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1

ABSTRACT

The objective of this work was to study the single crystal growth of NaxCoO2 by the

optical floating zone technique and the intrinsic properties of the high quality single

crystal samples thus produced. The properties of the superconductors derived from it

will also be reported.

This thesis, after a literature review on the NaxCoO2 family and the superconductors

derived from it, reports a systematic study on growing NaxCoO2 (x = 0.32–1.00) and

NaxCoO2 ·yH2O (x = 0.22–0.47, y = 1.3). The experiments demonstrate that nearly pure

α- (x = 0.90–1.00) and ά- (x = 0.75) phases of NaxCoO2 crystals could be obtained using

the optical floating zone method, while other phases with lower sodium content, x <

0.70 (β-phase with x = 0.55, 0.60 and γ-phase with x = 0.65 and 0.70, respectively), are

observed always to contain Na2O, Co3O4, and Na-poor phases. There is experimental

evidence that the dependence of the superconducting transition temperature on Na

content is much weaker than reported earlier. Implications of the Na effect for

understanding of the structure, thermoelectricity, and superconducting phase diagram

are discussed.
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Na-extraction and hydration were carried out on the α- and ά-samples to obtain the

superconducting phase. Hydrated single crystals exhibit cracked layers perpendicular to

the c-axis, due to a large expansion when the water is inserted into the structure. A

study of intercalation/de-intercalation was performed to determine the stability of the

hydrated phase and the effects of hydration on the structure of the compound. X-ray

diffraction and thermogravimetric experiments were used to monitor the processes of

accommodation of water molecules and their removal from the crystal lattice. The

initial intercalation process takes place with two water molecules (corresponding to y =

0.6) inserted in a formula unit, followed by a group of four (y = 1.3) to form a Na(H2O)4

cluster. Thermogravimetric analysis suggests that de-intercalation occurs with the

removal of the water molecules one by one from the hydrated cluster at elevated

temperatures of approximately 50, 100, 200, and 300oC. My investigations reveal that

the hydration process is dynamic and that water molecule intercalation and

de-intercalation follow different reaction paths in an irreversible way.

This thesis also contains intensive studies on the cobalt oxide superconductors NaxCoO2

·1.3H2O based on 59Co nuclear magnetic resonance (NMR) and nuclear quadrupole

resonance (NQR) measurements. For the sample with x = 0.26 and critical temperature

Tc = 4.6 K, it was found that the spin–lattice relaxation rate, 1/T1 , shows a T3 variation

below Tc and down to very low temperatures, which indicates the presence of line nodes

in the superconducting (SC) gap function. The spin susceptibility below Tc for these

samples was also studied via Knight shift measurements. The spin part of the Knight
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shift decreases below Tc in both the a- and c- directions, indicating a singlet spin state of

the Cooper pairs. The results strongly suggest that the superconducting state is a d-wave

state. Based on bulk measurements of the electron momentum distribution, using the

technique of x-ray Compton scattering, the evidence that small, elliptically shaped

pockets do indeed exist in the Fermi surface of cobalt oxide superconductors was

presented.

The magnetic properties of two-layer NaxCoO2 (x = 0.42, 0.82, and 0.87) were studied.

The magnetic susceptibility measurements revealed considerable anisotropy along

H//ab and H//c for the as-grown single crystals. It was found that an antiferromagnetic

transition with Néel temperature, TN = 21 K, occurred for the x = 0.82 sample, and there

was a paramagnetic phase for the x = 0.87 sample over a wide temperature range from 2

to 300 K, while the sample with x = 0.42 showed a monotonic increase of χ with 

increasing temperature above 100 K. In addition, the x = 0.82 sample had the largest

derived anisotropic g-factor ratio (gab/gc1.30), whereas the sample with x = 0.42 was

nearly isotropic (gab/gc0.96).

Magnetic susceptibility measurements on three-layer -NaxCoO2 (x = 0.91, 0.92, and

0.93) showed that the magnetic properties depend strongly on x. The compound was

found to be antiferromagnetic at TN 20 K for x = 0.91 and x = 0.92, and paramagnetic

for x = 0.93. In-plane and out-of-plane anisotropy were observed for the x = 0.91

crystals. In addition, the anisotropic g-factor ratio (gab/gc) derived from the anisotropic
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susceptibility along H//ab and H//c decreased significantly as the sodium composition

increased from x = 0.91 to x = 0.93.

A systematic study was also carried out on the conduction mechanism and the

anisotropy of the electrical transport properties of the α-Na0.91CoO2 single crystals. The

resistivity was found to show a large anisotropy along the ab plane and the c axis. The

resistivity below the metal-to-insulator transition temperature (20 K) can be well fitted

by the variable-range hopping model. The high temperature range can be fitted well by

ρ(T) = ρ0 + Aωs/sinh2(ћ ωs/2kBT) + BT7/2, both for the in-plane and the out-of-plane

behaviours. Such behaviour provides evidence for small polaron and spin-wave

scattering metallic conduction in heavily Na-doped sodium cobaltate.
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