
University of Wollongong - Research Online
Thesis Collection

Title: On the design of turbo codes with convolutional interleavers

Author: S Vafi

Year: 2005

Repository DOI:

Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.
You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 

On the design of turbo codes with

convolutional interleavers

Sina Vafi
University of Wollongong

Vafi, Sina, On the design of turbo codes with convolutional interleavers, PhD thesis, School
of Electrical, Computer and Telecommunications Engineering, University of Wollongong,
2005. http://ro.uow.edu.au/theses/428

This paper is posted at Research Online.

http://ro.uow.edu.au/theses/428

On the Design of Turbo Codes with
Convolutional Interleavers

A thesis submitted in fulfilment of the
requirements for the award of the degree

Doctor of Philosophy

from

THE UNIVERSITY OF WOLLONGONG

by

Sina Vafi
Master of Engineering

SCHOOL OFELECTRICAL, COMPUTER

AND TELECOMMUNICATIONS ENGINEERING

2005

To my beloved Parents
and Sisters, Tina and Nikan

Abstract

Random interleavers are amongst the most effective interleavers for turbo codes.

However, due to their random permutations, a compact representation of the code

specification is a major obstacle. Thus, to date, much research has been conducted

on the design of deterministic interleavers having performances close to random in-

terleavers. These interleavers are mainly constructed as block interleavers, which

allows the code to be analyzed as a block code.

In contrast to block interleavers, there are non-block interleavers. These utilize a

reduced number of memories in their structures and have self-synchronization with

their deinterleavers; this simplifies their design. Because of their non-block struc-

tures, turbo codes constructed by these interleavers must usually be analyzed in terms

of the continuous performance. Previous research confirms that the codes’ continu-

ous performance is similar to their block performance, but at the expense of increased

complexity of the code analysis and decoding. In order to analyze a turbo code con-

structed with non-block interleavers as a block code, it is necessary to consider the

applied interleavers as block interleavers. This is accomplished by the insertion of

stuff bits at the end of each input data block, returning the interleaver memories to

zero state.

This thesis is related to the application of convolutional interleavers which are the

most popular non-block interleavers for turbo codes. It introduces convolutional in-

terleavers as good deterministic interleavers that can perform similar or even better

than previous deterministic and random interleavers. The thesis presents two differ-

ent structures of block-wise convolutional interleavers, created on the basis of distri-

bution of stuff bits in the interleaved data. On the basis of convolutional interleaver

iii

Abstract iv

properties, a simple algorithm is introduced to analyze code performance at different

signal to noise ratios. The code analysis is confirmed with simulation results, which

allow selection of the most suitable interleaver.

Different models of the selected convolutional interleavers are verified. These mod-

els are constructed based on changing the period and space values, which are intro-

duced as the constituent parameters of convolutional interleavers. The performance

of interleavers with different periods and a space value 1 are investigated. For a

similar number of stuff bits, these interleavers are compared with interleavers con-

structed with shorter periods and highest fixed space values than 1. Convolutional

interleavers with variable space values operating as generalized convolutional inter-

leavers are also presented and their performance is compared with interleavers using

the fixed space value.

Turbo codes constituted with the mentioned interleavers are analyzed using differ-

ent input bitstreams. Based on the analysis, suitable modifications are proposed for

each model of interleaver so as to improve the turbo code performance through a

reduced number of stuff bits. The performance of the modified convolutional in-

terleavers is compared with good deterministic and random block interleavers. The

results demonstrate that with an acceptable number of stuff bits contributed to each

interleaved data, convolutional interleavers provide similar or improved performance

when compared to block interleavers.

Finally, the application of designed convolutional interleavers in Unequal Error Pro-

tection (UEP) turbo codes is presented. Based on the code specifications and inter-

leaver properties, three different techniques for UEP are suggested to improve pro-

tection of priority data, while reducing the overall number of stuff bits inserted into

the interleaver memories.

Statement of Originality

This is to certify that the work described in this thesis is entirely my own, except

where due reference is made in the text.

No work in this thesis has been submitted for a degree to any other university or

institution.

Signed

Sina Vafi

December, 2005

v

Acknowledgments

I would like to express my gratitude and appreciation to my supervisor Associate

Professor Tadeusz Wysocki for his patience, support and guidance in every step of

my thesis. Thank you for sharing your time and experience giving me an opportunity

to expand my knowledge in one of the fundamental telecommunication subjects. I

sincerely appreciate my co-supervisor, Associate Professor Ian Burnett for his advice

and encouragement and time devoted for this work.

Special thanks to my family, whose valuable help and support encouraged me to do

my best. I hope my work, in some way, may repay them for their efforts.

I wish to express my deep appreciation to my friends, Dr. Habibollah Danyali, Dr.

Abdollah Chalechale and Dr. Fardin Akhlaghian Tab for infinite discussion and help

in all aspects of study and life in Wollongong.

My gratitude to Dr. Madeleine Strong Cincotta and Miss. Kate Hurley for the editing

of my published papers and thesis.

I would also like to thank the School of Mathematics and Applied Statistics and ac3

technical support team for their prompt responses to my requests allowing me to get

accurate and fast results from high-performance computing facilities.

Finally, my appreciation to Dr.Masoud Reisian, Mr. Ahmad Jalilehvand, Mr. Khousro

Saghafi and Mr. Hamed Khousravi for their concern and assistance in the removing

of a major obstacle in the initial steps of my study.

vi

Contents

1 Introduction 1

1.1 Background . 1

1.2 Choice of the Interleaver . 3

1.3 Aims of the Thesis . 5

1.4 Thesis Overview . 6

1.5 Contributions . 8

1.6 List of Publications . 9

2 The Structure of Turbo Codes 11

2.1 Introduction . 11

2.2 Convolutional Encoder . 12

2.3 Convolutional Decoding . 12

2.4 Turbo Encoder . 18

2.5 Interleaving . 20

2.6 Turbo Codes Analysis . 22

2.7 Interleavers for Turbo Codes . 24

2.7.1 Interleavers Design Based on the Distance Spectrum 26

2.7.2 Interleaver Based on Iterative Decoder Performance 37

2.8 Turbo Decoder . 38

vii

CONTENTS viii

2.8.1 Log-Likelihood Ratios . 39

2.9 Soft Output Viterbi Algorithm . 41

2.9.1 Effect of the A-priori Information 41

2.9.2 Soft Decoded Information for the Viterbi Algorithm 44

2.10 Improvement on the SOVA Performance 46

2.10.1 Modification Based on Normalized Extrinsic Information . . 46

2.10.2 Modification on the LLR Value 48

2.11 Chapter Summary and Conclusions 50

3 Iterative Turbo Decoder Design with Convolutional Interleavers 51

3.1 Introduction . 51

3.2 Ramsey Interleavers . 52

3.2.1 Ramsey TypeI Interleaver 52

3.2.2 Ramsey TypeII Interleaver 53

3.2.3 Ramsey TypeIII Interleaver 53

3.2.4 Ramsey TypeIV Interleaver 53

3.3 Convolutional Interleaver Structure 55

3.4 Iterative Turbo Decoding with Convolutional Interleavers 57

3.5 Weight Distribution of Turbo Codes using Convolutional Interleavers 59

3.5.1 Free Distance Computation of Turbo Codes 60

3.5.2 Extrapolated Weight Distribution Computation Algorithm . 64

3.5.3 Simulation Results . 71

3.6 Turbo Code Analysis With Convolutional Interleavers 76

3.6.1 Simulation Results . 82

3.7 Comparison with Block Interleavers 87

3.7.1 Simulation Results for Short Interleaver Lengths 87

CONTENTS ix

3.7.2 Simulations Results for Long Interleaver Lengths 90

3.8 Chapter Summary and Conclusions 92

4 Modified Convolutional Interleavers 94

4.1 Introduction . 94

4.2 Modification Algorithm for Convolutional Interleavers 94

4.3 Analysis of Turbo Codes Using the Modified Interleaver 98

4.3.1 Analysis of Weight-1 Input Bitstreams 98

4.3.2 Analysis of Weight-3 Input Bitstreams 98

4.3.3 Analysis of Higher Weight Input Bitstreams 99

4.4 Simulation Results . 100

4.4.1 Simulation Results for Interleaver LengthL = 169 100

4.4.2 Simulation Results for Interleaver LengthL = 1024 103

4.4.3 Simulation Results for Interleaver LengthL = 4096 106

4.5 Chapter Summary and Conclusions 106

5 Convolutional Interleavers with Different Value of the Space Parameter 108

5.1 Introduction . 108

5.2 Analysis of Turbo Codes using Interleavers with High Space Value . 109

5.2.1 Analysis of Turbo Codes Using Short Interleaver Lengths . 110

5.2.2 Analysis of Turbo Codes Using Long Interleaver Lengths . 119

5.3 Chapter Conclusion and Summary 124

6 Generalized Convolutional Interleaver and Its Performance in Turbo
Codes 125

6.1 Introduction . 125

6.2 Generalized Convolutional Interleavers for Turbo Codes 126

CONTENTS x

6.2.1 Analysis of 4-state Turbo Code(1, 5
7
) Using Generalized Con-

volutional Interleavers . 128

6.2.2 Interleavers for 16-State Turbo Code(1, 35
23

) 129

6.2.3 Analysis of 16-state Turbo Code(1, 35
23

) Using the General-
ized Convolutional Interleaver 129

6.3 Simulation Results . 132

6.3.1 Simulation Results for Turbo Codes Using Interleaver Length
L = 169 . 133

6.3.2 Simulation Results for Turbo Codes Using Interleaver length
L = 1024 . 136

6.4 Chapter Summary and Conclusions 142

7 Convolutional Interleavers in Turbo Codes With Unequal Error Protec-
tion 144

7.1 Introduction . 144

7.2 Interleavers for UEP Turbo Codes 145

7.2.1 Convolutional Interleavers with Different Periods and Code
Rates . 146

7.2.2 Convolutional Interleavers with Different Periods and Fixed
Code Rates . 147

7.2.3 Convolutional Interleavers with Different Code Rates and
Fixed Periods . 148

7.3 Simulation Results . 149

7.4 Chapter Summary and Conclusions 153

8 Summary, Conclusions and Further Work 155

8.1 Introduction . 155

8.2 Thesis Summary and Conclusions 156

8.3 Further Work . 159

8.4 Other Applications of This Work 160

CONTENTS xi

Bibliography 161

List of Figures

1.1 Block diagram of digital transmission systems. 2

1.2 Structure of different concatenated codes. a) Serial concatenated
codes, b) parallel concatenated codes and c) Hybrid concatenated
codes. 3

2.1 a) Convolutional encoder (2,1,2) structure, b) state diagram of the
implemented code. 13

2.2 Trellis diagram of the convolutional code (2,1,2) with trellis termi-
nation for the data lengthL = 6. 14

2.3 Trellis diagram for the hard decision decoding of the convolutional
code (2,1,2). 16

2.4 Trellis diagram for the soft decision decoding of the convolutional
code (2,1,2). 18

2.5 Turbo encoder structure. a) Block diagram of turbo encoders with
rate 1

2
, b) RSC encoderg0 = (5)8, g1 = (7)8 and c) full rate 4-state

turbo encoder(1, 5
7
)8. 19

2.6 Turbo codes performance with the maximum likelihood iterative de-
coding. 25

2.7 a) Permutation process of the row-column interleaver, b) a self-terminated
pattern with weight-4 providing a low weight for the 4-state turbo
code(1, 5

7
). 27

2.8 Interleaved data from modified block interleavers. a) Rotated inter-
leaver and b) backward interleaver. 30

2.9 Permutation of data with a semi-random interleaver lengthL = 9
andS = 3. 32

xii

LIST OF FIGURES xiii

2.10 Illustration of the golden section principle. 35

2.11 Iterative turbo decoder structure. 38

2.12 Trellis diagram of 4-state turbo code(1, 5
7
). 41

2.13 Description of SOVA for the simplified trellis diagram of the 4-state
turbo code(1, 5

7
). 45

2.14 Improved iterative turbo decoder structure for SOVA. 47

2.15 Example of possible case of path selection in decoding with SOVA . 49

3.1 Ramsey typeI interleavers. 52

3.2 Ramsey typeII interleavers. 53

3.3 Ramsey typeIII interleavers. 54

3.4 Ramsey typeIV interleavers. 54

3.5 General structure of convolutional interlevears with period T and
space value 1. 55

3.6 Interleaved data for an interleaver(T = 5,M = 1), Rem(L, T) = 2
with non-optimized and optimized interleavers. 57

3.7 Comparison of different parts of interleaved data at the output of
the interleaver with different lengths, similar period andRem(L, T)
values,i.e.T = 4, Rem(20, 4) = 0, Rem(24, 4) = 0. 58

3.8 Iterative turbo decoder structure with a) the non-optimized convolu-
tional interleaver b) the optimized convolutional interleaver. 59

3.9 Weight distribution of 4-state turbo code(1, 5
7
) with the combined

input bitstreams of Table 3.5. 70

3.10 Scale factor computation algorithm applied for the SOVA. 72

3.11 Analysis and simulation results of the 4- state turbo code(1, 5
7
) with

the interleaver (T=10,M=1) and lengthL=512. 73

3.12 Analysis and simulation results of the 4- state turbo code(1, 5
7
) with

the interleaver (T=20,M=1) and lengthL=1024. 75

3.13 Analysis and simulation results of the 16- state turbo code(1, 35
23

)
with the interleaver(T = 35,M = 1) and lengthL = 4096. 76

LIST OF FIGURES xiv

3.14 Weight contributions for the 4-state turbo code(1, 5
7
) with the non-

optimized convolutional interleaver (T=10,M=1) and lengthL=512. 78

3.15 Weight contributions to BER for the 4-state turbo code(1, 5
7
) with the

non-optimized convolutional interleaver (T=15, M=1) and length
L=1024. 79

3.16 Weight contributions to BER for the 4-state turbo code(1, 5
7
) with the

optimized convolutional interleaver (T=14,M=1) and lengthL=512. 80

3.17 Weight contributions to BER for the 4-state turbo code(1, 5
7
) with

the optimized convolutional interleaver(T = 20,M = 1) and length
L = 1024. 81

3.18 Performance of full rate turbo codes with the interleaver lengthL =
512. 82

3.19 Performance of half rate turbo codes with the interleaver lengthL =
512. 83

3.20 Performance of full rate turbo codes with the interleaver lengthL =
1024. 84

3.21 Performance of half rate turbo codes with the interleaver lengthL =
1024. 85

3.22 Performance of full rate turbo codes with the interleaver lengthL =
4096. 85

3.23 Performance of half rate turbo codes with the interleaver lengthL =
4096. 86

3.24 Performance of full rate 4-state turbo code with the interleaver length
L = 169. 88

3.25 Performance of half rate 4-state turbo code with the interleaver length
L = 169. 88

3.26 Performance of full rate 16-state turbo code with the interleaver length
L = 169. 89

3.27 Performance of half rate 16-state turbo code with the interleaver
lengthL = 169. 89

3.28 Performance of full rate 4-state turbo code with the interleaver length
L = 1024. 90

LIST OF FIGURES xv

3.29 Performance of half rate 4-state turbo code with the interleaver length
L = 1024. 91

3.30 Performance of full rate 16-state turbo code with the interleaver length
L = 1024. 93

3.31 Performance of half rate 16-state turbo code with the interleaver
lengthL = 1024. 93

4.1 Interleaved data obtained from the interleaver(T = 8,M = 1, L =
64). a) Without modification, b) just even column shifting and c)
even and odd column shifting with zero bit deletion. 95

4.2 Weight-2 distribution of the turbo codes with the non-modified and
modified interleavers with lengthL = 169. a) 16-state code(1, 35

23
)

and b) 4-state code(1, 5
7
). 97

4.3 Weight-3 distribution of the 4-state turbo code with the non-modified
and modified interleaver(T = 20,M = 1) for self-terminating pat-
terns(00...011100..0)L=1024. 99

4.4 Weight-3 distribution of the 16-state turbo code from(00...01001100...0)L=1024

with non-modified and modified interleavers(T = 20,M = 1). . . . 100

4.5 Performance of the 4- state full rate turbo code with different inter-
leaver periods and lengthL = 169. 101

4.6 Performance of the 4- state half rate turbo code with different inter-
leaver periods and lengthL = 169. 102

4.7 Performance of the 16- state full rate turbo code with different inter-
leaver periods and lengthL = 169. 102

4.8 Performance of the 16- state half rate turbo code with different inter-
leaver periods and lengthL = 169. 103

4.9 Performance of the 4- state full rate turbo code with different inter-
leaver periods and lengthL=1024. 104

4.10 Performance of the 4- state half rate turbo code with different inter-
leaver periods and lengthL=1024. 104

4.11 Performance of the 16- state full rate turbo code with different inter-
leaver periods and lengthL = 1024. 105

4.12 Performance of the 16- state half rate turbo code with different inter-
leaver periods and lengthL = 1024. 105

LIST OF FIGURES xvi

4.13 Performance of the 4- and 16- state full rate turbo codes with the
interleaver(T = 35,M = 1) and lengthL = 4096. 107

4.14 Performance of the 4- and 16- state half rate turbo codes with the
interleaver(T = 35, M = 1) and lengthL = 4096. 107

5.1 Structure of convolutional interleavers with periodT and space value
M . 109

5.2 Weight-2 distribution of turbo code(1, 5
7
) with different interleavers.

a) 4-state code(1, 5
7
) and b) 16-state code(1, 35

23
). 111

5.3 Conducted modification on the interleaver(T = 6,M = 2). a)
Original bitstream, b) increasing column bits distance procedure and
c) even column bits shifts equal to5T and zero bit deletion from the
end part of the interleaver. 113

5.4 Conducted modification on the interleaver(T = 5,M = 3). a)
Original bitstream, b) increasing column bits distance procedure and
c) even column bits shifts equal to6 ∗ T and zero bit deletion from
the end part of the interleaver. 114

5.5 Weight-2 distribution of the 4-state turbo code with convolutional
interleavers lengthL=169. a) Interleaver(T = 6,M = 2) and b)
interleaver(T = 5,M = 3). 115

5.6 Weight-2 distribution of the 16-state turbo code with convolutional
interleavers lengthL=169. a) Interleaver(T = 6,M = 2) and b)
interleaver(T = 5,M = 3). 116

5.7 Simulation results for 4 state full rate turbo codes with interleavers
lengthL = 169. 117

5.8 Simulation results for 4 state half rate turbo codes with interleavers
lengthL = 169. 117

5.9 Simulation results for 16- state full rate turbo codes with interleavers
lengthL = 169. 118

5.10 Simulation results for 16- state half rate turbo codes with interleavers
lengthL = 169. 118

5.11 Estimated distance spectrum of the 4-state turbo code for interleavers
(T = 14,M = 2),(T = 11,M = 3) and(T = 20,M = 1) with
lengthL = 1024. 119

LIST OF FIGURES xvii

5.12 Simulation results for 4- state full rate turbo codes with interleavers
lengthL = 1024. 121

5.13 Simulation results for 4- state half rate turbo codes with interleavers
lengthL = 1024. 121

5.14 Simulation results for 16- state full rate turbo codes with interleavers
lengthL = 1024. 122

5.15 Simulation results for 16- state half rate turbo codes with interleavers
lengthL = 1024. 123

5.16 Simulation results for 4- and 16- state full rate turbo codes with in-
terleavers lengthL = 4096. 123

5.17 Simulation results for 4- and 16- state half rate turbo codes with in-
terleavers lengthL = 4096. 124

6.1 Making an interleaver withT = 10 and with 32 stuff bits from two-
level jointed interleaver(T ′ = 5,M = 1) for the 4-state turbo code
(1, 5

7
). 127

6.2 Performance of 4-state turbo code(1, 5
7
) with Generalized interleavers.

a) Weight-2 distribution of the code for interleaver lengthL = 169
and b) estimated distance spectrum of the code for the generalized
convolutional interleaver(T = 22, L = 1024). 128

6.3 Generalized convolutional interleaver structure withT = 9 for the
16-state(1, 35

23
) turbo code. 130

6.4 Weight-2 distribution of the 16-state turbo code(1, 35
23

) for inter-
leavers with lengthL = 169. 131

6.5 Distance spectrum of the 16-state turbo code(1, 35
23

) for interleavers
with lengthL = 1024. 132

6.6 Performance of the 4- state full rate turbo code with interleavers
lengthL = 169. 133

6.7 Performance of the 4- state half rate turbo code with interleavers
lengthL = 169. 134

6.8 Performance of the 16- state full rate turbo code with interleavers
lengthL = 169. 134

6.9 Performance of the 16- state half rate turbo code with interleavers
lengthL = 169. 135

LIST OF FIGURES xviii

6.10 Performance of the 4- state full rate turbo code with interleavers
lengthL = 1024. 137

6.11 Performance of the 4- state half rate turbo code with interleavers
lengthL = 1024. 137

6.12 Performance of the 16- state full rate turbo code with interleavers
lengthL = 1024. 138

6.13 Performance of the 16- state half rate turbo code with interleavers
lengthL = 1024. 138

6.14 Performance of the 4- state full rate turbo code with interleavers
lengthL = 1024. 140

6.15 Performance of the 4- state half rate turbo code with interleavers
lengthL = 1024. 140

6.16 Performance of the 16- state full rate turbo code with interleavers
lengthL = 1024. 141

6.17 Performance of the 16- state half rate turbo code with interleavers
lengthL = 1024. 141

7.1 Consideration of convolutional interleaver(T = 3,M = 1) and
(T = 5,M = 1) from the interleaver(T = 8,M = 1). 146

7.2 Modification procedure for the interleaver(T = 4,M = 1). a) Inter-
leaved data lengthL = 32, b) shifted even column bits equal to 3*T
and c) deletion of zero bits at the end part of the interleaver. 148

7.3 Unequal error protection for 4-state turbo codes with different inter-
leaver periods and code rates. 152

7.4 Unequal error protection for 4-state turbo codes with different inter-
leaver periods and the fixed rateR = 1

3
. 153

7.5 Unequal error protection for 4-state turbo codes with the fixed inter-
leaver period(T = 4) and different rates. 154

7.6 Unequal error protection for 4-state turbo codes with overall length
L = 4096. 154

List of Tables

2.1 An interleaved sequence with period 4,dmax = 7, dmin = −2 and
latency 9. 21

2.2 Pseudo-random function for Berrou-Glavieux interleaver. 28

2.3 Permutation process of the circular shift interleaver withL = 11,
a = 4 andr = 0.. 31

3.1 Patterns returning the RSC encoder(1, 5
7
) to the zero state for the

convolutional interleaver(T = 5,M = 1), Rem(L, T) = 2. 61

3.2 Free distance specifications for turbo codes(1, 5
7
) and (1, 35

23
) with

interleavers(T = 10,M = 1, L = 512) and(T = 20,M = 1, L =
1024). 62

3.3 Weight distribution for turbo codes(1, 5
7
) and(1, 35

23
) at the end part

part of the interleaver with(T = 10,M = 1, L = 1024) andRem(L, T) =
2. 63

3.4 Weight distribution for turbo codes(1, 5
7
) and(1, 35

23
) at the end part

part of the interleaver with(T = 20,M = 1, L = 1024) andRem(L, T) =
4. 64

3.5 Returning to zero patterns with weight-2 and 3 for 4-state turbo code
(1, 5

7
). 65

3.6 Weight distribution of 4-state turbo code for two input bitstreams
(100100...0)L,(11100...0)L and their cyclical shifts for the interleaver
(T=10,M=1) with different lengths and identicalRem(L, T) = 2
value. 67

xix

LIST OF TABLES xx

3.7 Weight distribution of 4-state turbo code for two input bitstreams
(100100...0)L, (11100...0)L and their cyclical shifts for the inter-
leaver(T = 10,M = 1) with different lengths and identicalRem(L, T)
value. 68

3.8 Combined self-terminating pattern 100011 with other self-terminating
patterns of Table 3.5. 69

3.9 Weight-2 distribution of turbo codes(1, 5
7
) with the optimized and

non-optimization interleavers(T = 10,M = 1) and lengthL = 512. 77

5.1 Generated Minimum distance values between adjacent bits of input
bitstream from different interleavers. 110

5.2 Shifting unit values for modified turbo codes with different interleavers.120

6.1 Weight-2 self-terminating patterns for the 4- and 16- state turbo codes. 126

6.2 Generalized convolutional interleaver structures for the 4- and 16-
state codes with different lengths. 130

6.3 Specifications of Modified generalized convolutional interleavers for
4- and 16- state turbo codes. 136

6.4 Specifications of Modified convolutional interleavers for 4- and 16-
state turbo codes. 139

7.1 Puncturing patterns for different protection levels. 149

7.2 Specifications of protection levels with different interleaver periods
and code rates. 150

7.3 Specifications of protection levels with different interleaver periods
and the fixed code rates. 150

7.4 Specifications of protection levels with the fixed interleaver period
and different code rates. 150

7.5 Specifications of protection levels with different interleaver periods
and code rates. 150

List of Abbreviations

3G 3rd Generation

AWGN Additive White Gaussian Noise

BER Bit Error Rate

Bi-SOVA Bidirectional SOVA

BRC Block-Random Chaotic

BSC Binary Symmetric Channel

DAB Digital Audio Broadcasting

DRP Dithered Relative Prime

DVB Digital Video Broadcasting

EEP Equal Error Protection

FEC Forward Error Correction

FSP Finite State Permuter

LAN Local Area Network

LLR Log-Likelihood Ratio

MAP Maximum A-Posteriori

ML Maximum Likelihood

OFDM Orthogonal Frequency Division Multiplexing

RSC Recursive Systematic Convolutional

SNR Signal to Noise Ratio

SOVA Soft Output Viterbi Algorithm

UEP Unequal Error Protection

XOR Exclusive OR

xxi

Chapter 1

Introduction

1.1 Background

The main function of a communication system is to transmit information from the

source to the destination with sufficient reliability. In the last two decades, there has

been an explosion of interest in the transmission of digital information mainly due

to its low cost, simplicity, higher reliability and possibility of transmission of many

services in digital forms [1].

Figure 1.1 shows a simple block diagram of a digital transmission system. At the

source, information suitable for transmission is produced. The input to this block

is either analog or discrete. In the case of an analog input, appropriate processes,

i.e. quantization, sampling and coding are performed so as to form a discrete sig-

nal. Discrete information obtained from the source block a certain sampling rate is

then input to the source encoder block. In this block, symbol sequences are con-

verted to binary sequences by assigning codewords to the input symbols according

to a specified rule and based on reducing the redundancy of the encoded data. Since

redundancy has been removed from the information source, encoded information is

sensitive to noise in transmission media. Hence, a channel encoder inserts redundan-

cies into the source encoded data so as to protect the required signal against channel

errors. Then, the modulator converts the input binary stream to a waveform compati-

ble with the channel characteristics and provides suitable conditions for transmission

1

Introduction 2

Figure 1.1Block diagram of digital transmission systems.

of the signal. The remaining blocks of Figure 1.1 perform inverse operations of their

corresponding blocks at the transmitter to finalize extraction of the required signal at

the destination.

Theoretically, Shannon stated that the maximum rate of transmitted signal or capacity

of a channel over Additive White Gaussian Noise (AWGN), with an arbitrarily low

bit error rate depends on the Signal to Noise Ratio (SNR) and the bandwidth of the

system(W), according to [2]:

C = Wlog2(1 +
S

N
) (1.1)

whereC is the capacity of the channel,S andN are the signal and the average noise

power, respectively. Based on this theory, it would be possible to transmit informa-

tion with any rate(R) less than or equal to the channel capacity(R ≤ C), when

suitable coding is applied. Instead ofS
N

, the channel capacity can be represented

based on the signal to noise ratio per information bit (Eb

N0
). Considering the relation-

ship between SNR andEb

N0
, and the channel capacity (with value R) , Equation 1.1

can be rewritten as follows:

S

N
=

Eb

N0

× R

W
(1.2)

C

W
= log2(1 +

Eb

N0

.
C

W
) (1.3)

In the case of an infinite channel bandwidth (W −→ ∞, C
W
−→ 0), the Shannon

Introduction 3

Figure 1.2Structure of different concatenated codes. a) Serial concatenated codes, b) parallel
concatenated codes and c) Hybrid concatenated codes.

bound is defined by:
Eb

N0

=
1

log2e
= 0.693 (1.4)

In order to achieve this bound, i.e.Eb

N0
= −1.59 dB value, it would be necessary to

use a code with a such long length that encoding and decoding would be practically

impossible. However, the most significant step in obtaining this target, was by For-

ney, who found that a long code length could be achieved by concatenation of two

simple component codes with short lengths linked by an interleaver [3]. Figure 1.2

shows basic structures of the serial, parallel and hybrid concatenated codes. Unlike

serial and hybrid concatenated codes, turbo codes, which are basically implemented

by parallel concatenation of two similar Recursive Systematic Convolutional (RSC)

component codes, create a perfect balance between component codes with the close

performance to the Shannon bound [4]. On the basis of these properties, the recent

decade saw this type of coding as the subject of much research and its usage in several

applications [5–9].

1.2 Choice of the Interleaver

Conventionally, a turbo code is analyzed as a block code by using a block interleaver

and terminating RSC encoders to a known state at the end of each data block. Codes

with this structure are generally decoded using an iterative decoding technique. De-

Introduction 4

pending on the number of iterations, the decoding procedure can approach the Max-

imum Likelihood decoding. Similarly to linear block codes, the probability of error

for turbo codes in an AWGN channel is upper bounded such that [10]:

Pb ≤
∞∑

d=dfree

L∑

ω=1

a(ω, d)
ω

2L
erfc

(√
d
2REb

N0

)
(1.5)

whereR, ω, d, L, a(ω, d) anddfree denote the code rate, the information weight, the

codeword weight, the information length, number of codewords with information

weightω and minimum codeword weight as the free distance value, respectively.

In this equation,a(ω, d) determines multiplicity of the calculated weights [10]. Hence

it can be concluded that the codes with higher free distances and low multiplicities

have the lower upper error bound, and consequently, better code performance. Anal-

ysis indicates that turbo codes with block interleavers often have a relatively low free

distance value with high multiplicities which results in insufficient code performance

in the medium to high signal to noise ratios. In fact, the error will not decrease pro-

portionally with increments of signal to noise ratio. This phenomenon is called ”error

floor”.

One of the most effective solutions to reduce the error floor is utilization of a suitable

interleaver compatible with the structure of constituent RSC encoders. In this case,

input bit streams, which produce low weights for the first RSC code are permuted by

an interleaver in a way that prohibits generation of low weights for the second RSC

code to increase free distance value of the turbo code. It has been accepted that the

best performance of turbo code is achieved by random interleavers, which randomly

permute input bitstreams to different memories of the interleaver [11]. Due to the

existence of randomly interleaved data, determining of an adequate analysis to its

implementation is a major obstacle. In addition, in order to make synchronization

between random interleavers and deinterleavers, which performs the reverse func-

tion of interleavers, it is necessary to store interleaved data in the memory. This is

not desirable in some applications, when the length of input bitstream is large [12].

Considering these issues, finding good deterministic interleavers to create similar

performance to the random interleavers is followed.

Introduction 5

In contrast to block interleavers, non-block interleavers are designed with lower num-

bers of memories and a self-synchronization property with their deinterleavers so as

to reduce the design complexity. This can be considered as one of their advantages.

In turbo code applications, the performance of the code is accomplished by using the

continuous form at the expense of analysis at the decoder.

In order to utilize the advantages of non-block interleavers in turbo codes, these in-

terleavers need to operate as block interleavers. This can be simply achieved when

some stuff bits are inserted at the end of each data block forcing the interleaver mem-

ories to the known state, which is usually considered as the zero state. In addition

to utilizing advantages of non-block interleavers, this operation simplifies the code

analysis and the decoding procedure. The disadvantage of this procedure is a reduc-

tion of the available channel bandwidth due to the insertion of stuff bits that do not

carry any information. In order to reduce the number of the stuff bits, some opti-

mizations can be performed to the interleaver structure and RSC codes to decrease

the number of stuff bits at the encoder output.

1.3 Aims of the Thesis

In this thesis, the block-wise operation of convolutional interleavers, being the most

conventional deterministic non-block interleavers is considered for turbo codes. This

type of interleaver involves a number of parallel lines, in which each line usually has

a different number of memories compared to other lines. In this structure, the number

of interleaver lines and different numbers of memories fixed between two adjacent

lines represent the period and space value parameters, respectively. Depending on

the stuff bits position in the interleaved data different convolutional interleavers can

be defined. The main aim of thesis is to show that it is possible to construct such

convolutional interleavers that can perform in turbo codes close or even better than

most of conventional deterministic and random block interleavers. The thesis also

aims to develop a method for using turbo codes with convolutional interleavers to

provide unequal error protection codes.

The thesis introduces an optimization methods for this interleaver, which is per-

Introduction 6

formed by deletion of stuff bits located in the end part of the interleaved data. The

performance of the optimized convolutional interleavers is compared with the non-

optimized convolutional interleavers. Applying the convolutional interleaver prop-

erties, a very simple and efficient algorithm is presented to calculate the weight dis-

tribution of the code. The obtained weight distributions confirm that the optimized

interleaver provides a free distance value with low multiplicity, which can improve

the code performance in the error floor region compared to block interleavers. In

addition, conducted analysis and simulations conducted for different turbo codes, it

is shown that optimized convolutional interleavers outperforms the non-optimized

convolutional interleavers, when similar number of stuff bits are considered for both

interleaved data. Also, different structures for optimized convolutional interleavers

are presented based on different periods and space values. In each case, an appropri-

ate modification is proposed improving the code performance with the reduced num-

ber of stuff bits. The performance of modified interleavers are compared with the

most conventional block interleavrers. The results represent that with the reasonable

number of stuff bits the designed interleavers have close or even better performance

than the most conventional deterministic and random block interleavers. Finally, the

application of the optimized convolutional interleaver in turbo codes with Unequal

Error Protection (UEP) is presented.

