv)ez(25 w)x
Qb(l’ Oé) _ a—ajf a—aj
’ —la—a L0 K

(jpat8=2Le2"s — £ _gech ke~
C!*Oél CV*CYI

mc)e—i(%(s—f—w)ac
and
Br,0) = —ipo~ oz, 1Pa),  P(asa) = ipo~ (e, o),

where oy = a + ik, see Chen et. al. [3].



Appendix B

The numerical scheme for the
higher-order defocusing Hirota

equation

The numerical solutions for the higher-order defocusing Hirota equation (4.3) were
obtained by using fourth-order centered finite differences in the spatial coordinate
x and a fourth-order Runge-Kutta method for the temporal coordinate t. The
numerical scheme described below is stable for reasonable choices of the space and
time discretization units Ax and At. Various straight finite-difference methods
considered by the authors were found to be unstable for nearly all nonzero values of
€.

Given that the solution at the time t¢; is
ni; =n(x; =jlx, t; =iAt), (j=1,...,M), (B.0.1)
then the numerical solution at time ¢, is given by
Miv1j = Nij + é(k;{j +2KY 42k, + kL) + D(xy), (j=1,..,M), (B.0.2)
where the various functions are

ki; = Otf(nig), kfj = Atf(n,; + %kq ), (B.0.3)

Z7j

kij = Otf(mg +3K,), ki = Otf(nig + k),

Z7j
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Hirota equation 86

and D(z) is the damping function used at the boundaries, so the boundaries do not
affect the wave evolution being studied. The function f is the finite-differenced form
of all the terms in (4.3) involving spatial derivatives,

|pij|? 2 1
fpij) = —m(G + eci|pij|7) A — AL

_elea+os)piy WA e(cs + ca)pi

(=1 + ecslpiy[*)As

A, A B.0A4
124Ag3 201 124Ag3 21 (B.04)
_ ECgpiJ' A A*— €Co A 2A _ €Cy A

12437721 124Ax3| 1A N

where the fourth-order centered finite-difference formulas are given by

A1 = pij2—8pij-1+8pijr1 — Pijte

Ay = —pij2+16p; ;1 — 30p;; + 16p;j+1 — Pij+2,

A3 = pij-3—8pij_2+ 13pi;j—1 — 13pijt1 + 8Pij+2 — Dij+3,
Ay = Dij—a—Ipij—3 +26p;ij—2 — 29p; j—1 + 29p; j 41 — 26D; j42

+9pi,j+3 — Dij+a-

The function

Ax

o (B.0.5)

D(z;) = sech®[(j — 1)?—5] + sech?[(j — M)

damps the boundary values to zero which stops the reflection of the small-amplitude
dispersive radiation back into the solution domain. The accuracy of the numerical

method is fourth-order in time and space i.e. O(At*, Ax?).
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