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Abstract

Governments and businesses use data collected over time as indicators of the

social, economic and business conditions of the country. These may then be used

for policy and planning decisions, calculation of national accounts and monitoring

of economic activity. The production and publication of seasonally adjusted series,

in addition to unadjusted figures, is standard practice for government statistical

agencies. In general, there are two main approaches to seasonal adjustment, namely

a filter-based approach and a model-based approach. Filter-based methods estimate

time series components, such as the trend and seasonal factors, by application of a

set of filters to the original series. Model-based methods of seasonal adjustment are

more specific to each series, and are thereby more flexible.

Time series resulting from aggregation of several sub-series can be seasonally

adjusted directly or indirectly. With model-based seasonal adjustment, the sub-

series may also be considered as a multivariate system of series and hence the analysis

may be done jointly. This approach has considerable advantage over the indirect

method, as it utilises the covariance structure between the sub-series.

The focus of this thesis is on examining how the accuracy of seasonally adjusted

series can be improved by using the sub-series. A model-based approach to season-

ally adjusting an aggregated series is carried out with two different methods. The

first method utilises an univariate basic structural model (BSM) for the aggregated

series. The second method utilises a multivariate basic structural model for the sub-

series. In basic structural models, the series components are modelled individually,

and then put into state space form. The Kalman filter is applied to obtain esti-

mates of the aggregate series components and the prediction mean squared errors.
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The variance of the seasonally adjusted series given by the two methods is studied

through their relative efficiency. A particular emphasis of the thesis is on how the

similarity of and differences between disaggregated series affect the efficiency of the

two approaches to seasonal adjustment.

Results indicate that gains are attainable under specified conditions which rely

on the values of the parameters of not only the seasonal component, but also the

non-seasonal components. These results demonstrate the impact on relative effi-

ciency of relationships among sub-series parameters, both between series (i.e. within

components) and within series (i.e. between components).

The impact of the length of the time series on the accuracy of seasonally ad-

justed series is of particular interest. A simulation study investigates the parameter

estimates obtained given varying series lengths and the subsequent effects on the

accuracy of the time series components given by the Kalman filter. These effects are

measured by the näıve bias in the prediction mean squared error and by the revision

error. A bootstrap correction is applied to the estimated prediction mean squared

error for both the univariate and multivariate approaches.

A single indicator measure is developed for predicting whether the properties

of the disaggregated series (or sub-series) will lead to gains in the accuracy of the

seasonally adjusted aggregated series. The quasi-likelihood method is applied to

obtain the indicator measure of relative efficiency. It is shown to be directly related

to the relative efficiency measure obtained with the Kalman filter.

Another application of the quasi-likelihood indicator is in identifying an appro-

priate grouping of the K sub-series into r < K series. The grouping can considerably

reduce the number of estimated parameters, while the accuracy of the seasonally

adjusted series is maintained.

The integrated approach of this thesis to the seasonal adjustment of aggregated

series thus provides a pathway to improved efficiency and an understanding of the

conditions under which improvements may be achieved.
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Chapter 1

Introduction

Governments and businesses use data collected over time as indicators of the so-

cial, economic and business conditions of the country, which may then be used for

policy and planning decisions, calculation of national accounts and monitoring of

economic activity. These time series are collected world-wide by government statis-

tical agencies, including the Australian Bureau of Statistics (ABS). Some of the key

time series include those of retail expenditure, employment and earnings, business

turnover, and unemployment. Since analyses of these series are fundamental to the

expenditure of billions of dollars that ultimately shape the direction of the national

economy, it is vital to accurately estimate the underlying movement of the time

series.

The production and publication of seasonally adjusted series, in addition to

unadjusted figures, is standard practice for government statistical agencies. Three

main objectives of seasonal adjustment are suggested by Bell and Hillmer (1984):

• to aid in short-term forecasting;

• to aid in relating time series to other series or extreme events;

• to allow comparability in the series from month to month.

Seasonally adjusted series are often quoted in the media, and are used by analysts in

1
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business and governments in the development and monitoring of plans and policies.

The first step in obtaining the seasonally adjusted series is to estimate the seasonal

effects, which are the effects that regularly occur in the same month or quarter of

each year. Secondly, the seasonal effects are removed from the original series so

that the effects of other influences are more visible. A seasonally adjusted series

contains a trend and an irregular component. For example, retail trade figures are

higher in December than in other months of the year, largely due to the purchases

associated with Christmas. This implies that there is a seasonal effect for December.

Estimation and then removal of the seasonal factors for each month of the year result

in the seasonally adjusted series.

It is important that seasonal factors be estimated accurately. Suppose, for exam-

ple, that there is no underlying growth in the retail trade series to be analysed and

that the true seasonal factor for in December is actually 30% higher than that for

November. However, the estimated value is only 29%. If, for a particular December,

the increase in the original series is 31%, then the estimated increase in the sea-

sonally adjusted series is 2%, whereas the actual increase is only 1%. The increase

is therefore estimated to be twice what it should be. This could be interpreted by

analysts as showing stronger growth in the economy than expected, and could lead

to incorrect decisions regarding economic direction and policy, such as the setting

of interest rates.

The precision of seasonally adjusted series is also important. Recognition of

the importance of the standard errors of seasonally adjusted series dates back to

the early 1960’s. Hausman and Watson (1985) report that in 1962, the (U.S.A)

President’s Committee to Appraise Employment and Unemployment Statistics (the

Gordon Commission) recommended

“that estimates of the standard error of seasonally adjusted data be

prepared and published as soon as the technical problems have been solved”.

The comment referred to the seasonally adjusted data which had been calculated

by the filter-based X-11 procedure but is equally applicable to other methods of

seasonal adjustment.



Chapter 1. Introduction 3

In general, there are two main approaches to seasonal adjustment, namely a

filter-based approach and a model-based approach. Filter-based methods estimate

time series components, such as the trend and seasonal factors, by application of a

set of filters to the original series. This iterative technique is applied by the widely

used X-11 package (Shiskin et al., 1967). With filter-based methods, basically the

same overall procedure is applied to all time series, although the specific filters used

may vary according to the properties of the series. In this sense, it can be regarded

as inflexible (Harvey, 1989), but convenient to apply to many series.

Model-based methods fit a particular statistical model to the series. The models

employed could be ARIMA (Autoregressive Integrated Moving Average) models or

structural time series models. The ARIMA-model-based (AMB) approach to sea-

sonal adjustment (Hillmer and Tiao, 1982) is also widely used in statistical offices

and institutions throughout the world. It is implemented with the TRAMO-SEATS

(Time series Regression with ARIMA noise, Missing values, and Outliers - Signal Ex-

traction in ARIMA Time Series) software (Gomez and Maravall, 1996). Structural

time series models are models where each component of the series are modelled

separately. They are appropriate for modelling time series from many disciplines

such as economics, sociology, engineering and geography (Harvey, 1989, p xi). The

Kalman filter (Kalman, 1960), first developed in the field of engineering, is the al-

gorithm used to estimate the structural components of the model. Programs such

as STAMP (Structural Time series Analyser, Modeller and Predictor) and others

such as the set of functions collectively called the SsfPack (Koopman et al., 1999)

in the module S+FinMetrics may be used for the analysis. The AMB approach is

generally not suitable for multivariate analysis, whereas in the structural time se-

ries model known as the basic structural model (BSM) (Harvey, 1989), multivariate

analysis is a natural extension to the univariate model.

Model-based methods of seasonal adjustment are more specific to each series,

and are thereby more flexible.

“The theoretical argument in favour of model-based seasonal adjust-

ment is very strong.” (Harvey, 1989, p306)
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The basic structural model may be used for seasonal adjustment. As the structural

components such as the level, slope and seasonal factors are modelled individually,

the specification of the model may be different for different series.

“The use of modelling in connection with seasonal adjustment raises

the basic question of whether seasonal adjustment should be done at all.”

(Bell and Hillmer, 1984, p100)

Harvey (1989) echoes this comment with reference to extrapolation as a reason

for carrying out seasonal adjustment:

“However, if a series has been seasonally adjusted by fitting a model

to it, this becomes pointless since optimal predictions can be made directly

from the model.” (Harvey, 1989, p308)

Harvey goes on to suggest that in some circumstances it is interesting to look at

a series to understand its history and hence that seasonal adjustment is helpful.

He also suggests that working with the seasonally adjusted series may assist in the

detection of breaks and structural changes and this may be beneficial at the model

formulation stage.

Seasonal adjustment of an aggregate series is usually of particular interest to

statistical agencies. It may be carried out directly, with the analysis performed on

the aggregate series itself. Alternatively, indirect seasonal adjustment is performed

on each of the cross-sectional series (or sub-series) that make up the aggregate se-

ries. The seasonally adjusted sub-series are then summed to obtain the seasonally

adjusted aggregate series. With filter-based methods, the results of these two ap-

proaches rarely agree. With model-based seasonal adjustment, the sub-series may

be considered as a multivariate system of series and hence the analysis may be done

jointly. This approach has considerable advantage over the indirect method as it

utilises the covariance structure between the series. When the sub-series are as-

sumed to be independent, the multivariate approach is equivalent to the indirect

approach. Thus, the indirect approach can be regarded as a special case of a multi-
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variate model-based approach. The aggregate series may also be analysed with an

univariate model which corresponds to the direct method of seasonal adjustment.

Given the importance to statistical agencies and users of the data, the focus of

this thesis is on examining the accuracy of seasonally adjusted series. The emphasis

is on a model-based approach to seasonally adjusting an aggregate series via two

different methods. Firstly, an univariate basic structural model (BSM) is applied to

the aggregate series to obtain estimates of the series components. Secondly, the sub-

series are modelled jointly with a multivariate basic structural model to obtain the

aggregate series components that utilises the information drawn from these series.

The research will seek to elucidate conditions under which application of a multi-

variate model will improve the quality of estimated seasonal factors, and hence the

seasonally adjusted series. A particular emphasis is on how the similarity of and the

differences between disaggregated series affect the efficiency of seasonal adjustment

approaches. The impact of the length of the time series on the accuracy of season-

ally adjusted series will also be investigated for both univariate and multivariate

approaches.

A review of the literature in Chapter 2 reveals many applications of model-based

seasonal adjustment and its comparison to the more widely used filter-based method

X-11 and associated variants. A bivariate basic structural model has been applied to

improve estimates of the components of a target series by jointly modelling a related

series. These and other relevant topics are reviewed and discussed in Chapter 2.

This discussion leads to the multivariate model which is proposed in Chapter 3. By

writing both the univariate and multivariate models in state space form, the Kalman

filter (Anderson and Moore, 1979) can be applied, yielding estimates of the series

components. The procedure is detailed in Chapter 3.

The estimation of a seasonally adjusted series is evaluated by several well known

criteria. The accuracy of the seasonally adjusted series is measured by determining

its variance. For a basic structural model, this is a by-product of the application

of the Kalman filter. The variance of the seasonally adjusted series given by the

univariate and multivariate models will be compared using their relative efficiency.
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In Chapter 4, an empirical study will thoroughly investigate the conditions which

affect relative efficiency. This will be carried out by fixing the known parameters of

an aggregated series, but varying the parameters of the sub-series.

In Chapter 5, a single indicator measure is developed for predicting whether

the properties of the sub-series will lead to gains in the accuracy of the seasonally

adjusted aggregate series. A quasi-likelihood method is applied to the sub-series to

obtain the indicator of relative efficiency, given the series parameters.

The length of a time series is crucial to the accuracy of model parameter esti-

mates. For the univariate and multivariate approaches, a simulation study investi-

gates the parameter estimates obtained given varying series length. Estimation of

model parameters, and the subsequent effects on the estimates of the components

and their mean squared errors, is the focus of Chapter 6.

Revision error is an important measure which attracts a lot of attention in gov-

ernment statistical agencies. It is the error associated with the degree of revision

an adjusted series undergoes when new observations become available. The revision

error for the two methods will also be compared in Chapter 6.

Lastly, if there are several sub-series, the question arises as to whether grouping

them can maintain or improve the accuracy of the seasonally adjusted series. By

grouping sub-series to form new series, the number of parameters to be estimated

is reduced. The method of grouping the series is demonstrated by an example in

Chapter 7.

If the joint modelling of the disaggregated series increases the reliability of the

seasonally adjusted aggregate series, and the degree of revision is also reduced, then

users will have more confidence in the published seasonally adjusted series. Analysts

will be able to detect more accurately important changes in a series and hence to

make more informed decisions regarding the direction of the economy. In particular,

this research has application in the seasonal adjustment of short to moderate length

time series where the component estimates are often considered experimental (ABS,

2007a). On a wider scale, it has implications for the area of linking two time series

to improve the estimation of one of them by using a bivariate modelling approach.



Chapter 2

Issues in Seasonal Adjustment

The questions considered by this thesis relate various topics discussed in the statisti-

cal literature. Seasonal adjustment may be performed by several different methods,

such as filter-based or model-based methods, using a single aggregate series, or by

considering disaggregated series. Filter-based approaches such as X-11 have been

compared to model-based approaches in terms of their capacity to estimate the se-

ries components such as the trend component, comprised of the level and slope of

the series, and also the seasonal component. Component estimation in a multi-

variate model-based context will be reviewed with reference to not only the use of

sub-series but also the use of a related series for the improvement of the component

estimates of a target series. Another important factor in estimating series compo-

nents is the length of the time series. A review of the literature will include the

topic of estimating components of series with different lengths.

7
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2.1 Current Methods

2.1.1 Filter-based Seasonal Adjustment: X-11

Many government statistical agencies use a filter-based or empirical approach to de-

compose an observed series into several unobserved components. The most widely

used of these empirical methods is the X-11 method developed in 1965 by Shiskin

(Shiskin et al., 1967). X-11 evolved to include the use of ARIMA models to fore-

cast the series in order to improve the estimation of components at the end of the

series, thereby reducing revisions. Developments include X-11-ARIMA and X-11-

ARIMA-88 developed by Dagum (Dagum, 1988) and X-12-ARIMA (U.S. Bureau of

Census). For an historical review of seasonal adjustment see Bell and Hillmer (1984)

or Ladiray and Quenneville (2001).

The X-11 method treats the observed value at a particular time, Yt, as a func-

tion of three components; the trend (TCt) which incorporates the overall cycle, the

seasonal factor (St), and lastly, the irregular component (It). Assuming the effects

are additive, the observed value is written as:

Yt = TCt + St + It for t = 1, . . . , T (2.1)

Smoothing techniques such as moving averages are applied iteratively to obtain

estimates of the trend and seasonal components. The moving average of coefficients

is defined in Ladiray and Quenneville (2001, Section 3.1.1) as

M(Xt) =

+f∑

k=−p

θkXt+k. (2.2)

The quantity p + f + 1 is called the moving average order and {θk} is the set of

coefficients.

A P ×Q moving average is obtained by applying in succession a simple moving

average of order P (with coefficients all equal to 1/P ) and a simple moving average

of order Q (with coefficients all equal to 1/Q). Thus, a 2 × 12 moving average

for a monthly series has coefficients {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1}/24 and therefore
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requires 13 data points. A 3×3 moving average for a monthly series has coefficients

{1, 2, 3, 2, 1}/9 and therefore requires 5 data points (Ladiray and Quenneville, 2001,

Section 3.2).

The eight basic iterative steps in X-11 for monthly series are detailed in Ladiray

and Quenneville (2001, Section 2.4) and summarised here as follows:

1. Estimate the trend using a 2×12 moving average (or 13 point) on the original

series, which yields TC
(1)
t .

2. Remove the estimated trend to leave a series comprising a seasonal component

and an irregular component, (St + It)
(1).

3. Estimate the seasonal component using a 3× 3 moving average (5-point) ap-

plied to (St + It)
(1) and normalise the coefficients so that their sum is zero.

4. Remove the normalised seasonal component from the original series to obtain

the estimated seasonally adjusted series, Y sa
(1)
t .

5. Re-estimate the trend using a 13-term Henderson moving average on Y sa
(1)
t

to give TC
(2)
t . (For information on Henderson moving averages used in X-11,

refer to Ladiray and Quenneville, 2001, Section 3.2.2).

6. Remove the newly estimated trend from the original series to again leave sea-

sonal and irregular components, (St + It)
(2).

7. Estimate the seasonal component using a 3× 5 moving average (7-point) ap-

plied to (St + It)
(2) to give S

(2)
t . Normalise the coefficients to give Snorm

(2)
t .

8. Remove seasonal component (Snorm
(2)
t ) from the original series to obtain the

estimated seasonally adjusted series, Y sa
(2)
t .

Details of the X-11 method with a complete example can be found in Ladiray and

Quenneville (2001). Other adjustments may also be included for outlier detection

and removal, moving holidays (such as Easter) and trading day effects.

For many economic time series, a multiplicative model say, Yt = TCt×St×It for

t = 1, . . . , T , is more appropriate than an additive model as given by (2.1), but the
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same iterative approach may be applied. This thesis will concentrate on additive

models.

The methods described above rely on the strength of the historical data. Data

for at least five years are usually required to estimate seasonal factors. For example,

if the series consisted of monthly data, then to calculate a 3× 5 (or 7-point) moving

average for December, seven data points for December (i.e. 7 years) are required. If

instead a 3 × 3 (or 5-point) moving average was applied, only five data points (i.e.

5 years) would be required. Although data for at least five years are being utilised,

the seasonal effects for a particular month are estimated by only five data points.

Seasonally adjusted and trend series are likely to be considered experimental if fewer

than five years of data are available for estimation of seasonal factors (ABS, 2007a).

2.1.2 Model-based Seasonal Adjustment

Model-based seasonal adjustment requires modelling the observed time series and the

unobserved components such as the trend, seasonal and irregular components. There

are two main approaches to modelling time series: the ARIMA model-based (AMB)

approach (see Burman, 1980; Hillmer and Tiao, 1982 ) and the structural time series

(STS) approach (see Engle, 1978; Harvey and Todd, 1983; and Harvey, 1989). The

ARIMA model-based approach to seasonal adjustment involves fitting a seasonal

ARIMA model to the overall series and then decomposing it into appropriate models

for each of the components (Maravall, 1995). This approach is often called ‘signal

extraction’ (Whittle, 1963 and Burman, 1980). The structural time series approach

directly specifies models for each of the unobserved components which have a direct

interpretation.

In the AMB approach, the estimation process requires two steps: estimating the

ARIMA model and decomposing it into the additive unobserved components (signal

extraction). In the development of ARIMA models, there was difficulty in dealing

with series which had non-stationary trends and changing seasonality. Box and

Jenkins (1970) use differencing to eliminate the trend and seasonal effects instead
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of modelling the components separately. Differencing a series involves the lag or

backward shift operator, B, which is defined as Bkyt = yt−k. The first-difference

operator, ∆, is defined as ∆ = 1−B, and hence a first differenced series is determined

by ∆yt = (1− B)yt = yt − yt−1. The seasonal difference operator, ∆s, is defined as

∆s = (1−Bs), where s is the number of seasons in the data (Harvey, 1989, Section

2.1.2). Applying the seasonal difference operator yields ∆syt = (1−Bs)yt = yt−yt−s.

A series may need more than one application of differencing to attain stationarity.

For a general review see Pena et al. (2001, Chapter 8).

Estimation of the unobserved components may be carried out with the Wiener-

Kolmogorov filter (Burman, 1980 and for an illustration with economic time series

refer to Maravall, 1995). Let yt = mt+nt where yt is an observable time series and mt

and nt are the unobservable signal and noise time series respectively. When mt and

nt are independent and stationary, signal extraction may be carried out by applying

the Wiener-Kolmogorov filter. Burman (1980) uses a partial fraction decomposition

of the filter to obtain the estimate of the seasonal component. When either mt or

nt or both are non-stationary, signal extraction may be performed by the method

discussed in Bell (1984) which makes assumptions about the generation of the series

mt, nt, yt, and their starting values. Gomez (1999) also discusses the estimation

of unobserved components in non-stationary time series. He shows that the same

result is obtained with three different methods of filtering non-stationary time series

under certain assumptions. The three methods applied are Kalman filtering plus

smoothing, Wiener-Kolmogorov filtering plus Tunnicliffe Wilson algorithm (as given

in Burman, 1980), and penalised least squares smoothing. He suggests that if the

standard errors of the estimator are required, then the Kalman filter approach is

the only approach which supplies this information under very general conditions

(Gomez, 1999, p109).

In practice, estimation of the ARIMA model may be carried out using the

TRAMO (Time series Regression with ARIMA noise, Missing values, and Outliers)

program and the decomposition is carried out with the SEATS (Signal Extraction

in ARIMA Time Series) program. The programs are often referred to jointly as
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TRAMO-SEATS (developed by Gomez and Maravall, 1996), and is widely used in

many statistical agencies and banks, particulary in Europe. The SEATS program

implements the method proposed by Burman (1980). A helpful summary can be

found in Pollock (2002). With TRAMO-SEATS, one has the advantage of an auto-

matic model selection procedure (see Maravall, 2006 for a summary and example)

which does not require prior knowledge about the structure of the series.

In general, STS models use an additive structural decomposition of the series:

yt = TCt + St + It. In the case of multiplicative series (yt = TCt × St × It), this

is handled by taking the logarithm of the series. The unobserved components are

the linear trend cycle component TCt, the seasonal component St, and an irregular

or noise component It. These components may be modelled in various ways. In

the Basic Structural Model (BSM), the unobserved components may be modelled

by Markov processes (Harvey and Todd, 1983). The BSM is described in detail in

Harvey (1989). The main feature of the BSM is that the trend is modelled as a local

approximation to a linear trend defined by a level and slope component. Both the

level and slope may change over time according to a random walk process. Two of

the more commonly used models for the seasonal component are the dummy vari-

able seasonal model and the trigonometric seasonal model. Both models allow for

changing seasonality over time while ensuring that the sum of the seasonal compo-

nents over any s time periods has an expected value of zero. The univariate BSM

with a dummy seasonal component is described in Chapter 3, Section 3.2 and the

trigonometric seasonal component is described in Appendix B. The BSM is written

in state space form and application of the Kalman filter (Section 3.5.1) yields the

optimal estimates of the individual components. Thus, by subtracting the estimated

seasonal component, the seasonally adjusted series is readily obtained.

Riani (1998) compares the weights applied to observations in the two model-

based approaches: AMB and STS. Theoretically, he shows that unless the vari-

ability in the seasonal component is very large with respect to the non-seasonal

components, the two approaches produce very similar seasonally adjusted series.

The main differences were found to refer to the trend.
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There are many advantages in applying a structural model over an ARIMA

model. The BSM and its state space form (Durbin and Koopman, 2001) are based

upon the structural analysis of the series. Each component such as the trend and the

seasonal factor is modelled explicitly, before being included in the state space model.

This gives the state space approach great flexibility and transparency. Consequently,

known changes in the structure over time can be allowed for with relative ease. Even

though the estimates of the trend and seasonal components may be recovered from

the differenced series in the AMB approach, it is more convenient to model them

directly, as can be achieved using the structural model (Durbin and Koopman, 2001,

Section 3.5). Seasonal adjustment in the STS approach is more straightforward.

The main advantage of applying a BSM, for the purposes of this thesis, is that

multivariate series may be modelled as an extension to the univariate model. Other

advantages are that the structural components are a direct result of the estimation

via the Kalman filter and the mean squared errors of the estimators are also readily

available.

2.1.3 Parameter Estimation and Bias

If the level, slope and seasonal components in a BSM are allowed to change over

time, then the variances of their disturbance terms as well as the variance of the

measurement error or irregular term, comprise the set of parameters for the model

(see Section 3.2 for a description of the univariate BSM). In the literature, these

parameters are sometimes referred to as the hyper-parameters of the model. When

these parameters are unknown, maximum likelihood estimates can be obtained us-

ing the Kalman filter. These parameter estimates are then substituted into the

state space model and application of the Kalman filter yields estimates of the series

components and their associated mean squared errors (MSE). However, the result-

ing MSE is an underestimate of the true MSE (Ansley and Kohn, 1986). This has

been termed the ‘näıve’ bias or the bias associated with näıve approximation. Näıve

approximation allows for filter uncertainty but not for parameter uncertainty. The
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underestimation is a result of not accounting for the variability resulting from the

estimation of the model parameters (Ansley and Kohn, 1986; Durbin and Koopman,

2001; Quenneville and Singh, 2005; Pfeffermann and Tiller, 2005). This is discussed

in more detail in Chapter 6.

Methods of calculating the näıve bias and procedures which reduce the bias are

given in Quenneville and Singh (2005) and Pfeffermann and Tiller (2005). Both

papers include a summary and a comparison of bias corrections proposed by other

authors, including Hamilton (1986), and Ansley and Kohn (1986). An alternative

bias correction technique is also proposed in each paper.

Quenneville and Singh (2005) performed a Monte Carlo study with series of

lengths T = 40 and T = 100 for a model which comprised of a random walk plus

noise. The average relative bias was calculated for six bias correction procedures

and compared with the näıve bias. One of the main conclusions is related to the

series length. The näıve bias was greater in absolute terms for the moderate length

(T = 40), than for the longer series (T = 100). For the moderate length, there

was a serious underestimation, with a relative bias of -21.2%, whereas for the series

with T = 100, the relative bias was -9.0%. Using the corrected Ansley and Kohn

approximation, the bias was reduced to -13.0% for T = 40, and -4.1% for T = 100.

Another bias correction reduced these to -6.7% and -2.5% for moderate and long

length respectively. Quenneville and Singh (2005) concluded that the corrected

Ansley and Kohn approximation was the best compromise between bias, precision,

theoretical exactness and computational requirements.

Pfeffermann and Tiller (2005) proposed a parametric and a non-parametric boot-

strap method as bias corrections to the näıve bias. The bootstrap methods are com-

pared to other bias correction methods discussed in Quenneville and Singh (2005).

The robustness of the bootstrap method is examined with respect to non-normality

of the model error terms. The distribution of the maximum likelihood parameter es-

timates can be skewed, especially for short series or when the parameters are close to

the boundary value of zero. The results of an extensive simulation study show that

the bootstrap methods are ‘much superior to’ the other methods in terms of bias,
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and this is especially so for shorter series. In a study similar to that of Quenneville

and Singh (2005), the näıve bias of -18.5% for a series with T = 40 was reduced to

0.6% with the parametric bootstrap method. Similarly, the näıve bias of -7.6% for

a series with T = 100, was reduced to 1.6% (Pfeffermann and Tiller, 2005, p903).

These results have definite implications to the method proposed in this thesis.

As shorter series are considered, and if parameters are estimated, then the bias in

the mean squared error of the seasonal factor will need to be measured for both the

univariate and multivariate approaches. This is discussed in Chapter 6.

2.2 Comparison of X-11 with Model-Based

Estimates

The BSM can be fitted to series for which X-11 has been found to perform well

(Maravall, 1985). This is further discussed in Harvey (1989, Section 6.2.3), where

the autocorrelation function of a particular series obtained with X-11 is shown to be

almost identical to that obtained by applying the BSM. However, for most series,

X-11 tends to yield a smoother trend component than the BSM.

To obtain estimates of structural components analogous to those produced with

the X-11 procedure, the smoothed estimates obtained from the Kalman filter are

appropriate. Dagum and Quenneville (1993) as well as Pfeffermann et al. (1998)

obtained model-based estimates using the Kalman smoother and compared them

with the corresponding X-11 estimates for univariate time series.

Dagum and Quenneville (1993) compared a seasonally adjusted series estimated

by a model-based procedure with that obtained by an X-11-ARIMA method. The

two procedures were applied to the Total Sales for Department Stores in Canada

from January 1975 to December 1985. The unobserved components model in-

cluded second differences for the trend, a stochastic seasonal component comprised

of dummy variables, and a deterministic or fixed trading day component, as well

as an irregular component. It did not model survey errors. Initial estimates for

the Kalman filter were supplied by estimates from the X-11-ARIMA decomposition.

The results obtained with the unobserved components model were found to be very
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close to those obtained with the standard options of X-11-ARIMA.

Pfeffermann et al. (1998) compared trend estimates from a state space model with

corresponding estimates produced by X-11-ARIMA. They found that the model-

based trends were much smoother than the X-11 trends. The series being investi-

gated was the result of a survey and therefore included survey errors. By modelling

the survey errors and hence subtracting them from the original data values, however,

the trends produced by X-11 were very similar to the trends produced by the model.

“Thus, the use of X-11 fails to separate the genuine trend of the

population values from the spurious trends induced by the correlation

pattern of the survey errors.” (Pfeffermann et al., 1998, p346)

A similar result was obtained for the comparison of the seasonal effects. The

seasonal effects estimated with X-11 for the survey error adjusted series were almost

identical to the seasonal effects obtained under the state space model. (Pfeffermann

et al., 1998, p347).

Moosa and Lenten (2000) compared seasonal factors obtained by X-11 with those

obtained by a basic structural model (BSM) on several Australian time series. The

BSM parameter estimates for each series were obtained by maximum likelihood

using the Kalman filter. The results varied with each series, where for some series,

seasonal factors differed significantly between methods. The paper by Moosa and

Lenten does not specify if any of the series results from a survey and does not specify

if a survey error was built into the model as applied by Pfeffermann et al. (1998).

If any of the series resulted from a survey, the differences found may well be due to

the model misspecification given the survey error built into the data.

The model that has been shown to be appropriate for modelling economic time

series and for which estimates of components such as seasonal factors are comparable

to those using X-11, is the basic structural model (BSM) sometimes simply referred

to as a structural time series model. By putting this model into state space form and

using the Kalman filter, the time series components can be estimated. Discussion

in Section 6.2.3 of Harvey (1989), mentions that the BSM is applicable to series

for which X-11 is appropriate. From the research conducted by Pfeffermann et al.
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(1998), to achieve comparability of estimates of components, it will be necessary to

include the survey error in the model for those series which originate from a sample

survey.

The differences between seasonally adjusting series using the X-12-ARIMA (Find-

ley et al., 1998) and TRAMO-SEATS (Gomez and Maravall, 1996) programs are

discussed in Planas and Depoutot (2002). They compare the moving average filters

of X-11 to the Wiener-Kolmogorov filters used in the AMB approach and notice

that the X-11 filters have finite length whereas the Wiener-Kolmogorov filters are

infinite. With reference to the airline model (Box and Jenkins, 1970), they show

that the two programs can yield very similar adjustments.

2.3 Measuring Revision Error

As new observations become available in a series, the seasonally adjusted values at

the end of the series need to be revised. This is most obvious for seasonal adjustment

procedures which employ moving averages, as data points previous to, and after,

the observation are required. These changes are called revisions, and are a major

cause of concern, especially when the decomposition of the series is to be published.

The revision error is commonly defined as the difference between the concurrent or

real-time seasonally adjusted series (given by Y a
t|t = Yt − St|t) and the seasonally

adjusted series calculated h periods ahead (given by Y a
t|t+h = Yt − St|t+h), where

the ‘a’ superscript denotes ‘adjusted’. Pierce (1980) developed a characterisation

of seasonal revisions in terms of stationary and non-stationary linear time series

models. He showed that a preliminary seasonal estimate and its successive revisions

are mutually independent. This is primarily due to the mutual independence of the

innovations (or disturbance terms) of the observable series (Pierce, 1980). He also

examined revisions calculated with the X-11 procedure and compared them with

those obtained with X-11-ARIMA.

Revisions are not usually applied to seasonally adjusted data which are more

than three years old. When the variance of the final adjusted figure of an observa-
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tion at time t, using h subsequent observations (Y a
t|t+h), is reduced to almost half

the variance of the current adjusted figure (Y a
t|t), the period is referred to as the

half-length. For X-11, the filters have a half-length of approximately seven years.

However, due to the latter weights being very small, three years is usually adequate

for revision purposes (Burridge and Wallis, 1984), after which the reductions are

negligible.

A standard error may be applied to preliminary adjusted values as an indication

of their reliability. For a basic structural model, the variance of the seasonally

adjusted series is available and is the focus of the paper by Burridge and Wallis

(1984). This is discussed in more detail in Section 3.6.1 of this thesis. Revision

error, for both the univariate approach and multivariate approach, is detailed in

Chapter 6.

Planas and Rossi (2004) investigate the reliability of real-time output gap mea-

sures and whether using inflation data improves the revision errors. They note that

the standard error of the revisions rely on the model parameters, which in turn

depend upon the length of the series. An empirical approach to the calculation of

the revision error variance is therefore proposed. Their method is based on recur-

sively estimating the model parameters as new observations become available. They

conclude that for three out of the four cases tried, in comparison to univariate mod-

elling, the bivariate approach of Phillips curve modelling substantially improved the

reliability of the estimate of real-time output gap measures (Planas and Rossi, 2004,

p128).

2.4 Seasonal Adjustment of an Aggregate Series

If an aggregate series is broken down into a several sub-series, then seasonal adjust-

ment may be performed on the aggregate series alone, or using each of the sub-series.

The definitions of direct and indirect seasonal adjustment are reviewed:

1. In direct seasonal adjustment, the seasonal component is estimated from a

single (aggregated) series and then removed.
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2. In indirect seasonal adjustment, each of the sub-series is seasonally adjusted

separately and then they are summed to obtain the seasonally adjusted aggre-

gate series.

There is extensive debate on whether to use the indirect or the direct approach

to seasonal adjustment (see Ghysels, 1997; Hood and Findley, 2003; Ladiray and

Mazzi, 2003; and Otranto and Triacca, 2002). Most of the discussion focuses on

filter-based methods such as X-11, and its subsequent variants, due to the fact that

the seasonally adjusted series resulting from the two methods can, and usually do,

differ (Hood and Findley, 2003). Questions arise as to which method produces

the more accurate estimates, how to compare the methods, and, if one method is

not always better than the other, under what conditions each method should be

employed.

Both direct and indirect seasonal adjustment employ univariate analyses. Al-

though the indirect method utilises all the sub-series, it does not do so jointly.

By using a model-based approach, seasonal adjustment may be performed on the

aggregate series using all the information in the sub-series by borrowing strength

from the connections between the sub-series and their components. The indirect

approach is not considered in this thesis, apart from taking into account the results

from previous studies as a guide to designing the experimental study discussed in

later chapters. However, the discussion of direct versus indirect seasonal adjustment

provides insight into the possible situations which may benefit from a multivariate

approach.

A thorough discussion of the direct versus indirect methods is given in Hood and

Findley (2003) with reference to the X12-ARIMA and the SEATS (Signal Extraction

in ARIMA Time Series) programs. In general, they comment that when the sub-

series

“have quite distinct seasonal patterns and have adjustments of good

quality, indirect seasonal adjustment is usually of better quality than di-

rect adjustment. On the other hand, when the component series have

similar seasonal patterns, then summing the series may result in noise
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cancelation, and the direct seasonal adjustment is usually of better quality

than the indirect adjustment” (Hood and Findley, 2003, p10).

Diagnostics of the two methods which measure the adequacy and quality of

the adjustments can be calculated. The diagnostics include the spectral diagnostic

for residual seasonality, and stability diagnostics such as sliding spans and revision

history measures which test the stability of the estimates as new data are introduced.

These diagnostics are produced by the X12-ARIMA program and it is suggested that

they should be determined for the aggregate series as well as for the sub-series.

It is not an easy task to compare direct and indirect adjustment, due to the fact

that the methods can produce different estimates. When looking for smoothness,

and if the series are adjusted additively, Hood and Findley (2003) suggest looking at

the differences of the seasonally adjusted aggregate series obtained with the direct

and indirect methods. Alternatively, if the series are multiplicative, the ratio (rather

than the difference) is appropriate.

Ladiray and Mazzi (2003, p40) state that indirect adjustment should be preferred

to direct adjustment if the

“sub-components do not have similar characteristics or if the relative

importance of the sub-series (in terms of weight) is changing very fast.”

They clarify the idea of similarity of sub-series by saying that the direct approach

could be more suited to ‘horizontal’ or geographical aggregation (e.g. by country)

and the indirect approach to ‘vertical’ or sectorial aggregation, such as by sector,

branch or product. In addition to the diagnostic measures described by Hood and

Findley (2003), Ladiray and Mazzi (2003, p40) computed two measures called the

mean and maximum of the Absolute Percentage Deviation; these both measure

the relative difference between the direct and indirect adjusted series. They also

considered the degree of consistency in growth rate as the growth rates should have

the same sign and thus basically convey the same message.

Several different criteria are used in assessing the quality and adequacy of direct

and indirect seasonal adjustment when using a filter-based method such as X12-
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ARIMA (see Hood and Findley, 2003; Ladiray and Mazzi, 2003; and Otranto and

Triacca, 2002). In essence, the indirect adjustment is favoured when the sub-series

have different characteristics and direct adjustment is favoured when the sub-series

are similar.

A comparison of three seasonal adjustment methods with respect to both tempo-

ral and sectoral aggregation is discussed in Geweke (1978). Using spectral densities,

Geweke calculated the mean squared error (MSE) using the multivariate, indirect

and direct methods of seasonal adjustment for stationary series. He then compared

the MSEs of the different methods for several time series. His example featuring

data on housing starts is particularly relevant. In this example, Geweke studied

housing starts for four regions of the United States. He noted that the variances

were largely different for the four series. He also noted that the correlation among

the seasonal factors was higher than the correlation among the non-seasonal factors.

The results of the comparison showed that the MSE achieved with the multivariate

method was approximately half that of the other two approaches.

For model-based seasonal adjustment, Geweke (1978) concluded that the covari-

ance structure between the series is crucial. He found that the joint ARIMA model

was advantageous, as summarised by Taylor, when the sub-series are

“very heterogeneous, or where the stochastic structure of the non-

seasonal and seasonal components are dissimilar”. (Taylor, 1978, p432)

The ‘optimal procedure’ referred to here is the joint or multivariate method. On

the other hand, if the individual series are homogeneous, the efficiency gains are

relatively small. The homogeneous model is is referred to in Section 3.3.1 and

discussed in more detail in Section 5.6.1.

Planas and Campolongo (2001) used ARIMA models to confirm and extend the

results in Geweke (1978). They studied the seasonal adjustment of contemporane-

ously aggregated series and compared the relative accuracy of the direct method with

the indirect and multivariate methods. They confirmed Geweke’s result that when

the stochastic properties of the two series are even slightly dissimilar, the indirect

adjustment is more precise than the direct adjustment. To compare the accuracy of
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the seasonally adjusted series, Planas and Campolongo (2001) calculated the final

estimation error of the non-seasonal component using the Wiener-Kolmogorov filter.

The variance of the final estimation error was calculated following the procedure by

Ghysels (1997) for the indirect case and by Geweke (1978) for the multivariate case.

The multivariate adjustment was found to be the most accurate estimation in terms

of the final estimation error.

Also using ARIMA model-based methodology, Maravall (2006), discusses the

direct and indirect seasonal adjustment of an aggregate series with reference to an

example: the exports, imports and balance of trade Japanese series. Using the

TRAMO-SEATS program, he obtains the seasonally adjusted series of the balance

of trade series with direct and indirect adjustment. No residual seasonality is found

in either of the seasonally adjusted series produced. In the case of the computed

revisions in the two seasonally adjusted series, the means are close to zero, but

the RMSE for the indirect adjustment is found to be higher than for the direct

adjustment. Maravall (2006) also shows that a smoother seasonally adjusted series

and trend-cycle series is obtained with the direct adjustment. With these results,

the conclusion points towards preference for direct seasonal adjustment at any level

of aggregation:

“because aggregation modifies the dynamic structure of the series, and

because seasonal adjustment is a non-linear transformation of the origi-

nal series, aggregation constraints between the series cannot be expected

to be preserved”. (Maravall, 2006, p2189)

Revision error is the error associated with the degree of revision a component

estimate undergoes when new observations become available. Total revision errors

of the three methods which had not been considered by Ghysels (1997) or Geweke

(1978) are reviewed by Planas and Campolongo (2001). The indirect and direct

methods performed better in many of the test cases than the multivariate method,

thus giving no optimality if revision errors were considered (Planas and Campolongo,

2001). The estimation with the multivariate ARIMA model was noted as difficult

to implement due to its complexity.
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Studies described above by both Geweke (1978) and Planas and Campolongo

(2001) cover the direct, indirect and multivariate seasonally adjusted series using

ARIMA models. The work presented in this thesis focuses on the univariate and

multivariate basic structural models and their comparison in relation to the variance

of the seasonally adjusted series.

2.5 Applications of the Multivariate Basic

Structural Model

Due to the flexibility of the basic structural model and its state space form, multiple

time series can be modelled jointly with little difficulty. Extending this idea, a target

series can be modelled jointly with one or more related series in order to obtain better

estimates of the time series components of the target series.

Harvey and Chung (2000) calculated the filtered estimates in a bivariate BSM

model and discussed the improvement in the root mean squared error (RMSE) of

the slope component over that obtained from just using the univariate model. He

found that the gains achieved in the estimation of the slope component using the

bivariate model came primarily from the high correlation between the slopes of the

two series.

The U.S. Bureau of Labor Statistics (BLS) applied state space models in estimat-

ing monthly employment and unemployment estimates for each of the 50 states and

the District of Columbia. The models were fitted to the direct sample estimates ob-

tained from the Current Population Survey (CPS) (Pfeffermann and Tiller, 2003). A

filtering algorithm is developed for state space models with correlated measurement

errors. The sampling errors are included as part of the observation (measurement)

equation instead of the current practice of including them in the state vector. The

states are grouped into a number of homogeneous groups (those States with similar

labour force behaviour) and then the model is fitted jointly with added constraints.

The empirical illustration fits the BLS model to the direct CPS unemployment esti-

mators in 9 census divisions of the USA with the constraint that the Census divisions

unemployment are benchmarked to the total national unemployment. Thus, use of
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a multivariate state space model with added constraints leads to estimates which

borrow strength from both past and disaggregated data (Pfeffermann and Tiller,

2003, p3).

Similarly, Marshall (1992) applies the multivariate BSM to a cross-section of time

series. He investigates the relative efficiency of the filtered estimates as a function

of both time and the number of units (or series). He concentrates on estimation of

the time-dependent means by using the Kalman filter applied to the multivariate

local level model, and reports that there are gains in using all the series to do so.

A specific focus of this thesis is in establishing whether there are gains in the

estimation of the seasonal component of the total series by jointly modelling the sub-

series. This topic extends the work carried out by Marshall through focussing on

the seasonal component and simultaneously using the ‘related series’ idea of Harvey.

In this case, the sub-series are treated as related series and the aggregate series is

considered the target series.

The component estimates included in the state vector which apply to the sub-

series are not of direct interest here but are calculated in order to obtain a better

estimate of the structural components of the total series. It will be shown that under

certain conditions, this procedure will enable the seasonal component estimates to

be calculated with greater accuracy than if the total series was modelled by an

univariate approach.

2.6 Short Time Series

A time series is referred to here as short if there are 5 or fewer years of data points

available. An example is a time series with five years of monthly data, that is,

60 data points. Under a filter based system, seasonal adjustment requires at least

three, but preferably five, years of data, due to constraints implied by the method

of calculation of the moving averages, as described in Section 2.1.1.

Mir and Rondonotti (2003) studied the performance of the X-12-ARIMA pro-

cedure in the seasonal adjustment of short time series. They applied Monte Carlo
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simulation techniques to compare the adjustment of a five year series (a short se-

ries) to one which has a fifteen year history (a long series). The first two years of

the adjusted short time series were found to be ‘seriously distorted’. This occurred

especially when the original series had a highly variable seasonal pattern. However,

when they compared the last two years of the adjusted short series to the adjusted

long series, the former was ‘only slightly inferior’ to the latter.

When a survey undergoes a major innovation, the new and old surveys are usually

both administered for an overlapping period of typically one to two years. Informa-

tion regarding the effects of the change are required, however the new survey does

not have the required number of time points to apply typical seasonal adjustment

procedures. Gatto (2006) proposes a method of using the estimates of the compo-

nents of the old survey to obtain estimates of the new series components. He allows

each component in the new series to be a function of the estimated component of the

old series. For the old survey, which has 12 years of quarterly data, he utilises the

TRAMO-SEATS program, which is based upon a model-based canonical decompo-

sition of the series to estimate the components. By minimising the sum of squared

estimates for the irregular component, he obtains estimates of the coefficients linking

the old and new survey components. By projecting the coefficients estimated in the

overlapping period onto the components of the old survey over the historical data,

a ‘new’ series is produced for the past data. This projected series is consistent with

the new survey results and is long enough for seasonal adjustment procedures to be

applied.