1.4 Thesis Overview

• Chapter 2 begins with an explanation of convolutional code structures. Since

turbo codes are basically constructed by convolutional codes, the structure of

convolutional codes and maximum likelihood decoding technique using the

Viterbi algorithm is briefly presented. Then, the structure of turbo codes and

their analysis based on maximum likelihood iterative decoding is considered.

It is explained how low weight distributions of the code due to structure of

RSC codes are generated. Several deterministic and random interleavers with

block-wise performance are reviewed. For each group, relevant interleavers

and their performance when applied to turbo codes are explained. Then, the

structure of the turbo decoder using Soft Output Viterbi Algorithm (SOVA) is

Introduction 7

presented. For this purpose, a concept of Log-Likelihood Ratios (LLR) usable

for the iterative turbo decoding is explained. Based on the LLR definition and

its characteristics, two modifications to the Viterbi algorithm are proposed to

provide the Maximum Likelihood (ML) soft decoded information for the next

steps of decoding. For SOVA, several methods are reviewed to improve the

iterative decoding performance.

• Chapter 3 deals with non-block interleaver structures, specifically the convo-

lutional interleavers. First, one model of convolutional interleaver acting as a

block interleaver is proposed by insertion of enough number of stuff bits to its

memories. These stuff bits are located in the beginning and end part of the in-

terleaved data. For each interleaver, a relevant iterative turbo decoding process

is discussed. Based on the convolutional interleaver properties, a simple algo-

rithm is implemented to calculate the weight distribution of turbo codes. On

the basis of weights calculated by this algorithm, turbo codes constructed with

convolutional interleavers are analyzed to determine contribution of calculated

weights to the code performance. Simulations confirm that, in the case of sim-

ilar numbers of stuff bits, application of the optimized interleaver leads to a

better code performance than the non-optimized interleaver. The performance

of turbo codes with an optimized convolutional interleaver with space value 1

and different periods is verified and compared with conventional block inter-

leavers. For short bitstream lengths the comparison indicates that in the case

of a suitable number of stuff bits, convolutional interleavers lead to a similar or

even better performance than block interleavers. For the medium to high bit-

stream lengths, these interleavers do not perform well, especially in the error

floor region. This is due to a low free distance value for the code.

• Chapter 4 presents a modified algorithm for optimized convolutional inter-

leavers. The modification increases the distance between adjacent bits of the

original bitstream in the interleaved data to generate a higher free distance

value for the code. The performance of these modified interleavers is analyzed

by calculating weight distribution of the code and confirmed with simulation

results.

Introduction 8

• Chapter 5considers optimized convolutional interleavers designed with a higher

space value. Different interleavers with this characteristic are designed and

their performances compared with the proposed interleaver with higher peri-

ods and the space value 1. The comparison is conducted for interleavers having

similar number of memories in their structures. This leads to interleavers de-

signed with lower periods. In some cases, applying an interleaver with the

lower period provides insufficient behavior for the code as it results in gen-

eration of a relatively low weight with high multiplicities. In order to remove

this effect, appropriate modifications for the interleavers are suggested creating

similar or better performance that interleavers with higher periods and space

value 1.

• Chapter 6 analyzes the code performance with generalized convolutional in-

terleavers. In contrast to the interleavers proposed in the previous chapters, the

space parameter of these interleavers is not assumed to be a constant value.

Among numerous different cases, designed interleavers compatible with the

RSC code structure are presented. In addition, for each generalized convo-

lutional interleaver, a relevant modification is conducted. Finally, modified

convolutional interleavers based on algorithms proposed in this and previous

chapters are applied to construct good convolutional interleavers having better

or close performance to the good block interleavers.

• Chapter 7 presents the application of the optimized convolutional interleaver

for Unequal Error Protection (UEP) turbo codes. Three different techniques are

proposed based on the convolutional interleaver properties. The performance

of the UEP turbo codes designed using these techniques are verified and the

most suitable interleaver structure is selected for their application.

• Chapter 8 concludes the thesis and gives some suggestions for the further

research.

1.5 Contributions

The main contributions of this thesis are as follows:

Introduction 9

1. Two models of convolutional interleavers acting as block interleaver, through

insertion of a number of stuff bits to the interleaver memories to separate the

blocks. For both models, relevant iterative turbo decoders are introduced [13,

14].

2. A simple algorithm for calculation of free distance value of turbo code using

convolutional interleavers. The algorithm is then extrapolated to calculate dis-

tributions of other low weights, which influence the code performance [15–17].

3. Efficient modification techniques for convolutional interleavers, which improve

the code performance with lower number of stuff bits. Modification tech-

niques are applied for interleavers with different periods and the fixed space

values [18,19].

4. Design of generalized convolutional interleavers constructed with variable space

value on the basis of weight-2 distribution of turbo codes. Relevant modifica-

tions for these interleavers are also proposed. The performance of these inter-

leavers are compared with other convolutional and the most of the conventional

block interleavers [20] .

5. Three different techniques for Unequal Error Protection (UEP) turbo codes,

based on convolutional interleaver properties. The techniques are compared

with each other to select the suitable one for the turbo code using short and

long interleaver lengths [21].

1.6 List of Publications

The thesis contributions have been presented on the following published or submitted

conferences and journals.

S.Vafi and T.Wysocki,” Application of convolutional interleavers in turbo codes with

unequal error protection”, Accepted for the Journal of Telecommunications and In-

formation Technology.

Introduction 10

S.Vafi and T.Wysocki,” Generalized convolutional interleaver and its performance in

turbo codes”, Submitted to IEEE Communications Letters.

S.Vafi and T.Wysocki, ”Weight distribution of turbo codes with convolutional inter-

leavers”, Submitted to IEE Proceedings of Communications.

S.Vafi and T.Wysocki, ”On the performance of turbo codes with convolutional in-

terleavers”, 11th Asia-Pacific Conference on Communications (APCC), pp.222-226,

Oct.2005.

S.Vafi and T.Wysocki, ”Performance of convolutional interleavers with different spac-

ing parameters in turbo codes”, 5th Australian Communication Theory Workshop

(AusCTW05), pp.8-13, Feb. 2005,

S.Vafi and T.Wysocki, ”Modified convolutional interleavers and their application in

turbo codes”, 2nd IEEE Symposium on Trends In Communications and joint ISI

workshop on Mobile Future (SympoTIC), pp.54-57, Oct 2004.

S.Vafi and T.Wysocki, ”Computation of free distance and low weight distribution of

turbo codes with convolutional interleavers”, 15th IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1356-1359, Sep

2004.

S.Vafi and T.Wysocki, ”Iterative turbo decoder design with convolutional interleavers”,

4th international symposium on Communication Systems, Networks and Digital Sig-

nal Processing (CSNDSP), pp. 124-127, July 2004.

S.Vafi and T.Wysocki and I.Burnett, ”Convolutional interleavers for unequal error

protection of turbo codes”, Joint 7th International Symposium on DSP and Commu-

nication Systems (DSPCS) and 2nd Workshop on the Internet, Telecommunications

and Signal Processing (WITSP), pp.485-491, Dec.2003.

Chapter 2

The Structure of Turbo Codes

2.1 Introduction

Turbo codes are introduced as one of the most powerful error control codes. They

are basically constructed by two parallel Recursive Systematic Convolutional (RSC)

codes, which are linked by an interleaver. Generally, turbo encoded data are decoded

by iterative decoding techniques. Due to the feedback connection from the output

to the input of the RSC encoder, it is possible to find bitstreams that automatically

return the RSC encoders to zero state. This generates codewords with low weight for

the turbo code. As one of the effective solution to reduce this drawback, application

of good interleavers is suggested. The interleavers are designed in such a way that to

prohibit generation of bad bitstreams of the second RSC codes. This chapter reviews

structure of turbo codes.

First, structure of the convolutional code and its maximum likelihood decoding meth-

ods utilizing with Viterbi algorithm is reviewed. Then the analysis of turbo codes

based on weight distribution is presented. For the block-wise turbo code perfor-

mance several interleavers are reviewed. Among several suggested algorithms, the

iterative turbo decoding by Soft Output Viterbi Algorithm (SOVA) is discussed and

some modifications improving its performance are presented.

11

The Structure of Turbo Codes 12

2.2 Convolutional Encoder

A convolutional encoder with the rateR = k
n

is constructed on a basis ofk input bits,

n output bits andm memory units. The memory outputs and input data are joined

each other in the required combination by an Exclusive OR (XOR) operator which

generates the output bits [22] [23]. Figure 2.1(a) shows the convolutional encoder

(n = 2, k = 1,m = 2) structure. In the convolutional encoder, one bit entering the

encoder will affect to the code performance form+1 time slots, which represents the

constraint length value of the code. Since an XOR is a linear operation, the convo-

lutional encoder is a linear feedforward circuit. Based on this property, the encoder

outputs can be obtained by convolution of input bits withn impulse responses. The

impulse responses are obtained by considering input bitstream (100...0) and observ-

ing the output sequences [22]. Generally, these impulse responses are called genera-

tor sequences having lengths equal to the constraint length of the code. The generator

sequences determine the existence connection between the encoder memories, its in-

put and output. For the illustrated encoder in Figure 2.1(a) the generator matrixG(D)

is of the formG(D) = [g1, g2] (g1 = (111)2 = (7)8, g2 = (101)2 = (5)8).

A convolutional encoder can also be considered as a sequential circuit. Based on

this approach it is possible to illustrate its behavior by the state diagram [22]. This

diagram has2m distinct states corresponding with the possible memories state of the

encoder. In the state diagram,2k branches leave each state and enter the new state

to represent the state transitions for memories and the encoder outputs based on the

combination of input data. Figure 2.1(b) shows the state diagram of the convolutional

encoder (2,1,2) in the above example. In this figure, dotted and solid lines represent

input bits of 0 and 1, respectively, while the values on the top of each line, indicate

the first and the second encoder output bits, respectively.

2.3 Convolutional Decoding

Among the different decoding techniques proposed for convolutional codes, the Viterbi

algorithm is the most popular due to its high error correction performance. The al-

The Structure of Turbo Codes 13

Figure 2.1 a) Convolutional encoder (2,1,2) structure, b) state diagram of the implemented
code.

gorithm is basically implemented by a trellis diagram, which is the expansion of the

state diagram in the time domain [24] [25]. Figure 2.2 shows the trellis diagram of

the encoder (2,1,2) of Figure 2.1(a) with an input data lengthL = 5. Generally, a

convolutional code can be regarded as a block code when input data blocks are con-

sidered as input and enough zero bits equal to the number of encoder memories are

appended at the end of each data block returning the encoder memories to the zero

state. This technique is called trellis termination [26, 27]. Practically, the length of

the input data block relative to the number of encoder memories is considered to be

high so as to reduce the effect of tail bits inserted at the end of each block as the

overall code rate value. Tail bits are also considered in the trellis diagram to repre-

sent the code action and consequently should be involved in the decoding process of

the code. Therefore, a trellis diagram hasL + m + 1 time units for a code(n, k, m)

with an input data lengthL and trellis termination. Instead of inserting zero bits, it

is possible to generate the encoded data block using hardware resetting to return the

encoder memories returning them to the zero state. This technique is called trellis

truncation [26,27] and the trellis diagram of codes with this termination method have

justL + 1 time units.

Similarly to the state diagram, the2k distinct paths enter or exit from each state of

the trellis diagram. Thus, the diagram has a total2kL paths and the decoder should

selectsL paths from amongst them. The main function of the Viterbi algorithm is

selection of the path having the maximum likelihood on the basis of the original

The Structure of Turbo Codes 14

Figure 2.2 Trellis diagram of the convolutional code (2,1,2) with trellis termination for the
data lengthL = 6.

data [28,29].

The Viterbi algorithm can be implemented by two different approaches. In the hard

decision approach, the received information from the noisy channel is quantized to

2 levels producing the binary data for the decoder input [30, 31]. In this approach,

finding the most likelihood path is conducted based on selection of paths with the

minimum Hamming distance. Hamming distance is defined as the number of differ-

ent bits between the decoded data and the input data of the encoder. For example, due

to the difference in the third and forth bits of data (101001) and (100101), Hamming

distance is equal to 2. In the Viterbi algorithm this distance is introduced as branch

metric, which for simplicity is called just metric.

At each time unit of the trellis diagram, branch metrics are computed based on how

many bits are different between the received information and the transmitted infor-

mation. Then, the path with the minimum branch metric is selected as the survivor

path. The obtained branch metric at each time unit is added to the previously accu-

mulated branch metric forming the path metric at the relevant time unit. This proce-

dure is continued to decode all the received information. Following, an example is

The Structure of Turbo Codes 15

presented to clarify this approach.

Assume the sequence (00,11,11,00,01,10,01,11) is the received information at the

decoder input for the convolutional code (2,1,2) encoded by the encoder structure

illustrated in Figure 2.1(a) from the input bitstream (0,1,0,1,1,1,0,0). This has been

indicated in the trellis diagram of Figure 2.3. Initially, the decoding procedure is

started from all zero state. From this stage, two paths are leaving to the state 00 and

10. The algorithm computes Hamming distance of the received symbol 00 with the

symbols 00 and 11 and selects the path 0 as a survivor path. The computed distances,

i.e. 0 and 2 related to the paths 0 and 1 in the time unit 1 are recorded for the decoding

procedure for the next steps as the path metrics. In the next step, i.e. time slott = 1,

again the branch metrics are computed and added to the previously computed path

metrics. Then, the path with the minimum accumulated distance value is selected as

a survivor path at the time instantt = 2.

This procedure is repeated for other time slots to finalize the decoding process. The

decoded information have been highlighted in Figure 2.3. It should be noted that in

the case of two paths with the identical metric value merging to different states, a

path is optionally selected. This condition has occurred at the time instantt = 3,

where the algorithm selects ’0’ as the decoded bit. However, it is possible that this

assumption does not provide the maximum likelihood decoded data. This is noticed

that in the decoding process at the time instantt = 5. If at the time instantt = 8,

the algorithm selects the path 0 which has an equal distance with the path 1, i.e.2, it

will realize that the wrong path has been selected, because the minimum metric in

this updated time, i.e. 2, is related to the path originated from the path 0 of the state

(01) at the time instantt = 7. When the algorithm faces this problem, it will select

another path relevant to the minimum path metric and will trace to find the other

paths in the backward direction, which originated from the minimum path metrics in

the previous time instants. In this example, at the time instantt = 8, the algorithm

selects path 0 originated from the state (01) at the timet = 7 as the survivor path

instead of the path 1 and decodes paths 0 and 1 as the survivor paths at time unit 6

and 5, respectively. In this case, the algorithm corrects the likely error that occurred

due to the wrong assumption in the selection of the path 0 at the timet = 5. In this

The Structure of Turbo Codes 16

Figure 2.3Trellis diagram for the hard decision decoding of the convolutional code (2,1,2).

example, the finally maximum likelihood decoded data provides 1 bit error which

has occurred at the time unitt = 5.

On the other hand, the received information from the channel can be quantized by

more than 2 levels and these information are utilized as input information of convo-

lutional decoder. This approach is called soft decision decoding, which searches for

the closest path based on the Euclidean distance [28]. In this case, for the code with

the rateR = 1
n

(k = 1), the branch metric values of the trellis diagram for the timet

can be computed as follows: [30,32]

Mi,j,t =
n−1∑

l=0

(yl,t − Ci,j,t)
2 (2.1)

The Structure of Turbo Codes 17

whereyl andCi,j give thelth received information and the output transition informa-

tion for the transition from statej to statei, respectively. Expanding this equation

yields:

Mi,j,t =
n−1∑

l=0

y2
l,t −

n−1∑

l=0

2yl,tCi,j,t +
n−1∑

l=0

C2
i,j,t (2.2)

In order to minimize theMi,j,t, the portions of the equation that are different for each

path are concerned. The terms
n−1∑

l=0

y2
l,t and

n−1∑

l=0

C2
i,j,t are constant for all paths at the

specific time. Therefore, they can be eliminated to form the following equation:

Mi,j,t =
n−1∑

l=0

−2yl,tCi,j,t (2.3)

SinceMi,j,t is a negative value, its minimum value occurs when the
n−1∑

l=0

2yl,tCi,j,t is

maximum. Ignoring coefficient 2 from the above equation, the branch metric is given

by:

Mi,j,t =
n−1∑

l=0

yl,tCi,j,t (2.4)

At each time instant, the soft decision approach searches for the survivor path among

paths that have left from the state including the survivor path at the previous time.

Based on the selected state at the previous time, the path metrics of possible states

at the next time instant are calculated and the state with the highest path metric is

selected. If the path metric of this state not originated from the previously selected

state, the algorithm considers another path with the highest path metric. Then it

traces back till the end of the required time unit finding the path with the highest

path metrics in the backward direction to obtain maximum likelihood decoded infor-

mation. This procedure is followed for every time instant to finalize the decoding

procedure.

As an example, for the previously presented code (2,1,2) with the lengthL = 5,

the soft information obtained from the channel (-1.5,-1.3,-1.9,-0.7,1.7,-2.4,0.4,-1.2,-

0.9,1.1,1.6,-0.6,-0.4,2.4,0.7,0.6) is considered as the input information of decoder.

Based on the explained procedure, decoding has been accomplished and the decoded

data has been highlighted in Figure 2.4 , which has correctly recovered the input

bitstream of the encoder. In comparison with the hard decision approach, this ap-

The Structure of Turbo Codes 18

Figure 2.4Trellis diagram for the soft decision decoding of the convolutional code (2,1,2).

proach has better performance in error correction of the code and hence in most of

the applications the Viterbi decoding is implemented as soft decision algorithm.

2.4 Turbo Encoder

A turbo encoder is constructed by a parallel concatenation of two identical compo-

nent codes, which are linked by an interleaver [33]. Generally, Recursive Systematic

Convolutional (RSC) codes with the rate1
2

are applied as the component codes. How-

ever, it is possible to utilize block codes instead of convolutional codes as component

codes [34]. Also, the structure of component codes can be different from each other

The Structure of Turbo Codes 19

Figure 2.5Turbo encoder structure. a) Block diagram of turbo encoders with rate1
2 , b) RSC

encoderg0 = (5)8, g1 = (7)8 and c) full rate 4-state turbo encoder(1, 5
7)8.

resulting in asymmetric turbo codes [35]. For an RSC encoder with rate1
2
, input bit-

streams are directly transferred to the encoder output to form systematic data part of

the encoder. Based on the feedback connection from another RSC encoder output to

the encoder input, the systematic bits are encoded providing parity bits. Similarly to

the convolutional code, it is possible to define the generator matrix for the RSC code.

This matrix can be represented asG(D) = (1, g0

g1
), where 1,g0, g1 introduce the

systematic, feedforward and feedback connections of the RSC encoder, respectively.

For the proposed RSC code, the polynomialsg0 = 1 + D2 andg1 = 1 + D + D2 are

obtained and represented by the values of 5 and 7 in the octal mode. Figures 2.5(a)

and 2.5(b) show block diagrams of the turbo encoder and a simple structure of the

RSC encoder(1, 5
7
) with rate 1

2
, respectively.

In most applications, channel codes are designed with rate1
2
. In order to achieve

this rate for a turbo code, it is necessary to puncture half of the bits of each RSC

encoded data. Since puncturing of the systematic bits dramatically reduces the code

performance [36], instead of sending two half punctured systematic bits from two

RSC encoders, only systematic bits of the first RSC encoder are fully transmitted

and puncturing is only performed on the parity bits forming the desired code rate.

The Structure of Turbo Codes 20

Therefore, in the case of non-puncturing, a turbo code with rate1
3

is constructed.

It has been confirmed that the equally distributed puncturing between two parity

data creates the best performance for the turbo code [37]. Figure 2.5(c) shows the

full rate 4-state turbo code(1, 5
7
) structure. Turbo encoders with lower rates can be

achieved by parallelization of more RSC encoders connected by the interleavers to

form multiple turbo codes [38,39].

At the decoder, for each RSC code utilized at the encoder, a RSC decoder as a com-

ponent decoder is considered. Based on the structure of turbo codes, the component

decoders are connected to each other to construct a turbo decoder. Normally, de-

coding is accomplished by iterative methods [36]. In these methods, the decoder

components are linked to each other by interleavers and deinterleavers. In every iter-

ation, each decoder provides soft output information for the alternative decoder to be

utilized as one of the soft decoder inputs for the next decoding iteration. Soft output

information is represented by a Log-Likelihood Ratios (LLR) concept, which gives a

probability of the decoded information in terms of the transmitted information. The

iterative decoding is continued until the decoded information achieves the required

maximum likelihood to the original bitstream. It is obvious that depending on the

iteration number, decoding complexity will be increased. Practically, decoding is

accomplished by 8 to 10 iterations [40].

2.5 Interleaving

Interleaving generally refers to a process which permutes symbols of an input se-

quence. It is especially utilized in forward error correction coding to reduce the

effect of impulse noise and burst errors in fading and multipath channels. For the

same reason it is also applied in magnetic recording systems [41]. Mathematically,

the relation between the input sequencex[k]∞k=−∞ including infinite symbols and the

interleaved sequencey[k]∞k=−∞ is defined by permuted lawπ(k) as follows [41]:

y[k] = x[π(k)]

The Structure of Turbo Codes 21

Table 2.1An interleaved sequence with period 4,dmax = 7, dmin = −2 and latency 9.

i ... -2 -1 0 1 2 3 4 5 6 7 8 9
π(i) ... 0 -5 -7 -2 4 -1 -3 2 8 3 1 6

i-π(i) ... -2 4 7 3 -2 4 7 3 -2 4 7 3
x(i) ... 1 0 1 1 0 0 1 0 0 1 1 0
y(i) ... 1 x(−5) x(−7) 1 1 0 x(−3) 0 1 0 1 0

An interleaver is considered as a periodic interleaver with the periodT when it satis-

fies the following equation for all symbols of the sequence [41].

π(x + T) = π(x) + T (2.5)

Depending on the time difference between an entrance of the symbols to the inter-

leaver and the obtained interleaved sequences, maximum and minimum delay of the

interleaver(dmax, dmin) are calculated by [41,42]:

dmax = max(π(x)− x) (2.6)

dmin = min(π(x)− x) (2.7)

Based on the above definitions, the latency parameter is defined as the difference

between maximum and minimum delay of the interleaver [41,42]:

d = dmax − dmin (2.8)

Also, an interleaver is referred to as a causal interleaver if a symbol can not exit

before it enters. Therefore, a causal interleaver satisfiesdmin ≥ 0 or dmax ≥ d re-

lations [41, 42]. Table 2.1 gives an example of the interleaved sequencey obtained

from the input sequencex by the permutation lawπ. In this example, the interleaver

has period 4, the latency 9, and maximum and minimum delay values 7 and -2, re-

spectively. For each interleaver, a deinterleaver is defined which reforms the original

data at the receiver. Of course, it must be designed to be compatible with the structure

of the interleaver.

Practically, only interleavers with periodic and causal properties are utilized. Peri-

odic interleavers are mainly subdivided into the block and non-block interleavers. In

the block interleavers, permutation of a data block is independently conducted from

The Structure of Turbo Codes 22

other blocks. For this purpose, a number of memory units equal to the length of an

input sequence is required. The content of every sequence is fully written to the inter-

leaver memories and, according to the permutation law, reading from the memories

is accomplished. Therefore, its delay bound(D) can be assessed by [43]:

0 ≤ D ≤ 2(L− 1) (2.9)

whereL gives the interleaver length. Those interleavers which delay bound is out of

this range, i.e.D > 2(L− 1), are considered as non-block interleavers.

2.6 Turbo Codes Analysis

A turbo code can be analyzed as a code with a block-wise or continuous performance.

For the block-wise performance, similarly to the convolutional code, an analysis is

performed based on the trellis diagram of the code with the conventional termination

methods applied to the RSC codes to provide isolated codewords of the specified

length [44]. In this case, a block interleaver, whose length is equal to the length of

input bitstream is usually utilized.

Since with the continuous performance, termination methods are not applied to RSC

codes, the memories state of the encoder at the end of an input bitstream is consid-

ered as the initial state for the next bitstream. This leads to utilization of non-block

interleavers to sufficiently permute the incoming bitstreams of the second RSC en-

coder. Based on this structure, continuous decoding is accomplished. In comparison

with the usual iterative turbo decoding method applied to turbo codes with block-

wise performance, continuous methods produce better performance at the expense

of increased complexity, which is directly related to the interleaver length and its

structure [45]. In addition, results show that continuous decoding is more reliable in

turbo codes with the higher number of states, while in codes with the lower number

of states, it does not improve iterative decoding methods utilized for the block-wise

performance of code [46]. Hence, in most of the applications, a turbo code with

block structure is preferred.

Since turbo codes are linear codes, their analysis can be conducted by determination

The Structure of Turbo Codes 23

of the upper bound of probability of error or the Bit Error Rate (BER) value with the

maximum likelihood decoding as follows [47]:

BER ≤
3(L+m)∑

d=dfree

Ndw̃d

L
Q(

√
d
2REb

N0

) (2.10)

whereR, Eb

N0
, m, Nd andωd denote the code rate, the signal to noise ratio per infor-

mation bit, the number of tail bits, the number of multiplicities for weightd and the

average weight of information of weightd, respectively.

The upper bound equation specifies that the code with the higher free distance value

has better performance in terms of error reduction. Because of the feedback con-

nection between the RSC encoder output and its input, the effect of bit 1 from the

impulse response of the code, will last until certain external bits are inserted to the

RSC encoders returning their memories to the zero state. Therefore, a higher weight

and consequently improved performance for the code compared to a non-recursive

convolutional code is expected. For example, for the input bitstream (10000000...0)

the obtained codeword from the convolutional code (2,1,2) illustrated in Figure 2.1(a)

is (11101100000000...0) with a weight 5, while its equivalent RSC code (1,5
7
) gives

the codeword (11101101...) with infinite length, whose weight for every 3 inserted

zero bits is periodically increased by 2 units. The finite weights for this code can be

obtained when input bitstreams with higher weights than 1 are applied in such a way

that they return the RSC code to the zero state, without inserting any external bits

to the memories. These patterns are called self-terminating patterns. Depending on

the weight of self-terminating patterns and their combinations, low weights can be

obtained for the code. For example, the weight-2 self-terminating pattern (100100)

for the RSC code (1,5
7
), generates a codeword (11010111) with weight 6. The sim-

ilar pattern generates the weight 10 (ten) relevant to the codeword (111011111011)

obtained from the trellis terminated convolutional code (2,1,2).

Similar conditions can occur from self-terminating patterns with higher weights than

2. For example, the weight-6 self-terminating pattern (11100111) generates a code-

word (1110110000111011) with the weight 10 (ten) for the RSC code (1,5
7
), while

this pattern produces a codeword (11101001111101100111) with the weight 14 for

the trellis terminated convolutional code (2,1,2).

The Structure of Turbo Codes 24

In addition, if trellis termination is considered for the RSC code, existence of weight-

1 input bitstream whose weight is positioned in the end part of the bitstream, can

generate a codeword with a lower weight than a codeword obtained from the convo-

lutional code. For the RSC code (1,5
7
), the weight-1 bitstream (000..001) generates

a codeword (101110) with the weight 5, which is lower than the obtained weight 6

from a codeword (111011) for the trellis terminated convolutional code (2,1,2).

The above analysis can be extended to the turbo codes which incorporate similar

RSC codes. The obtained results from the iterative decoding indicate that the turbo

code has very good performance in error reduction at the low signal to noise ratios.

This area is named waterfall. At medium to high signal to noise ratios, which is

named error floor region, BER slope of the iterative decoder is reduced significantly.

At very low signal to noise ratios, BER stays high and at an almost constant value.

This area is named non-convergence [48]. Figure 2.6 specifies the mentioned regions

of turbo codes performance with the maximum likelihood iterative decoding meth-

ods. Analysis of the turbo code indicates that at low signal to noise ratios, a large

number of codewords with medium weight determines the code performance. The

results confirm that by increasing the length of the interleaver the influence of those

weights on the code performance can be reduced [49–51]. At medium to high signal

to noise ratios, only the first items of the weight distributions contribute to the code

performance. This indicates that the interleaver type has the essential influence on

the code performance [49–51].

2.7 Interleavers for Turbo Codes

The effect of the error floor can be reduced by applying an interleaver tailored to the

RSC code structure to prohibit generation of self-terminating patterns for the second

RSC code. Since the free distance value approximately determines the code perfor-

mance at the error floor region and it is usually obtained from the weight-2 input

bitstream, interleavers are particularly designed to improve the weight-2 distribution

of the code [48]. The obtained free distance from the weight-2 distribution is called

the effective free distance of the code. An interleaver is ideal when it breaks all self-

The Structure of Turbo Codes 25

Figure 2.6Turbo codes performance with the maximum likelihood iterative decoding.

terminating patterns generating higher weight for the code. In fact, the main function

of interleaver is related to generation of a high weight for the second RSC code from

the low weight input bitstream [52]. Since a detailed assessment of the interleaver is

practically impossible, the interleavers are mainly assessed by the distance spectrum

specification of the code, which is determined by
∑L

ω=1 a(ω, d)ω and is related to

the number of input bitstreams weightw and codeword weightd asa(ω, d) param-

eter [10]. It is obvious that those interleavers that produce higher weights will have

better performance in turbo code applications.

Considering the weight-2 distribution of the code, an interleaver can also improve

the code performance when increases the distance between bits 1 in the interleaved

data. The interleaver influence on the weight-2 distribution of the code is considered

insufficient, when it permutes a self-terminating pattern to another self-terminating

The Structure of Turbo Codes 26

pattern in such a way that it produces an equal distance between bits 1 of both pat-

terns.

Consider the self-terminating (100100000000) pattern as a systematic data for the

turbo code(1, 5
7
). Based on the performance of two independent interleavers, two

self-terminating patterns (1001000000) and (10000000010) have been obtained. The

second pattern due to the longer distance between two bits 1 generates a codeword

with the weight 8, which is 4 units greater than the weight of codeword of the first

pattern. Since the second interleaver increases the distance between two bits 1, the

higher weight for the second parity data and consequently better performance for the

code will be expected.

As another approach, interleavers can be designed based on the iterative decoding

performance of the code to provide uniform correlation between soft output infor-

mation created from each component decoder and the received information from

the channel output. Existence of this correlation allows the component decoders

to provide better maximum likelihood decoded information than the original bit-

stream [53,54].

In the next section, interleavers constructed for turbo codes are reviewed. The pro-

posed interleavers are mainly designed based on the distance spectrum specification

of the code. However, examples of interleavers designed based on the iterative turbo

decoding are also presented.

2.7.1 Interleavers Design Based on the Distance Spectrum

In this section, the typical conventional block interleavers used in turbo code appli-

cations are introduced. Based on deterministic or random permutation rules, block

interleavers can be divided into two main groups. In the deterministic permutation,

the positions of each interleaved bit for the whole interleaved data blocks is constant,

while in the random permutation these positions are randomly changed. For each

permutation rule, relevant interleavers are introduced.

The Structure of Turbo Codes 27

Figure 2.7a) Permutation process of the row-column interleaver, b) a self-terminated pattern
with weight-4 providing a low weight for the 4-state turbo code(1, 5

7).

2.7.1.1 Row-column Interleaver

The row-column interleaver is a simple block interleaver, which has been utilized in

turbo codes. In this interleaver, data are written to its memories row-by-row and then

read from them column-by-column [55]. Hence, its permutation is carried out by the

following equation:

π(i) = mnb i

mn
c+ n(imodn) + bkmodmn

m
c (2.11)

Figure 2.7(a) shows a general structure of the row-column interleaver. In the case of

identical row and column dimensions, the distance between two adjacent bits of the

input bitstream in the interleaved data with lengthL would be
√

L. Although the gen-

erated distance is relatively high, in some special cases of turbo code applications, it

will not provide sufficiently interleaved data for the second RSC encoder. For exam-

ple, in the case of the 4-state turbo code(1, 5
7
), an interleaved pattern with weight-4,

as illustrated in Figure 2.7(b) returns both RSC encoders to the zero state, which pro-

duces the low weight for the code [35]. Conducted analysis of the turbo code con-

firms that the free distance value of code is achieved from weight-4 self-terminating

patterns whose bits 1 are positioned in similar with bits 1 positions of Figure 2.7(b).

The free distance obtained for the code with the row-column interleaver has a high

multiplicity. In this case, the first term of the equation (2.10), which is related to free

distance specifications, dominates the code performance [10, 47]. Even increasing

the interleaver length will not significantly improve the code performance, because

The Structure of Turbo Codes 28

Table 2.2Pseudo-random function for Berrou-Glavieux interleaver.

ξ P (ξ)
0 17
1 37
2 19
3 29
4 41
5 23
6 13
7 7

multiplicity of these self-terminating patterns will also increase in such a way that the

ratio Nfree

L
in equation (2.10) will remain approximately constant [47]. In addition,

this interleaver cannot break down the bit 1 located at the end of the data block [56].

This behavior produces a low weight for the turbo code.

2.7.1.2 Berrou-Glavieux Interleaver

In order to improve performance of the row-column interleaver in the turbo codes

application, Berrou and Glavieux designed an interleaver, which breaks bad weight-

4 self-terminating patterns. The interleaver is constructed withω × ω dimension (ω

is a power of two) in which data are written row-by-row and read pseudo-randomly

from the memories by the following rule: [36]

ir = (
ω

2
+ 1)(i + j)(modω) (2.12)

ξ = (i + j)(mod8) (2.13)

jr = [P (ξ)(j + 1)]− 1(modω) (2.14)

wherei andj are the row and column of writing a symbol and their andjr give row

and column position reading. Also,P (ξ) is a number relatively prime withω, which

is determined by the values presented in Table 2.2.

2.7.1.3 Helical Interleaver

The helical interleaver is another modified row-column interleaver that writes data

row-by-row in the memories and then reads them diagonally from the bottom-left

The Structure of Turbo Codes 29

entry of the interleaver using the following permutation [57]:

π(t) = irC + jr (2.15)

ir = C.R− 1− t(modR) (2.16)

jr = t(modC) (2.17)

whereR andC are relatively prime and represent row and column of the interleaver,

respectively. Permutation is conducted in such a way that both RSC encoders are

simultaneously terminated to the zero state by appending only tail bits for the first

RSC encoders. In [58], a new interleaver with a similar property for the turbo code

is defined, too.

