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Abstract

Harmonic monitoring is an important issue for electricity utilities and their customers.
Continuous monitoring of voltage and current are required to identify any substantial
harmonic events before they occur. This monitoring results in large volumes of mul-
tivariate data. Although researchers have realised that such large amounts of power
quality (PQ) data hold much more information than that reported using classical
statistical techniques for PQ monitoring, few have taken the opportunity to exploit
this additional information. This hidden information might be of assistance in the
identification of critical issues for diagnoses of harmonic problems such as, predicting
failures in advance and giving alarms prior to the onset of dangerous situations.

Utility engineers are now seeking new tools in order to extract information that
may otherwise remain hidden, especially within large volumes of data. Data mining
tools are an obvious candidate for assisting in such analysis of large scale data. Data
mining can be understood as a process that uses a variety of analytical tools to identify
hidden patterns and relationships within data. Classification based on clustering is
an important utilisation of unsupervised learning within data mining, in particular
for finding and describing a variety of patterns and anomalies in multivariate data
through various machine learning techniques and statistical methods. Clustering is
often used to gain an initial insight into complex data and particularly in this case,
to identify underlying classes within harmonic data.

The main data mining methodology used in this work is that of mixture modelling
based on the Minimum Message Length (MML) algorithm which essentially searches
for a model which best describes the data using a metric of an encoded message.
This method of unsupervised learning, or clustering, has been shown to be able to
detect anomalies and identify useful patterns within the monitored harmonic data
set. Anomaly detection and pattern recognition in harmonic data can provide engi-
neers with a rapid, visually oriented method for evaluating the underlying operational
information contained within the data set.

A case study from power quality data upon which the MML method has been ap-
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vi
plied, was taken from a harmonic monitoring program installed in a typical 33/11kV
MYV zone substation in Australia that supplies ten 11kV radial feeders. Several pat-
terns have been identified from using the MML technique on the harmonic data, such
as significant high harmonic disturbances, footprints of the monitored sites, unusual
harmonic events (capacitor switching, turn on televisions, air conditioners and the off
peak hot water system) and detection of different abstractions (super-groups), each
of which comprise similar clusters. The C5.0 supervised learning algorithm has been
used to generate expressible and understandable rules which identify the essential
features of each member cluster, and to further utilize these in predicting which ideal
clusters any new observed data may best described by.

One difficulty with the MML algorithm when used to derive various mixture mod-
els is the difficulty in establishing a suitable stopping criterion to secure the opti-
mum number of (mixture) clusters during the clustering process. A novel technique
has been developed to overcome this difficulty using the trend of the exponential of
message length difference between consecutive mixture models. First, the proposed
method has been tested using data from known number of clusters with randomly
generated data points and also with data from a simulation of a power system. The
results from these tests confirm the effectiveness of the proposed method in finding
the optimum number of clusters. Second, the developed method has been applied
to various two-weekly data sets from the harmonic monitoring program used on this
thesis. The optimum number of clusters has been verified by the formation of super-
groups using Multidimensional Scaling (MDS) and link analysis. Third, the method
was benchmarked against a commonly used fitness function technique, which has un-
derestimated the optimal number of cluster in the measured harmonic data. This
resulted from the theoretical maximum entropy equation used in calculating the fit-
ness function that assumes the attributes are independent which is not the case in the
correlated nature of the harmonic attributes. Finally, generated rules from the C5.0
algorithm were used for classification and prediction of future events to determine

which cluster any new data should belong to.
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