Mazzi and Savio (2003) compared the quality of the performance of two widely

used programs for seasonal adjustment: TRAMO-SEATS (model-based) and X-

12-ARIMA (filter-based) for different length time series. They apply the methods

to short series (5 years of data), medium series (10 years of data) and long length

series (20 years of data). The main finding is that the quality of seasonal adjustment

reduces as the length of the series shortens. A variety of measures are calculated

and compared given the output from the two programs. The measures of quality

assessment are adapted from Ladiray and Mazzi (2003). More specifically, ‘the
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deterioration is found to be proportionally greater passing from long to medium,

than from medium to short time series’. The results imply that greater instabilities

exist in the seasonal adjustment process at the start of the series, than at the end of

the series (Mazzi and Savio, 2003, p9). Further, such instabilities seem to be greater

for the model-based approach (TRAMO-SEATS).

2.6.1 Short Time Series and Longitudinal Analysis

Another area of statistics which sometimes includes short series is the analysis of

longitudinal data. In a study conducted by Feder et al. (2000), the data consist of

longitudinal observations which are repeated measurements on the same units over

a number of occasions with fixed or varying time periods between the occasions.

The observations have a hierarchical structure in which individuals (first level) are

within households (second level). Thus, each vector observation may be treated as

a time series, usually of short length.

In order to model both the hierarchical and longitudinal nature of the data they

propose ‘a time series multi-level model which combines separate cross-sectional

two-level models by modelling the evolution of the first and second level random

effects over time’ (Feder et al., 2000, p57). The multi-level model may be written

in state space form and the time series relationships can be proposed for the vector

of coefficients and the random effects. An AR(1) relationship is assumed for both

the first and second level random effects. Given the large number of parameters to

be estimated, they propose a two-stage estimation process:

1. multi-level modelling estimation for the cross-sectional parameters; and

2. state space model estimation for the time series parameters.

The first stage involves fitting a multi-level model to each series separately to

obtain iterative generalised least squares (IGLS) estimates of the time dependent

fixed effects and the variances of the random effects. The second stage involves

holding fixed the parameters estimated in first stage, and the remaining parameters

of the combined model (three AR coefficients and corresponding residual variances)
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are estimated by maximum likelihood estimation. The application of the Kalman

filter is carried out after setting the required initial values.

As noted by Feder et al. (2000, p60), ‘The Kalman filter is initialized by the

unconditional means and variances of the random effects under the model, but at

time t = 1 the moments holding for units in the sample can be different because of

the sampling effects. For long enough series and under some regularity conditions,

the estimates derived from the maximization of the likelihood are not sensitive to the

initialization of the procedure. However, with short series, improper initialization

under informative sampling could distort the estimation process’.

In a simulation study, Feder et al. (2000, p61) demonstrated that ‘under non-

informative sampling it is possible to successfully fit simple but non-trivial time series

models to very short longitudinal series, provided that the number of observed series

is sufficiently large’.

Thus, previous research shows that in appropriate circumstances, the Kalman

filter may be applied to short series. In Chapter 6 of this thesis, the accuracy of the

estimated time series components will be examined for different series lengths.

2.7 Modelling Survey Errors within a State Space

Model Context

When analysing time series that have been constructed from panel estimates, it

is important to account for the autocorrelations of the survey errors. Pfeffermann

et al. (1998) developed a method of estimating the survey error autocorrelations

(SEA) based on the raw panel estimates. These SEA estimates were then used ‘to

construct simple state space models that allow the separation of the trend of the

population values from the spurious trend induced by the movement of the survey

errors’ (Pfeffermann et al., 1998, p340). That is, by estimating the SEAs, researchers

were able to identify and estimate time series models for the survey errors. Illus-

trations include both Australian Labour Force Survey and U.S. Labor Force Series

(Pfeffermann et al., 1998). An AR(2) model provided a good approximation for the

survey errors in the Australian data. Fitting of the model to the observed series
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of the direct survey estimates was carried out in two stages. This was necessary to

deal with the identifiability problem caused by the stochastic structures within the

population trend and the long-term behaviour of the survey errors. The two stages

are:

1. Estimate the survey error model parameters by:

• using the variance and autocorrelations computed from the distinct panel

estimates;

• solving the Yule Walker equations to obtain the estimators of the AR(2)

coefficients and the residual variance.

2. Estimate the population model parameters by maximum likelihood with sur-

vey error model parameters held fixed at their estimated values. The Kalman

filter was used to calculate the innovations and their variances. The OPTMUM

routine in the GAUSS software was used.

Feder (2001) gives an example of using a multivariate BSM to estimate the

number of households in Canada. The survey errors were estimated by an AR(3)

process and the parameters were included in the state vector. The BSM includes

a bias to allow for benchmarking of the filtered estimates on the Census figures.

Using maximum-likelihood estimation, the autocorrelations of the survey errors were

estimated by including them as hyper-parameters.

2.8 Intervention Analysis

Intervention analysis models the effect of a dynamic change on a time series at

a known point in time (Pena et al., 2001). The cause of the change may be a

particular event or a result of a policy change on a time series (Harvey, 1989). It

can be modelled by a dummy explanatory variable.

When there is a break in the series, or a change in the methodology used to

produce a series, it may be viable to treat the series for the old and new surveys as
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one continuous series. If τ is the time point at which the new survey begins, then

intervention analysis could be used to determine the effect, if any, on the trend and

seasonal factors after time τ . This analysis could be done within a basic structural

model (BSM) framework.

Harvey and Durbin (1986) modelled the effect of seat belt legislation introduced

in Britain on January 31, 1983 for front seat occupants of cars and light goods ve-

hicles. They used intervention analysis based on a structural time series model to

estimate the changes in casualty rates for different categories of road users following

the introduction of the legislation. Within the BSM they used the trigonometric

approach (described in Appendix B) to modelling seasonality and incorporated an

intervention variable to model the change in the level of the series after the intro-

duction of the law. They comment on the flexibility of the structural model, which

allows a considerable amount of complexity to be accommodated within the model,

such as explanatory and intervention variables. The model is written in state space

form and the Kalman filter is applied for estimation of the time series components,

the explanatory and intervention variables.

Durbin and Koopman (2001) also investigate the use of the structural model

with intervention variables. They extend the study to a bivariate model for the

front seat passengers and rear seat passengers killed and seriously injured. The rear

seat series is used as the related series but in these circumstances it is also used as

a control group. The bivariate model results in a more precise measure of the effect

of the seat belt law on front seat passengers. In fact, the results show that the root

mean squared error is almost halved for the estimated intervention coefficient for

the level component of the front seat series.

A multivariate structural time series model with intervention analysis is also con-

sidered, among more traditional methods, by Sridharan et al. (2003). They examine

the impact of new legislation regarding sentencing of felony offenders on reported

crime rates committed on or after January 1, 1995. The multivariate BSM allows

simultaneous consideration of a set of time series where some series are considered

as treatment series and others as control series. When correlations between the
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components are high, the components of the target series will be estimated with

the combined use of the other control series rather than just using the univariate

target series individually. Sridharan et al. (2003) found that this procedure leads to

a more effective intervention analysis than other more traditional methods such as

ARIMA models and regression models with correlated errors. It is also noteworthy

that the data only included four years of post-intervention observations and that

the intervention variable was modelled as a step variable to account for a level shift.

The work described above discusses intervention analysis which allows for level

shifts in one or more time series. When there is a change in the survey methodology,

(such as a change in the sample design or a change in the questionnaire design) or a

break in a series, it is not only the trend of the series that may be affected but also

the seasonal pattern. Penzer (2006) proposes a method of detecting seasonal shifts

within the structural time series approach. He formulates diagnostic statistics which

can be generated from the output of the smoothing algorithm associated with the

Kalman filter. The flexibility and transparency of the basic structural model allows

intervention variables to be added into the model. Within the ARIMA model-based

approach, Kaiser and Maravall (2003) discuss different specifications for a seasonal

outlier particulary with respect to the automatic procedures of outlier detection

(such as in the TRAMO program). They propose an extended procedure which

adds the seasonal level shift outlier to the standard method. The seasonal level

shift, which can affect both the trend and the seasonal component, is discussed in

detail through simulation and real data examples.

2.9 Conclusion

Seasonal adjustment may be performed by filter-based methods or model-based

methods as described in this chapter. For an aggregate series, the adjustment can

be made on the aggregate series directly, or it can be be done indirectly using

the sub-series. Although each of the sub-series is utilised in the indirect approach,

each series is seasonally adjusted individually rather than jointly. A multivariate
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approach to seasonal adjustment is an alternative to both the direct and indirect

methods. Limited research has been done in this area, and mostly with ARIMA

models.

Previous studies have shown that the multivariate basic structural model has

been effectively used to achieve gains in the estimation of series components of a

target series. There is scope for additional research in the area of joint modelling

of time series for the purpose of seasonal adjustment of an aggregated series. The

next chapter describes the univariate and multivariate basic structural models and

proposes a methodology for estimating time series components of an aggregated

series.



Chapter 3

Modelling Disaggregated Series

3.1 Introduction

A structural time series model allows time series characteristics such as trend, sea-

sonal and error components to be modelled specifically. The basic structural model

will therefore be the model of choice for this thesis.

The series of observations of the aggregated series, Y1, . . . , YT , will be modelled

by an univariate additive basic structural model (BSM). If the aggregated series is

a sum of K sub-series, for t = 1 . . . T , then,

Yt =
K∑

k=1

Ykt (3.1)

and Y1t, . . . , YKt, may be modelled jointly with a multivariate BSM.

This chapter details the models to be applied to the univariate aggregated (or

total) series (Section 3.2) and the system of sub-series underlying the aggregated

series (Section 3.3). The univariate and multivariate models are then converted into

state space form (Section 3.4). Applying a transformation to the multivariate model

of the sub-series, the series components for the aggregate series may be determined

directly from the multivariate model (Section 3.4.3). The Kalman filter, which yields

the estimates of the series components and their mean squared errors, is then detailed

for each approach (Section 3.5). A measure of comparison of the mean squared errors

of the seasonal component given by the two approaches is then proposed (Section

32
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3.6).

3.2 Univariate BSM

For a single additive time series, the observations at time t, denoted by Yt, may be

written as the sum of a local linear trend, Lt, a seasonal component, St, and an

irregular or disturbance term, εU, t. This basic structural model may be written in

the notation adopted by Feder (2001), for t = 1, . . . , T as

Yt = Lt + St + εU, t, εU, t ∼ N(0, σ2
U, ε), (3.2)

where the U subscript in the serially independent εU, t denotes the univariate model.

3.2.1 The Trend Component

The trend may be assumed to evolve stochastically over time, and may or may not

include a slope term. If a slope term is included then the local linear trend may be

written as

Lt+1 = Lt + Rt + ηU, t, ηU, t ∼ N(0, σ2
U, η), (3.3)

where Lt is the level of the series at time t and Rt is the local rate of change or slope

of the series. The slope may evolve stochastically over time as a random walk:

Rt+1 = Rt + ζU, t, ζU, t ∼ N(0, σ2
U, ζ). (3.4)

If a slope term is not included then the local level trend may be written as

Lt+1 = Lt + ηU, t, ηU, t ∼ N(0, σ2
U, η). (3.5)

The random errors in the univariate trend component, ηU, t and ζU, t, are mutually

and serially independent.

For a comprehensive review of stochastic linear trends, which compares some of

the trend models most often used in practice such as in the ARIMA model-based

approach, the STS approach and the X11 procedure, see Maravall (1993).
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3.2.2 The Seasonal Component

There are several ways of modelling the seasonal component, St, in (3.2). Let the

number of seasons in the year be denoted by s. Thus, for quarterly data, s = 4, and

for monthly data, s = 12. If the seasonal pattern is constant over time, the seasonal

effects can be modelled by the constants S∗1 , . . . , S
∗
s such that

∑s
j=1 S∗j = 0. So the

seasonal component for the jth season in year i is St = S∗j where t = s(i − 1) + j

for i = 1, 2, . . . and j = 1, . . . , s. The constraint to add to zero over s seasons

can be written as
∑s

j=1 Sj = 0, or over any s time periods,
∑s−1

j=0 St+1−j = 0 with

t = s− 1, s, . . . (Durbin and Koopman, 2001, Section 3.2).

If the seasonal effects are allowed to change stochastically over time then a dis-

turbance may be introduced such that

s−1∑
j=0

St+1−j = ωU, t, or St+1 = −
s−1∑
j=1

St+1−j + ωU, t, (3.6)

where ωU, t are independent over time and have distribution ωU, t ∼ N(0, σ2
U, ω). Since

the disturbance term has an expectation of zero, (3.6) still allows the expected value

of the sum of the seasonal effects to be zero over any s time periods. The model for

the seasonal component described in (3.6), is called the dummy seasonal model.

Alternatively, the seasonal component may be modelled by a set of trigonometric

terms at the seasonal frequencies. This is described in detail in Appendix B. Other

ways of expressing the seasonal component have been suggested. One method ex-

tends the dummy seasonal model (3.6) by letting each season evolve as a random

walk, see Harrison and Stevens (1976).

Proietti (2000) looks at four different specifications of seasonal models, including

the dummy seasonal and trigonometric seasonal models. He concludes that their

performance depends particularly on the smoothness of the seasonal pattern. When

the time series has seasonality which changes slowly, the dummy seasonal model is

not preferred. The trigonometric specification allows for smoother changes in the

seasonal components (Harvey and Scott, 1994). However, in one example in Proietti

(2000), the dummy seasonal specification is found to be slightly superior in terms

of forecasting performance. None of the four models studied could be viewed as the
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optimal seasonal model. For a comprehensive review of modelling seasonal effects,

see Proietti (2000).

In this thesis, the dummy seasonal model will be the specification used in the

BSM due to its analytical simplicity. Part of the study in Chapter 4 is repeated

by replacing the dummy seasonal model with trigonometric seasonal model. The

results for the relative efficiency are almost indistinguishable (see Appendix B).

3.2.3 The Disturbance Terms

The disturbance terms ηU, t, ζU, t, ωU, t and εU, t, are assumed to be serially and mu-

tually independent. Their respective variances, {σ2
U, η, σ

2
U, ζ , σ

2
U, ω, σ2

U, ε}, are the pa-

rameters of the univariate model, sometimes referred to in the literature as the

hyper-parameters.

A univariate BSM may be defined by combining a model for the trend and a

model for the seasonal component. A BSM with a level, slope, and dummy seasonal

model is defined by (3.2) - (3.4) and (3.6). It will be used to model the aggregated

series, Yt, given by (3.1).

3.3 Multivariate BSM

If an univariate time series is disaggregated such that the sum of the K sub-series

is the aggregated (or total) series (3.1), then a multivariate BSM can be applied to

the sub-series, Y1t, . . . , YKt.

The observation for series k at time t, denoted by Ykt, is modelled by the level

component, Lkt, the slope component, Rkt, and the seasonal component, Skt, as

described by

Ykt = Lkt + Skt + εkt (3.7)
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where

Lk, t+1 = Lkt + Rkt + ηkt

Rk, t+1 = Rkt + ζkt

Sk, t+1 = −
s−1∑
j=1

Sk, t+1−j + ωkt

k = 1, 2, · · · , K and t = 1, 2, · · · , T.

The disturbance terms εkt, ηkt, ζkt and ωkt are assumed to be serially and mutu-

ally independent. The disturbance terms for the same component, but for different

series, may be correlated; for example, it may be that Cov(η1t, η2t) may not be zero.

The distributions of the disturbance terms are given by




ε1t

...

εKt


 ∼ N(0,Σε),




η1t

...

ηKt


 ∼ N(0,Ση), (3.8)




ζ1t

...

ζKt


 ∼ N(0,Σζ), and




ω1t

...

ωKt


 ∼ N(0,Σω). (3.9)

Each covariance matrix will have dimension K×K. If no restrictions are placed

on the structure of each covariance matrix, apart from being positive definite, then

for each matrix there are K(K + 1)/2 parameters corresponding to K parameters

for each of K sub-series and K(K − 1)/2 covariance terms. Hence, if there are four

components in the model (level, slope, seasonal, and error), then there will be, in

total, 2K(K + 1) parameters which may need to be estimated. Obviously, as K

becomes large, the estimation process could become difficult due to the number of

parameters to be estimated. It is possible to reduce the number of parameters by

placing some restrictions on the structure of each covariance matrix.

Model (3.7) is referred to by Harvey (1989) as a system of ‘seemingly unre-

lated time series equations’ or a SUTSE model. They consist of sub-series which

may be exposed to the same overall economic environment but not subject to any
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cause-and-effect relationships. These sub-series may be linked via correlations of the

disturbances driving the components of the series (level, slope, seasonal and error).

This is referred to as ‘contemporaneous correlation’ (Harvey, 1989, p429).

3.3.1 Placing Restrictions on the Variance Structure

A multivariate BSM may be simplified by reducing the number of parameters to be

estimated. This can be achieved by restricting the structure of some or all of the

covariance matrices. Specific restrictions and their properties have been discussed

in the literature. One restriction leads to the homogeneous SUTSE model, in which

the covariance matrices are proportional to each other (see Harvey, 1989; Fernandez

and Harvey, 1990). However, for a homogeneous model, there is no gain in using

the sub-series to improve estimates of an aggregated series. In this case, ‘the sum of

the individually adjusted series is equal to the adjusted aggregate’ (Harvey, 1989,

Section p437). The properties of a homogeneous model are therefore not beneficial

to the aim of this project. Other ways of restricting the structure of the covariance

matrices will be examined.

Many areas of statistics employ the concept of random error terms which have

been broken into more specific random components such as common and unit-specific

components. These include longitudinal data analysis, multi-level data analysis,

mixed effects models, and variance components models. More specific to the problem

at hand, however, is the work carried out by Marshall (1992), who looks at cross-

sections of time series. Within the framework of a BSM, Marshall (1992) decomposes

the disturbance terms and relates these to the random error terms in a dynamic error

components model (see Marshall, 1992; Harvey and Shephard, 1993). Marshall uses

the example of a multivariate local level model:

Ykt = Lkt + εkt (3.10)

Lk, t+1 = Lkt + ηkt.

In this model, there are K(K + 1)/2 parameters in the covariance matrix for

(ε1t, . . . , εKt)
′ and the covariance matrix for (η1t, . . . , ηKt)

′. This gives a total of



Chapter 3. Modelling Disaggregated Series 38

K(K + 1) parameters.

Marshall (1992) then decomposes the disturbance terms into common effects (εt

and ηt), which are time specific, and time-unit specific effects (ε∗kt and η∗kt). Model

(3.10) is then rewritten as:

Ykt = Lkt + εt + ε∗kt (3.11)

Lk, t+1 = Lkt + ηt + η∗kt

where εt, ε∗kt, ηt, and η∗kt are assumed to be independent Normal random variables

with zero mean and variances σ2
ε , σ2

ε∗ , σ2
η, σ2

η∗ respectively. Therefore, the resulting

two covariance matrices have a compound symmetry structure given by:

Σε = σ2
εJK + σ2

ε∗IK and Ση = σ2
ηJK + σ2

η∗IK (3.12)

where IK is the K × K identity matrix and JK is the K × K matrix of all ones.

The number of parameters has therefore reduced from K(K + 1) as given in (3.10)

to just four parameters, namely σ2
ε , σ2

ε∗ , σ2
η, σ2

η∗ .

Alternatively, by allowing the time unit-specific effects, ε∗kt and η∗kt to have unit-

specific variances, σ2
kε∗ and σ2

kη∗ respectively, the term including the identity matrix

is replaced by a diagonal matrix D:

Σε = σ2
εJK + Dε∗ and Ση = σ2

ηJK + Dη∗ , (3.13)

where

Dε∗ = diag
[
σ2

1ε∗ , . . . , σ
2
Kε∗

]
and Dη∗ = diag

[
σ2

1η∗ , . . . , σ
2
Kη∗

]
. (3.14)

Thus, there are (K + 1) parameters in each covariance matrix, giving 2(K + 1)

parameters to be estimated in a local level model with this structure.

The above two alternative covariance structures for the multivariate local level

model may be easily extended to the multivariate BSM. The model for the observa-

tion, Ykt, at time t and for series k, is given below with k = 1, 2, . . . , K representing
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the K sub-series with dummy seasonal components:

Ykt = Lkt + Skt + εt + ε∗kt, (3.15)

Lk, t+1 = Lkt + Rkt + ηt + η∗kt,

Rk, t+1 = Rkt + ζt + ζ∗kt,

Sk, t+1 = −
s−1∑
j=1

Sk, t+1−j + ωt + ω∗kt.

The disturbance terms, εt, ε∗kt, ηt, η∗kt, ζt, ζ∗kt, ωt, ω∗kt are assumed to be indepen-

dent Normal random variables. The resulting four covariance matrices may have

the following structure (Marshall, 1990):

Var(xt1K + x∗t ) = Σx = σ2
xJK + Dx∗ , (3.16)

where

x stands for η, ζ, ω, or ε,

x∗t stands for (η∗1t, . . . , η
∗
Kt)

′, (ζ∗1t, . . . , ζ
∗
Kt)

′, (ω∗1t, . . . , ω
∗
Kt)

′,

or (ε∗1t, . . . , ε
∗
Kt)

′

Dx∗ = σ2
x∗IK or Dx∗ = diag

[
σ2

1x∗ , . . . , σ
2
Kx∗

]
, (3.17)

1K is a K dimensional vector of one’s,

IK is a K ×K identity matrix,

JK = 1K1
′
K , (a K ×K matrix of all ones).

The first structure for the covariance matrix Dx∗ proposed above in (3.17) will be

referred to as Model 1 and the second will be referred to as Model 2.

Model 1: Compound Symmetry

The first covariance structure, Dx∗ = σ2
x∗IK , described above for the unit-specific

disturbances, is just a multiple of the identity matrix, and has only one unknown

parameter. Therefore, together with the common variance, σ2
x, there are only two
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parameters for each component (level, slope, seasonal, irregular) included in the

model. The full BSM model would therefore have eight unknown parameters.

For example, if K = 2, the covariance matrix for the level component would be

Ση =


 σ2

η + σ2
η∗ σ2

η

σ2
η σ2

η + σ2
η∗


 . (3.18)

If the correlation between the individual series for the level component is denoted

by ρη, then, for the compound symmetry model, it is the same for each pair of series:

ρη =
σ2

η

σ2
η + σ2

η∗
. (3.19)

Similarly for ρζ , ρω and ρε.

Since the aggregated series is the sum of the K sub-series (3.1), the following

constraint can be applied to the variance of the level component for the aggregated

series

σ2
tot,η = 1

′
KΣη1K

= K2σ2
η + Kσ2

η∗ . (3.20)

Application of this constraint will be similar for the other components (slope, sea-

sonal and irregular) in Model 1, giving:

σ2
tot,ζ = K2σ2

ζ + Kσ2
ζ∗ ,

σ2
tot,ω = K2σ2

ω + Kσ2
ω∗ ,

σ2
tot,ε = K2σ2

ε + Kσ2
ε∗ .

(3.21)

These constraints will be used when setting parameter values for the purpose of

simulating the total series and sub-series for Model 1 in Chapter 4.

Model 2: Series-specific Variances

For Model 2, the K unit-specific variances are the variances which are specific to

the K sub-series and will therefore be termed ‘series-specific’. These are allowed
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to differ as given by the definition for Model 2. The alternative structure for D∗
x,

has K different values on the diagonal, and hence would have (K + 1) unknown

parameters for each of the 4 component covariance matrices. Thus, in total there

would be 4(K + 1) unknown parameters for the model.

For example, if K = 2, then the covariance matrix for the level component would

be

Ση =


 σ2

η + σ2
1η∗ σ2

η

σ2
η σ2

η + σ2
2η∗


 . (3.22)

If the correlation between series k = 1 and series k = 2 for the level component

is denoted by ρ1, 2, η, then

ρ1, 2, η =
σ2

η√
(σ2

η + σ2
1, η∗)(σ

2
η + σ2

2, η∗)
. (3.23)

Similarly for ρζ , ρω and ρε.

The constraint for the level component for Model 2 would take the form

σ2
tot, η = K2σ2

η +
K∑

k=1

σ2
kη∗ , (3.24)

and similarly for σ2
tot, ζ , σ2

tot, ω, and σ2
tot, ε. These constraints will be used when set-

ting parameter values for the purpose of simulating the total series and sub-series

for Model 2 in Chapter 4. When using the exact parameter values, the values of

the parameters obtained from the multivariate model for the total series, namely

σ2
tot, η, σ2

tot, ζ , σ2
tot, ω and σ2

tot, ε will be equal to the values of the parameters for the

univariate model σ2
U, η, σ2

U, ζ , σ2
U, ω and σ2

U, ε respectively. When the parameters are

estimated, this property will not necessarily hold.

Other Models

Other options for the variance structure include time-unit specific variances for one

or more components with the remaining components keeping a compound symmetry

structure. In another alternative structure, Dx∗ is a K ×K diagonal matrix but it



Chapter 3. Modelling Disaggregated Series 42

consists of fewer than K different variance components. This would correspond to

having various groupings of sub-series where the variances for the sub-series within

each group are equal. The number of unknown parameters would therefore be re-

duced, but would depend upon the number of groups. Examples of these alternative

structures are discussed in Chapter 7.

3.4 State Space Form

Any basic structural model, whether univariate or multivariate, may be written more

concisely in state space form (SSF). The Kalman filter and the Kalman smoother

(see Harvey, 1989; Durbin and Koopman, 2001) may then be applied to the model

to obtain estimates of the unobserved components, which may include the level,

the slope and the seasonal components. The state space form for each approach is

detailed in the following sections.

3.4.1 Univariate BSM in State Space Form

State space representation for the model described by (3.2) - (3.4) and (3.6), con-

sists of a measurement (or observation) equation (3.25), and a transition (or state)

equation (3.26). The measurement equation describes the observation at time t as

a linear combination of the unobserved components included in the state vector, αt.

The transition equation describes the development of the state vector from one time

point to the next. The state space model may be written (Durbin and Koopman,

2001, Section 3.1) as:

Yt = Zαt + εU, t, (3.25)

αt+1 = Tαt + Gγt, (3.26)
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where, for quarterly data (s=4), and a dummy seasonal component,

αt = [Lt, Rt, St, St−1, St−2]
′
, α1 ∼ N(a1,P1),

γt = [ηU, t, ζU, t, ωU, t]
′
, γt ∼ N(0,Q),

εU, t ∼ N(0, H),

Z =
(

1 0 1 0 0
)

,

T =




1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0




, G =




1 0 0

0 1 0

0 0 1

0 0 0

0 0 0




,

Var (Gγt) =




σ2
U, η 0 0 0 0

0 σ2
U, ζ 0 0 0

0 0 σ2
U, ω 0 0

0 0 0 0 0

0 0 0 0 0




, H = σ2
U, ε. (3.27)

It is assumed that the initial state vector, α1, has a mean and variance given by

E(α1) = a1, and Var(α1) = P1.

In general, αt is a p×1 vector, where p is the number of unobserved components

to be estimated. Thus, a BSM with level, slope and a dummy seasonal component

for quarterly data (s = 4), will have p = 2+s−1 = 5, as given above. With monthly

data (s = 12), the same model will have p = 2 + s − 1 = 13. The vector, γt, has

dimension u×1 and contains the disturbance terms which apply to the state vector.

Z is a 1× p matrix, T is a p× p matrix and G is a p× u matrix. In the univariate

model, H is a scalar.
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3.4.2 Multivariate BSM in State Space Form

The multivariate BSM or SUTSE model (3.7) would usually be written in state space

form in a similar way to the univariate state space form (refer to (3.25) and (3.26)),

with the measurement errors separated from the state vector. This conventional

format requires uncorrelated measurement errors. That is, the covariance matrix,

Σε, is assumed to be diagonal. However, due to the common disturbance term,

εt, the multivariate BSM contains correlated measurement errors, which cannot

be handled by the standard Kalman filter or by standard software packages. To

overcome this problem, Durbin and Koopman (2001, Section 6.4) suggest including

the measurement errors in the state vector.

The state space form is amended to allow for these different dimensions for the

multivariate system of sub-series Y1t, . . . , YKt, as given below. The amended state

space form has the (m) subscript to denote the multivariate model. The state vector

is therefore denoted by α(m), t.

Y(m), t = (Z(m) ⊗ IK)α(m), t, (3.28)

α(m), t+1 = (T(m) ⊗ IK)α(m), t + (G(m) ⊗ IK)γ(m), t, (3.29)

where ⊗ is the Kronecker product (for more detail refer to Appendix A). For

quarterly data (s=4), and a dummy seasonal component for Model 2,

Y(m), t = [Y1t, . . . , YKt]
′
,

α(m), t = [L1t, . . . , LKt, R1t, . . . , RKt, S1t, . . . , SKt,

S1, t−1, . . . , SK, t−1, S1, t−2, . . . , SK, t−2,

(εt + ε∗1t), . . . , (εt + ε∗Kt) ]
′
,

γ(m), t = [ (ηt + η∗1t), . . . , (ηt + η∗Kt), (ζt + ζ∗1t), . . . , (ζt + ζ∗Kt),

(ωt + ω∗1t), . . . , (ωt + ω∗Kt), (εt+1 + ε∗1, t+1), . . . , (εt+1 + ε∗K, t+1)
]′

.

(3.30)
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The system matrices are given by

Z(m) =
(

1 0 1 0 0 1
)

,

G(m) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1




, T(m) =




1 1 0 0 0 0

0 1 0 0 0 0

0 0 −1 −1 −1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0




, (3.31)

and hence the covariance matrix of the multivariate system is

Var
(
(G(m) ⊗ IK)γ(m), t

)
=




Ση 0K 0K 0K 0K 0K

0K Σζ 0K 0K 0K 0K

0K 0K Σω 0K 0K 0K

0K 0K 0K 0K 0K 0K

0K 0K 0K 0K 0K 0K

0K 0K 0K 0K 0K Σε




, (3.32)

where 0K represents a K ×K matrix of zeroes.

Similarly to the state space form of the univariate model (3.27), the seasonal

components contained in α(m), t which have a subscript of t− 1 or t− 2 do not have

disturbance terms associated with them, given the definition of the quarterly dummy

seasonal variable. This means that, similarly to (3.27), the matrix (3.32) contains

2K rows and 2K columns which are zeroes. If K = 2, the covariance matrix for the

level component, Ση, is given by (3.22) for Model 2, and similarly for Σω and Σε.

By firstly writing the model in state space form, and letting x stand for η, ζ, ω, ε,

the variance parameters σ2
x, σ2

1x∗ , . . . , σ2
Kx∗ , may be estimated by maximum likeli-

hood estimation (Durbin and Koopman, 2001, Ch.7). These estimates would then

be substituted into the Kalman filter equations to provide estimates of the unob-

served components of the sub-series contained in the state vector α(m), t. However,

the focus of this thesis is on the aggregated series and so it is desired to estimate
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the model components for the aggregated series using the sub-series. This can be

done more directly by applying a transformation to the above state space model.

3.4.3 Applying a Transformation

The aggregate (or total) series is the series of interest here rather than the individual

sub-series. Therefore, the output from the analysis of the total series using both the

univariate model and the multivariate model is required for comparison purposes.

In standard software packages (such as in the S-PLUS module S+FinMetrics), only

the diagonal elements of the mean squared error covariance matrix of the estimated

components are available. Thus, if the individual sub-series data are used in the

multivariate model, the required output for the total series using the multivariate

model would not be available. The covariances would be required to manipulate the

output into the desired form. A simple way of solving this problem, while continuing

to use standard software, is to make a transformation on the multivariate state space

model. This enables a direct estimation of the components of the total series, and

their mean squared errors, within the multivariate framework.

The proposed transformation allows the total series to be included as one of the

multivariate series. This means that the estimates of the components of the aggre-

gated series and their mean squared errors are directly available from the output

of the Kalman filter ( see Section 3.5) with standard software. Thus, transforming

the data before estimation, saves on manipulation of the results (all of which may

or may not be provided in standard software) after estimation. As will be men-

tioned in Section 6.2.2, this transformation is not necessary for the estimation of the

parameters.

Let A be a K×K transformation matrix:

A =




1 1 1 . . . 1 1

1 0 0 . . . 0 0

0 1 0 . . . 0
...

. . .
...

0 0 0 . . . 1 0




=




1 1 . . . 1

0

I(K−1)
...

0




. (3.33)
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Applying A to obtain the transformed data, the total series becomes augmented

to the data set comprising of series 1 to series (K − 1). The data for series K is no

longer included in the data set. This data set will be referred to as the ‘transformed’

data,

A (Y1t, Y2t, . . . , YKt)
′
= (Ytot, t, Y1t, . . . , YK−1, t)

′
. (3.34)

The transformation is applied to the state space model in (3.28) and (3.29) to

give the following result. (Refer to Appendix A for properties of the Kronecker

product).

Y(M), t = AY(m), t

= A(Z(m) ⊗ IK)α(m), t

= (Z(m) ⊗ IK)(Ip ⊗A)α(m), t

= (Z(m) ⊗ IK)α(M), t, (3.35)

α(M), t+1 = (Ip ⊗A)α(m), t+1

= (T(m) ⊗ IK)(Ip ⊗A)α(m), t + (Ip ⊗A)(G(m) ⊗ IK)γ(m), t

= (T(m) ⊗ IK)α(M), t + (IpG(m) ⊗AIK)γ(m), t

= (T(m) ⊗ IK)α(M), t + (G(m) ⊗ IK)(Iu ⊗A)γ(m), t

= (T(m) ⊗ IK)α(M), t + (G(m) ⊗ IK)γ(M), t. (3.36)

The matrices Z(m), T(m) and G(m) from (3.31) remain unchanged. However

α(m), t, and γ(m), t are renamed with the (M) subscript to allow for the transformed

elements. See (3.40) - (3.41) below.

The transformed model has the state space form:

Y(M), t = Z(M)α(M), t, (3.37)

α(M), t+1 = T(M)α(M), t + G(M)γ(M), t, (3.38)

where

Z(M) = Z(m) ⊗ IK , T(M) = T(m) ⊗ IK , G(M) = G(m) ⊗ IK , (3.39)
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α(M), t = [Ltot, t, L1t, . . . , LK−1, t, Rtot, t, R1t, . . . , RK−1, t,

Stot, t, S1t, . . . , SK−1, t, Stot, t−1, S1, t−1, . . . , SK−1, t−1,

Stot, t−2, S1, t−2, . . . , SK−1, t−2,

εtot, t, (εt + ε∗1t), . . . , (εt + ε∗K−1, t)
]′

, (3.40)

γ(M), t =
[

ηtot, t, (ηt + η∗1t), . . . , (ηt + η∗K−1, t), ζtot, t, (ζt + ζ∗1t), . . . ,

(ζt + ζ∗K−1, t), ωtot, t, (ωt + ω∗1t), . . . , (ωt + ω∗K−1, t),

εtot, t+1, (εt+1 + ε∗1, t+1), . . . , (εt+1 + ε∗K−1, t+1)
]′

. (3.41)

The distribution of γ(M), t is given by γ(M), t ∼ N(0,Q(M)), and this implies

Var
(
G(M)γ(M), t

)
= G(M)Q(M)G

′
(M)

=




Σ(M), η 0K 0K 0K 0K 0K

0K Σ(M), ζ 0K 0K 0K 0K

0K 0K Σ(M), ω 0K 0K 0K

0K 0K 0K 0K 0K 0K

0K 0K 0K 0K 0K 0K

0K 0K 0K 0K 0K Σ(M), ε




. (3.42)

The disturbance terms of the total series are calculated by the following equations

relating them to the disturbance terms of the sub-series:

ηtot, t = Kηt +
K∑

k=1

η∗kt, ζtot, t = Kζt +
K∑

k=1

ζ∗kt,

ωtot, t = Kωt +
K∑

k=1

ω∗kt, εtot, t = Kεt +
K∑

k=1

ε∗kt. (3.43)

If K = 2, the covariance matrix for the level component is given by

Σ(M), η = AΣηA
′ =


 σ2

tot,η 2σ2
η + σ2

1η∗

2σ2
η + σ2

1η∗ σ2
η + σ2

1η∗


 , (3.44)

with σ2
tot, η = 4σ2

η +σ2
1η∗ +σ2

2η∗ from (3.24). Similarly for Σ(M), ζ , Σ(M), ω and Σ(M), ε.
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3.5 Application of the Kalman Filter

A linear Gaussian state space model may be analysed by applying the Kalman filter

and Kalman smoother to the observations. The Kalman filter provides the optimal

estimator of the state vector, αt+1, taking into account observations up to time t,

via a forward recursion. Denote the information provided by Y1, Y2, . . . , Yt, as Yt

when t < T . The Kalman smoother further improves the component estimates and

provides the optimal estimator of the state vector, αt+1 at time t < T , taking into

account all the observations in the sample, Y1, Y2, . . . , YT , denoted by YT .

Let the vector, at+1|t, denote the conditional mean of the state vector, αt+1,

based on information available up to time t. Also, let the matrix, Pt+1|t, denote the

conditional variance for the estimation error of αt+1, based on information available

up to time t. Pt+1|t can also be referred to as the mean squared error (MSE) of

the estimator at+1|t (Harvey, 1989). Therefore, the notation is given as (Durbin and

Koopman, 2001):

at+1|t = E(αt+1|Yt),

Pt+1|t = Var(αt+1|Yt)

= E
[
(αt+1 − at+1|t)(αt+1 − at+1|t)

′|Yt

]
. (3.45)

Note that when the assumption of normality of the disturbances and initial state

vector (3.27) is dropped, the value of at+1|t provided by the Kalman filter minimises

the mean square error within the class of all linear estimators (see Harvey, 1989,

Section 3.2 and Durbin and Koopman, 2001, Section 4.2.1).

3.5.1 Kalman Filter for the Univariate Model

The standard set of filtering equations may be found in Chapter 4 of Durbin and

Koopman (2001). For the univariate BSM in state space form, as described in (3.25)

and (3.26), with corresponding system matrices (3.27), these are given by

at+1|t = Tat|t−1 + Ktνt,

Pt+1|t = TPt|t−1L
′
t + GQG

′
, (3.46)
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where

νt = Yt − Zat|t−1 = Zαt + εU, t − Zat|t−1,

Ft = Var(νt) = ZPt|t−1Z
′
+ H, H = Var(εU, t),

Kt = TPt|t−1Z
′
F−1

t ,

Lt = T−KtZ. (3.47)

Note that in the univariate model, H, F and ν are scalars. For example, if the state

vector has dimension 5 × 1, as given by αt in (3.27), then Z is a 1 × 5 matrix. Kt

is a 5× 1 vector and Lt is a 5× 5 matrix.

The state vector estimator, at|t, and its corresponding error variance matrix, Pt|t,

are defined by:

at|t = E(αt|Yt) = at|t−1 + MtF
−1
t νt,

Pt|t = Var(αt|Yt) = Pt|t−1 −MtF
−1
t M

′
t, (3.48)

where Mt = Pt|t−1Z
′
and has dimension 5 × 1. The updating equations in (3.46)

may also be written in terms of the contemporaneous equations in (3.48) and are

given by:

at+1|t = Tat|t

Pt+1|t = TPt|tT
′
+ GQG

′
. (3.49)

The variance matrix, P1, of the initial state vector α1, is assumed to have the

form:

P1 = κP∞,1 + P∗,1, (3.50)

where κ is a large scalar value, P∗,1 is the covariance matrix of the stationary com-

ponents in α1 and P∞,1 is the covariance matrix of the non-stationary components

in α1, (Zivot and Wang, 2006).

Non-stationary components in the state vector require diffuse initialisation. A

state is called diffuse if its covariance matrix is arbitrarily large. The problem of

dealing with diffuse initial states in the Kalman filter was first solved by de Jong
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(1991). An alternative approach of dealing with diffuse initial conditions is to apply

the exact initial Kalman filter as described in detail in Koopman and Durbin (2000).

The filter equations are derived as κ →∞, and the result is based on the expansion

for F−1
t as a power series in κ−1. It is distinguished from the approximate filter ob-

tained by choosing an arbitrary large value for κ and applying the standard Kalman

filter (3.47). The exact approach is computationally more efficient in the process of

parameter estimation when compared to other initialisation strategies such as that

of de Jong (1991) (Koopman and Durbin, 2000, p293).

In particular, for the univariate BSM with a dummy seasonal component model,

a1 = E(α1) is a 5× 1 zero vector, P∞,1 is a 5× 5 identity matrix and P∗,1 is a 5× 5

zero matrix. The term ‘zero vector’ is used in this thesis to describe a vector in which

each element is zero. Similarly, the term ‘zero matrix’ is used to describe a matrix

in which each element is zero. The exact initial Kalman filter can be applied using

the S+FinMetrics software, in particular the set of functions collectively called the

SsfPack, (Koopman et al., 1999).

3.5.2 Kalman Filter for the Transformed Multivariate Model

The Kalman filter equations (3.46) to (3.49) need to be amended for the state space

form given by (3.37) and (3.38), where the measurement error has been placed

within the state vector. The corresponding system matrices Z(M), T(M), G(M), and

Q(M) are included in (3.40) - (3.42). Only one equation listed in (3.47) requires

modification, (apart from subscripts); Ft is now a matrix, which will be denoted by

F(M), t, and its defining equation becomes

F(M), t = Z(M)P(M), t|t−1Z
′
(M) (3.51)

with H now a zero matrix, denoted by H. The Q(M) = Var(γ(M), t) matrix now

includes the variance matrix for the measurement error terms, Σ(M), ε, as shown in

(3.42).

To compensate for this restructuring of the state vector, the set up of the exact

initial conditions matrices described in Durbin and Koopman (2001, Section 5.2) is
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amended. The P∗,1 matrix, which holds the variance of the stationary part of α1, is

no longer a zero matrix, but now includes the Σ(M), ε covariance matrix in the lower

right K ×K block diagonal. All other elements of the (6K × 6K) matrix are zero.

The P∞,1 matrix (also of dimension 6K × 6K) is no longer an identity matrix. The

lower right K × K block diagonal is replaced by a K × K zero matrix. All other

elements remain the same. For further details of the exact initialisation of the filter

see Koopman and Durbin (2000).

A simplification of the exact initial Kalman filtering process (Koopman, 1997) for

the multivariate model is described in detail in Koopman and Durbin (2000), where

the elements of the observational vectors are brought into the analysis individually.

This method basically converts the multivariate series into an univariate series and

allows computational savings and simplifies the diffuse initialisation process. This

method is applied in the SsfPack of functions in the S-PLUS module S+FinMetrics.

3.5.3 Kalman Smoother

The Kalman smoother takes into account all of the available observations in the

series, not just the observations up to time t. The smoothed estimate of the state

vector, αt, is conditional on all observations, (YT ), and is denoted by at|T . It is the

mean of the distribution of αt given YT and is defined as (Harvey, 1989, Section

3.6):

at|T = E (αt|YT ) . (3.52)

The estimator, at|T , is referred to as a smoother and is given by:

at|T = at|t−1 + Pt|t−1rt−1, t = T, . . . , 1,

rt−1 = Z
′
F−1

t νt + L
′
trt, with rT = 0. (3.53)

The covariance matrix of αt, conditional on all observations (YT ), is defined as

Vt|T = Var (αt|YT )

= ET

[(
αt − at|T

) (
αt − at|T

)′]
(3.54)
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The matrix Vt|T is the MSE matrix of the estimator, at|T , and is calculated by the

recursion:

Vt|T = Pt|t−1 −Pt|t−1Nt−1Pt|t−1

Nt−1 = Z
′
F−1

t Z + L
′
tNtLt. (3.55)

Jointly, these smoothing equations (3.53) - (3.54) are referred to as the ‘fixed interval

smoother’, (Durbin and Koopman, 2001, Section 4.3), and can be applied to the

univariate state space model.