2.7.1.4 Reverse Row-column Interleaver

The reverse row-column interleaver was proposed as an interleaver to remove the

drawback of bit 1 existence located at the end part of the interleaver. In this in-

terleaver, data are written to the memories row-by-row and then column-by-column

reading started from the last column [59]. In a similar way to the row-column in-

terleaver, it can not remove the problem of bad weight-4 input bitstream. However,

it provides good performance for the code with very short block length and for the

moderate and long block length at very low signal to noise ratios.

2.7.1.5 Rotated and Backward Interleaver

Rotated and backward interleavers have been also proposed to remove the effect of

bit l located at the end part of the row-column interleaver [60]. Similarly to the row-

column interleavers, data are written row-by-row. For the rotated interleaver, the

written data are rotated90◦ and then reading is performed row-by-row. Figure 2.8(a)

shows the interleaved data of the rotated interleaver with the dimension3× 3. In this

permutation, the last bit of the input pattern will still be close to the end part of the

interleaver. In the backward interleaver, row-by-row reading data starts from the last

column of the interleaver in backward direction. Figure 2.8(b) shows the procedure

of backward interleaving. It can be seen that the backward interleaver has increased

the distance of the last bit of the proposed pattern from the end part of the interleaver.

The Structure of Turbo Codes 30

Figure 2.8 Interleaved data from modified block interleavers. a) Rotated interleaver and b)
backward interleaver.

Application of these interleavers improves the turbo codes performance especially at

medium signal to noise ratios for interleavers with short block lengths.

2.7.1.6 Circular-shift Interleaver

The circular-shift interleaver is an interleaver with the deterministic permutation rule,

which permutes the input data by the following rule [61]:

π(j) = (aj + r)(modL) (2.18)

Wherer (r < L) anda (a < L) are relatively prime toL and represent the offset

and step size of the interleaver, respectively. Normally, the offset value is considered

to be equal to zero. For an interleaver with lengthL = 11, step sizea = 4 andr = 0,

the permutation process is illustrated in Table 2.3. In order to verify its performance

based on weight-2 distribution, Divsalaret.al calculated the maximum summation of

the distance between two specified bits of the input bitstream and the interleaved data

[11]. For the interleaved data in Table 2.3, the distance between two adjacent bits of

the input sequence is 1, while the minimum and maximum distance between adjacent

bits of the interleaved data are equal to 4 and 7, respectively. Then, the maximum

summation of the distance between every two bits is calculated to be equal to 8.

The results obtained for different lengths give
√

2L as the maximum distance. The

achieved distance represents good performance for the weight-2 distribution of the

code. However, for higher weights, it is possible for the interleaver to permute self-

terminating patterns to another self-terminating pattern, which provides the relatively

low weight value with high multiplicities for the code.

The Structure of Turbo Codes 31

Table 2.3
Permutation process of the circular shift interleaver withL = 11, a = 4 andr = 0..

i 0 1 2 3 4 5 6 7 8 9 10
π(i) 0 4 8 1 5 9 2 6 10 3 7

For example, an interleaver withL = 32 anda = 7 permutes input bitstream{10010

100100000000000000000000000} to {10010000000000000000010010000000}. For

a turbo code(1, 5
7
) both patterns are considered as self-terminating patterns and will

generate the similar weights with a value of 8.

2.7.1.7 Pseudo-random Interleaver

In contrast to the deterministic permutation role, it is possible to implement inter-

leavers with random permutations. A simple random interleaver is constructed when

it selects the memories randomly and reads their contents [11]. In the permutation,

each memory is selected only once. The weight-2 distribution analysis of turbo codes

indicates that the pseudo-random interleaver cannot provide suitably permuted data

for the second RSC encoder. However, for input bitstreams with higher weights, or

multiple turbo codes, the interleaver performs very well, breaking down bad input

bitstream to improve the code performance.

2.7.1.8 Uniform Interleaver

Due to the unpredictable behavior of the pseudo-random interleaver, determining the

weight distribution of the code, and consequently its analysis and design is a major

obstacle [62]. In order to overcome this problem, Benedetto,et.al proposed uniform

interleavers, which consider equivalent probability of permutation forL! interleavers

(L is referred to the interleaver length) [49,50,63]. When this interleaver is utilized

for the turbo codes, its performance is determined based on the average performance

of all codes and it is expected that a code using the random interleaver has similar

performance to a code utilizing this interleaver.

The Structure of Turbo Codes 32

Figure 2.9Permutation of data with a semi-random interleaver lengthL = 9 andS = 3.

2.7.1.9 Semi-random Interleaver

Semi-random interleavers are introduced as another type of random interleavers.

They remove the drawback of pseudo-random interleavers for permutation of weight-

2 input bitstreams. In order to guarantee that two bit 1s of these bitstream have suf-

ficient distance from each other, a threshold value is considered in such a way that

the distance between consecutive selected memories during the reading procedure is

equal or greater than that value. In fact in this interleaver any two input bit positions

with distanceS can not be permuted to two bit positions, whose distance is less than

S. Figure 2.9 shows the permutation process for the semi-random interleaver with

lengthL = 9 and threshold valueS = 3. As verified in [11], the best turbo code

performance is achieved by the threshold value
√

L
2
. Although the obtained distance

in comparison with other interleavers such as the circular-shift and row-column is

shorter, it efficiently breaks self-terminating patterns to provide the suitable pattern

for the second RSC encoder.

2.7.1.10 Modified Pseudo-random Interleaver

In [64], a modification has been performed on the pseudo-random interleaver, which

recognizes self terminating input bitstream when they are divisible by the generator

matrix of the code(G(D)) and prohibits them to produce self-terminating interleaved

data. Conducted simulations show that this interleaver gives better performance of

The Structure of Turbo Codes 33

the turbo code compared to than the semi-random interleaver.

2.7.1.11 Swap Interleaver

A swap interleaver is introduced as an interleaver which slightly improves the semi-

random interleaver performance [65]. First, a row-column interleaver is constructed

and then two random positions are swapped. If they satisfy the threshold value con-

sidered for the semi-random interleaver, new positions are accepted. Otherwise, the

above procedure is repeated for other position pairs.

2.7.1.12 Code-matched Interleaver

A modification on the semi-random interleaver based on the analysis of the code per-

formance and its weight distribution characteristics is presented in [66]. A designed

code-match interleaver breaks self-terminating patterns with weight no greater than

4 to eliminate the effect of first terms of weight distribution on the code performance,

which determines the code performance at the error floor region.

Similarly to the method proposed in [64, 66], Abbasfar and Kao in [67] introduce

an algorithm to fully eliminate all the codewords with weights less than a certain

value for the code with random permutation. The algorithm tries to reduce the ef-

fect of low weights and their multiplicities having major contributions on the code

performance. For different interleaver lengths, it was confirmed that the designed

interleaver creates better performance than semi-random interleaver at the error floor

region.

In [68], Yuanet.al introduce an code-matched interleaver designed based on the gen-

erator matrix of the turbo code. This interleaver has better performance than inter-

leaver proposed in [66] and maintains the error reduction property of the interleaver

with the lower complexity.

Zhanget.al in [69] present a Block-Random Chaotic (BRC) interleaver, which has

lower complexity than the semi-random interleaver with the similar performance.

Application of this interleaver has been verified for the 3rd Generation (3G) of mobile

communications where the chaotic sequence are considered as input bitstream of the

The Structure of Turbo Codes 34

turbo code.

2.7.1.13 Hokfelt Interleaver

In [70], an interleaver was designed in such a way that at least one RSC code gen-

erates a high weight whenever another RSC code produces a codeword with a low

weight. The algorithm is applicable for the short bitstream lengths, while its com-

plexity rapidly increases with increasing interleaver length. For the short bitstream

length, it was confirmed that the Hokfelt interleaver has better performance than

row-column, helical and pseudo-random interleavers.

2.7.1.14 Quadratic Interleaver

In [71] some deterministic interleavers such as quadratic interleavers are introduced.

Quadratic interleavers are constructed based on a quadratic congruence. For an in-

terleaver with lengthL (L = 2r), wherer is an integer, an index mapping function

is defined by the following equation:

Ci =
ki(i + 1)

2
(modL)0 ≤ i < k (2.19)

whereC0 = 0 andk is odd. Then quadratic interleaver is defined as follows:

Ci −→ C(i+1)modL∀i (2.20)

For example, for an interleaver withL = 8 andk = 3, the index mapping func-

tion is {0,3,1,2,6,5,7,4}. Based on equation (2.20), the quadratic interleaved data is

{3,2,6,1,0,7,5,4}. In has been confirmed that these interleavers with simple permu-

tation rules have similar performance to a random interleaver for long lengths.

2.7.1.15 Dithered Relative Prime Interleaver

Crozier proposed the Dithered Relative Prime (DRP) interleaver [72, 73] to increase

the minimum distance of adjacent bits of the input bitstreams in the interleaved data.

First, bitstreams with the lengthL are subdivided to smaller blocks as windows with

the sizeM . Data of each window are locally permuted to the interleaver input. This

process is called input dithering. Then the obtained data are cyclically shifted based

on prime permutationj = i + sp, wheres is a shift value, andp is prime relative

The Structure of Turbo Codes 35

Figure 2.10Illustration of the golden section principle.

to L. Finally, an output dithering similar to input dithering is performed. For the

medium size blocks (i.e.L = 256 to L = 4096) a goodM value is 8 [73]. The DRP

interleavers perform well when both RSC encoders are terminated to the zero state.

Comparisons show that for the full and punctured rate turbo codes this interleaver

with a short block length, has similar performance to the semi-random interleaver

but with lower complexity.

2.7.1.16 Golden Interleaver

Crozier also introduces new interleavers based on golden section definition in [74,

75]. For a given line segment of length 1, the golden section divide it into a long

segmentg and a shorter segment of1 − g in such a way that the relation of the

longer segment to the entire length is equal to the relation of the shorter segment

to the longer segment. Therefore,g
1
=1−g

g
. solving this equationg value is given by

g ≈ 0.618. Figure 2.10 shows principle of golden section. This definition can be

utilize to determine the golden section value for more points than 2 in a line seg-

ment. Conducted analysis in [75] confirm that the calculated golden section values

generate uniform minimum distance between number of considered points. There-

fore, it is expected that the interleaver constructed based on the golden section def-

inition increases the distance between adjacent bits of input bitstreams in the inter-

leaved data. Three proposed interleavers are called golden interleavers, golden rel-

ative interleavers and dithered golden interleavers. These interleavers apply golden

section value and their cyclically shift permutation roles to increase the minimum

distance of the code. Dithered golden interleavers typically provides the best per-

formance [75]. This is especially evident for low code rates and large block sizes.

However, the golden relative prime interleaver outperforms semi-random interleavers

The Structure of Turbo Codes 36

for high punctured rates [75].

2.7.1.17 Matched Row-column Interleaver

Chan proposed a simple matched row-column interleaver for turbo codes in [76,77].

For input bit streams with lengthL, a row-column interleaver withi columns is

considered, wherei varies from 1 toL. Based onL weight-2 distribution of the code

obtained from these interleavers, an interleaver which provides a higher effective

free distance value is selected. The results show that for short bitstream lengths, the

designed interleaver outperforms the random interleaver and has similar performance

to the golden interleavers. This technique is also applied for the reverse row-column

interleavers, which outperforms the row-column matched block interleavers in the

error floor region.

2.7.1.18 Simulated Annealing Algorithm Interleaver

Another deterministic interleaver, proposed in [78], is based on a Simulated Anneal-

ing (SA) algorithm. The algorithm defines an energy function for the interleaver pa-

rameters and the code characteristics. It tries to reduce the energy related to each pa-

rameter to obtain an optimized interleaver. The results suggest that applying suitable

termination methods for the RSC code, the new interleaver has better performance

than conventionally designed deterministic interleavers. In addition, for different bit-

stream lengths, it is concluded that in some cases, this interleaver outperforms the

semi-random interleaver.

2.7.1.19 Quasi-cyclic Interleaver

An interleaver has been proposed based on quasi-cyclic permutation rule introduced

in [79]. Similarly to the row-column interleaver, data are written row-by-row and

then based on a randomly selected permutation data are read. Finally, some columns

are cyclically shifted. In fact, the interleaver designed is considered as one of the

random interleaver with the moderate algebraic structure. The results show that with

less complexity, it provides better performance than the semi-random interleaver.

Similarly, an interleaver has been proposed by Truhachevet.al. The method consid-

ers the effect of self-terminating patterns on the code performance and then applies

The Structure of Turbo Codes 37

appropriate cycle permutation to break them down into the good patterns [80].

2.7.1.20 Permutation Monomials Interleaver

New interleavers have been constructed based on the monomial permutation ap-

proach, which permute the data with the lengthpr over a finite field, wherer is an

integer number,r 6= 1 andp is any prime [81,82]. These interleavers have better per-

formance than random interleavers and deterministic interleavers proposed in [71].

2.7.1.21 Integer Rings Interleaver

Recently, a new deterministic interleaver has been introduced based on permutation

polynomials over integers ring [12]. It defines a permutation polynomial over integer

ring when a polynomialP (x) = a0 + a1x + a2x
2 + ... + amxm is considered as a

permutation polynomial over integer ringZL (L = 2r), wherer is an integer, if and

only if 1) a1 is odd 2)a2 + a4 + a6 + ... is even and 3)a3 + a5 + a7 + ... is even.

In this polynomiala0, a1, ..., am andm are nonnegative integers. A permutation

polynomial can be utilized to construct an interleaver. For example, for the bit stream

{0,1,2,3,4,5,6,7} (L = 8), an interleaved data based on permutation polynomial

P (x) = 2x2 + x + 3 is {3,6,5,0,7,2,1,4}.

It was confirmed that applying this interleaver, the bitstreams with weight2m dom-

inates the code performance. Therefore, the interleavers are designed in such a way

that to remove effect of these weights. For the short bitstream lengths, proposed in-

terleavers outperforms the semi-random interleaver. For the long bitstream lengths

they have close performance with the semi-random interleavers.

2.7.2 Interleaver Based on Iterative Decoder Performance

Figure 2.11 shows an iterative turbo decoder structure. Each component decoder ac-

complishes decoding based on received information from the decoder input and the

information decoded from alternative decoder in the previous iteration. Hokfeltet.al

showed that the information obtained from the component decoder, which is called

extrinsic information, correlates with the channel information output [53, 54]. This

correlation deteriorates on every iteration and causes the code to have insufficient

The Structure of Turbo Codes 38

Figure 2.11Iterative turbo decoder structure.

performance. In order to remove this drawback, an interleaver is constructed making

a uniform correlation between extrinsic information and the channel information out-

put on each iteration. Sloaneet.al in [83, 84] present a two stage interleaver. At the

first stage, semi-random interleaver is designed such that it prohibits generation of

the low weights for the code. Then an improvement is performed on it to guarantee

existence of the uniform correlation between the extrinsic information and the re-

ceived information from the channel. For some applications, where decoding speed

is important, such as in optical and magnetic recording systems, [85] introduces an

interleaver for parallel turbo decoding to prohibit data collisions between reading and

writing process in component decoders.

2.8 Turbo Decoder

Turbo encoded data is conventionally decoded by iterative decoding techniques, as

shown in Figure 2.11. In this technique, two component decoders are linked by an

interleaver. Each component decoder provides soft output decoded information us-

able for the alternative component decoder at the next iteration. This recursive soft

output information is called a-priori information [86]. In addition to the a-priori in-

formation, component decoders accept the systematic and parity information from

the channel output. The obtained soft information from the component decoder out-

put is subtracted from a-priori and systematic information to produce the extrinsic

The Structure of Turbo Codes 39

information. The extrinsic information from each component decoder is interleaved

or deinterleaved to create a-priori information for the alternative decoder at the next

iteration step. At each iteration, the interleaver and deinterleaver rearrange the ex-

trinsic information generating a new combination of soft information as a-priori in-

formation for other component decoders to provide decoded information having the

maximum likelihood with the original bitstream. Generally, the component decoders

are designed based on the Maximum A-Posteriori (MAP) algorithm [87], its logarith-

mic and optimum versions, i.e. Log-MAP and Max-Log-MAP, or Soft Output Viterbi

Algorithm (SOVA). With more complexity, MAP and Log-MAP create better perfor-

mance than SOVA. However, some modifications have been introduced to SOVA to

improve its performance, while maintaining its low complexity design compared to

two other methods. All of the above algorithms provide soft decoded information

based on Log-Likelihood Ratios (LLR). The polarity of the LLR determines the sign

of the decoded bit and its amplitude corresponds to the probability of a correct de-

cision [40]. In this section, the concept of LLR and its application to the iterative

turbo decoding by SOVA is explained. Finally, some methods to improve SOVA

performance are presented.

2.8.1 Log-Likelihood Ratios

For a Binary Symmetric Channel (BSC), the LLR is defined as the logarithm of the

ratio of probabilities of bit taking its two possible values [88]:

L(uk)
∆
= ln

(
P (uk = +1)

P (uk = −1)

)
(2.21)

whereP (uk = +1) andP (uk = −1) are probabilities of the received bit 1 and -1,

respectively. Taking exponent of both sides of this equation:

eL(uk) =
P (uk = +1)

1− P (uk = +1)

Then

P (uk = +1) =
eL(uk)

1 + eL(uk)

=
e−L(uk)/2

1 + e−L(uk)
.e(L(uk)/2) (2.22)

= C
(1)
L(uk)e

(L(uk/2))

The Structure of Turbo Codes 40

where

C
(1)
L(uk) =

e−L(uk)/2

1 + e−L(uk)
(2.23)

Due to the channel noise, the received information at the decoder input is different

to the information transmitted from the encoder. Therefore, a conditional LLR is

defined as follows [40]:

L(uk|y)
∆
= ln

(
P (uk = +1|y)

P (uk = −1|y)

)
(2.24)

whereP (uk = ±1|y) is the probability of decodeduk in terms of the received infor-

mationy. Another definition of the conditional LLR can be presented by probability

of the received signalyk based on the transmitted information values as follows [40]:

L(uk|y)
∆
= ln

(
P (y|xk = +1)

P (y|xk = −1)

)
(2.25)

For the Gaussian channel noise with the binary modulation, probability of the re-

ceived informationyk in terms of the transmitted informationxk is given by [40]:

P (yk|xk = +1) =
1

σ
√

2π
exp

(
− Es

2σ2
(yk − a)2

)
(2.26)

P (yk|xk = −1) =
1

σ
√

2π
exp

(
− Es

2σ2
(yk + a)2

)
(2.27)

whereEs is the transmitted energy per symbol,σ2 is the noise variance anda is the

fading amplitude, which is considered to have a value of 1 for the Gaussian channel.

Substituting Equations 2.26 and 2.27 in Equation 2.25, the conditional LLR is given

by [40]:

L(uk|y)
∆
= ln

(
P (y|xk = +1)

P (y|xk = −1)

)

= ln
(

exp(− Es

2σ2 (yk − a)2)

exp(− Es

2σ2 (yk + a)2)

)

=
(
− Es

2σ2
(yk − a)2

)
−

(
− Es

2σ2
(yk + a)2

)

=
Es

2σ2
4a.yk

= Lcyk (2.28)

whereLc = Es

2σ2 4a is defined as the channel reliability value and only depends on the

signal to noise ratio and the fading amplitude of the channel.

The Structure of Turbo Codes 41

Figure 2.12Trellis diagram of 4-state turbo code(1, 5
7).

2.9 Soft Output Viterbi Algorithm

In order to apply the Viterbi algorithm to iterative turbo decoding, it is necessary to

perform two modifications to the algorithm. Since every component decoder accepts

the a-priori information from the alternative component decoder, the a-priori infor-

mation on the alternative decoder output should be considered as the input of the

component decoder in the next iteration [86,89]. In addition, the output information

of each component decoder should be produced in the soft form making it suitable

as a-priori information for another component decoder.

2.9.1 Effect of the A-priori Information

Figure 2.12 shows the trellis diagram of the 4-state RSC code(1, 5
7
). In this figure the

bold line is considered as a survivor path. The state of the survivor path at the time

stagek (Sk) is determined by the appointed state of the survivor path at the time stage

k − 1 (Sk−1) and the transition path from the stagek − 1 to k (S′ −→S). Therefore,

The Structure of Turbo Codes 42

the probability of the correctly received path at the stateSk = s is obtained by:

P (Ss
k|yj≤k) =

P (Ss
k ∧ yj≤k)

P (yj≤k)
(2.29)

whereP (yj≤k) gives the probability of the received information for time instances

before the time instancek. SinceP (yj≤k) for all transition states up to the state

k is equal,P (Ss
k ∧ yj≤k) maximizes the above equation. In fact, the value of this

probability determines the survivor path of the trellis diagram for the stateSk = s

at the time instantk. For a memoryless channel, this probability can be extended as

follows:

P (Ss
k ∧ yj≤k) = P (Ss

′

k−1 ∧ yj≤k−1)P (Sk = s ∧ yk|Sk−1 = s
′
) (2.30)

Thus, the metric at the stateSk = s is defined by:

M(Ss
k)

∆
= ln

(
P (Ss

k ∧ yj≤k)
)

(2.31)

= M(Ss
′

k−1) + ln
(
p(Sk = s ∧ yk|Sk−1 = s

′
)
)

= M(Ss
′

k−1) + ln(γ(s
′
, s)) (2.32)

whereγ(s
′
, s) is the branch transition probability for the path fromSk−1 = s

′
to

Sk = s. Based on Bayes rule,γ(s
′
, s) can be expressed as:

γ(s
′
, s) = P (yk ∧ s|s′)

= P (yk|s′ ∧ s).P (s|s′)
= P (yk|s′ ∧ s).P (uk) (2.33)

consideringxk as the transition information transmitted from the stateSk−1 = s
′
to

the stateSk = s astk, P (yk|s′ ∧ s) is given for the memoryless channel by: [40]

P (yk|s′ ∧ s) ≡ P (yk|xk) =
n∏

l=1

P (ykl|xkl) (2.34)

whereykl andxkl arel th bit of the transmitted andn is the number of these bits in

each codewordyk or xk, respectively. For the Gaussian channel and binary modula-

tion P (ykl|xkl) is given by:

P (ykl|xkl) =
1√
2πσ

exp
(−Es

2σ2
(ykl − axkl)

2
)

(2.35)

The Structure of Turbo Codes 43

Substituting Equation 2.35 in Equation 2.34 yields:

P (yk|s′ ∧ s) =
n∏

l=1

1√
2πσ

exp
(
− Es

2σ2
(ykl − axkl)

2
)

=
1

(
√

2πσ)n
exp

(
− Es

2σ2

n∑

l=1

(ykl − axkl)
2
)

=
1

(
√

2πσ)n
exp

(
− Es

2σ2

n∑

l=1

(y2
kl + a2x2

kl − 2axklykl)
)

= C2
yk

.C(3)
xk

.exp
(

Es

2σ2
2a

n∑

l=1

yklxkl

)
(2.36)

where

C(2)
yk

=
1

(
√

2πσ)n
.exp

(
− Es

2σ2

n∑

l=1

y2
kl

)
(2.37)

and

C(3)
xk

= exp
(
− Es

2σ2
a2

n∑

l=1

x2
kl)

= exp(− Es

2σ2
a2n

)
(2.38)

C2
yk

andC(3)
xk

only depend on signal to noise ratio, fading amplitude of the channel

and the length of the transmitted information. Based on the above equations,γ(s′, s)

is represented as follows:

γk(s
′
, s) = P (yk|s′ ∧ s).P (uk)

= C.exp(ukLuk
/2).exp

(
Es

2σ2
2a

n∑

l=1

yklxkl

)

= C.exp(ukLuk
/2).exp

(
Lc

2

n∑

l=1

yklxkl

)
(2.39)

whereC=C
(1)
L(uk).C

2
yk

.C(3)
xk

. Therefore

ln(γ(s
′
, s))

∆
= Γk(s

′
, s) = Ĉ +

1

2
ukL(uk) +

Lc

2

n∑

l=1

yklxkl (2.40)

when the above equation is applied for the metric calculation of Equation 2.32,Ĉ

is a constant value and can be omitted. Finally, the modified metric considering the

effect of the a-priori information is expressed by:

M(Ss
k) = M(Ss

′

k−1) +
1

2
ukL(uk) +

Lc

2

n∑

l=1

yklxkl (2.41)

The Structure of Turbo Codes 44

2.9.2 Soft Decoded Information for the Viterbi Algorithm

As shown in Figure 2.12, every state of the trellis diagram consists of both survivor

and discarded path. Therefore, the difference metrics of the survivor and discarded

path for arbitrary stateSk = s, at the time stagek, is given by: [90]

∆s
k = M(ss

k)−M(ŝk
s) ≥ 0 (2.42)

whereM(ss
k) andM(ŝs

k) are the metric values of the survivor and discarded path,

respectively. Probability of correctly selected pathSs
k at this point is calculated by:

P (correct decision at Sk = s) =
P (ss

k)

P (ss
k) + P (ŝk

s)
(2.43)

Based on the metric definition in Equation 2.31

P (correct decision at Sk = s) =
eM(ss

k)

eM(ss
k
) + eM(ŝs

k
)

=
e∆s

k

1 + e∆s
k

(2.44)

Hence, LLR for the correct decision path is obtained by: [91]

L(correct decision at Sk = s) = ln
(

P (correct decision at Sk = s)

1− P (correct decision at Sk = s)

)

= ∆s
k (2.45)

In the Viterbi algorithm all surviving paths at the specific time instant (for example

j), originated from the same path and the same point beforej in the trellis. Hence, it

is possible that the algorithm selects a discarded path, which will be merged with the

survivor path afterδ time stage, whereδ is usually set to be five times the constraint

length of the convolutional code [40, 86]. Figure 2.13 shows a discarded path in the

trellis diagram of the 4-state turbo code(1, 5
7
), which is merged with the survivor

path at the time instantk + 5. In order to calculate the LLR value of the algorithm,

it is necessary to consider the effect of all discarded paths, which are a part of the

survivor path and merged with the survivor path. For this purpose, the relevant bits

of the discarded and survivor paths are compared with each other. If the bits were

different, the log-likelihood ratio of a bit error at stagek is related to the metric

difference of statek, i.e. ∆l
k. Since there areδ + 1 paths that possibly face with this

problem, the maximum Log-Likelihood Ratio (LLR) value is obtained from the path

The Structure of Turbo Codes 45

Figure 2.13Description of SOVA for the simplified trellis diagram of the 4-state turbo code
(1, 5

7).

having the minimum metric difference. The LLR value of the overall error for the bit

uk is given by: [86]

L(uk|y) ∼= uk min
i=k...k+δ

uk 6=ui
k

∆si
i (2.46)

whereuk is the value of the bit given by ML path, andui
k is the value of this bit

for the path which merged to the ML path and was discarded at the trellis stage

i. The obtained soft LLR in equation (2.46) is called the extrinsic information.

The extrinsic information with the above modification contributes with the a-priori

information of another component decoder and the systematic information (yks) or its

interleaved information, to form the information for the interleaver or deinterleaver

input, i.e.Le(uk), which is given by:

Le(uk) = L(uk|y)− L(uk)− Lcyks (2.47)

The information obtained from interleaving/deinterleaving ofLe(uk) are called a-

priori information and utilized as the input of alternative component decoder for the

next iteration.

The Structure of Turbo Codes 46

2.10 Improvement on the SOVA Performance

In despite of other proposed iterative decoding methods such as MAP and Log-MAP,

SOVA does not produce soft output for all paths of the trellis. Therefore, a correla-

tion between the extrinsic and intrinsic information exists [92]. This correlation is

decreased by increasing the signal to noise ratio. A similar result is observed during

iterative decoding of the received information in high iterations. In this case, after

one or two iterations, the extrinsic information is much greater than the channel in-

formation, which voids effect of the channel information to the decoding process at

the next iterations. In this section, some modifications on the extrinsic information

obtained from each component decoder are proposed to maintain its correlation with

the channel information. In addition, some modifications will be reviewed, which

update the LLR values based on the decoding process in the trellis diagram.

2.10.1 Modification Based on Normalized Extrinsic Information

In order to maintain the correlation between extrinsic information and channel infor-

mation in each iteration, a normalization is performed on the extrinsic information

created at the each component decoder output. The normalization factor can be de-

termined based on the channel characteristics. As mentioned before, the probability

of the soft decoded datayk for the transmitted information bitsuk = +1 is given by:

P (yk|uk = +1) =
1√

2πσy

exp
(−(y −my)

2

2σ2
y

)
(2.48)

whereσy =
√

E{y2} − E{y}2 my = E{y} andE{v} is the expectation ofv. There-

fore, the LLR value can be calculated by:

LLR = ln
(

P (yk|uk = +1)

P (yk|uk = −1)

)
= ln

[
e
(−1

2σ2
y

)[(y−my)2−(y+my)2]
]

= my
2

σ2
y

y (2.49)

wherec = my
2
σ2

y
represents the normalization factor that should be multiplied by the

extrinsic information. Figure 2.14 shows the modified iterative turbo decoder, which

utilizes the scaling block to normalize the extrinsic information obtained for each

component decoder.

The Structure of Turbo Codes 47

Figure 2.14Improved iterative turbo decoder structure for SOVA.

Normalization of the extrinsic information can be conducted by different methods

and [93] presents two such methods. In the first method a fixed scale factor is ap-

plied in the normalization procedure. The value of the scaling factor is increased

when the BER value of the code decreases. Normally, the extrinsic information is

normalized by a value between 0.5 and 1.0, which is determined by the trial and er-

ror. In another method, the extrinsic information is scaled by a constant value. This

method increases the normalization factor in correspondence with increasing the rate

of extrinsic information per iteration. The basic scale factor and the increment value

in each iteration are determined by trial and error.

In comparison with [92], the second method proposed in [93] is implemented with

a lower complexity. However, finding a suitable value for each iteration is required.

Stirling and Gallacher in [94] present a new method which applies the scaling factor

of Equation 2.49 for normalization of only one component decoder. Normalization of

another component decoder is accomplished by a fixed value for all iterations. Con-

ducted simulations confirm that with the low complexity in the decoder design, this

approach has similar performance with the method presented in [93]. Application of

the fixed scaling factor has also been verified for the two-step SOVA decoding [95].

Modifying the metric values with the fixed scaling factor as mentioned in [96] have

been verified in [97]. Instead of updating the metric values, [98] applies a fixed

scaling factor for the first iteration, while the scaling factor only increases at the

last iteration. In comparison with the fixed scaling, this normalization improves the

SOVA performance by 0.25 dB.

The Structure of Turbo Codes 48

In [99], one method has been presented, which determines the scale factor based on

a number of matched bits between signs of LLR value and the extrinsic information

of every data block. For this purpose, hundreds of blocks are randomly selected and

the number of matched bits within each block is counted. Depending on the obtained

number of matched bits, the relevant scaling is calculated. For example, for the 4-

state turbo code(1, 5
7
) with the row-column interleaver and the lengthL = 4096, the

scaling factor has been computed using the following algorithm:

ifMb < 4000 (2.50)

c ⇐= 0.8

else

c ⇐= 0.8 + (Mb− 4000) ∗ 0.0025

WhereMb andc represent the number of matched bits per block and the fixed scaling

value, respectively. Similarly to this method, [100] presents a modification to the

SOVA for the AWGN and fading channels.

Instead of applying a normalization factor, [101] considers a threshold value for the

metric difference between the survivor and discarded path with the channel reliability

Lc = 1, which is applied for the first few iterations of the decoding. The threshold

values were determined by trial and error and should be powers of two to maximize

the use of the available quantization level. However, [102] confirms that for the

fixed Lc, different upper bounds should be considered for different signal to noise

ratios. Moreover, when the realLc value is employed, the greater threshold value

than the threshold value considered for the decoding process with the fixedLc value

is obtained. Since in practice,Lc is considered to be equal to 1, [102] has proposed

to apply two different upper bounds, one for the first few iterations and another for

the later iterations. In comparison with the one upper bound, it slightly improves the

code performance.

2.10.2 Modification on the LLR Value

As opposed to applying the scaling factor or threshold values, [103] updates the LLR

value presented in Equation 2.46 improving the SOVA performance to be equivalent

The Structure of Turbo Codes 49

Figure 2.15Example of possible case of path selection in decoding with SOVA

to the Max-Log-MAP algorithm.

Since SOVA only guarantees the Maximum Likelihood (ML) path, it is possible the

best competitor path is not selected in the LLR calculation of Equation 2.46. This

condition occurs when the best competitor path is discarded before it merges with

the ML path. As verified in [104], the quality of the SOVA decoding in the back-

ward direction is the same as with the forward direction decoding. Therefore, soft

decoding can be performed in both directions for selection of the best competitor

path. For example, in Figure 2.15 path-2 and path-3, respectively, are considered the

best path for the ML path and the survivor path at the transition time fromk + 3 to

k + 4, which are merged with the Maximum Likelihood (ML) path. In the forward

soft decoding, the decoder may not select path-3 as the best path, because it has been

discarded before merging with the ML path, while it retains a chance to be selected

the best path when decoding is conducted in the backward direction.

In the Bidirectional SOVA (Bi-SOVA) method, [104] the forward or backward de-

coding direction is determined by comparing the magnitude value of the metric dif-

ferences in the forward and backward direction. If the relevant value of the backward

The Structure of Turbo Codes 50

direction is less than the value calculated in the forward direction, it is substituted as

a forward metric difference. Even if the best competitor path is not selected, the

backward decoding direction can find another path with better quality than the path

selected in the forward path [104]. Compared to the method proposed in [103], the

Bi-SOVA has less complexity while it provides similar or even better performance

than the Log-MAP decoding method.

