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ABSTRACT

The objective of this work was to study the single crystal growth of Na,CoO, by the
optical floating zone technique and the intrinsic properties of the high quality single
crystal samples thus produced. The properties of the superconductors derived from it

will also be reported.

This thesis, after a literature review on the Ng,CoO, family and the superconductors
derived from it, reports a systematic study on growing Na.CoO, (x = 0.32-1.00) and
NaCoO; - yH20 (x = 0.22-0.47, y = 1.3). The experiments demonstrate that nearly pure
a- (x = 0.90-1.00) and é.- (x =0.75) phases of NaxCoO- crystals could be obtained using
the optical floating zone method, while other phases with lower sodium content, x <
0.70 (B-phase with x = 0.55, 0.60 and y-phase with x = 0.65 and 0.70, respectively), are
observed always to contain NaO, Co30,4, and Napoor phases. There is experimental
evidence that the dependence of the superconducting transition temperature on Na
content is much weaker than reported earlier. Implications of the Na effect for
understanding of the structure, thermoelectricity, and superconducting phase diagram

are discussed.



Na-extraction and hydration were carried out on the a- and d-samples to obtain the
superconducting phase. Hydrated single crystals exhibit cracked layers perpendicular to
the c-axis, due to a large expansion when the water is inserted into the structure. A
study of intercalation/de-intercalation was performed to determine the stability of the
hydrated phase and the effects of hydration on the structure of the compound. X-ray
diffraction and thermogravimetric experiments were used to monitor the processes of
accommodation of water molecules and their removal from the crystal lattice. The
initial intercalation process takes place with two water molecules (correspondingto y =
0.6) inserted in aformula unit, followed by a group of four (y = 1.3) to form aNa(H,0),
cluster. Thermogravimetric analysis suggests that de-intercalation occurs with the
remova of the water molecules one by one from the hydrated cluster at elevated
temperatures of approximately 50, 100, 200, and 300°C. My investigations reveal that
the hydration process is dynamic and that water molecule intercalation and

de-intercalation follow different reaction paths in an irreversible way.

This thesis aso contains intensive studies on the cobalt oxide superconductors Ng.CoO,
. 1.3H20 based on *Co nuclear magnetic resonance (NMR) and nuclear quadrupole
resonance (NQR) measurements. For the sample with x = 0.26 and critical temperature
T. = 4.6 K, it was found that the spin-attice relaxation rate, 1/T,, shows a T3 variation
below T.and down to very low temperatures, which indicates the presence of line nodes
in the superconducting (SC) gap function. The spin susceptibility below T, for these

samples was aso studied via Knight shift measurements. The spin part of the Knight

2



shift decreases below T in both the a- and ¢- directions, indicating asinglet spin state of
the Cooper pairs. Theresults strongly suggest that the superconducting state is a d-wave
state. Based on bulk measurements of the electron momentum distribution, using the
technique of x-ray Compton scattering, the evidence that small, ellipticaly shaped
pockets do indeed exist in the Fermi surface of cobalt oxide superconductors was

presented.

The magnetic properties of two-layer NaxCoO- (x = 0.42, 0.82, and 0.87) were studied.
The magnetic susceptibility measurements revealed considerable anisotropy aong
H//ab and H//c for the as-grown single crystals. It was found that an antiferromagnetic
transition with Néel temperature, Ty = 21 K, occurred for the x = 0.82 sample, and there
was a paramagnetic phase for the x = 0.87 sample over a wide temperature range from 2
to 300 K, while the sample with x = 0.42 showed a monotonic increase of y with
increasing temperature above ~100 K. In addition, the x = 0.82 sample had the largest
derived anisotropic g-factor ratio (ga/ge~ 1.30), whereas the sample with x = 0.42 was

nearly isotropic (ga/gc~ 0.96).

Magnetic susceptibility measurements on three-layer a-Na,Co0O, (x = 0.91, 0.92, and
0.93) showed that the magnetic properties depend strongly on x. The compound was
found to be antiferromagnetic at Tn~ 20 K for x = 0.91 and x = 0.92, and paramagnetic
for x = 0.93. In-plane and out-of-plane anisotropy were observed for the x = 0.91

crystals. In addition, the anisotropic g-factor ratio (gw/gc) derived from the anisotropic

3



susceptibility along H//ab and H//c decreased significantly as the sodium composition

increased from x = 0.91 to x = 0.93.

A systematic study was aso carried out on the conduction mechanism and the
anisotropy of the electrical transport properties of the a-Nayo,CoO, single crystals. The
resistivity was found to show a large anisotropy along the ab plane and the c axis. The
resistivity below the metal-to-insulator transition temperature (20 K) can be well fitted
by the variable-range hopping model. The high temperature range can be fitted well by
p(T) = po + Angdsinh(hwd2ksT) + BT" both for the in-plane and the out-of-plane
behaviours. Such behaviour provides evidence for small polaron and spin-wave

scattering metallic conduction in heavily Na-doped sodium cobaltate.
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