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Abstract

This thesis presents a mathematical modelling in nanotechnology. Many ex-

periments and molecular dynamics simulations demonstrate that the melting point

of nanoparticles shows a size-dependent characteristic in the nanoscale. Based on

the assumption that the material is a pure one, the melting process of spherical and

cylindrical particles, especially nanoparticles, is treated as a Stefan moving boundary

problem. Analytical or semi-analytical approaches, such as small-time perturbation

expansions with front-fixing techniques, large Stefan number limit, integral iterative

scheme, and numerical methods, such as enthalpy scheme and front-fixing method,

are applied to the one- and or two- phase Stefan problem in spherical and cylindrical

domains by taking into account the effect of the interfacial or surface tension. The

results from these methods are compared and show excellent agreement to some ex-

tent. This thesis may provide a possibility of explaining some interesting phenomena

occurring in the physical experiments, i.e. superheating and “abrupt melting”, or

work as a guide for the potential applications of nanoparticles, for example, drug

delivery, nanoimprinting and targeted ablation of tumor cells

In Chapter 1, a simply survey of the research background is given. Chapter 2

studies the full classical two-phase Stefan problems without surface or interfacial

tension. By using the approach from large Stefan number limit and small-time

perturbation methods, long- and short-time solutions are obtained, and the results

from these methods are compared with the numerical enthalpy scheme. The limits

of zero Stefan-number and slow diffusion in the inner core are also noted. Chapter 3

presents the melting of a spherical or cylindrical nanoparticle by including the effects

of surface tension through the Gibbs-Thomson condition. A single-phase melting

limit is derived from the general two-phase formulation, and the resulting equations

are studied analytically in the limit of small time and large Stefan number. Further

analytical approximations for the temperature distribution and the position of the

solid-melt interface are found by applying an integral formulation together with an

iterative scheme. All these analytical results are compared with numerical solutions

obtained using a numerical front-fixing method, and they are shown to provide

good approximations in various regimes. In Chapters 4 and 5, the methods used

in above sections are extended to the melting problem for spherical and cylindrical

ii



nanoparticles, respectively. The results from these approaches are compared with

those from the numerical front-fixing method.

The original contributions of this thesis are: approximate analytical solutions are

obtained for the classical two-phase Stefan problems in a spherical domain; a general

single-phase limit for the melting of nanoparticles are derived and analyzed with the

correct boundary conditions; a critical radius is found to exist for the blow-up of

the one-phase melting; the melting process of spherical and cylindrical nanoparticles

are studied analytically from the perspective of Stefan moving boundary problem

by including the effect of surface tension; some interesting phenomena observed

in physical experiments, i.e. superheating and “abrupt melting”, are explained in

terms of Stefan problems.
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Nomenclature

k∗` , k∗s the thermal conductivities of the solid and liquid phases, respectively

c`
∗, c∗s the specific heat of the solid and liquid phases, respectively

σsv, σlv the interfacial tension between the solid and vapor phases and between

the liquid and vapor phases, respectively

T ∗
` , T ∗

s the physical temperatures of the liquid and solid phases, respectively

T`, Ts the dimensionless temperatures of the liquid and solid phases, respectively

T ∗
a the physical temperature of particle surface

V ∗, V the physical and dimensionless initial temperatures of the particle

T ∗
m the fusion temperature of the bulk material of the particle

R∗, R the physical and dimensionless positions of the solid/liquid interface

a∗ the initial radius of the particle

T ∗
f (R∗) the equilibrium temperature at the solid/liquid interface

κ the ratio of the thermal conductivities k∗s/k
∗
`

δ the ratio of the specific heat c∗s/c`
∗

L the latent heat of fusion

λ the interfacial tension coefficient

α the Stefan number α = L/[c`(T
∗
a − T ∗

m(1− ω/a∗))]

β the effective Stefan number β = α− σ(1− δ)− δV

σ the parameter related to the interfacial tension
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