2.11 Chapter Summary and Conclusions

In this chapter, structure of the turbo code has been reviewed. This type of code

provides good performance at relatively low signal to noise ratios. However, in the

medium to high signal ratios, which is called error floor region, the code can not

reduce the error sufficiently. This is related to existence of a low free distance with

high multiplicities for the code. Analysis of the code based on input bitstreams with

different weights confirmed that self-terminating patterns have the major effect to

the code performance. As one of the best solution to reduce the error floor effect,

application of good interleavers was suggested. It was recognized that random in-

terleavers provide better performance than the deterministic ones. However, some

deterministic interleavers having similar performance to good random interleavers

were presented.

The structure of iterative turbo decoder with SOVA was also reviewed. Some mod-

ifications to SOVA were presented, which improve its performance to be similar to

other proposed iterative decoding methods.

Chapter 3

Iterative Turbo Decoder Design with
Convolutional Interleavers

3.1 Introduction

Interleaving is known as an essential factor influencing performance of turbo codes.

In most of designs, a turbo code is implemented as a block code when one block

interleaver is used. Another interleaver family, are non-block interleavers, such as

convolutional interleavers that have comparable delay with block interleavers, and

a simplified implementation. In the case of convolutional interleavers, unlike block

interleavers, one input data bit affects the interleaver more than once. Therefore, it

is necessary to use continuous decoding methods for such a turbo code. In order to

consider a turbo code with the convolutional interleaver as a block code, it is vital to

return the interleaver memories to the known state by inserting stuff bits at the end of

each block. Block codeword is then created, which makes it possible to implement a

conventional iterative decoder that is known as a sub-optimum turbo decoder.

In this chapter, the structure of the best known non-block interleavers are briefly

reviewed. Then, two different models of convolutional interleavers based on distri-

bution of stuff bits in the interleaved data are proposed. Considering the interleaver

properties, an algorithm is presented to compute the free distance value of the code.

This algorithm is extended for calculating other low weights of the code. The anal-

ysis of the code based on calculated weight distribution is performed to achieve the

51

Iterative Turbo Decoder Design with Convolutional Interleavers 52

Figure 3.1Ramsey typeI interleavers.

suitable convolutional interleaver. Finally, for different bitstream lengths, the perfor-

mance of convolutional interleavers are compared with the most conventional block

interleavers.

3.2 Ramsey Interleavers

Early work on the non-block interleavers dates back to the 1970s [105]. Ramsey pre-

sented optimum interleavers that were designed based on the minimum possible in-

terleaving delay and minimum overall number of memories applied in the interleaver

and deinterleavers. In the following section, the structures of these interleavers are

explained.

3.2.1 Ramsey TypeI Interleaver

This interleaver is constructed by[n2(n1−1)+1] shift-registers, which are separated

by n2 taps, wheren1 andn2 + 1 are relatively prime and the taps positioning are

started from the outermost register and allocated to every(n1 − 1) register. The data

are read from the tap in the reverse order of their distances from the input of the shift

register. Figure 3.1 shows the general structure of the typeI (n2, n1) interleaver.

The minimum delay of the interleaver is equal ton2(n1 − 1), wheren1 andn2 are

two positive integers satisfyingn2 < n1 < 2n2. The interleaved data of the input

sequence{0, 1, 2, 3, 4, ...} from the interleavern1 = 5, n2 = 3 is obtained as follows:

{0, 5, 10, 15, 4, 9, 14, 19, 8, 13, 18, 23, 12, 17, 22, 27, 16, ...}

Iterative Turbo Decoder Design with Convolutional Interleavers 53

Figure 3.2Ramsey typeII interleavers.

3.2.2 Ramsey TypeII Interleaver

for the typeI Ramsey interleaver, a deinterleaver is defined to reorder the interleaved

data. This device can also be considered as an interleaver, which is conventionally

referred to as the typeII Ramsey interleaver. Figure 3.2 shows the general structure

of this interleaver. Similarly to the typeI interleaver,n2 andn1 + 1 are relatively

prime, wheren2 > n1 + 1.

3.2.3 Ramsey TypeIII Interleaver

In this interleaver, then2 andn1 parameters are relatively prime. It consists of[(n2−
1)(n1 +1)+1] shift register withn2 taps at every(n1 +1) registers. Figure 3.3 shows

the general structure of this interleaver.

3.2.4 Ramsey TypeIV Interleaver

This interleaver can be also considered as a deinterleaver for the interleaver typeIII.

Again,n1 andn2 are relatively prime and the interleaver consists of[(n1 − 1)(n2 +

1) + 1] registers. The taps are positioned at every(n2 + 1) register. Figure 3.4 shows

the structure of typeIV interleaver.

Iterative Turbo Decoder Design with Convolutional Interleavers 54

Figure 3.3Ramsey typeIII interleavers.

Figure 3.4Ramsey typeIV interleavers.

Iterative Turbo Decoder Design with Convolutional Interleavers 55

Figure 3.5General structure of convolutional interlevears with period T and space value 1.

3.3 Convolutional Interleaver Structure

The structure of the convolutional interleaver is similar to the Ramsey TypeI in-

terleaver [43]. This interleaver is constructed byT parallel lines, which defines its

period. Conventionally, each interleaver line has a different number of memories

from the other lines. The difference in the numbers of memories between two ad-

jacent interleaver lines is generally considered as a constant referred to as a space

parameter of the interleaver [106,107]. Figure 3.5 illustrates the general structure of

convolutional interleavers and deinterleavers with periodT and space valueM = 1.

The number of memories in each line of the deinterleaver is determined based on

the number of memories applied at the corresponding interleaver line, such that dis-

tributed information in every corresponding interleaver and deinterleaver line will

together pass through to the same number of memories. Also, the selectors applied

for these structures have to synchronously operate with each other to properly re-

cover the original data at the end of decoder. Based on the arithmetic sequence, the

overall number of memories for the interleaver(T, M) is given by:

S =
T∑

i=1

si = M + 2M + ... + (T − 1)M =
T (T − 1)M

2
(3.1)

A convolutional interleaver can be forced to operate as a block interleaver by insert-

ing a number of zero stuff bits to its memories providing an interleaved data block

which is isolated from the other blocks [13]. Initially, the interleaver memories are set

Iterative Turbo Decoder Design with Convolutional Interleavers 56

to zero values. Based on the number of applied memories in each line, bits distributed

to the relevant line appear at different times. For example, the interleaved data block

of an input bitstream with the lengthL=12 from the interleaver(T = 3, M = 1) is

given by:{x0,0,0,x3,x1,0,x6,x4,x2,x9,x7,x5, 0,x10,x8,0,0,x11}.

Depending on the input sequence length and the interleaver parameters, distributed

data are terminated at one of the interleaver lines, which is determined by theRem(L,T)

value, whereRem(L, T) gives the reminder ofL
T

operation. For an input bitstream

{x0,x1,x2,...,xL}with the lengthL, different interleaved data for the interleaver(T =

3,M = 1) would be:

Rem(L, T) = 0:

{x0, 0, 0, x3, x1, 0, x6, ..., xL−7, 0, xL−2, xL−4, 0, 0, xL−1}
Rem(L, T) = 1:

{x0, 0, 0, x3, x1, 0, x6, x4, ..., xL−3, xL−5, 0, 0, xL−2}
Rem(L, T) = 2:

{x0, 0, 0, x3, x1, 0, x6, ..., xL−4, xL−6, 0, xL−1, xL−3}

When a convolutional interleaver with the above structure is applied in the turbo code

structure, inserted stuff bits to the interleaver memories reduce channel bandwidth

usage. Therefore, an optimization can be performed on the interleaver to control the

number of those bits equal to the number of applied memories. For this purpose, one

block is added after the interleaver controlling the data at the interleaver output in

order to delete extra zero stuff bits that appear at the end part of the interleaver [13].

In this case, the memory contents at the end of each block have zero value. This

remains until the beginning of the next block. Following the previous example, the

optimized interleaver outputs for differentRem(L, T) values are given by :

Rem(L, T) = 0:

{x0, 0, 0, x3, x1, 0, x6, ..., xL−2, xL−4, xL−1}
Rem(L, T) = 1:

{x0, 0, 0, x3, x1, 0, x6, x4, ..., xL−3, xL−5, xL−2}
Rem(L, T) = 2:

{x0, 0, 0, x3, x1, 0, x6, ..., xL−4, xL−6, xL−1, xL−3}

Iterative Turbo Decoder Design with Convolutional Interleavers 57

Figure 3.6 Interleaved data for an interleaver(T = 5,M = 1), Rem(L, T) = 2 with non-
optimized and optimized interleavers.

Figure 3.6 shows the non-optimized and optimized interleaved data of the interleaver

(T = 5,M = 1) with Rem(L, T) = 2 and lengthL.

Based on this property, for every interleaver, input bitstreams intoT different groups

are categorized, such that each group includes bitstreams with different lengths hav-

ing the sameRem(L, T) value. Therefore, in each group, one part of an interleaved

data with a higher length is common with the interleaved data with the short length.

In addition, the interleaved data with a higher length consists of an extra part, which

is created due to the increasing of the length. Figure 3.7 shows these mentioned parts

for two bitstreams with the lengthL = 20 andL = 24 considered as one group for

the interleaver(T = 4,M = 1) which gives theRem(L, T) = 0 value.

3.4 Iterative Turbo Decoding with Convolutional In-
terleavers

A turbo code with the discussed convolutional interleaver structure can be analyzed

as a block code if termination methods are applied to the constituent RSC encoders.

Iterative Turbo Decoder Design with Convolutional Interleavers 58

Figure 3.7 Comparison of different parts of interleaved data at the output of the interleaver
with different lengths, similar period andRem(L, T) values,i.e.T = 4, Rem(20, 4) = 0,
Rem(24, 4) = 0.

In our work, only the memory contents of the first RSC encoder are returned to the

zero state, while the memories state of the second RSC encoder is maintained at the

end of each data block. When stuff bits are inserted into the convolutional inter-

leaver after trellis termination of the first RSC encoder they do not have any effect

on the weight of systematic and the first parity data. Thus, they can be eliminated

from the end part of the mentioned data, which reduces the overall number of stuff

bits to T (T−1)M
2

. This property makes it possible to employ one of the conventional

iterative techniques for turbo decoding. Since the second parity data have a differ-

ent length from the encoded systematic and the first parity data, relevant modifica-

tion should be performed on the iterative turbo decoder in the proposed structure of

turbo codes [14]. Figure 3.8(a) shows the structure of the iterative decoder for the

convolutional interleaver with the non-optimized convolutional interleaver together

with the information length in different positions of the decoder, which are shown in

parentheses. In the first component decoder where the systematic and the first parity

information are used, the extrinsic information length isL. When the systematic and

the extrinsic information pass through the interleaver, their lengths, equal to the total

Iterative Turbo Decoder Design with Convolutional Interleavers 59

Figure 3.8 Iterative turbo decoder structure with a) the non-optimized convolutional inter-
leaver b) the optimized convolutional interleaver.

number of the interleaver memories, i.e.S bits, will be increased. Therefore, the

a-priori information length for the second decoder would beL + S, which is equal

to the length of the second parity information. By passing the obtained extrinsic in-

formation through the deinterleaver, which inverts the action of the interleaver, the

a-priori information length for the first component decoder will be changed toL.

The proposed decoder can be used for turbo codes with the optimized convolutional

interleaver [14]. In this case, the interleaver addsS ′ stuff bits (S ′ < S) equal to
T (T−1)M

2
value to the systematic and extrinsic information length of the first decoder,

whose length will be equal to the length of the second parity data. Furthermore, the

a-priori correction should be performed after deinterleaving in order to remove the

added stuff bits from the extrinsic information obtained from the second decoder,

and to generate correct information of lengthL, compatible with the conducted opti-

mization at the interleaver. Figure 3.8(b) shows structure of the modified decoder for

the optimized convolutional interleaver.

3.5 Weight Distribution of Turbo Codes using Convo-
lutional Interleavers

Analysis of the block-wise turbo code performance with the convolutional interleaver

and maximum likelihood iterative decoding is accomplished for a linear block code

by the determination of its upper bound from Equation 2.10.

Iterative Turbo Decoder Design with Convolutional Interleavers 60

As mentioned in the previous chapter, the error floor phenomenon of the turbo code is

directly related to the low weight values. Thus, determining a low weight distribution

of the code would be helpful to verify the code behavior at the error floor region. The

main issue of this calculation is influence of the interleaver behavior on the turbo code

performance. Some algorithms have been proposed, based on mainly determination

of the free distance value of the code.

3.5.1 Free Distance Computation of Turbo Codes

Conventionally, as mentioned in the previous chapter, the free distance(dfree) is de-

fined as the minimum Hamming distance between any possible codewords. Since

considering all input bit streams in the determination ofdfree is impossible, espe-

cially for medium to large input block lengths, finding a suitable algorithm to com-

pute thedfree for turbo codes has been followed in previous works.

In some work, effective free distance of turbo code has been calculated based on the

weight-2 distribution of the code, which gives a good approximation for the perfor-

mance of multiple turbo codes [108–111].

Another algorithm is devised based on the generator matrix properties of the turbo

code to determine its effective free distance value. This method can be used for

the performance of turbo code when both RSC codes are terminated [112]. A dif-

ferent algorithm is presented based on the trellis termination and truncation for the

first and the second RSC encoders. It considers all possible self-terminating input

bitstreams of the first RSC constituent encoder with the required length, and com-

putes the weight of the code [10]. It is obviously observed that the complexity of

the algorithm increases with increasing the interleaver length. Since the algorithm

only computes the free distance value, which is related to the first term of the Equa-

tion 2.10, it is useful for turbo codes having a free distance with high multiplicities

that the effect of other terms on the code performance is reduced.

A general algorithm which computes low weight terms of the code with a moderate

length is presented in [113,114]. The algorithm defines a constrained subcode based

on the trellis structure of the code, and computes the minimum distance of a con-

Iterative Turbo Decoder Design with Convolutional Interleavers 61

Table 3.1
Patterns returning the RSC encoder(1, 5

7) to the zero state for the convolutional interleaver
(T = 5,M = 1), Rem(L, T) = 2.

xj xj+1 xj+2 xj+3 xj+4 xj+5 xj+6

1 0 0 0 0 0 1
1 0 0 0 1 1 0
1 1 0 0 0 1 0
1 1 0 0 1 0 1
1 0 1 0 0 1 1
1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 0 0 0 1 1 0
1 0 0 1 0 0 0
1 1 1 0 0 0 0

strained subcode relevant to the interleaved data to determine the free distance value

of the code. Some improvements to this algorithm, reducing computation complexity

are proposed in [115, 116], while [117] and [118] present alternative algorithms for

some special interleavers.

3.5.1.1 Free Distance Computation of Turbo Codes with Convolutional Inter-
leavers

For the turbo codes with optimized convolutional interleavers, the interleaver prop-

erty is utilized to determine low weights of the code. The applied algorithm, similar

to the previously proposed methods, considers low weight self-terminating input bit-

streams that generate low weight codewords [15]. In the optimized convolutional

interleaver, the minimum distance between two adjacent bits, before and after inter-

leaving, is equal to the interleaver period, except for the end part of the interleaved

data block, where it decreases due to zero bit deletion. Therefore, it is expected that

the data interleaved in this part will create a lower weight than the data interleaved

by other parts in the second RSC encoder. Using this interleaver structure and con-

sidering the effect of tail bits on the overall weight of the turbo code, an algorithm to

estimate free distance value (dfree) is presented as follows [15]:

Firstly, among all input data block streams with the minimum weight (i.e. 1) those

Iterative Turbo Decoder Design with Convolutional Interleavers 62

Table 3.2
Free distance specifications for turbo codes(1, 5

7) and (1, 35
23) with interleavers(T =

10,M = 1, L = 512) and(T = 20,M = 1, L = 1024).

Turbo code T L dfree Nfree w̃free

(1, 5
7
) 10 512 10 3 3

(1, 5
7
) 20 1024 10 3 3

(1, 35
23

) 10 512 11 1 3
(1, 35

23
) 20 1024 16 1 3

which return the first RSC encoder to the zero state are selected. Then, their bit 1

positions are compared with the bit positions that have been located at the end part of

the interleaved data. If any pattern returns the first RSC encoder to the zero state and

positions of its bits are in the end part of the interleaved data, then the overall weight

of the corresponding codeword is computed and stored as adfree value. In order to

identify the other input bitstreams with the mentioned property, the same comparison

is performed and the minimum obtaineddfree value is considered asdfree at the end

of the first step. A similar procedure is followed for higher input data weights until

the computeddfree is lower than or equal to the weight of the input bitstream. The

final dfree is assumed to bedfree of the turbo code.

Since bit 1 positions should be located at the end part of the interleaver, the pattern

length consisting of all the 1s inside the bitstream , should not exceed number of bits

at the end part of the interleaver. For this purpose, low weight patterns with a length

equal to the number of bits at the end part of the interleaver are encoded returning

the RSC encoder to the zero state.

For example, as shown in Figure 3.6 , the number of bits at the end of the interleaver

with (T = 5,M = 1), Rem(L, T) = 5 is equal to 7 and the patterns with the length

7 that return the RSC encoder(1, 5
7
) to the zero state have been listed in Table 3.1.

The weight of these patterns is not greater than 3. The algorithm covers all the pat-

terns shifted cyclically that satisfy the above condition. The computeddfree values

of turbo codes(1, 5
7
)(1, 35

23
) for convolutional interleavers with different lengths have

been presented in Table 3.2, whereNfree and w̃free represent the total number of

multiplicities of the codewords with weightdfree and the average input data weight

Iterative Turbo Decoder Design with Convolutional Interleavers 63

Table 3.3
Weight distribution for turbo codes(1, 5

7) and(1, 35
23) at the end part part of the interleaver

with (T = 10,M = 1, L = 1024) andRem(L, T) = 2.

Weight Turbo code(1, 5
7
) Turbo code(1, 35

23
)

d Nd w̃d Nd w̃d

10 3 3.0 0 0
11 1 2.0 1 3.0
12 1 4.0 0 0
13 3 2.3 0 0
14 11 3.3 0 0
15 7 2.9 7 2.86
16 7 2.7 1 3.0
17 15 3.01 3 2.67
18 19 3.01 8 2.63
19 33 3.4 7 2.86
20 44 3.55 4 2.75
21 56 3.37 4 2.75
22 112 3.77 16 3.0
23 77 3.68 10 2.7
24 118 3.8 12 3.0
25 118 3.58 30 2.94
26 208 3.67 21 2.8

related todfree, respectively. The results show that for the 4-state turbo code, increas-

ing the period and length does not affect the free distance specifications, while for

the 16-state code the free distance has been increased by 5 units and the multiplicity

has been preserved. This behavior of the convolutional interleaver is fully discussed

in the next section.

In comparison with most block interleavers, the convolutional interleaver generates

dfree with fewer multiplicities, which can be considered as an advantage. Thus, the

upper bound of the code is not dominated by its free distance value, and it is necessary

to determine other codewords with low weights or codewords having relatively high

multiplicities, which affect the code performance at the error floor region.

Depending on the interleaver period, the number of bits which are located at the end

part of the interleaver change. In order for the algorithm to be usable for different

interleaver periods, the area of the end part of the interleaver can be increased or

Iterative Turbo Decoder Design with Convolutional Interleavers 64

Table 3.4
Weight distribution for turbo codes(1, 5

7) and(1, 35
23) at the end part part of the interleaver

with (T = 20,M = 1, L = 1024) andRem(L, T) = 4.

Weight Turbo code(1, 5
7
) Turbo code(1, 35

23
)

d Nd w̃d Nd w̃d

10 3 3.0 0 0
11 0 0 0 0
12 0 0 0 0
13 1 3 0 0
14 4 2.75 0 0
15 0 0 0 0
16 4 2.5 1 3
17 1 3.0 0 0
18 7 2.58 0 0
19 3 2.67 2 3
20 78 3.82 3 3
21 11 2.9 1 3
22 33 3.18 1 3
23 20 3 1 3
24 91 3.49 1 3
25 38 3.2 3 2.67
26 63 3.3 6 3

decreased based on the interleaver period.

By increasing the area, more bits are involved in the calculation. This requires to

consider the input bitstreams with the lower weights. Instead, shortening the area

makes it possible to involve input bitstreams with the higher weights in the weight

calculation of the code [15]. Tables 3.3 and 3.4 give some low weights of the 4-state

(1, 5
7
) and 16-state turbo code(1, 35

23
), which have been calculated from the defined

end part of the interleaver with lengthL = 1024 and input bitstream with weights no

greater than 5 and 4, respectively.

3.5.2 Extrapolated Weight Distribution Computation Algorithm

Apart from the end part of the optimized interleaver, it is possible to find other input

bitstreams having weight(s) outside the mentioned area producing weights that are

affecting the code performance.

Iterative Turbo Decoder Design with Convolutional Interleavers 65

Table 3.5Returning to zero patterns with weight-2 and 3 for 4-state turbo code(1, 5
7).

Similarly to the proposed algorithm in the previous section, low weights of the code

from the input bitstreams that return the RSC constituent encoders to the zero state

are determined. In order to reduce the complexity of the algorithm, especially for

medium to high interleaver lengths, a new method to simplify computing weight

distribution of the turbo code are presented, which is based on the convolutional

interleaver properties [16].

Without considering the end part of the interleaved data, the distance between dis-

tributed bits in adjacent interleaver lines is always fixed by the product ofT andM .

Due to the deterministic behavior of the convolutional interleaver, it is possible to ob-

tain self-terminating patterns for the second RSC encoder that have been interleaved

from other or similar input self-terminating patterns. Therefore, it is possible to ob-

tain patterns that return both RSC encoders to the zero state. Examining patterns with

weight-2 presented in Table 3.5, for the 4-state turbo code with the convolutional in-

terleaver(T = 4,M = 1), it is found that input bitstream(0001000000001000..0)L

with lengthL gives the interleaved data pattern(000000000000100100...0)L, which

returns the second RSC encoder to the zero state. The same happens for cyclical

shifts of the original patterns presented in Table 3.5. Existence of these patterns

Iterative Turbo Decoder Design with Convolutional Interleavers 66

will create low weight codewords with high multiplicities and their effect should be

considered in the upper bound computation of Equation 2.10 [16].

It is obvious that a number of input bitstreams satisfying the mentioned condition

will increase with increasing the interleaver length. Therefore, for medium to high

interleaver lengths, it would be difficult to consider all of these patterns in the weight

calculation of the code. In order to overcome this issue, the following properties of

the interleaver are utilized: [21]

When the full weights of a self-terminating pattern are positioned at the common

part of two interleaved data sets categorized as one group, increasing the length of

patterns will not affect the weight increment of the second RSC code and therefore,

both interleavers produce a weight with similar multiplicity. Otherwise, i.e. when

some, or all, weights of this self-terminating pattern are positioned at the extra part

of an interleaver with a higher length, multiplicity of the weight is progressively

increased proportional to the length difference of the two interleavers.

Additionally, in optimized interleavers, the distance of bits located in the end part of

the interleaved data from the last bit of data block is constant. For example, in Figure

3.7 the distance betweenx21 andx23 for the interleaver of lengthL = 24 would

be 4, which is the same as the equivalent bits for the interleaver of lengthL = 20,

i.e. betweenx17 andx19 [16]. Therefore, the weights obtained from the end part of

the interleaver would be independent of the interleaver length. In this case, weights

obtained from the end part of the interleaved data with short length can be utilized as

weights of a code with higher interleaver length [15].

Based on the above properties of these interleavers, it is possible to able to estimate

the weight distribution of a turbo code with a desired length from an interleaver with

shorter length. In this method, according to the interleaver period, the minimum

applied interleaved data length is varied, and is equal toT (T − 1)M , i.e. when

all the interleaver memories have valid data. For interleavers(T = 5,M = 1)

and(T = 4, M = 1) with the presented specifications in Figure 3.6 and 3.7, the

minimum length is 12 and 6, respectively. Considering self-terminating patterns with

the weighti, the algorithm computesW (i)
L =(w

(i)
L1

, w
(i)
L2

, ..., w
(i)
Lk

) with the multiplicity

Iterative Turbo Decoder Design with Convolutional Interleavers 67

Table 3.6
Weight distribution of 4-state turbo code for two input bitstreams(100100...0)L,(11100...0)L

and their cyclical shifts for the interleaver (T=10,M=1) with different lengths and identical
Rem(L, T) = 2 value.

Pattern (100100...0)L (11100...0)L

L 92 102 512 92 102 512
ω Nω Nω Nω Nω Nω Nω

10 0 0 0 3 3 3
11 1 1 1 0 0 0
12 0 0 0 0 0 0
13 2 2 2 1 1 1
14 1 1 1 2 2 2
15 2 2 2 0 0 0
16 3 3 3 1 1 1
17 2 2 2 1 1 1
18 5 5 5 2 2 2
19 2 2 2 0 0 0
20 5 5 5 2 2 2
21 6 6 6 37 45 373
22 7 7 7 2 2 2
23 4 4 4 0 0 0
24 1 1 1 0 0 0
25 9 9 9 1 1 1
26 46 53 340 2 2 2
27 2 2 2 1 1 1
28 5 5 5 2 2 2
29 9 9 9 0 0 0
30 46 53 340 2 2 2

N
(i)
L =(n

(i)
L1

, n
(i)
L2

, ..., n
(i)
Lk

) as weight specifications of the turbo code for an interleaver

(T, M) with lengthL. This is accomplished as follows : [16]

1) Design an interleaver(T, M) with the shortest lengthL1 which satisfiesT (T−
1)M ≤ L1 < L− T andRem(L1, T) = Rem(L, T).

2) Compute the weight distribution of the code for the interleaver(T, M,L1) from

all self-terminating patterns with the weighti, asW
(i)
L1

=(w
(i)
L11

, w
(i)
L12

, ..., w
(i)
L1k

)

andN
(i)
L1

=(n
(i)
L11

, n
(i)
L12

, ..., n
(i)
L1k

).

3) Increase the interleaver lengthT units(L2 = L1 + T) and compute the weight

Iterative Turbo Decoder Design with Convolutional Interleavers 68

Table 3.7
Weight distribution of 4-state turbo code for two input bitstreams(100100...0)L,
(11100...0)L and their cyclical shifts for the interleaver(T = 10, M = 1) with different
lengths and identicalRem(L, T) value.

Pattern (100100...0)L (11100...0)L

L 96 106 256 96 106 256
ω Nω Nω Nω Nω Nω Nω

10 0 0 0 3 3 3
11 1 1 1 0 0 0
12 0 0 0 0 0 0
13 2 2 2 0 0 0
14 1 1 1 1 1 1
15 3 3 3 1 1 1
16 2 2 2 1 1 1
17 0 0 0 1 1 1
18 2 2 2 2 2 2
19 3 3 3 1 1 1
20 3 3 3 0 0 0
21 2 2 2 36 43 148
22 11 11 11 1 1 1
23 4 4 4 1 1 1
24 6 6 6 2 2 2
25 5 5 5 1 1 1
26 55 62 167 2 2 2
27 8 8 8 1 1 1
28 9 9 9 2 2 2
29 6 6 6 1 1 1
30 36 43 148 1 1 1

distribution specification of the code for the new interleaver length asW
(i)
L2

and

N
(i)
L2

: W
(i)
L2

=(w
(i)
L21

, w
(i)
L22

, ..., w
(i)
L2k

) N
(i)
L2

=(n
(i)
L21

, n
(i)
L22

, ..., n
(i)
L2k

).

4) If n
(i)
L1j

= n
(i)
L2j

thenn
(i)
Lj

= n
(i)
L1j

(j = 1, 2, ..., k) elsen
(i)
Lj

= n
(i)
L1j

+ L−L1

T
(n

(i)
L2j
−

n
(i)
L1j

).

5) W
(i)
L =W

(i)
L1

=W
(i)
L2

=(w
(i)
L1

, w
(i)
L2

, ..., w
(i)
Lk

) N
(i)
L =(n

(i)
L1

, n
(i)
L2

, ..., n
(i)
Lk

).

Tables 3.6 and 3.7 give the calculated low weights of the 4-state turbo code(1, 5
7
) for

the specified input bitstreams and an interleaver(T = 10,M = 1) with minimum

valid lengthsL = 92, L = 102, L = 96 and L = 106. The weights obtained

Iterative Turbo Decoder Design with Convolutional Interleavers 69

Table 3.8
Combined self-terminating pattern 100011 with other self-terminating patterns of Table 3.5.

from these lengths have been utilized to determine the weight of the code for an

interleaver lengthL = 512 andL = 256. For both interleavers, the results show that

the code for some weightsω = 26, has high multiplicities related to the patterns that

simultaneously return both RSC encoders to the zero state.

The above calculations indicate that multiplicities of some weights will remain con-

stant for different interleaver lengths. These weights are mainly produced by input

bitstreams with weights located in the end part of the interleaved data. In this

algorithm, the minimum length of the interleaver is increased by increasing the re-

quired length of the interleaver. This may be impossible when the weight of the

self-terminating pattern increases. In this case, the algorithm involves those self-

terminating patterns having higher possibility to generate low weight codewords.

They are specified when enough patterns constructed by the minimum number of

zeros between bits 1 are considered.

3.5.2.1 Weight Distribution from Higher Input Bitstreams Weights

It is possible to combine low weight self-terminating patterns with each other mak-

ing other self-terminating patterns with a higher weight. This is accomplished by

separating low-weight self-terminating patterns from each other with a number of

zero bits. Due to the increased weight, the number of new self-terminating patterns

is increased in such a way that makes it impossible to consider all of them in the

Iterative Turbo Decoder Design with Convolutional Interleavers 70

20 30 40
0

200

400

600

800

1000

Weight

M
ul

tip
lic

iti
es

(a)100100..01001

15 20 25 30
0

200

400

600

800

1000

Weight

(b)11100..0111

20 30 40
0

200

400

600

800

Weight

(c)1001100..010011

25 30 35 40
0

200

400

600

800

Weight

M
ul

tip
lic

iti
es

(d)1100100..011001

20 30 40
0

200

400

600

800

Weight

(e)1010100..010101

15 20 25 30
0

20

40

60

80

100

120

Weight

weight=5
weight=6

(f)

Figure 3.9 Weight distribution of 4-state turbo code(1, 5
7) with the combined input bit-

streams of Table 3.5.

weight distribution of the code, even for the short interleaver lengths.

In order to get a codeword with low weight, those self-terminating patterns that gen-

erate low weights are combined. This leads to apply self-terminating patterns with

the minimum acceptable number of zeros between 1s. The weight distribution of

the code from these combined patterns can be calculated by the algorithm presented

in the previous section. Table 3.8 gives combinations of the (100011) pattern with

other presented patterns of Table 3.5. The weight of the 4-state turbo code(1, 5
7
)

applying the combined patterns with weights 4, 5 and 6 has been calculated and il-

lustrated in Figure 3.9. Figures 3.9(a) to 3.9(e) show combination of identical

patterns, while Figure 3.9(f) gives weight distribution of the code due to combining

different patterns from Table 3.5. The results indicate that weights with high mul-

tiplicities is created by identically combined low weight self-terminating patterns,

while combinations of different low-weight self-terminating patterns give weights

with low multiplicities. Hence their effects on the performance of the proposed code

Iterative Turbo Decoder Design with Convolutional Interleavers 71

can be neglected. In conducted calculations, distance between two low weight self-

terminating patterns in every combined pattern(d
′′
) does not exceed 145.

3.5.2.2 Effect of Tail Bits on the Weight Distribution of Code

The algorithm should consider self-terminating patterns that are produced due to

the effect of tail bits of the first RSC encoder. Tail bits are always located in the

last part of a data block and therefore after interleaving, they automatically will be

positioned in the end part of the interleaved data. The number of patterns which

satisfy this condition will be increased by increasing the length of the interleaver

and the constraint length of the RSC codes. Since the algorithm concentrates on

patterns that possibly generate low weights for the code, bits 1 of the pattern should

be close to each other and positioned at the end part of the input bitstream, because

when this condition is not satisfied, the first RSC encoder provides higher weight,

which consequently increases the weight of the code. Since, for different interleaver

lengths and identicalRem(L, T) value, the number of bits located in the end part of

the interleaved data is constant, the explained technique for weight calculation of the

code can also be applied for this purpose [16].

3.5.3 Simulation Results

The upper bound of BER for turbo codes with different interleavers has been com-

puted based on weights obtained with the proposed algorithm and compared with the

simulation results. The applied interleavers are designed in such a way that reduce

the effect of stuff bits on the code performance. As mentioned before, since stuff bits

are inserted into the interleaver memories after trellis termination of the first RSC en-

coder, they do not have any effect to the weight of the systematic and the first parity

data and can be eliminated from these data parts. For simplicity in the simulations,

in order to make equalized systematic and the parity data, the length effect of stuff

bits is considered for the systematic and the first parity data as well as the second

parity data. This means that increasing the length does not change the overall rate

of the code. At the iterative decoder, decoding is accomplished based on presented

model in Figure 3.8(b). In the iterative turbo decoder, the stuff bits inserted to the

interleaver have value -1. In the weight calculation, the self-terminating patterns of

Iterative Turbo Decoder Design with Convolutional Interleavers 72

Figure 3.10Scale factor computation algorithm applied for the SOVA.

the first RSC encoder with weights no greater than 4 have been considered. The in-

formation received from the AWGN channel is decoded by SOVA. The scale factor

applied for the a-priori information of this iterative decoding method is conducted by

the following algorithm.