For the multivariate model, each vector and matrix is amended to have the (M)

subscript. Let Y(M), T denote the information provided by all observations in the

transformed set of sub-series, that is, {Ytot,1, Ytot,2, . . . , Ytot,T , Y11, Y12, . . . , Y1T ,. . .,

YK−1,1, YK−1,2, . . . , YK−1,T}. Then, the filter equations may be written as

a(M), t|T = E
(
α(M), t|Y(M), T

)

= a(M), t|t−1 + P(M), t|t−1 r(M), t−1, t = T, . . . , 1.

r(M), t−1 = Z
′
(M) F−1

(M), t ν(M), t + L
′
(M), t r(M), t, with r(M), T = 0. (3.56)

The covariance matrix of the state vector α(M), t conditional on all T observations

is given by:

V(M), t|T = Var
(
α(M), t|Y(M), T

)

= ET

[(
α(M), t − a(M), t|T

) (
α(M), t − a(M), t|T

)′]
, (3.57)

and is calculated by the recursion:

V(M), t|T = P(M), t|t−1 −P(M), t|t−1 N(M), t−1P(M), t|t−1,

N(M), t−1 = Z
′
(M) F−1

(M), t Z(M) + L
′
(M), t N(M), t L(M), t.

The smoother is based on at least as much information as the filtered estimator,

and so the MSE of the smoother will be smaller than the MSE of the filtered esti-

mator (Harvey, 1989, Section 3.6). The estimates of the model components given

by the Kalman filter may be viewed as preliminary estimates, and the smoothed

estimates may be viewed as the final estimates. Dagum and Quenneville (1993)
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used the Kalman smoother estimates obtained from a BSM applied to the series of

Total Department Stores in Canada and found that they were very close to estimates

obtained with X-11-ARIMA.

3.6 Comparison of Univariate and Multivariate

Methods

The main focus of this thesis is to determine whether the use of the underlying

sub-series improves the estimates of the unobserved components of the aggregated

series and hence the seasonally adjusted aggregated series. This chapter has con-

sidered two approaches, an univariate approach applied to the aggregated series,

and a transformed multivariate approach which directly enables the components of

the aggregated series to be estimated, taking into account all the sub-series. This

section focuses on an appropriate measure that can be used to compare these two

approaches. It involves the variance of the seasonally adjusted series. Also of inter-

est to any seasonal adjustment procedure is the revision error. Revision error will

be considered in Section 6.6.

3.6.1 Variance of the Seasonally Adjusted Series

The question arises as to how to calculate the accuracy of the seasonally adjusted

series when a state space model is applied. Burridge and Wallis (1985) answer this

question in more detail for the Kalman filter formulation of signal extraction meth-

ods. They note that the Kalman filter formulation is applicable to non-stationary

time series and that, for stationary series it is equivalent to the classical Wiener-

Kolmogorov theory as applied in Planas and Campolongo (2001). They state that

the appropriate measure of the accuracy of the adjusted data is the error variance

of the seasonal component estimate, conditional on the data. Further, Jain (2001)

declares that an advantage of the structural model-based approach to seasonal ad-

justment is that it estimates the variance of the seasonally adjusted series as a

by-product of estimating the seasonally adjusted series.



Chapter 3. Modelling Disaggregated Series 55

Harvey (1989) explains that when the optimal estimator of the seasonal compo-

nent is obtained by the smoothing algorithm and subtracted from the original series

to give the seasonally adjusted series,

Y a
t|T = Yt − Ŝt|T , t = 1, . . . ,T, (3.58)

then, the ‘root mean squared error (RMSE) of Ŝt|T , and hence Y a
t|T , is also given

by the smoother’ (Harvey, 1989, p303). Hence, the RMSE of Ŝt|t will be given by

the Kalman filter. The conditional mean, at|t, (3.48) is unbiased and is a minimum

mean square estimator of αt|t. The covariance matrix for the estimation error can be

referred to as the mean squared error (MSE) matrix of the estimator (Harvey, 1989,

Section 3.2.3). It is also referred to as the prediction mean squared error (PMSE) as

in Pfeffermann and Tiller (2005). Thus, for the current-adjusted series, Y a
t|t, the error

variance of the seasonal component estimate, conditional on the data, is given by

MSE(Ŝt|t). This is the error variance of the state vector given by the Kalman filter

in the matrix Pt|t (3.48), for the element pertaining to the seasonal component. The

current-adjusted series, Y a
t|t, can be viewed as the preliminary seasonally adjusted

series as it is conditional on observations up to time t.

In this thesis, when using the multivariate transformed model, the error variance

of the seasonal component estimate, conditional on the data for the aggregate series,

MSE(Ŝtot,t|t) will be denoted by MSE(ŜM
t|t ). For the univariate method, MSE(Ŝtot,t|t)

will be denoted by MSE(ŜU
t|t). To compare the two values, the relative efficiency of

the MSE obtained by the univariate method to that of the multivariate method will

be calculated. This ratio is defined by:

REt(M) =
MSE(ŜU

t|t)

MSE(ŜM
t|t )

, t = 1, . . . , T, (3.59)

and can be considered as a preliminary estimate of REks
t (M), which uses the MSE

of the smoothed seasonal component,

REks
t (M) =

MSE(ŜU
t|T )

MSE(ŜM
t|T )

, t = 1, . . . , T. (3.60)

Note that at t = T , REt(M) = REks
t (M). The quantity of interest in the

comparison of the multivariate method with the univariate method is REt(M).
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This is studied in more detail in Chapter 4. When the parameters of the model are

unknown and have to be estimated, a downward bias in the MSE occurs. This will

be discussed further in Chapter 6.



Chapter 4

Empirical Study with Exact
Parameters

4.1 Introduction

To examine the question of whether, and under what conditions, the multivariate

method is beneficial compared with the univariate method in determining a season-

ally adjusted aggregated series, an experimental study is employed. A particular

aggregated (or total) series with known (or exact) parameters is taken and then

disaggregated into two sub-series. The two sub-series are determined by setting the

parameters for each component and for each series. These parameters are used in

determining the elements of the covariance matrices Ση, Σω and Σε. The specifi-

cation of their structure is referred to as the ‘design’ of the sub-series. By fixing

the parameters for the total series, the parameters controlling the sub-series may

be varied. This ‘top-down’ approach allows an experimental way of measuring the

effect of the parameters of the sub-series on the accuracy of the seasonally adjusted

total series.

In the previous chapter, it was noted that the error variance of the seasonal

component estimate conditional on the data, MSE(Ŝt|t), is an appropriate measure

of the accuracy of the adjusted data. Thus, if the error variance of the seasonal

component of the aggregated series is lower when the sub-series are modelled jointly,

then the multivariate method is beneficial, and gains are achieved. The relative

efficiency measure, REt(M), defined in (3.59), is calculated for each different design

57
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of the sub-series underlying the same total series.

By considering the ratio of the variances of the sub-series, and the correlation be-

tween the series for each of the level, seasonal and error components, the conditions

under which gains are achievable with two sub-series are investigated in this chapter.

An ideal situation is created whereby the exact or true parameters are used in an

experiment so that the relative variances can be controlled. That is, using exact

parameters maintains the relative values of the chosen seasonal and non-seasonal

parameters. The results will serve as a guideline for identifying the conditions for

which gains in efficiency occur, without the complication of estimating the parame-

ters.

In a practical situation, the model parameters are unknown and need to be

estimated. The estimation process could further influence the accuracy of the sea-

sonally adjusted data. The estimation procedure and its implications are examined

in Chapter 6.

The following section outlines the model structure and its state space form.

Section 4.3 describes the experimental design and Section 4.3.2 explains the method

of setting the parameters for the different sub-series designs. The application of

the parameters into the Kalman filter to obtain the relative efficiency is detailed in

Section 4.4, with the results in Section 4.5. In Section 4.6, the effect of altering the

parameters of the total series is investigated with two examples.

4.2 Model Structure

For the experimental study of this chapter, the local level seasonal (LLS) model is

chosen rather than the full BSM model. The local level seasonal model is a subset

of the full BSM model with the restriction that the trend does not include a slope

component. This means that the length of the state vector is reduced by K elements,

and the number of parameters is reduced by K + 1. This reduces the complexity of

the model and therefore simplifies the number of combinations of parameters to be

set in the experimental study. A full BSM model is considered as another example
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in Section 4.6

The multivariate model with unit-specific variances (Model 2) of a seasonal local

level model with a dummy seasonal component is modified from (3.15) by removing

the slope component (Rt) giving:

Ykt = Lkt + Skt + εt + ε∗kt,

Lk, t+1 = Lkt + ηt + η∗kt,

Sk, t+1 = −
s−1∑
j=1

Sk, t+1−j + ωt + ω∗kt,

(4.1)

where

εt ∼ N(0, σ2
ε), ε∗kt ∼ N(0, σ2

kε∗),

ηt ∼ N(0, σ2
η), η∗kt ∼ N(0, σ2

kη∗),

ωt ∼ N(0, σ2
ω), ω∗kt ∼ N(0, σ2

kω∗),

(4.2)

and the aggregated series is given by:

Ytot, t =
K∑

k=1

Ykt

= Ltot, t + Stot, t + εtot, t,

Ltot, t+1 = Ltot, t + ηtot, t,

Stot, t+1 = −
s−1∑
j=1

Stot, t+1−j + ωtot, t,

(4.3)

where

εtot,t ∼ N(0, σ2
tot,ε), ηtot,t ∼ N(0, σ2

tot,η), ωtot,t ∼ N(0, σ2
tot,ω). (4.4)

There are three parameters to be set for the three components of the total series,

namely σ2
tot,η, σ2

tot,ω and σ2
tot,ε. The sample size, T , is set to be 40, allowing 10 years

of quarterly data to be analysed. To simplify the number of parameters to be set,

only two sub-series is disaggregated from the quarterly total series, giving K = 2

and s = 4.

Once the parameters for the total series have been set, the nine parameters for

the two sub-series can be determined. Given K = 2, the constraints governing the
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sub-series parameters, as described in (3.43), may be written as

σ2
tot,ε = 4σ2

ε + σ2
1ε∗ + σ2

2ε∗ ,

σ2
tot,η = 4σ2

η + σ2
1η∗ + σ2

2η∗ ,

σ2
tot,ω = 4σ2

ω + σ2
1ω∗ + σ2

2ω∗ .

(4.5)

4.2.1 State Space Form

Univariate: The state space form of the univariate LLS model is determined from the

standard univariate form for the BSM (as described in Section 3.4.1), by excluding

the slope term:

Yt = Zαt + εU, t, (4.6)

αt+1 = Tαt + Gγt, (4.7)

where, for quarterly data (s=4), and a dummy seasonal component,

αt = [Lt, St, St−1, St−2]
′
, α1 ∼ N(a1,P1),

γt = [ηU, t, ωU, t]
′
, γt ∼ N(0,Q),

Z =
(

1 1 0 0
)

, εU, t ∼ N(0, H),

T =




1 0 0 0

0 −1 −1 −1

0 1 0 0

0 0 1 0




, G =




1 0

0 1

0 0

0 0




,

Var (Gγt) = GQG′ =




σ2
U, η 0 0 0

0 σ2
U, ω 0 0

0 0 0 0

0 0 0 0




, H = σ2
U, ε. (4.8)

The state space form of the model is required for the application of the Kalman

filter. The standard Kalman filter is then applied to the univariate model with the
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aggregated series data. This yields the estimates of the components for each time

point and their MSEs.

Multivariate: The multivariate model given above (4.1) is transformed as de-

scribed earlier in Section 3.4.3. As a result of the transformation, the two series in

the system are the total series, Ytot, t, and series 1, denoted by Y1t. The transforma-

tion permits estimation of the seasonal component of the total series, Stot, t, within

a multivariate framework.

The state space model for the transformed system with K = 2 may be specified

as follows, given that the measurement errors are placed within the state vector:

Yt = (Z⊗ I2)α(M), t,

α(M), t+1 = (T⊗ I2)α(M), t + (G⊗ I2)γ(M), t, (4.9)

where I2 is a 2× 2 identity matrix and

α(M), t = [Ltot, t, L1t, Stot, t, S1t, Stot, t−1, S1, t−1, Stot, t−2, S1, t−2,

εtot, t, (εt + ε∗1t)]
′
,

γ(M), t =
[

ηtot, t, (ηt + η∗1t), ωtot, t, (ωt + ω∗1t), εtot, t+1, (εt+1 + ε∗1, t+1)
]′

. (4.10)

The system matrices are given by:

Z =
(

1 1 0 0 1
)

,

T =




1 0 0 0 0

0 −1 −1 −1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0




, G =




1 0 0

0 1 0

0 0 0

0 0 0

0 0 1




,
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Var
(
(G⊗ I2)γ(M), t

)
= G(M)Q(M)G

′
(M)

=




Σ(M), η 0(2×2) 0(2×2) 0(2×2) 0(2×2)

0(2×2) Σ(M), ω 0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2) 0(2×2) Σ(M), ε




, (4.11)

where

Σ(M), η =


 σ2

tot,η 2σ2
η + σ2

1η∗

2σ2
η + σ2

1η∗ σ2
η + σ2

1η∗


 , (4.12)

and similarly for Σ(M), ω and Σ(M), ε.

For the multivariate model, an adjustment to the standard Kalman filter equa-

tions is required due to the measurement errors being in the state vector. As well

as the adjustment to the equation for Ft, an adjustment to the initial condition

matrices is required to allow for the stationary nature of the measurement errors.

This procedure is described in Section 3.5.2. The adjusted Kalman filter is applied

to the state space model described above in (4.9) to (4.11), using the transformed

data.

4.3 Design of the Study

As highlighted in the discussion on direct versus indirect adjustment in Section 2.4,

when the series have similar seasonal patterns, direct adjustment is favoured. Alter-

natively, when the series have dissimilar patterns, indirect adjustment is favoured.

Although neither the direct nor indirect seasonal adjustment involves a multivariate

method, and the methods utilised are mainly filter-based X-12 ARIMA, or model-

based ARIMA, as given in Planas and Campolongo (2001), the conclusions can still

guide the setting of the sub-series parameters here. Planas and Campolongo (2001)

found that when the stochastic properties of the two series were either slightly dis-

similar or strongly dissimilar, the indirect adjustment became more precise than the

direct adjustment. Further, it is the covariance structure between the series which
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is crucial to the results found by Geweke (1978) who used a joint model. Taylor

(1978, p432) summarises the result by stating that ‘in cases where the series that

are aggregated are very heterogeneous, or where the stochastic structure (sic) of the

nonseasonal and seasonal components are dissimilar, the relative efficiency of the

optimal procedure is quite high’. In application to this case study, the parameters

for the first sub-series need to vary from those for the second. That is, the within

components need to vary from being the same (as given by Model 1 in Section 3.3)

to being very different (as given by Model 2 in Section 3.3). Also, the structure of

the covariance matrices for the level component and the seasonal component need

to be considered in relation to one another.

4.3.1 Setting the Parameters

A measure of between-series similarity, c, of the stochastic properties of the series is

defined here to help quantify the comments above. Let cη, cω and cε be the ratios of

the variances of sub-series 1 and 2 within the level, seasonal and error components

respectively. Using the level component as an example, the variance of the level

component for sub-series k is given by:

Var(Lk, t+1 − Lkt) = Var(ηt + η∗kt)

= σ2
η + σ2

kη∗ .

Then the c-ratio for the level component is defined to be:

cη =
Var(L1, t+1 − L1t)

Var(L2, t+1 − L2t)
=

σ2
η + σ2

1η∗

σ2
η + σ2

2η∗
. (4.13)

Hence, analogously for the other components, the c-ratios for the seasonal and error

components are given respectively by:

cω =
σ2

ω + σ2
1ω∗

σ2
ω + σ2

2ω∗
, cε =

σ2
ε + σ2

1ε∗

σ2
ε + σ2

2ε∗
. (4.14)

If cη = cω = cε = 1 then Model 2 reverts to Model 1, the compound symmetry

case, in which all diagonal elements have the same value and the same properties

between series apply for each component. For the seasonal component, it does not
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mean that the set of seasonal factors is the same for sub-series 1 and sub-series 2,

but the degree of stability of the seasonal component is the same.

Planas and Campolongo (2001) examined three cases of stochastic behaviour

in ARIMA models which they called ‘similar’, ‘slightly dissimilar’ and ‘strongly

dissimilar’. The model parameters for each component were varied such that the

stochastic behaviour ranged from very stable (almost deterministic) to very unstable.

In this study, the values of the c-ratios will be varied. For example, to obtain a

strongly dissimilar case for the seasonal component, it would mean setting the value

of cω to be much greater than one or much less than one.

In this study, the c-ratios vary in the set {1, 5, 10, 20} and their reciprocals

{1, 0.2, 0.1, 0.05}. Furthermore, to set a design where the stochastic structures of

the non-seasonal and seasonal components are different, the c-ratios need to differ

between components, and so for one component, it could be greater than one, and

for another component it could be less than one.

With this in mind, combinations of the c-ratios for the components are formu-

lated and are labelled in the following tables. Table 4.1 shows design ‘a’ where all

c-ratios are greater than or equal to one. Note that cη and cε have been set to the

same value in each design thereby reducing the number of combinations considered

and setting the focus on the seasonal c-ratio, cω. Design ‘b’ given in Table 4.2, has

cω > 1 but has the reciprocal of these values for cη and cε.

Table 4.1: Labels for sub-series design ‘a’: cω ≥ 1, and cη, cε ≥ 1.

Design ‘a’ cη and cε

1 5 10 20

cω 1 a11 a12 a13 a14

5 a21 a22 a23 a24

10 a31 a32 a33 a34

20 a41 a42 a43 a44

In addition to setting c-ratios, the correlation between the series need to be

considered for each component. For this study, the correlation values are necessarily
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Table 4.2: Labels for sub-series design ‘b’: cω > 1, and cη, cε < 1.

Design ‘b’ cη and cε

0.2 0.1 0.05

cω 5 b22 b23 b24

10 b32 b33 b34

20 b42 b43 b44

positive, because of the structure of the covariance matrices, as given in (3.23). For

the seasonal component, ρω is set to one of the following values {0.1, 0.3, 0.5, 0.7,

0.9}. For the level and error components, the correlations (ρη and ρε respectively),

are set to be equal and take the values {0.2, 0.4, 0.6, 0.8}. The choice of these values

means that the homogeneous case, in which the covariance matrices are proportional

to one another, is avoided for certain combinations of the c-ratios described above

(Harvey, 1989, Section 8.3). The design table, labelling the correlation combinations

is given in Table 4.3.

Table 4.3: Labels for correlation design combinations of ρω, ρη, and ρε.

Correlations ρη and ρε

0.2 0.4 0.6 0.8 1.0

ρω 0.1 A1 B1 C1 D1 E1

0.3 A2 B2 C2 D2 E2

0.5 A3 B3 C3 D3 E3

0.7 A4 B4 C4 D4 E4

0.9 A5 B5 C5 D5 E5

For example, as reference to Tables 4.1 and 4.3 makes clear, the design A1a23

refers to the case when cω = 5, cη, cε = 10, ρω = 0.1, and ρη, ρε = 0.2. Not all

of the correlation designs are possible for each of the c-ratio design combinations

due to the restrictions and constraints on the multivariate variance parameters, as

explained in the next section.

The nine parameters in the multivariate model may be expressed in terms of the

design of the model defined by {cη, cω, cε, ρη, ρω, ρε, σ2
tot,η, σ2

tot,ω, σ2
tot,ε}.
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4.3.2 Application of Constraints

In this study, the total series remains fixed but the properties of the underlying

sub-series vary. The variance parameters for the total series are set with

σ2
tot,η = 0.01, σ2

tot,ω = 1, σ2
tot,ε = 1, (4.15)

and will therefore be applied to the univariate method.

With these given univariate parameters, as well as the constraints given in (4.5),

the c-ratios and the correlation for the required design, the multivariate parameters

for each component are determined by solving a set of simultaneous equations. For

example, the seasonal component equations are:

σ2
tot,ω = 4σ2

ω + σ2
1ω∗ + σ2

2ω∗ , cω =
σ2

ω + σ2
1ω∗

σ2
ω + σ2

2ω∗
,

ρω =
σ2

ω√
(σ2

ω + σ2
1ω∗)(σ

2
ω + σ2

2ω∗)
. (4.16)

Solving in terms of σ2
tot,ω, cω and ρω, the seasonal parameters are

σ2
ω =

ρω
√

cωσ2
tot,ω

1 + cω + 2ρω
√

cω

,

σ2
1ω∗ =

σ2
tot,ω(cω − ρω

√
cω)

1 + cω + 2ρω
√

cω

, σ2
2ω∗ =

σ2
tot,ω(1− ρω

√
cω)

1 + cω + 2ρω
√

cω

. (4.17)

Since σ2
1ω∗ ≥ 0, σ2

2ω∗ ≥ 0 and σ2
ω ≥ 0, the restrictions on the correlations are such

that,

if cω ≥ 1, then 0 ≤ ρω ≤ 1√
cω

,

and if cω < 1, then 0 ≤ ρω ≤ √
cω. (4.18)

Similar constraints apply to the level and error components.
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4.4 Estimation of Components via the Kalman

Filter

Analysis is performed with the S-PLUS software and, in particular, the set of func-

tions collectively called the SsfPack (Koopman et al., 1999) in the module

S+FinMetrics. For this case study, the exact variance parameters are being used

and therefore do not need to be estimated. The components of the state vector,

α(M),t (see first equation in (4.10)) are estimated using the Kalman filter recur-

sions described in Section 3.5.1, with adjustments as given in Section 3.5.2. This

gives E(α(M),t|Yt) = aM
t|t , and the associated error variance matrix is given by PM

t|t

for t = 1, . . . , 40. The error variance of the current-adjusted seasonal component,

MSE(Ŝtot,t|t), given by the Kalman filter, can be considered to be a preliminary es-

timate of the variance of the seasonally adjusted aggregate series, (Section 3.6.1).

Note that the value of MSE(Ŝtot,t|t) at t = T = 40 is equal to the MSE of the

smoothed estimate MSE(Ŝtot,t|T ), since T = 40 for this example.

For the transformed multivariate model, the value of MSE(Ŝtot,t|t), given the

multivariate parameters, is denoted by MSE(ŜM
t|t ). For the univariate method, given

the parameters for the total series (4.15), MSE(Ŝtot,t|t) is denoted by MSE(ŜU
t|t).

Therefore, the relative efficiency of the filtered estimates for the univariate and

multivariate models is given by

REt(M) =
MSE(ŜU

t|t)

MSE(ŜM
t|t )

, t = 1, . . . , T. (4.19)

This can be considered as a preliminary estimate of the equivalent measure which

uses the MSE of the smoothed seasonal component. Here, REt(M) is the quantity of

interest in the comparison of the multivariate method with the univariate method.

Given the nine exact multivariate parameters, the data for Y1t and Y2t are gener-

ated from the multivariate model equations for t = 40+T as described in (4.1), with

starting values L1 = 5, S1 = −1.5, S0 = −1, S−1 = 0.5 for both series. The first 40

data points of each series are discarded, leaving the t = 1 . . . T simulated quarterly

observations required. For this study, T is set to 40, giving 10 years of quarterly

data. The length of the series is therefore adequate to examine the behaviour of the
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relative efficiency over time. Exact parameters are applied here so that the effect

of the design on the relative efficiency is not obscured by the estimated parameter

values. The effect of estimation is examined in Chapter 6.

The series are summed contemporaneously, Ytot,t = Y1t + Y2t, to obtain the sim-

ulated aggregated series. Since exact parameters are applied to the model, no data

are actually required to obtain the MSE of the seasonal component. For ease of

computation however, one realisation of the data has been used with the exact pa-

rameters in the software S+FinMetrics. It is also possible to calculate the value of

REt(M) by substituting the parameter settings directly into its algebraic expres-

sion for a given value of t. This is because the theoretical expressions for the MSE

values, which differ for each value of t, are a function of the model parameters only.

In Chapter 5, a single measure has been derived for this model as an indicator of

the value of REt(M) using a quasi-likelihood approach.

4.5 Results

Relative efficiencies for simulations based on various parameter combinations are

presented here.

4.5.1 The Effect of the C-ratios

The relative efficiency, REt(M), is determined for each c-ratio combination specified

in Tables 4.1 and 4.2 using the exact parameters. To obtain an overview of these

results, the same correlation combination is chosen for each design, with ρω = 0.1

and ρη = ρε = 0.2. This combination is labelled A1 in Table 4.3.

Figure 4.1 shows the results over t = 1, . . . , 40 for the 16 different ‘a’ designs. The

first noticeable feature is that for t = 1, . . . , 4, the relative efficiency is exactly one.

This result is due to the exact initial Kalman filter, as described in detail in Koopman

(1997) and given in Appendix D, and to the fact that the exact parameter values

have been used with constraints (Section 4.3.2). Using the exact initial Kalman filter

for the local level seasonal BSM, the dependence of the covariance matrix Pt|t on κ
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disappears after t = 4 (see Sections 3.5.1 and 3.5.2 with reference to Koopman and

Durbin (2000, p287) and also Appendix D). However, from t = 5, gains using the

multivariate method are achievable for some, but not all, of the ‘a’ designs. These

gains vary in magnitude and over time. For those designs which achieve gains, the

gains climb in the next few time points to reach a steady value. The time until

approximate convergence depends on the design. For example, design a41 has the

largest relative efficiency, RE40(M) = 1.29, which translates to a reduction in MSE

through using multivariate versus univariate of approximately 22.7%, but has the

slowest rate of convergence.

The next few highest gains are for designs a31, a14 and a13 respectively. Note

that a41 has cω = 20 and cη = cε = 1, and a31 has cω = 10 and cη = cε = 1, both

with a high c-ratio for the seasonal component. For the design a14, cω = 1, cη = cε =

20 and for design a13, cω = 1, cη = cε = 10. Thus, the four ‘a’ designs which give

the highest REt(M) result, have either a high between-series c-ratio for the seasonal

component or a high between-series c-ratio for the non-seasonal components, but

not both. The result is higher if the two c-ratios defining the design are at opposite

ends of the scale. So, even when the variances for the two series are the same for

the seasonal component (cω = 1), if the variances of the non-seasonal components

are very different (cη ≥ 10, cε ≥ 10), a gain is still achievable (although not as large

as when the variances differ) for the total seasonal component.

To explore the differences among the ‘a’ designs in more detail, the numerical

results for T = 40 for each design are extracted. These results, which are equivalent

to RE40(M), are found in Table 4.4. The lowest results for the relative efficiency

belong to the designs which have cω = cη = cε, namely, a11, a22, a33, and a44.

Note that for a11, where cω = cη = cε = 1, represents the compound symmetry case,

(Model 1). As there is no gain in using the multivariate approach for Model 1, it is

recommended to use the univariate approach. Even when all the c-ratios are high,

as in a33 and a44, where the series are largely dissimilar for all components, the fact

that they are equal, overrides the between-series effect. Thus, when the c-ratios are

equal, the structure of the covariance matrices become closer to a homogeneous state,



Chapter 4. Empirical Study with Exact Parameters 70

Time (in quarters)

S
ea

so
na

l R
E

(M
) 

R
at

io
 fo

r 
K

F

0 4 8 12 16 20 24 28 32 36 40

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30 Series 1: Design A1(a)

A1a11
A1a12
A1a13
A1a14
A1a21
A1a22
A1a23
A1a24
A1a31
A1a32
A1a33
A1a34
A1a41
A1a42
A1a43
A1a44

Figure 4.1: Results of REt(M) for sub-series design ‘a’ with A1 (ρω = 0.1, and

ρη = ρε = 0.2).

Table 4.4: Results of RE40(M) for sub-series design ‘a’ with A1 (ρω = 0.1, and
ρη = ρε = 0.2).

Design ‘a’ cη and cε

1 5 10 20

cω 1 a11 1.0000 a12 1.0674 a13 1.1158 a14 1.1588

5 a21 1.0929 a22 1.0005 a23 1.0045 a24 1.0178

10 a31 1.1837 a32 1.0152 a33 1.0008 a34 1.0021

20 a41 1.2945 a42 1.0454 a43 1.0124 a44 1.0010
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Figure 4.2: Results of REt(M) for sub-series design ‘b’ with A1 (ρω = 0.1, and

ρη = ρε = 0.2).

Table 4.5: Results of RE40(M) for sub-series design ‘b’ with A1 (ρω = 0.1, and
ρη = ρε = 0.2).

Design ‘b’ cη and cε

0.2 0.1 0.05

cω 5 b22 1.3728 b23 1.5063 b24 1.6158

10 b32 1.6060 b33 1.8108 b34 1.9818

20 b42 1.9014 b43 2.2125 b44 2.4820
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in which the covariance matrices are proportional to each other (see Harvey, 1989).

Thus, for designs which have cω = cη = cε where almost no gains are achieved, the

univariate approach is preferable (due to simplicity) to the multivariate approach.

The ‘b’ designs use the reciprocal of the values of cη, cε given in the ‘a’ designs and

the results over time are shown in Figure (4.2). The results show a similar pattern

for REt(M). However, the magnitude is much greater than for the ‘a’ designs, with

nine designs giving an RE40(M) of over 1.25 (or above 20% gain). The largest gain

is achieved by design b44 (cω = 20, cη, cε = 0.05), with RE40(M) = 2.48. This

translates to a gain of almost 60% for the multivariate method. Again, it can be

seen that the designs where cω is very different to cη and cε, for example b44, b43,

b34, give the highest gains. The numerical results for T = 40 for each ‘b’ design are

given in Table 4.5.

The results of the relative efficiency reported in Section 4.5.1 have been calcu-

lated for the local level seasonal model (LLS) with a quarterly dummy seasonal

factor as described in (4.1) to (4.4). If the dummy seasonal factor is replaced by a

trigonometric seasonal factor, the results of the relative efficiency calculations are

very similar. For a description of the equivalent model with a trigonometric sea-

sonal component and the results of the relative efficiency for three designs, refer to

Appendix B.
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4.5.2 The Effect of Correlation Settings

When the correlation settings are varied, as given in Table 4.3, the REt(M) is also

affected. The correlation combination in all ‘a’ and ‘b’ designs discussed so far, is

identical, with ρω = 0.1 and ρη = ρε = 0.2 (labelled A1 ). The results show that,

even when the correlations between sub-series are small, large gains are attainable,

with the size of the gain depending on the design structure.
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Figure 4.3: REt(M) for sub-series design a12 with A1 - A5.

Three designs have been chosen to determine the effect of increasing the seasonal

correlation for the ‘a’ design . Firstly, designs a12, a13 and a14 have been analysed

with correlation combinations A1 to A5, which keep the non-seasonal correlation

coefficient low at 0.2, while allowing the seasonal correlation to be one of {0.1, 0.3,

0.5, 0.7, 0.9} as defined in Table 4.3. Figures 4.3 to 4.5 show these results for t =

1, . . . , 40 and with the same vertical scale. The seasonal correlation affects REt(M)

for the seasonal component, as would be expected. The plots show that, as the

seasonal correlation increases, the relative efficiency also increases, but the increase is

dependent upon the design structure. As the non-seasonal c-ratio increases through
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Figure 4.4: REt(M) for sub-series design a13 with A1 - A5.
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Figure 4.5: REt(M) for sub-series design a14 with A1 - A5.
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Figure 4.6: Seasonal correlation versus RE40(M) for designs a11, a12, a13, a14 with
A1-A5.

designs, from 5 (a12 ) to 10 (a13 ) and then to 20 (a14 ), the effect of the seasonal

correlation coefficient intensifies, as shown in the following three plots (Figures 4.3

to 4.5).

By taking the results for the last time point (i.e. T = 40) from each time

series within each of Figures 4.3, 4.4 and 4.5, the positive relationship between the

correlation of the seasonal effects and the REt(M) value is shown more clearly.

Figure 4.6 shows these results, as well as those for design a11. Firstly, for the

compound symmetry design (a11 ), the result for the relative efficiency remains

constant at one as the seasonal correlation increases. The gradient of the curve

increases from design a12 to design a13 to the steepest curve for design a14, thus

as the non-seasonal c-ratios cη, cε increase from 5 to 10 to 20.
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The effect of increasing the non-seasonal correlation whilst keeping the seasonal

correlation constant is now investigated. The designs a21, a31, a41 are analysed for

correlation combinations A1 - E1. This means that the seasonal correlation is kept

at ρω = 0.1, and the non-seasonal correlations ρη, ρε are one of {0.2, 0.4, 0.6, 0.8,

1.0}. Figures 4.7 to 4.9 show the time series plots of REt(M) for the three designs

a21, a31, a41 respectively with the same scale on the vertical axis. Note that here

it is the non-seasonal correlation which is increasing, and the relative efficiency of

the seasonal component is still affected. For design a21, for which cω = 5 and

cη = cε = 1, the effect of increasing the non-seasonal correlation is quite small,

as shown in Figure 4.7. For design a31, for which cω = 10 and cη = cε = 1, it

can be seen from Figure 4.8 that the improvement is greater as the non-seasonal

correlation increases. This becomes even more evident for design a41, for which

cω = 20 as shown in Figure 4.9.
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Figure 4.7: REt(M) for sub-series design a21 with A1 - E1.
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Figure 4.8: REt(M) for sub-series design a31 with A1 - E1.
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Figure 4.9: REt(M) for sub-series design a41 with A1 - E1.
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The results for T = 40 from each of the series shown in Figures 4.7 to 4.9, have

been plotted against the non-seasonal correlation and given in Figure 4.10. The

plot also shows the results for design a11. Overall, the results are similar to those

shown in Figure 4.6. Again, it can be seen that the impact of the increasing non-

seasonal correlation is dependent upon the parameter settings. There seems to be

an interaction between the magnitude of cω and the non-seasonal correlation, since

the gradient of the curve increases as both cω and ρη, ρε increase.
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Figure 4.10: Non-seasonal correlation versus RE40(M) for designs a11, a21, a31,
a41 with A1 - E1.

The correlation combinations given in Table 4.3 are not all available for each

c-ratio combination. The restrictions on the correlation values are given in (4.18).

The results of the relative efficiency at T = 40 for each possible combination for

the ‘a’ designs (except for a11 ) are presented in Table 4.6. For the ‘b’ designs,

analogous results are given in Table 4.7.

For the compound symmetry case (a11 ), the values of REt(M) are all equal to
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one for each correlation combination and are therefore not tabulated. Changing the

correlation for this design has no effect on the relative efficiency. Thus, when all the

c-ratios are unity, there is no gain using the multivariate approach in comparison to

the univariate approach.

Table 4.6: Results of RE40(M) for design ‘a’ correlation combinations.

Design a21 cη = 1 and cε = 1

cω = 5 A1 1.0929 B1 1.1088 C1 1.1263 D1 1.1469 E1 1.1748

A2 1.0872 B2 1.1047 C2 1.1250 D2 1.1504 E2 1.1883

Design a31 cη = 1 and cε = 1

cω = 10 A1 1.1837 B1 1.2204 C1 1.2626 D1 1.3141 E1 1.3860

A2 1.1732 B2 1.2124 C2 1.2596 D2 1.3205 E2 1.4131

Design a41 cη = 1 and cε = 1

cω = 20 A1 1.2945 B1 1.3641 C1 1.4484 D1 1.5570 E1 1.7178

a12 : cη, cε = 5 a13 : cη, cε = 10 a14 : cη, cε = 20

cω = 1 A1 1.0674 B1 1.0576 A1 1.1158 A1 1.1588

A2 1.0899 B2 1.0787 A2 1.1578 A2 1.2198

A3 1.1216 B3 1.1094 A3 1.2185 A3 1.3109

A4 1.1714 B4 1.1598 A4 1.3187 A4 1.4687

A5 1.2800 B5 1.2791 A5 1.5598 A5 1.8870

a22 : cη, cε = 5 a23 : cη, cε = 10 a24 : cη, cε = 20

cω = 5 A1 1.0005 B1 1.0039 A1 1.0045 A1 1.0178

A2 1.0005 B2 1.0004 A2 1.0157 A2 1.0421

a32 : cη, cε = 5 a33 : cη, cε = 10 a34 : cη, cε = 20

cω = 10 A1 1.0152 B1 1.1088 A1 1.0008 A1 1.0021

A2 1.0067 B2 1.1047 A2 1.0008 A2 1.0130

a42 : cη, cε = 5 a43 : cη, cε = 10 a44 : cη, cε = 20

cω = 20 A1 1.0454 B1 1.0813 A1 1.0124 A1 1.0010
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For the remaining designs shown in Table 4.6, the correlation combination has

an effect on the relative efficiency, as discussed previously. For design a21 and a31,

additional correlation combinations are A2 to E2, for which ρω = 0.3 and ρη, ρε vary

from 0.2 up to 1.0. As the non-seasonal correlation increases, the relative efficiency

also increases, similarly to those already shown for A1 to E1. Comparing the results

for A1 and A2 and then B1 and B2, it is seen that the relative efficiencies decrease

slightly. Then for C1 and C2, they are very similar and then for D1 and D2 and

then E1 and E2, they increase slightly.

Looking at results for design a12 where cω = 1 and cη = cε = 5, when the

seasonal correlation increases from 0.1 to 0.9 (B1 to B5 ), the relative efficiencies

also increase. This is similar to previously discussed results for A1 to A5.

From Table 4.6, no simple patterns are evident. Nevertheless, it can be seen

that when cω > cη, cε (as in a21, a31 and a32 ), for each t fixed, REt(M) decreases

from A1 to A2, and from B1 to B2. However, REt(M) increases from D1 to D2,

and from E1 to E2. On the other hand, when cω < cη, cε (as in a12, a13, a14,

a23, a24, and a34 ), REt(M) increases from A1 to A2, and from B1 to B2. When

cω = cη = cε (as in a11, a22, and a33 ), REt(M) remains stable for A1 to A2, but

decreases from B1 to B2.

Table 4.7 shows the results of RE40(M) for design ‘b’ correlation combinations.

Design ‘b’ has cω > 1 and cη = cε < 1. It is evident from Table 4.7 that RE40(M)

increases from A1 to A2 and also from B1 to B2, that is, as the seasonal correlation

increases from 0.1 to 0.3.

Overall, apart from the compound symmetry model, the relative efficiency is

affected by the correlation coefficients of both the seasonal and non-seasonal com-

ponents. At first thought, it might be expected that as either of these correlations

increase, the relative efficiency would also increase. It has been shown here, that

while that is true for some cases, it is definitely not true for all cases. The two

highest values of RE40(M) in Table 4.6, are 1.7178 for design E1a41 and 1.8870

for design A5a14. Interestingly, these occur when the seasonal and non-seasonal

correlations and c-ratios are at opposite ends of their given scales.
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Table 4.7: Results of RE40(M) for design ‘b’ correlation combinations.

b22 : cη, cε = 0.2 b23 : cη, cε = 0.1 b24 : cη, cε = 0.05

cω = 5 A1 1.3728 B1 1.3689 A1 1.5063 A1 1.6158

A2 1.4076 B2 1.4071 A2 1.5711 A2 1.7099

b32 : cη, cε = 0.2 b33 : cη, cε = 0.1 b34 : cη, cε = 0.05

cω = 10 A1 1.6060 B1 1.6171 A1 1.8108 A1 1.9818

A2 1.6399 B2 1.6577 A2 1.8798 A2 2.0866

b42 : cη, cε = 0.2 b43 : cη, cε = 0.1 b44 : cη, cε = 0.05

cω = 20 A1 1.9014 B1 1.9431 A1 2.2125 A1 2.4820

4.6 Other Aggregated Series

The empirical results presented so far in this chapter are for a particular aggregated

series with known parameters (4.15). Results for differing sets of parameters of the

two sub-series or ‘designs’ have been determined using characteristics such as the

c-ratio and the correlation coefficient for each component. For each different design,

the sub-series are summed contemporaneously to obtain the same aggregated series.

Thus, the aggregated (or total) series parameters have remained constant, whilst

the sub-series parameters were varied.

There is an infinite set of total series for which this study could be repeated.

To obtain an idea of what might occur if the total series had different parameters

to those already chosen, some results are produced for two other series. For ease

of reference, the total series previously considered is now referred to as Series 1,

and consequently, the others are referred to as Series 2, and Series 3. The model

and associated parameters for each will be described in the following subsections. A

selection of results corresponding to those previously presented for Series 1 is given

in Section 4.6.1.
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Series 1

As a reminder, Series 1 is modelled by a seasonal local level BSM (given by (4.3)

and (4.4)), which has a level component without a slope, and a dummy seasonal

component for quarterly data. The parameters are the variances of the disturbance

terms, specified as:

Series 1 : σ2
tot,η = 0.01, σ2

tot,ω = 1, σ2
tot,ε = 1. (4.20)

The relationship between these univariate parameters may be described by the

seasonal to non-seasonal ratio for the series:

σ2
tot,ω

σ2
tot,η + σ2

tot,ε

=
1.0

0.01 + 1.0
= 0.99. (4.21)

Series 2

For Series 1, the level component parameter (σ2
tot,η = 0.01) is small in comparison

with the other two parameters, giving a small signal to noise ratio of 0.01. For

Series 2, the seasonal local level BSM model is retained but the level parameter is

increased to 0.5. The resulting univariate parameters are:

Series 2 : σ2
tot,η = 0.5, σ2

tot,ω = 1, σ2
tot,ε = 1. (4.22)

The seasonal to non-seasonal ratio for Series 2 is given by:

σ2
tot,ω

σ2
tot,η + σ2

tot,ε

=
1.0

0.5 + 1.0
= 0.67. (4.23)

Series 3

The BSM model described in Section 3.2 was fitted to the well known data set,

‘airline passengers’ described by Harvey (1989, page 93). The monthly airline pas-

sengers data was aggregated to produce a quarterly time series and logarithms were

taken. Harvey (1989, page 94) specifies the BSM parameters to be

Series 3 : σ2
tot,η = 5.32× 10−4, σ2

tot,ω = 1.32× 10−4,

and σ2
tot,ζ = 1.08× 10−6, σ2

tot,ε = 0. (4.24)

Since the measurement error variance is zero, εU, t is excluded from the model

equations. In the model for Series 1 and Series 2, the correlated measurement
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error terms for the sub-series are put into the state vector due to the restriction in

the software package. This is not necessary here. Thus, rather than the local level

seasonal model, Series 3 is generated from a BSM with level, slope and dummy

seasonal components, and has no measurement error term. The parameters in (4.24),

as well as some initial values, are used to generate data for Series 3 from the model

equations.

The seasonal to non-seasonal ratio for Series 3 is given by:

σ2
tot,ω

σ2
tot,η + σ2

tot,ζ

=
1.32× 10−4

(5.32× 10−4) + (1.08× 10−6)
= 0.25. (4.25)

Series 1, 2 and 3 have different parameters and as a result have different seasonal

to non-seasonal ratios. Series 2 and Series 3 are both disaggregated into two sub-

series, as carried out for Series 1, described in Section 4.3.

4.6.1 Results for other Aggregated Series

Results for Series 2 and Series 3 are presented here, and correspond to those for

Series 1 given in Section 4.5.1. The relative efficiency, REt(M), has been calculated

for each combination of the c-ratios given in Table 4.1 for design ‘a’ and Table 4.2

for design ‘b’ for Series 2. Only one correlation design has been considered here,

namely A1, for which ρω = 0.1 and ρη, ρε = 0.2. For Series 3, the c-ratio for the

measurement error, cε, does not exist. It is replaced by cζ which is the analogous

ratio of variances for the slope component between the series, thus

cζ =
Var(R1t)

Var(R2t)
=

σ2
ζ + σ2

1ζ∗

σ2
ζ + σ2

2ζ∗
. (4.26)

The results for RE40(M) for design ‘a’ are found in Table 4.8. For comparison

purposes, the results for Series 2 and Series 3 are shown together with the previous

results for Series 1. Looking at the results for the three series, it is clear that the

parameters of the total series do not greatly affect the relative efficiency. There are

some small differences, notably for designs a13, a14, and a41. For designs a13 and

a14, the relative efficiency increases from Series 1 to Series 3. However, for some
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designs which have a high cω and low non-seasonal c-ratios, such as design a41, the

relative efficiency decreases; in this case it decreases from 1.29 to 1.26. Note that

design a41 has the highest relative efficiency for each of the total series.

Table 4.9 shows the results of RE40(M) for design ‘b’. The results of relative

efficiency for Series 2 and 3 show similar patterns as those for Series 1. Design b44

has the highest relative efficiency for each series, with the largest (RE40(M) = 2.6)

being for Series 3, the airline series. For design b24, the relative efficiency increases

from 1.62 to 1.77 from Series 1 to Series 3.

The relative efficiency has also been plotted over time for Series 2 and Series

3, as done previously for Series 1. Figure 4.11 shows the results of REt(M) for

design ‘a’ for each total series. Each plot has the same vertical scale and the same

legend for comparison. Comparing the three plots in Figure 4.11, it is noted that

the rankings of the designs are almost identical, with the main differences being

seen for designs a14 and a31. For Series 1, the time plots intersect at t = 8 with

a31 eventually having the greater gain. For Series 2, the gain for design a14 climbs

more quickly but then eventually becomes almost the same as for a31. For Series

3, the gain for design a14 is always larger than for a31.

For some designs, convergence rates also differ across the plots. A marked dif-

ference between Series 1 and Series 2 is that the level parameter increases from

0.01 to 0.5, thereby decreasing the seasonal to non-seasonal ratio from 0.99 to 0.67.

Series 2 seems to have a slower convergence rate than that for Series 1. For Series

3, which has a seasonal to non-seasonal ratio of only 0.25, the plot shows slower

convergence than for the other two series.

Figure 4.12 shows the results for REt(M) for design ‘b’ for the three total series.

Again, the three plots have the same vertical scale and legend. The rankings of the

nine designs are again similar for each of the three series. The designs which differ

here the most are b43 and b34. Convergence rates are again slower for Series 3 than

for the other two series.
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Table 4.8: Series 1, 2, and 3 : results of RE40(M) for design A1a.

Design ‘a’ cη and cε (or cζ)

1 5 10 20

cω 1 Series 1 a11 1.0000 a12 1.0674 a13 1.1158 a14 1.1588

Series 2 1.0000 1.0732 1.1299 1.1840

Series 3 1.0000 1.0769 1.1416 1.2092

5 Series 1 a21 1.0929 a22 1.0005 a23 1.0045 a24 1.0178

Series 2 1.0949 1.0005 1.0048 1.0199

Series 3 1.0923 1.0005 1.0050 1.0216

10 Series 1 a31 1.1837 a32 1.0152 a33 1.0008 a34 1.0021

Series 2 1.1827 1.0156 1.0008 1.0022

Series 3 1.1719 1.0151 1.0008 1.0023

20 Series 1 a41 1.2945 a42 1.0454 a43 1.0124 a44 1.0010

Series 2 1.2849 1.0450 1.0125 1.0010

Series 3 1.2581 1.0422 1.0121 1.0010

Table 4.9: Series 1, 2, and 3 : results of RE40(M) for design A1b.

Design ‘b’ cη and cε (or cζ)

0.2 0.1 0.05

cω 5 Series 1 b22 1.3728 b23 1.5063 b24 1.6158

Series 2 1.3946 1.5532 1.6963

Series 3 1.4000 1.5839 1.7705

10 Series 1 b32 1.6060 b33 1.8108 b34 1.9818

Series 2 1.6246 1.8636 2.0849

Series 3 1.6092 1.8769 2.1576

20 Series 1 b42 1.9014 b43 2.2125 b44 2.4820

Series 2 1.9004 2.2529 2.5939

Series 3 1.8340 2.2030 2.6072
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4.7 Conclusion

In this empirical study, the relative efficiency of the seasonally adjusted aggregated

series has been investigated by using a multivariate structural time series model

applied to the non-stationary sub-series. It is therefore an extension to the work of

Geweke (1978), who used spectral densities in studying the accuracy of the seasonally

adjusted series in reference to stationary time series. More recently, Planas and

Campolongo (2001) applied some of the results for the multivariate case in Geweke

(1978) but also used ARIMA models to describe the sub-series.

Although non-stationary time series have been considered here, and a different

model structure has been used, the results from this study reflect quite similar

conclusions to those made by Geweke (1978) and Planas and Campolongo (2001).

It has been shown that gains in the accuracy of the seasonally adjusted series are

possible by joint modelling of the sub-series.

This study focuses on one particular local level seasonal aggregate series and

utilises a selection of designs for two sub-series. Keeping constraints for the aggregate

parameters, the exact multivariate parameters are determined with reference to the

ratios of the variances of the sub-series, and also the correlations for each of the

seasonal and non-seasonal components. Gains are attainable under conditions which

rely on the values of the parameters of the seasonal component and the non-seasonal

components. The between-series (i.e. within components) and the within-series (i.e.

between components) relationships for the two series have been studied and both

affect the relative efficiency. The results are best summarised under five main points.

Firstly, when the two sub-series have the same variance parameters for both the

seasonal and non-seasonal components (c-ratios are all equal to one), then there

is no difference between the multivariate and the univariate methods. In addition,

there is very little difference in the methods when the c-ratios are high, meaning

that the series have very different variance parameters within components only if

the c-ratios are equally high for both the seasonal and non-seasonal components.

This is due to the design being close to the homogeneous system. This first point
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confirms the ‘similar’ patterns case studied by Planas and Campolongo (2001, p21)

who found that “the direct and multivariate adjustments tend to coincide and yield

nearly equal estimation errors” when using ARIMA-based models.

Secondly, the relative efficiency is higher when the c-ratio for the seasonal com-

ponent is very different to the c-ratio for the non-seasonal component, even if all

c-ratios are greater than one, as in design ‘a’. The magnitude of the relative effi-

ciency becomes much greater if the c-ratio is greater than one for one component

(e.g. seasonal) but is less than one for other (i.e. non-seasonal) components, as in

design ‘b’. This confirms the point made by Taylor in his comments on Geweke’s

paper (Geweke, 1978, p432): “where the stochastic structure of the non-seasonal

and seasonal components are dissimilar, the relative efficiency of the optimal proce-

dure is quite high”. This study shows that even when the correlations between the

series are low, this statement holds true.

Thirdly, if the c-ratios are held constant with non-seasonal correlation kept con-

stant and low, when the seasonal correlation is increased incrementally, the relative

efficiency improves, but the extent of the increase depends on the design structure.

If the sub-series are described by Model 1, where c-ratios are all equal to one, then

increasing the correlation has no effect on the relative efficiency. If the sub-series are

quite similar, increasing seasonal correlation increases the relative efficiency, and this

is magnified if the series have dissimilar c-ratios for the seasonal and non-seasonal

components. A similar result holds if the seasonal correlation is kept constant and

low, the c-ratios are held constant and the non-seasonal correlation is increased.

Thus, the relative efficiency increases if the non-seasonal correlation increases away

from the value of the seasonal correlation.

The last two points extend the work of Geweke (1978) and look more closely

at the effect of different correlation combinations in addition to the effect of sea-

sonal and non-seasonal stochastic structures. Fourthly, the results plotted over time

show that the impact of increasing either the seasonal or non-seasonal correlation is

greatest for the designs with very different c-ratios.

Lastly, this study also examines the evolution of relative efficiency over time, an
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aspect not discussed by either of the previously mentioned authors. For the first

4 time points, the multivariate method and univariate method yield exactly the

same MSEs for the filtered estimates. This is due to the application of the exact

initial Kalman filter. For exact parameters, the theoretical expressions for the MSE

of the seasonal component of the total series, for the univariate and multivariate

methods, are equal for t = 1, . . . , 4. As time progresses, the relative efficiency

increases above one for each simulation carried out in this study. There are different

rates of convergence but, on the whole, each plot shows a time series which reaches

a steady state. Those with higher c-ratios for the seasonal component tend to

be slowest to converge. Increasing the seasonal correlation also has an impact on

the rate of convergence. As the correlation increases, convergence becomes slower.

However, when the non-seasonal correlation is increased, the rate of convergence for

relative efficiency seems to remain fairly constant.

If the aggregate series parameters are altered as in Section 4.6, the relative

efficiency remains quite similar for the three series examined. The parameters of

the aggregate series are shown to have an effect on the convergence of the relative

efficiency over time. For the three series studied, Series 3 has the smallest seasonal

to non-seasonal ratio and also the slowest rate of convergence.

This empirical study highlights that efficiency gains are determined by different

combinations of the parameters of the sub-series. As outlined in the five points

above, the relative efficiency of the variance of the seasonally adjusted series, de-

termined with the multivariate and univariate models, is highly dependent on the

relative parameters within and between the sub-series, for both the seasonal and

non-seasonal components. As there are many facets to the nature of this depen-

dence, rather than a single general result, there are many conditions which may

lead to gains in the efficiency.

The theoretical result given by the Kalman filter, which relies on the model

parameters only, differs for each time point. Thus, given the parameters, it is

difficult to make a decision about whether to use the multivariate or univariate

model without applying the Kalman filter. However, by looking at the transition
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from time t− 1 to time t, and applying a quasi-likelihood approach to the BSM, a

single measure may be developed for use as an indicator of the relative efficiency.

This is derived in Chapter 5.

In this chapter, the focus has been on the relative efficiency when exact param-

eter values are used, and has not attempted to do any parameter estimation. A

simulation study in Chapter 6 examines this extension for the two sub-series case.

It also considers the effect of estimating the model parameters as the length of the

series decreases. In Chapter 7, an example is given for the model which has more

than two sub-series.



Chapter 5

Quasi-Likelihood Indicator of
Relative Efficiency

5.1 Introduction

Due to the complexity of the iterative filtering process, the application of the Kalman

filter can be difficult. The iterative nature of the process means that the theoret-

ical expression for the estimates of the components contained in the state vector

changes for each time point. This is also true of the elements in the error variance

matrix of the state vector estimates. In the previous chapter, it was shown that the

relative efficiency depends on the parameter values of the seasonal and non-seasonal

components, and not on the observations. In particular, it was demonstrated that

the relative efficiency is affected by the relationships among sub-series parameters,

both between series (i.e. within components) and within series (i.e. between com-

ponents). A simple expression for the relative efficiency ratio is not available, as the

expression changes with each value of t. This makes it difficult to assess when gains

from the multivariate approach will occur. It would therefore be helpful to have a

single indicator which could be used to predict the relative efficiency for the Kalman

filter given the variance parameters of both univariate and multivariate models. It

would then also serve as a general indicator of when the multivariate approach is

worthwhile.

In this chapter, a one-step-ahead indicator is derived using the quasi-likelihood

method. Lin (2007) develops a quasi-likelihood approach to derive the gain matrix

92
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for the state space model and shows that it is the same gain matrix defined in the

Kalman filter process. Following Lin’s procedure, a quasi-likelihood indicator may be

determined for the relative efficiency; this compares the univariate and multivariate

MSEs of the Kalman filter for the aggregate series. This measure is shown to have

a direct relationship with the relative efficiency determined from the Kalman filter.

The value of this single indicator can then be used to predict if a gain is achievable

using the multivariate state space model rather than the univariate model. The

indicator would therefore be useful in practice.

When there is a large number of sub-series, the multivariate state space form can

be cumbersome to apply. The system of K sub-series may be reduced by aggregating

the K original sub-series into r < K new sub-series. This reduces the complexity of

the model and also reduces the number of parameters.

There can be many ways of grouping the K original sub-series into the r new

sub-series. The 18th century Scottish mathematician, James Stirling (1692 - 1770),

determined the number of ways of partitioning a set of n elements into m non-empty

sets. These are called ‘Stirling numbers of the second kind’. Refer to Appendix C.3

for formulae and a table of values.

Take a simple example with K = 4 sub-series labeled A, B, C, D. There are

seven ways to combine them into two groups. Three of the seven have two series in

each group: {A+B, C+D} ; {A+C, B+D}; and {A+D, B+C}. The remaining four

combinations have a single series in one group and three series in the other group:

{A, B+C+D}; {B, A+C+D}; {C, A+B+D}; and {D, A+B+C}. The sub-series

in each group are then aggregated contemporaneously to form the new r sub-series.

The quasi-likelihood indicator for relative efficiency can then be calculated for each

combination to identify which one will yield the greatest gain from the multivariate

model.

Following a brief introduction to the quasi-likelihood method (Section 5.2), the

method is applied to the state space form of both the univariate model (Section

5.3) and the multivariate model (Section 5.4). In the subsequent section, the quasi-

likelihood indicator is derived for the case K = 2. In Section 5.6, the relationship
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between the quasi-likelihood indicator and the Kalman filter relative efficiency is

determined for the homogeneous model, the compound symmetry model (Model 1),

and also for Model 2. Finally, in Section 5.7, the indicator is derived for the case

where K > 2 original sub-series are grouped into r < K new sub-series.

5.2 Introduction to Quasi-Likelihood Method

Unlike maximum likelihood, the quasi-likelihood is a method that only involves

assumptions regarding moments up to second order. The principle of the quasi-

likelihood (QL) method involves estimation of unknown parameters via a quasi-

score estimating function. Estimating functions are functions of both data and the

parameters (Heyde, 1997). The quasi-likelihood estimator is derived from setting

the quasi-score estimating function to zero and solving. This is a method similar to

that used to derive the maximum likelihood estimator from the likelihood score.

The primary rule is given by Godambe and Heyde (1987):

Definition: Let GT be an estimating function space in Rn associated with un-

known parameter θ ∈ Θ. Each element GT (θ) of GT satisfies the conditions that

E[GT (θ)] = 0, E[GT (θ)G
′
T (θ)], and E[ĠT (θ)] are non-singular, for all θ ∈ Θ. Note

that G
′
T (θ) denotes the transpose of GT (θ) and ĠT (θ) denotes the derivative of

GT (θ) with respect to the unknown parameter θ.

If G∗
T (θ) ∈ GT such that

[
E(ĠT )

]−1

E(GTG
′
T )

[
E(Ġ

′
T )

]−1

−
[
E(Ġ∗

T )
]−1

E(G∗
TG∗′

T )
[
E(Ġ∗′

T )
]−1

(5.1)

is non-negative for all GT (θ) ∈ GT and θ ∈ Θ, then G∗
T (θ) is called the quasi-score

estimating function in GT . The following equation is called a quasi-score normal

equation:

G∗
T (θ) = 0. (5.2)

The solution to (5.2) is called a quasi-likelihood estimate of θ.

Lin (2007) provides an alternative derivation for the Kalman filter gain matrix

for a state space model, using the quasi-likelihood approach. The following sections
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apply Lin’s technique to determine an alternative expression for the MSE of the

seasonal component for both the univariate and multivariate methods. The unknown

parameter θ, is a subset of the state vector αt given in the univariate case by (3.27).

5.3 Quasi-Likelihood Approach to the Univariate

BSM

For the univariate case, the error variance associated with the quasi-likelihood es-

timate of the seasonal component is derived here. The univariate BSM with level,

slope and quarterly dummy seasonal components described in Section 3.2 may be

rewritten with the one-step transition going from t − 1 to t instead of t to t + 1.

This results in the following system of equations. Note that this does not change

the model in any way, but is a more straight forward way of writing the model for

the application of the quasi-likelihood method.

Yt = Lt + St + εU, t, E(εU, t) = 0, Var(εU, t) = σ2
U, ε, (5.3)

Lt = Lt−1 + Rt−1 + ηU, t−1, E(ηU, t) = 0, Var(ηU, t) = σ2
U, η,

Rt = Rt−1 + ζU, t−1, E(ζU, t) = 0, Var(ζU, t) = σ2
U, ζ ,

St = −
s−1∑
j=1

St−j + ωU, t−1, E(ωU, t) = 0, Var(ωU, t) = σ2
U, ω, (5.4)

for t = 1, . . . , T . In state space form, this is written as

Yt = Zαt + εU, t, (5.5)

αt = Tαt−1 + Gγt−1. (5.6)

The system matrices, Z,G and T, remain unchanged and are given in equation

(3.27). The state vector obtained for the Kalman filter approach, αt, includes the

level, slope and quarterly dummy seasonal components, such that

αt = [Lt, Rt, St, St−1, St−2]
′
. (5.7)

For the dummy seasonal model with s = 4, the state vector, αt, defined in

(3.27), has three seasonal elements. For a dummy seasonal component, only the
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first element St has a disturbance term in the equation (5.4), which defines it. The

last two elements, St−1 and St−2, do not have disturbance terms connected to them.

This is evident from the G matrix in the state space form which has zeros in its

last two rows (3.27). When applying the quasi-likelihood method, St−1 and St−2

are therefore not required in the state vector. The state vector from the Kalman

filter approach, αt, is amended here by multiplying it by a selection matrix which is

denoted by U:

U =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


 . (5.8)

Hence, the state vector for the quasi-likelihood method, which will be denoted by

α
(q)
t , is given by:

α
(q)
t = Uαt (5.9)

= [Lt, Rt, St]
′
.

Before continuing with any derivations, some notation needs to be defined. In

this chapter, Ft−1 is defined by the following information:

Ft−1 = {Y1, Y2, . . . , Yt−1; L1, . . . , Lt−1; R1, . . . , Rt−1; S1, . . . , St−1} . (5.10)

Also, let F ∗
t−1 (5.11) denote the information provided by Ft−1 in addition to the

observation Yt:

F ∗
t−1 = Ft−1 ∪ {Yt}. (5.11)

The quasi-likelihood (QL) approach assumes known values at the previous step,

which includes not only the observations but also the estimated components of the

state vector (Lin, 2007, p1630 and p1633). Thus, the aim is to find a one-step

optimal estimator of α
(q)
t given all information provided by F ∗

t−1. Let a
(q)
t denote

the optimal estimator of α
(q)
t based on the information F ∗

t−1. Also, let a
(q)
t|t−1 denote
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the optimal estimator of α
(q)
t based on Ft−1, such that

a
(q)
t|t−1 = E

(
α

(q)
t |Ft−1

)

= Et−1

(
α

(q)
t

)

= Et−1 (Uαt)

= UEt−1 (Tαt−1 + Gγt−1)

= UTαt−1, (5.12)

where Et−1 denotes the expectation conditional on the information provided in Ft−1.

The quasi-likelihood method can now be applied to the univariate BSM. The

first step in this process is to determine a martingale difference (Lin, 2007, p1630)

from the system of equations (5.3) to (5.4). All terms which are not disturbance

terms are moved to the left hand side of the equation; the result is a vector:

δt =




Yt − Lt − St

Lt − Lt−1 −Rt−1

Rt −Rt−1

St + St−1 + St−2 + St−3




=




εU, t

ηU, t−1

ζU, t−1

ωU, t−1




. (5.13)

Thus, the martingale difference, for t = 1, 2, . . . , T , may be written as

δt =


 Yt − ZU

′
α

(q)
t

α
(q)
t −UTαt−1


 =


 εU, t

α
(q)
t − a

(q)
t|t−1


 .

(5.14)

The quasi-score estimating function G∗
t

(
α

(q)
t

)
is given by (Lin, 2007, p1630):

G∗
t

(
α

(q)
t

)
= Et−1

(
∂δt

∂α
(q)
t

)
[Vart−1(δt)]

−1δt. (5.15)

Let B = ∂δt

∂α
(q)
t

, then

B =
∂δt

∂α
(q)
t

=




−1 1 0 0

0 0 1 0

−1 0 0 1


 =

(
−UZ

′
, I3

)
, (5.16)
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where I3 is the 3× 3 identity matrix. Also, let V = Vart−1(δt) so that

V = Vart−1(δt) =




σ2
U, ε 0 0 0

0 σ2
U, η 0 0

0 0 σ2
U, ζ 0

0 0 0 σ2
U, ω




. (5.17)

The vector, δt, may then be rewritten to separate the components of α
(q)
t ,

δt =




Yt

−Lt−1 −Rt−1

−Rt−1

St−1 + St−2 + St−3




+




−1 0 −1

1 0 0

0 1 0

0 0 1




.




Lt

Rt

St




=


 Yt

−a
(q)
t|t−1


 +


−ZU

′

I3


 α

(q)
t . (5.18)

By letting X1 =


 Yt

−a
(q)
t|t−1


 in (5.18), the quasi-score estimating function,

G∗
t

(
α

(q)
t

)
, given by (5.15) may be written as:

G∗
t

(
α

(q)
t

)
= BV−1δt

= BV−1
(
X1 + B

′
α

(q)
t

)
. (5.19)

The quasi-likelihood estimate, denoted by a
(q)
t , of α

(q)
t is calculated by solving the

equation G∗
t

(
α

(q)
t

)
= 0. The solution is

a
(q)
t = −(BV−1B

′
)−1BV−1X1. (5.20)

This estimate of the quasi-likelihood state vector is a function of the parameters of

the model contained in V and the information contained in F ∗
t−1.

The error variance matrix of the state vector estimates can now be derived. If

the conditional variance of (α
(q)
t − a

(q)
t ) on the information set Ft−1 is denoted by
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P
(q)
t then,

P
(q)
t = Et−1

[(
α

(q)
t − a

(q)
t

)(
α

(q)
t − a

(q)
t

)′]

= Vart−1

[
α

(q)
t − a

(q)
t

]

= Vart−1

[
α

(q)
t −AX1

]
, (5.21)

where A = −(BV−1B
′
)−1BV−1 from (5.20).

Now the vector X1 may be rewritten by substituting for Yt, and then splitting

it into parts:

X1 =




Lt + St + εU, t

−Lt−1 −Rt−1

−Rt−1

St−1 + St−2 + St−3




=




1 0 1

0 0 0

0 0 0

0 0 0







Lt

Rt

St


 +




1

0

0

0




εU, t +




0 0 0 0 0

−1 −1 0 0 0

0 −1 0 0 0

0 0 1 1 1







Lt−1

Rt−1

St−1

St−2

St−3




=


 ZU

′

0(3×3)


 α

(q)
t +


 1

0(3×1)


 εU, t +


 0(1×5)

−UT


 αt−1

= Xaα
(q)
t + XbεU, t + Xcαt−1, (5.22)

where Xa denotes the coefficient matrix of α
(q)
t , Xb denotes the coefficient vector of

εU, t, and Xc denotes the coefficient matrix of αt−1. Thus, the error variance matrix

associated with the quasi-likelihood state vector estimator may be determined as

follows:

Vart−1

[
α

(q)
t −AX1

]
= Vart−1

[
I3α

(q)
t −AXaα

(q)
t −AXbεU, t −AXcαt−1

]

= Vart−1

[
(I3 −AXa)α

(q)
t −AXbεU, t −AXcαt−1

]

= (I3 −AXa)Vart−1

(
α

(q)
t

)
(I3 −AXa)

′

+AXbVart−1(εU, t)(AXb)
′. (5.23)
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From Section 3.4.1, the variance of the measurement error can be written as

Vart−1(εU, t) = σ2
U, ε and also

Vart−1

(
α

(q)
t

)
=




σ2
U, η 0 0

0 σ2
U, ζ 0

0 0 σ2
U, ω


 . (5.24)

Therefore, the error variance matrix for the univariate quasi-likelihood method is

given by:

P
(q)
t =




σ2
U, η(σ2

U, ε+σ2
U, ω)

σ2
U, η+σ2

U, ε+σ2
U, ω

0
−σ2

U, ησ2
U, ω

σ2
U, η+σ2

U, ε+σ2
U, ω

0 σ2
U, ζ 0

−σ2
U, ησ2

U, ω

σ2
U, η+σ2

U, ε+σ2
U, ω

0
σ2

U, ω(σ2
U, η+σ2

U, ε)

σ2
U, η+σ2

U, ε+σ2
U, ω


 .

(5.25)

The third diagonal element of the above matrix is the error variance associated with

the quasi-likelihood seasonal component estimate for the aggregate series, given the

information Ft−1:

Vart−1

(
S

(q)
t − Ŝ

(q)
t

)
=

σ2
U, ω(σ2

U, η + σ2
U, ε)

σ2
U, η + σ2

U, ε + σ2
U, ω

. (5.26)

This expression becomes the numerator of the indicator measure for the relative

efficiency of the univariate and multivariate methods. As all the terms on the right-

hand side of (5.26) are free from t, Vart−1

(
S

(q)
t − Ŝ

(q)
t

)
does not depend on t.

5.4 Quasi-Likelihood Approach to the

Multivariate BSM

In this section, the quasi-likelihood method is used to derive the state vector for the

multivariate system with two sub-series, along with its error variance matrix. The

element associated with the seasonal component for the aggregate series will become

the denominator of the indicator measure for the relative efficiency of the univariate

and multivariate methods.

The multivariate BSM with level, slope and quarterly dummy seasonal compo-

nents described in Section 3.3, may be rewritten with the one-step transition going

from t− 1 to t. For K = 2, the model becomes
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Y1t = L1t + S1t + εt + ε∗1t, E(ε∗1t) = 0, Var(ε∗1t) = σ2
1ε∗ , (5.27)

Y2t = L2t + S2t + εt + ε∗2t, E(ε∗2t) = 0, Var(ε∗2t) = σ2
2ε∗ , (5.28)

E(εt) = 0, Var(εt) = σ2
ε ,

L1t = L1, t−1 + R1, t−1 + ηt−1 + η∗1, t−1, E(η∗1, t) = 0, Var(η∗1, t) = σ2
1η∗ ,

L2t = L2, t−1 + R2, t−1 + ηt−1 + η∗2, t−1, E(η∗2, t) = 0, Var(η∗2, t) = σ2
2η∗ ,

E(ηt) = 0, Var(ηt) = σ2
η,

R1t = R1, t−1 + ζt−1 + ζ∗1, t−1, E(ζ∗1, t) = 0, Var(ζ∗1, t) = σ2
1ζ∗ ,

R2t = R2, t−1 + ζt−1 + ζ∗2, t−1, E(ζ∗2, t) = 0, Var(ζ∗2, t) = σ2
2ζ∗ ,

E(ζt) = 0, Var(ζt) = σ2
ζ ,

S1t = −
s−1∑
j=1

S1, t−j + ωt−1 + ω∗1, t−1, E(ω∗1, t) = 0, Var(ω∗1, t) = σ2
1ω∗ ,

S2t = −
s−1∑
j=1

S2, t−j + ωt−1 + ω∗2, t−1, E(ω∗2, t) = 0, Var(ω∗2, t) = σ2
2ω∗ ,

E(ωt) = 0, Var(ωt) = σ2
ω,

for t = 1, . . . , T .

In state space form, the state vector contains the components for each series

as well as the measurement errors because standard software does not allow for

correlated measurement errors (see Section 3.4.2). For the quasi-likelihood method,

this adjustment is not necessary. So the state space form for K = 2 may be written

with (m∗) subscripts as

Y(m∗), t = (Z⊗ I2)α(m∗), t + E(m∗), t, (5.29)

α(m∗), t = (T⊗ I2)α(m∗), t−1 + (G⊗ I2)γ(m∗), t−1, (5.30)

where the system matrices Z, T and G are the same as those for the univariate

state space form (3.27). For this model, Z, T and G have respective dimensions

(1×5), (5×5) and (5×3). Separating the measurement errors from the state vector
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requires adjustment of the system vectors:

Y(m∗), t = [Y1t, Y2t]
′
,

α(m∗), t = [L1t, L2t, R1t, R2t, S1t, S2t, S1, t−1, S2, t−1, S1, t−2, S2, t−2]
′
,

γ(m∗), t = [ (ηt + η∗1t), (ηt + η∗2t), (ζt + ζ∗1t), (ζt + ζ∗2t), (ωt + ω∗1t), (ωt + ω∗2t) ]
′
,

E(m∗), t =
[
(εt + ε∗1, t), (εt + ε∗2, t)

]′
. (5.31)

5.4.1 Transforming the Multivariate System

Following the methodology described in Section 3.4.3, the transformation is applied

to the multivariate system above with K = 2. The transformation matrix A is

A =


 1 1

1 0


 . (5.32)

The measurement equation (5.29) for the transformed state space system is now

written:

AY(m∗), t = A(Z⊗ I2)α(m∗), t + AE(m∗), t,

= (Z⊗ I2)(I5 ⊗A)α(m∗), t + AE(m∗), t. (5.33)

Letting Y(M), t = AY(m∗), t and simplifying remaining terms with the (M) subscript,

the measurement equation (5.33) becomes:

Y(M), t = (Z⊗ I2)α(M), t + E(M), t. (5.34)

The transition equation for the transformed state space system becomes

(I5 ⊗A)α(m∗), t = (T⊗ I2)(I5 ⊗A)α(m∗), t−1 + (I5 ⊗A)(G⊗ I2)γ(m∗), t−1,

and denoting (I5 ⊗A)α(m∗), t by α(M), t, this becomes

α(M), t = (T⊗ I2)α(M), t−1 + (I5 ⊗A)(G⊗ I2)γ(m∗), t−1. (5.35)

The state vector for the multivariate system, α(M), t, requires modification similar

to that for the univariate quasi-likelihood method. In the definition of the dummy
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seasonal variable, only one season is defined to be stochastic. This means that

the last four components in α(M), t, namely Stot, t−1, S1, t−1, Stot, t−2 and S1, t−2, do

not have disturbance terms associated with them. The state vector is amended by

multiplying it by the selection matrix appropriate for the K = 2 case, which is

denoted by U(M),

U(M) = U⊗ I2, (5.36)

where U is the selection matrix for the univariate case given in (5.8). Therefore, the

multivariate state vector modified for the quasi-likelihood method is given by:

α
(q)
(M), t = U(M)α(M), t

= [Ltot, t, L1t, Rtot, t, R1t, Stot, t, S1t]
′
. (5.37)

The notation for the multivariate quasi-likelihood approach is a simple extension

of the notation for the univariate approach, as developed in the previous section. In

the quasi-likelihood (QL) approach, the aim is to find a one-step optimal estimator

of α
(q)
(M), t provided by the following set of information:

F ∗
(M), t−1 = {Y11, Y12, . . . , Y1, t−1, Y1t, . . . , YK1, YK2, . . . , YK, t−1, YKt;

L11, L12, . . . , L1, t−1, . . . , LK1, . . . , LK, t−1;

R11, R12, . . . , R1, t−1, . . . , RK1, . . . , RK, t−1;

S11, S12, . . . , S1, t−1, . . . , SK1, . . . , SK, t−1} . (5.38)

If the observations Y1t, . . . , YKt are excluded from (5.38), the result is the in-

formation denoted by F(M), t−1. Let a
(q)
(M), t denote the optimal estimator of α

(q)
(M), t

based on the information F ∗
(M), t−1. Also, let a

(q)
(M), t|t−1 denote the optimal estimator

of α
(q)
(M), t based on F(M), t−1, which defines the conditional expectation of α

(q)
(M), t:

a
(q)
(M), t|t−1 = Et−1

(
α

(q)
(M), t

)

= Et−1

(
U(M)α(M), t

)

= U(M) (T⊗ I2) α(M), t−1. (5.39)
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The martingale difference for the transformed multivariate system is determined

by separating the disturbance terms as follows:

δ(M), t =




Ytot, t − Ltot, t − Stot, t

Y1t − L1t − S1t

Ltot, t − Ltot, t−1 −Rtot, t−1

L1t − L1, t−1 −R1, t−1

Rtot, t −Rtot, t−1

R1t −R1, t−1

Stot, t +
∑s−1

j=1 Stot, t−j

S1t +
∑s−1

j=1 S1, t−j




=




2εt + ε∗1t + ε∗2t

εt + ε∗1t

2ηt−1 + η∗1, t−1 + η∗2, t−1

ηt−1 + η∗1, t−1

2ζt−1 + ζ∗1, t−1 + ζ∗2, t−1

ζt−1 + ζ∗1, t−1

2ωt−1 + ω∗1, t−1 + ω∗2, t−1

ωt−1 + ω∗1, t−1




.

(5.40)

This can be written in matrix notation as

δ(M), t =


 AE(m∗), t

U(M)α(M), t −U(M)a(M), t|t−1




=


 AY(m∗), t − (Z⊗ I2)(I5 ⊗A)α(m∗), t

U(M)(I5 ⊗A)α(m∗), t −U(M)(T⊗ I2)(I5 ⊗A)α(m∗), t−1




=


 AY(m∗), t − (Z⊗ I2)U

′
(M)α

(q)
(M), t

α
(q)
(M), t −U(M)(T⊗ I2)(I5 ⊗A)α(m∗), t−1




=


 AY(m∗), t

−U(M)(T⊗ I2)(I5 ⊗A)α(m∗), t−1


 +


−(Z⊗ I2)U

′
(M)

I6


 α

(q)
(M), t.

(5.41)

The quasi-score estimating function for the multivariate method is given by (Lin,

2007, p1630):

G∗
t

(
α

(q)
(M), t

)
= Et−1

(
∂δ(M), t

∂α
(q)
(M), t

)
[Vart−1(δ(M), t)]

−1δ(M), t. (5.42)

The derivative of δ(M), t with respect to the quasi-likelihood state vector is denoted
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by B(M):

B(M) =
∂δ(M), t

∂α
(q)
(M), t

=
(−U(M)(Z

′ ⊗ I2), I6

)

= (−UZ′, I3)⊗ I2

= B⊗ I2. (5.43)

Referring to (5.40) and to Section 3.4.3, in this case the variance term is:

V(M) = Vart−1(δ(M), t) =




Σ(M), ε 02×2 02×2 02×2

02×2 Σ(M), η 02×2 02×2

02×2 02×2 Σ(M), ζ 02×2

02×2 02×2 02×2 Σ(M), ω




.

(5.44)

Since K = 2, the covariance matrix for the level component is given by

Σ(M), η =


 σ2

tot,η 2σ2
η + σ2

1η∗

2σ2
η + σ2

1η∗ σ2
η + σ2

1η∗


 ,

(5.45)

with σ2
tot, η = 4σ2

η + σ2
1η∗ + σ2

2η∗ . Similarly for Σ(M), ζ , Σ(M), ω and Σ(M), ε.

Let the first term on the right hand side of (5.41) be X(M), 1. Then δ(M), t may

be written as

δ(M), t = X(M), 1 + B
′
(M)α

(q)
(M), t. (5.46)

The quasi-score estimating function for the multivariate case is therefore given by:

G∗
t

(
α

(q)
(M), t

)
= B(M)V

−1
(M)δ(M), t

= B(M)V
−1
(M)

(
X(M), 1 + B

′
(M)α

(q)
(M), t

)
. (5.47)
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The quasi-likelihood estimate of the multivariate state vector is the solution of the

equation G∗
t

(
α

(q)
(M), t

)
= 0:

a
(q)
(M), t = −(B(M)V

−1
(M)B

′
(M))

−1B(M)V
−1
(M)X(M), 1

= A(M)X(M), 1, (5.48)

where A(M) = −
(
B(M)V

−1
(M)B

′
(M)

)−1

B(M)V
−1
(M). This produces an estimator of the

quasi-likelihood state vector which is a function of the parameters of the multivariate

model which are contained in V(M), and of the information F ∗
(M), t−1.

To determine the denominator of the quasi-likelihood indicator for the relative

efficiency of the univariate and multivariate methods, the error variance matrix

of the multivariate quasi-likelihood estimate of the components is required. The

conditional variance of
(
α

(q)
(M), t − a

(q)
(M), t

)
is written as:

P
(q)
(M), t = Vart−1

(
α

(q)
(M), t − a

(q)
(M), t

)

= Vart−1

(
α

(q)
(M), t −A(M)X(M), 1

)
. (5.49)

The vector X(M), 1 may be rewritten by substituting for Ytot, t and Y1t,

X(M), 1 =




Ltot, t + Stot, t + 2εt + ε∗1t + ε∗2t

L1t + S1t + εt + ε∗1t

−Ltot, t−1 −Rtot, t−1

−L1, t−1 −R1, t−1

−Rtot, t−1

−R1, t−1

Stot, t−1 + Stot, t−2 + Stot, t−3

S1, t−1 + S1, t−2 + S1, t−3




. (5.50)
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Splitting this into three parts,

X(M), 1 =




1 0 0 0 1 0

0 1 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0







Ltot, t

L1t

Rtot, t

R1t

Stot, t

S1t




+




1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0





 2εt + ε∗1t + ε∗2t

εt + ε∗1t




+




0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−1 0 −1 0 0 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 1 0 1 0

0 0 0 0 0 1 0 1 0 1







Ltot, t−1

L1, t−1

Rtot, t−1

R1, t−1

Stot, t−1

S1, t−1

Stot, t−2

S1, t−2

Stot, t−3

S1, t−3




. (5.51)

In matrix notation, and using the same vectors obtained in the univariate solution

for X1 in (5.22), this may be written as

X(M), 1 =





 ZU′

0(3×3)


⊗ I2


 α

(q)
(M), t +





 1

0(3×1)


⊗ I2


 E(M), t

+





 0(1×5)

−UT


⊗ I2


 α(M), t−1

= (Xa ⊗ I2) α
(q)
(M), t + (Xb ⊗ I2) E(M), t + (Xc ⊗ I2) α(M), t−1

= X(M), a α
(q)
(M), t + X(M), b E(M), t + X(M), c α(M), t−1. (5.52)

where X(M), a = Xa ⊗ I2, and similarly for X(M), b and X(M), c.
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The error variance matrix associated with the quasi-likelihood multivariate state

vector estimator may be determined as follows:

P
(q)
(M), t = Vart−1

(
α

(q)
(M), t −A(M)X(M), 1

)

=
[
I6 −A(M)X(M), a

]
Vart−1

(
α

(q)
(M), t

) [
I6 −A(M)X(M), a

]′

+ A(M)X(M), b Vart−1

(E(M), t

) (A(M)X(M), b

)′
. (5.53)

Therefore, the element corresponding to the variance of the seasonal component

estimate of the aggregate series, Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
, is the fifth diagonal element

(since K = 2) of the matrix P
(q)
(M), t.

An alternative to calculating the entire error variance matrix is to partition the

A(M) matrix and just do the calculations for the block of seasonal elements. For the

K = 2 case, this block has dimensions 2 × 2. The 6 × 8 matrix A(M) in (5.48) is

given by:

A(M) = −
(
B(M)V

−1
(M)B

′
(M)

)−1

B(M)V
−1
(M), (5.54)

and can be partitioned into 2× 2 matrices such that

A(M) =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34


 . (5.55)

More specifically, this partitioned matrix can be used to obtain the results of

(5.53) which correspond to the seasonal components only. The result is a 2 × 2

matrix:

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t, S

(q)
1t − Ŝ

(q)
1t

)

= A31Σ(M), ηA′
31 + (I2 −A31) Σ(M), ω (I2 −A31)

′
+ A31Σ(M), εA′

31

= A31

[
Σ(M), η + Σ(M), ε

]A′
31 + (I2 −A31) Σ(M), ω (I2 −A31)

′
. (5.56)

The first diagonal element of the above matrix will be the variance of the seasonal

component for the aggregated series given the two sub-series. For details of the

derivation, see Appendix C.1.
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To abbreviate the expression for the solution of the first element of (5.56), let

σ2
η + σ2

1η∗ = n1, σ2
ω + σ2

1ω∗ = w1, σ2
ε + σ2

1ε∗ = e1,

σ2
η + σ2

2η∗ = n2, σ2
ω + σ2

2ω∗ = w2, σ2
ε + σ2

2ε∗ = e2,

σ2
tot, η = N, σ2

tot, ω = W, σ2
tot, ε = E.

(5.57)

Then, the error variance of the estimate of the seasonal component of the aggregated

series, using the quasi-likelihood method, is given by equation (5.58) below. See

Appendix C.2 for details of the calculation.

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)

=
W

([
σ2

η + σ2
ε

]2 − [n1 + e1] [n2 + e2]
)

+ (N + E) (σ4
ω − w1w2)

(
σ2

η + σ2
ε + σ2

ω

)2 − (n1 + e1 + w1) (n2 + e2 + w2)
.

(5.58)

This expression forms the denominator of the quasi-likelihood indicator measure.

5.5 The Quasi-Likelihood Indicator

The focus of this chapter up to this point has been on deriving the one-step ahead

result for the conditional error variance of the estimator of the seasonal component

of the aggregated series using the quasi-likelihood approach. This has been achieved

for both the univariate model and the multivariate model with two time series. The

purpose of the derivations is to determine an indicator measure (denoted by Q)

which does not rely on an iterative process or on t, and can be used to predict the

relative efficiency determined by the Kalman filter (3.59). Thus, Q will provide an

indication of when the multivariate model, using the disaggregated series is more

efficient than the univariate model.

The quasi-likelihood indicator (Q) is defined as the relative efficiency of the

conditional error variance of the estimator of the seasonal component at time t,

given by the univariate and multivariate QL methods. It is given by the ratio of the
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expressions in (5.26) and (5.58):

Q =
Vart−1

(
S

(q)
t − Ŝ

(q)
t

)

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

) . (5.59)

With reference to the abbreviations in (5.57), and for K = 2, Q is given by:

Q =

σ2
U, ω

(
σ2

U, η + σ2
U, ε

) [(
σ2

η + σ2
ε + σ2

ω

)2 − (n1 + e1 + w1) (n2 + e2 + w2)
]

[
σ2

U, η + σ2
U, ε + σ2

U, ω

] [
W

([
σ2

η + σ2
ε

]2 − [n1 + e1] [n2 + e2]
)

+ (N + E) (σ4
ω − w1w2)

] .

(5.60)

Note that the expression for Q involves all the parameters except those for the

slope component, even though a slope component was included in the BSM for both

the univariate and multivariate models. The solution for Q is the same whether or

not the model contains a slope component. The solution for Q therefore applies to

the local level seasonal model as described in Section 4.2.

It is also important to note that Q does not depend on t. Unlike the relative

efficiency measure derived from the Kalman filter, the QL indicator does not change

for different values of t. As it produces a single quantitative value, Q can be used

as an indicator for the KF relative frequency. It is not intended here to replace the

Kalman filter estimates of the state vector with the quasi-likelihood estimates but

to use the calculated value of Q as a quick predictor tool only.

5.6 Comparison with Kalman Filter Results

In this section, the value of the quasi-likelihood indicator, Q, is compared to the

relative efficiency determined by the Kalman filter, REt(M) (refer to (3.59)). It is

shown that these two measures are directly related for a homogeneous model. In

addition, with examples from Model 1 and Model 2 from the experimental study in

Chapter 4, it is also shown that Q has a positive linear relationship with REt(M).

Application of the quasi-likelihood method results in an estimate of the quasi-

likelihood state vector, which is a function of the parameters of the model, given
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the information F ∗
t−1. Knowledge of all components up to and including those with

subscripts t− 1 is assumed. Hence the error variance matrix of the estimated state

vector is also conditional on this information, as can be seen in (5.59).

On the other hand, the Kalman filter relative efficiency, as reported in (3.59), uses

the appropriate element of Pt|t = E(αt−at|t)(αt−at|t)
′
, (Harvey, 1989, Section 3.2.3).

This is the mean squared error (MSE) matrix of the estimator, at|t. Also, since this

matrix is independent of the observations, it can be described as the ‘unconditional

error covariance matrix associated with the conditional mean estimator’ (Harvey,

1989, page 111).

It is expected that the value of Q will be directly related to the value of REt(M),

but may not be exactly equal, due to the differing conditional information.

5.6.1 Homogeneous Model

A multivariate BSM (or SUTSE model) is defined as homogeneous if the covariance

matrix of each component is proportional to the covariance matrix of the measure-

ment error. This special case is referred to in Section 3.3.1. More detail can be

found in Harvey (1989, Section 8.3). Thus, in this context,

Σ(M), η = hηΣε, Σ(M), ζ = hζΣε, Σ(M), ω = hωΣε, (5.61)

where hη, hζ and hω are non-negative scalars.

Under these strict conditions, it is known that the Kalman filter becomes ‘decou-

pled’. This means that the multivariate and univariate approach to the aggregated

series are the same. In terms of the relative efficiency measure, REt(M) = 1. In this

known case, since the model is simplified substantially, the quasi-likelihood indicator

is easy to derive.

Rewriting the covariance matrices with simplified notation as given in (5.57), the

covariance for the level component for K = 2 becomes

Σ(m), η =


 n1 σ2

η

σ2
η n2


 . (5.62)
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Hence, after the transformation, (5.45) is simplified to the following and the condi-

tion for the homogeneous case is applied:

Σ(M), η =


 N σ2

η + n1

σ2
η + n1 n1


 = hη


 E σ2

ε + e1

σ2
ε + e1 e1


 . (5.63)

Similarly, applying the condition for the seasonal component,

Σ(M), ω =


 W σ2

ω + w1

σ2
ω + w1 w1


 = hω


 E σ2

ε + e1

σ2
ε + e1 e1


 . (5.64)

The condition Σ(M), ζ = hζΣ(M), ε also applies to complete the homogeneous model.

Note, that in the equation for Q (5.60), the slope component parameters are not

required and so the condition for the slope component is not written here.

By equating the corresponding terms, a set of equations is produced, determining

each level, slope and seasonal parameter in terms of the measurement error terms.

From (5.58), the numerator of Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
can be simplified by making

the relevant substitutions:

W
([

σ2
η + σ2

ε

]2 − [n1 + e1] [n2 + e2]
)

+ (N + E)
(
σ4

ω − w1w2

)

= hωE
([

hησ
2
ε + σ2

ε

]2 − [hηe1 + e1] [hηe2 + e2]
)

+ (hηE + E)
(
h2

ωσ4
ε − h2

ωe1e2

)

= hωE
(
σ4

ε [hη + 1]2 − e1e2 [hη + 1]2
)

+ E [hη + 1] h2
ω

(
σ4

ε − e1e2

)

= hωE [hη + 1]2
(
σ4

ε − e1e2

)
+ h2

ωE [hη + 1]
(
σ4

ε − e1e2

)

= hωE [hη + 1]
(
σ4

ε − e1e2

)
(hη + 1 + hω) . (5.65)

From (5.58), the denominator of Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
can also be simplified by

making the relevant substitutions:

(
σ2

η + σ2
ε + σ2

ω

)2 − (n1 + e1 + w1) (n2 + e2 + w2)

=
(
hησ

2
ε + σ2

ε + hωσ2
ε

)2 − (hηe1 + e1 + hωe1) (hηe2 + e2 + hωe2)

= σ4
ε (hη + 1 + hω)2 − e1e2 (hη + 1 + hω)2

= (hη + 1 + hω)2 (
σ4

ε − e1e2

)
. (5.66)
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Therefore, the conditional error variance of the seasonal estimator for the homoge-

neous model is given as

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
=

hωσ2
tot, ε [hη + 1] (σ4

ε − e1e2) (hη + 1 + hω)

(hη + 1 + hω)2 (σ4
ε − e1e2)

=
hωσ2

tot, ε [hη + 1]

(hη + 1 + hω)
. (5.67)

To determine the numerator of Q, the conditional error variance of the seasonal

estimate for the univariate model is required. From (5.26), this is given by

Vart−1

(
S

(q)
t − Ŝ

(q)
t

)
=

σ2
U, ω(σ2

U, η + σ2
U, ε)

σ2
U, η + σ2

U, ε + σ2
U, ω

. (5.68)

Furthermore, if the exact parameters are being used in Q, then

σ2
U, η = σ2

tot, η = hησ
2
tot, ε,

σ2
U, ω = σ2

tot, ω = hωσ2
tot, ε,

σ2
U, ε = σ2

tot, ε. (5.69)

By substituting for these in (5.68), the numerator of Q is simplified to

Vart−1

(
S

(q)
t − Ŝ

(q)
t

)
=

hωσ2
tot, ε

(
hησ

2
tot, ε + σ2

tot, ε

)

hησ2
tot, ε + σ2

tot, ε + hωσ2
tot, ε

=
hωσ4

tot, ε (hη + 1)

σ2
tot, ε (hη + 1 + hω)

=
hωσ2

tot, ε (hη + 1)

(hη + 1 + hω)
. (5.70)

For the K = 2 homogeneous case, the quasi-likelihood indicator, denoted by

Q(h), is therefore given by the ratio of (5.70) and (5.67). Since these expressions are

equal, it simplifies to 1.

Q(h) =
Vart−1

(
S

(q)
t − Ŝ

(q)
t

)

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

) = 1. (5.71)

Of course, if estimated parameters are used in Q(h), the estimated parameters given

the univariate model are unlikely to be exactly equal (as shown in (5.69)) to the

estimated total parameters given by the multivariate model. In the exact parameter
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case, these are constrained to be equal, as described in Section 3.3. Therefore, Q(h)

may not be exactly equal to one for estimated parameters, it is expected to be close

to one.

In conclusion, for the homogeneous model with K = 2, the quasi-likelihood

indicator is the same as that given for the Kalman filter relative efficiency ratio.

5.6.2 Model 1: Compound Symmetry

In Section 3.3, Model 1 is described as a BSM in which the covariance matrices

have a compound symmetry structure. That is, each sub-series has the same series-

specific variance. For example, when K = 2, the covariance matrix for the level

component is

Σ(m), η =


 σ2

η + σ2
η∗ σ2

η

σ2
η σ2

η + σ2
η∗


 , (5.72)

and similarly for the slope, seasonal and error covariance matrices. Note that al-

though this model is not strictly homogeneous, it would become so if the condition

that ρη = ρζ = ρω = ρε is imposed. For this model, the c-ratios given in ((4.13) -

(4.14)) are all equal to unity.

The abbreviations given in (5.57) are amended for the compound symmetry

model:

n1 = σ2
η + σ2

η∗ , e1 = σ2
ε + σ2

ε∗ , w1 = σ2
ω + σ2

ω∗ ,

N = 2σ2
η + 2n1, E = 2σ2

ε + 2e1, W = 2σ2
ω + 2w1,

(5.73)

such that (5.72) becomes

Σ(m), η =


 n1 σ2

η

σ2
η n1


 . (5.74)

Recalling the transformed matrix given in (5.45), the transformed version of (5.74)

is given by:

Σ(M), η =


 N σ2

η + n1

σ2
η + n1 n1


 . (5.75)
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Similarly, the seasonal and error component covariance matrices become

Σ(M), ω =


 W σ2

ω + w1

σ2
ω + w1 w1


 , Σ(M), ε =


 E σ2

ε + e1

σ2
ε + e1 e1


 . (5.76)

From (5.58), the numerator of Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
(5.58) for Model 1 can be

simplified by making the relevant substitutions and then factorising:

W
([

σ2
η + σ2

ε

]2 − [n1 + e1]
2) + (N + E)

(
σ4

ω − w2
1

)

= W
([

σ2
η + σ2

ε − n1 − e1

] [
σ2

η + σ2
ε + n1 + e1

])

+ (N + E)
[
σ2

ω − w1

] [
σ2

ω + w1

]
. (5.77)

Rearranging the terms in the expressions given in the second row of (5.73), it

can be seen that

σ2
η + n1 = 1

2
N, then σ2

η − n1 = 1
2
(N− 4n1) ;

σ2
ε + e1 = 1

2
E, then σ2

ε − e1 = 1
2
(E− 4e1) ;

σ2
ω + w1 = 1

2
W, then σ2

ω − w1 = 1
2
(W− 4w1) .

Substituting these expressions into (5.77), the numerator of

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
(5.58) for Model 1 becomes:

W

[
1

2
(N− 4n1) +

1

2
(E− 4e1)

] [
N

2
+

E

2

]
+ (N + E)

[
1

2
(W− 4w1)

W

2

]

=
W

4
[N− 4n1 + E− 4e1] (N + E) +

W

4
(W− 4w1) (N + E)

=
W

4
(N + E) [N− 4n1 + E− 4e1 + W− 4w1] . (5.78)

Similarly, the denominator of Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
(5.58) can be simplified:

(
σ2

η + σ2
ε + σ2

ω

)2 − (n1 + e1 + w1)
2

=
(
σ2

η + σ2
ε + σ2

ω − n1 − e1 − w1

) (
σ2

η + σ2
ε + σ2

ω + n1 + e1 + w1

)

=
1

4
(N− 4n1 + E− 4e1 + W− 4w1) (N + E + W) .

(5.79)

Therefore, the conditional error variance of the seasonal estimate under the multi-

variate approach for the compound symmetry model (Model 1), is given by the ratio

of (5.78) and (5.79):
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Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
=

W
4

(N + E) [N− 4n1 + E− 4e1 + W− 4w1]
1
4
(N− 4n1 + E− 4e1 + W− 4w1) (N + E + W)

=
W (N + E)

(N + E + W)
.

(5.80)

This is identical to the expression for the conditional error variance for the sea-

sonal estimator under the univariate approach given by (5.26), if the exact param-

eters are used. Therefore, if Q(M1) denotes the quasi-likelihood indicator for Model

1, then as in the homogeneous case,

Q(M1) = 1. (5.81)

Referring back to the designs discussed in the previous chapter, the design which

describes Model 1 with all c-ratios equal to one and with not all correlations equal, is

labelled a11. The result of REt(M) (the Kalman filter relative efficiency) for a11 is

reported to be 1.0 in Table (4.4). This result is consistent with the quasi-likelihood

indicator measure as derived in this section.

5.6.3 Model 2: Unit-specific Variances

In this section, the quasi-likelihood indicator is calculated for the local level seasonal

model described by (4.1). This model is a basic structural model with a local

level trend (with no slope term) and a dummy quarterly seasonal component. It

was analysed extensively in the last chapter. The analysis continues here with the

calculation of the quasi-likelihood indicator measure (Q) for each different design

identified in Chapter 4. It is then possible to determine a relationship between the

relative efficiency from the Kalman filter method, REt(M), and the associated value

of Q.

The values for Q may be determined by the formula for the K = 2 case for Model

2, as given by (5.60). Although this formula has been derived from a BSM with a

slope component, note that the formula remains the same for the local level seasonal

model. Assuming exact parameters, once the parameter values are calculated for

each design, they may be substituted into the formula for Q to determine its value.
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Table 5.1: Results of RE40(M) for sub-series designs a21, a31, and a41 with corre-
sponding quasi-indicator, Q (in bold).

a21 cη = 1 and cε = 1

cω = 5 A1 1.0929 B1 1.1088 C1 1.1263 D1 1.1469 E1 1.1748

1.1682 1.2127 1.2654 1.3286 1.4061

A2 1.0872 B2 1.1047 C2 1.1250 D2 1.1504 E2 1.1883

1.1476 1.1936 1.2528 1.3315 1.4417

a31 cη = 1 and cε = 1

cω = 10 A1 1.1837 B1 1.2204 C1 1.2626 D1 1.3141 E1 1.3860

1.3114 1.4146 1.5518 1.7429 2.0278

A2 1.1733 B2 1.2124 C2 1.25963 D2 1.3205 E2 1.4131

1.2743 1.3755 1.5192 1.7391 2.1180

a41 cη = 1 and cε = 1

cω = 20 A1 1.2945 B1 1.3641 C1 1.4484 D1 1.5570 E1 1.7178

1.4512 1.6327 1.9060 2.3639 3.2903

For the specified aggregate series in Chapter 4, there are 16 different ‘a’ designs

which have different combinations of c-ratios, as given in Table 4.1. With all possible

correlation combinations (Table 4.3) there are altogether 90 different ‘a’ designs. For

each combination, Q has been calculated and recorded in the Tables 5.1 and 5.2.

Table 5.1 shows the results of Q in bold, and RE40(M) for the possible correlation

combinations of designs a21, a31, and a41.

Note that design a11 has REt(M) = 1 and Q = 1 for each correlation combi-

nation, as it represents a compound symmetry design as described in the previous

section. It is therefore unnecessary to report the results here. For the 3 designs in

Table 5.1, as RE40(M) increases across the rows, so does Q. Within each design,

the trend in Q is similar to that of RE40(M). The only exception is for design ‘a31 ’

with ‘D1 ’ and ‘D2 ’ where RE40(M) increases slightly but Q decreases slightly.

Table 5.2 shows the results of RE40(M) and Q for the remaining possible com-

binations of the ‘a’ designs. Again, it can be seen that within each design , as

RE40(M) increases or decreases, Q does also. There are two exceptions here, both
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within the ‘a12 ’ design. Reading across from A4 to B4, RE40(M) decreases slightly

but Q increases slightly. Similarly for A5 to B5. Again, in these cases and especially

for A5 to B5, the values of RE40(M) are very similar.

However, Q does not always show a consistent relationship with RE40(M). This

is most likely due to the difference of the definitions. The values shown for RE40(M)

are calculated with the Kalman filter specifically for the time point at t = 40 when

T = 40, hence, for the last time point in the series. The quasi-likelihood value, Q,

is not specific to a particular time point, but is a general measure which is derived

using the one-step process from time t − 1 to t. For example, looking at D1 for

design ‘a41 ’ in Table 5.1, RE40(M) = 1.557 and Q = 2.364. Compare this with

A5 for design ‘a13 ’ in Table 5.2 which has RE40(M) = 1.560 and Q = 1.872. The

RE40(M) are very similar in magnitude but the Q values are quite different. The

majority however, do seem to be fairly consistent.

For the nine different ‘b’ designs (Table 4.2) which have different combinations of

c-ratios, there are altogether 20 different possible correlation combinations. Table

5.3 shows the results of RE40(M) and Q for all the ‘b’ designs. The results are

consistent with results for the ‘a’ designs, showing a direct relationship between the

value of RE40(M) and the value of Q. The only exceptions are when movement

is very slight between designs such as from A1 to B1 and also A2 to B2 in b22.

Similarly, from A1 to A2 in b32.

This direct relationship can be seen more clearly when the value of RE40(M)

is plotted against its corresponding value of Q for all 110 designs, as shown in

Figure 5.1. The overall correlation coefficient is 0.98. For the ‘a’ designs only, the

correlation is 0.96 and for the ‘b’ designs only, it is 0.97. The fitted regression line

has an intercept of 0.66 and a slope of 0.37 and goes through (1, 1.03). For this

example, Q is an overestimate for RE40(M) greater than one. The results indicate a

very strong linear relationship between the two measures and shows that in general,

Q preserves the relativity of RE40(M). The results presented here are for a particular

aggregate series with 110 designs of two sub-series.
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Table 5.2: Results of RE40(M) for remaining sub-series designs ‘a’ and correspond-
ing quasi-indicator, Q (in bold).

a12: cη, cε = 5 a13: cη, cε = 10 a14: cη, cε = 20

cω = 1 A1 1.0674 B1 1.0576 A1 1.1158 A1 1.1588

1.1379 1.1207 1.2514 1.3609

A2 1.0899 B2 1.0788 A2 1.1578 A2 1.2198

1.1787 1.1619 1.3396 1.5076

A3 1.1216 B3 1.1094 A3 1.2185 A3 1.3109

1.2282 1.2162 1.4578 1.7238

A4 1.1714 B4 1.1598 A4 1.3187 A4 1.4687

1.2892 1.2903 1.6225 2.0709

A5 1.2800 B5 1.2791 A5 1.5598 A5 1.8870

1.3671 1.3991 1.8722 2.7312

a22: cη, cε = 5 a23: cη, cε = 10 a24: cη, cε = 20

cω = 5 A1 1.0005 B1 1.0039 A1 1.0045 A1 1.0178

1.0009 1.0076 1.0088 1.0366

A2 1.0005 B2 1.0004 A2 1.0157 A2 1.0421

1.0008 1.0008 1.0301 1.0860

a32: cη, cε = 5 a33: cη, cε = 10 a34: cη, cε = 20

cω = 10 A1 1.0152 B1 1.1088 A1 1.0008 A1 1.0021

1.0268 1.2127 1.0015 1.0041

A2 1.0067 B2 1.1047 A2 1.0008 A2 1.0130

1.0111 1.1936 1.0014 1.0252

a42: cη, cε = 5 a43: cη, cε = 10 a44: cη, cε = 20

cω = 20 A1 1.0454 B1 1.08132 A1 1.0124 A1 1.0010

1.0725 1.14175 1.0213 1.0019
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Table 5.3: Results of RE40(M) for sub-series design ‘b’ with corresponding quasi-
indicator, Q (in bold).

b22: cη, cε = 0.2 b23: cη, cε = 0.1 b24: cη, cε = 0.05

cω = 5 A1 1.3728 B1 1.3689 A1 1.5063 A1 1.6158

1.8191 1.8547 2.2554 2.6986

A2 1.4076 B2 1.4071 A2 1.5711 A2 1.7099

1.8529 1.9116 2.3794 2.9603

b32: cη, cε = 0.2 b33: cη, cε = 0.1 b34: cη, cε = 0.05

cω = 10 A1 1.6060 B1 1.6171 A1 1.8108 A1 1.9818

2.3146 2.4548 3.0745 3.9374

A2 1.6399 B2 1.6577 A2 1.8798 A2 2.0866

2.3094 2.4791 3.1605 4.2008

b42: cη, cε = 0.2 b43: cη, cε = 0.1 b44: cη, cε = 0.05

cω = 20 A1 1.9014 B1 1.9431 A1 2.2125 A1 2.4820

2.8381 3.1551 4.0469 5.6246
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Figure 5.1: Quasi-likelihood indicator, Q, vs relative efficiency, RE40(M), for 110
possible sub-series designs with K = 2.
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5.7 Grouping Application

The quasi-likelihood indicator, Q, may be useful in practice in identifying when

gains are achievable using the multivariate model. In practice, if the main focus is

the efficient seasonal adjustment of an aggregated series without particular interest

in the seasonal adjustment of the sub-series, then grouping the sub-series may be

beneficial to the estimation process. The quasi-likelihood indicator can provide

useful information when there are different ways of combining sub-series to obtain

the same aggregated series.

If there are several sub-series (K > 2), gains for the variance of the seasonally

adjusted aggregated series may still be achievable using the multivariate model.

However, as K becomes large, the number of parameters in the multivariate model

increases and there may be instability in the model. By grouping the sub-series

into r < K groups, the number of parameters in the model is reduced. Within

each group, the original sub-series are aggregated to form the new r sub-series.

Depending on the value of K, there will be many different ways of grouping the

sub-series. Application of the quasi-likelihood indicator measure may be helpful in

identifying which grouping will achieve the better gains.

Until now, the aggregated series has been combined with the K − 1 sub-series

for use in the multivariate model using the transformation matrix given in (3.33).

If the original K sub-series are grouped to have r < K sub-series, a different trans-

formation matrix applies. A simple example can be shown with K = 4 sub-series,

(Y1t, Y2t, Y3t, Y4t). The transformation matrix, A (3.33), for a system of four

sub-series, has dimension 4× 4, as follows:

A =




1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0




. (5.82)

The result is a system of four series, (Y1t + Y2t + Y3t + Y4t, Y1t, Y2t, Y3t), which

includes the aggregated series and the first three series of the original four.
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However, a different configuration may provide a similar gain with a more stable

system for estimation. For example, (Y1t + Y2t, Y3t + Y4t) results in r = 2 sub-series

while (Y1t + Y2t, Y3t, Y4t) results in r = 3 sub-series. For the given examples, the

corresponding transformation matrices are respectively:

Λ =


 1 1 1 1

1 1 0 0


 and Λ =




1 1 1 1

1 1 0 0

0 0 1 0


 . (5.83)

Thus, the transformation matrix, Λ, for the first example in (5.83) has dimensions

2 × 4 and for the second example, the dimensions are 3 × 4. These are only two

of 14 (refer to Appendix C.3) different possible ways in which four series can be

grouped. As Q preserves the relativities of the relative efficiency, the configuration

with the highest Q can identify the configuration which achieves the highest gain

in the multivariate BSM. Note that calculation of Q depends upon the parameters

for the multivariate model with K sub-series and the parameters for the univariate

model, but not on t.

In this section, a general result for Q is derived for the case of K > 2 grouped

into r < K sub-series. The transformation matrix, Λ, applied to the multivariate

system of K series has K columns. The dimensions of Λ will be r×K. If the BSM

is further generalised to have univariate state vector with dimensions 1 × p, then

the derivation in Sub-section 5.4.1 can be adapted for this general case. Note that

in the previous sections, p = 5, since the state vector consisted of a level and slope

component in addition to three seasonal elements.

The transformed state space system is now written as

ΛY(m∗), t = Λ(Z⊗ IK)α(m∗), t + ΛE(m∗), t

= (Z⊗ Ir)(Ip ⊗Λ)α(m∗), t + ΛE(m∗), t (5.84)

(Ip ⊗Λ)α(m∗), t = (Ip ⊗Λ)(T⊗ IK)α(m∗), t−1 + (Ip ⊗Λ)(G⊗ IK)γ(m∗), t−1

= (T⊗ Ir)(Ip ⊗Λ)α(m∗), t−1 + (Ip ⊗Λ)(G⊗ IK)γ(m∗), t−1.

(5.85)
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The multivariate state vector modified for the quasi-likelihood method is given

by:

α
(q)
(M), t = U(M)α(M), t

= U(M)(Ip ⊗Λ)α(m∗), t. (5.86)

If the univariate model remains the same as in Section 5.3, then U(M) = U ⊗ Ir,

in which U has dimensions 3 × p. Since a different model may require a different

selection (U) matrix, in general let U have dimensions u× p.

The general expression for the martingale difference, δ(M), t, is adapted from

(5.41) and becomes

δ(M), t =


 ΛY(m∗), t

−U(M)(T⊗ Ir)(Ip ⊗Λ)α(m∗), t−1


 +


−(Z⊗ Ir)U

′
(M)

Iur


 α

(q)
(M), t

= X(M), 1 + B
′
(M)α

(q)
(M), t. (5.87)

In this general case, X(M), 1 has dimensions (r + ur)× 1, and B(M) has dimensions

ur × (r + ur). The derivative of δ(M), t with respect to the quasi-likelihood state

vector is given by:

B(M) =
∂δ(M), t

∂α
(q)
(M), t

=
(−U(M)(Z

′ ⊗ Ir), Iur

)

= (−UZ′, Iu)⊗ Ir

= B⊗ Ir. (5.88)

The conditional variance matrix is denoted by V(M),

V(M) = Vart−1(δ(M), t) =




ΛΣ(m), εΛ
′

0(r×r) 0(r×r) 0(r×r)

0(r×r) ΛΣ(m), ηΛ
′

0(r×r) 0(r×r)

0(r×r) 0(r×r) ΛΣ(m), ζΛ
′

0(r×r)

0(r×r) 0(r×r) 0(r×r) ΛΣ(m), ωΛ
′




,

(5.89)
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where, for example, Σ(m), η is the level component covariance matrix associated with

the original set of sub-series. If K = 4, it is given by

Σ(m), η =




σ2
η + σ2

1η∗ σ2
η σ2

η σ2
η

σ2
η σ2

η + σ2
2η∗ σ2

η σ2
η

σ2
η σ2

η σ2
η + σ2

3η∗ σ2
η

σ2
η σ2

η σ2
η σ2

η + σ2
4η∗




. (5.90)

So, the transformed covariance matrix analogous to (5.45), but with the transfor-

mation matrix Λ, is given by Σ(M), η = ΛΣ(m), ηΛ
′
with dimensions r × r. Similar

notation applies for the covariance matrices of the slope, seasonal and error compo-

nents. Thus, the dimensions of V(M) are (1 + u)r × (1 + u)r (or just 4r × 4r since

u = 3 here).

From (5.87), X(M), 1 may be written as

X(M), 1 =


 ΛY(m∗), t

−U(M)(T⊗ Ir)(Ip ⊗Λ)α(m∗), t−1




=


 (Z⊗ Ir) α(M), t + E(M), t

−U(M) (T⊗ Ir) α(M), t−1




=


 (Z⊗ Ir)U

′
(M)

0(ur×ur)


 α

(q)
(M), t +


 Ir

0(ur×r)


 E(M), t +


 0(r×pr)

−U(M) (T⊗ Ir)


 α(M), t−1.

(5.91)

By substituting U(M) = U⊗ Ir , the expression for X(M), 1 may be written in terms

of the univariate system matrices as in (5.52):

X(M), 1 =





 ZU′

0(u×u)


⊗ Ir


 α

(q)
(M), t +





 1

0(u×1)


⊗ Ir


 E(M), t

+





 0(1×p)

−UT


⊗ Ir


 α(M), t−1

= X(M), a α
(q)
(M), t + X(M), b E(M), t + X(M), c α(M), t−1, (5.92)

where X(M), a has dimensions (r + ur)× ur, X(M), b has dimensions (r + ur)× r and

X(M), c has dimensions (r + ur)× pr.
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The ur × (1 + u)r matrix A(M) is calculated using B(M) from (5.88) and V(M)

from (5.89), and is given by:

A(M) = −
(
B(M)V

−1
(M)B

′
(M)

)−1

B(M)V
−1
(M). (5.93)

The error variance matrix associated with the quasi-likelihood multivariate state

vector estimator may be determined as follows:

P
(q)
(M), t = Vart−1

(
α

(q)
(M), t −A(M)X(M), 1

)

=
[
Iur −A(M)X(M), a

]
Vart−1

(
α

(q)
(M), t

) [
Iur −A(M)X(M), a

]′

+ A(M)X(M), b Vart−1

(E(M), t

) (A(M)X(M), b

)′
. (5.94)

Therefore, the element corresponding to the variance of the seasonal component

estimate of the aggregated series, Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
, is the (2r + 1)th diagonal

element of the matrix P
(q)
(M), t. This assumes the seasonal component is the 3rd

component in the univariate state vector of dimension p × 1. The element for the

variance of the seasonal component estimate of the aggregated series, as calculated

in (5.94), becomes the denominator in the formula for the quasi-likelihood indicator

given in (5.59). The numerator remains the same, as the univariate model has not

changed.

Using the procedure derived in this section, the value of Q can be obtained for

the case where K sub-series are grouped into r new sub-series. Given the estimated

parameters for the multivariate model with K sub-series, there are many different

ways of grouping the series (as discussed in Appendix C.3) to obtain a more sta-

ble model with fewer parameters. To decide which grouping will yield the highest

relative efficiency, the value of Q for each combination can be calculated and com-

pared. The results of this procedure will assist in determining which grouping yields

the highest relative efficiency if the Kalman filter method is applied. Further work

on this topic of grouping sub-series is presented in Chapter 7. An example with

K = 8 sub-series shows the application of Q in choosing the appropriate grouping

into r < K sub-series.

In the following chapter, the focus is on estimating the parameters of the uni-

variate and multivariate models described in Chapter 4, and the implications of the
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estimation on the MSE of the estimated components.



Chapter 6

Parameter Estimation: Varying
Series Length and Accuracy of
Estimated Components

6.1 Introduction

In Chapter 4, the variance of the seasonally adjusted series was calculated for the

multivariate model and compared with that of the univariate model using the relative

efficiency measure, REt(M), defined in (3.59). The relative efficiency was calculated

for different designs of the sub-series when the true parameters of the model were

known. In this chapter, the model parameters are considered unknown and are

estimated. Since the length of the series (T ) is a determinant of the accuracy of

the estimation process, the multivariate and univariate models are considered for

different series lengths.

By introducing the estimation of the unknown model parameters, the process

becomes two-staged. Firstly, the estimation of the parameters is carried out via

maximum likelihood estimation. In this stage, the accuracy of the estimated pa-

rameters for both the multivariate and univariate models is investigated and linked

to the length of the series. Secondly, the estimated parameters are substituted into

the state space model. Subsequently, the Kalman filter is applied to the observations

to yield estimates of the state vector components, such as the level and seasonal fac-

tors, and their mean squared errors. In this second stage, the question considered is

127
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how the estimated parameters affect the accuracy of the components of the model,

these being the values of interest.

When estimated parameters are utilised, apart from the relative efficiency, other

measures such as the revision error are important to consider. The revision error is

the change associated with the estimated components, such as the level and seasonal

factors, when a new observation becomes available. This is an important measure to

consider, since it relates to the data published by statistical agencies. Furthermore,

large revisions can be unsettling for general users of the data.

The mean squared errors of the estimated state vector components are obtained

with the application of the Kalman filter and are sometimes referred to as the pre-

diction error variance or the prediction mean squared errors (PMSE). When the

estimated parameters are substituted into the expressions for the Kalman filter and

smoother, there is a so-called ‘näıve bias’ in the prediction error variance (Quen-

neville and Singh, 2005; Pfeffermann and Tiller, 2005). This bias will be described

in more detail in Section 6.5.

Extending work described in Chapter 4, this chapter includes the estimation of

parameters for different values of T . The number of sub-series is kept at two (K = 2),

and the model is the local level seasonal model with quarterly dummy seasonal

factors. Data for a selection of the sub-series designs described in Chapter 4 is

simulated and studied for T = 20, 21, . . . , 27, 28 and also for T = 40, 80, 120, 240.

These values have been chosen for the purposes of studying the parameter estimates

of short to medium length series and comparing these with parameter estimates of

long series, and also for calculation of the revision error.

6.2 Estimation of Parameters in the State Space

Model

Estimates of the unknown parameters of the state space model may be computed by

maximising the log-likelihood function, ln L, which uses the output of the Kalman

filter (Zivot and Wang, 2006, p552). When the initial state vector α1 contains q

elements which are diffuse, the log-likelihood is adjusted for the t = 1 . . . d terms for
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which P∞,t 6= 0. The result is called the diffuse log-likelihood (Koopman, 1997) and

is denoted by ln Ld(Y ; ψ):

ln Ld(Y ; ψ) = −TK

2
ln(2π)− 1

2

d∑
t=1

wt − 1

2

T∑

t=d+1

(
ln|Ft|+ ν

′
tF

−1
t νt

)
. (6.1)

where wt are constants, for which details can be found in Durbin and Koopman

(2001, Section 7.2.2), or see Appendix D, and where ψ is the vector of unknown

parameters of the state space model. For the models discussed in this chapter, the

wt terms are determined and given in the following sections. Ft and νt are defined

by the Kalman filter in (3.51) and (3.47). Equation (6.1) is referred to as ‘prediction

error decomposition’ of the log-likelihood function. For a complete derivation, see

Harvey (1989, Section 3.4). The description of the estimation process will proceed

in terms of the local level seasonal model.

For the univariate local level seasonal model given in state space form in (4.6)

- (4.8), three parameters require estimation. The multivariate seasonal local level

model described in (4.9) to (4.12), has two existing sub-series (K = 2), and hence

nine parameters in the model.

It is possible to reduce the dimension of the parameter vector by concentrating

out one parameter (σ2
c ) from the log-likelihood function. This has the advantage of

reducing the dimensionality of the numerical search and it can improve the numerical

stability of the optimisation (Zivot and Wang, 2006, p558). Harvey (1989, p183)

states that it is “not only computationally efficient but is also likely to give more

reliable results”. For example, if the univariate model is considered, it is common

practice to take the variance of the measurement error, σ2
U, ε, to be the concentrated

parameter, resulting in the signal to noise ratios as the parameters to be estimated.

Alternatively, one of the variance terms from the diagonal of the covariance matrix

Q (see (4.8)) could be used. Harvey (1989, p183) also suggests that the parameter

chosen for (σ2
c ) should not be too close to zero as numerical problems may occur

due to the relative variances becoming large.

The concentrated diffuse log-likelihood, which will be denoted by ln Ldc, is max-

imised with respect to the elements of ψc such that ψ =
(
ψ
′
c, σ2

c

)′
. The elements
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chosen for optimisation will depend on the model and choice of the parameter to be

concentrated. The following subsections will describe ln Ldc in detail for both the

univariate and multivariate models.

6.2.1 Univariate Model

For the univariate model, the log-likelihood function (6.1) may be simplified as Ft

is scalar (denoted by Ft) and K = 1. For the local level seasonal model, d = 4, and

the second term of equation (6.1) is calculated to be −2ln2, using the exact initial

Kalman filter given in (Durbin and Koopman, 2001, Section 5.2.1). Equation (6.1)

may therefore be rewritten as

ln Ld = −T

2
ln(2π)− 2ln2− 1

2

T∑
t=5

lnFt − 1

2

T∑
t=5

ν2
t

Ft

(6.2)

This result is derived in Appendix D.2.

The model parameters for the univariate model are
(
σ2

U, η, σ2
U, ω, σ2

U, ε

)′
. If the

measurement error variance parameter, σ2
U, ε is chosen as the concentrated parame-

ter, then the covariance matrix Ω(U) for the local level seasonal model is defined to

be (refer to equation (4.8))

Ω(U) =


 Var (Gγt) 0

0 H


 =




σ2
U, η 0 0 0 0

0 σ2
U, ω 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 σ2
U, ε




= σ2
U, ε




qU, η 0 0 0 0

0 qU, ω 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1




(6.3)

where qU, η = σ2
U, η/σ

2
U, ε and qU, ω = σ2

U, ω/σ2
U, ε. Thus, qU, η and qU, ω are the signal-

to-noise ratios for the level and seasonal components respectively. Recall that the

definition of a dummy seasonal component (3.6), has one disturbance term (ωU, t)

which is connected to the first seasonal factor in the state vector. Subsequently, for

a quarterly series, there are two diagonal elements of Ω(U) which are zero as shown

in (6.3). For an application of the concentrated log-likelihood function using the

signal-to-noise ratios, see Dagum and Quenneville (1993).
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In this case, it is also necessary to ensure that the model parameters to be esti-

mated are positive. Rather than constraining the parameters, qU, η and qU, ω in the

estimation process, a square root transformation is applied, so that the maximisation

is performed with respect to
√

qU, η, and
√

qU, ω, where −∞ <
√

qU, η,
√

qU, ω < ∞.

An alternative transformation which is often used in practice is to take the loga-

rithm of the parameters. This will yield estimates which are unconstrained. (See

Durbin and Koopman, 2001, Section 7.3). In terms of the resulting values of the

variance estimates, there seems to be little difference associated with using the al-

ternate transformation. The square root transformation will be utilised here, to be

consistent with the transformation required for the multivariate model parameters

described in the following sub-section.

With the concentrated parameter σ2
U,c = σ2

U, ε, the parameters to be estimated

are ψ
(U)
c =

(√
qU, η,

√
qU, ω

)′
. Hence, from (6.3) and referring to (4.8), it can be seen

that

Var(γt) = Q = σ2
U, εQ

c and Var(εU, t) = H = σ2
U, ε = σ2

U, εH
c. (6.4)

where Hc = 1 and Qc = Q/σ2
U, ε.

The Kalman filter equations in (3.47) are amended such that

Ft = σ2
U, εF

c
t (6.5)

F c
t = ZPc

t|t−1Z
′
+ 1

Pt|t−1 = σ2
U, εP

c
t|t−1

Substituting Ft, as given by (6.5), into the log-likelihood function (6.2), the concen-

trated diffuse log-likelihood function for the univariate model is given as

ln Ldc = −T

2
ln(2π)− 2ln2− (T − 4)

2
ln(σ2

U, ε)−
1

2

T∑
t=5

lnF c
t −

1

2σ2
U, ε

T∑
t=5

ν2
t

F c
t

(6.6)

where νt and F c
t do not depend on σ2

U, ε. More detailed steps are given in Appendix

D.2.
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To determine the value of σ2
U, ε conditional on a given value of ψ

(U)
c , the concen-

trated diffuse log-likelihood (ln Ldc) is differentiated with respect to σ2
U, ε and solved

to give

σ̂2
U, ε(ψ

(U)
c ) =

1

(T − 4)

T∑
t=5

ν2
t

F c
t

. (6.7)

By substituting this expression back into (6.6), the concentrated log-likelihood can

be rewritten as

ln Ldc(ψ
(U)
c ) = −T

2
ln(2π)− 2ln2− (T − 4)

2

(
1 + ln[σ̂2

U, ε(ψ
(U)
c )]

)− 1

2

T∑
t=5

lnF c
t

(6.8)

This function is maximised with respect to the elements of ψ
(U)
c (Harvey, 1989, p127)

to obtain the maximum likelihood estimates of
√

qU, η and
√

qU, ω. For more detail

on taking the derivatives of the likelihood function with respect to ψ
(U)
c , refer to

Harvey (1989, Section 3.4.6).

Finally, to retrieve the estimates of the original univariate parameters, the fol-

lowing calculations are required. Let û1 and û2 represent the maximum likelihood

estimates of
√

qU, η and
√

qU, ω respectively. Then the estimated variances for the

disturbance terms for each component in the univariate model are given by

Level: σ̂2
U, η = σ̂2

U,cû
2
1,

Seasonal: σ̂2
U, ω = σ̂2

U,cû
2
2,

Error: σ̂2
U, ε = σ̂2

U,c (6.9)

Let the vector of the original univariate parameters be denoted by ψ(U) so that

the estimates may be written as

ψ̂(U) =
(
σ̂2

U, η, σ̂2
U, ω, σ̂2

U, ε

)′
(6.10)

These estimates may be substituted into the original state space model and then

application of the Kalman filter provides estimates of the state vector.
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6.2.2 Multivariate Model

For the multivariate model, the choice for the concentrated parameter is not as

straightforward as for the univariate model. It is not possible to concentrate any

of the covariance matrices out of the likelihood function as a block. However, it is

possible to concentrate out one of the diagonal elements from one of the component

covariance matrices (Harvey, 1989, Section 8.2.2). The state space form for either

the untransformed model or the transformed model may be used for the estimation

process. So the concentrated parameter can be one of the diagonal elements of one

of the corresponding component covariance matrices. Refer to (4.9) - (4.12) for the

details of the state space form of the transformed model.

In choosing an appropriate diagonal element to be the concentrated parameter,

the parametrization of the resulting covariance matrices needs to be considered. If

the untransformed model is used, each diagonal element is a sum of two of the

original parameters. For two sub-series (K = 2), the Model 2 structure of the

covariance matrix for the level component was defined in (3.22). The equivalent

matrix for the measurement error is

Σ(m), ε =


 σ2

ε + σ2
1ε∗ σ2

ε

σ2
ε σ2

ε + σ2
2ε∗


 .

(6.11)

For example, the first diagonal element in (6.11) is σ2
ε + σ2

1ε∗ and could be assigned

as the concentrated parameter.

Looking at the transformed model, each diagonal element is a linear combina-

tion of two or three of the original parameters. (Refer to (3.44) for the transformed

covariance matrix of the level component). The transformed version of the measure-

ment error covariance matrix (6.11) is given by

Σ(M), ε =


 4σ2

ε + σ2
1ε∗ + σ2

2ε∗ 2σ2
ε + σ2

1ε∗

2σ2
ε + σ2

1ε∗ σ2
ε + σ2

1ε∗




(6.12)

Thus, if the first or second diagonal element is chosen as the concentrated parame-
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ter, the resulting ratios within the covariance matrices would become unnecessarily

complex compared to the result if the untransformed model was used. Therefore,

the untransformed model is used for maximum likelihood estimation and the con-

centrated parameter is set as the first diagonal element of Σ(m), ε, from (6.11). Thus,

if σ2
c denotes the concentrated parameter for the untransformed multivariate model,

then

σ2
c = σ2

ε + σ2
1ε∗ . (6.13)

The matrix F(M),t given in (3.51) is for the transformed model. The correspond-

ing matrix for the untransformed multivariate model is denoted by F(m),t. Taking

the concentrated parameter into account, it is rewritten as

F(m),t = σ2
cF

c
(m),t (6.14)

Fc
(m),t = Z(m)P

c
(m),t|t−1Z

′
(m)

P(m),t|t−1 = σ2
cP

c
(m),t|t−1.

The untransformed multivariate model with level and quarterly dummy seasonal

components is defined by equations (4.1) and (4.2). Using the exact initial Kalman

filter given in (Durbin and Koopman, 2001, Section 7.2.2) with K = 2, P∞,t 6= 0

for the first four time points, giving d = 4. Hence, the second term of equation

(6.1) may be determined and is calculated to be −4ln2. The concentrated diffuse

log-likelihood function for the multivariate model is determined by substituting for

(6.14) into (6.1) and is given by the following:

ln L(m),dc = −T ln(2π)− 4ln2− (T − 4)ln(σ2
c )−

1

2

T∑
t=5

ln|Fc
(m),t|

− 1

2σ2
c

T∑
t=5

ν
′
t

(
Fc

(m),t

)−1
νt.

(6.15)

The result in (6.15) is derived in Appendix D.3. Note that for the multivariate

model, there are Kq elements in the state vector which are non-stationary. For the
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univariate model, q = 4, hence if K = 2, there are 8 non-stationary elements in the

state vector α(m),t.

When ln L(m),c (6.15) is differentiated with respect to σ2
c and set to zero, the

result is

σ̂2
c =

1

2(T − 4)

T∑
t=5

ν
′
t

(
Fc

(m),t

)−1
νt. (6.16)

For the derivation of the general case see Koopman et al. (1999, p140).

The covariance matrix of the state space form of the model which includes a slope

component was given in (3.32). This is modified to remove the slope component

parameters. Since the measurement error is moved into the state vector, the matrix

H becomes a matrix of zeros. If the covariance matrix for the untransformed model

is denoted by Ω(m) then:

Ω(m) =




Σ(m), η 0K 0K 0K 0K 0K

0K Σ(m), ω 0K 0K 0K 0K

0K 0K 0K 0K 0K 0K

0K 0K 0K 0K 0K 0K

0K 0K 0K 0K Σ(m), ε 0K

0K 0K 0K 0K 0K 0K




. (6.17)

Let the original nine parameters in this multivariate model be denoted

ψ(m) =
(
σ2

η, σ2
1η∗ , σ2

2η∗ , σ2
ω, σ2

1ω∗ , σ2
2ω∗ , σ2

ε , σ2
1ε∗ , σ2

2ε∗
)′

. (6.18)

For estimation, the parametrization of the component covariance matrices (Σ(m), η,

Σ(m), ω and Σ(m), ε) requires two important characteristics. Firstly, each of the

estimated component covariance matrices needs to be positive semi-definite, and

secondly, the relationships between the elements within each matrix needs to be

retained. It is also noted that the off-diagonal elements here are required to be

positive.

To address the first characteristic, consider the resulting covariance matrix for
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the level component, Σ(cm), η such that,

Σ(m), η = σ2
cΣ(cm), η

= σ2
c




σ2
η

σ2
c

+
σ2
1η∗
σ2

c

σ2
η

σ2
c

σ2
η

σ2
c

σ2
η

σ2
c

+
σ2
2η∗
σ2

c


 (6.19)

A necessary and sufficient condition for a symmetric matrix A to be positive definite

is (Harville, 1997, Theorem 14.9.5).

‘The n × n matrix A is positive definite if and only if the determi-

nants of all n of the leading principal sub-matrices A1, A2, . . . ,An are

positive’.

If A is a 2× 2 symmetric matrix:

A =


 a b

b d


 (6.20)

this definition simplifies to showing that A is positive definite if and only if a, b,

and ad− b2 are all positive (Harville, 1997, p280, (38b)). Looking at (6.19),

a =
σ2

η

σ2
c

+
σ2

1η∗

σ2
c

, b =
σ2

η

σ2
c

and ad− b2 =

(
σ2

η

σ2
c

+
σ2

1η∗

σ2
c

)
×

(
σ2

η

σ2
c

+
σ2

2η∗

σ2
c

)
−

(
σ2

η

σ2
c

)2

=
1

σ4
c

(
σ2

ησ
2
1η∗ + σ2

ησ
2
2η∗ + σ2

1η∗σ
2
2η∗

)
. (6.21)

If the estimates of each term within each element is positive when recovered,

then a > 0, b > 0 and ad− b2 > 0. Therefore, the covariance matrix (6.19) will be

positive definite. Thus, the parameters for maximum likelihood estimation need to

be chosen such that each term is positive. For the level parameters, if

σ2
η

σ2
c

> 0,
σ2

1η∗

σ2
c

> 0,
σ2

2η∗

σ2
c

> 0, (6.22)

then the requirement will be met. This is done in a similar way for the seasonal

parameters.

To ensure that the estimated terms are non-negative, the square root transfor-

mation is used in the the maximum likelihood estimation process. Let the elements
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of the square root terms be labelled x1 to x8. Therefore, the concentrated log-

likelihood is maximised with respect to the elements of ψ
(m)
c = (x1 . . . x8)

′ which

are:

Level: x1 =

√
σ2

η

σ2
c

, x2 =

√
σ2

1η∗

σ2
c

, x3 =

√
σ2

2η∗

σ2
c

Seasonal: x4 =

√
σ2

ω

σ2
c

, x5 =

√
σ2

1ω∗

σ2
c

, x6 =

√
σ2

2ω∗

σ2
c

Error: x7 =

√
σ2

ε

σ2
c

, x8 =

√
σ2

2ε∗

σ2
c

. (6.23)

To retrieve the estimates of the original multivariate parameters, the following

calculations are required.

Level: σ̂2
η = σ̂2

c x̂
2
1, σ̂2

1η∗ = σ̂2
c x̂

2
2, σ̂2

2η∗ = σ̂2
c x̂

2
3

Seasonal: σ̂2
ω = σ̂2

c x̂
2
4, σ̂2

1ω∗ = σ̂2
c x̂

2
5, σ̂2

2ω∗ = σ̂2
c x̂

2
6

Error: σ̂2
ε = σ̂2

c x̂
2
7, σ̂2

1ε∗ = σ̂2
c (1− x̂2

7), σ̂2
2ε∗ = σ̂2

c x̂
2
8

(6.24)

From (6.18), the estimate of ψ(m) is

ψ̂(m) =
(
σ̂2

η, σ̂2
1η∗ , σ̂2

2η∗ , σ̂2
ω, σ̂2

1ω∗ , σ̂2
2ω∗ , σ̂2

ε , σ̂2
1ε∗ , σ̂2

2ε∗
)′

. (6.25)

For all except one of the estimates of the original multivariate parameters, this

parametrization ensures that they are non-negative. To ensure that σ̂2
1ε∗ is non-

negative, the maximum likelihood estimate for x7 will need to be constrained so

that 0 ≤ x2
7 ≤ 1. This can be achieved in the S-PLUS software by setting a lower

bound of -1 and an upper bound of 1 on the estimate for x7. With this constraint

in place, the component covariance matrices will be positive semi-definite.

To obtain the values corresponding to the estimated univariate parameters con-

tained in ψ̂(U) (6.10), the expressions for the total parameter values are calculated

from the estimated multivariate parameters:

Level: σ̂2
tot,η = 4σ̂2

η + σ̂2
1η∗ + σ̂2

2η∗

Seasonal: σ̂2
tot,ω = 4σ̂2

ω + σ̂2
1ω∗ + σ̂2

2ω∗

Error: σ̂2
tot,ε = 4σ̂2

ε + σ̂2
1ε∗ + σ̂2

2ε∗

(6.26)
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The vector containing the aggregate parameters in (6.26), together with the

remaining multivariate parameters will be denoted by ψ̂(M), and is given by

ψ̂(M) =
(
σ̂2

tot,η, σ̂2
η, σ̂2

1η∗ , σ̂2
tot,ω, σ̂2

ω, σ̂2
1ω∗ , σ̂2

tot,ε, σ̂2
ε , σ̂2

1ε∗
)′

. (6.27)

The corresponding vector containing the known quantities of the values in (6.27)

will be denoted by ψ(M).

Alternative Concentrated Parameter

It may be necessary to change the element assigned to be the concentrated param-

eter, σ2
c . This would be advisable when the value of σ2

1ε∗ < σ2
2ε∗ which would occur

when the c-ratio for the measurement error is below unity. In this case, to avoid

having the concentrated parameter too close to zero, σ2
c from (6.13) would become

the larger of the two diagonal elements of Σ(m), ε given in (6.11), thus

σ2
c = σ2

ε + σ2
2ε∗ . (6.28)

The calculations applied in the previous section are performed similarly here, taking

(6.28) into account. The parameters for the level and seasonal component remain

the same as those in (6.23). However, the parameters associated with the error

component become

Error: x7 =

√
σ2

ε

σ2
c

, x8 =

√
σ2

1ε∗

σ2
c

. (6.29)

To retrieve the original error parameters, the following equations replace the last

line in (6.24):

Error: σ̂2
ε = σ̂2

c x̂
2
7, σ̂2

1ε∗ = σ̂2
c x̂

2
8, σ̂2

2ε∗ = σ̂2
c (1− x̂2

7). (6.30)
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6.3 Simulation Experiment

To investigate the behaviour of the univariate and multivariate models for varying

series lengths, a simulation experiment will be carried out. Data will be simulated

for two sub-series and aggregated to obtain the total series for 13 different series

lengths, T = 20, 21,. . . , 27, 28, 40, 80, 120, 240. For quarterly data, this translates

to series of length 5 to 7 years, 10, 20, 30 and 60 years. Time series of length 5 to

7 years are often considered as short series, 10 to 20 years is considered moderate

series length and 30 and 60 years is chosen for the long length. Maximum likelihood

estimation of the parameters will be carried out as described in Section 6.2 for each

series length. The results are summarised in Section 6.4.

6.3.1 Generation of Data Series

The parameters for the aggregate series are chosen as those defined for Series 2 in

(4.22) which are

σ̂2
U, η = 0.5, σ̂2

U, ω = 1.0, σ̂2
U, ε = 1.0 (6.31)

This choice avoids having the level parameter (σ̂2
U, η) too close to the boundary value

of zero, which can cause complications for the maximum likelihood procedure.

To determine the parameters for the sub-series, firstly the relative values of the

parameters given by the design need to be chosen from those defined in Section

4.3.1. Two sets of sub-series will be investigated. These are design A1a14 and

design A1b33 which have relative efficiencies (with exact parameters) of 1.18 and

1.86 respectively (see Table 4.8 and Table 4.9 respectively). Design A1a14 is chosen

from the ‘a’ designs as it has a relative efficiency approximately midway between the

lowest (1.0) and the highest (1.28) for the ‘a’ designs. Similarly for the ‘b’ designs,

the lowest relative efficiency is 1.39 and the highest is 2.59 and so design A1b33 is

chosen. From Tables 4.1, 4.2 and 4.3, these two designs have different c-ratios but

the same correlations:

A1a14 : cω = 1, cη = 20, cε = 20, ρω = 0.1, ρη = 0.2, ρε = 0.2;

A1b33 : cω = 10, cη = 0.1, cε = 0.1, ρω = 0.1, ρη = 0.2, ρε = 0.2.
(6.32)
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Given the c-ratios, the correlation coefficient for each component and the series

parameters for the aggregate series, the multivariate seasonal parameters may be

calculated from the equations given in (4.17), and similarly for the level and error

parameters. Thus, the exact values of the nine multivariate parameters for each

design are:

Table 6.1: Parameters for sub-series design A1a14 and A1b33.

Parameter A1a14 A1b33

σ2
η 0.01962 0.02578

σ2
1η∗ 0.41919 0.01498

σ2
2η∗ 0.00232 0.38188

σ2
ω 0.04545 0.02718

σ2
1ω∗ 0.40909 0.83248

σ2
2ω∗ 0.40909 0.05878

σ2
ε 0.03925 0.05157

σ2
1ε∗ 0.83837 0.02997

σ2
2ε∗ 0.00463 0.76377

The data for each sub-series are generated from the model equations given by

(4.1) for T = 160, to provide data for values of T = 20, 21,. . . , 27, 28, 40, 80, 120.

For series length T = 240, data for T = 280 was generated. The following steps

were used.

Level Component

Step 1: An N × 1 vector of independent values is generated for the common distur-

bance term, ηt, from the N(0, σ2
η) distribution. This vector is copied and appended

so that it becomes a matrix with T rows and K = 2 columns where both columns

are identical.

Step 2: The T × K values for η∗kt, (k = 1, 2) are generated from the multivariate

normal distribution with zero mean and covariance matrix with σ2
1η∗ and σ2

2η∗ on the

main diagonals with zero off-diagonal elements. This yields an T ×K matrix. Note
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that this is equivalent to generating a T × 1 vector from the N(0, σ2
1η∗) distribution

and a N×1 vector from the N(0, σ2
2η∗) distribution and then forming a T ×2 matrix

from the two vectors.

Step 3: The two matrices from Step 1 and Step 2 are then added together to form

the set of random errors for the level component. The values in column 1 are the T

random errors for sub-series 1 and the values in column 2 are the T random errors

for sub-series 2.

Step 4: The initial values for each sub-series, (L1,1 and L2,1) are both set to a value

of 5 and for convenience put into a 1× 2 vector.

Step 5: The level component values for t = 2, . . . , T can now be calculated using

Lk,t+1 = Lk,t + (ηt + η∗kt) where (ηt + η∗kt) is a single value taken from row t and

column k of the resulting matrix from Step 3. This generates the required T values

for the level component for each sub-series.

Seasonal Component

Step 1: Step 1 above is repeated but with the common seasonal error term ωt ∼
N(0, σ2

ω) replacing ηt ∼ N(0, σ2
η).

Step 2: Step 2 above is repeated with ω∗kt replacing η∗kt. Also σ2
1ω∗ and σ2

2ω∗ replace

σ2
1η∗ and σ2

2η∗ respectively.

Step 3: Add the two matrices from Step 1 and Step 2 to form the set of random

errors for the seasonal component.

Step 4: The initial values are set for the quarterly dummy seasonal component, Skt.

For t = 1, let S1,1 = −1.5 and S2,1 = −1.5. Let other initial values represent t = 0

and t = −1 then write S1,0 = −1 and S2,0 = −1 and S1,−1 = 0.5 and S2,−1 = 0.5.

Step 5: The seasonal component can be calculated for t = 2, . . . , T using Sk,t+1 =

−
s−1∑
j=1

Sk,t+1−j + (ωt + ω∗kt), where (ωt + ω∗kt) is a single value taken from row t and

column k of the resulting matrix from Step 3. This generates the required T values

for the seasonal component for each sub-series.
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Data

To build the sub-series data, the equation for Ykt is utilised:

Ykt = Lkt + Skt + (εt + ε∗kt). (6.33)

To obtain the measurement error values (εt+ε∗kt), again, Steps 1 to 3 in Section 6.3.1

are repeated, but with ε replacing η. The values of Y1t and Y2t can now be generated

by adding the resulting T ×2 matrices of level, seasonal and error components. This

generates two series of length T = 160. To obtain the series length of T = 120, the

first 40 values are cut from the two generated series to remove any reliance on initial

values. To obtain the required series with T = 20, 21,. . . , 27, 28, 40, 80, the values

for the t = 1, . . . , T time points are retained from the cut series and the remaining

120 − T are discarded. This allows each series to be generated only once, and cut

to required length. It also ensures that the observations remain the same for the

corresponding time points.

To check asymptotic values, series of length 280 are generated and then the first

40 values are cut from the two generated series, to obtain the T = 240 as required.

The total series is then obtained by contemporaneously aggregating the two sub-

series. This procedure is repeated to produce the required number of realisations of

each sub-series and their aggregate.

6.3.2 Estimation of Parameters

Maximum likelihood estimation for both the univariate and multivariate models

is performed using the S+FinMetrics function called SsfFit. Starting values are

required to begin the iteration process for both models. Koopman et al. (1999)

advise using the diagnostic of the estimated variance of the standardised prediction

errors (σ̂2) or scale factor in an unconcentrated model for a given value of ψ. This

is produced as part of the output of the SsfFit function:

σ̂2(ψ) =
1

K(T − d)

T∑
t=1

ν
′
t (Ft)

−1 νt, (6.34)
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where Kd is the number of non-stationary elements and fixed regression effects in

the state vector. Koopman et al. (1999, page 140) suggest choosing starting values

such that σ̂2(ψstart) ≈ 1. Then, for models which are well specified, the value of

σ̂2(ψ̂mle) should be very close to one (Zivot and Wang, 2006, page 553).

Zivot et al. (2004) discuss starting values for different examples. They state that

the starting values may be chosen arbitrarily such as using a zero vector. Alterna-

tively, the starting values are obtained by using estimates from the analysis of some

other close model or are chosen to be “close to the true values” (Zivot et al., 2004,

p318, 322). For the purpose of this simulation exercise, starting values will be taken

to be in the neighbourhood of the true values.

For the univariate model, starting values for the parameters to be estimated are

required for ψ
(U)
c =

(√
qU, η,

√
qU, ω

)′
. The exact values for these expressions are

calculated from the set of parameter values for the simulation (6.31) and rounded

to 2 decimal places to be used as the starting values.

Similarly for the multivariate model, the concentrated log-likelihood is max-

imised with respect to the elements of ψ
(m)
c = (x1 . . . x8)

′ found in (6.23). The

starting values are calculated using the exact parameter values given in Table 6.1

and rounded to 2 decimal places. For design A1a14, the concentrated parameter is

assigned as in (6.13), and for design A1b33 it is assigned as (6.28).

For each realisation, the maximum likelihood estimation process is performed for

the univariate and multivariate models for each T , starting with the shortest series

(T = 20). If relative function convergence is achieved in the maximum likelihood

estimation process for this realisation, the process is repeated for the same realisation

but with the next value of T in the set T = 20, 21, . . . , 27, 28, 40, 80, 120, 240.

If a particular optimisation process for a given realisation and T yields singular

convergence, then that realisation for all T is discarded and the next realisation is

started with T = 20. A valid run is obtained when one realisation for each length

T = 20, 21, . . . , 27, 28, 40, 80, 120, 240, produces relative function convergence.

The process is repeated until 1000 valid runs are obtained and hence maximum

likelihood estimates for both the univariate and the multivariate parameters for



Chapter 6. Parameter Estimation 144

each T are collected.

In this experiment, the methodology is tested with reference to the length of

the series. Singular convergence can occur when there are too many degrees of

freedom for the length of the series. The results are conditional on convergence for

a realisation with values of T starting at T = 20. With nine parameters in the

multivariate model and three in the univariate model, it is expected that with the

shorter series, the proportion of realisations resulting in singular convergence will be

higher than that with the longer series. Of course, if the number of parameters in

the model is reduced, the estimation process may improve. However, the model will

revert back to the compound symmetry model, for which it was found in Chapter 4

that there was no gain in using the multivariate model.

6.4 Results of Parameter Estimates for Varying

Series Length

The results of the parameter estimates for 1000 realisations for each length of T will

be given for the univariate and multivariate methods for the two chosen designs.

The aim is to compare the results of the original univariate parameter estimates

(σ̂2
U,η, σ̂2

U,ω, σ̂2
U,ε) calculated by (6.9) with the corresponding multivariate parameter

estimates for the aggregate series (σ̂2
tot,η, σ̂2

tot,ω, σ̂2
tot,ε) given by (6.26). The results

will be shown for each component of the two sub-series designs (A1a14 and A1b33 )

for Series 2. The exact parameters for the aggregated series are equal for both

designs. However, it is the relative values of the sub-series parameters that differ,

as given by (6.32). The resulting exact parameter values are given in Table 6.1. It

is of interest to determine whether the use of the sub-series yields more accurate

parameter estimates of the aggregated series, for different values of T .
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6.4.1 Design A1a14

The following box plots show the distribution of the estimated parameters of the

level, seasonal and error components for the series lengths T = 240, 120, 80, 40, 28,

24, and 20. For the level component, the distribution of the parameter estimates is

shown in Figure 6.1. The exact value of the parameter for the level component of

the aggregate series is 0.5 (6.31), as shown by the horizontal dotted line.

It can be seen that the median estimate is an underestimate of the exact value

for each value of T , for both the univariate and multivariate methods. This is a

known bias which occurs with the estimation of parameters with the Kalman filter.

The distributions are positively skewed for all T < 120. The range and interquartile

range are slightly smaller for the parameters calculated using the multivariate model

than with the univariate model. Therefore, for the level parameter, the multivariate

model reduces the variability of the estimate, albeit only slightly. As expected, as

T decreases, the distributions become more positively skewed with many outliers

present. For T ≥ 120, the distributions are almost symmetrical, with the medians

approaching the true value of 0.5.

For the seasonal parameter, the results are shown in Figure 6.2. The exact

parameter for the seasonal component is 1.0, as shown by the horizontal dotted

line. In this plot, the difference between the multivariate and univariate models is

more obvious. Again, it can be seen that the median estimate is an underestimate

of the exact value for each value of T for both the univariate and multivariate

methods. However, the median for the multivariate method is greater, and hence

closer to the exact value for every value of T shown. The distributions are close to

symmetrical for T ≥ 120, and show that asymptotically the estimate approaches the

true value. Again, as T decreases, the distributions become more positively skewed

with outliers sometimes more extreme for the multivariate method. The range and

interquartile range are smaller for most T for the multivariate method. In particular,

the parameter distribution for the multivariate method for T = 20 is similar to that

for the univariate method for T = 40. The medians are approximately equal, and

the interquartile ranges are also similar, although there are more outliers for the
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Figure 6.1: Distribution of the level parameter estimate for Series 2 via univariate
and multivariate methods for 1000 realisations of design A1a14 with T = 240, 120,
80, 40, 28, 24, 20.

multivariate method for T = 20.

For the measurement error, the results are shown in Figure 6.3. The difference

between this and the other two plots is that the results for the error parameter

show an overestimate for each value of T . Similar to the results for the seasonal

parameter, the medians for the multivariate method are closer to the exact value

of 1.0 than those determined from the univariate method. The distributions also

show less variability given the multivariate model as the interquartile range and

range for each pair are smaller. Comparing the box plot for the multivariate model

for T = 20 with the box plot for the univariate model for T = 40, it can be seen

that the medians are similar and range and interquartile range are smaller for the

multivariate model for T = 20 than for the univariate model for T = 40.
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Figure 6.2: Distribution of the seasonal parameter estimate for Series 2 via univari-
ate and multivariate methods for 1000 realisations of design A1a14 with T = 240,
120, 80, 40, 28, 24, 20.
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Figure 6.3: Distribution of the measurement error parameter estimate for Series 2
via univariate and multivariate methods for 1000 realisations of design A1a14 with
T = 240, 120, 80, 40, 28, 24, 20.
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Table 6.2: Medians of parameter estimates for Series 2 with design A1a14 for 1000
realisations with T = 20, 21, . . . , 27, 28, 40, 80, 120, 240.

Series 2 Level Seasonal Error

Design A1a14 True=0.5 True=1.0 True=1.0

Median Estimate Mult. Univ. Mult. Univ. Mult. Univ.

T 20 0.210 0.194 0.726 0.477 1.410 1.680

21 0.221 0.185 0.694 0.476 1.422 1.656

22 0.228 0.192 0.699 0.494 1.435 1.620

23 0.233 0.214 0.703 0.515 1.441 1.624

24 0.234 0.210 0.704 0.523 1.442 1.641

25 0.246 0.215 0.734 0.531 1.451 1.663

26 0.244 0.220 0.746 0.572 1.441 1.656

27 0.245 0.226 0.769 0.566 1.433 1.654

28 0.261 0.238 0.768 0.576 1.438 1.649

40 0.313 0.344 0.846 0.716 1.332 1.413

80 0.434 0.457 0.983 0.937 1.019 1.026

120 0.426 0.446 0.962 0.908 1.088 1.130

240 0.472 0.481 0.999 0.984 1.003 1.020

The results for all values of T studied are given in Table 6.2. This table shows

the median values for the estimated parameters of each component over the 1000

series generated. Not surprisingly, the estimates closest to the true parameter values

are for T = 240, the series with the greatest length. However, it is seen here that

the parameter estimates given by the multivariate method are closer to the exact

value for every pair (univariate vs multivariate) for each value of T except for the

level component for T ≥ 40. That is, there is a marked improvement in the median

estimate when the sub-series are used in the estimation process.
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Table 6.3: Means and standard errors (in italics) of parameter estimates for design
A1a14 for 1000 realisations with T = 20, 21, . . . , 27, 28, 40, 80, 120, 240.

Series 2 Level Seasonal Error

Design A1a14 True=0.5 True=1.0 True=1.0

Mean Estimate Mult. Univ. Mult. Univ. Mult. Univ.

T 20 0.314 0.308 0.862 0.639 1.499 1.804

0.011 0.012 0.019 0.021 0.024 0.035

21 0.312 0.308 0.848 0.635 1.520 1.813

0.010 0.012 0.018 0.021 0.024 0.033

22 0.314 0.309 0.840 0.643 1.522 1.807

0.010 0.011 0.017 0.020 0.023 0.033

23 0.316 0.315 0.836 0.647 1.515 1.787

0.010 0.011 0.016 0.020 0.023 0.033

24 0.313 0.314 0.844 0.650 1.499 1.777

0.010 0.011 0.017 0.020 0.023 0.032

25 0.312 0.310 0.849 0.654 1.498 1.788

0.009 0.011 0.016 0.019 0.022 0.032

26 0.315 0.314 0.845 0.660 1.501 1.772

0.009 0.011 0.015 0.019 0.023 0.032

27 0.319 0.318 0.849 0.670 1.492 1.748

0.009 0.010 0.015 0.018 0.022 0.031

28 0.324 0.322 0.843 0.673 1.494 1.747

0.009 0.010 0.015 0.018 0.022 0.031

40 0.355 0.372 0.906 0.784 1.379 1.516

0.008 0.009 0.013 0.016 0.021 0.027

80 0.457 0.481 1.017 0.962 1.041 1.093

0.007 0.007 0.009 0.012 0.014 0.020

120 0.439 0.460 0.981 0.936 1.102 1.148

0.005 0.006 0.008 0.010 0.011 0.016

240 0.476 0.494 1.011 0.999 1.004 1.013

0.004 0.004 0.005 0.007 0.008 0.012
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The means and standard errors of the parameter estimates are given in Table

6.3. The means are larger than the medians due to the positively skewed distribu-

tions. The means fluctuate slightly as T increases, probably due to the presence of

outliers but overall become closer to their true parameter value as T reaches 240. As

expected, the standard errors generally decrease as T increases. They are smaller

for the multivariate method than for the univariate method. This is consistent with

the variability shown in the box plots.

Table 6.4: Relative efficiency of the variances of the parameter estimates for design
A1a14 for 1000 realisations with T = 20, 21,. . . , 27, 28, 40, 80, 120, 240.

A1a14 Level Seasonal Error

T 20 1.20 1.30 2.14

21 1.27 1.31 2.00

22 1.17 1.38 2.08

23 1.26 1.42 2.00

24 1.29 1.35 2.05

25 1.34 1.37 2.04

26 1.31 1.45 1.99

27 1.21 1.39 1.89

28 1.25 1.43 1.98

40 1.23 1.49 1.78

80 1.33 1.67 1.95

120 1.35 1.63 1.99

240 1.38 1.57 1.89

To compare the variability of the estimates for the two methods, the relative

efficiencies of the parameter estimates have been calculated using the variances ob-

tained from the results shown in Table 6.3. The results for each T are given in Table

6.4. This table highlights the gains which are achieved with the multivariate model.

The relative efficiency varies between 1.17 and 1.38 for the level parameter. For

the seasonal parameter, the relative efficiency shows greater gains than for the level

parameter, with values ranging from 1.30 for T = 20 to 1.67 for T = 80. The gains

are higher again for the measurement error parameter. These range from 1.78 for
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T = 40 to 2.14 for T = 20. Thus the higher gains in the variance of the estimates

are for the shorter series.

6.4.2 Design A1b33

The results for the parameter estimates for Series 2, design A1b33, are given in

this section for the 1000 realisations for each length of T . Figure 6.4 shows the box

plot of the distributions of the level parameter estimate for T = 240, 120, 80, 40,

28, 24 and 20, resulting from the univariate and multivariate models. The dotted

horizontal line represents the exact parameter value.
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Figure 6.4: Distribution of the level parameter estimate for Series 2 via univariate
and multivariate methods for 1000 realisations of design A1b33 with T = 240, 120,
80, 40, 28, 24, 20.
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Figure 6.5: Distribution of the seasonal parameter estimate for Series 2 via univari-
ate and multivariate methods for 1000 realisations of design A1b33 with T = 240,
120, 80, 40, 28, 24, 20.
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Figure 6.6: Distribution of the measurement error parameter estimate for Series 2
via univariate and multivariate methods for 1000 realisations of design A1b33 with
T = 240, 120, 80, 40, 28, 24, 20.
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As in the previous plots for design A1a14, Figure 6.4 shows that the median

estimate is an underestimate of the true value and that the magnitude of the bias

becomes larger as T decreases. The median for each T shown, except for T ≥ 120, is

closer to the true value if the multivariate model is used. Again, except for T ≥ 120,

the distributions are positively skewed, and become more so as the length of the

series decreases. The interquartile range for the multivariate method is slightly

smaller than for the univariate method. For this design, the dotted line for the true

value crosses the section between the upper quartile and the median for each value

of T displayed.

Figure 6.5 shows the distributions of the 1000 parameter estimates obtained for

the seasonal component for different length series. There is a definite improvement

in the precision of the estimates resulting from the multivariate model as shown

by the medians. For all values of T displayed, the medians are much closer to the

true value of 1.0. Notably, when T = 28, 24, and 20, the lower quartile of the

multivariate method is approximately equal to the median for the corresponding T

for the univariate method. The range and interquartile range are smaller for the

multivariate method in each pair. Apart from T = 40, outliers are also less extreme

for the multivariate method.

A similar result is shown for the measurement error component in Figure 6.6,

except that the median of the estimates for each T is greater than the true value.

Again, the medians given by the multivariate method are closer to the true value for

each T displayed and the range and interquartile range are also obviously narrower.

More detail is given in Tables 6.5 and 6.6. Table 6.5 shows the median of the

parameter estimates for each of the 13 values of T . For the level parameter, the

median of the estimates at T = 20 for the multivariate model (0.29) is closer to

the true value than the univariate estimate at T = 28 (0.27). For the seasonal

parameter, the median of the estimates at T = 20 for the multivariate model (0.82)

is closer to the true value than the univariate estimate (0.74) at T = 40.

Table 6.6 shows the means and standard errors for the parameter estimates for

each component and for each series length. Due to the skewed distributions and
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Table 6.5: Median of parameter estimates for design A1b33 for 1000 realisations
with T = 20, 21,. . . , 27, 28, 40, 80, 120, 240.

Series 2 Level Seasonal Error

Design A1b33 True=0.5 True=1.0 True=1.0

Median Estimate Mult. Univ. Mult. Univ. Mult. Univ.

T 20 0.294 0.196 0.818 0.486 1.183 1.598

21 0.288 0.202 0.819 0.493 1.159 1.603

22 0.289 0.219 0.814 0.534 1.198 1.599

23 0.300 0.227 0.814 0.546 1.185 1.615

24 0.312 0.239 0.829 0.556 1.189 1.607

25 0.317 0.234 0.825 0.579 1.165 1.633

26 0.325 0.243 0.822 0.575 1.183 1.580

27 0.325 0.270 0.827 0.589 1.219 1.615

28 0.332 0.269 0.827 0.603 1.234 1.560

40 0.370 0.349 0.863 0.740 1.181 1.462

80 0.445 0.449 0.936 0.918 1.112 1.130

120 0.458 0.470 0.969 0.942 1.043 1.103

240 0.489 0.489 0.990 0.980 0.996 1.022

the outliers, the means vary slightly for values of T between 20 and 28. For the

estimates of the level and seasonal parameters, the means increase as T increases

from T = 28 to T = 240. The bias is negative for the level and seasonal parameter

estimates but is positive for the measurement error parameter estimates for each

value of T . This bias is reduced by using the multivariate model for every value

of T except for the level parameter estimates for T ≥ 80. These exceptions also

occur for the medians in Table 6.5. Looking back to the results for design A1a14,

Tables 6.3 and 6.2, show a similar result for T ≥ 40. That is, the magnitude of the

biases shown for the mean and median estimates for the level parameter is greater

for the multivariate method. This is an interesting result which suggests there may

be a series length, T = TL, at which this ‘cross-over’ occurs. Thus, for T > TL, the

estimator of the level parameter has greater precision using the univariate model.
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Table 6.6: Means and standard errors (in italics) of parameter estimates for design
A1b33 for 1000 realisations with T = 20, 21,. . . ,27, 28, 40, 80, 120, 240.

Design A1b33 Level Seasonal Error

True=0.5 True=1.0 True=1.0

Mean Estimate Mult. Univ. Mult. Univ. Mult. Univ.

T 20 0.400 0.336 0.911 0.679 1.271 1.766

0.012 0.013 0.017 0.023 0.022 0.035

21 0.395 0.331 0.904 0.658 1.272 1.791

0.012 0.013 0.016 0.022 0.022 0.035

22 0.384 0.335 0.892 0.655 1.292 1.767

0.011 0.012 0.016 0.021 0.022 0.034

23 0.393 0.332 0.884 0.655 1.290 1.777

0.011 0.011 0.015 0.020 0.021 0.033

24 0.396 0.339 0.886 0.665 1.273 1.754

0.011 0.011 0.015 0.019 0.021 0.032

25 0.393 0.339 0.883 0.670 1.270 1.741

0.010 0.011 0.014 0.019 0.020 0.032

26 0.396 0.340 0.884 0.680 1.264 1.728

0.010 0.011 0.014 0.019 0.020 0.032

27 0.396 0.349 0.883 0.687 1.273 1.708

0.010 0.011 0.014 0.019 0.019 0.031

28 0.398 0.354 0.875 0.688 1.281 1.694

0.010 0.011 0.013 0.018 0.019 0.031

40 0.413 0.390 0.913 0.785 1.226 1.523

0.008 0.009 0.011 0.016 0.017 0.028

80 0.456 0.474 0.952 0.934 1.132 1.150

0.006 0.007 0.008 0.012 0.012 0.020

120 0.469 0.477 0.971 0.957 1.073 1.114

0.005 0.006 0.006 0.009 0.010 0.016

240 0.486 0.496 0.995 0.992 1.022 1.022

0.004 0.004 0.004 0.007 0.07 0.012
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The standard errors given in Table 6.6 decrease as T increases, and hence the

estimates become more stable. To look at the comparison between the two methods

more closely, the relative efficiencies of the variances have been determined and are

given in Table 6.7. Since all relative efficiencies are greater than one, the multivariate

method reduces the variability of the parameter estimates for each component. For

this example, the relative efficiencies of the estimates of the level parameter range

from 1.04 for T = 23 to 1.47 for T = 120. For the seasonal parameter, the gains are

much greater, with values ranging from 1.70 for T = 22 to 2.28 for T = 240. For

these two components, the relative efficiency increases for T = 23 up to T = 120.

The lowest value of the relative efficiency for the measurement error parameter is

2.41 which is given for both T = 22 and T = 120. The highest value is 2.63 which is

achieved for T = 40. For the measurement error, there is not a distinctive pattern

across T .

Table 6.7: Relative efficiency of the parameter estimates for design A1b33 for 1000
realisations with T = 20, 21,. . . ,27, 28, 40, 80, 120, 240.

A1b33 Level Seasonal Error

T 20 1.13 1.79 2.50

21 1.17 1.76 2.45

22 1.18 1.70 2.41

23 1.04 1.71 2.42

24 1.06 1.73 2.48

25 1.14 1.78 2.60

26 1.15 1.83 2.60

27 1.15 1.85 2.58

28 1.19 1.89 2.61

40 1.30 2.00 2.63

80 1.44 2.27 2.70

120 1.47 2.17 2.41

240 1.37 2.28 2.68
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The results shown in Table 6.7 for design A1b33 are similar to those shown in

Table 6.4 for design A1a14. For the estimate of the seasonal parameter, the relative

efficiency of the variances are higher for A1b33 than for A1a14, although all values

are above unity. These results show that for the two examples studied, the use of the

multivariate approach in the estimation of parameters improves the accuracy of the

parameter estimates of the aggregated series. Similar results are expected for the

parameter estimates of other designs, as these two examples (A1a14 and A1b33 )

were chosen to be indicative of the ‘a’ and ‘b’ designs respectively (refer to Section

6.3.1).

6.5 Effect of Parameter Estimation on MSE of

Model Components

In the previous section the model parameters were estimated by maximum likelihood

using the prediction error decomposition. It has been shown that these estimates

may be biased, especially for short to medium length time series. In this section,

the effect of the two-stage process of the estimation of the state vector components

and their corresponding mean squared errors are considered. The parameter esti-

mates from the first stage are substituted for the true parameters in the second

stage. When considering the variance of the seasonally adjusted series as discussed

in Section 3.6.1, the prediction mean squared error (PMSE) of the seasonal compo-

nent is required. It is therefore important to determine the effect of the parameter

estimation on the PMSEs of the unobserved components.

The substitution of the estimated parameters in the theoretical expressions for

the PMSE of the state vector components is known to produce an underestimate of

the true PMSE in univariate models. This bias is often referred to as the ‘näıve bias’

and results from not accounting for the variability resulting from the estimation of

the model parameters (Durbin and Koopman, 2001; Quenneville and Singh, 2005;

Pfeffermann and Tiller, 2005). In this section, the näıve bias will be examined for

different series lengths for the univariate model and for the multivariate model. It is

not known how the näıve bias behaves in multivariate models, as previous literature
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has focussed on univariate models such as the local level model as discussed in

Quenneville and Singh (2005) and Pfeffermann and Tiller (2005). A trigonometric

seasonal model is also considered in Pfeffermann and Tiller (2005).

Prior to defining the näıve bias, some notation is reviewed from Chapter 3, in

light of the definitions given for ψ(U) (refer to (6.10)) and ψ(m) (6.18). In Section

3.5.3, the smoothed state vector estimator for the univariate model, at|T , and its

corresponding error variance matrix, Vt|T , are defined in (3.52) and (3.54) respec-

tively. These are calculated assuming the known parameter values, ψ(U). To be

more specific as to whether known or estimated parameter values are used in the

calculation, the definition will now include either ψ(U) (for known parameters) or

ψ̂(U) (for estimated parameters). That is, for known parameter values,

at|T = E
(
αt|YT , ψ(U)

)

Vt|T = Var
(
αt|YT , ψ(U)

)
(6.35)

or, if estimated parameters are used in the application,

ât|T = E
(
αt|YT , ψ̂(U)

)

V̂t|T = Var
(
αt|YT , ψ̂(U)

)
. (6.36)

For the multivariate model, the smoothed state vector and its MSE matrix has

an (M) subscript as defined in (3.56) and (3.57) respectively. The notation for the

application of the smoother with known parameters is

a(M), t|T = E
(
α(M), t|Y(M), T , ψ(M)

)

V(M), t|T = Var
(
α(M), t|Y(M), T , ψ(M)

)
(6.37)

and for estimated parameters, it is

â(M), t|T = E
(
α(M), t|Y(M), T , ψ̂(M)

)

V̂(M), t|T = Var
(
α(M), t|Y(M), T , ψ̂(M)

)
(6.38)

The main focus of this thesis is on the variance of the seasonally adjusted aggre-

gated series as discussed in Section 3.6.1. Recall that for the one-staged estimation
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process, where the exact parameter values are used, the estimated seasonal com-

ponent is denoted by ŜU
t|T , which is an element of at|T (6.35). For the two-staged

estimation process, the univariate estimate of the seasonal component is denoted by

ŜU
t|T , which is an element of ât|T . Its mean squared error, MSE

(
ŜU

t|T
)

is an element

of V̂t|T .

Similarly for the multivariate method, the estimate of the seasonal component

from the two-staged process is denoted by ŜM
t|T , and is an element of â(M), t|T . Its

mean squared error is given by by MSE
(
ŜM

t|T
)
.

6.5.1 Näıve Bias

The näıve bias, which is the bias in the prediction mean squared error, will now be

considered for the estimated seasonal component resulting from both the univariate

and multivariate approaches. To calculate the näıve bias, the ‘true’ MSE is approx-

imated using the simulated series component and the estimated series component

as given in Pfeffermann and Tiller (2005, p903). The calculations here are based on

1000 simulated series for each series length T = 20, 21, . . . ,27, 28, 40, 120. For the

seasonal component, it is

MSEU
t =

1000∑
i=1

(
ŜU

t|T, i − St, i

)2

1000
, i = 1, . . . , 1000 (6.39)

where St,i is the simulated value of the seasonal component at time t for the ith

generated data series and ŜU
t|T, i is the estimated seasonal component at time t de-

termined by the Kalman smoother, given the vector of estimated parameters ψ̂(U)

for the ith generated data series of length T .

The multivariate form of (6.39) is given by

MSEM
t =

1000∑
i=1

(
ŜM

t|T, i − St, i

)2

1000
. (6.40)

For the näıve bias, let M̂SE
U

i,t denote the state variance calculated by the Kalman

smoother with the estimated parameters (ψ̂(U)) given by the univariate model for the
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ith simulated series. Similarly, M̂SE
M

i,t is the notation adopted for the multivariate

model. The biases of the estimators are therefore determined by

Univariate: dU
i,t = M̂SE

U

i,t −MSEU
t (6.41)

Multivariate: dM
i,t = M̂SE

M

i,t −MSEM
t . (6.42)

The mean bias over the 1000 realisations and its associated MSE are determined

by

Univariate: d
U

t =
1000∑
i=1

dU
i,t

1000
, d

U(2)

t =
1000∑
i=1

(dU
i,t)

2

1000
(6.43)

Multivariate: d
M

t =
1000∑
i=1

dM
i,t

1000
, d

M(2)

t =
1000∑
i=1

(dM
i,t)

2

1000
. (6.44)

It is more informative to analyse a bias by considering its value relative to the

true value. The relative values may be calculated for each t = 1, . . . , T . If desired,

the mean over T can be evaluated and expressed as a percentage. This is termed

the ‘mean percent relative bias’ (Pfeffermann and Tiller, 2005). This value and

the ‘mean percent relative root mean squared error’ are defined in Pfeffermann and

Tiller (2005, p904) and are given here for both approaches as

Univariate:

Rel-Bias =
100

T

T∑
t=1

(
d

U

t

MSEU
t

)
, Rel-RMSE =

100

T

T∑
t=1




√
d

U(2)

t

MSEU
t


 ; (6.45)

Multivariate:

Rel-Bias =
100

T

T∑
t=1

(
d

M

t

MSEM
t

)
, Rel-RMSE =

100

T

T∑
t=1




√
d

M(2)

t

MSEM
t


 . (6.46)

The näıve bias is calculated by Quenneville and Singh (2005) for a local level

model for series of lengths T = 40 and T = 100. They found that the näıve bias

is greater in absolute terms for the moderate length (T = 40) than for the longer

series (T = 100). For the moderate length, the mean percent relative bias for 1000
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realisations was reported to be -21.2%, whereas for the series with T = 100, the

relative bias was -9.0%.

Pfeffermann and Tiller (2005) reproduce the experiment carried out by Quen-

neville and Singh (2005) with series of lengths T = 40 and T = 100 but extend the

number of realisations to 5000. Their results for the näıve bias are slightly smaller,

with the mean percent relative näıve bias for T = 40 reported as -18.5% and for

T = 100, it is -7.6%.

Although these results are for a simpler model than is studied here, they show

the effect of using the estimated parameters in the calculation of the predicted mean

squared error of the state vector. It is expected that for this study, the näıve bias

will be large and negative and that it will decrease (in absolute terms) as the length

of the series is increased. The univariate model being investigated here is the local

level seasonal model which differs to a local level model in that it also has a dummy

seasonal component. The multivariate model is also considered here.

Results for Näıve Bias

The näıve bias for the seasonal component has been calculated for two different sub-

series designs for both the univariate and multivariate models for 1000 realisations.

The results for design labelled A1a14 for each value of T = 20, 21, . . . , 27, 28, 40,

120 are given in Table 6.8. Similarly, the results for design labelled A1b33 are given

in Table 6.9. The Rel-Bias and Rel-RMSE for the univariate model are calculated

with the equations in (6.45). The Rel-Bias and Rel-RMSE for the multivariate

model are calculated with the equations in (6.46).

For design A1a14, Table 6.8 shows that the relative bias calculated for the uni-

variate model ranges from -27.97 for T = 24, down to -6.71 for T = 120. The result

for the relative bias varies slightly for T between 20 and 28, then decreases to -19.38

for T = 40, and then decreases markedly to -6.71 for T = 120. Note that although

this model is different to the local level model studied by Quenneville and Singh

(2005) and Pfeffermann and Tiller (2005), the results for T = 40 are of a similar

magnitude.
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The relative bias calculated for the multivariate model of design A1a14 ranges

from -28.16 for T = 21, down to -7.19 for T = 120. From T = 20 to T = 28 the

results for the relative bias are very similar for the two approaches. It is not until

T = 40 and T = 120 that a difference becomes more noticeable. That is, there is a

slight increase in bias (in absolute terms) for the multivariate model compared to the

univariate model. However, for this design, the Rel-RMSE is smaller for each value

of T for the multivariate model. Thus, for values of T less than 40, the multivariate

model performs slightly better than the univariate model.

For design A1b33, the results in Table 6.9 show a relative bias which ranges from

-27.16 for T = 23 down (in absolute terms) to -5.57 for T = 120. The univariate

values differ slightly from those in Table 6.8 due to the difference in the 1000 samples

drawn. This is of no consequence. For this design, there is a large improvement in

the Rel-Bias for the multivariate model especially for T < 40. For example, for

T = 20 the Rel-Bias for the multivariate (-14.34) is just over half (53%) of the bias

calculated with the univariate method (-27.04). Also, for T < 40, the Rel-RMSE is

smaller for each value of T for the multivariate model. For T = 40, and 120, the Rel-

RMSE is larger for the multivariate model, although the Rel-Bias is slightly smaller.

For design A1b33, the näıve bias is greatly improved by applying the multivariate

model to series with short to moderate length.
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Table 6.8: Percent mean relative näıve bias and relative root mean squared error
of smoothed seasonal component MSE for design A1a14 for 1000 realisations with
T = 20, 21,. . . ,27, 28, 40, 120.

Design A1a14 Multivariate Univariate

Näıve Bias of

Seasonal component Rel-Bias Rel-RMSE Rel-Bias Rel-RMSE

T 20 -26.97 41.14 -27.69 44.65

21 -28.16 41.06 -27.31 43.69

22 -26.74 40.17 -26.26 43.09

23 -27.15 40.57 -26.87 43.22

24 -27.57 40.09 -27.97 42.82

25 -26.53 39.53 -27.77 42.56

26 -26.81 39.39 -26.58 41.99

27 -26.33 38.86 -25.03 41.00

28 -25.78 38.58 -25.53 40.74

40 -21.84 34.15 -19.38 35.20

120 -7.19 18.32 -6.71 21.10

Table 6.9: Percent mean relative näıve bias and relative root mean squared error
of smoothed seasonal component MSE for design A1b33 for 1000 realisations with
T = 20, 21,. . . ,27, 28, 40, 120.

Design A1b33 Multivariate Univariate

Näıve Bias of

Seasonal component Rel-Bias Rel-RMSE Rel-Bias Rel-RMSE

T 20 -14.34 42.09 -27.04 43.79

21 -16.24 41.73 -28.41 44.16

22 -15.41 41.22 -27.85 43.51

23 -15.22 40.52 -27.16 42.76

24 -15.92 40.02 -26.88 42.55

25 -16.01 40.58 -26.94 42.08

26 -15.01 40.16 -26.13 41.88

27 -15.30 39.87 -26.07 41.81

28 -14.92 39.80 -26.30 41.53

40 -13.02 37.88 -18.60 35.15

120 - 4.53 25.75 - 5.57 21.25
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6.5.2 Bias Correction

As well as investigating the näıve bias, both Quenneville and Singh (2005) and Pf-

effermann and Tiller (2005) examine various bias correction procedures. The study

by Quenneville and Singh (2005) compares several different procedures including

the corrected Ansley and Kohn approximation and a procedure which uses an ap-

proximation of the posterior distribution with initial priors (‘Pc’). They show that

the ‘Pc’ bias correction reduces the näıve bias from -21.2% to -6.7% for T = 40 and

-9.0% to -2.5% for T = 100. However, this procedure ‘can be more computationally

demanding for more general structural models’ (Quenneville and Singh, 2005, p229).

They conclude that the corrected Ansley and Kohn approximation which reduces

the relative näıve bias by 55% (down to -13% for T = 40 and -4% for T = 100) is

the preferred method when other considerations such as theoretical exactness, bias,

precision and computational requirements are taken into account.

Pfeffermann and Tiller (2005) carry out a similar comparative study for different

bias correction procedures. They propose a new bootstrapping procedure which

addresses both the filter uncertainty and the parameter uncertainty which constitute

the predicted mean squared error. Their proposed method reduces the bias to be

of order (1/T 2) and does not require the assumption that the parameter estimators

have, approximately, a normal distribution.

For the local level model example given in Pfeffermann and Tiller (2005), the

bootstrap bias correction reduces the magnitude of the näıve bias from -18.5% to

0.6% for T = 40 and from -7.6% to 1.6% for T = 100. The bootstrap procedure

is also applied to results from a simulation study which has a seasonal model for a

monthly series with length T = 84. The extensive study generates 500 bootstrap

series for each of 500 series selected from 10,000 primary series. The study then

focuses on the last time point, T = 84. The näıve bias of -99 (-6%) at T = 84 is

reduced to a bias of 12 (0.8%) (Pfeffermann and Tiller, 2005, Table IV, p910).

For the purpose of this study, the bootstrapping procedure detailed by Pfeffer-

mann and Tiller (2005) will be carried out here as it has been shown to be effective,

especially for shorter series. Previous estimators such as the estimator given by
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Ansley and Kohn (1986), have a bias to the order of (1/T ), and rely on the asymp-

totic normality property of the maximum likelihood estimates of the parameters.

In Section 6.4, the parameter estimates were shown to have quite skewed distri-

butions, particularly for T < 40. For this reason, and since the proposed method

by Pfeffermann and Tiller (2005) reduces the bias to be of order (1/T 2), thereby

substantially improving the bias, the bootstrap procedure will be implemented. A

small simulation study will apply the bootstrapping procedure to the univariate and

multivariate local level seasonal model for quarterly data with T = 28 for design

A1b33.

The main equations and procedures from Pfeffermann and Tiller (2005) will be

given in this section with notation adapted to comply with notation already defined

in this thesis. For theoretical proofs and other details please refer to Pfeffermann

and Tiller (2005). To save defining unnecessary additional notation, the procedure

will be described in detail with reference to the univariate model only.

For the univariate model, the prediction error of the state vector when the pa-

rameter estimates are substituted for the known parameters may be written as

[ât|T − αt] = [ât|T − at|T ] + [at|T − αt] (6.47)

and the prediction mean squared error can therefore be written as the sum of two

expectations, where the expectation is with respect to the joint distribution of αt

and YT (Pfeffermann and Tiller, 2005, p896):

MSEt = E[ât|T − αt]
2

= E[at|T − αt]
2 + E[ât|T − at|T ]2 (6.48)

= filter uncertainty + parameter uncertainty.

Pfeffermann and Tiller (2005, p896) further explain that the covariance term is zero,

E
(
[ât|T − at|T ][at|T − αt]

)
= E

(
E

(
[ât|T − at|T ][at|T − αt]|YT

))

= 0 (6.49)

since [ât|T − at|T ] is fixed when conditioning on YT .
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The first expression in (6.48) is the contribution to the prediction mean squared

errors (PMSE) resulting from ‘filter uncertainty’. The second expression is the

contribution resulting from ‘parameter uncertainty’. The näıve PMSE estimator

accounts for ‘filter uncertainty’ but ignores ‘parameter uncertainty’ while the boot-

strap procedure accounts for both.

Since the variance of the seasonally adjusted series is given by the error variance

of the seasonal component (refer to Section 3.6.1), the formulae given in Pfeffermann

and Tiller (2005, p897) will be adapted specifically to obtain results for the seasonal

component.

The procedure consists of three steps (Pfeffermann and Tiller, 2005, p897):

1. Simulate a large number (B) of series of length T = 28 using the univariate

model equations in (4.3) but with the estimated parameters, ψ̂(U), instead

of the true parameters, ψ(U). The simulated state vector series is denoted

by αb
t with the simulated seasonal component at time t denoted by Sb

t for

b = 1, . . . , B.

2. Re-estimate the model parameters for each of the B generated series using the

same method as used for obtaining ψ̂(U) (as described in 6.2). This process

yields the bootstrap estimates ψ̂Ub for b = 1, . . . , B.

3. Estimate MSEt = E[ât|T −αt]
2 which is the error variance of the state vector

given the estimated parameters. In particular, the interest is in MSES
t =

E[ŜU
t|T − St]

2. This is estimated with the following formulae:

M̂SE
S

t = MSESb
t + 2V̂S

t|T − V
Sb

t (6.50)

where

MSESb
t =

1

B

B∑

b=1

[
Ŝbb

t|T − ŜUb
t|T

]2

; V
Sb

t =
1

B

B∑

b=1

V̂Sb
t|T . (6.51)
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In equation (6.50),

• V̂S
t|T denotes the element of V̂t|T which corresponds to the seasonal component

when estimated parameters ψ̂U are substituted for exact parameters.

Thus, it is the näıve estimator of the mean squared error of the seasonal component

given by the Kalman smoother, previously written as MSE
(
ŜU

t|T
)
.

In equation (6.51),

• V̂Sb
t|T denotes the näıve estimator of the mean squared error of the seasonal

component given by the Kalman smoother when estimated bootstrap param-

eters, ψ̂Ub, are used;

• Ŝbb
t|T is the state moment estimator when the bootstrap series b, and the pa-

rameter estimates ψ̂Ub, are applied to the Kalman smoother;

• ŜUb
t|T is the state moment estimator when the bootstrap series b, and the pa-

rameter estimates ψ̂U , are applied to the Kalman smoother.

The bootstrap procedure for the multivariate model is applied similarly to the

above procedure, by substituting the corresponding multivariate parameter esti-

mates ψ̂M for ψ̂U . The data are generated as described in Section 6.3.1 with ψ̂M ,

and by applying the multivariate state space model as described in Section 4.2.1.

The difference in this procedure of simulating the data and that for the previous

simulation study is that the univariate data are simulated independently from the

multivariate data. In the previous simulation study, the multivariate series were gen-

erated first and them summed to obtain the univariate series. However, because the

estimated parameters are being used to generate the bootstrap series, the constraint

that previously applied to the true parameters (4.5) does not apply here.

For the bootstrap simulation study, 100 series are randomly selected from the

1000 primary series generated to obtain the näıve bias results in Section 6.5.1. For

each of the 100 selected series, 500 bootstrap series are generated, thus B = 500

and 100 × 500 series are produced. It is difficult to ascertain how many bootstrap
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series are required. For the study involving the univariate local level model, Pfef-

fermann and Tiller (2005) generated 2000 bootstrap series for each of 1000 primary

series, thus producing 1000 × 2000 series. For the univariate seasonal model, they

produced 500× 500 series. As the bootstrap method proved to be computationally

intensive, this study will give results for 100 × 500 series for each of the univariate

and multivariate models for sub-series design A1b33.

Results of Bootstrap Correction

The results of the bootstrapping study will be presented here focussing on the last

time point of the series, T = 28. The results for the näıve and bootstrap estimators

of the PMSE of the smoothed seasonal component are compared to the approximated

true value.

In Table 6.9, the näıve bias for T = 28 showed a Rel-Bias of -14.92% for the

multivariate model and -26.30% for the univariate model. These were calculated

using (6.46) and (6.45) respectively. They are the result of the mean over t =

1, . . . , 28. In order to compare the estimators, the value at t = 28 is recovered from

the calculations using (6.45) and (6.46) to obtain

Univariate: Rel-Bias28 =
d

U

28

MSEU
28

, Rel-RMSE28 =

√
d

U(2)

28

MSEU
28

(6.52)

Multivariate: Rel-Bias28 =
d

M

28

MSEM
28

, Rel-RMSE28 =

√
d

M(2)

28

MSEM
28

. (6.53)

The expressions in (6.52) and (6.53) are calculated and the results are presented

in Table 6.10. The Rel-Bias28 for the multivariate model (-25.87%) is smaller in

magnitude than that for the univariate model (-33.11%). The value of the ‘True’

MSE for the univariate model has been approximated to be 1.19 by using MSEU
28

from (6.39). Similarly, the multivariate approximation of the true MSE at t = 28

is 0.65, determined by MSEM
28 (6.40). The value of the näıve estimator is given by

V̂S
28|28 (refer to Section 6.5.2) and hence the mean näıve bias for t = 28 is calculated
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using d
U

t (6.43), for the univariate, and d
M

t (6.44), for the multivariate. The RMSE

for the multivariate (42.59) is slightly smaller than that for the univariate (44.92).

The results of the 100× 500 bootstrap simulation study are given in Table 6.11.

For this study, the bootstrap correction method has markedly reduced the large

negative bias associated with the näıve estimator. The Rel-Bias for the multivariate

has reduced from -25.87% for the näıve estimator to 4.46% for the bootstrap esti-

mator. For the univariate model, the bootstrap correction performs very well. The

näıve Rel-Bias is reduced from -33.11% to just -1.62%. Thus, the univariate model

seems to respond more quickly to the bootstrap method than for the multivariate

model. This may be due to the larger number of parameters to be estimated in the

multivariate model. It is expected that by increasing the number of primary series

used for the multivariate bootstrap method, the bias may further reduce.

The RMSE for both the multivariate and univariate shown in Table 6.11 have in-

creased slightly, and now show a similar value. This is most likely due to the addition

of bias correction terms in the calculation of the bootstrap estimator (Pfeffermann

and Tiller, 2005).

Table 6.10: Näıve bias for MSE of smoothed seasonal component with design A1b33
for t = T = 28 calculated with 1000 realisations.

Design A1b33 ‘True’ MSE Näıve Est. Näıve bias Rel-Bias Rel-RMSE

Multivariate 0.6487 0.4809 -0.1678 -25.87 42.59

Univariate 1.1919 0.7973 -0.3946 -33.11 44.92

Table 6.11: Bootstrap correction for MSE of smoothed seasonal component for
design A1b33 with t = T = 28 calculated with 100× 500 series.

Design A1b33 ‘True’ MSE Boot Est. Bootstrap bias Rel-Bias Rel-RMSE

Multivariate 0.6487 0.6776 0.0289 4.46 45.38

Univariate 1.1919 1.1726 -0.0193 -1.62 45.86
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6.6 Revision Error

When government statistical agencies publish economic time series, preliminary se-

ries such as the seasonally adjusted series may be released. Then, as subsequent data

become available, these series are revised. In practice, seasonally adjusted data are

not usually revised if more than three years old (Burridge and Wallis, 1985). From

a user’s perspective, these revisions are cause for concern, as they tend to create

a lack of trust in the data. The sizes of revisions are of particular concern when

forecasts are being made from the data (Harvey, 1989, Section 6.4.4). It is preferable

therefore to reduce the number and size of revisions.

The revision error may be defined as the difference between the concurrent (or

real-time) estimate and the estimate calculated j time points later (Planas and

Rossi, 2004). The current or preliminary seasonally adjusted value, Y a
t|t, is given by

Y a
t|t = Yt − Ŝt|t. (6.54)

An adjustment which is calculated with information available at time t+j is denoted

by Y a
t|t+j and can be written as,

Y a
t|t+j = Yt − Ŝt|t+j. (6.55)

The revision error is therefore,

rt,t+j
t = Y a

t|t − Y a
t|t+j

= Yt − Ŝt|t − (Yt − Ŝt|t+j)

= Ŝt|t+j − Ŝt|t, j = 0, 1, ... (6.56)

The variance of the revision error is an important measure to consider, as it is

used to calculate the width of the confidence interval around the concurrent esti-

mates. Thus, the smaller the revision error variance, the narrower the confidence

interval, which means the concurrent estimates are more reliable. Burridge and

Wallis (1985) state that the variance of the revision error is a difference of variances,

such that:

Var
(
rt,t+j
t

)
= Var

(
Ŝt|t

)
− Var

(
Ŝt|t+j

)
(6.57)
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In the paper by Planas and Rossi (2004, p124), further explanation is given for this

result. Firstly, the expression for the variance of (6.56) may be written as

E
(
[Ŝt|t+j − Ŝt|t][Ŝt|t+j − Ŝt|t]

′
)

= E
(
[St − Ŝt|t − St + Ŝt|t+j][St − Ŝt|t − St + Ŝt|t+j]

′
)

= Var
(
Ŝt|t

)
+ Var

(
Ŝt|t+j

)
− 2E

(
[St − Ŝt|t][St − Ŝt|t+j]

′
)

(6.58)

The covariance term in (6.58) may be expressed as

E ([St − Ŝt|t][St − Ŝt|t+j]
′
)

= E
(
[St − Ŝt|t+j + Ŝt|t+j − Ŝt|t][St − Ŝt|t+j]

′
)

= E
(
[St − Ŝt|t+j][St − Ŝt|t+j]

′
)

+ E
(
[Ŝt|t+j − Ŝt|t][St − Ŝt|t+j]

′
)

= Var
(
Ŝt|t+j

)
+ 0 (6.59)

The second term is zero since the revision is independent of the error in the final

estimate (see Pierce, 1980; Burridge and Wallis, 1985). Hence, by substituting the

result for the covariance term from (6.59) into (6.58), the result for Var
(
rt,t+j
t

)
given

in (6.57) is obtained.

In Section 6.4, it was seen that the estimates of the model parameters depended

upon the length of the series. As the error variance matrix of the state vector

depends only on the values of the parameters and not on the observations, the terms

on the right-hand side of (6.57) will depend on the parameters which are estimated

with series length t or t + j. Therefore, as Planas and Rossi (2004) point out,

(6.57) assumes that the parameters are held constant from time t to time t + j. As

model parameters are re-estimated each time a new observation becomes available,

(6.57) can be regarded as only an approximation to the revision error variance. Also

another issue to consider with (6.57) is that the terms on the right hand side require

the use of the mean squared error matrices due to estimated parameters. As shown

by the näıve bias (Section 6.5.1), a serious underestimation of the elements of the

mean squared error matrices exists when estimated parameters are applied.

To avoid these issues, Planas and Rossi (2004) propose an empirical method of

calculating the variance of the revision error. Their method uses the revisions which
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are actually observed. If rt,t+J
t denotes the total revisions after J additional periods,

then the empirical estimate of variance of the revision, V̂ar
(
rt,t+J
t

)
, can be found

by taking the mean over time t, of the sum of squared revisions calculated between

time t and t + J . This is given by Planas and Rossi (2004, p125):

V̂ar
(
rt,t+J
t

)
=

1

T − J − τ + 1

T−J∑
t=τ

J∑
j=1

(
Ŝt|t+j − Ŝt|t+j−1

)2

(6.60)

where τ is the time point at which the analysis of the concurrent estimate begins.

6.6.1 Revision Error Results

The revision error is calculated using (6.60) for both the univariate and multivariate

models for the aggregate series with the two sub-series designs previously studied,

namely A1a14 and A1b33. For this study, the required values in (6.60) are set

as τ = 20, and J = 4. The calculation therefore involves the estimated seasonal

components for the time period of t = 20 up to and including t = 24 with length

of series varying between zero and 4 periods ahead of t. Thus, the focus is on the

revision errors observed between 5 and 6 years of quarterly data, taking into account

new observations one year ahead.

Estimates for the smoothed seasonal components using the estimated parameters

are calculated for 1000 realisations of the univariate and multivariate models for

T = 20, 21, . . . , 27, 28. With τ = 20, and J = 4, equation (6.60) simplifies to

V̂ar
(
rt, t+4
t

)
=

1

5

24∑
t=20

4∑
j=1

(
Ŝt|t+j − Ŝt|t+j−1

)2

, (6.61)

and is calculated for each realisation and for each of the designs A1a14 and A1b33.

For the univariate model, this yields V̂ar
U

i

(
rt, t+4
t

)
and for the multivariate model it

yields V̂ar
M

i

(
rt, t+4
t

)
for i = 1, . . . , 1000.

To compare the revision error variance for the univariate model to that for the

multivariate model, the relative efficiency will be calculated for each realisation,

i = 1, . . . , 1000 and for each sub-series design.

REi(r) =
V̂ar

U

i

(
rt, t+4
t

)

V̂ar
M

i

(
rt, t+4
t

) (6.62)
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The distribution of REi(r) for each design is summarised in Figure 6.7. Both

box plots show a positively skewed distribution with many high outliers. To show

more detail, the upper limit of the vertical scale of the box plots has been reduced

to REi(r) = 10. This is shown in Figure 6.8.

Table 6.12 shows the 5-number summary and the mean for each design. The

median for the relative efficiency of the revision error variance for design A1b33

(1.546) is greater than that for design A1a14 (1.101). However, for both designs,

the median relative efficiency is above 1.0. This means that the multivariate design

yields a smaller revision error variance than the univariate design. Thus, by applying

the multivariate model, the confidence interval width for the revision error will be

narrower than for the univariate model and the revisions will be also be smaller. For

these two examples, there are good gains in using the multivariate model to improve

the revision error.

Table 6.12: Five-number summary and mean of relative efficiency of the revision
error variance for design A1a14 and A1b33 for 1000 realisations.

REi(r) Minimum Lower Median Mean Upper Maximum

Quartile Quartile

Design A1a14 0.025 0.681 1.101 1.688 1.843 37.557

A1b33 0.018 0.820 1.546 2.470 2.922 26.747
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Figure 6.7: Box plot for relative efficiency of revision error variance for 1000 reali-
sations of design A1a14 and A1b33.
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Figure 6.8: Box plot for relative efficiency of revision error variance for 1000 reali-
sations of design A1a14 and A1b33 with limited scale.
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6.7 Summary

In practice, a two-staged process is required in estimating state space model com-

ponents. The first stage involved the estimation of the parameters using prediction

error decomposition of the likelihood function. The second stage comprised the

substituting of the estimated model parameters into the Kalman filter or smoother

to obtain estimates of the components in the state vector and their mean squared

errors. The effect of this substitution was studied in terms of the näıve bias for

different series lengths. One method of bias correction, the bootstrap method, was

investigated for both the univariate and multivariate models. Revision error was

also considered using an empirical measure proposed by Planas and Rossi (2004).

In Section 6.4, the results of the estimation of the aggregate series parameters

were shown for two different sub-series designs for series lengths T = 20, 21, . . . , 27,

28, 40, 120. Applying the multivariate model decreased the bias associated with the

estimates of the parameters of the aggregate series in both cases, especially for the

parameters of the seasonal component (refer to Tables 6.3 and 6.6). The standard

errors of the parameter estimates also reduced with the multivariate model. The

results showed a greater improvement for design A1b33, than for design A1a14. In

Section 4.6.1, the relative efficiency with known parameters for Series 2 and A1b33

was calculated to be 1.86, which is larger than that for A1a14 (1.18). The results

for the estimation of the parameters therefore suggest that the improvement in the

estimated values of the aggregate series will be greater using the multivariate model

under certain conditions which rely on the relative values of the sub-series model

parameters.

In the second stage, the relative näıve bias and the relative root mean squared

error were calculated for the two designs for both the univariate and multivariate

models. The results showed that the näıve bias of the variance of the seasonally

adjusted series could be decreased substantially with the use of the multivariate

model. This was evident from the results for design A1b33, where the relative näıve

bias was almost half of that obtained with the univariate model for short to medium
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length time series. There was also a slight decrease in the relative RMSE.

One method of correcting the näıve bias, is the bootstrap correction proposed

by Pfeffermann and Tiller (2005). This method was applied to design A1b33 for

both the univariate and multivariate models for the series with length T = 28.

Application involved generating 500 bootstrap series for each of 100 primary series,

re-estimating the model parameters and calculating the mean squared error of the

seasonal component taking into account the filter uncertainty and the parameter

uncertainty. The method reduced the relative näıve bias for the univariate model

and for the multivariate model but was more effective for the univariate model.

In practice, the size of the revisions made to published series, as more observa-

tions are made available, is always a concern to government statistical agencies. The

reliability of the concurrent estimates depends on the variance of the revision error.

In Section 6.6, the variance of revision error was calculated empirically using the

method proposed by Planas and Rossi (2004). The results for the univariate model

were compared with the results for the multivariate model. It was shown that in

both cases studied, a reduction in the variance of the revision error was evident when

the multivariate model was used. The reduction was greater for design A1b33 than

for A1a14, again pointing to the importance of the relative values of the sub-series

model parameters.

The focus of this chapter has been on the estimation of the model parameters

and the effects of applying these in the calculation of the variance of the seasonally

adjusted series and the revision error. In this chapter, as in previous chapters, the

univariate model has been compared to the multivariate model when two sub-series

are aggregated to obtain the total series. In the next chapter, an extension to this

is given by way of an example in which the total series is an aggregate of eight

sub-series.
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Handling Several Sub-series: An
Example

7.1 Introduction

So far in this thesis, the case with two sub-series (K = 2) has been investigated in

detail. In practice, the number of sub-series which are aggregated to obtain the total

series is often more than two. In this chapter, the focus of attention is an example

extending the work of Chapter 4 from two sub-series to eight sub-series and tieing

this together with the quasi-likelihood theory developed in Chapter 5. A natural

extension is to use the eight sub-series in the multivariate model and the aggregated

series in the univariate model, thereby applying the same methodology as for K = 2

sub-series. However, as K increases, the multivariate model becomes more complex

and the number of parameters grows quickly. For example, for the local level seasonal

model with K = 2, there are 3(K + 1) = 9 parameters in the model, and if K = 4,

there are 15 parameters. When K = 8, the number of parameters increases to

3(K + 1) = 27. If the series has a short to moderate length, the model could

become unstable with so many parameters to fit. The main aim in this chapter is to

determine a grouping strategy whereby similar gains can be achieved by aggregating

the K original sub-series into r < K new sub-series. The issue addressed is how to

group the sub-series into a new set of sub-series, thereby reducing the complexity

of the multivariate model and reducing the number of parameters to be estimated.

To discuss this issue, the results from previous chapters are applied to an example.

177
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In Chapter 4, the results for two sub-series showed that when the sub-series

parameters are considerably different between series (i.e. within components) and

within series (i.e. between components), gains in the relative efficiency were achieved.

By using the multivariate model, the variance of the seasonally adjusted series could

be improved. It would be too time intensive to consider every possible grouping com-

bination if K is large. For example, if K = 4, there are 14 ways of grouping the series.

If K = 5, the number of possible groupings increases to 51. (Refer to Table C.1

in Appendix C.3 for the calculation of these numbers using Stirling numbers of the

second kind.) Therefore, using the results obtained in Chapter 4, several different

combinations could be identified for investigation. This could be done empirically

by calculating the c-ratios (4.14) for each pair of sub-series, given the multivariate

parameters for the K series. The c-ratios for the seasonal and non-seasonal series

components could then be compared in order to identify groupings with dissimi-

lar c-ratios. In Section 5.7, the quasi-likelihood indicator for relative efficiency was

developed for the situation where r new sub-series are formed from the K original

sub-series. Given a number of different groupings, the value of Q (5.59) may be used

to predict which grouping has the highest relative efficiency. Relative efficiencies can

be determined via the Kalman filter for the chosen combinations. For the purposes

of this study, both the Q indicator and the relative efficiency determined with the

Kalman filter are calculated for nine different combinations of the sub-series.

7.2 Data Generation of the Eight Sub-series

In Chapter 4, data were simulated for two sub-series which summed to the same

total series. Different combinations of parameters were determined for the sub-series

in order to study the behaviour of the relative efficiency under different conditions.

The parameters used were assumed to be exact parameters, thus requiring only one

simulation of data for each case studied. In fact, the observations are not required

at all, as the theoretical expressions for the MSE of the state vector component only

rely on the parameters and not on the observations. The purpose of simulating data



Chapter 7. Handling Several Sub-series: An Example 179

values was to enable the use of S-PLUS software to more readily calculate the MSEs.

Otherwise, the known parameters could be substituted into the derived theoretical

expression for each value of t given by the Kalman filter.

In this chapter, a similar process is employed as in Chapter 4, but with K = 8

instead of K = 2. The parameters for the eight sub-series are assumed to be the

exact parameters. In this example, the parameters for the sub-series remain fixed,

and the interest lies in the grouping of the sub-series. Thus, parameters for the eight

sub-series are required. Instead of simulating the data with artificially constructed

sub-series (as carried out in Chapter 4), the data for the sub-series are simulated

based on parameters determined by a real data series. In choosing an appropriate

data set, two criteria had to be met. Firstly, it was required that the data have

K > 2 sub-series, and enough to allow different groupings for comparison purposes.

Secondly, to simplify the model, it was required that the data not be a result of a

sample survey.

With this in mind, data from the Domestic Sales of Australian Wine and Brandy

by Winemakers (Category number 8504.0, Table 2A) were obtained from the Aus-

tralian Bureau of Statistics (ABS, 2007b). The series consists of 254 monthly sales

of Australian wine in each of eight wine types from March 1985 to April 2006. The

eight sub-series consist of monthly sales (in thousands of litres) of the following

wine types: white table wine, red table wine, fortified wine, sparkling bottled wine,

sparkling bulk wine, carbonated wine, flavoured wine and vermouth. Details of

category definitions may be found in the associated technical report (ABS, 2007b).

The original data have been amended for the purposes of this example as follows:

• The first data point (March 1985) and the last data point (April 2006) were

deleted, leaving a total of 252 data points, that is, 21 complete years.

• The monthly data were summed over each consecutive three month period to

obtain 84 quarterly data points for each of the 8 sub-series.

• Logarithms of each series were then obtained in order to apply an additive

basic structural model (since each series is considered multiplicative).
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A plot of the amended data is given in Figure 7.1. It can be seen from the plot

that some series have a fairly constant level with zero or very little slope and that

all series have a seasonal component. The levels of some series vary over the 84

quarters. There are also breaks with strings of missing data for some series.
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Figure 7.1: Logarithms of quarterly wine sales by type

The next step in constructing the simulated sub-series data was to obtain uni-

variate parameter estimates for each sub-series individually. The univariate local

level seasonal model was deemed to be appropriate for each sub-series for the pur-

poses of this example. It is described in state space form in (4.6) to (4.8). The

univariate model was applied to obtain maximum likelihood estimates of the pa-

rameters for each series. This produced three parameters for each series, giving

a total of 24 estimated parameters. However, in order to simulate the sub-series,

the multivariate parameters which include the common disturbance terms are also

required. The univariate parameters can be used to obtain starting values for the
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Table 7.1: Parameters used for generation of the eight sub-series

Parameter Level Seasonal Error

(x = η) (x = ω) (x = ε)

σ2
x 1.6e-013 0.00004 0.00043

σ2
1x∗ 0.00027 0.00001 0.00042

σ2
2x∗ 0.00178 0.00006 0.00016

σ2
3x∗ 0.00047 0.00007 0.00044

σ2
4x∗ 0.00397 0.00014 0.00602

σ2
5x∗ 0.01611 0.00096 0.00169

σ2
6x∗ 0.02291 0.00054 0.01172

σ2
7x∗ 0.00345 2.0e-017 0.00425

σ2
8x∗ 0.01409 6.6e-015 0.01226

estimation of the multivariate parameters.

The multivariate local level seasonal model with a quarterly dummy seasonal

component for K = 8 has state space form similar to (4.9) but with I2 replaced by I8.

Estimation of the parameters is performed by prediction error decomposition of the

log-likelihood function, as described in Section 6.2.2. The 27 resulting multivariate

parameter estimates are given in Table 7.1. These parameters are deemed to be

the exact parameters for the purpose of this experiment. This construction allows

a more realistic set of parameters to be used than if all sub-series were artificially

constructed.

Given the 27 multivariate parameters shown in Table 7.1, the data for Y1t, . . . , Y8t

are generated from the multivariate model equations according to the local level

seasonal model for K = 8. The model is

Ykt = Lkt + Skt + εt + ε∗kt,

Lk, t+1 = Lk, t + ηt + η∗kt,

Sk, t+1 = −
s−1∑
j=1

Sk, t+1−j + ωt + ω∗kt,

(7.1)
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where k = 1, . . . , 8, and

εt ∼ N(0, σ2
ε), ε∗kt ∼ N(0, σ2

kε∗),

ηt ∼ N(0, σ2
η), η∗kt ∼ N(0, σ2

kη∗),

ωt ∼ N(0, σ2
ω), ω∗kt ∼ N(0, σ2

kω∗).

(7.2)

Data is generated for 80 time points using starting values obtained from the

logarithm of the original quarterly data for each series as given in Table 7.2. The

first 40 data points of each series are then discarded, leaving t = 1, . . . , 40 simulated

quarterly observations for analysis.

Table 7.2: Initial values used for generation of the eight sub-series

Parameter Level Seasonal

k Lk,1 Sk,1 Sk,0 Sk,−1

1 11 0.06 0.21 -0.27

2 9 0.16 -0.13 -0.38

3 9 0.05 -0.14 -0.40

4 8 0.38 0.96 -1.25

5 8 -0.01 0.62 -0.78

6 6 -0.14 0.41 -0.63

7 6 -0.11 0.09 -0.49

8 7 0.05 0.26 -0.42

Data simulation and aggregation result in the set of eight sub-series (Y1t,. . . ,Y8t),

and their sum Ytot, t, for t = 1, . . . , 40. In practice, the aggregated series analysed

would typically be the logarithm of the sum of the eight original (unlogged) series. As

multiplicative series have not been considered in this thesis, the aggregated series has

been constructed ‘artificially’ from the eight (logged) sub-series. The eight simulated

sub-series are plotted in Figure 7.2.
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Figure 7.2: Simulated series of the logarithms of quarterly wine sales by type

The aggregated series is modelled by

Ytot, t =
K∑

k=1

Ykt

= Ltot, t + Stot, t + εtot, t, (7.3)

Ltot, t+1 = Ltot, t−1 + ηtot, t,

Stot, t+1 = −
s−1∑
j=1

, Stot, t+1−j + ωtot, t,

where

εtot,t ∼ N(0, σ2
tot,ε), ηtot,t ∼ N(0, σ2

tot,η), and ωtot,t ∼ N(0, σ2
tot,ω). (7.4)

Subsequently, the series parameters for the aggregated series are given by the fol-
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lowing constraint formulae, evaluated with K = 8:

σ2
tot, η = K2σ2

η +
K∑

k=1

σ2
kη∗ = 0.0630476,

σ2
tot, ω = K2σ2

ω +
K∑

k=1

σ2
kω∗ = 0.0045557,

σ2
tot, ε = K2σ2

ε +
K∑

k=1

σ2
kε∗ = 0.0647954. (7.5)

These parameters are substituted into the univariate model for the aggregated series.

7.3 Grouping the Sub-series

In Chapter 4, for the case with two sub-series, the relative efficiency of the mul-

tivariate model was calculated for different sub-series which summed to the same

aggregate series. The between-series (i.e. within components) and the within-series

(i.e. between components) relationships for the two series were studied and both

were found to impact the relative efficiency.

In this example, the sub-series and the aggregate series are kept fixed, but the

number of groups and size of the groups vary. To obtain some idea of how many

combinations are possible, consider the case where only two groups (r = 2) are

formed from the eight (K = 8) series. If the two groups consist of four series each,

then there are 35 (= 8C4/2) possible combinations. Two examples are (Y1t + Y2t +

Y3t+Y4t, Y5t+Y6t+Y7t+Y8t) and (Y1t+Y2t+Y3t+Y5t, Y4t+Y6t+Y7t+Y8t). Alternatively,

if one group consists of five series, then the other group will have 3 series. For this

situation there are a 56 (= 8C5) combinations. Another alternative is one group of

6 series and one group of 2 series. This results in another 28 (= 8C6) combinations.

Finally, there could be a group of 7 series and one single series, yielding another

8 (= 8C7) combinations. Therefore, just for the case with r = 2, there are 127

possible combinations if K = 8. Then there are the cases where r = 3, 4, 5, 6, 7,

and 8. Referring to Table C.1 in Appendix C.3, the number of possible combinations

for these cases are 966, 1701, 1050, 266, 28, and 1 respectively. In total, there are

4139 possible groupings if K = 8.
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To reduce the number of combinations to investigate, the c-ratios for each pair

of series are calculated. The c-ratio definition is extended from the K = 2 case in

Chapter 4 (see (4.13) -(4.14)) to the case with K > 2 groups. The c-ratio between

the ith and jth sub-series is defined for each component. For the level, seasonal and

error components, these are respectively,

cη (ij) =
σ2

η + σ2
iη∗

σ2
η + σ2

jη∗
, cω (ij) =

σ2
ω + σ2

iω∗

σ2
ω + σ2

jω∗
, cε (ij) =

σ2
ε + σ2

iε∗

σ2
ε + σ2

jε∗
. (7.6)

For the example with eight sub-series, the c-ratios are shown in Table 7.3. By

applying the conclusions determined in Chapter 4, decisions can be made as to

which grouping combinations to test. For example, the 8 rows in the top left of

Table 7.3 compare the parameters for Series 1 with those for Series 2 to 8 for each

component. This shows that Series 1 is similar to Series 3, as the c-ratios are close

to 1. However, the opposite is the case when comparing Series 1 parameters with

Series 4 to 8. This suggests that Series 1 and 3 could be grouped together. Similarly,

other observations can be made, such as possibly grouping Series 2 with Series 4,

Series 5 with Series 6 and also grouping Series 7 with Series 8. This combination is

just one of many possible combinations.

Guided by the results shown in Table 7.3, and for the purpose of demonstration,

nine different combinations of the sub-series are investigated. Two different combi-

nations will be considered for the cases where r = 2, 4, and 5. Three combinations

will be considered for r = 3. Table 7.4 shows the grouping of the sub-series for each

combination. A group may consist of the aggregate of two or more sub-series or it

could simply be a single sub-series. For the first combination, there are 5 groups

(r = 5). The first group contains the aggregate of Series 1 and 3 (Y1t + Y3t), the

second group is the aggregate of Series 5 and 6 (Y5t +Y6t), the third group is the ag-

gregate of Series 7 and 8 (Y7t +Y8t), and the remaining two groups are the individual

series, Series 2 (Y2t) and Series 4 (Y4t) respectively.
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Table 7.3: C-ratios for pairs of series

(σ2
x + σ2

kx∗)/(σ
2
x + σ2

1x∗) (σ2
x + σ2

kx∗)/(σ
2
x + σ2

2x∗) (σ2
x + σ2

kx∗)/(σ
2
x + σ2

3x∗)

Level Seas. Error Level Seas. Error Level Seas. Error

k x = η x = ω x = ε x = η x = ω x = ε x = η x = ω x = ε

1 1.0 1.0 1.0 0.2 0.5 1.4 0.6 0.5 1.0

2 6.6 1.9 0.7 1.0 1.0 1.0 3.8 0.9 0.7

3 1.7 2.2 1.0 0.3 1.2 1.5 1.0 1.0 1.0

4 14.7 3.4 7.5 2.2 1.8 10.8 8.5 1.5 7.4

5 59.6 18.8 2.5 9.1 9.9 3.6 34.4 8.5 2.4

6 84.8 11.0 14.2 12.9 5.8 20.4 48.9 5.0 13.9

7 12.8 0.8 5.5 1.9 0.4 7.9 7.4 0.4 5.4

8 52.1 0.8 14.8 7.9 0.4 21.3 30.1 0.4 14.5

(σ2
x + σ2

kx∗)/(σ
2
x + σ2

4x∗) (σ2
x + σ2

kx∗)/(σ
2
x + σ2

5x∗) (σ2
x + σ2

kx∗)/(σ
2
x + σ2

6x∗)

Level Seas. Error Level Seas. Error Level Seas. Error

k x = η x = ω x = ε x = η x = ω x = ε x = η x = ω x = ε

1 0.1 0.3 0.1 0.0 0.1 0.4 0.0 0.1 0.1

2 0.4 0.6 0.1 0.1 0.1 0.3 0.1 0.2 0.0

3 0.1 0.7 0.1 0.0 0.1 0.4 0.0 0.2 0.1

4 1.0 1.0 1.0 0.2 0.2 3.0 0.2 0.3 0.5

5 4.1 5.6 0.3 1.0 1.0 1.0 0.7 1.7 0.2

6 5.8 3.3 1.9 1.4 0.6 5.7 1.0 1.0 1.0

7 0.9 0.2 0.7 0.2 0.0 2.2 0.2 0.1 0.4

8 3.5 0.2 2.0 0.9 0.0 6.0 0.6 0.1 1.0

(σ2
x + σ2

kx∗)/(σ
2
x + σ2

7x∗) (σ2
x + σ2

kx∗)/(σ
2
x + σ2

8x∗)

Level Seas. Error Level Seas. Error

k x = η x = ω x = ε x = η x = ω x = ε

1 0.1 1.2 0.2 0.0 1.2 0.1

2 0.5 2.4 0.1 0.1 2.4 0.0

3 0.1 2.7 0.2 0.0 2.7 0.1

4 1.2 4.2 1.4 0.3 4.2 0.5

5 4.7 23.2 0.5 1.1 23.2 0.2

6 6.6 13.6 2.6 1.6 13.6 1.0

7 1.0 1.0 1.0 0.2 1.0 0.4

8 4.1 1.0 2.7 1.0 1.0 1.0
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Table 7.4: Different combinations of the eight sub-series

Groups

r 1 2 3 4 5

1) 5 Y1t + Y3t Y5t + Y6t Y7t + Y8t Y2t Y4t

2) 5 Y1t + Y2t + Y3t Y4t Y5t + Y6t Y7t Y8t

3) 4 Y1t Y6t + Y7t + Y8t Y2t + Y3t Y4t + Y5t

4) 4 Y1t + Y3t Y2t + Y4t Y5t + Y6t Y7t + Y8t

5) 3 Y1t + Y2t + Y3t Y4t + Y7t + Y8t Y5t + Y6t

6) 3 Y1t + Y3t Y2t + Y4t + Y7t + Y8t Y5t + Y6t

7) 3 Y1t + Y3t Y5t + Y6t + Y7t + Y8t Y2t + Y4t

8) 2 Y1t + Y6t + Y7t + Y8t Y2t + Y3t + Y4t + Y5t

9) 2 Y1t + Y2t + Y3t + Y4t Y5t + Y6t + Y7t + Y8t

7.3.1 Calculation of Q for each Combination

In order to compare the different combinations of sub-series, the relative efficiencies,

REt(M) (3.59), may be calculated. If a particular combination has a high relative

efficiency, this means that the multivariate model is favoured over the univariate

model for that combination. Hence, by comparing the relative efficiency, REt(M),

at some value of t for each combination, a decision can be made regarding which

groupings to consider for trial in the estimation of series components. However, as

shown in Chapter 4, the relative efficiency changes for each t and the Kalman filter

needs to be applied to each combination.

In Section 5.7, the quasi-likelihood indicator for relative efficiency was developed

for the case where r groups of sub-series are formed from the K original sub-series.

The theory can be applied to this example with K = 8 to obtain the value of Q

(5.59) for each combination. This will assist in determining which combinations

have high relative efficiencies, REt(M).

The value of Q has been evaluated for each combination by applying the theory

in Section 5.7 using Maple software. The relevant transformation matrix (Λ) is
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determined by multiplying the r×r transformation matrix, A (3.33), by the selection

matrix for that combination. For example, the transformation matrix for the first

combination listed in Table 7.4 will be a r ×K = 5× 8 matrix, given by

Λ =




1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




.




1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0




=




1 1 1 1 1 1 1 1

1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0




.

(7.7)

The value of r, the number of groups formed for each combination, is taken from

Table 7.4. Following the theory given in Section 5.7, the value of Q is obtained for

each combination by substituting in the required values. For the local level seasonal

model, these are p = 4, u = 2, and the parameter values given in Table 7.1. The

results of Q are given in Table 7.5 alongside the calculated value of RE40(M). (For

details of the matrix calculations performed in Maple refer to the CD enclosed with

this thesis. Appendix E has a list of the filenames and descriptions of each program.)

The value of Q for the original 8 sub-series is calculated to be 1.026. As the

number of groups (r) decreases, in general, the value of Q also decreases as shown in

Table 7.5. The one exception is for the third combination, where r = 4. The value

of Q is 1.022 which is higher than that for the first and second combinations where

r = 5. These results give an indication of what to expect for the relative efficiencies

produced by the Kalman filter. As the number of newly formed sub-series decreases

(r is small), the relative efficiency is also expected to decrease. When sub-series are

aggregated together to form a new sub-series, the within group differences between

the series parameters no longer apply. This is because the parameters for the group

aggregate now apply and not the parameters of the original sub-series. Some of the

values of Q are very similar, indicating that the corresponding combinations will

yield a similar relative efficiency.
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7.4 Relative Efficiency Results

The variance of the seasonally adjusted series is determined by the Kalman filter,

as described in Section 3.6.1 for both the univariate and the multivariate models.

The relative efficiency is subsequently calculated at the last time point (T = 40),

for each combination listed in Table 7.4. The values of RE40(M) are given in Table

7.5, together with those of Q.

Table 7.5: Values of Q and relative efficiency for nine different combinations

Combination r Q RE40(M)

Original 8 1.026 1.115

1 5 1.021 1.091

2 5 1.020 1.088

3 4 1.022 1.084

4 4 1.020 1.083

5 3 1.019 1.079

6 3 1.018 1.067

7 3 1.017 1.043

8 2 1.010 1.047

9 2 1.007 1.020

Using the original eight sub-series, the relative efficiency is 1.115. Thus, in this

example with K = 8, there is a gain in using the multivariate model over the

univariate model. As indicated by the value of Q, the value of RE40(M) is higher

for the multivariate model with K = 8 than for any of the nine combinations tested.

The first combination with r = 5 has RE40(M) = 1.09, which is slightly lower than

for the case with K = 8. The number of parameters in the model has reduced from

27 with K = 8 to 18 with r = 5. A model which achieves a similar relative efficiency

with a smaller number of parameters may be a better choice in terms of stability of

the model.

Generally, the value of RE40(M) decreases as r decreases. One exception to
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this is in the comparison of combination 7 and 8. For combination 7, r = 3 and

RE40(M) = 1.043. However, for combination 8, where r = 2, the RE40(M) is higher

at 1.047. This result suggests that combination 8 with only two groups is a better

combination than that given by combination 7 with three groups. The increase was

not indicated by Q. The value of Q preserves the relativities of RE40(M) within

each value of r but not when comparing results across r. This requires further

investigation but is not within the scope of this thesis.

The results for combination 7 and 8 prompt further investigation. It is possible

to determine the c-ratios for the newly formed groups for each combination using

the formula given in (7.6). Here, the i and j represent group i and group j. For

combination 7, there are three c-ratios for each component, since r = 3. These are

cη (12) = 0.128, cη (13) = 0.013, cη (23) = 0.102,

cω (12) = 0.701, cω (13) = 0.117, cω (23) = 0.168,

cε (12) = 0.328, cε (13) = 0.071, cε (23) = 0.215. (7.8)

For combination 8, there is only one c-ratio for each component, as r = 2:

cη (12) = 1.823,

cω (12) = 0.649,

cε (12) = 2.333. (7.9)

The c-ratios in (7.8) for combination 7 show that there are differences between

components, but that all c-ratios are below 1.0. For combination 8, however, the

seasonal c-ratio, cω (12), is below 1.0, but the non-seasonal c-ratios are above 1.0 (7.9).

This property is similar to the property defining the ‘b’ designs which yielded high

relative efficiencies, studied in Chapter 4. Therefore, it is possible for a combination

with, say r1 groups to yield a higher relative efficiency than another combination

with more groups, say r2 (r2 > r1).

A further example demonstrates the use of c-ratios. A tenth combination was

formed with the purpose of producing an example with a low relative efficiency. The

objective this time is to combine together series with c-ratios that are not close to
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1.0. Using the results in Table 7.3, Series 2 is combined with Series 6, as the c-ratios

comparing these two series are high. Similarly, Series 3 and 4 are also combined

with Series 6, thus forming one grouping with Y2t +Y3t +Y4t +Y6t. This leaves Series

1, 5, 7, and 8 to form another group, Y1t + Y5t + Y7t + Y8t.

For this tenth combination, Q = 1, thus indicating that the multivariate model

will not achieve a gain over the univariate model, with respect to the relative effi-

ciency. In fact, the relative efficiency is calculated to be very close to 1 (RE40(M) =

1.00003). Thus, using the c-ratios to find a ‘bad’ example supports the notion that

they may be used in an effective strategy of grouping the sub-series.

7.5 Summary

To reduce the complexity of the multivariate model, the K sub-series may be com-

bined into several groups. These groups may be an aggregate of two or more series

or may be a single series from the original K sub-series. The aim of this chapter

was to determine a grouping strategy which would aid in the choice of grouping the

sub-series into r < K groups. The choice of grouping becomes a balance between

reducing the number of parameters in the model and achieving a worthwhile gain

in the relative efficiency. An example for which the aggregated series is the sum of

eight sub-series, has been investigated.

Using the c-ratios as a guide to choosing the groupings, nine combinations of

the eight sub-series were considered. For r = 2, 4 and 5, two combinations were

considered. For r = 3, three combinations were considered. The quasi-likelihood

indicator was calculated for each combination. The results showed that in general,

the relative efficiency decreased as r decreased. There was one exception in the nine

combinations studied. A combination of two groups (r = 2), had a higher relative

efficiency for one of the combinations with three groups (r = 3). It was found that

the seasonal c-ratio for the case with two groups had a value below 1.0 but the

non-seasonal c-ratios were both above 1.0.

There may need to be a trade-off between the number of groups (r) chosen and
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the desired relative efficiency. For example, it may be that the relative efficiency is

higher with say five groups than it is for four groups, but that the difference is almost

negligible. The model with the smaller number of groups (and hence parameters)

may be more suitable in that it allows a more stable model. Further investigation

is required into how the grouping may benefit the estimation process.



Chapter 8

Conclusions

8.1 Summary

The focus of this thesis has been on the reliability of a seasonally adjusted aggregated

series. In particular, the research has examined whether gains are achievable in the

seasonal adjustment of an aggregated series through joint modelling of the sub-series.

If so, the aim was to identify the conditions under which these gains occurred. In

addition, as estimates of the structural components are affected by the length of the

series, the research also addressed examination of the impact of series length on the

accuracy of seasonally adjusted aggregated series.

The aims were achieved by applying a multivariate basic structural model to a

transformed set of sub-series, as discussed in Chapter 3. By including the aggregated

series as one of the multivariate series in the model, estimates of the components such

as the level and seasonal factors were obtained within the multivariate framework.

For comparison, the variance of the seasonally adjusted aggregated series could then

be calculated for both univariate and multivariate models.

Once the framework was established, an empirical study with two sub-series

and known parameters was carried out in Chapter 4. From this study, it can be

concluded that very good gains are possible and that the conditions rely on the

relative parameters of the seasonal and non-seasonal components of the sub-series.

To summarise results:

1. When the two sub-series have the same parameters for each component then
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there is no gain using the multivariate model. Also, there is very little differ-

ence in the methods if the ratios of the series parameters within components

are similar.

2. Gains are achievable when the ratio of the series parameters for the seasonal

component is very different to that of the non-seasonal component. The gains

are especially good when one of the ratios is greater than one and the other is

less than one. These gains can be achieved even with low correlations between

the series for each component.

3. Increasing the correlation between the sub-series for the seasonal component

improves the gain but the magnitude is dependent upon the ratios of the series

parameters within components. The more dissimilar the stochastic structure

is between the components, the higher the magnitude of the gain from the

seasonal correlation.

4. Increasing the correlation between the sub-series for the non-seasonal compo-

nents improves the gain but not to the same magnitude as for the seasonal

component.

5. Rates of convergence to a steady state of the relative efficiency varied with the

magnitude of the ratios. Series with a high seasonal component ratio had a

slower convergence rate than series with a low ratio.

Three alternative aggregated series were studied in Chapter 4. Changing the ag-

gregated series parameters did not greatly affect the results of the relative efficiency.

There was a difference in the rates of convergence of the relative efficiency. The

aggregated series with the smallest seasonal to non-seasonal ratio of parameters had

the slowest rate of convergence of the relative efficiency.

Because of the iterative nature of the Kalman filter, the theoretical expression

for the relative efficiency changes for each time point. The expressions depend on

the parameter values and not on the observations. An alternative to the relative

efficiency calculated with the Kalman filter was derived using a quasi-likelihood



Chapter 8. Conclusions 195

method. A single number indicator was found to be directly related to the relative

efficiency given by the Kalman filter. Although it overestimated the value for the ex-

ample studied, the quasi-likelihood indicator was shown to preserve the relativities.

This alternative measure could be helpful in practice, especially when comparing

different combinations of series. An example was given in Chapter 7.

In Chapter 6, a simulation study showed the effects of estimating the aggregate

series parameters with the univariate and multivariate methods for different series

lengths. For the two examples studied, it was shown that the bias of the estimated

parameters was much less for the multivariate model than for the univariate model.

This was especially the case for short to medium length time series. The relative

efficiencies of the seasonally adjusted aggregated series also showed good gains for

the multivariate model.

In practice, a two-staged process is required in estimating state space model com-

ponents. Firstly, the parameters are estimated. Secondly, they are substituted into

the model to obtain the estimates of the series components and their mean squared

errors. The näıve bias in the mean squared error is a result of this substitution.

For one of the examples, there was a substantial decrease in the näıve bias with

the use of the multivariate model. The bootstrap method was applied to correct

the näıve bias for both univariate and multivariate methods. The correction seemed

to be more effective with the univariate model. Since the multivariate model has

more parameters, it may be that to obtain comparable results, a larger number of

bootstrap series is required for each primary series chosen.

The reliability of concurrent estimates was investigated in Chapter 6 by calculat-

ing the revision errors and the revision error variance. Large revision errors can be

major contributors in a poor interpretation or forecast in the state of the economy.

In both cases studied, there was a reduction in the revision error variance when the

multivariate model was used. Thus, the confidence interval width for the revision

error is narrower than for the univariate model and the revisions are also smaller.

Overall, this means the concurrent estimates are more reliable.

In Chapter 7, the experience gained from Chapters 4, 5, and 6 was implemented
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in a case study. When there are several sub-series, it may be required to decrease the

number of parameters of the multivariate model by grouping the sub-series into r ≤
K new sub-series. The c-ratios can be used to identify possible groupings of similar

series. Using these results, combinations of the sub-series may be identified for

testing. The Q indicator can then be determined for each combination to predict that

combination with the highest relative efficiency. The 10 combinations tested showed

that in general, as r decreases, the relative efficiency decreases. The differences

between the series parameters are lessened with the aggregation of the series within

each grouping. However, it was demonstrated that it is possible for a combination

with lower r to achieve a higher relative efficiency. There needs to be a balance

between the required relative efficiency and the reduction of parameters which may

help to stabilise the model in the estimation process.

In conclusion, applying the multivariate model proposed in this thesis to the

system of sub-series of an aggregated series, allows gains to be achieved in the

variance of the seasonally adjusted aggregate series, and the revision error variance.

8.2 Future Directions

During the course of this research, other issues were raised. While not in the scope

of this thesis, they are a natural extension to it.

In this thesis, concentration has been on additive series. As many official time

series are of a multiplicative nature, the methods proposed here could be extended

to allow for multiplicative series. It is suggested that the logarithm of the aggregated

series could be used in the multivariate system with the logarithm of each of the

sub-series. In this way, there is a non-linear relationship between the K logged

sub-series and the logged aggregate series. Further investigation is required in this

area.

For those series which originate from a sample survey, it is necessary to include

the survey error in the model. This can be incorporated into the basic structural

model, as discussed in Pfeffermann et al. (1998).
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Other options for the structure of the covariance matrix of each component could

be investigated. Instead of having a common disturbance term in the definition of the

model for each component, which forces the off-diagonal elements to be equal, this

restriction could be relaxed. Alternative ways to reduce the number of parameters

could be investigated in light of the results in Chapter 7.

There are many challenges in estimating the parameters of a time series when

the length of the series is short. This thesis has examined the effects on parameter

estimation while shortening the series. Although the multivariate method proposed

here has shown to improve the accuracy of the estimates, there is great scope for

further work in this area.

When the parameters of the model are estimated, the sampling errors due to the

parameter uncertainty are not allowed for in the mean squared errors of the state

vector estimates. (See comment by A. Harvey for Durbin and Koopman, 2000.)

As previously mentioned, the bootstrap correction method, which allows for the

parameter uncertainty, could be further investigated, especially for the multivariate

model. Although 500 bootstrap series were generated for each of 100 primary series

in this thesis, extending the study by increasing both the number of bootstrap series

and the number of primary series would add further value in generalising the findings

of this thesis.

In Chapter 7, the idea of grouping several sub-series to decrease the number of

parameters was investigated with reference to the effects on the relative efficiency.

The parameters in this study were assumed to be known. This example could be

extended to examine the stability of the model for each chosen grouping, by carrying

out the parameter estimation in each case. This would demonstrate whether the

grouping benefits the estimation.

This research has implications in the area of using a related series to improve the

estimates of a particular target series. This is an emerging area of research which is

becoming popular in official statistical agencies worldwide. Although this thesis has

concentrated on the accuracy of the aggregated series, the method could be similarly

applied to focus on one of the individual series. If using a related series, the other
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individual series in the multivariate system may not be cross-sectional series, and

hence a transformation of the series would not be necessary.

Multivariate seasonal adjustment is becoming a topic of applied interest. The

example referred to in Maravall (2006) is a good example for which the multivariate

model could be applied. The data consists of the Japanese foreign trade series. The

balance of trade series is the difference between the exports and the imports, thereby

giving two series and the difference of these series. Maravall (2006) discusses the

indirect versus the direct seasonal adjustment of the balance of trade series. It is

planned to use this data in a forthcoming paper. Also, various research contract

projects in the Centre for Statistical and Survey Methodology (CSSM) involve data

which would benefit from this multivariate time series approach. If permission can

be obtained from the client, this data could also be used for the purpose of future

research.

Notwithstanding these issues that could be further pursued, this thesis identifies

the conditions under which the multivariate model is beneficial to the seasonal ad-

justment of an aggregated series. The gains reported here are appreciable. Hence,

when seasonal adjustment of an aggregated series of short to medium length is re-

quired, it is recommended that a multivariate framework be seriously considered.



Appendix A

The Kronecker Product

In Section 3.4.2 and Section 3.4.3, the Kronecker product is used in the calculations

for the multivariate model. In this Appendix, the Kronecker product and some of

the associated properties are defined. These properties and further information can

be found in Harville (1997, Chapter 16).

Definition: Let A be an m × n matrix such that A = {aij} and let B be an

p × q matrix such that B = {bij}. The Kronecker product of A and B is denoted

by A⊗B and will have dimensions mp× nq:

A⊗B =




a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
...

am1B am2B . . . amnB




.

Property 1 : The transpose of the Kronecker product of A and B is given by

(A⊗B)′ = A′ ⊗B′,

and it follows that if A and B are both symmetric,

(A⊗B)′ = A⊗B.
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Property 2 : For any m× n matrices A and B, and any p× q matrix C,

(A + B)⊗C = (A⊗C) + (B⊗C)

C⊗ (A + B) = (C⊗A) + (C⊗B).

Property 3 : For any m × n matrix A = {aij}, p × q matrix B = {bij}, n × u

matrix C = {cij} and q × v matrix D = {dij},

(A⊗B)(C⊗D) = (AC)⊗ (BD).

Property 4 : The Kronecker product, A⊗B, of any m×m non-singular matrix

A, and any p× p non-singular matrix B, is invertible, such that

(A⊗B)−1 = A−1 ⊗B−1.

Property 5 : The Kronecker product, A⊗B, of any m× n matrix A, and p× q

matrix B, may be decomposed in two ways

A⊗B = (A⊗ Ip)(In ⊗B)

= (Im ⊗B)(A⊗ Iq).



Appendix B

Trigonometric Seasonality

B.1 Introduction

There are many ways of modelling the seasonal component in the basic structural

model. The seasonal component, St, described in Section 3.2.2 is referred to as a

dummy seasonal component. A common alternative is to express the seasonal com-

ponent in trigonometric form, where it is represented as a sum of s/2 trigonometric

terms (see Harvey, 1989, Section 2.3.4, or Durbin and Koopman, 2001, Section 3.2).

This appendix outlines the univariate and multivariate model with trigonometric

seasonal factors and examines the results of the relative efficiency for a few designs

from the study in Chapter 4.

B.2 Univariate BSM

The univariate basic structural model is described in detail in Section 3.2. By replac-

ing the dummy seasonal component, St, with a trigonometric seasonal component,

S̃t, Yt may be written as:

Yt = Lt + S̃t + εU, t, εU, t ∼ N(0, σ2
U, ε). (B.1)

If S̃t represents a trigonometric seasonal component, then the s/2 trigonometric

terms are usually denoted in the texts (such as in Durbin and Koopman, 2001,

Section 3.2) by γjt. Here, they will be denoted by jβt, thereby putting the j subscript
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on the left, to avoid confusion later with the k subscript relating to the individual

series in the multivariate BSM.

S̃t =

[s/2]∑
j=1

jβt (B.2)

where the jβt evolve over time according to

jβt+1 = jβt cos(λj) + jβ
∗
t sin(λj) + jω̃U, t

jβ
∗
t+1 = −jβt sin(λj) + jβ

∗
t cos(λj) + j$U, t (B.3)

and where jω̃U, t and j$U, t are independent N(0, σ2
U, ω̃) variables. (The U subscript

is a label for the univariate model as previously denoted). Also

λj = 2πj
s

j = 1, . . . , [s/2], and [s/2] =





s/2 if s is even

(s− 1)/2 if s is odd

For quarterly data, s = 4, and hence λj is given by λj = πj
2

for j = 1, 2, resulting

in the seasonal frequencies of π
2

and π. The equations defining the trigonometric

model above (B.3) simplify to give four elements:

1βt+1 = 1β
∗
t + 1ω̃U, t

1β
∗
t+1 = −1βt + 1$U, t (B.4)

2βt+1 = −2βt + 2ω̃U, t

2β
∗
t+1 = −2β

∗
t + 2$U, t

and then the seasonal component, S̃t, becomes the sum of two elements:

S̃t = 1βt + 2βt. (B.5)

Similarly to the dummy seasonal variable, (B.2) still allows the sum constraint

of the seasonal effects to be zero over any s time periods. Here, it can be shown

that by substituting the appropriate terms from (B.4) into (B.5), and by taking

expectations, the following constraint holds.

E

(
s−1∑
i=0

S̃t+1−i

)
= 0 (B.6)
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This constraint means that the trigonometric model only requires s − 1 seasonal

elements to be defined, which is the same as in the dummy seasonal model. For

quarterly data, there are three seasonal elements for the trigonometric form, namely

1βt, 1β
∗
t , 2βt, whereas for the dummy seasonal form they are St, St−1, St−2.

B.2.1 Univariate State Space Form

In state space form, the state vector and system matrices for a seasonal local level

model (without slope) were given in Section 4.2.1 in equations (4.6 to 4.8) for the

dummy seasonal model. These are replaced by the following:

α̃t = [Lt, 1βt, 1β
∗
t , 2βt]

′
, α̃1 ∼ N(a1,P1)

γ̃t = [ηU, t, 1ω̃U, t, 1$U, t, 2ω̃U, t]
′
, γ̃t ∼ N(0, Q̃)

Z̃ =
(

1 1 0 1
)

,

G̃ = I4, εU, t ∼ N(0, H), H = σ2
U, ε,

T̃ =




1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 −1




Var
(
G̃γ̃t

)
= G̃Q̃G̃′ =




σ2
U, η 0 0 0

0 σ2
U, ω̃ 0 0

0 0 σ2
U, ω̃ 0

0 0 0 σ2
U, ω̃




(B.7)

where I4 is a 4× 4 identity matrix.

The main difference is that each trigonometric seasonal element (1βt, 1β
∗
t , 2βt)

has a disturbance term associated with it, namely 1ω̃U, t, 1$U, t, 2ω̃U, t respectively.

The dummy seasonal model has only one disturbance term, (ωU, t), which is associ-

ated with the St element of the state vector (αt) in (4.8).



Appendix B. Trigonometric Seasonality 204

B.3 Multivariate BSM

If the dummy seasonal component, described in (4.1), is replaced by the trigono-

metric seasonal component, then an observation at time t for series k is given by

Ykt:

Ykt = Lkt + S̃kt + εt + ε∗kt. (B.8)

The equation for the seasonal component for series k is:

S̃kt =

[s/2]∑
j=1

jβk, t (B.9)

where the trigonometric terms jβk, t evolve over time by

jβk, t+1 = jβkt cos(λj) + jβ
∗
kt sin(λj) + jω̃t + jω̃

∗
kt

jβ
∗
k, t+1 = −jβkt sin(λj) + jβ

∗
kt cos(λj) + j$t + j$

∗
kt.

The jω̃t and j$t are the common effects which are assumed to be independent

Normal random variables, each with zero mean and variance σ2
ω̃. The time-unit

specific effects are jω̃
∗
kt and j$

∗
kt similar to those described for the dummy seasonal

model in Section 3.3.1, and are assumed to be independent Normal random variables

each with zero mean and variance of σ2
ω̃∗ .
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B.3.1 Multivariate State Space Form

The state vector and system matrices for the multivariate local level seasonal model

(without slope) are given in Section 4.2.1 in equations (4.9 to 4.11) for the dummy

seasonal model. When K = 2, the transformed state vector, α(M), t and the vector

of disturbance terms, γ(M), t are replaced by the following:

α̃(M), t =
[
Ltot, t, L1t, 1βtot, t, 1β1t, 1β

∗
tot, t, 1β

∗
1t, 2βtot, t, 2β1t, εtot, t, (εt + ε∗1t)

]′

γ̃(M), t = [ ηtot, t, (ηt + η∗1t), 1ω̃tot, t, (1ω̃t + 1ω̃
∗
1t), 1$tot, t, (1$t + 1$

∗
1t),

2ω̃tot, t, (2ω̃t + 2ω̃
∗
1t), εtot, t+1, (εt+1 + ε∗1, t+1)

]′
(B.10)

The system matrices Z, G and T described in (4.11) are replaced by:

Z̃ =
(

1 1 0 1 1
)

G̃ = I5 T̃ =




1 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

0 0 0 −1 0

0 0 0 0 0




Var
(
(G̃⊗ I2)γ̃(M), t

)
=




Σ(M), η 0(2×2) 0(2×2) 0(2×2) 0(2×2)

0(2×2) Σ(M), ω̃ 0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) Σ(M), ω̃ 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2) Σ(M), ω̃ 0(2×2)

0(2×2) 0(2×2) 0(2×2) 0(2×2) Σ(M), ε




.

(B.11)

The transformed 2×2 covariance matrix, Σ(M), η, given in (4.12) remains unchanged,

and similarly for Σ(M), ε. The covariance matrix for each of the seasonal components,

Σ(M), ω̃, is given by the following:

Σ(M), ω̃ =


 σ2

tot, ω̃ 2σ2
ω̃ + σ2

1ω̃∗

2σ2
ω̃ + σ2

1ω̃∗ σ2
ω̃ + σ2

1ω̃∗


 .

(B.12)
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B.4 Calculation of Relative Efficiency

With a trigonometric seasonal component for quarterly data, the seasonal compo-

nent, S̃t, is the sum of two elements, as given in (B.5). To obtain the variance of the

seasonally adjusted series, the variance of the seasonal component, S̃t, is determined.

Var(S̃t) = Var(1βt) + Var(2βt) + 2Cov(1βt, 2βt). (B.13)

Both Var(1βt) and Var(2βt) are diagonal elements of the Pt|t (3.48) matrix. These

values are included in the standard S+FinMetrics output from the Kalman filter

for each element of the state vector and for each t. However, the covariance term is

not given directly.

Without using S+FinMetrics, the Kalman filter may be applied directly using

the filtering equations, and then for each t, the relevant elements of the Pt|t matrix

may be extracted for use in the formula in (B.13). This method has been used to

obtain the MSE of the seasonal component for the univariate and the multivariate

methods. The calculations have been carried out using MAPLE software and details

are included on the CD enclosed with this thesis. Hence, the relative efficiency is

given by

REt(M) =
MSE( ˆ̃SU

t|t)

MSE( ˆ̃SM
t|t )

, t = 1, . . . , T (B.14)

Alternatively, it is possible to obtain the covariance term in (B.13) from

S+FinMetrics by using the output for Pt|t, Pt−1|t−1, at|t, and at−1|t−1. Details can

be found on the CD enclosed with this thesis.



Appendix B. Trigonometric Seasonality 207

B.5 Relative Efficiency Results

To demonstrate the similarity of the relative efficiency using dummy seasonal and

trigonometric seasonal components, three designs have been chosen from the study

carried out in Chapter 4. They are A1a14, A1a21, and A1b42. For comparison

purposes, the parameters for the aggregated series are chosen to be

σ2
U, η = 0.01, σ2

U, ω̃ = 0.25, σ2
U, ε = 1. (B.15)

For each design, the exact parameters for the multivariate model were calculated

using the constraints in Section 4.3.2 according to the c-ratios and correlation set-

tings for the design (refer to Section 4.3.1). The results of REt(M) (B.14) at T = 40

are shown in Table B.1.

Table B.1: Results for RE40(M) for trigonometric seasonal component.

Design cω cη and cε RE40(M)

A1a14 1 20 1.1623

A1a21 5 1 1.0935

A1b42 20 0.2 1.9020

The results in Table B.1 may be compared with those obtained using the dummy

seasonal factor, given in Table 4.4 for designs A1a14, A1a21 and Table 4.5 for design

A1b42. It can be seen that the results are equivalent if rounded to two decimal places.

Therefore, for the purposes of this thesis, the choice of the dummy or trigonometric

seasonal factor in the basic structural model was not significant.
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Derivations for Chapter 5

C.1 Quasi-Likelihood Result for the Error

Variance Matrix of the Seasonal Components

In Section 5.4.1, equation (5.56) gives an expression for the error variance matrix

of the seasonal components for the K = 2 multivariate case. The derivation of that

expression is presented here.

The formula for the error variance matrix associated with the quasi-likelihood

multivariate state vector estimator is given in (5.53), and restated here:

P
(q)
(M), t = Vart−1

(
α

(q)
(M), t −A(M)X(M), 1

)

=
[
I6 −A(M)X(M), a

]
Vart−1

(
α

(q)
(M), t

) [
I6 −A(M)X(M), a

]′

+ A(M)X(M), b Vart−1

(E(M), t

) (A(M)X(M), b

)′
, (C.1)

where I6 is the 6 × 6 identity matrix. Similarly, Ir will denote the r × r identity

matrix in what follows. From (5.55), the matrix A(M) is partitioned as

A(M) =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34


 . (C.2)
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From (5.52), the partitioned vector X(M), 1 was given as

X(M), 1 =





 ZU′

0(3×3)


⊗ I2


 α

(q)
(M), t +





 1

0(3×1)


⊗ I2


 E(M), t

+





 0(1×5)

−UT


⊗ I2


 α(M), t−1

= (Xa ⊗ I2) α
(q)
(M), t + (Xb ⊗ I2) E(M), t + (Xc ⊗ I2) α(M), t−1

= X(M), a α
(q)
(M), t + X(M), b E(M), t + X(M), c α(M), t−1. (C.3)

The expression for X(M), a in (C.3) may be written in terms of 2× 2 matrices as

X(M), a =


 ZU′

0(3×3)


⊗ I2 =




I2 0(2×2) I2

0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2)




. (C.4)

Similarly, the expression for X(M), b may be written as

X(M), b =


 1

0(3×1)


⊗ I2 =




I2

0(2×2)

0(2×2)

0(2×2)




. (C.5)

Therefore, the expression I6 −A(M)X(M) a in (C.1) may be re-expressed as

I6 − A(M)X(M) a

=




I2 0(2×2) 0(2×2)

0(2×2) I2 0(2×2)

0(2×2) 0(2×2) I2


−




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34







I2 0(2×2) I2

0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2)

0(2×2) 0(2×2) 0(2×2)




=




I2 −A11 0(2×2) −A11

−A21 I2 −A21

−A31 0(2×2) −A31


 . (C.6)
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Similarly,

A(M)X(M) b =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34







I2

0(2×2)

0(2×2)

0(2×2)




=




A11

A21

A31


 . (C.7)

The first term of (C.1) becomes:

[
I6 −A(M)X(M), a

]
Vart−1

(
α

(q)
(M), t

) [
I6 −A(M)X(M), a

]′

=




I2 −A11 0(2×2) −A11

−A21 I2 −A21

−A31 0(2×2) −A31







Σ(M), η 0(2×2) 0(2×2)

0(2×2) Σ(M), ζ 0(2×2)

0(2×2) 0(2×2) Σ(M), ω




×




I2 −A11 −A21 −A31

0(2×2) I2 0(2×2)

−A11 −A21 −A31


 . (C.8)

Denote the resulting matrix from (C.8) as Va, and then the element in row r and

column c as Va[r, c]. The elements of the resulting 3× 3 matrix are given below.

Va[1, 1] = (I2 −A11)Σ(M), η (I2 −A11)
′
+A11Σ(M), ωA′

11

Va[1, 2] = − (I2 −A11)Σ(M), ηA′
21 +A11Σ(M), ωA′

21

Va[1, 3] = − (I2 −A11)Σ(M), ηA′
31 −A11Σ(M), ω (I2 −A31)

′

Va[2, 1] = −A21Σ(M), η (I2 −A11)
′
+A21Σ(M), ωA′

11

Va[2, 2] = A21Σ(M), ηA′
21 + Σ(M), ζ +A21Σ(M), ωA′

21

Va[2, 3] = −A21Σ(M), ηA′
31 −A21Σ(M), ω (I2 −A31)

′

Va[3, 1] = −A31Σ(M), η (I2 −A11)
′ − (I2 −A31)Σ(M), ωA′

11

Va[3, 2] = A31Σ(M), ηA′
21 − (I2 −A31)Σ(M), ωA′

21

Va[3, 3] = A31Σ(M), ηA′
31 + (I2 −A31)Σ(M), ω (I2 −A31)

′
(C.9)
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The second term of (C.1) becomes

A(M)X(M), bVart−1

(E(M), t

) (A(M)X(M), b

)′

=




A11

A21

A31


Σ(M), ε

(
A′

11 A′
21 A′

31

)

=




A11Σ(M), εA′
11 A11Σ(M), εA′

21 A11Σ(M), εA′
31

A21Σ(M), εA′
11 A21Σ(M), εA′

21 A21Σ(M), εA′
31

A31Σ(M), εA′
11 A31Σ(M), εA′

21 A31Σ(M), εA′
31


 . (C.10)

The solution to (C.1) can now be determined by adding together the two ma-

trices, (C.9) and (C.10). The third diagonal element which is the 2 × 2 matrix

representing Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t, S

(q)
1t − Ŝ

(q)
1t

)
, is given by:

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t, S

(q)
1t − Ŝ

(q)
1t

)

= Va[3, 3] +A31Σ(M), εA′
31

= A31Σ(M), ηA′
31 + (I2 −A31)Σ(M), ω (I2 −A31)

′
+A31Σ(M), εA′

31

= A31

[
Σ(M), η + Σ(M), ε

]A′
31 + (I2 −A31)Σ(M), ω (I2 −A31)

′
. (C.11)

Hence, the element in the first row and first column of the 2 × 2 matrix (C.11) is

the estimator of Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
.
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C.2 Denominator of the Quasi-Likelihood

Indicator of Relative Efficiency

In Chapter 5, equation (5.58) is the factorised version of the result for the error

variance of the seasonal component for the aggregate series obtained with the mul-

tivariate method. This Appendix presents the derivation of the factorised result in

terms of the parameter values.

The element which relates to the aggregate series is given by the element in the

first row and first column of the 2× 2 matrix given in Appendix C.1:

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t, S

(q)
1t − Ŝ

(q)
1t

)

= A31

[
Σ(M), η + Σ(M), ε

]A′
31 + (I2 −A31)Σ(M), ω (I2 −A31)

′
(C.12)

To obtain the result in (5.58), the abbreviations from (5.57) are required and are

stated again here for ease of reference.

σ2
η + σ2

1η∗ = n1, σ2
ω + σ2

1ω∗ = w1, σ2
ε + σ2

1ε∗ = e1

σ2
η + σ2

2η∗ = n2, σ2
ω + σ2

2ω∗ = w2, σ2
ε + σ2

2ε∗ = e2

σ2
tot, η = N, σ2

tot, ω = W, σ2
tot, ε = E

(C.13)

Using the Maple software, the elements of the 2 × 2 matrix, A31, are calculated.

Element [1, 1] is

A31[1, 1] =
1

D

(
σ2

εσ
2
ω + σ2

εw1 + σ4
ω − w1w2 − σ2

ωn1 − e1w2

−e1σ
2
ω + σ2

ωσ2
η − w2n1 + w1σ

2
η

)

=
1

D

[
σ4

ω − w1w2 + (σ2
ω + w1)(σ

2
η + σ2

ε)− (σ2
ω + w2)(n1 + e1)

]
(C.14)

where D is given by:

D = σ4
ω + 2σ2

εσ
2
ω + 2σ2

ωσ2
η − w1w2 − n1n2 + σ4

η − e1e2 − w2n1

− e1n2 − w1e2 + 2σ2
εσ

2
η − w1n2 − e1w2 + σ4

ε − n1e2

= σ4
ω + σ4

η + σ4
ε + 2σ2

εσ
2
ω + 2σ2

ωσ2
η + 2σ2

εσ
2
η − w1w2 − n1n2

−e1e2 − w2n1 − e1n2 − w1e2 − w1n2 − e1w2 − n1e2

(C.15)
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and can be factorised as

D = (σ2
ω + σ2

η + σ2
ε)

2 − (w1 + n1 + e1)(w2 + n2 + e2). (C.16)

The remaining elements of A31 are given by:

A31[1, 2] = − 1

D

(
σ2

εw1 − σ2
εw2 − e1w2 − w2σ

2
η + σ2

ωn2 − w2n1

−σ2
ωn1 − e1σ

2
ω + w1n2 + e2σ

2
ω + w1σ

2
η + w1e2

)

=
1

D

[
(σ2

ω + w2)(n1 + e1)− (σ2
ω + w1)(n2 + e2)

−(σ2
η + σ2

ε)(w1 − w2)
]

(C.17)

A31[2, 1] =
1

D

(
σ2

εw1 − σ2
ωn1 − e1σ

2
ω + w1σ

2
η

)

=
1

D

[
w1(σ

2
η + σ2

ε)− σ2
ω(n1 + e1)

]
(C.18)

A31[2, 2] =
1

D

(
σ2

εσ
2
ω − σ2

εw1 − w1w2 − w1e2

+ σ4
ω − w1σ

2
η + σ2

ωσ2
η + σ2

ωn1 + e1σ
2
ω − w1n2

)

=
1

D

[
σ4

ω − w1w2 + (σ2
η + σ2

ε)(σ
2
ω − w1) + σ2

ω(n1 + e1)

−w1(n2 + e2)] . (C.19)

From (5.45), the covariance matrices can be rewritten using the abbreviated

notation in (C.13). Hence, taking the sum of the level and error covariance matrices

as required in the first term of (C.12), the result is

[
Σ(M), η + Σ(M), ε

]
=


 N σ2

η + n1

σ2
η + n1 n1


 +


 E σ2

ε + e1

σ2
ε + e1 e1




=


 N + E σ2

η + σ2
ε + n1 + e1

σ2
η + σ2

ε + n1 + e1 n1 + e1


 . (C.20)

So, if A31 is the matrix

A31 =


A31[1, 1] A31[1, 2]

A31[2, 1] A31[1, 2]


 , (C.21)
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then (C.12) may be written in matrix form as

Vart−1 ( S
(q)
tot, t −Ŝ

(q)
tot, t, S

(q)
1t − Ŝ

(q)
1t

)

=


 a b

c d





 N + E σ2

η + σ2
ε + n1 + e1

σ2
η + σ2

ε + n1 + e1 n1 + e1





 a c

b d




+


 1− a b

c 1− d





 W σ2

ω + w1

σ2
ω + w1 w1





 1− a c

b 1− d


 ,

(C.22)

where, for convenience, the elements of A31 are denoted

A31[1, 1] = a, A31[1, 2] = b,

A31[2, 1] = c, A31[2, 2] = d. (C.23)

Element [1,1] in (C.22) is given by:

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)
= a2(N + E) + 2ab(σ2

η + σ2
ε + n1 + e1) + b2(n1 + e1)

+ (1− a2)W + b2w1 + 2b(1− a)(σ2
ω + w1). (C.24)

Using Maple, the expressions for a, b, c, and d, are substituted into (C.24) and the

following result is obtained:

Vart−1

(
S

(q)
tot, t − Ŝ

(q)
tot, t

)

=
W

([
σ2

η + σ2
ε

]2 − [n1 + e1] [n2 + e2]
)

+ (N + E) (σ4
ω − w1w2)

(
σ2

η + σ2
ε + σ2

ω

)2 − (n1 + e1 + w1) (n2 + e2 + w2)

(C.25)

This expression becomes the denominator of Q. It is the error variance of the sea-

sonal component for the aggregate series obtained with the multivariate QL method.
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C.3 Stirling Numbers of the Second Kind

The 18th century Scottish mathematician, James Stirling (1692 - 1770), determined

the number of ways, S(n, m), of partitioning a set of n elements into m non-empty

sets. For an annotated translation of the original book (written in Latin) by Stirling,

refer to Tweddle (2003).

The S(n, m) which are known as ‘Stirling numbers of the second kind’, can be

computed as the sum

S(n, m) =
1

m!

m∑
i=0

(−1)i


 m

i


 (m− i)n. (C.26)

Alternatively, the following recursion can be used:

S(n,m) = mS(n− 1,m) + S(n− 1,m− 1) for 1 ≤ m < n, (C.27)

subject to the initial conditions,

S(n, n) = S(n, 1) = 1. (C.28)

An excerpt from the table of values found in Abramowitz and Stegun (1965,

p835) is given in Table C.1. From row 4 (n = 4) of this table, there are seven

ways of grouping four elements into 2 sets, six ways of grouping four elements into

3 sets, and one way of grouping four elements into 4 sets. Thus, in total, there

are 14 possible ways of grouping 4 elements. A property of the table that closely

parallels that for Pascal’s triangle of Binomial coefficients is best given by example.

For instance, the number 7 in the column for m = 2 and row n = 4, is given by

7 = 1 + (2 × 3), where the number 1 is the number above and to the left of 7, 3 is

the number above 7, and 2 is the column number (m) (PlanetMath, 2007).
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Table C.1: Stirling numbers of the second kind, S(n,m) for n = 0, . . . , 9,
m = 0, . . . , 9.

amym
Text Box








Please see print copy for Table C1



Appendix D

Derivations for Chapter 6

D.1 Diffuse Log-likelihood

In order to define wt in the second term of the diffuse log-likelihood, given in (6.1):

ln Ld(Y ; ψ) = −TK

2
ln(2π)− 1

2

d∑
t=1

wt − 1

2

T∑

t=d+1

(
ln|Ft|+ ν

′
tF

−1
t νt

)
, (D.1)

it is also necessary to write down the recursions for the exact initial Kalman filter.

In Durbin and Koopman (2001, Section 7.2.2), wt is defined as the following:

wt =





ln|F∞,t|, if F∞,t is positive definite,

ln|F∗,t|+ ν
(0)′
t F−1

∗,t ν
(0)
t , if F∞,t = 0,

(D.2)

where the formula for F∞,t and F∗,t are given by the recursions for the exact initial

Kalman filter.

D.1.1 Exact Initial Kalman Filter

In Section 3.5.1, the initial mean squared error matrix P1 was given in equation

(3.50). Similarly, the matrix Pt has the decomposition:

Pt = κP∞,t + P∗,t + O(κ−1), t = 2, . . . , T, (D.3)

where P∞,t and P∗,t do not depend on κ. The term O(κ−1) denotes a function f(κ)

of κ such that the limit of κf(κ) as κ → ∞ is finite. For t = 1 . . . d, P∞,t 6= 0 but

217
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for t > d, P∞,t = 0. For t = d + 1, . . . , T , the Kalman filter as defined in Sections

3.5.1 and 3.5.2 applies with Pt = Pt|t−1 = P∗,t.

The decomposition (D.3) is defined by the exact initial Kalman filter, for which

details can be found in Durbin and Koopman (2001, Section 5.2.1). The relevant

formula are repeated here for convenience. Analogously to (D.3), decomposition

formula may be written for Ft and Mt, with

F∞,t = ZP∞,tZ
′
, M∞,t = P∞,tZ

′
,

F∗,t = ZP∗,tZ
′
+ H, M∗,t = P∗,tZ

′
,

(D.4)

where t = 1 . . . d. Other required formula for the calculation of wt are:

ν
(0)
t = yt − Za

(0)
t a

(0)
1 = a,

ν
(1)
t = −Za

(1)
t , a

(1)
1 = 0

(D.5)

The updating equations for P∞,t, P∗,t and a
(0)
t+1 are:

P∞,t+1 = TP∞,tL
(0)′
t ,

P∗,t+1 = TP∞,tL
(1)′
t + TP∗,tL

(0)′
t + GQG

′
,

a
(0)
t+1 = Ta

(0)
t + K

(0)
t ν

(0)
t , (D.6)

where

L
(0)
t = T−K

(0)
t Z, L

(1)
t = −K

(1)
t Z,

K
(0)
t = TM∞,tF

(1)
t , K

(1)
t = TM∗,tF

(1)
t + TM∞,tF

(2)
t ,

F
(1)
t = F−1

∞,t, F
(2)
t = −F−1

∞,tF∗,tF
−1
∞,t.

(D.7)
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D.2 Derivations for Section 6.2.1

Using formula in Section D.1, log-likelihood equation (6.2) for the univariate local

level seasonal model is derived in this section. Since F∞,t and Ft are scalar quantities

here, and since K = 1, equation (D.1) may be rewritten as:

ln Ld(Y ; ψ) = −T

2
ln(2π)− 1

2

d∑
t=1

wt − 1

2

T∑

t=d+1

(
lnFt + ν

′
tF

−1
t νt

)

= −T

2
ln(2π)− 1

2

d∑
t=1

wt − 1

2

T∑

t=d+1

lnFt − 1

2

T∑

t=d+1

ν2
t

Ft

. (D.8)

D.2.1 Calculation of wt

The system matrices Z, T and G for the local level seasonal model are given in (4.8).

Here, P∞,1 = I4 and P∗,1 = 04×4. Applying the recursions given in the previous

section, it is found that for t = 1 . . . 4, P∞,t 6= 04×4. This implies that d = 4, and

hence the values of wt for t = 1 . . . 4 are required.

The calculations of the exact initial Kalman filter have been carried out using

MAPLE. The MAPLE code has been included in Appendix E (the CD enclosed

with this thesis). The following results were found:

F∞,1 = 2, F∞,2 = 4, F∞,3 =
3

2
, F∞,4 =

4

3
. (D.9)

Since lnF∞,t 6= 0 for t = 1 . . . 4, the constant terms w1, . . . w4 are calculated by

wt = lnF∞,t and hence

4∑
t=1

wt = ln2 + ln4 + ln
3

2
+ ln

4

3

= ln16

= 4ln2.

Substituting into (D.8) and noting d = 4, ln Ld(Y ; ψ) becomes

ln Ld(Y ; ψ) = −T

2
ln(2π)− 2ln2− 1

2

T∑
t=5

lnFt − 1

2

T∑
t=5

ν2
t

Ft

, (D.10)

which is given as equation (6.2).
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D.2.2 Concentrated Diffuse Log-likelihood

When Ft = σ2
U, εF

c
t (6.5), is substituted into (D.10) above, the concentrated dif-

fuse log-likelihood function for the univariate model is derived. Detailed steps are

provided here:

ln Ldc = −T

2
ln(2π)− 2ln2− 1

2

T∑
t=5

ln
(
σ2

U, εF
c
t

)− 1

2

T∑
t=5

ν2
t

σ2
U, εF

c
t

= −T

2
ln(2π)− 2ln2− 1

2

T∑
t=5

(
lnσ2

U, ε + lnF c
t

)− 1

2σ2
U, ε

T∑
t=5

ν2
t

F c
t

= −T

2
ln(2π)− 2ln2− (T − 4)

2
ln(σ2

U, ε)−
1

2

T∑
t=5

lnF c
t −

1

2σ2
U, ε

T∑
t=5

ν2
t

F c
t

.

(D.11)

This result is given in (6.6).

D.3 Derivations for Section 6.2.2

In this section the result for ln L(m),c given in (6.15) is derived using formula in

Section D.1 for the multivariate local level seasonal model.

D.3.1 Calculation of wt

The system matrices Z, T and G for the multivariate local level seasonal model are

given in (4.11). Here, the P∞,1 matrix (with dimensions 10 × 10) is such that the

lower right 2× 2 block diagonal of a 10× 10 identity matrix is replaced by a 2× 2

zero matrix. The P∗,1 matrix, which holds the variance of the stationary part of α1,

is no longer a zero matrix, but now includes the Σ(m), ε covariance matrix (6.11) in

the lower right 2× 2 block diagonal. All other elements of the P∗,1 matrix are zero.

Applying the recursions given in Section D.1, and recalling that H = 02×2 here

since the measurement error is placed within the state vector, it is found that for

t = 1 . . . 4, P∞,t 6= 010×10. This implies that d = 4, and hence the values w1, . . . w4

are required.
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The calculations of the exact initial Kalman filter have been carried out using

MAPLE. The MAPLE code has been included in Appendix E. The following results

were found:

F∞,1 =


 2 0

0 2


 , F∞,2 =


 4 0

0 4


 , F∞,3 =




3
2

0

0 3
2


 , F∞,4 =




4
3

0

0 4
3


 .

(D.12)

Since lnF∞,t 6= 02×2 for t = 1 . . . 4, the constant terms w1, . . . w4 are calculated by

wt = ln|F∞,t|. Note that since each of the matrices in (D.12) are diagonal, the

determinant of each is easily calculated as the product of the diagonal elements.

Hence,

d∑
t=1

wt = ln4 + ln16 + ln
9

4
+ ln

16

9

= ln

(
4× 16× 9

4
× 16

9

)

= 2ln16.

= 8ln2.

Substituting into (D.1) and noting that d = 4 and K = 2, the diffuse log-

likelihood for the untransformed multivariate model is denoted by ln L(m),d(Y ; ψ).

It is given by

ln L(m),d(Y ; ψ) = −T ln(2π)− 4ln2− 1

2

T∑
t=5

(
ln|F(m),t|+ ν

′
tF

−1
(m),tνt

)
. (D.13)
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D.3.2 Concentrated Diffuse Log-likelihood

When F(m),t = σ2
cF

c
(m),t given in (6.14), is substituted into (D.13) above, the concen-

trated diffuse log-likelihood function for the univariate model is derived. Detailed

steps are provided here:

ln L(m),dc = −T ln(2π)− 4ln2− 1

2

T∑
t=5

(
ln|σ2

cF
c
(m),t|+ ν

′
t

[
σ2

cF
c
(m),t

]−1
νt

)

= −T ln(2π)− 4ln2− 1

2

T∑
t=5

(
ln|σ2

cI2F
c
(m),t|

)

−1

2

T∑
t=5

(
1

σ2
c

ν
′
t

[
Fc

(m),t

]−1
νt

)

= −T ln(2π)− 4ln2− 1

2

T∑
t=5

(
ln|σ2

cI2|
)− 1

2

T∑
t=5

(
ln|Fc

(m),t|
)

− 1

2σ2
c

T∑
t=5

ν
′
t

[
Fc

(m),t

]−1
νt

= −T ln(2π)− 4ln2− 1

2
(T − 4)ln

[(
σ2

c

)2
]
− 1

2

T∑
t=5

(
ln|Fc

(m),t|
)

− 1

2σ2
c

T∑
t=5

ν
′
t

[
Fc

(m),t

]−1
νt

= −T ln(2π)− 4ln2− (T − 4)ln
(
σ2

c

)− 1

2

T∑
t=5

(
ln|Fc

(m),t|
)

− 1

2σ2
c

T∑
t=5

ν
′
t

[
Fc

(m),t

]−1
νt. (D.14)

This result is given in (6.15).



Appendix E

Program Files

The enclosed CD contains the source code of the programs used in the calculation of

theoretical and simulation results. The files have been organised into folders which

are named with the relevant chapter and/or section of the thesis. If the program

output provides results for a particular table and/or figure in the thesis, the table and

figure are referred to by number. Typically, there is a main (run) program which

calls other secondary programs such as model specifications. If the program is a

secondary program, the main program is cited. Some of these secondary programs

are used to obtain results in more than one chapter or section of a chapter. These

have been listed each time so that the program list for each chapter stands alone.

The program files have been created using the following software: S-PLUS (Ver-

sion 7.0 for Windows with S+FinMetrics module), Maple (Version 9.01) and Mi-

crosoft Excel (Microsoft Office Professional Edition 2003). The S-PLUS programs

(.ssc) may be opened with a text editor such as Wordpad or Notepad. The Maple

files have been saved as both a Maple file (.mw) and a text file (.txt) without out-

put. The corresponding text file is not listed here, although it appears on the CD.

Parameter input files are saved in Microsoft Excel spreadsheets.
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