First, the scale factor value from Equation 2.49 is calculated. Under ideal conditions,

i.e. in a noiseless channel, the scale factor value is 1, while in noisy channels this

value is less than 1 and is related to the received information [92]. Therefore, the

threshold value is defined such that when the scale factor is less than the appointed

threshold, it will be shifted to a value close to 1. This generates a suitable factor

for the extrinsic information. Otherwise, i.e. when the scale factor is within the

acceptable range, it is simply multiplied by the extrinsic information. Based on the

simulation results, this modification has not have a visible effect on the performance

Iterative Turbo Decoder Design with Convolutional Interleavers 73

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0

Approximate Analysis
Exact Analysis
Simulation

Figure 3.11Analysis and simulation results of the 4- state turbo code(1, 5
7) with the inter-

leaver (T=10,M=1) and lengthL=512.

of decoder for higher iterations. Therefore, and in order to decrease decoding delay,

the procedure is applied only at the first iteration. For higher iterations, a constant

value increasing per iteration is added to the scale factor. With good approximation

the above algorithm can be implemented with threshold and constant values fixed for

different codes with different interleaver lengths. Generally, the best performance is

achieved by the threshold and constant values 0.5 and 0.1, respectively. These values

have been determined by the trial and error for the given codes and applied in the

thesis unless explicitly stated. Figure 3.10 illustrates the above algorithm.

Ten iterations for the first and the third examples and 15 iterations for the second ex-

ample have been performed. Again, the maximum distance between two low weight

patterns in a combined pattern is set to 145.

Iterative Turbo Decoder Design with Convolutional Interleavers 74

3.5.3.1 Simulation Results for 4-state Turbo codes Using Interleaver(T =
10, M = 1, L = 512)

The results are presented in Figure 3.11, which shows performance of the 4-state

turbo code(1, 5
7
) with the interleaver (T=10,M=1) and lengthL=512. ForEb

N0
> 2dB

20,000 data blocks with the mentioned length were simulated. In each simulated

block, an independent AWGN from other blocks is inserted. For different interleaver

lengths with identicalRem(L, T = 10) = 2 values, the algorithm computes the

weight of the code. In this example, the codeword weights for interleaver lengths

L=92 andL=102 have been computed and then their results have been extrapo-

lated for the desired length, i.e.L=512. The algorithm gives the minimum distance

dfree=10 withwfree = 3 andNfree=3. The new upper bound gives a higher accuracy

for the code performance for all signal to noise ratios. Among different combined

low weight patterns, the pattern(0...00100100...01110...0)L produces the minimum

weight with the following specifications:d=16, Nd = 2, ωd = 6. In this code,

other combined patterns generate weights with high multiplicities far from the free

distance and other low weights, and are not affecting the code performance.

3.5.3.2 Simulation Results for 4-state Turbo codes Using Interleaver(T =
20, M = 1, L = 1024)

Figure 3.12 illustrates analysis of the code for the interleaver (T=20, M=1) and

lengthL=1024. For this code 10,000 blocks were simulated for differentEb

N0
val-

ues. In this example, the code weight distribution is determined by the interleaver

lengthsL = 382 and L = 402. The result givesdfree=10 with wfree = 3 and

Nfree=3 as the free distance specifications of the code. In the considered example,

almost all of the low weight codewords affecting the code performance are located

at the end part of the interleaved data. However, as mentioned before, for a code

with this interleaver it is possible to find many combined low weight patterns that

are not located in the end part of the interleaved data influencing the code perfor-

mance. This effect has been verified by the analysis of the code with and with-

out the combined patterns. The relevant graphs illustrate about 0.2 dB difference

at the error floor region between the results obtained when these two approaches

are taken. In addition, analysis of the code considering the combined patterns at

Iterative Turbo Decoder Design with Convolutional Interleavers 75

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0

Analysis without combined patterns
Approximate Analysis
Analysis with combined patterns
Simulation

Figure 3.12Analysis and simulation results of the 4- state turbo code(1, 5
7) with the inter-

leaver (T=20,M=1) and lengthL=1024.

the end of the interleaved data shows performance closer to the simulation results

than the upper bound obtained without considering the effect of combined patterns.

The tail bits weight effect on the code performance has been confirmed in the pre-

vious examples. The specifications of the minimum weight of the code is given

by (d,Nd, ωd) = (22, 1, 3) and (d,Nd, ωd) = (26, 1, 2) values for the interleavers

(T = 10,M = 1) and(T = 20, M = 1), respectively.

3.5.3.3 Simulation Results for 16-state Turbo codes Using Interleaver(T =
35, M = 1, L = 4096)

For 16 state turbo code(1, 35
23

), an interleaver(T = 35,M = 1) and lengthL = 4096

is utilized. At least 2500 data blocks were simulated forBER < 10−3. For this

purpose, low weights of the relevant code are calculated from interleaver lengths

L = 1226 andL = 1261. The algorithm gives some low weights from the combined

low weight input bitstreams that return both RSC encoders to the zero state. For the

Iterative Turbo Decoder Design with Convolutional Interleavers 76

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

Analysis without tail bits effect
Analysis with tail bits effect
Simulation

Figure 3.13Analysis and simulation results of the 16- state turbo code(1, 35
23) with the inter-

leaver(T = 35,M = 1) and lengthL = 4096.

combined two 10011 patterns, i.e.(00...01001100...0001001100...0)L, the calculated

minimum weight is 27 with 2 multiplicities. As expected, only a few low weights

contribute to the code performance. In comparison with the two previous examples,

the weight of the tail bits affects significantly the performance of these codes. Based

on this assumption, the free distance specifications of the code are as follows:dfree =

16, Nfree = 1 andwfree = 3. This effect on the upper bound has been illustrated

as a separate graph in Figure 3.13, which gives a better approximation of the code

performance at the error floor region.

3.6 Turbo Code Analysis With Convolutional Inter-
leavers

In this section, the weight distribution of the turbo code computed by the proposed

algorithm is utilized to verify effects of the optimized and non-optimized convo-

Iterative Turbo Decoder Design with Convolutional Interleavers 77

Table 3.9
Weight-2 distribution of turbo codes(1, 5

7) with the optimized and non-optimization inter-
leavers(T = 10,M = 1) and lengthL = 512.

weight Optimized Non-optimized
interleaver interleaver

d Nd Nd

11 1 0
12 0 0
13 2 0
14 1 0
15 2 0
16 3 0
17 2 1
18 5 0
19 2 0
20 5 0
21 6 0
22 7 0
23 4 0
24 1 1
25 9 1
26 340 336

lutional interleavers on the code performance. Since the optimized interleaver has

basically the same construction as the non-optimized convolutional interleaver, the

obtained weights for the code with the non-optimized interleaver should also appear

at the optimized interleaver with similar multiplicities.

Depending on the non-optimized interleaver specifications and similarly to the op-

timized interleaver, the minimum interleaver length applied in the algorithm would

be different. This minimum length is determined by the value of((T (T − 1)M) −
Rem(L, T)). Table 3.9 gives weight-2 distribution of the 4-state turbo code(1, 5

7
)

with the non-optimized interleaver(T = 10,M = 1, L = 512) and its comparison

with the obtained weights from the optimized interleaver. As verified in the previous

section, due to the deletion of zero stuff bits from the end part of the interleaved data,

the distance between adjacent bits of the input bitstream in the interleaved data is re-

duced. Hence, the free distance value and some weights lower than the free distance

Iterative Turbo Decoder Design with Convolutional Interleavers 78

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

E
b
/N

0
(dB)

R
el

at
iv

e
co

n
tr

ib
u

ti
o

n
 o

f
sp

ec
tr

al
 li

n
es

(%
)

d=17

d=18

d=19

d=20

d=21
d=22

Figure 3.14Weight contributions for the 4-state turbo code(1, 5
7) with the non-optimized

convolutional interleaver (T=10,M=1) and lengthL=512.

value of the code with the non-optimized interleaver have been obtained. In fact,

unlike non-optimized interleavers, optimized interleavers generate low weights with

low multiplicities, while similar weights to the free distance value of the code with

non-optimized interleavers are maintained. Comparing the obtained weights of the

code from two different interleavers, it is concluded that the optimized interleaver

will rearrange some of the input bitstreams related to the free distance value of the

code with the non-optimized interleaver to other low weights with low multiplicities.

In order to verify how the generated new weights affect the code performance, the

contribution of each weight to BER in the code is computed and compared with con-

tribution of low weights in the code with the non-optimized interleaver. As indicated

in [66], the contribution of each weight in the block-wise performance of the turbo

code can be determined from Equation 2.10 by the following formula:

Pd(γb) =
Ndω̃d

L
Q(

√
2dRγ) (3.2)

Its relative contribution to the total BER is represented by:

P d(γb) =
Pd(γb)∑
d Pd(γb)

(3.3)

Iterative Turbo Decoder Design with Convolutional Interleavers 79

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

E
b
/N

0
(dB)

R
el

at
iv

e
co

n
tr

ib
u

ti
o

n
 o

f
sp

ec
tr

al
 li

n
es

(%
)

d=20

d=22

d=24

d=25

d=26

Figure 3.15 Weight contributions to BER for the 4-state turbo code(1, 5
7) with the non-

optimized convolutional interleaver (T=15,M=1) and lengthL=1024.

Again, the weight distribution of each code has been calculated based on self-terminating

input bitstreams with weights no greater than 4. Figures 3.14 and 3.15 show con-

tribution of the calculated weights for the turbo code(1, 5
7
) with the non-optimized

convolutional interleaver lengthsL=512 andL=1024, respectively. Similarly to pre-

viously obtained results for turbo code performance with block interleavers, for the

short interleaver lengths, many weights contribute to the code performance, while

with increasing the interleaver length only few weights are important [66].

The optimized interleavers are designed in a way that they produce a similar number

of stuff bits with the applied non-optimized interleavers. Figures 3.16 and 3.17 show

weight contribution for the 4-state turbo codes with the optimized interleaver (T=14,

M=1) and (T=20,M=1) for the lengthL=512 andL=1024, respectively.

For the code with the interleaver lengthL=512, the optimized interleaver (T=14,

M=1) has two major weights that contribute to the code performance, while the non-

optimized interleavers have many weights. In this case, the obtained free distance

value is 10 with 3 multiplicities, and its effect is almost dominant for all signal to

Iterative Turbo Decoder Design with Convolutional Interleavers 80

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

E
b
/N

0
(dB)

R
el

at
iv

e
co

n
tr

ib
u

ti
o

n
 o

f
sp

ec
tr

al
 li

n
es

(%
)

d=10

d=20

d=24

d=26

Figure 3.16Weight contributions to BER for the 4-state turbo code(1, 5
7) with the optimized

convolutional interleaver (T=14,M=1) and lengthL=512.

noise ratios. In this code, weight 20 with 321 multiplicities has the second ma-

jor contribution, while in the code with the non-optimized interleaver (T=10,M=1)

weight 20 has the highest contribution with 196 multiplicities for the signal to noise

ratios lower than 7 dB. For higher interleaver lengthL = 1024, the code with the

non-optimized interleaver(T = 15,M = 1) has the free distance value 20 with 585

multiplicities whose effect is dominant for the code performance. Applying the op-

timized interleaver(T = 20,M = 1) with the higher period and similar number of

stuff bits, i.e. 190 bits, reduces the free distance to the value of 10 with 3 multiplic-

ities. In addition, the code also has the weight of 20 with 846 multiplicities and a

lower contribution than corresponding weights in Figure 3.15, especially in signal to

noise ratios greater than 2 dB.

The graphs demonstrate that although the code with the optimized interleaver gen-

erates some lower weights than the free distance value of the code with the non-

optimized interleavers but due to their low multiplicities, they do not have a major

influence on the code performance for low values ofEb

N0
. Similar conclusions can

be reached from the weight 20 of Figures 3.16 and 3.17. Since the distance of

Iterative Turbo Decoder Design with Convolutional Interleavers 81

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

E
b
/N

0
(dB)

R
el

at
iv

e
co

n
tr

ib
u

ti
o

n
 o

f
sp

ec
tr

al
 li

n
es

(%
)

d=10

d=16

d=20

d=24 d=26

Figure 3.17Weight contributions to BER for the 4-state turbo code(1, 5
7) with the optimized

convolutional interleaver(T = 20,M = 1) and lengthL = 1024.

this weight to the free distance value is relatively high, its effect on the code per-

formance is different from the identical weight in the code with the non-optimized

interleaver. The obtained graphs for the optimized interleaver imply that patterns

(00..011100..0)L and(00..0100100...0100100..0)L with lengthL have major contri-

butions to the code performance, which respectively produce the free distance value

10 and the weight 20.

From the obtained results, one can conclude that the optimized interleaver generates

a low free distance value and the effect of other weights on the code performance

is approximately voided, particularly in the medium to high signal to noise ratios.

In addition, apart from the end part of the optimized interleaved data, where the

free distance value is obtained, increasing the interleaver period will increase the

distance between adjacent bits of input bitstream in the interleaved data. This will

create higher weights and reduce multiplicities of other low weights having major

contributions to the code performance. Therefore, with a suitable selection of the

interleaver characteristics, performance of the code can be improved.

Iterative Turbo Decoder Design with Convolutional Interleavers 82

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized interleaver.(m=2,T=14,M=1)
Non−optimized interleaver.(m=2,T=10,M=1)
Optimized interleaver.(m=4,T=14,M=1)
Non−optimized interleaver.(m=4,T=10,M=1)

Figure 3.18Performance of full rate turbo codes with the interleaver lengthL = 512.

3.6.1 Simulation Results

Simulations have been conducted for 4- and 16-state turbo codes(m = 2, 1, 5/7) and

(m = 4, 1, 35/23), wherem represents number of memories for the RSC encoders.

Again, 20,000 and 10,000 and 2500 data blocks were simulated for the interleaver

lengthsL = 512, L = 1024 andL = 4096, respectively. The encoded data have

been decoded using SOVA as selected iterative decoding method in 8 iterations and

in a presence of AWGN.

3.6.1.1 Simulation Results for Interleaver LengthL = 512

Figure 3.18 shows the performance of full rate 4- and 16-state turbo codes with the

interleaver lengthL = 512. It can be observed that the optimized interleaver(T =

14, M = 1) has improved performance by 0.5 dB for both codes. In addition, the

4-state code with the interleaver(T = 14,M = 1) has better performance than the

16- state code with the interleaver(T = 10,M = 1) in low signal to noise ratios

with reduced complexity in the encoder structure and decoding process. Similar

results have been achieved for the half rate turbo codes with similar interleavers and

Iterative Turbo Decoder Design with Convolutional Interleavers 83

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized interleaver.(m=2,T=14,M=1)
Non−optimized interleaver.(m=2,T=10,M=1)
Optimized interleaver.(m=4,T=14,M=1)
Non−optimized interleaver.(m=4,T=10,M=1)

Figure 3.19Performance of half rate turbo codes with the interleaver lengthL = 512.

are presented in Figure 3.19. These results show that the 4-state code with the

optimized interleaver has 0.25 dB better performance than the 16- state code with

the non-optimized interleavers for all signal to noise ratios.

3.6.1.2 Simulation Results for Interleaver LengthL = 1024

Similar turbo codes to the above examples have been examined for a higher inter-

leaver length,L = 1024. For the full rate 4-state turbo codes, as shown in Fig-

ure 3.20, the optimized interleaver(T = 20,M = 1) slightly improves the code per-

formance compared to the non-optimized interleaver(T = 15,M = 1) for Eb

N0
≤ 2

dB, while for Eb

N0
> 2 dB, both interleavers have similar performance. This behavior

can be easily explained by the weight contributions presented in Figures 3.15 and

3.17. In these Figures, the weightw = 20 has the highest contribution to BER. In the

mentioned signal to noise ratio ranges, this weight in the code with the optimized in-

terleaver has the slightly lower contribution than for the code with the non-optimized

interleaver. Hence, the better performance for the code with the optimized inter-

leaver is expected. AfterEb

N0
= 2 dB, the contribution of this weight is replaced by

weight 10 with low multiplicity, which creates a similar performance to the weight

Iterative Turbo Decoder Design with Convolutional Interleavers 84

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized(m=2,T=20,M=1)
Non−optimized(m=2,T=15,M=1)
Optimized(m=4,T=20,M=1)
Non−optimized(m=4,T=15,M=1)

Figure 3.20Performance of full rate turbo codes with the interleaver lengthL = 1024.

20 with high multiplicity. However, for the half rate code, the optimized interleaver

has improved the code performance by 0.25 dB. For the 16-state code, it is simply

confirmed that the non-optimized interleaver(T = 15,M = 1) is unable to break

weight-2 self-terminating patterns. This condition generates a free distance value

with high multiplicity and consequently degrades the code performance. In contrast,

the optimized interleaver(T = 20,M = 1) outperforms this drawback and improves

the full and half rate code performance by 0.5 dB in the waterfall and error floor

regions.

3.6.1.3 Simulation Results for Interleaver LengthL = 4096

More testing was conducted for the longer interleaver length. Figures 3.22 and 3.23

show full and half rate 4- and 16-state turbo code performance with optimized and

non-optimized interleavers of lengthL = 4096. At both rates, optimized and non-

optimized interleavers create a similar performance for the 4-state turbo code. The

weight-2 distribution obtained from self-terminating patterns confirms that both in-

terleavers create a low weights with the high multiplicities. For example, the weights

w = 20 andw = 15 were calculated for the optimized interleaver(T = 35,M = 1)

Iterative Turbo Decoder Design with Convolutional Interleavers 85

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized(m=2,T=20,M=1)
Non−optimized(m=2,T=15,M=1)
Optimized(m=4,T=20,M=1)
Non−optimized(m=4,T=15,M=1)

Figure 3.21Performance of half rate turbo codes with the interleaver lengthL = 1024.

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized(m=2,T=35,M=1)
Non−optimized(m=2,T=25,M=1)
Non−optimized(m=4,T=25,M=1)
Optimized(m=4,T=35,M=1)

Figure 3.22Performance of full rate turbo codes with the interleaver lengthL = 4096.

and the non-optimized interleavers(T = 25,M = 1), respectively. It means that the

applied interleavers are not sufficiently break low weight self-terminating patterns

Iterative Turbo Decoder Design with Convolutional Interleavers 86

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Optimized(m=2,T=35,M=1)
Non−optimized(m=2,T=25,M=1)
Non−optimized(m=4,T=25,M=1)
Optimized(m=4,T=35,M=1)

Figure 3.23Performance of half rate turbo codes with the interleaver lengthL = 4096.

and hence both interleavers provide similar performance for the full and half rate

codes. For the 16-state turbo code(1, 35
23

), the optimized interleaver(T = 35,M =

1) improves the full and half rate code performance by 0.25 and 0.35 dB, respec-

tively. In comparison with non-optimized interleaver(T = 25,M = 1), the opti-

mized interleaver(T = 35,M = 1) creates higher distance between adjacent bits

of input bitstreams in the interleaved data. This provides a higher weight with lower

multiplicities, which can improve the code performance.

The simulations express that, although in the optimized interleavers the distance be-

tween bits in the end part of the interleaved data reduces, but due to applying a

higher period this drawback is compensated. The results conclude that in case of the

similar number of stuff bits, optimized interleavers outperforms the non-optimized

interleavers.

Iterative Turbo Decoder Design with Convolutional Interleavers 87

3.7 Comparison with Block Interleavers

In this section, the performance of the optimized convolutional interleavers are com-

pared with the semi-random and row-column interleavers, which are the conven-

tional block interleavers for short and long data length, respectively [71]. The lengths

L = 169 andL = 1024 are selected for the short and long interleaver lengths. 60,000

data blocks were utilized in simulations of each selectedEb

N0
values of the turbo code

with the interleaver lengthL = 169. S = 8 andS = 22 have been selected as

threshold values of semi-random interleavers with lengthsL = 169 andL = 1024,

respectively. For the row-column interleavers, the numbers of row and columns are

equal. Similarly to conducted simulations in section 3.6.1, SOVA with 8 iterations is

applied in the presence of AWGN.

3.7.1 Simulation Results for Short Interleaver Lengths

Figures 3.24 and 3.25 show the full and half rate 4-state turbo code(1, 5
7
) perfor-

mance. The results show that the convolutional interleavers have better performance

than the row-column and semi-random interleavers in the waterfall region. The im-

provement is achieved when the convolutional interleaver period increases, for ex-

ample the interleaver(T = 13,M = 1) has 0.4 dB better performance than the

interleaver(T = 11,M = 1) at Eb

Nb
= 1.5 dB. Of course, this improvement involves

increasing the number of stuff bits. All convolutional interleavers have insufficient

behavior at the error floor region, which is due to the presence of the small free

distance of the turbo code when these interleavers are applied. The graphs show

that increasing the period slightly improves the code performance in this region.

For the applied half rate code(1, 5
7
), as shown in Figure 3.25, the results demon-

strate that convolutional interleavers have better performance than the row-column

and the semi-random interleavers for all signal to noise ratios. In this figure, the con-

volutional interleaver(T = 11,M = 1) with 55 stuff bits and a lower number of

memories generates similar performance to the row-column interleaver. Better per-

formance can be achieved when an interleaver with a higher period is applied. One

example would be convolutional interleavers with periodsT = 12 andT = 13, where

improve the code performance is improved by 0.25 dB. In both codes, The convolu-

Iterative Turbo Decoder Design with Convolutional Interleavers 88

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=8)
Optimised Conv.(T=11)
Optimized Conv.(T=12)
Optimized Conv.(T=13)
Row−Column(13×13)

Figure 3.24Performance of full rate 4-state turbo code with the interleaver lengthL = 169.

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=8)
Optimized Conv.(T=11)
Optimized Conv.(T=12)
Optimized Conv.(T=13)
Row−Column(13×13)

Figure 3.25Performance of half rate 4-state turbo code with the interleaver lengthL = 169.

tional interleaver(T = 11, M = 1) outperforms the semi-random interleaversS = 8

by 0.5 dB.

Iterative Turbo Decoder Design with Convolutional Interleavers 89

0 0.5 1 1.5 2 2.5 3 3.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=8)
Optimised Conv.(T=11)
Optimised Conv.(T=12)
Optimised Conv.(T=13)
Row−Column(13×13)

Figure 3.26Performance of full rate 16-state turbo code with the interleaver lengthL = 169.

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=8)
Optimised Conv.(T=11)
Optimised Conv.(T=12)
Optimised Conv.(T=13)
Row−Column(13×13)

Figure 3.27Performance of half rate 16-state turbo code with the interleaver lengthL = 169.

Figures 3.26 and 3.27 show the performance of the full and half rate 16-state turbo

codes(1, 35
23

) with the considered interleaver lengthL = 169, respectively. The

Iterative Turbo Decoder Design with Convolutional Interleavers 90

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Row−Column(32×32)
Optimized(T=15,M=1)
Optimized(T=20,M=1)
Optimized(T=25,M=1)

Figure 3.28Performance of full rate 4-state turbo code with the interleaver lengthL = 1024.

convolutional interleavers provide better performance than the row-column and semi-

random interleavers. In the full rate code, increasing the interleaver period from

T = 11 to T = 13, improves the code performance by 0.25 dB. For the half rate

code, The improvement is achieved by 0.7 dB in all signal to noise ratios.

3.7.2 Simulations Results for Long Interleaver Lengths

More verifications have been accomplished for the turbo code with the longer in-

terleaver lengthL = 1024. Figure 3.28 shows the performance of the full rate

4-state(1, 5
7
) code. As discussed in the previous section, increasing the period of

the convolutional interleaver only improves the code performance at the waterfall

region, while due to existence of a small free distance value generated in the end

part of the interleaved data, the code performance at the error floor region with dif-

ferent convolutional interleavers is similar. This is especially evident for the inter-

leavers(T = 20,M = 1) and (T = 25,M = 1). In comparison with the row-

column and semi-random interleavers, application of the convolutional interleaver

(T = 25,M = 1) produces 0.2 dB better and around 0.5 dB worse performance at

Iterative Turbo Decoder Design with Convolutional Interleavers 91

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Row−Column(32×32)
Optimized Conv.(T=15,M=1)
Optimized Conv.(T=20,M=1)

Figure 3.29Performance of half rate 4-state turbo code with the interleaver lengthL = 1024.

the waterfall region, respectively. The half rate code with the convolutional inter-

leaver(T = 20,M = 1) with 190 stuff bits, has 0.2 dB better and 0.25 dB poor per-

formance to the case when the row-column and semi-random interleavers are used,

respectively, as shown in Figure 3.29. The same interleavers have been applied for

the 16-state full rate turbo code(1, 35
23

) and the resulting performance is illustrated in

Figure 3.30. The graphs show that a code with the interleaver(T = 20,M = 1)

has worse performance than with the semi-random and row-column interleavers. In-

creasing the period fromT = 20 to T = 30, which increases the number of stuff bits

by 68%, results in an improved code performance of 0.25 dB over the performance

of code with the semi-random interleaver at the waterfall region. Similar results are

achieved for the half-rate 16-state turbo code. Figure 3.31 shows that increasing the

interleaver period fromT = 20 to T = 30 improves the code performance by 1 dB.

However, in comparison with block interleavers, degradation is again observed at the

error floor region.

Iterative Turbo Decoder Design with Convolutional Interleavers 92

3.8 Chapter Summary and Conclusions

In this chapter, the new structure of the convolutional interleaver operating as a block

interleavers has been presented. Based on the interleaver properties, a simple method

was introduced to calculate weight distribution of the turbo code. Conducted analysis

and simulations confirmed that in case of similar number of stuff bits, the optimized

interleaver outperforms the non-optimized interleaver. In contrast to other block in-

terleavers, optimized interleavers create a free distance with lower multiplicity than

other block interleavers. This means to the optimized interleavers has better perfor-

mance than the row-column and semi-random interleavers, which was evident for

short interleaver lengths. The main problem with the optimized convolutional inter-

leaver is the resulting small free distance value of the code, which degrades the code

performance in the error floor region. In the next chapter, the structure of the opti-

mized convolutional interleaver is modified in such a way that a higher free distance

value of the code is obtained with a lower number of stuff bits, while a low multi-

plicity is maintained to sufficiently improve the code performance in the error floor

region.

Iterative Turbo Decoder Design with Convolutional Interleavers 93

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Row−Column(32×32)
Optimized(T=20,M=1)
Optimized(T=30,M=1)

Figure 3.30 Performance of full rate 16-state turbo code with the interleaver lengthL =
1024.

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Row−Column(32×32)
Optimized Conv.(T=20,M=1)
Optimized Conv.(T=30,M=1)

Figure 3.31 Performance of half rate 16-state turbo code with the interleaver lengthL =
1024.

Chapter 4

Modified Convolutional Interleavers

4.1 Introduction

Due to removing the stuff bits from the end part of the interleaved data of a convo-

lutional interleaver, the free distance of the turbo code becomes low, which degrades

the code performance in the error floor region. A remedy for it can be increasing of

the interleaver period as suggested in Chapter 3, which, on the other hand increases

the percentage of stuff bits. In this chapter, a modification to the optimized inter-

leaver improving turbo codes performance without increasing the interleaver period

is introduced. The improvement is achieved by increasing the distance of adjacent

bits that are positioned in the original input bitstream during the interleaving pro-

cedure. The modified interleavers operation in different turbo code structures have

been studied and results have been compared with those for the previously suggested

interleavers. This is accomplished by an analysis of the code with different weight

input bitstream, and its results are confirmed by the conducted simulations.

4.2 Modification Algorithm for Convolutional Inter-
leavers

The analysis of turbo codes based on weight-2 distribution confirms that because

an interleaver can increase the distance between two adjacent bits of the original

bitstream, the codeword obtained from the second RSC encoder can have a higher

94

Modified Convolutional Interleavers 95

Figure 4.1 Interleaved data obtained from the interleaver(T = 8,M = 1, L = 64). a)
Without modification, b) just even column shifting and c) even and odd column shifting with
zero bit deletion.

weight, which consequently improves the code performance [11].

As verified in Chapter 3, for the optimized convolutional interleaver, increasing the

interleaver period generally improves the code performance at the waterfall region,

while due to the deletion of stuff bits from the end part of the interleaved data, it is

not an efficient solution to increase the distance between adjacent bits that have been

located at the end part of the interleaved data. In order to improve code performance

in both regions without increasing the interleaver period, replacing some bits located

in the end part of the interleaved data with other bits positioned in higher interleaver

parts are proposed. The new bits located in the end part of the interleaved data will

be at a sufficient distance from the bits adjacent to them before interleaving. Also,

this process should prohibit the generation of low weight self-terminating patterns

having major effects on the second RSC code performance [18].

A modification is applied to the non-optimized convolutional interleaver, where by

Modified Convolutional Interleavers 96

input bitstreams are distributed regularly in the interleaver lines. In this case, the

relevant interleaved data of each line can be represented in one column. A suitable

shift of bits located in an interleaver column can increase the distance between ad-

jacent bits, which are located in different columns. Of course, if a similar shift was

performed for all of the columns, the distance would not be changed. Thus, different

shift patterns should be used for different columns. For greater simplicity, distinct

shifts only for odd and even columns are considered. Finally, zero stuff bits located

at the end part of the interleaved data are deleted to optimize the conducted modifi-

cation of the interleaver.

As mentioned in Chapter 3, the minimum distance generated between adjacent bits

of the input bitstreams from an interleaver(T, M) is equal to the product ofT and

M . Therefore, in the modification some bits are shifted by a value greater than this

value. For even columns, each bit is cyclically shifted by(2M + 1) ∗ T units. For

each column, the number of shifted bits is assumed to be even. If the overall number

is odd, the first stuff bit data before the first data in each column is also shifted to

maintain the even bit number. The even number is selected in order to achieve an

acceptable distance between adjacent bits [18].

However, due to even columns bits shifts, it is possible that the new interleaved data

block is characterized by lower weights than that from the former interleaver and can

generate more low weight patterns that return the second RSC encoder to the zero

state. In the example shown in Figure 4.1(b), if bit 1 and bit 4 in the fifth row of

the interleaver have value of 1, the second RSC encoder of turbo code(1, 5
7
) will

be returned to the zero state with weight 4. In addition to the other bits of column

2, similar conditions can be observed between bits of other even columns and the

corresponding odd column bits. Hence, it is necessary to shift these odd column

bits in a way compatible with the applied RSC structure to eliminate low weight

patterns from the interleaver and increase weight of turbo codes. It was found that

reverse sorting of odd column bits, except in column 1 and 3, can provide a sufficient

distance for RSC encoders with different states. Similarly as with even columns,

the number of shifted bits is considered to be even [18]. Figure 4.1(c) shows the

interleaved data block in the presented example after the modification and deletion

Modified Convolutional Interleavers 97

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Weight

M
u

lt
ip

lic
it

y

Non−mod.int.(T=10)
Mod.int.(T=10)

10 15 20 25 30 35 40 45 50
0

10

20

30

40

Weight
M

u
lt

ip
lic

it
y

Non−mod.int.(T=8)
Mod.int.(T=8) (a)

(b)

Figure 4.2 Weight-2 distribution of the turbo codes with the non-modified and modified
interleavers with lengthL = 169. a) 16-state code(1, 35

23) and b) 4-state code(1, 5
7).

of zero stuff bits. In this example, if the location of bits 62 and 63 in Figures 4.1(a)

and 4.1(c) is considered, the algorithm has increased their distance from 1 to 12.

As shown in Figure 4.1(c), in one row of the interleaver, the distance between bits

in column 1 and 6 before and after interleaving has not changed. This is due to the

low input data length,L = 64, compared with the interleaver period,T = 8, in this

example.

In practical designs, the interleaver period should be properly selected relative to the

interleaver length in order to generate an acceptable number of stuff bits. In the case

of higher interleaver lengths, when applying the presented modification, the distance

between bits in column 1 and 6 before and after interleaving will differ because

column 1 bits would remain constant while column 6 bits resorted from 5th or 6th

row of the interleaver, depending on the number of bits in the column 6, such that the

new column 6 bits positions have reasonable distance from the positioning of bits in

column 1 in corresponding rows.

Figure 4.2 shows weight-2 distribution of the 4- and 16- state turbo codes with

Modified Convolutional Interleavers 98

lengthL = 169. For both codes, the graphs represent that the modified interleaver

has improved the effective free distance value of the code with low multiplicity, while

the effect of other low weights with high multiplicities has been also reduced.

4.3 Analysis of Turbo Codes Using the Modified In-
terleaver

Due to the variable distances between adjacent bits of the input data block in modified

interleavers with different lengths, similarRem(L, T) and period values, the weight

distribution algorithm proposed in Chapter 3 is not applicable to compute the weight

distribution of the code with the medium to high interleaver lengths. However, it is

possible to calculate the weight distribution of the code from some self-terminating

patterns that have a major influence on the code performance.

4.3.1 Analysis of Weight-1 Input Bitstreams

The optimized interleaver permutes the tail bits generated from trellis termination of

the first RSC encoder to the end part of the interleaved data. When weight of an input

bitstream is located in the mentioned part, low weight value for the code is expected.

Since the proposed modification shifts the bits from the end part to the other parts of

the interleaved data, a higher minimum weight for the code is expected. For example,

applying modification on the optimized interleaver(T = 20,M = 1) improves

the minimum weight of the 4-state code(1, 5
7
) from 24 to 46 with multiplicity 1.

Similar results is achieved from the 16 state turbo code(1, 35
23

). The modification on

the interleaver has increased the minimum weight of the code from 27 to 70 with

multiplicity 1.

4.3.2 Analysis of Weight-3 Input Bitstreams

Due to applying different shifting methods for bits distributed in the adjacent inter-

leaver lines, it is expected that the utilized modification be able to break low weight-3

self-terminating patterns. In this analysis, input bitstreams(000...11100...00)L and

Modified Convolutional Interleavers 99

10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Weight

M
u

lt
ip

lic
it

y

Non−modified interleaver
Modified interleaver

Figure 4.3Weight-3 distribution of the 4-state turbo code with the non-modified and modi-
fied interleaver(T = 20,M = 1) for self-terminating patterns(00...011100..0)L=1024.

(000...1001100...00)L acting as the effective weight-3 self-terminating patterns for

the 4- and 16- state turbo codes performance are considered, respectively. Figures

4.3 and 4.4 show weight-3 distributions of these codes. It is observed that applying

the modification has sufficiently improved the minimum weight of the code. For the

4-state code, modified interleaver increases the low weight 10 (ten) and the multi-

plicity 3 to the weight 38 with multiplicity 1.

4.3.3 Analysis of Higher Weight Input Bitstreams

The analysis verifies the effect of input bitstreams(00...0100100...010010..0)L and

(00...011100...01110..0)L with weight-2m (m = 2, 3) for the 4-state turbo codes

with the interleaver(T = 20,M = 1, L = 1024). In both patterns the distance

between basic self-terminating patterns, i.e. (1001) and (111) is not exceeded than

value 145. For weight-4 self-terminating patterns, the minimum weight has been im-

proved from 20 with 845 multiplicity to weight 49 with 1 multiplicity. Similarly, for

the weight-6 input bitstreams, the modification has improved the minimum weight

of the code from 16 with 3 multiplicities to 32 with multiplicity 1. For weight-6

Modified Convolutional Interleavers 100

15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

Weight

M
u

lt
ip

lic
it

y

Non−mod.int.(T=20,M=1)
Mod.int.(T=20,M=1)

Figure 4.4Weight-3 distribution of the 16-state turbo code from(00...01001100...0)L=1024

with non-modified and modified interleavers(T = 20,M = 1).

patterns, the results also confirm that the modified interleaver remove other weights

with high multiplicities (such as weight 20 with 882), which can be effective to the

code performance.

4.4 Simulation Results

In simulations, SOVA with 8 iterations is utilized as iterative decoding method for

4- and 16- states turbo codes(1, 5
7
) and(1, 35

23
). 0.5 and 0.1 are set for constant and

threshold values of SOVA scaling, respectively. Simulations are conducted for short

and long interleaver lengths. In each case, performance of the modified interleaver is

compared with the results obtained for the optimized interleavers from Chapter 3.

4.4.1 Simulation Results for Interleaver LengthL = 169

Figures 4.5 and 4.6 show results obtained from the full and half rate turbo codes

with an input data length ofL = 169 and different interleaver periods, respectively.

Simulations have been conducted based on 60,000 data blocks for eachEb

N0
value. In

Modified Convolutional Interleavers 101

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=8,M=1)
Modified Conv.(T=8,M=1)
Conv.(T=10,M=1)
Modified Conv.(T=10)
Conv.(T=13,M=1)

Figure 4.5Performance of the 4- state full rate turbo code with different interleaver periods
and lengthL = 169.

both interleavers the performance of the interleaver has improved with an increase

of the period. The application of a new convolutional interleaver with periodT = 8

results in a code with better performance than when a convolutional interleaver with

periodT = 10 is used. This means that the new interleaver has a reduced number

of stuff bits, namely from 45 to 28, which is equal to 37 percent. The simulation

results presented in Figures 4.7 and 4.8 for the 16-state turbo codes with length

L = 169 confirm the above findings. Again, the new interleaver with a lower period,

i.e. T = 8, has similar performance to the previous convolutional interleaver with

a higher period(T = 10). In addition, except for the half rate 16-state turbo code,

the modified interleaver(T = 10,M = 1) produces a similar performance to the

convolutional interleaver(T = 13,M = 1), while requiring the number of stuff bits

to be reduced by 42 percent.

Considering two interleavers with similar period, a new interleaver withT = 10

improves turbo code (1,5
7
) performance in the error floor region by 0.25 dB for full

and half rates. For both half and full rate turbo codes(1, 35
23

), the improvement at the

error floor region is equal to 0.2 dB.

Modified Convolutional Interleavers 102

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=8,M=1)
Mod.Conv.(T=8,M=1)
Conv.(T=10,M=1)
Mod.Conv.(T=10,M=1)
Conv.(T=13,M=1)

Figure 4.6Performance of the 4- state half rate turbo code with different interleaver periods
and lengthL = 169.

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=8,M=1)
Modified Conv.(T=8,M=1)
Conv.(T=10,M=1)
Modified Conv.(T=10,M=1)
Conv.(T=13,M=1)

Figure 4.7Performance of the 16- state full rate turbo code with different interleaver periods
and lengthL = 169.

Modified Convolutional Interleavers 103

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=8,M=1)
Modified Conv.(T=8,M=1)
Conv.(T=10,M=1)
Modified Conv.(T=10,M=1)
Conv.(T=13,M=1)

Figure 4.8Performance of the 16- state half rate turbo code with different interleaver periods
and lengthL = 169.

4.4.2 Simulation Results for Interleaver LengthL = 1024

Figures 4.9 and 4.10 show simulation results for 4-state full and half rate turbo

codes(1, 5
7
) with convolutional interleavers(T = 15,M = 1, L = 1024) and(T =

20, M = 1, L = 1024), respectively. Again, 10,000 data blocks were considered

for different Eb

N0
values in simulations. Applying a modification to the interleaver

(T = 20,M = 1) has improved the code performance by 0.25 dB. In addition, at the

expense of a higher number of stuff bits, the modified interleaver(T = 20,M = 1)

has better performance than the modified interleaver(T = 15,M = 1), this removes

the drawback of the interleaver(T = 20,M = 1) performance, when compared to

the interleaver(T = 15, M = 1) at the error floor region. For both half-rate

codes, the modified interleaver(T = 15,M = 1) has similar performance to an

interleaver(T = 20,M = 1) with a lower number of stuff bits. In the case of similar

periods, modification of the interleavers(T = 15,M = 1) and(T = 20,M = 1) has

improved the code performance by 0.2 dB and over 0.3 dB, respectively. Results for

the full and half rate 16-state turbo codes(1, 35
23

) are shown in Figures 4.11 and 4.12.

Modified Convolutional Interleavers 104

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=15,M=1)
Modified Conv.(T=15,M=1)
Conv.(T=20,M=1)
Modified Conv.(T=20,M=1)

Figure 4.9Performance of the 4- state full rate turbo code with different interleaver periods
and lengthL=1024.

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=15,M=1)
Modified Conv.(T=15,M=1)
Conv.(T=20,M=1)
Modified Conv.(T=20,M=1)

Figure 4.10Performance of the 4- state half rate turbo code with different interleaver periods
and lengthL=1024.

Modified Convolutional Interleavers 105

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=15,M=1)
Modified Conv.(T=15,M=1)
Conv.(T=20,M=1)
Modified Conv.(T=20,M=1)

Figure 4.11Performance of the 16- state full rate turbo code with different interleaver periods
and lengthL = 1024.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=15,M=1)
Modified Conv.(T=15,M=1)
Conv.(T=20,M=1)
Modified Conv.(T=20,M=1)

Figure 4.12Performance of the 16- state half rate turbo code with different interleaver peri-
ods and lengthL = 1024.

Modified Convolutional Interleavers 106

In both cases the modified interleaver(T = 15,M = 1) shows a similar performance

to the interleaver(T = 20,M = 1), while reducing the number of stuff bits by 45

percent. Applying the modified interleaver(T = 20,M = 1) has improved the full

and half rate turbo codes by 0.25 dB.

4.4.3 Simulation Results for Interleaver LengthL = 4096

The performance of 4- and 16-state turbo codes with the interleaver(T = 35,M = 1)

have been shown in Figures 4.13 and 4.14. The results have been achieved based

on 2500 simulated data blocks for eachEb

N0
value. For the full rate 4-state turbo

codes, the threshold value of the normalized SOVA is set by the value 0.15. At the

error floor region, the modified interleaver has improved the full and half rate 4-state

code performance by 0.5 dB and 0.4 dB, respectively. Similarly, this interleaver has

improved the performance of 16-state code in the waterfall and the error floor region.

For Eb

N0
=1.25 dB, the interleaver gives the BER of the full rate code less than10−6.

4.5 Chapter Summary and Conclusions

In this chapter, an efficient and simple modification to the optimized convolutional

interleavers was presented. This can be accomplished by cyclical shifts of bits dis-

tributed in different interleaver lines. This increases the distance between adjacent

bits of the input bitstream in the interleaved data without increasing the interleaver

period. Performance of the suggested modification was examined through an anal-

ysis and simulations of different codes. In some cases, simulations confirmed that

the modified interleaver outperforms the optimized interleaver, while the number of

the stuff bits was reduced by 40 %. Instead of the period, increasing of the distance

between adjacent bits in the interleaved data can be achieved by increasing the space

value of the interleaver, i.e.M . In the next chapter, the performance of interleavers

constructed with a space value greater than 1 will be verified and the relevant modi-

fications for the applied interleavers suggested.

Modified Convolutional Interleavers 107

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv(m=2,T=35,M=1)
Modified Conv.(m=2,T=35,M=1)
Conv.(m=4,T=35,M=1)
Modified Conv.(m=4,T=35,M=1)

Figure 4.13Performance of the 4- and 16- state full rate turbo codes with the interleaver(T =
35,M = 1) and lengthL = 4096.

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(m=2,T=35,M=1)
Modified Conv.(m=2,T=35,M=1)
Conv.(m=4,T=35,M=1)
Modified Conv.(m=4,T=35,M=1)

Figure 4.14Performance of the 4- and 16- state half rate turbo codes with the interleaver
(T = 35,M = 1) and lengthL = 4096.

Chapter 5

Convolutional Interleavers with
Different Value of the Space
Parameter

5.1 Introduction

This chapter considers the influence of the space parameter of the convolutional in-

terleaver on the turbo code performance. Considering interleaved data with similar

number of stuff bits, the interleavers with a high space value can create a longer

distance value between adjacent bits of input bitstreams in the interleaved data com-

pared to interleavers with space value 1. Therefore, a higher free distance value and

better performance for the code is expected.

In this Chapter, a structure of turbo code with interleavers having high space space

value is explained. The codes constructed with new interleavers will be analyzed

and compared with the results obtained from interleavers with the space value 1.

This is accomplished based on the calculation of low weight distribution of the code.

The analysis will be performed for the short and long interleaver lengths. For each

proposed interleaver, suitable modifications compatible with the structure of the code

will be suggested to improve the code performance with lower number of stuff bits.

Finally, the conducted analysis will be confirmed by simulation results to determine

the performance of the interleavers designed for different input bitstream lengths.

108

Convolutional Interleavers with Different Value of the Space Parameter 109

Figure 5.1Structure of convolutional interleavers with periodT and space valueM .

5.2 Analysis of Turbo Codes using Interleavers with
High Space Value

Period and space are known as two major convolutional interleaver parameters [106].

The input bitstreams are distributed into T parallel lines of the inteleavers. Depending

on the space value M, each interleaver line has M more delay elements than the pre-

vious line. Hence, the interleaved data appear in different time slots at the interleaver

output. Figure 5.1 shows the general form of the convolutional interleaver with pe-

riod T and space M. Analysis on different turbo codes with optimized convolutional

interleavers suggests that the resulting codes have relatively low free distance value

with low multiplicities [18]. When an interleaver with a higher period is applied,

the distance between the two adjacent bits of the original bitstream increases and,

consequently, a higher free distance value for the code is expected.

As mentioned chapter 3, without considering the effect of zero bit deletion in the end

part of the interleaver, this minimum distance between the two adjacent bits is gener-

ally governed by the product ofT andM . Therefore, increasing the interleaver space

value instead of its period can be considered as another way to provide a sufficient

minimum distance between the adjacent bits. In order to evaluate the performance of

such interleavers, they are constructed in a way resulting similar numbers of stuff bits

as interleavers with the space value 1. Based on this assumption, the effect of space

parameter to the turbo code performance for the short and long interleaver lengths is

analyzed.

Convolutional Interleavers with Different Value of the Space Parameter 110

Table 5.1
Generated Minimum distance values between adjacent bits of input bitstream from different
interleavers.

Space Period Minimum distance No. of stuff bits
(M) (T) value T (T − 1)M/2

2 6 12 30
3 5 15 30
1 8 8 28
1 19 19 171
1 20 20 190
2 14 28 182
3 11 33 165
4 10 40 180
5 9 45 180
6 8 48 168
7 7 49 147

5.2.1 Analysis of Turbo Codes Using Short Interleaver Lengths

In turbo code applications, an interleaver parameters, i.e. period and space, are de-

signed in such a way that produce reasonable number of stuff bits relative to the

interleaver length. Therefore, the period value of an interleaver should be reduced,

when it utilizes higher space in its structure. Table 5.1 shows the minimum distance

for different interleavers with similar numbers of stuff bits. The table indicates that

interleavers with higher space exhibit greater minimum distance values than inter-

leavers with a space value 1.

Although the distance between two adjacent bits increases, due to the shorter periods,

the distance between distributed bits in each interleaver line decreases. This distance

can be specified by the value ofT − 1. When both bit 1 positions in the interleaved

data with weight-2 are located in one line of the interleaver, and the generated inter-

leaved data returns the second RSC encoder to the zero state, a low codeword weight

for this encoder is achieved. Simultaneously, a similar condition occurs for the first

RSC encoder because the distance of distributed bits in one of the interleaver lines

is identical to the original distance in the input bitstream. Because of this and the

low value of the interleaver period, the number of resulting low weight encoded data

Convolutional Interleavers with Different Value of the Space Parameter 111

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

Weight
M

u
lt

ip
lic

it
y

(T=6,M=2)
(T=5,M=3)
(T=8,M=1)

5 10 15 20 25 30 35 40 45 50
0

50

100

150

Weight

M
u

lt
ip

lic
it

y

(T=6,M=2)
(T=5,M=3)
(T=8,M=1)

(a)

(b)

Figure 5.2 Weight-2 distribution of turbo code(1, 5
7) with different interleavers. a) 4-state

code(1, 5
7) and b) 16-state code(1, 35

23).

increases, leading to higher multiplicities of patterns with weight close to the free

distance value. As a result, the performance of such codes dramatically degrades.

For example, in the interleaver(M = 2, T = 6), the distance between distributed

bits in each interleaved data line is equal to 5. When this interleaver is used for turbo

codes(1, 5
7
), the existence of pattern (00...001 00...0100...00)L with lengthL includ-

ing n = 3k + 2 zeros(k = 0, 1, ..., bL−4
3
c) between two bit 1s will return both RSC

encoders to the zero state and generate low weight codewords. Figure 5.2(a) shows

weight-2 distribution of the 4-state turbo code(1, 5
7
) with different interleavers. For

the interleaver(T = 6,M = 2), some weights with high multiplicities, i.e. 22, 38

and 54 are obtained due to self-terminating patterns applied for the second RSC en-

coder. It is easily concluded that increasing the interleaver length contributes more

self-terminating patterns to the code performance and consequently multiplicity of

the mentioned weights will be increased.

Both interleavers with high space values have been generated an effective free dis-

tance value 9 with multiplicity 1, which is lower than the value 12 with multiplicity 1

calculated for the interleaver(T = 8,M = 1). For the interleaver(T = 8,M = 1),

Convolutional Interleavers with Different Value of the Space Parameter 112

the free distance of the code is calculated by weight-3 self-terminating patterns,

which is value 10 and 2 multiplicities. This weight has major contribution in the

code performance, especially in the error floor region [17]. The analysis of weight-

3 distribution for considered interleavers with high space values gives minimum

weights greater than their effective free distance values. The minimum weights 13

with 2 multiplicity and 10 with 1 multiplicity, were calculated for the interleavers

(T = 6,M = 2) and(T = 5,M = 3), respectively. The above analysis express

close performance between these interleavers and the interleaver(T = 8,M = 1). It

is expected that the interleavers with high space values can slightly improve the code

performance for input bitstreams with higher weights compared to the interleaver

(T = 8,M = 1).

For the same interleavers utilized for the above example, the analysis of the 16 state

turbo code(1, 35
23

) has been accomplished by calculation of the relevant weight-2

distributions. Since in the interleaver(T = 5,M = 3), the distance between bits

distributed in one column of the interleaved data is 14, an existence of patterns

(00...0100...01000)L with lengthL includingn = 15k + 14 (k = 0, 1, ..., bL−16
14
c)

zeros between two 1s, simultaneously return both RSC encoders to the zero state

and some weights with the high multiplicity is expected. Figure 5.2(b) shows the

weight-2 distribution of the code for the considered interleavers. The effect of self-

terminating patterns to the code performance is obviously observed for the interleaver

(T = 5,M = 3), which has produced a high multiplicity for the weight 22. These

interleavers have been generated effective free distance values close to each other

for the code. Analysis of the code with the weight-1 and weight-3 gives the similar

results obtained from the weight-2 distribution. Hence, it is expected that again these

interleavers create similar performance for the code.

5.2.1.1 Modifications on Interleavers with the High Space Value

Conducted analysis in the last section represents that a suitable modification is vi-

tal for an interleaver with the short period and high space value. The modification

is accomplished to increase the distance between two adjacent bits that have been

located in one line of the interleaver. The modification proposed for the interleaver

Convolutional Interleavers with Different Value of the Space Parameter 113

Figure 5.3 Conducted modification on the interleaver(T = 6,M = 2). a) Original bit-
stream, b) increasing column bits distance procedure and c) even column bits shifts equal to
5T and zero bit deletion from the end part of the interleaver.

(T = 6,M = 2) utilized for the turbo code(1, 5
7
) is as follows [19]:

Three consecutive bits in one column are considered as one group. The first and third

bit of each group are replaced with the adjacent bits of the next group to increase

minimum distance of the interleaved bits in one column to be twice of the original

distance. Then, even column bits shifting similar to the method presented in [18] is

performed to provide a sufficient distance between adjacent bits that have been lo-

cated in different columns. Finally, optimization is conducted by deleting stuff bits

located at the end part of the interleaved data. Figures 5.3(b) and 5.3(c) show mod-

ification procedures for the proposed interleaver. Similarly, a special replacement of

Convolutional Interleavers with Different Value of the Space Parameter 114

Figure 5.4 Conducted modification on the interleaver(T = 5,M = 3). a) Original bit-
stream, b) increasing column bits distance procedure and c) even column bits shifts equal to
6 ∗ T and zero bit deletion from the end part of the interleaver.

bits located in one column of the interleaved data prior to the even column bit shifting

is required for the interleaver(T = 5,M = 3) utilized for the 16- state turbo code

(1, 35
23

). In this modification, each three consecutively located bits in one column

are considered as one group. Then, each bit is cyclically replaced with its adjacent

bit. Finally, even column bits shifting is applied, in order to complete the modifi-

cation procedure [19]. Figure 5.4 illustrates the modification process for the length

Convolutional Interleavers with Different Value of the Space Parameter 115

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

Weight
M

u
lt

ip
lic

it
y

Non−mod.int.
Mod.int.

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Weight

M
u

lt
ip

lic
it

y

Non−mod.int
Mod.int.

(a)

(b)

Figure 5.5 Weight-2 distribution of the 4-state turbo code with convolutional interleavers
lengthL=169. a) Interleaver(T = 6,M = 2) and b) interleaver(T = 5,M = 3).

L = 64. For the 4-state turbo code with the interleaver(T = 5,M = 3), weights

with high multiplicities are generated from 1s distributed in different columns of the

interleaved data. Therefore, cyclically shift of bits positioned in some columns will

be enough to break relevant self-terminating patterns to those weights. Similar con-

clusion is obtained from the 16- state code with the interleaver(T = 6,M = 2).

Figures 5.5 and 5.6 show weight-2 distribution of the 4- and 16- state turbo code

with the modified interleavers, respectively. In modifications, even columns of inter-

leavers(T = 5,M = 3) and(T = 6, M = 2) are shifted by15 ∗ T and12 ∗ T units

providing the the new interleaved data for the 4- and 16-state turbo code, respectively.

The graphs express that the modified interleavers efficiently reduce the effect of low

weights with high multiplicities, while they generate higher effective free distance

values with the minimum multiplicity for the codes.

5.2.1.2 Simulation Results

In this chapter, simulations are performed based on SOVA with 8 iterations, which

is scaled by constant and threshold values of 0.5 and 0.1, respectively. Number

Convolutional Interleavers with Different Value of the Space Parameter 116

5 10 15 20 25 30 35 40 45 50
0

50

100

150

Weight
M

u
lt

ip
lic

it
y

Non−mod.int.
Mod.int.

5 10 15 20 25 30 35 40 45 50 55
0

50

100

150

Weight

M
u

lt
ip

lic
it

y

Non−mod.int
Mod.int.

(a)

(b)

Figure 5.6 Weight-2 distribution of the 16-state turbo code with convolutional interleavers
lengthL=169. a) Interleaver(T = 6,M = 2) and b) interleaver(T = 5,M = 3).

of simulated data blocks for differentEb

N0
values in codes with different interleaver

lengths are the same as the numbers applied in Chapters 3 and 4. Figures 5.7 and

5.8 show simulated results for the 4- state turbo code(1, 5
7
) with an interleaver length

L = 169. The new designed interleavers have similar performance to the interleaver

(T = 8,M == 1), which confirm the results obtained from the analysis. The

interleavers(T = 6,M = 2) and(T = 5,M = 3) create similar and 0.2 dB better

performance than(T = 8,M = 1) for the full and half rate codes, respectively. The

effect of applied modification to the code performance is observed in both figures.

The modified interleavers(T = 6,M = 2) has been outperformed the convolutional

interleaver(T = 10,M = 1) by 0.25 dB, while number of stuff bits is reduced by

33 %. For these codes, the modified interleaver(T = 5,M = 3) has also created

a similar performance with the interleaver(T = 10,M = 1). Similar results are

achieved for the 16-state turbo code(1, 35
23

). Again, interleaver designed with higher

space values have similar operation with the interleaver(T = 8,M = 1) for the full

and half rate codes. In both figures, modified interleavers have been outperformed the

interleaver(T = 10,M = 1) with lower number of stuff bits, which is specifically

evident in the error floor regions.

Convolutional Interleavers with Different Value of the Space Parameter 117

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=10,M=1)
Conv.(T=8,M=1)
Conv.(T=6,M=2)
Mod.Conv.(T=6,M=2)
Conv.(T=5,M=3)
Mod.Conv.(T=5,M=3)

Figure 5.7 Simulation results for 4 state full rate turbo codes with interleavers lengthL =
169.

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=10,M=1)
Conv.(T=8,M=1)
Conv.(T=6,M=2)
Mod.Conv.(T=6,M=2)
Conv.(T=5,M=3)
Mod.Conv.(T=5,M=3)

Figure 5.8 Simulation results for 4 state half rate turbo codes with interleavers lengthL =
169.

Convolutional Interleavers with Different Value of the Space Parameter 118

0 0.5 1 1.5 2 2.5 3 3.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=10,M=1)
Conv.(T=8,M=1)
Conv.(T=6,M=2)
Mod.Conv.(T=6,M=2)
Conv.(T=5,M=3)
Mod.Conv.(T=5,M=3)

Figure 5.9Simulation results for 16- state full rate turbo codes with interleavers lengthL =
169.

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=10,M=1)
Conv.(T=8,M=1)
Conv.(T=6,M=2)
Mod.Conv.(T=6,M=2)
Conv.(T=5,M=3)
Mod.Conv.(T=5,M=3)

Figure 5.10 Simulation results for 16- state half rate turbo codes with interleavers length
L = 169.

Convolutional Interleavers with Different Value of the Space Parameter 119

10 15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Weight

M
u

lt
ip

lic
it

y

T=14,M=2
T=11,M=3
T=20,M=1

Figure 5.11 Estimated distance spectrum of the 4-state turbo code for interleavers(T =
14,M = 2),(T = 11, M = 3) and(T = 20, M = 1) with lengthL = 1024.

5.2.2 Analysis of Turbo Codes Using Long Interleaver Lengths

The analysis is performed for the 4- and 16-state turbo codes with interleaver lengths

L = 1024 andL = 4096. The codes have been analyzed based on determination of

their estimated distance spectrum, which has been illustrated in Figure 5.11. Based

on the algorithm presented in [17], the distance spectrum has been achieved by cal-

culating the weight distribution of the code from self-terminating input bitstreams

with weight no greater than 4 on the code performance. The obtained graphs in-

dicate that the interleaver(T = 11,M = 3) has a weaker performance than the

interleaver(T = 14,M = 2) breaking self-terminating patterns. In comparison with

the interleaver(T = 20,M = 1) both interleavers with high space values have been

generated higher minimum weights with low multiplicities. Hence, it is expected that

they provide better performance than the interleaver(T = 20,M = 1) for the code.

Analysis of the 16-state tubo code with interleaver(T = 35,M = 1) gives a free

distance value 16 with multiplicity 1, when effect of tail bits is considered for the

weight-1 input bitstream. For the interleaver(T = 20,M = 3), the minimum weight

Convolutional Interleavers with Different Value of the Space Parameter 120

Table 5.2Shifting unit values for modified turbo codes with different interleavers.

State Interleaver Interleaver Shift Unit
Code specifications length value

4 T=6,M=2 167 13*T
4 T=5,M=3 167 12*T
16 T=6,M=2 167 13*T
16 T=5,M=3 167 10*T
4 T=14,M=2 1024 15*T
4 T=11,M=3 1024 7*T
16 T=14,M=2 1024 10*T
16 T=11,M=3 1024 16*T
4 T=20,M=3 4096 21*T
16 T=20,M=3 4096 9*T

30 with 1 multiplicity from weight-3 self-terminating patterns has been calculated.

This is an estimated free distance value from some of low weight-3 self-terminating

patterns. In the analysis, effect of weight-1 and weight-2 self-terminating patterns

have been also considered, which produce weights greater than 30 for the code. It is

expected that the interleaver(T = 20,M = 3) due to its higher free distance value

can improve the code performance compared to the interleaver(T = 35,M = 1).

For these interleavers, modifications are accomplished by cyclically shift of even

column bits. Finding an optimum shift value to improve the code performance with

the long interleaver lengths is achieved through several code analysis with different

shift values. In each analysis, the code performance is verified how the modified

interleaver can break self-terminating patterns and provide a higher minimum weight

with low multiplicity compared to other shift values. For each interleaver, the value

providing the best performance for the code is selected. Table 5.2 gives even column

bit shift values for each utilized interleaver.

5.2.2.1 Simulation Results

Figures 5.12 and 5.13 show simulation results for the full and half rate 4 state turbo

codes with the interleaver lengthL = 1024. In this code, reducing the number of

stuff bits by 4%, the modified interleaver(T = 14,M = 2) creates 0.5 and 0.25 dB

better performance than the interleaver(T = 20,M = 1), respectively. Again, the

Convolutional Interleavers with Different Value of the Space Parameter 121

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=14,M=2)
Mod.Conv.(T=14,M=2)
Conv.(T=11,M=3)
Mod.Conv.(T=11,M=3)

Figure 5.12Simulation results for 4- state full rate turbo codes with interleavers lengthL =
1024.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=14,M=2)
Mod.Conv.(T=14,M=2)
Conv.(T=11,M=3)
Mod.Conv.(T=11,M=3)

Figure 5.13 Simulation results for 4- state half rate turbo codes with interleavers length
L = 1024.

Convolutional Interleavers with Different Value of the Space Parameter 122

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=14,M=2)
Modified Conv.(T=14,M=2)
Conv.(T=11,M=3)
Modified Conv.(T=11,M=3)

Figure 5.14 Simulation results for 16- state full rate turbo codes with interleavers length
L = 1024.

results obtained from two interleavers with high space values confirm the obtained

results from the analysis. The poor behavior of the interleaver(T = 11,M = 3) is

clearly observed in the error floor region of the code.

Simulation of the full and half rate 16- state turbo code is illustrated in Figures 5.14

and 5.15. Similarly to results obtained for the 4-state code, the interleaver(T =

14, M = 2) has best performance for the full rate code. In comparison with the

interleaver(T = 20, M = 1), the modified interleavers(T = 14,M = 2) and

(T = 11,M = 3) with a lower number of stuff bits improve the half rate code

performance by 0.25 dB in the error floor region.

Figures 5.16 and 5.17 illustrate the 4- and 16- state code performance for the inter-

leaver(T = 20,M = 3) and(T = 35,M = 1) with lengthL = 4096. In each figure,

the interleavers(T = 20,M = 3) provide similar or even better performance than

interleavers(T = 35,M = 1) with lower number of stuff bits. This is especially

evident for the full rate 16-state turbo code, where the interleaver(T = 20,M = 3)

outperforms the interleaver(T = 35,M = 1) by 0.25 dB.

Convolutional Interleavers with Different Value of the Space Parameter 123

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=14,M=2)
Mod.Conv.(T=14,M=2)
Conv.(T=11,M=3)
Mod.Conv.(T=11,M=3)

Figure 5.15 Simulation results for 16- state half rate turbo codes with interleavers length
L = 1024.

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv(m=2,T=35,M=1)
Conv.(m=2,T=20,M=3)
Mod.Conv(m=2,T=20,M=3)
Conv.(m=4,T=35,M=1)
Conv.(m=4,T=20,M=3)
Mod.Conv.(m=4,T=20,M=3)

Figure 5.16 Simulation results for 4- and 16- state full rate turbo codes with interleavers
lengthL = 4096.

Convolutional Interleavers with Different Value of the Space Parameter 124

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv(m=2,T=35,M=1)
Conv.(m=2,T=20,M=3)
Mod.Conv(m=4,T=35,M=1)
Conv.(m=4,T=20,M=3)
Mod.Conv.(m=4,T=20,M=3)

Figure 5.17 Simulation results for 4- and 16- state half rate turbo codes with interleavers
lengthL = 4096.

5.3 Chapter Conclusion and Summary

In this chapter, the performance of turbo codes with the optimized convolutional in-

terleaver having the space value greater than 1 was examined. The obtained analysis

and simulation results for different codes showed that due to a short period, the pro-

posed interleaver did not sufficiently improve the code performance compared to the

interleaver with space value 1. The good performance of the interleavers with space

value greater than 1 was achieved only for the long interleaver lengths. This was con-

firmed through simulation of codes with interleaver lengthsL = 1024 andL = 4096,

where designed interleavers(T = 14, M = 2) and(T = 20,M = 3) with space val-

ues 2 and 3 outperform the interleavers(T = 20,M = 1) and(T = 35, M = 1) in

the error floor region, respectively. Some modifications related to these interleavers

have been proposed to improve the code performance with reduced number of stuff

bits. This was evident for the short interleaver lengths, where the modified inter-

leavers(T = 6,M = 2) and(T = 5,M = 3) with 35 % lower number of stuff bits

have better performance than the interleaver(T = 10,M = 1).

Chapter 6

Generalized Convolutional
Interleaver and Its Performance in
Turbo Codes

6.1 Introduction

From Chapter 5, it can be concluded that in the case of a similar number of stuff

bits for turbo codes, interleavers with higher space values and shorter periods usu-

ally have better or similar performance than interleavers with higher periods and the

space value 1 [19]. However, when the space value increases, the period should be

decreased to maintain the number of stuff bits in an acceptable range. As a result,

low weights with high multiplicities are created in the encoded data and the code

performance at the error floor region is degraded. Instead of constructing an inter-

leaver with a fixed space value, convolutional interleavers having a variable space

value in their structures can be utilized. This gives more flexibility to allocate a

different number of memories to each interleaver line to design interleavers with a

desired period and the sufficient overall number of stuff bits. Convolutional inter-

leavers designed with these properties are referred to as ”generalized convolutional

interleavers” [43,119].

In this chapter, application of generalized convolutional interleavers tailored to the

structure of turbo code is presented. These interleavers are constructed based on

125

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 126

Table 6.1Weight-2 self-terminating patterns for the 4- and 16- state turbo codes.

weight-2 distribution of turbo codes. For each interleaver, suitable modification is ac-

complished to improve the code performance with lower number of stuff bits. Anal-

ysis of codes and their iterative decoding confirm that these interleavers have similar

or even better performance than previously proposed convolutional interleavers. It

can be noticed that with careful design, they provide close performance to the well-

known block interleavers.

6.2 Generalized Convolutional Interleavers for Turbo
Codes

A good generalized convolutional interleaver for turbo code applications is designed

in a way that prohibits generation of self-terminating patterns for the second RSC

code. Therefore, it is necessary to design the interleaver based on the structure of the

RSC encoder, which produces a reasonable number of stuff bits. This assumption

leads to the application of a similar number of memories for some interleaver lines.

An analysis of turbo codes with generalized convolutional interleavers may be ac-

complished by calculating the weight-2 distribution of the code. In this analysis, per-

formance of the code is verified on the basis of self-terminating patterns. Then, the

interleaver parameters are set such that prohibit generation of these self-terminating

patterns. Table 6.1 gives relevant self-terminating patterns for the 4- state(1, 5
7
) and

the 16- state(1, 35
23

) turbo codes. Considering these assumptions, reliable interleavers

for these codes are designed.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 127

Figure 6.1Making an interleaver withT = 10 and with 32 stuff bits from two-level jointed
interleaver(T ′ = 5,M = 1) for the 4-state turbo code(1, 5

7).

6.2.0.2 Interleavers for 4-State Turbo Code(1, 5
7
)

An interleaver with a specification of(T ′, 2M) can be represented by a two-level

joint interleaver, where each level has a specification(T ′,M). This property makes it

possible to obtain an interleaver whose period is twice that of the original interleaver,

i.e. T = 2T ′. For example, as shown in Figure 6.1(a) and 6.1(b), the interleaver

(T ′ = 5, M = 2) produces similarly interleaved data as the two-level joint inter-

leaver(T ′ = 5,M = 1). For the 4- state(1, 5
7
) turbo code, in order to prohibit the

generation of self-terminating patterns for the second RSC encoder, the separation

between data distributed in one interleaver line, i.e.T − 1, is set to be different to

then values of Table 6.1. In this interleaver, the separation between two interleaver

lines having identical number of memories, is set byD = T
2
− 1 value. This value

should also be set differently to then values of Table 6.1.

Considering the two-level joint interleaver, a generalized interleaver is constructed by

increasing the number of interleaver memories for some lines providing a sufficient

number of stuff bits. A possible solution would be to increase the number of memo-

ries in the interleaver linesT
2

+ i (i = 2, 4, ..., T) by i units more than the number of

memories allocated for the interleaver lineT
2
. Figure 6.1(c) illustrates a generalized

convolutional interleaver with the periodT = 10 and 32 stuff bits suitable for the

4-state turbo code(1, 5
7
).

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 128

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

Weight
M

u
lt

ip
lic

it
y

(T=8,M=1)
Gen.(T=10)
(T=6,M=2)

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Weight

M
u

lt
ip

lic
it

y

Generalized(T=22)
(b)

(a)

Figure 6.2Performance of 4-state turbo code(1, 5
7) with Generalized interleavers. a) Weight-

2 distribution of the code for interleaver lengthL = 169 and b) estimated distance spectrum
of the code for the generalized convolutional interleaver(T = 22, L = 1024).

6.2.1 Analysis of 4-state Turbo Code(1, 5
7) Using Generalized Con-

volutional Interleavers

The performance of generalized convolutional interleaverT = 10 is compared with

the interleavers having the fixed space values. Figure 6.2(a) shows weight-2 distri-

bution of turbo code for different interleavers with the lengthL = 169. It is observed

that with a similar number of stuff bits, the generalized interleaver performs better

than the interleavers(T = 6,M = 2) and(T = 8,M = 1) to reduce multiplicity

of weights generated from self-terminating patterns. For the generalized interleaver

T = 10, weight 26 has a relatively high multiplicity compared to other weights. The

free distance of the code with the generalized convolutional interleaver is achieved

from weight-3 self-terminating pattern(00..01010100..0)L=169 by value 12 and 1

multiplicity. The major contribution of this low free distance value to the code per-

formance will be observed in the error floor region of the code.

Figure 6.2(b) shows an estimated distance spectrum of turbo codes with interleaver

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 129

lengthL = 1024. This distance spectrum has been achieved from low weight self-

terminating patterns no greater than 4. Although the designed interleaver performs

well to break low weight self-terminating patterns but produces the low free distance

value 12 with 1 multiplicity, which degrades the code performance.

6.2.2 Interleavers for 16-State Turbo Code(1, 35
23)

Similarly to the designed interleaver for the 4-state turbo code, two-level joint inter-

leavers(T ′,M) are constructed from the interleaver(T ′, 2M), whose period andD

values are set differently to then′ values of Table 6.1. Due to a higher constraint

length of this code than that of the 4-state code, the RSC encoders are returned to

the zero state by a higher number of zeros between two 1s. This property makes it

possible to design interleavers with a relatively high period close ton′s. However,

as mentioned before, this increment will increase the number of stuff bits. This lim-

itation leads to a compromise through the selection of suitable values of period,D,

and the number of stuff bits. In order to make an interleaver with a high period and

reasonable number of stuff bits, the space parameter of each interleaver as part of the

two-level joint interleaver is considered to be equal to 2(M = 2). Finally, the last

line of the interleaver is deleted to reduce the overall number of stuff bits. Figure 6.3

shows structure of the generalized convolutional interleaver(T = 9).

The above basic interleaver structures can be extended to an interleaver with higher

periods. These are applicable for longer input bitstreams. Depending on the chosen

interleaver period, memory combinations and the overall numbers of stuff bits are

altered. Table 6.2 shows the proposed generalized convolutional interleavers for dif-

ferent periods and the corresponding numbers of stuff bits, which have been applied

for the simulations in the next section. In this table, the numbers presented in the

parentheses represent the number of memories in each interleaver line.

6.2.3 Analysis of 16-state Turbo Code(1, 35
23) Using the General-

ized Convolutional Interleaver

Figure 6.2 shows weight-2 distribution of the code for interleavers with the length

L = 169. In comparison with other weight-2 distributions obtained from interleavers

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 130

Figure 6.3Generalized convolutional interleaver structure withT = 9 for the 16-state(1, 35
23)

turbo code.

Table 6.2
Generalized convolutional interleaver structures for the 4- and 16- state codes with different
lengths.

Code Interleaver Generalized No.of
state period interleaver stuff bits

4 10 (0,1,2,3,4,0,6,2,8,4) 30

4 22 (0,1,2,3,4,5,6,7,8,9, 165
10,0,12,2,14,4,16,6,18

8,20,10)

16 9 (0,2,4,6,8,0,2,4,6) 32

16 11 (0,2,4,6,8,10,0,2, 50
4,6,8)

16 19 (0,2,4,6,8,10,12,14, 162
16,18,0,2,4,6,8,10,

12,14,16)

(T = 5,M = 3) and(T = 5,M = 4), it is clearly observed that the generalized

interleaver has a better performance to break low weight self-terminating patterns1.

It is concluded that, not only the last line deleted from the two-level joint interleaver

1The interleaver(T = 5,M = 4) has been selected in this analysis, to compare the performance
of the generalized interleaverT = 9 with the interleaver for which it has been developed.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 131

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Weight

M
u

lt
ip

lic
it

y

Gen.(T=9)
(T=5,M=3)
(T=5,M=4)

Figure 6.4Weight-2 distribution of the 16-state turbo code(1, 35
23) for interleavers with length

L = 169.

(T ′ = 5,M = 2), reduce the number of stuff bits, but also prohibits generation of

the low weight self-terminating patterns for the second RSC encoder. Analysis of the

code from some low weight-3 self-terminating patterns does not give any weight with

high multiplicities or a weight lower than the effective free distance value of the code.

weight with high multiplicity. In higher input bitstream lengthL = 1024, distance

spectrum of the code with the generalized interleaverT = 19 has been calculated and

compared with other interleavers. Figure 6.5 shows distance spectrum of 16-state

code with different interleavers. In this analysis, These distance spectrums have been

obtained from self-terminating patterns with weight no grater than 3. The results

give the free distance value 18 for the generalized interleaverT = 19. This value is

greater than the free distance values computed for the interleavers(T = 11,M = 3)

and(T = 10,M = 4). Hence, an improvement for turbo code with this interleaver

is expected.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 132

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Weight

M
u

lt
ip

lic
it

y

Generalized (T=19)
T=10,M=4
T=11,M=3

Figure 6.5Distance spectrum of the 16-state turbo code(1, 35
23) for interleavers with length

L = 1024.

6.3 Simulation Results

The performance of the generalized convolutional interleavers with lengthsL = 169

andL = 1024 was verified in 4- and 16- state turbo codes. This is accomplished by

SOVA as selected iterative turbo decoding method with 8 iterations. Again, SOVA

is scaled by constant and threshold values 0.5 and 0.1. 60,000 and 10,000 blocks

were considered in the simulations of codes with the interleaver lengthsL = 169

andL = 1024, respectively. The performance of the generalized convolutional in-

terleavers was compared to the basic convolutional interleavers proposed in previous

chapters and most conventional block interleavers. Row-column and semi-random

interleavers are considered for the short and long data block, respectively. Gener-

alized convolutional interleavers are designed in such a way that produce a similar

number of the stuff bits to other presented convolutional interleavers.

For the generalized convolutional interleavers, modification is conducted to improve

the code performance with lower number of stuff bits. Modification shifts bits located

in some interleaver lines by the specific value, determined on the basis of the applied

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 133

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Row−column(13×13)
Conv.(T=8,M=1)
Conv.(T=6,M=2)
Mod.Conv.(T=6,M=2)
Gen.Conv.(T=10)
Mod.Gen.Conv.(T=10)

Figure 6.6Performance of the 4- state full rate turbo code with interleavers lengthL = 169.

code and the interleaver structure [18] [19]. Table 6.3 gives the specification of the

modifications for different turbo codes.

6.3.1 Simulation Results for Turbo Codes Using Interleaver Length
L = 169

Figure 6.6 shows simulation results for the 4- state turbo codes with the lengthL =

169. The plots show that the generalized interleaver has similar performance to the

interleaver(T = 8,M = 1). This is due to existence of low free distance value

for the code from both interleavers, which have been already analyzed. After

modification, this interleaver has 0.1-0.25 dB better performance than the interleaver

(T = 10,M = 1), while the number of stuff bits is reduced by 33%. With the

lower complexity in modification, the modified generalized interleaver(T = 10)

provides similar behavior to the interleaver(T = 6,M = 2)2. In comparison with

the row-column interleaver(13 × 13), the generalized interleaver provides better

performance in the waterfall region. For the half rate code, as shown in Figure 6.7,

2The modifications of interleavers(T = 6,M = 2) for the 4-state code and(T = 5,M = 3) for
the 16-state code have been presented in Chapter 5

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 134

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Row−column(13×13)
Conv.(T=8,M=1)
Conv.(T=6,M=2)
Mod.Conv.(T=6,M=2)
Gen.Conv.(T=10)
Mod.Gen.Conv.(T=10)

Figure 6.7Performance of the 4- state half rate turbo code with interleavers lengthL = 169.

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Row−column(13×13)
Conv.(T=8,M=1)
Conv.(T=5,M=3)
Modified.Conv.(T=5,M=3)
Gen.Conv.(T=9)
Mod.Gen.Conv.(T=9)

Figure 6.8Performance of the 16- state full rate turbo code with interleavers lengthL = 169.

these generalized convolutional interleavers have better performance than that of the

interleaver(T = 8,M = 1) by 0.2 dB. The graphs express that contributing lower

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 135

0 0.5 1 1.5 2 2.5 3 3.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Row−column(13×13)
Conv.(T=8,M=1)
Conv.(T=5,M=3)
Mod.Conv.(T=5,M=3)
Gen.Conv.(T=9)
Mod.Gen.Conv.(T=9)

Figure 6.9Performance of the 16- state half rate turbo code with interleavers lengthL = 169.

number of bits in the modification, results in performance of the modified generalized

interleaver similar to the modified interleaver(T = 6,M = 2) presented in [19].

Figure 6.8 illustrates the performance of the full rate 16-state turbo code. Again,

The interleaver(T = 9) outperforms the row-column interleaver(13 × 13) in the

waterfall region.

In error floor region, both interleavers have the similar performance. This interleaver

has been also improved 0.25 dB the code performance compared to the interleaver

(T = 8,M = 1). The modified interleaverT = 9 with 29% lower number of stuff

bits generates a similar performance to the interleaver(T = 10,M = 1).

The generalized interleaverT = 9 contributes a lower complexity in its modification

to provide similar behavior to the(T = 5,M = 3) and row-column interleavers. In

Figure 6.9, results obtained for the half rate 16- state turbo codes have been shown,

confirming the result achieved previously for the full rate 16-state code.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 136

Table 6.3
Specifications of Modified generalized convolutional interleavers for 4- and 16- state turbo
codes.

State Interleaver Shifted interleaver Shifted Unit
Code Period lines value

4 T=10 (2,3,4,5,7,9) 8*T
16 T=9 (2,4,7,9) 5*T
4 T=22 (3,9,13,15,17,21) 13*T

(4,5,6,10,11) 8*T
16 T=19 even lines 13*T

line 9 5*T

6.3.2 Simulation Results for Turbo Codes Using Interleaver length
L = 1024

Figures 6.10 and 6.11 show performance of the full and half rate 4- state turbo codes

(1, 5
7
) for interleavers with the lengthL = 1024. For both codes, with similar number

of stuff bits, the generalized interleaverT = 19 creates better performance than that

of the interleaver(T = 11,M = 3) in the error floor region, which confirms the

analysis presented in Figure 6.5.

Similar simulations have been conducted for the full and half rate 16-state code with

the generalized convolutional interleaverT = 19, which have been illustrated in

Figures 6.12 and 6.13, respectively. For the full rate, the generalized interleaver

produces a similar performance to the interleaver(T = 20,M = 1), while number

of stuff bits has been reduced by 10%. In comparison with the modified interleaver

(T = 11,M = 3), the modified generalized interleaver improves the full and half

rate code performance by 0.15 dB in the waterfall and error floor regions.

6.3.2.1 Comparison with Block Interleavers

Finally, performance of convolutional interleavers presented in this and the previous

chapters is compared with semi-random interleavers. Comparisons are conducted

between the modified convolutional interleavers and the semi-random interleavers

with lengthL = 1024 and a threshold valueS = 22. Table 6.4 gives specifications

of the modified interleavers applied in simulations.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 137

0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=11,M=3)
Mod.Conv.(T=11,M=3)
Gen.(T=22)
Mod.Gen.(T=22)

Figure 6.10 Performance of the 4- state full rate turbo code with interleavers lengthL =
1024.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=11,M=3)
Mod.Conv.(T=11,M=3)
Gen.Conv.(T=22)
Mod.Gen.Conv.(T=22)

Figure 6.11Performance of the 4- state half rate turbo code with interleavers lengthL =
1024.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 138

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=11,M=3)
Mod.Conv.(T=11,M=3)
Gen.Conv.(T=19)
Mod.Gen.Conv.(T=19)

Figure 6.12Performance of the 16- state full rate turbo code with interleavers lengthL =
1024.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Conv.(T=20,M=1)
Conv.(T=11,M=3)
Mod.Conv.(T=11,M=3)
Gen.Conv.(T=19)
Mod.Gen.Conv.(T=19)

Figure 6.13Performance of the 16- state half rate turbo code with interleavers lengthL =
1024.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 139

Table 6.4
Specifications of Modified convolutional interleavers for 4- and 16- state turbo codes.

Code’s Interleaver Shifted interleaver Shifted Unit
State lines value

4 (2,5,8,20,24) 15*T
Generalized(T = 28) (11, 28) 5*T

(10,12,14) 18*T
4 (T = 24,M = 1) Even lines 16*T
4 (T = 17,M = 2) Even lines 13*T
16 Generalized(T = 23) Even lines 19*T
16 (T = 24,M = 1) Even lines 18*T
16 (T = 12,M = 4) Even lines 23*T

Figures 6.14 and 6.15 show the full and half rate(1, 5
7
) turbo code performance,

respectively. It is concluded that the convolutional interleavers create better perfor-

mance than the semi-random interleaver at the waterfall region. This is especially

evident for the generalized convolutional interleaverT = 28, which improves the

code performance by 0.25 dB forEb

N0
≤ 1.5dB. In the error floor region, convo-

lutional interleavers with similar behaviors have poor performance relative to the

semi-random interleaver. This behavior can be resulted from generation of relative

low free distance value of the convolutional interleavers. For the half rate 4-state

code, this drawback has been slightly removed. The results give 0.2 dB poor perfor-

mance of the generalized convolutional interleaver(T = 28) for Eb ≥ 2.7dB. In

the Figure 6.15, all of convolutional interleavers have been outperformed the semi-

random interleaver in the waterfall region.

Similar results are obtained from the full and half rate 16-state turbo code(1, 35
23

),

which are illustrated in Figures 6.16 and 6.17. For the full rate code, the graphs

show that the generalized interleaverT = 23 has better performance with inter-

leavers(T = 24,M = 1) and (T = 12,M = 4), while the number of stuff bits

has been been reduced by 10% and 7%, respectively . In comparison with the semi-

random interleaver, the generalized interleaver has improved the code performance

for Eb

N0
≤ 1.5 dB by 0.25 dB. The designed generalized convolutional interleaver has

also very close performance to the semi-random interleaver in the error floor region.

However, for the half rate 16-state turbo code, as shown in Figure 6.17, a relatively

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 140

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Conv.(T=24,M=1)
Conv.(T=17,M=2)
Gen.(T=28)

Figure 6.14 Performance of the 4- state full rate turbo code with interleavers lengthL =
1024.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Conv.(T=17,M=2)
Conv.(T=24,M=1)
Gen.Conv.(T=28)

Figure 6.15Performance of the 4- state half rate turbo code with interleavers lengthL =
1024.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 141

0 0.25 0.5 0.75 1 1.25 1.5 1.75
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Conv.(T=12,M=4)
Conv.(T=24,M=1)
Gen.Conv.(T=23)

Figure 6.16Performance of the 16- state full rate turbo code with interleavers lengthL =
1024.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
(dB)

Semi−random(S=22)
Conv.(T=12,M=4)
Conv.(T=24,M=1)
Gen.Conv.(T=23)

Figure 6.17Performance of the 16- state half rate turbo code with interleavers lengthL =
1024.

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 142

poor performance of the convolutional interleavers compared to the semi-random

interleaver is observed.

6.4 Chapter Summary and Conclusions

In this chapter, the structure of generalized convolutional interleavers with variable

space values and their influence on the code performance was presented. These inter-

leavers were designed with a higher period than previously proposed convolutional

interleavers with the fixed space value, while the generated number of stuff bits is

kept at similar level. In comparison with convolutional interleavers having the fixed

space value, results confirmed that application of generalized convolutional inter-

leavers improves performance of the turbo code. Finally, performance of the codes

employing convolutional interleavers designed in this thesis have been compared

with the codes using most conventional block interleavers.

The results for different codes with the short interleaver lengths indicate that con-

volutional interleavers, which utilize number of stuff bits equal to the 6% of the

total number of encoded data, provide similar performance to block interleavers.

For medium to high interleaver lengths, these interleavers with higher numbers of

stuff bits should be designed in such a way that they have a similar performance to

block interleavers. For a bitstream lengthL = 1024, the improvement is specifically

obtained in the waterfall region of the turbo code performance curve, when convolu-

tional interleavers contribute a number of stuff bits equal to 9% of the total number

of encoded data. In the error floor region, these interleavers slightly degrade the code

performance compared to semi-random interleavers, due to generation of a low free

distance value for the applied turbo code.

Considering the overall number of applied memories in the proposed interleaver and

deinterleaver, the generalized convolutional interleavers and deinterleavers utilize

more memories in their structures than other interleavers and deinterleavers with a

relatively high period. This increases synchronization complexity between the inter-

leaver and deinterleaver. However, the results obtained from different convolutional

interleavers reveal that without increasing the number of stuff bit, a good generalized

Generalized Convolutional Interleaver and Its Performance in Turbo Codes 143

interleaver can be substituted for convolutional interleavers that are unable to break

low weight self-terminating patterns. This issue is more applicable when they are

compared with interleavers having a fixed space value grater than 2(M > 2).

Chapter 7

Convolutional Interleavers in Turbo
Codes With Unequal Error Protection

7.1 Introduction

Unequal Error Propagation (UEP) was introduced as an efficient technique for For-

ward Error Correcting (FEC) codes to suitably protect encoded data against channel

errors taking to account varying importance of different data fields. This is specif-

ically utilized in the transmission of compressed information such as voice, video

and multimedia data, were some parts of the data are much more sensitive to bit

and burst errors than [120, 121]. UEP is generally accomplished in turbo codes by

applying with different puncturing, which creates different code rates, for different

protection levels. When the UEP property is implemented for a turbo code, a differ-

ent interleaving appropriate for the data length determined for each protection level

should be performed in addition to puncturing process.

This chapter deals with the application of convolutional interleavers to UEP turbo

codes. Based on the properties of the convolutional interleaver, three different tech-

niques for UEP turbo codes are presented. Simulation results confirm that utilizing

this approach, the most important data parts can be better protected with lower num-

ber of stuff bits.

144

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 145

7.2 Interleavers for UEP Turbo Codes

To date, several methods have been suggested, mainly for conventional block inter-

leavers, such as allocating an exclusive interleaver for each level or a single inter-

leaver for all levels, where the interleaver length is adjusted for different levels. For

a block interleaver with a fixed permutation, an interleaver for each level has been

proposed in [57], while applications of one interleaver for all protection levels, which

adjusts its length with the length of each level, are suggested in [122, 123]. In ad-

dition, a suitable interleaver for all protection levels has been designed, providing a

UEP turbo code without the need for a puncturing process [124].

A structure of the semi-random interleavers usable for permutation of the data blocks

with the variable length has been proposed in [125]. The obtained interleaver is

named the prunable semi-random interleaver. In this interleaver, a semi-random in-

terleaver is designed according to the shortest data length. Then for longer lengths,

the new required position is randomly inserted. In this interleaver, if after several

runs, the selected positions do not satisfy the appointed threshold value of the in-

terleaver, the threshold value will be decreased and the above procedure followed

based on the new threshold value. This reduction degrades the code performance

and in order to overcome this problem, a new algorithm has been introduced to ap-

ply the semi-random interleaver for different data block lengths, without decreasing

the threshold value [126]. Recently, Benedetto,et.al presented a modification of

the prunable interleaver, which improves the code performance with less complex-

ity [127]. Similar to method suggested in [125], application of one semi-random

interleaver for different protection levels has been presented in [128]. In this method,

depending on the length of each level, the new threshold value is set.

On the other hand, Mohammadiet.al have considered unequal error protection for

the code based on contribution of systematic and parity data to the code performance,

which is determined by distance spectrum of the code. It has been confirmed that for

the short and medium to high bitstream lengths, the systematic and parity data have

major contribution to the distance spectrum of the code, respectively. Therefore, it is

expected that in correspondence with the interleaver length, suitable protections are

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 146

Figure 7.1Consideration of convolutional interleaver(T = 3,M = 1) and(T = 5,M = 1)
from the interleaver(T = 8,M = 1).

conducted on different parts of the encoded data to improve the code performance

[129,130].

The main issue of the interleaver design for UEP turbo code applications is related

to the flexibility of adjusting its specifications according to the varying length of data

blocks. In contrast to block interleavers, convolutional interleavers are designed with

less complexity to adjust their structures with the length variations of data blocks.

For the convolutional interleavers proposed in previous chapters that act as block

interleavers by inserting stuff bits at the end of each data block, three different tech-

niques are presented to design the UEP turbo codes [21]. These techniques are

mainly implemented based on the interleaver period and code rate allocated to each

level of protection. In the following sections, these techniques are explained.

7.2.1 Convolutional Interleavers with Different Periods and Code
Rates

A convolutional interleaver with a specific period and space value has the flexibility

to interleave data blocks with different lengths. In turbo code applications, when

encoded data blocks with variable lengths obtained from an interleaver are punctured

with different rates, UEP turbo codes can be achieved. Simulations of turbo codes

with different interleaver lengths indicate that with an increment of the data block

length, the period of the convolutional interleaver should be increased to provide

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 147

sufficient performance for the code with a reasonable number of stuff bits [15]. This

is more sensitive for an interleaver with a short data block length and leads to a

design of an interleaver compatible with the required performance of the code with

the longest data block length for the given protection level.

However, since data with the highest protection level requires a lower code rate, the

data block length is normally considered shorter at this level than at other levels.

Hence, designing a convolutional interleaver based on the longest length for all pro-

tection levels, increases the number of stuff bits for levels with shorter lengths and

can result in a greater number of stuff bits than valid data allocated to that level. This

is observed when the length variations between different levels are relatively high.

Therefore, the convolutional interleaver applied for this type of UEP turbo code is

designed based on the shortest block length for all protection levels [21].

In order to apply an interleaver corresponding to the data specification of each level,

it is necessary to employ an independently designed interleaver for each level. It is

easily observed that by choosing some lines of an interleaver with the higher period

another convolutional interleaver with a shorter period is obtained. For example,

Figure 7.1 shows that convolutional interleavers(T = 3,M = 1) and(T = 5,M =

1) can be obtained from the convolutional interleaver(T = 8,M = 1) when the

relevant input bitstreams are distributed to the first three and five lines, respectively.

These interleavers are created by controlling the distribution of input data blocks

to some of the interleaver lines to generate different interleaved data. Interleaved

data obtained from different periods are specifically punctured to provide UEP turbo

codes. Based on the above observation, many interleavers with shorter periods can

be constructed from an original interleaver with a longer period. For simplicity,

interleavers with the space value 1(M = 1) are designed, where the distribution of

data always starts from the line without the memory.

7.2.2 Convolutional Interleavers with Different Periods and Fixed
Code Rates

Apart from applying different puncturing patterns, an interleaver for each level with

different periods and a fixed code rate for all levels can be applied to provide different

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 148

Figure 7.2 Modification procedure for the interleaver(T = 4,M = 1). a) Interleaved data
lengthL = 32, b) shifted even column bits equal to 3*T and c) deletion of zero bits at the
end part of the interleaver.

protection levels. In this case, for the highest protection level, an interleaver with the

longest period is designed such that it produces a reasonable number of stuff bits.

Then, based on the order of other protection levels, interleavers with shorter periods

are constructed by selecting some lines of the original interleaver [21]. For example,

in Figure 7.1, contrary to the previous technique, the interleaver(T = 8,M = 1) is

applied for the highest protection level, while the interleavers(T = 5,M = 1) and

(T = 3,M = 1) are used for to the second and third protection levels, respectively.

7.2.3 Convolutional Interleavers with Different Code Rates and
Fixed Periods

In this technique, different puncturing is utilized for the different parts of an inter-

leaved data obtained from one interleaver with the fixed period for all of protection

levels [21].

For each technique, a modification can be performed to the interleavers, improving

the code reliability with a lower number of stuff bits. This is generally accomplished

by shifting the bits of the interleaved data located in even columns. Figure 7.2 shows

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 149

Table 7.1Puncturing patterns for different protection levels.

Rate l P Q O
1/3 1 [1] [1] [1]
2/5 2 [1 1] [1 0] [1 1]
1/2 2 [1 0] [0 1] [1 1]
2/3 4 [1 0 0 0] [0 0 1 0] [1 1 1 1]
3/4 6 [1 0 0 0 0 0] [0 0 0 1 0 0] [1 1 1 1 1 1]

the modification procedure for the interleaver(T = 4, M = 1). First, the input data

blocks are regularly interleaved and then the bits located in the even columns are

shifted by3 ∗ T units. Similarly to the modification proposed in [18], the number of

shifted bits is considered even. In the case of an odd number of bits, the zero stuff bits

located on the top of the first bit of even columns are involved in the modification

process. Finally, zero stuff bits located at the end part of the interleaved data are

deleted to optimize the number of stuff bits.

7.3 Simulation Results

In simulations, convolutional interleavers with short and long data block lengths have

been applied for the three mentioned types of UEP with the 4-state tubo code(1, 5
7
).

For the code, the trellis termination and truncation are utilized in the first and the

second RSC encoders, respectively. To reduce the number of stuff bits to be equal to
T (T−1)M

2
, they will be removed from the end part of the systematic and the first parity

data, since stuff bits are inserted after trellis termination and do not have any effect on

the code performance. For simplicity, the effect of these stuff bits for the systematic

and first parity data getting the exact code rate at each level are considered. At the

decoder, iterative decoding is performed and the BER is only calculated based on the

length of the original bitstream without stuff bits. Regarding this structure, the code

rate of each level is calculated by:

Ri =
li

nPi
+ nQi

+ nOi

(7.1)

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 150

Table 7.2
Specifications of protection levels with different interleaver periods and code rates.

Level Length(L′) Int.Period(T) Rate(R) Number of simulated blocks
1 32 4 1/3 312500
2 48 5 2/5 208300
3 112 6 1/2 90000

overall 192 5 ≈ 1/2 50000

Table 7.3
Specifications of protection levels with different interleaver periods and the fixed code rates.

Level Length(L′) Int.Period(T) Rate(R) Number of simulated blocks
1 32 6 1/3 312500
2 48 5 1/3 208300
3 112 4 1/3 90000

overall 192 4 ≈ 1/3 50000

Table 7.4
Specifications of protection levels with the fixed interleaver period and different code rates.

Level Length(L′) Int.Period(T) Rate(R) Number of simulated blocks
1 32 4 1/3 312500
2 48 4 1/2 208300
3 112 4 2/3 90000

overall 192 4 ≈ 1/2 50000

Table 7.5
Specifications of protection levels with different interleaver periods and code rates.

Level Length(L′) Int.Period(T) Rate(R) Number of simulated blocks
1 128 7 1/3 75000
2 512 14 1/2 20000
3 1024 20 2/3 10000
4 2432 30 3/4 4000

overall 4096 25 ≈ 2/3 2500

whereli, nOi
, nPi

andnQi
denote the length of the puncturing matrix, length of the

matrix of 1s for the systematic data, and number of bit 1 in puncturing matrices of

the ith level for the first and second RSC encoder with the length ofli, respectively.

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 151

For the short and long data block lengths, three and four protection levels have been

considered, respectively. Tables 7.1– 7.5 give specifications of puncturing patterns

and protection levels of each UEP type.

In order to compare performance of the protection levels with the Equal Error Pro-

tection (EEP) codes, the overall specification of the code should be determined. With

the employment of puncturing at each level, the average code rate withc protection

levels is determined by: [131]

Rav =

∑c
i=1 Li∑c
i=1

Li

Ri

(7.2)

whereLi = L′i + Ni denotes the data block length of thei-th level after stuff bit

insertion, obtained from summation of the original input data block lengthL′i and

the number of stuff bitsNi. The above protection parameters have been simulated by

SOVA with 8 iterations in the presence of Additive White Gaussian Noise (AWGN).

The number of simulated blocks considered for eachEb

N0
has been presented in Ta-

bles 7.2– 7.5. The equivalent interleaver specifications can be determined based on

the number of stuff bits or the interleaver periods and the data block lengths for each

level. In this case, the equivalent interleaver period for the overall rate is given by:

Tav =

∑c
i=1 LiTi∑c
i=1 Li

(7.3)

whereTi represents the interleaver period of thei-th level. In simulations, only

the highest level of protection is modified. For interleavers(T = 4,M = 1) and

(T = 7,M = 1), even column bits are cyclically shifted by4 ∗ T and10 ∗ T val-

ues, respectively. Figure 7.3 shows the code performance when different interleaver

periods and code rates allocated for each protection level. In this figure levels 1 and

level 2 are better than the overall performance of the code by 0.5 dB and 0.25 dB,

respectively.

Figure 7.3 illustrates the code performance with different interleavers and code rates

applied for protection levels based on the specifications in Table 7.3. In this figure,

level 1 has 0.25 dB better performance than the overall level.

Figure 7.4 shows the code performance when different protection is achieved through

different interleaver periods with the code rate fixed for all levels. Again, levels 1

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 152

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

Levele 1
Level 2
Level 3
Overall

Figure 7.3Unequal error protection for 4-state turbo codes with different interleaver periods
and code rates.

and 2 in expense of higher periods than the overall level have improved the code

performance by 1 and 0.5 dB, respectively. Since the level 3 and the overall level

apply a similar code rate and an interleaver period value, their performance are very

similar.

Figure 7.5 illustrates the code performance when an interleaver with the fixed period

is applied. The graphs obviously represent more protections for the first and the

second levels than the overall level. In this method, due to applying different rates,

level 3 slightly shows the poor performance compared to the overall level.

Figure 7.6 shows the performance of the UEP turbo code with the four level protec-

tion and the interleaver lengthL = 4096. In this figure, levels 1 and 2 have 1 and 0.5

dB better performance than the average code performance, while number of stuff bits

at these levels has been reduced by 93% and 69.6%, respectively. In addition, level 3

with a lower period and consequently less stuff bits has behavior close to the average

for the code. However, due to application of the higher code rate and puncturing

most of the encoded data, level 4 has the worst performance.

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 153

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

Levele 1
Level 2
Level 3
Overall

Figure 7.4Unequal error protection for 4-state turbo codes with different interleaver periods
and the fixed rateR = 1

3 .

7.4 Chapter Summary and Conclusions

In this chapter, three different techniques of UEP turbo code were suggested. These

techniques are implemented based on applying different code rates or interleavers

with different periods for each protection level. The results obtained from different

types of the UEP turbo codes indicate that the convolutional interleaver has the flex-

ibility to be utilized in UEP turbo code applications with short and long data block

lengths. In particular, this is specifically observed for the second type of UEP, when

the code is constructed with different periods and the fixed code rates for all levels.

The improvement was specifically observed for the third protection level. However,

type one and type three also improved the performance of levels 1 and 2 more than

the overall level. Comparing the results obtained from the Figures 7.3 and 7.6 indi-

cates that the first suggested technique is more applicable for the cases when the data

lengths vary significantly for different protection levels. In such cases, the technique

effectively protects the important parts of the data blocks with the shorter periods and

lower numbers of stuff bits.

Convolutional Interleavers in Turbo Codes With Unequal Error Protection 154

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

Levele 1
Level 2
Level 3
Overall

Figure 7.5Unequal error protection for 4-state turbo codes with the fixed interleaver period
(T = 4) and different rates.

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0

Levele 1
Level 2
Level 3
Level 4
Overall

Figure 7.6Unequal error protection for 4-state turbo codes with overall lengthL = 4096.

Chapter 8

Summary, Conclusions and Further
Work

8.1 Introduction

The thesis was concerned with an application of block-wise convolutional inter-

leavers in turbo codes. The block-wise operation of convolutional interleavers was

obtained by insertion of enough number of stuff bits to the interleaver memories

creating isolated data blocks. Different convolutional interleavers were constructed

based on constituent parameters of the interleaver. To build a good convolutional in-

terleaver with reasonable number of stuff bits, modification of the interleaver struc-

ture were proposed to achieve the interleaver compatible with the structure of RSC

codes utilized in turbo codes. Performance of designed interleavers was analyzed

based on calculation of weight distribution of turbo codes to demonstrate their perfor-

mance in increasing the free distance value and breaking low weight self-terminating

patterns. Simulation results confirmed the conducted analysis. The results indicated

that the new interleavers can be utilized as good deterministic interleavers, which

provide very close or even better performance than block interleavers with random

permutations. Finally, application of these interleavers in Unequal Error Protection

(UEP) was presented to protect the most important data parts with the lower overall

number of stuff bits. The results obtained from previous chapters are gathered to-

gether and briefly explained here. Then, some suggestions for further research are

presented.

155

Summary, Conclusions and Further Work 156

8.2 Thesis Summary and Conclusions

Chapter 1 provided a brief introduction to the problem considered in the thesis and

specified aims of the thesis. The major contributions of each chapter were explained

as well as the publication resulting from the research listed.

Chapter 2presented a literature survey on convolutional codes and different methods

of its maximum likelihood decoding. Then, the structure of turbo codes constructed

by parallel concatenation of codes and their analysis based on the performance of

RSC constituent codes and the interleaver was explained. Some interleavers con-

structed as deterministic and random interleavers were introduced and their appli-

cations in turbo codes considered. It was concluded that interleaver with random

permutation provides better randomization for the input bitstream than deterministic

interleaver and improves the turbo code performance. Some issues of random inter-

leavers were mentioned and deterministic interleavers producing close performance

to the random interleavers were reviewed. Finally, a structure of iterative turbo de-

coding with SOVA was explained and some methods to improve its performance

suggested.

Chapter 3 dealt with the structure of non-block interleavers. The structure of con-

volutional interleavers implemented to act as a block interleaver has been reviewed.

This implementation was achieved by an insertion of some stuff bits at the end of

each input data block returning the interleaver memories to the zero state. Based on

this structure, an optimization was performed by deletion of the stuff bits at the end

part of the interleaved data to reduce the number of stuff bits. For each convolu-

tional interleaver, relevant iterative decoding performance was briefly explained. By

considering the properties of the convolutional interleaver, an algorithm was imple-

mented to calculate the free distance value of turbo codes, which effectively deter-

mines the code performance in the error floor region. The effect of other low weights

in the code performance analysis was considered in another efficient and simple al-

gorithm used to estimate weight distribution of the code. This algorithm considered

low weight self-terminating patterns and computed the weight distribution of codes

with short interleaver lengths. The calculated weights were extrapolated for weight

Summary, Conclusions and Further Work 157

determination of a code with the required interleaver length. Conducted analysis and

simulation results for different interleaver showed the reliability of the algorithm in

determination of code performance in the error floor region. The results obtained

from the code analysis confirmed that in the case of similar number of stuff bits,

an optimized interleaver having a low free distance value with low multiplicity out-

performs the non-optimized interleaver. This was more evident for interleavers with

short block lengths. At the end of Chapter 3, the performance of optimized convo-

lutional interleavers was compared with that of the most popular block interleavers,

i.e. row-column and semi-random interleavers. For short interleaver lengths, the re-

sults indicated that with an acceptable number of stuff bits (approximately 5-8 % of

the total number of encoded data) the designed convolutional interleavers have better

performance than the block interleavers in the waterfall region, while due to their

low free distance, the convolutional interleavers have a relatively weak performance

in the error floor region. For the medium to high interleaver lengths, the poor per-

formance of the convolutional interleaver compared to the semi-random interleaver

was observed. Bad performance of convolutional interleavers was observed when its

constituent parameters, i.e. period or space value, are set in such a way that self-

terminating patterns are not broken to good patterns utilized for the second RSC

encoder. The shortcoming of convolutional interleaver has been slightly reduced by

increasing the period value of the interleaver.

Chapter 4presented an algorithm to modify the optimized convolutional interleavers.

The algorithm replaced bits positioned at the end part of the interleaved data with bits

positioned in other interleaved data parts to increase the distance between interleaved

bits adjacent int the original bitstream. This was accomplished by different cyclical

shifts applied for the even and odd columns of the interleaver. In the development

of this modification, an effect of bitstreams with weight-1, self-terminating patterns

with weight-2 and weight-3 and their combinations making higher weight patterns

was considered. The modification was performed in such a way that it breaks major

low weight self-terminating patterns resulting in the code achieving a higher free dis-

tance with low multiplicity. The performance of modified convolutional interleavers

was verified by determination of weight distribution of the code. In comparison with

the unmodified interleaver, the calculated free distance values were significantly in-

Summary, Conclusions and Further Work 158

creased. As a result, the code performance was improved in the error floor region

without increasing the period, and consequently the number of stuff bits. Some ex-

amples demonstrated similar code performance between modified and unmodified

interleavers, while number of stuff bits in the modified interleaver was reduced by

40%.

The interleavers constructed in previous chapters were designed based on the mini-

mum space values. As one solution, to increase the distance between adjacent bits

of the interleaved data, designing interleavers with higher space values was proposed

in Chapter 5. In order to compare the performance of these interleavers with previ-

ously constructed interleavers, the number of stuff bits for both structures were kept

in similar. This caused generation of high self-terminating patterns, which conse-

quently degraded the code performance at the error floor region. It was particularly

observed for interleavers with short periods and space valuesM = 2 andM = 3.

Some modification techniques breaking low weight self-terminating patterns were

proposed to improve the code performance. For the 4- and 16- state turbo code,

the results showed that the modified versions of interleavers(T = 6,M = 2) and

(T = 5,M = 3) create similar or even better performance than the convolutional

interleaver(T = 10,M = 1), while the number of stuff bits has been reduced by

33%. Similar results were achieved from interleavers with higher data lengths. For

an interleaver lengthL = 4096, it was found that the interleaver(T = 20,M = 3)

provides a similar behavior to the interleaver(T = 35,M = 1), while contributes a

lower number of stuff bits.

In Chapter 6, a structure of generalized convolutional interleaver was presented.

Unlike the interleavers proposed in previous chapters, these interleavers were de-

signed with desired periods and variable space values. For the 4- and 16- state turbo

code, different generalized convolutional interleavers have been proposed. They have

been designed in a way that breaks weight-2 self-terminating patterns for the second

RSC encoder. The interleavers were constructed based on the two-level joint in-

terleavers. Some modifications on the two-level joint interleavers was conducted

to provide generalized convolutional interleavers with a good period and a suitable

distance between interleaver lines having the same number of memories. The simu-

Summary, Conclusions and Further Work 159

lation results confirmed that these interleavers with a lower number of stuff bits pro-

vide similar or even better performance than the previously designed convolutional

interleavers. This was specifically evident for the long generalized convolutional

interleaver lengths, when they are compared with interleavers having the space pa-

rameter values greater than 2. Finally, the modified convolutional interleavers was

carefully designed to provide close or even better performance than conventional

block interleavers. This was assessed for different codes with different interleaver

lengths.

In Chapter 7, an application of convolutional interleavers to UEP turbo codes was

proposed. Three different techniques for the UEP turbo codes were designed based

on the interleaver properties. The techniques were compared with each other in order

to make it possible to select the technique most suitable to the given application.

8.3 Further Work

Considering the structure of convolutional interleaver applied in the thesis, some

improvements and further studies are as follows:

• In modified interleavers, due to rearrangement of the interleaved data, the

weight distribution algorithm proposed in Chapter 3 is not usable for deter-

mination of weight-distribution of turbo codes. Finding a simple and efficient

algorithm based on the interleaver properties to compute the weight distribu-

tion of the code will give more accurate specifications of the code employing

these interleavers. The results of such an analysis will be helpful to verify how

a deterministic interleaver can be designed to provide similar performance to

the semi-random interleaver.

• The thesis mainly analyzed turbo codes performance in the error floor region.

However, the convolutional interleaver showed very good performance of the

code in the waterfall region. The new analysis can be accomplished based on

Extrinsic Information Transfer (EXIT) charts to verify the convergence behav-

ior of the iterative turbo decoding algorithm. Iterative decoding was conducted

Summary, Conclusions and Further Work 160

based on stuff bits value -1 for interleavers utilized at the decoder. In this case,

EXIT charts analysis can determine an optimum value for stuff bits inserted

to the interleaver memories to provide a suitable correlation between extrinsic

and a-priori information in each decoding iteration.

• As another solution to reduce the number of stuff bits is replacement of bits

located at the end part of interleaved data block with the stuff bits that appeared

in the first part of the next interleaved data blocks. In this case, a deterministic

interleaver without any stuff bits can be designed. Since distance between

adjacent bits is not reduced, it makes possible to obtain a higher free distance

with lower multiplicity than proposed block and non-optimized convolutional

interleaver to improve the code performance in the error floor region.

• The generalized interleavers presented a very close performance to semi-random

interleavers. These interleavers were simply designed based on weight-2 dis-

tribution of the code. Considering the effect of higher weights, new gener-

alized interleavers with a suitable modification can be constructed improving

performance of the turbo code in the error floor region, while lower number of

columns is involved in the modification process.

8.4 Other Applications of This Work

Orthogonal Frequency-Division Multiplexing (OFDM) is introduced as an effi-

cient technique for broadband wireless standards such as Digital Audio Broad-

casting (DAB), Digital Video Broadcasting (DVB) and Wireless Local Area

Network (LAN). For broadband wireless systems, which combine space-time

coding with OFDM, interleaving also plays a major role. However, not much

is done to assess the performance of the whole system depending on the char-

acteristics of the applied interleavers. This thesis proves convolutional inter-

leavers can be used as good deterministic interleavers. As it has been presented

here, these interleavers can be well tailored to the specifications of the systems

for which they are applied and improve the overall system’ performance.

Bibliography

[1] S.Benedetto and E.Bieglieri, “Principles of digital transmission with wireless

applications,”Kluwer academic/Plenum publishers, 1999.

[2] C.E.Shannon, “A mathematical theory of communication,”Bell System Tech-

nical Journal, vol. 27, pp. 379–423,623–656, 1948.

[3] G.D.Forney, “Concatenated codes,”MIT Press, 1966.

[4] C.Berrou, “The ten-year-old turbo codes are entering into service,”IEEE

Communications Magazine, pp. 110–116, August 2003.

[5] C.Berrou, P.Combelles, P.Penard, and B.Talibart, “An IC for turbo-codes en-

coding and decoding,”IEEE International Solid-State Circuits Conference

(ISSCC), pp. 90–91, February 1995.

[6] P.Coulton, B.Honary, M.Darnell, and S.B.Wicker, “Application of turbo codes

to HF data transmission,”Seventh International Conference on HF Radio

Systems and Techniques, pp. 95–99, July 1997.

[7] Consultative Committee foe Space Data Systems, “Recommendations for

space data systems, telemetry channel coding,”BLUE BOOK, October 2002.

[8] 3rd Generation partnership project, “Multiplexing and channel coding

(FDD),” 3G TS 25.212, June 1999.

[9] ETSI, “Digital Video Broadcasting (DVB). interaction channel for Satellite

Distribution Systems,”DVB-RCS001, February 2000.

161

BIBLIOGRAPHY 162

[10] J. Seghers, “On the free distance of turbo codes and related product codes,”

Swiss Federal Institute of Technology, Zurich, Switzerland, Diploma project

6613, vol. 42, August 1995.

[11] S.Dolinar and D.Divsalar, “Weight distributions for turbo codes using random

and nonrandom permutations,”TDA Progress Report, pp. 56–65, 15,August

1995.

[12] J.Sun and O.Y.Takeshita, “Interleavers for turbo codes using permutation

polynomials over integer rings,”IEEE Transactions on Information Theory, ,

no. 1, pp. 101 – 119, January 2005.

[13] S. Vafi, T. Wysocki, and I. Burnett, “Convolutional interleaver for unequal

error protection of turbo codes,” Joint 7th International Symposium on

DSP and Communication Systems (DSPCS) and 2nd Workshop on the Inter-

net, Telecommunications and Signal Processing (WITSP), pp. 485–491, Dec.

2003.

[14] S. Vafi and T. Wysocki, “Iterative turbo decoder design with convolutional

interleavers,”4th international symposium on Communication Systems, Net-

works and Digital Signal Processing, Newcastle (CSNDSP), UK., pp. 124–

127, July 2004.

[15] S.Vafi and T.Wysocki, “Computation of the free distance and low weight

distribution of turbo codes with convolutional interleavers,”15th IEEE Inter-

national Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), pp. 1356–1359, September 2004.

[16] S.Vafi and T.Wysocki, “Weight distribution of turbo codes with convolutional

interleavers,”Submitted to IEE Proceedings Communications, 2005.

[17] S.Vafi and T.Wysocki, “On the performance of turbo codes with convolutional

interleavers,”Asia-Pasific Conference on Communications (APCC), pp. 222–

226, October 2005.

BIBLIOGRAPHY 163

[18] S.Vafi and T.Wysocki, “Modified convolutional interleavers and their perfor-

mance in turbo codes,”IEEE Symposium on Trends In Communications and

joint ISI workshop on Mobile Future (SympoTIC), pp. 54–57, October 2004.

[19] S.Vafi and T.Wysocki, “Performance of convolutional interleavers with differ-

ent spacing parameters in turbo codes,”6th Australian communications theory

workshop, pp. 8–12, February 2005.

[20] S.Vafi and T.Wysocki, “Generalized convolutional interleaver and its perfor-

mance in turbo codes,”Submitted to IEEE Communications Letters, 2005.

[21] S.Vafi and T.Wysocki, “Application of convolutional interleavers in turbo

codes with unequal error protection,”Accepted for Journal of Telecommu-

nications and Information Technology (JTIT), 2005.

[22] Shu Lin and D.J.Costello, “Error control coding: Fundamentals and applica-

tions,” Prentice-Hall, 1983.

[23] G.D.Forney, “Convolutional codesI: Algebraic structue,”IEEE Transactions

on Information Theory, vol. 16, no. 6, pp. 720–738, March 1972.

[24] A.J.Viterbi and J.K.Omura, “Principles of digital communication and coding,”

McGraw-Hill Book Company, New York, NY, April 1979.

[25] A.Viterbi, “Error bounds for convolutional codes and an asymptotically op-

timum decoding algorithm,”IEEE. Transactions on Information Theory, pp.

260–269, April 1969.

[26] V.S.Pless and W.C.Huffman, “Handbook of coding theory,”Elsevier Science,

vol. 2, 1998.

[27] R.McEliece, “The theory of information and coding,”Cambridge Unversity

Press, 2003.

[28] G.D.Forney, “Maximum-Likelihood sequence detection in the presence of

intersymbol interference,”IEEE. Transactions on Information Theory, pp.

363–378, May 1972.

BIBLIOGRAPHY 164

[29] G.D.Forney, “The Viterbi Algorithm,” Proceedings of IEEE, pp. 268–278,

March 1973.

[30] L.H.Lou, “Implementing the Viterbi algorithm,” IEEE Signal Processing

Magazine, vol. 12, no. 5, pp. 42–52, September 1995.

[31] R.D.Wesel, “Convolutional codes appears in wiley encyclopedia of

telecommunications(0-471-36972-1),”John Wiley and Sons, 2003.

[32] R.H.Morelos-Zaragoza, “The art of error correcting coding,”John Wiley and

Sons, 2002.

[33] C.Berrou, A.Glavieux, and P.Thitimajshima, “Near shannon Limit Error-

Correcting coding and decoding: Turbo codes,”International Conference

on Communications (ICC), pp. 1064–1070, May 1993.

[34] R.M.Pyndiah, “Near-optimum decoding of product codes: Block turbo

codes,” IEEE Transactions on Communications Letters, vol. 46, no. 8, pp.

1003–1010, August 1998.

[35] O.Takeshita, O.M.Collins, P.Massey, and D.J.Costello, “Asymmetric turbo

codes,”IEEE International Symposium on Information Theory (ISIT), p. 179,

August 1998.

[36] C.Berrou and A.Glavieux, “Near optimum error correcting coding and decod-

ing: Turbo codes,”IEEE Transactions on Communications, pp. 1261–1271,

October 1996.

[37] M.A.Kousa and A.H.Mugaibel, “Puncturing effects on turbo codes,”IEE

Proceedings on Communications, vol. 149, no. 3, pp. 132–138, June 2002.

[38] D.Divsalar and F.Pollara, “Multiple turbo codes,”IEEE Military Communi-

cations Conference (MILCOM), pp. 279–285, November 1995.

[39] S.Huettinger and J.Huber, “Design of multiple-turbo-codes with transfer char-

acteristics of component codes,”Conference on Information Sciences and

Systems (CISS), March 2002.

BIBLIOGRAPHY 165

[40] L.Hanzo, T.H.Liew, and B.L.Yeap, “Turbo coding, turbo equalisation and

space-time coding for transmission over fading channels,”John Wiley and

sons, pp. 107–171, 2002.

[41] R.Garello, G.Montorsi, S.Benedetto, and G.Cancellieri, “Interleaver proper-

ties and their applications to the trellis complexity analysis of turbo codes,”

IEEE Transactions on Communications, vol. 1, pp. 793–807, May 2001.

[42] K.S.Andrews, “Turbo codes and interleaver design,”PhD Thesis of Cornell

University, August 1999.

[43] E.K.Hall and G.Wilson, “Stream-oriented turbo codes,”IEEE Transactions

on Information Theory, vol. 47, no. 5, pp. 1813–1831, July 2001.

[44] J.Hokfelt, O.Edfors, and T.Maseng, “On the theory and performance of trellis

termination methods for turbo codes,”IEEE Journal on Selected Areas in

Communications, vol. 19, pp. 838–847, May 2001.

[45] M.Breilingrou and L.Hanzo, “The super-trellis structure of turbo codes,”

IEEE Transactions on Information Theory, vol. 46, pp. 2212–2228, September

2000.

[46] S.Benedetto and G.Montorsi, “Performance of continuous and blockwise de-

coded turbo codes,”IEEE Communications Letters, vol. 1, pp. 77–79, May

1997.

[47] L.Perez, J.Seghers, and D.J.Costello, “A distance spectrum interpretation of

turbo codes,”IEEE Transactions on Information Theory, vol. 42, pp. 1698 –

1709, November 1996.

[48] S.Benedetto, G.Montorsi, and D.Divsalar, “Concatenated convolutional codes

with interleavers,” IEEE Communications Magazine, pp. 102–109, August

2003.

[49] S.Benedetto and G.Montorsi, “Unveiling turbo codes: Some results on parallel

concatenated coding schemes,”IEEE Transactions on Information Theory,

vol. 42, pp. 409–428, March 1996.

BIBLIOGRAPHY 166

[50] S.Benedetto and G.Montorsi, “Design of parallel concatenated convolutional

codes,” IEEE Transactions on Communications, vol. 44, no. 5, pp. 591–600,

May 1996.

[51] J.Yuan, B.Vucetic, and W.Feng, “Combined turbo codes and interleaver de-

sign,” IEEE Transactions on Communications, pp. 484–487, April 1999.

[52] C.Berrou and A.Glavieux, “Turbo codes:general principles and applications,”

Proceedings of the 6th Trirrenia International Workshop on Digital Commu-

nications, pp. 215–226, September 1993.

[53] J.Hokfelt, O.Edfors, and T.Maseng, “A turbo code interleaver design crite-

rion based on the performance of iterative decoding,”IEEE Communications

Letters, vol. 5, pp. 52–54, February 2001.

[54] J.Hokfelt, O.Edfors, and T.Maseng, “Turbo codes: Correlated extrinsic in-

formation and its impact on iterative decoding performance,”IEEE Vehicular

Technology Conference, vol. 3, pp. 1871–1875, May 1999.

[55] J.G.Proakis, “Digital communications,”McGraw-Hill, 2001.

[56] T.M.Duman, “Interleavers for serial and parallel concatenated (Turbo) codes,”

Wiley Encyclopedia of Telecommunications, pp. 1141–1151, December 2002.

[57] A.S.Barbulescu and S.S.Pietrobon, “Terminating the trellis of turbo-codes in

the same state,”IEEE Communications Letters, vol. 31, pp. 22–23, January

1995.

[58] W.J.Blackert, E.K.Hall, and G.Wilson, “Turbo code termination and inter-

leaver conditions,”IEE Electronics Letters, vol. 31, no. 24, pp. 2082–2084,

November 1995.

[59] H.Herzberg, “Multilevel turbo coding with short interleavers,”IEEE Journal

Selected Areas in Communications, vol. 16, pp. 303–309, February 1998.

[60] L.Lin and R.S.Cheng, “Improvements in SOVA-based decoding for turbo

codes,”IEEE Global Telecommunications Conference (Globecom), vol. 2, pp.

644–648, November 1997.

BIBLIOGRAPHY 167

[61] G.C.Clark and J.B.Cain, “Error-Correction Coding for Digital Communica-

tions,” Plunum Press, 1981.

[62] B.Vucetic and J.Yuan, “Turbo codes: Principles and applications,”Kluwer

Academic, 2000.

[63] S.Benedetto and G.Montorsi, “Average performance of parallel concatenated

block codes,”Electronics Letters, vol. 31, no. 3, pp. 156–158, February 1995.

[64] A.H.Aghvami F.Said and W.G.Chambers, “Improving random interleaver for

turbo codes,”Electronics Letters, vol. 35, pp. 2194–2195, December 1999.

[65] B.G.Lee, S.J.Bae, S.G.Kang, and E.K.Joo, “Design of swap interleaver for

turbo codes,”IEE Electronics Letters, vol. 35, no. 22, pp. 1939–1940, October

1999.

[66] W.Feng, J.Yuan, and B.Vucetic, “A code-matched interleaver design for turbo

codes,”IEEE Transactions on Communications, pp. 926–937, June 2002.

[67] A.Abbasfar and K.Yao, “Interleaver design for turbo codes by distance spec-

trum shaping,” IEEE Wireless Communications and Networking Conference

(WCNC), vol. 3, pp. 1616–1619, March 2004.

[68] X.Zhang, D.Yuan, and Ji.Luo, “Code-matched interleaver for turbo codes,”

IEEE Wireless Communications and Networking Conference (WCNC), vol. 3,

pp. 1607–1610, March 2004.

[69] H.Zhang, L.Wang, Q.Yuan, H.Wang, and J.Yu, “A Chaotic interleaver used

in turbo codes,”International Conference on Communications, Circuits and

Systems (ICCCAS), vol. 1, pp. 27–29, June 2004.

[70] J.Hokfelt and T.Maseng, “Methodical interleaver design for turbo codes,”

International Symposium on Turbo Codes and Related Topics, Brest, France,

pp. 212–215, September 1997.

[71] O.Y.Takeshita and D.J.Costello, “New deterministic interleaver designs for

turbo codes,” IEEE Transactions on Information Theory, vol. 46, no. 6, pp.

1988 – 2006, September 2000.

BIBLIOGRAPHY 168

[72] S.Crozier and P.Guinand, “High-performance low memory interleaver banks

for turbo codes,” Vehicular Technology Conference, VTC 2001 Fall, vol. 4,

pp. 2394–2398, October 2001.

[73] S.Crozier and P.Guinand, “Distance upper bounds and true minimum distance

results for turbo-codes designed with DRP interleavers,”3rd International

Symposium on Turbo codes and Related Topics, Brest, France, pp. 169–172,

September 2003.

[74] S.Crozier, “Interleaving with golden increments,”European Patent Applica-

tion, EP 0963049A2, December 1998.

[75] S.Crozier, J.Jodge, P.Guinand, and A.Hunt, “Performance of Turbo-codes

with relative prime and golden interleaving strategies,”Proceeding of Sixth

International Mobile Satellite Conference (IMSC), Ottawa, Canada, pp. 268–

275, June 1999.

[76] F.Chan, “Matched interleavers for turbo codes with short frames,”Seventh

Candian workshop on Information Theory, June 2001.

[77] F.Chan, “Block interleavers for turbo codes with short frames,”3rd Inter-

national Symposium on Turbo Codes and Related Topics, Brest, France, pp.

563–566, September 2003.

[78] J.A.Briffa and V.Buttigieg, “Interleaving and termination in unpunctured sym-

metric turbo codes,”IEE Proceedings on Communications, vol. 149, no. 1, pp.

6–12, February 2002.

[79] J.Boutros and G.Zemor, “Interleavers for turbo codes that yield a minimum

distance growing with blocklength,”IEEE International Symposium on Infor-

mation Theory (ISIT), p. 55, July 2004.

[80] D.Truhachev, M.Lentmaier, O.Wintzell, and K.SH.Zigangirov, “On the mini-

mum distance of turbo codes,”IEEE International Symposium on Information

Theory (ISIT), p. 84, 2002.

BIBLIOGRAPHY 169

[81] C.J.C.Bravo and I.Rubio, “Algebric construction of interleavers using per-

mutation monomials,” IEEE International Conference on Communications

(ICC), pp. 911–915, June 2004.

[82] C.J.Corrada-Bravo and I.Rubio, “Deterministic interleavers for turbo codes

with random-like performance and simple implementation,”3rd International

Sympsium on Turbo codes and Related Topics,Brest,France, pp. 555–558,

September 2003.

[83] H.R.Sadjadpour, M.Salehi, N.J.A.Sloane, and G.Nebe, “Interleaver design for

short block length turbo codes,”IEEE International Conference on Commu-

nications, vol. 2, pp. 628–632, June 2000.

[84] H.R.Sadjadpour, M.Salehi, N.J.A.Sloane, and G.Nebe, “Interleaver design for

turbo codes,” IEEE Journal on Selected Areas in Communications, vol. 19,

no. 5, pp. 831–837, May 2001.

[85] A.Tarable and S.Benedetto, “Mapping interleaving laws to parallel turbo de-

coder architectures,”IEEE Communications Letters, vol. 3, no. 8, pp. 162–

164, March 2004.

[86] J.Hagenauer, E.Offer, and L.Papke, “Iterative decoding of binary block and

convolutional codes,”IEEE Transactions on Information Theory, vol. 42, no.

2, pp. 429–445, March 1996.

[87] L.Bahl, J.Cocke, F.Jelinek, and J.Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate (Corresp.),”IEEE Transactions on Information

Theory, vol. 20, no. 2, pp. 284–287, March 1974.

[88] P.Robertson, “Illuminating the structure of code and decoder of parallel con-

catenated recursive systematic(turbo) codes,”IEEE Global Telecommunica-

tions Conference (Globecom), vol. 3, pp. 1298–1303, December 1994.

[89] J.Hagenauer, P.Robertson, and L.Papke, “Iterative (turbo) decoding of system-

atic convolutional codes with MAP and SOVA algorithm,”ITG Conference on

Source and Channel Coding, pp. 429–445, October 1994.

BIBLIOGRAPHY 170

[90] J. Hagenauer and P.Hoher, “A Viterbi algorithm with soft-decision outputs and

its applications,”IEEE Global Telecommunications Conference (Globecom),

pp. 47.1.1–47.1.7, Nov. 1989.

[91] J.Hagenauer, “Source-controlled channel decoding,”IEEE Transactions on

Communications, vol. 43, no. 9, pp. 2449–2457, September 1995.

[92] L.Papke, P.Robertson, and E.Villebrun, “Improved decoding with the SOVA

in a parallel concatenated (Turbo-code) scheme,”IEEE International Confer-

ence on Communications (ICC), vol. 1, pp. 102–106, June 1996.

[93] Z.Blazek and V.K.Bhargava, “A DSP-based implementation of a turbo-

decoder,” IEEE Global Telecommunications Conference (Globecom), pp.

2751–2755, November 1998.

[94] R.A.Stirling-Gallacher, “Performance of sub-optimal normalisation schemes

for a turbo decoder using the Soft Output Viterbi algorithm,”IEEE Inter-

national Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), , no. 2, pp. 888–892, September 2000.

[95] D.W.Kim, T.W.Kwon, J.R.Choi, and J.J.Kong, “A modified two-step SOVA-

based turbo decoder with a fixed scaling factor,”IEEE International Sympo-

sium on Circuits and Systems (ISCAS), vol. 4, pp. 37–40, May 2000.

[96] J.Vogt and A.Finger, “Improving the Max-Log-MAP turbo decoder,”IEE

Electronics Letters, vol. 36, no. 23, pp. 1937–1939, November 2000.

[97] S.Papaharalabos, P.Sweeney, and B.G.Evans, “Modification of branch metric

calculation to improve iterative SOVA decoding of decoding turbo codes,”

Electronics Letters, vol. 39, no. 19, pp. 1391–1392, September 2003.

[98] S.Papaharalabos, P.Sweeney, and B.G.Evans, “A new method of improving

SOVA turbo decoding for AWGN, Rayleigh and Raician fading channels,”

IEEE Spring Vehicular Technology Conference(VTC), vol. 5, pp. 2862–2866,

May 2004.

BIBLIOGRAPHY 171

[99] W.Zhongfeng and K.K.Parhi, “High performance, high throughput turbo

SOVA decoder design,”IEEE Transactions on Communications, vol. 51, no.

4, pp. 570–579, April 2003.

[100] C.X.Huang and A.Ghrayeb, “Improved SOVA and APP decoding algorithms

for serial concatenated codes,”15th IEEE International Symposium on Per-

sonal, Indoor and Mobile Radio Communications (PIMRC), vol. 2, pp. 1121–

1125, September 2004.

[101] L.Lin and R.S.Cheng, “Improvements in SOVA-based decoding for turbo

codes,”IEEE International Conference on Communications (ICC), vol. 3, pp.

1473–1478, June 1997.

[102] W.Zhongfeng, H.Suzuki, and K.K.Parhi, “Efficient approaches to improving

performance of VLSI SOVA-based turbo decoders,”IEEE International Sym-

posium on Circuits and Systems (ISCAS), vol. 1, pp. 287–290, May 2000.

[103] M.Fossorier, F.Burkert, S.Lin, and J. Hagenauer, “On the equivalence between

SOVA and Max-Log-MAP decodings,”IEEE Communications Letters, vol. 2,

no. 5, pp. 137–139, May 1998.

[104] J.Chen, M.Fossorier, S.Lin, and C.Xu, “Bi-directional SOVA decoding for

turbo-codes,” IEEE Communications Letters, vol. 4, no. 12, pp. 405–407,

December 2000.

[105] J.Ramsey, “Realization of optimum interleavers,”IEEE Transactions on In-

formation Theory, vol. 16, no. 3, pp. 338–345, May 1970.

[106] G.D.Forney, “Burst-correcting codes for the classic bursty channel,”IEEE

Transaction on Communications., vol. COM-19, pp. 772–781, October 1971.

[107] G.D.Forney, “Interleavers,”Us Patent 3652998, March 1970.

[108] D.Divsalar and R.J.McEliece, “Effective free distance of turbo codes,”IEE

Electronics Letters, vol. 32, no. 5, pp. 445–446, February 1996.

BIBLIOGRAPHY 172

[109] N.Kahale and R.Urbanke, “On the minimum distance of parallel and serially

concatenated codes,”International Symposium on Information Theory (ISIT),

p. 21, August 1998.

[110] I.Yoscovich and J.Snyders, “On the effective free distance of turbo codes,”

IEEE Information Theory Workshop (ITW), pp. 120–121, June 1998.

[111] M.Ambroze, G.Wade, and Martin Tomlinson, “Dependence ofdfree in

MPCCC systems,”IEEE Transactions on Communications, vol. 51, pp. 318–

325, March 2003.

[112] W.J.Blackert, E.K.Hall, and G.Wilson, “An upper bound on turbo code free

distance,” IEEE International Conference on Communications (ICC), vol. 2,

pp. 957–961, June 1996.

[113] R.Garello, F.Chiaraluce, P.Pierleoni, M.Scaloni, and S.Benedetto, “On error

floor and free distance of turbo codes,”IEEE International Conference on

Communications (ICC), vol. 1, pp. 45–49, June 2001.

[114] R.Garello, P.Pierleoni, and S.Benedetto, “Computing the free distance of turbo

codes and serially concatenated codes with interleavers: algorithms and appli-

cations,” IEEE Journal on Selected Areas in Communications, vol. 19, pp.

800–812, May 2001.

[115] E.Rosnes and Ø.Ytrehus, “Improved algorithms for high rate turbo code

weight distribution calculation,”10th International Conference on Telecom-

munications (ICT), vol. 1, pp. 104–110, March 2003.

[116] E.Rosnes and Ø.Ytrehus, “Improved algorithms for determination of turbo-

code weight distributions,”IEEE Transactions on communications, vol. 53,

no. 1, pp. 120–121, January 2005.

[117] P.Yeh, A.Yilmaz, and W.Stark, “On the error analysis of turbo codes: Weight

Spectrum Estimation (WSE) scheme,”IEEE Internation Symposium on Infor-

mation Theory (ISIT), p. 439, June 2003.

BIBLIOGRAPHY 173

[118] A. Huebner and D.J. Costello, “A simple method of approximating the error

floor of turbo codes with S-type permutors,”International Symposium on

Information Theory (ISIT), p. 473, 27 June-2 July 2004 2004.

[119] Cemaron, “Generalized convolutional interleaver/deinterleaver,”US

patent,No.US 6,697,975 B2, 24,Feb.2004.

[120] F.Marx and J.Farah, “Improved turbo-coded UMTS systems with unequal

error protection of compressed video sequences transmitted over frequency-

selective channels,” IEEE International Conference on Communications

(ICC), pp. 3091–3095, June 2004.

[121] N.Thomos, N.V.Boulgouris, and M.G.Strintzis, “Wireless image transmission

using turbo codes and optimal unequal error protection,”IEEE International

Conference on Image Processing, pp. 73–76, September 2003.

[122] M.Salah, R.A.Rains, and A.Temple, “A general interleaver for equal and un-

equal error protections of turbo codes with short frames,”International Con-

ference on Information Technology: Coding and Computing, pp. 412–415,

2000.

[123] G.Caire and G.Lechner, “Turbo codes with unequal error protection,”Elec-

tronics Letters, pp. 629–631, March 1996.

[124] M.Grangetto, E.Magli, and G.Olmo, “Embedding Unequal Error Protection

into turbo codes,”35th Asilomar Conference on Signals, Systems and Com-

puters, vol. 1, pp. 300–304, 2001.

[125] M.Ferrari, F.Scalise, and S.Bellini, “Prunable S-random interleavers,”IEEE

International Conference on Communications (ICC), vol. 3, pp. 1711–1715,

May 2002.

[126] P.Popovski, L.Kocarev, and A.Risteski, “Design of flexible-length S-random

interleaver for turbo codes,”IEEE Communications Letters, vol. 8, no. 7, pp.

461–463, July 2004.

BIBLIOGRAPHY 174

[127] L.Dioni and S.Benedetto, “Design of prunable S-random interleavers,”In-

ternational Symposium on Turbo Codes and Related Topics, pp. 279–289,

September 2003.

[128] M.Barazande-Pour, J.W.Mark, and A.K.Khandani, “Multi-level priority trans-

mission of images over a turbo-coded channel,”IEEE Pacific Rim Conference

on Communications, Computers and Signal Processing(PACRIM), pp. 904–

907, August 1997.

[129] A.Mohammadi and A.K.Khandani, “Unequal error protection on the turbo-

encoder output bits,” IEEE International Conference on Communications

(ICC), pp. 730–734, 1997.

[130] A.Mohammadi and A.K.Khandani, “Unequal error protection on turbo-

encoder output bits,”Electronics Letters, pp. 273–274, February 1997.

[131] G.Caire and E.Biglieri, “Parallel concatenated codes with unequal error pro-

tection,” IEEE Trans.on Communications, vol. 46, no. 5, pp. 565–567, May.

1998.

	University of Wollongong - Research Online
	Cover
	Copyright warning
	Title page
	Abstract
	Acknowledgments
	Contents
	List of figures
	Table of tables
	List of abbreviations
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography

