#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Contributions to image encryption and authentication
Author: T Uehara

Year: 2003

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong Thesis Collections

University of Wollongong Thesis Collection

University of Wollongong Year 2003

Contributions to image encryption and
authentication

Takeyuki Uehara
University of Wollongong

Uehara, Takeyuki, Contributions to image encryption and authentication, PhD thesis, Depart-
ment of Computer Science, University of Wollongong, 2003. http://ro.uow.edu.au/theses/430

This paper is posted at Research Online.
http://ro.uow.edu.au/theses/430

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.

Contributions to Image Encryption and
Authentication

A thesis submitted in partial fulfillment of the

requirements for the award of the degree
Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

Takeyuki Uehara

Department of Computer Science
October 2003

Declaration

This is to certify that the work reported in this thesis was done
by the author, unless specified otherwise, and that no part of
it has been submitted in a thesis to any other university or

similar institution.

Takeyuki Uehara
October 21, 2003

il

Abstract

Advanced digital technologies have made multimedia data widely available. As mul-
timedia applications become common in practice, security of multimedia data has be-
come main concern. Digital images are widely used in various applications, that include
military, legal and medical systems and these applications need to control access to im-
ages and provide the means to verify integrity of images.

Image encryption algorithms protect data against unauthorized access. In almost
all cases image data is compressed before it is stored or transmitted because of the
enormity of multimedia data and their high level of redundancy. Compressing plaintext
before applying the encryption algorithm effectively increases security of the overall
system. However direct application of encryption algorithms to image data i) requires
high computational power and ii) introduces delay in real-time communication. If
a data compression algorithm can be made to also provide security, less processing
overhead could be expected as a single algorithm achieves two goals.

Image authentication provides the means to verify the genuineness of images. Au-
thentication codes provide a method of ensuring integrity of data. The challenge in
image authentication is that in many cases images need to be compressed and so the au-
thentication algorithms need to be compression tolerant. Cryptographic authentication
systems are sensitive to bit changes and so are not suitable for image authentication.

In this thesis, we study existing image encryption and authentication systems and
demonstrate various attacks against these systems. We propose a JPEG encryption
system that encrypts only part of the data, and a JPEG2000 encryption system that
uses a simple operation, i.e. permutation, and show methods to minimize the com-
putation cost for encryption. We also propose an image authentication system that

remains tolerant to changes due to JPEG lossy compression.

il

Acknowledgments

I would like to thank my supervisor Dr. Rei Safavi-Naini and Dr. Philip Ogonbuna for
guiding and encouraging me throughout this project. I would also like to thank Dr.
Wangqing Li and Dr. Xing Zhang for their interest in this project. I would also like to
thank my colleagues, Gareth Charles Beatt Brisbane, Chandrapal Kailasanathan, Dr.
Nicholas Sheppard, Angela Piper, Vu Dong To, Qiong Liu, the people in Centre for
Computer Security Research (CCSR) and Dr. John Fulcher. The work of the author
is partially supported by Motorola Australian Research Centre (MARC).

iv

Publications

The results of research in this thesis were published as follows.

e Takeyuki Uehara and Reihaneh Safavi-Naini, Chosen DCT Coefficients Attack
on MPEG Encryption Schemes, Proc. of IEEE Pacific-Rim Conference on Mul-
timedia, 316-319, 2000

e Takeyuki Uehara and Reihaneh Safavi-Naini and Philip Ogunbona, Securing
Wavelet Compression with Random Permutations, Proc. of IEEE Pacific-Rim
Conference on Multimedia, 332-335, 2000

e Takeyuki Uehara and Reihaneh Safavi-Naini, On (In)security of “A Robust Image
Authentication Method”, Proc. of IEEE Pacific-Rim Conference on Multimedia
(PCM 2002),1025-1032, 2002

e Takeyuki Uehara, Reihaneh Safavi-Naini and Philip Ogunbona, A Secure and
Flexible Authentication System for Digital Images, ACM Multimedia Systems
Journal to appear, 2003

Patent applications are as follows.

e JPEG2000 encryption system

Takeyuki Uehara (University of Wollongong), Reihaneh Safavi-Naini (University
of Wollongong), Philip Ogunbona (Motorola Australian Research Centre) and

Motorola

e JPEG encryption system

Takeyuki Uehara (University of Wollongong), Reihaneh Safavi-Naini (University
of Wollongong), Philip Ogunbona (Motorola Australian Research Centre) and

Motorola

Contents

Abstract iii
Acknowledgments iv
1 Introduction 1
1.1 Motivation 1
1.2 Objective 4
1.3 Contributions 4
1.3.1 TImage Encryption oL 4

1.3.2 Image Authentication 5

1.3.3 Organization of Thesis 5

1.4 Tmages e 6
1.5 Notations 7

2 Background 10
2.1 Introduction L 10
2.2 Information Theory 10
2.3 Data Compression 12
2.3.1 Source Coding 12

2.3.2 Optimal Codes 12

2.3.3 Constructions of Optimal Codes 13

2.4 Security Systems 17
2.4.1 Symmetric Key Encryption 17

2.4.2 Public Key Cryptography 17

2.4.3 Authentication L L 18

2.4.4 Digital Signature Lo o 18

2.4.5 Message Authentication Codes 19

2.4.6 Attacks against Encryption Systems 19

vi

2.4.7 Attacks against Authentication Systems
2.4.8 Redundancy of a Language
2.4.9 Unicity Distance
2.4.10 Data Compression and Security
2.5 Image Compression e
2.5.1 Transformo
2.5.2 Quantization

253 JPEG
2.5.4 JPEG2000
255 MPEG

2.6 Conclusion

Review of Image Encryption and Image Authentication Systems
3.1 Introduction
3.2 Arithmetic Coding Encryption Systems
3.2.1 Model-based Schemes
3.2.2 Coder-based Schemes
3.2.3 Effect on Data Compression Performance
3.2.4 Security
3.3 Image Encryption oo o
3.3.1 Elementary Cryptographic Operations
3.3.2 Selective Encryption 0oL
3.3.3 Compression Performance of Encryption Systems
3.3.4 Security
3.3.5 Concluding Remarks
3.4 Image Authentication
3.4.1 Watermarking Systems
3.4.2 Signature Systems
3.4.3 Evaluation Lo
3.4.4 Concluding Remarks

3.5 Conclusion

Attacks on Image Encryption Systems

4.1 Introduction
4.2 Chosen DCT Coefficients Attack on MPEG Encryption Schemes
4.2.1 Encryption Using Random Permutation

vii

32
32
32
33
33
34
34
35
35
37
40
41
42
43
44
47
52
53
54

55
%)
%)

4.2.2 Chosen DCT Coefficients Attack 57

4.2.3 Concluding Remarks 60
4.3 Recovering the DC Coefficient in Block-based Discrete Cosine Transform 60
4.3.1 Properties of DCT Coefficients 61
4.3.2 Recovering the DC Coefficients in a Block-based DCT 64
4.3.3 Experiment Results 70
4.3.4 Another Application of DC Recovery 72
4.3.5 Concluding Remarks 74
4.4 Conclusion e 75
JPEG Encryption 77
5.1 Introduction 7
5.2 JPEG Compression 78
5.2.1 Huffman Coding in JPEG 79
5.3 JPEG Stream e 82
5.3.1 JPEG Data Components 82
5.4 Encrypting Markers oL 87
5.5 Encryption of JPEG Components 87
5.5.1 Encrypting Headers L. 88
5.5.2 Encrypting Quantization Table Specifications 90
5.5.3 Encrypting Huffman Table Specifications 90
5.6 Security of Huffman Code 91
5.6.1 Complexity of Recovering the Huffman Table Using Exhaustive
Search e 92
5.6.2 Security Analysis : Using the Information from Similar Images . 94
5.6.3 Huffman Coding and Arithmetic Coding 98
5.6.4 Chosen plaintext and ciphertext attacks 98
5.7 Experiments 98
5.7.1 Tables with Different Smoothness 99
5.7.2 Tables with Different Quality Levels 101
5.7.3 Probability Distribution of Binary Symbols 102
5.7.4 Modification of Quantization Table Specifications 103
5.7.5 Modification of Huffman Table Specifications 105
5.7.6 Encryption of Huffman Table Specification 106
5.8 Distribution of Differential DC Values 106
5.8.1 Huffman Table Specifications of Various Images 108

viil

0.8.2

Conclusion s,

6 Wavelet Compression and Encryption

7

6.1

Introduction

6.2 Encryption with Discrete Wavelet Transform

6.3

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7

Wavelet Image Compression
Encryption Using Random Permutation
Chosen Plaintext Attack
Enhancing Security oo 0oL
Experimentso
Compression Rate.

Concluding Remarks

A JPEG2000 Encryption System

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

JPEG2000 Compression System
Encryption Using Random Permutation Lists
Security of JPEG2000 Encryption
Experiments
Compression Rate.

Concluding Remarks, .

6.4 Conclusion

Image Authentication

7.1
7.2

7.3

7.4

Introduction L

Preliminaries

7.2.1
7.2.2

JPEG Compression
SARI Authentication System

New Attacks against the SARI System

7.3.1
7.3.2
7.3.3

Attackso
Improvement

Concluding Remarks

A Secure and Flexible Authentication System for Digital Images

74.1
7.4.2
7.4.3
7.4.4
7.4.5

A Secure and Flexible Authentication Scheme
Designing a Message Authentication Code
Constructing Groupso
Evaluation of the MAC

Experiments

X

121
121
121
122
123
124
125
126
128
129
129
130
134
135
139
141
143
144

7.4.6 Quantization Error Distribution

7.4.7 Concluding Remarks

7.5 Conclusion

8 Conclusion
8.1 Introduction

8.2 Image Encryption

8.2.1 Encryption Using Elementary Cryptographic Operations

8.2.2 Selective Encryption

8.3 Image Authentication
8.4 Further Research
8.4.1 Image Encryption . .

8.4.2 Image Authentication

Bibliography

194
194
194
195
196
198
198
198
199

201

List of Tables

1.1
1.2

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

5.1
5.2
5.3
0.4
2.9

5.6
2.7

The sizes of gray scale images. 6

The sizes of color images.
Example of LZ77 encoding. 15

PSNR of reconstructed images lena, mandoril and peppers by sorting

DCT coefficients : using largest 16 coefficients and 64 coefficients. . . . 41

Quality of the recovered images using the method in Section Estimating
the DC coefficient of a block 71

Image quality of the recovered images using the method in Section I'm-

proving the algorithm L 73
Quality of the recovered images with half of the DC coefficients in the

image. 73
The sizes of the JPEG file and encoded differential DC values in the file

for image quality=>50%. 73
The sizes of the JPEG file and encoded differential DC values in the file

for image quality=75%. 76
The sizes of the JPEG file and encoded differential DC values in the file

for image quality=90%. 76
Table of category numbers and index numbers. 80
The high-level structure of the JPEG stream. 83
Frame header. 84
Scan header. 85
Quantization table specification (o is the number of quantization tables

in the quantization table specifications). 86
Huffman table specification. 87
Examples of sizes of encrypted Huffman table specifications. 91

x1

5.8

6.1

6.2
6.3

7.1
7.2
7.3

7.4

7.5
7.6
7.7
7.8

Variances of probabilities for n bit symbols. 104

Compression rate and PSNR with permuted subbands when the target

compression rate is specified to 8:1. 127
Compressed file sizes of the random permutation list encryption. . . . 147
PSNRs of decrypted images using wrong secret keys. 148
Number of coefficients per group and the MAC size. 187
Precisions for linear sums (m=8). 187
DCT coefficients of modified 8 x 8 block of lena (top) and those of the

original (bottom).o 188

Detection of lena’s beauty mark (top) and detection of lena modified by
a median filter with 3 x 3, 5 x 5, 7 x 7 and 9 x 9 window sizes (bottom). 192

Tolerance values for linear sums of m = 8 (left) and m = 16 (right). . . 192
Tolerance values for linear sums of m = 32 (left) and m = 64 (right). . 193
Tolerance values for linear sums (m =128). 193
Detection of lena with an 8 x 8 block at (264,272) position, modified by

a median filter with 3 x 3, 5 x5, 7 x 7 and 9 X 9 window sizes. 193

xii

List of Figures

1.1

1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2

3.3

4.1
4.2

4.3

4.4

Gray scale images : (a) airfield.pgm, (b) airplane.pgnm, (c¢) lena.pgm,
(d) mandoril.pgm, and (e) peppers.pgm.
Color images : (a) lena.ppm, (b) mandoril.ppm, and (c) peppers.ppmn. 9

Communication system. Lo 10
Example of a Huffman code. 14
Data compression model. Lo 16
Model of symmetric encryption system. 17
Model of public key encryption system. 18
Wavelet, transform (left) and its inverse transform (right). 25
Wavelet decomposition of an image. 26
Wavelet decomposition of lena.pgm. 27
Zig-zag scan of 8 x 8 DCT coefficients in JPEG. 36
Reconstructed images using sorted largest 16 coefficients : lena (a),

mandoril (b) and peppers (¢). 42
Reconstructed images using sorted 64 coefficients : lena (a), mandoril

(b) and peppers (c). 42
Gray scale Lena picture.o oL 65

Possible pixels patterns at the border in the case of a pair of horizontally
neighboring blocks. o oo 66
The distribution of differences of neighboring pixels in airfield256x256 . pgm
(left top), mandoril.pgm (right top), lena.pgn (left bottom), and peppers . pgm
(right bottom). 71
The images recovered by the method in Section Estimating the DC co-
efficient of a block . airfield256x256.pgm (top left), mandrill.pgm

(top right), lena.pgm (bottom left) and peppers.pgm (bottom right). 72

xiii

4.5

4.6

5.1
0.2

9.3
5.4

2.9

5.6

5.7

5.8

2.9

5.10

5.11

0.12

5.13

0.14

6.1

The images recovered by the method in Section Improving the algorithm
. airfield256x256 (top left), mandrill (top right), lena (bottom left)
and peppers (bottom right). 74
The images recovered from the half of DC signals by the method in I'm-
proving the algorithm . airfield256x256.pgm (top left), mandrill.pgm
(top right), lena.pgm (bottom left) and peppers.pgm (bottom right). 75

Distribution of index numbers for four Huffman codes. 98

The image with the Huffman AC chrominance table of the image with

smoothing. 101
74% quality image with 75% quality Huffman AC tables. 102
Probability distribution of one bit binary symbols (left) and two bit
binary symbols (right). oo Lo 103
Probability distribution of three bit binary symbols (left) and four bit
binary symbols (right). 103

Probability distribution of five bit binary symbols (left) and six bit bi-

nary symbols (right).o oL 104
Decoding with different quantization tables: the original image (left) and
recovered image using different quantization tables (right). 105
Destruction of Huffman table: Viewing the original image (left) and the
image with “corrupted” Huffman table (right) using zv. 106
Distributions of differential DC values of lena.pgn (left) and pepper . pgm
(right). o 107
Distributions of differential DC values of lena.pgn (left) and pepper . pgm
(right) for Q1=2. 107
Distributions of differential DC values of lena.pgn (left) and pepper . pgm
(right) for Q1=8. 108
Distributions of differential DC values of lena.pgm (left) and pepper . pgm
(right) for Q1=16. 108
Distributions of differential DC values of lena.pgn (left) and pepper . pgm
(right) for Q1=32. 109
Distributions of differential DC values of lena.pgn (left) and pepper . pgm
(right) for Q1=80. 109

The original image (left) and the recovered image without inverse-permutations

when the image is encoded with subband 0 permuted (right). 128

xiv

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

The recovered image without inverse-permutations when the image is en-
coded with subband 15 permuted (left) and the recovered image without
inverse-permutations when the image is encoded with subbands 0 to 15
permuted (right).
The recovered image without inverse-permutations when the image is
encoded with subbands 0 to 7 permuted (left) and the recovered image
without inverse-permutations when the image is encoded with subbands
8 to 15 permuted (right). L
Code-block and bit-planes : A quantized coefficient consists of bits and
A code-block consists of m x n quantized coefficients. The ith bit-plane
is the collection of 7th significant bits of the m x n quantized coefficients.
The bits in a bit-plane are scanned as shown by the arrows.
Encrypting subband 0 : lena.ppm (left), mandoril.ppm (middle) and
peppers.ppnm (right). The color spots correspond to low subband coeffi-
cients. The encryption decreased the image quality but the details (i.e.
edges) are visible.
Encrypting subband 7 : lena.ppm (left), mandoril.ppm (middle) and
peppers.ppm (right). The encryption decreased the quality less com-
pared to encrypting low subbands. The images are recognizable.

Encrypting subband 13 : lena.ppm (left), mandoril.ppm (middle) and
peppers.ppm (right). Some noise can be found in the active regions but
the encryption did not decrease the quality very much. The images are
similar to the original ones.
Encrypting subband 1, 2, and 3 : lena.ppm (left), mandoril.ppm (mid-
dle) and peppers.ppm (right). The quality drop due to the encryption
is large but the edges are visible. o0
Encrypting subband 7, 8, and 9 : lena.ppm (left), mandoril.ppm (mid-
dle) and peppers.ppm (right). The encryption has a similar effect to
“oil painting”. It may be visually disturbing but the images remain
recognizable. Lo
Encrypting subband 13, 14, and 15 : lena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). Some noise can be found in the
active regions but the quality drop is small.
Encrypting all subbands (0 to 15) : lena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). The images are not comprehensible.

XV

140

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

7.1
7.2
7.3

7.4
7.5
7.6

7.7

Encrypting bit-plane 0 of subbands 1, 2 and 3 : 1ena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). 143
Encrypting bit-plane 1 of subbands 1, 2 and 3 : 1ena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). 143
Encrypting bit-plane 2 of subbands 1, 2 and 3 : 1lena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). 144
Encrypting bit-plane 0 of subbands 7, 8 and 9 : 1lena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). 144
Encrypting bit-plane 1 of subbands 7, 8 and 9 : 1lena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). 145
Encrypting bit-plane 2 of subbands 7, 8 and 9 : 1lena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). 145
Encrypting bit-plane 0 of subbands 13, 14 and 15 : lena.ppm (left),

mandoril.ppm (middle) and peppers.ppm (right). 146
Encrypting bit-plane 1 of subbands 13, 14 and 15 : lena.ppm (left),

mandoril.ppm (middle) and peppers.ppm (right). 146
Encrypting bit-plane 2 of subbands 13, 14 and 15 : lena.ppm (left),

mandoril.ppm (middle) and peppers.ppm (right). 146
Frequencies of 10 contexts in the encoding of lena.ppm, mandoril.ppm

and peppers.ppm without encryption (left column) and with encryption

(right column).o 149
Frequencies of pairs of contexts and decision in the encoding of lena.ppm,

mandoril.ppm and peppers.ppm without encryption (left column) and

with encryption (right column). L. 150
Pattern “8” (left) and a pattern similar to o (right). 158
Example: Original image (left) and close up (right). 159

Close up of the modified image (left) and difference between the original
and modified images (right). The large gray region, the darker part
and the brighter part correspond to 69 = 0, §09) < 0 and 60 > 0,

respectively.o 159
Original license plate. o 160
Removal experiments of “9” (left) and “5” (right). 160
The two images will be authenticated with the coefficients 0-10 (left)

and 0-59 (right) protected. L 162
MAC generation and JPEG compression. 165

xXvi

7.8
7.9
7.10
7.11

7.12

7.13

7.14
7.15

MAC verification and JPEG decompression. 165
Encoding of Yj(“’”) and error tolerance. 174
Lena with a beauty mark (left) and close-up of the modified region (right).186
Lena using a median filter. 3 x 3 (a), 5 x5 (b), 7x 7 (¢) and 9 x 9 (d)

window Sizes. 186

Close up of the right eye of lena. The center 8 x 8 block is at position

(264,272) modified by a median filter with 9 X 9 window sizes. 188
Distribution of errors : lena.. 189
Distribution of errors : peppers.. 190
Distribution of errors : airplane. 191

xvii

Chapter 1

Introduction

Advanced digital technologies have made multimedia data available on large capacity
storage devices such as hard disk, CD, and DVD, and through high speed networks.
As multimedia applications become common in practice, the security of multimedia
data has become a main concern.

Image encryption algorithms protect data against unauthorized access. Encryption
is used in applications such as subscribed digital TV broadcasting [63] which require
the data to be hidden from an unsubscribed person, and Digital Versatile Disc (DVD)
[100].

Wide use of images in digital form and the case of malicious modification of digital
data has raised the need for image authentication. Digital images in legal and medical
applications and also news reporting [67] require proof of authenticity of images and
an assurance that the image has not been modified. To provide digital images usable

in many applications, it is essential to provide various security measures for images.

1.1 Motivation

Digital Images

Different types of data have different degrees of sensitivity to change. For example,
the executable code of a computer program may not tolerate a single bit change because
it can result in the program crashing or producing different result. Image data can
tolerate a higher level of change because the limited sensitivity of human eyes leaves
small changes undetectable. The information which cannot be sensed by human eyes
is considered irrelevant and is often removed using lossy compression.

In almost all cases image data is compressed before it is stored or transmitted
because of i) the enormous size of multimedia data files and i) the very high redundancy

in the data and so incorporating security in the compression system is a very attractive

1.1. Motivation 2

approach.

There are several standards for image and motion picture compression. The Joint
Photographic Ezperts Group (JPEG) standard [45] is one of the most widely used
standards for still images. JPEG specifies the de-compression algorithm and repre-
sentations of compressed data. It also provides guidelines for implementation of the
algorithm. JPEG uses two different classes of compression algorithms. That is, lossy
and lossless compression. In JPEG, the lossy compression uses the Discrete Cosine
Transform (DCT) [3]. For the entropy coding, Huffman or arithmetic coding is used to
compress (and decompress) the quantized DCT coefficients. A new image compression
standard, JPEG2000 [43], uses the Discrete Wavelet Transform [21, 64] and provides
various improvements over the JPEG system. The MPEG (Moving Pictures Experts
Group) standard by the ISO/IEC [42] is a compression algorithm for multimedia data
including video and audio data. It provides the standards not only for compressing
video and audio streams, but also the meta-data of other types of data such as text.
In MPEG, video and audio streams are independent from each other. For video com-
pression, MPEG compresses a sequence of images by removing the spatial redundancy
using the DCT for the transformation followed by quantization and entropy coding,
and temporal redundancy using block-based motion compensated prediction (MCP)
[23].

Image Encryption

Encryption algorithms protect data against unauthorized access. With the rapid
growth of the Internet, controlling access to data is of increasing importance and hence
encryption is of much wider use. Digital images are no exception. Compressing plain-
text before applying the encryption algorithm effectively increases the security of the
overall system [96]. However direct application of encryption algorithms to image data
i) requires high computational power and i7) introduces delay in real-time communica-
tion.

For example, the encryption algorithm AES (Advanced Encryption Standard)[73]
which is known to be fast, requires about 15 cycles per byte for encryption and de-
cryption [5, 61]. Let us consider an MPEG decoder [74], which uses a RISC (Reduced
Instruction Set Computer) CPU core running on about 150 MHz. Decryption of an
8 M bps MPEG stream, which is the common bit rate for DVD video, requires 15
mega cycles (100 milliseconds for 150 MHz clock) and so the decryption increases the
decoding time by 100 milliseconds for 1 second video data, that is, 10 % of the time to

1.1. Motivation 3

play video is spent for decryption, which is too expensive. In the hardware implemen-
tation case, adding encryption algorithms to the encoder and the decoder increases the
complexity of circuits and results in an increase in the cost of manufacturing.

If a data compression algorithm can be made to also provide security, less processing
overhead could be expected as a single algorithm achieves two goals. The combination
of image compression and encryption will only be successful if the resulting system i)
does not considerably reduce compression rate, ii) requires less processing time than
compression followed by encryption and #ii) can provide demonstrable security. Many
existing systems satisfy only one or two of the three requirements which shows that
designing a successful system is a difficult task.

Images may be partially encrypted. For secure image encryption, it must be dif-
ficult to recover the image, or a perceptually equivalent version of the image, where
perceptual equivalence may be defined depending on the application. For example, all
images that are the result of compression down to certain quality level followed by de-
compression, may be considered perceptually equivalent. An encrypted image should
mask the visual information of an image and make the content visually incomprehen-
sible. The security is measured in terms of the difficulty of recovering same visual
information from the encrypted form.

Some applications may not require strong security. For example in consumer prod-
ucts, DVD’s Content Scrambling System (CSS) was invented in 1996 [34]. The system
used 40 bit key encryption which was considered weak but provided sufficient security
for preventing an average user with limited knowledge and resources to illegally copy
the content. We consider a system reasonable secure if the system is secure against
such a user. (CSS was broken in 1999 [46]: the weakness of the algorithm allowed
plaintext to be recovered with a cost equivalent to 22 which is much lower than an
exhaustive key search with a cost of 2% [100, 101].)

Image Authentication

Image authentication provides the means to verify the authenticity of images. Mes-
sage authentication codes and digital signatures are the main cryptographic primitives
to provide data integrity [103].

Image and video data are displayed on a range of displays with different resolutions,
and processed on a range of devices with various computing capability, from a high-
end workstation to a handheld device. To display the visual information on different
platforms, different versions which are encoded according to the requirements of the

platform, will be used. However, all such versions must pass the verification test on an

1.2. Objective 4

authenticator that is calculated from the original data.

For example, a digital camera may authenticate pictures taken by the camera and
output the compressed image together with the authenticator. The user of the camera
may wish to keep the high quality original and then re-compress the images to send to
others. In this case the re-compressed images have to pass the verification test applied
to the re-compressed images and the authenticator generated by the camera.

There is a set of operations commonly applied on images that could be acceptable as
not changing the semantic content although they will change the values of pixels. For
example, enhancing images improves contrast and picture clarity but can be considered
as an acceptable change of the image. In many applications, it is important that image
authentication tolerates modifications made by such acceptable operations.

Cryptographic authentication systems are sensitive to bit changes and so are not

suitable for image authentication in the scenarios described above.

1.2 Objective

Our objectives are to investigate compression-encryption schemes and compression
tolerant authentication schemes applied to digital images. The questions addressed in
this research are 1) whether it is possible to achieve efficiency, measured in terms of level
of security, compression rate and processing time, by integrating image compression and
encryption, and 1) if there are methods for image authentication which are compression

tolerant.

1.3 Contributions

In this thesis firstly we present new attacks on existing image encryption systems and

then show methods of improving the security of these systems.

1.3.1 Image Encryption

There are two approaches of combining compression and encryption.

Elementary cryptographic operations : Using less expensive elementary crypto-
graphic operations such as random permutation (or transposition), data can be ef-
fectively hidden. Since these operations are simple, encryption does not have a high
computation cost. The challenge is how to achieve reasonable security with such simple

operations.

1.3. Contributions 5

Selective encryption : It is possible to reduce the computational cost by reducing
the size of the data to be encrypted.

By hiding important parts of the data or crucial parameters of the compression
algorithm, the data stream can be protected. For effective protection, these parts must
be carefully chosen so that the encrypted stream cannot be decoded without these
parts, or even if it is decoded, the quality of the obtained image is highly degraded.

We demonstrate attacks to find the secret key of encryption systems in both ap-
proaches. We also show methods which incorporate encryption into JPEG and JPEG2000

compression systems.

1.3.2 Image Authentication

We demonstrate an attack on a compression tolerant image authentication system
and then show methods of protection against the attack. We also give a secure and
flexible compression tolerant image authentication scheme that provides various levels

of security.

1.3.3 Organization of Thesis

The thesis is organized as follows. In Chapter 2, we give an overview of information
theory, data compression, security and image compression systems. In Chapter 3, first
we review combined data compression and encryption schemes and image encryption
systems, and then image authentication systems. In Chapter 4, we demonstrate new
attacks against the JPEG and MPEG image encryption systems. In Chapter 5, we
propose a new JPEG encryption system using selective encryption. In Chapter 6,
first we propose a new combined image encryption and wavelet-based compression
system that can provide various degrees of security using random permutations, and
then we extend the method to be applied to JPEG2000 image compression system.
In Chapter 7, we show cryptanalysis of SARI [58, 59] image authentication system
and demonstrate a new attack against the system, and then we propose a new image
authentication system which has a number of advantages over SARI. In Chapter 8 we

summarize our results and conclude the thesis.

1.4. Images 6

1.4 Images

Gray scale images and color images used in the experiments in this thesis are shown

in Table 1.1 and Figure 1.1, and in Table 1.2 and Figure 1.2, respectively.

Table 1.1: The sizes of gray scale images.

Files image size (pixels) | pixel value
airfield.pgm | 256 x 256 8 bits
airplane.pgm | 512 x 512 8 bits
lena.pgnm 512 x 512 8 bits
mandoril.pgm | 512 x 512 8 bits
peppers.pgm | 512 x 512 8 bits

Table 1.2: The sizes of color images.

Files image size (pixels) | pixel values

lena.ppm 512 x 512 24 bits (8 bits x 3 for RGB)
mandoril.ppm | 512 x 512 24 bits (8 bits x 3 for RGB)
peppers.ppm | 512 x 512 24 bits (8 bits x 3 for RGB)

1.5. Notations

1.5 Notations

MSB the most significant bit.

LSB the least significant bit.

MSBs the most significant bits.

LSBs the least significant bits.

Py i

rint() an integer rounding function.

Q) quantization step of DCT coefficient at (u,v) position

in JPEG compression.

Fp(“’”) DCT coefficient at (u,v) position in block p

in JPEG compression.

Tp(“’") quantized DCT coefficient at (u,v) position in block p

in JPEG compression.

Fp(u’v) dequantized DCT coefficient at (u,v) position in block p

in JPEG compression.

Frax™” | the maximum value of a DCT coefficient in JPEG compression
Furn™? | the minimum value of a DCT coefficient in JPEG compression
Yg(“’”) the sum of linear combination of DCT coefficients of group g
at (u,v) position (image authentication system).

179(“’”) the sum of linear combination of dequantized DCT coefficients
of group ¢ at (u,v) position (image authentication system).

A, () linear combination coefficient for DCT coefficient

at (u,v) position(image authentication system).

Aprax™? | the maximum value of linear combination coefficient

for DCT coefficient at (u,v) position(image authentication system).

Arin®? | the maximum value of linear combination coefficient

for DCT coefficient at (u,v) position(image authentication system).

1.5. Notations 8

Please see print copy for Figure 1.1

(e)

Figure 1.1: Gray scale images : (a) airfield.pgm, (b) airplane.pgm, (c) lena.pgm,
(d) mandoril.pgm, and (e) peppers.pgn.

1.5. Notations

Please see print copy for Figure 1.2

(c)

Figure 1.2: Color images : (a) lena.ppm, (b) mandoril.ppm, and (c) peppers.ppm.

Chapter 2

Background

2.1 Introduction

In this chapter we briefly review theories, constructions and systems that will be used
in the rest of the thesis. Firstly, we introduce information theory and the basics of data
compression and security systems. Next, we examine image compression algorithms,

and outline several standard compression systems.

2.2 Information Theory

Communication System

A communication system, Fig. 2.1, consists of a message source, an encoder, a chan-
nel, and a decoder. The message source produces messages to be transmitted. The
encoder performs source coding, which converts the messages into a form suitable for
transmission. The channel is the medium through which the encoded messages are
transmitted. The noise may interfere with the communication over the channel. The
decoder recovers the encoded messages (possibly with some information loss) for the

receiver of the information.

¥

|::X> Channel >|:>‘ Decoder

Figure 2.1: Communication system.

=

|:> ‘ Encoder

‘ Source Destination

Uncertainty and Entropy

Information is related to uncertainty. In a communication system, a message is trans-

mitted from an information source. A discrete source consists of an alphabet set X

10

2.2. Information Theory 11

together with a probability distribution p on the set. A message consists of a sequence
of symbols, chosen from the alphabet set according to the distribution. Once a symbol
is emitted, the uncertainty about that symbol is removed.

The message source can be modeled with a discrete random variable. The average
amount of information in the source alphabet can be measured using the entropy func-
tion defined as follows [8]. Let X denote the discrete random variable that takes values
x;, 1 <i < M, i € Z with probabilities p(x;) > 0. Then the average information per

source symbol is given by

Hy(X)=— Zp(fri) log p(z;) -

This is called the entropy of the random variable.

H(X) can be interpreted as the average amount of information obtained after ob-
serving one element of X. It can also be interpreted as the average uncertainty about
an element of X. For example, assume that in an experiment a fair die is rolled. Each
number appears with equal chance and so the probability of a number from 1 to 6 is
pX=1)=p(X =2)=p(X =3)=p(X =4) =p(X =5) =p(X =6) = ;. Then
H(X) is given by H(X) = = Y% | tlog, ¢ = —logog ~ 2.58 bits. Before rolling the
die, the average uncertainty over the experiment is 2.58 bits. After the outcome of
the experiment is known, 2.58 bits of information is obtained and the uncertainty is
removed.

For a pair of discrete random variables X € {z1,xs,...,zp} and Y € {y1, 90, ..., yr},
with joint probability distribution p(z;,y,;) > 0,1 <i < M and 1 < j < L, the joint
entropy of X and Y is given by

M L

H(X,Y) ==Y plai,y;)logp(xi, y;) -

i=1 j=1

Joint entropy satisfies the condition H(X,Y) < H(X)+ H(Y) and with equality if and
only if X and Y are independent. The conditional entropy of X and Y is given by

L
H(Y|X) = Z)Y plyjla) log p(y;|z:)
=1 7j=1

and satisfies the condition H(X|Y) < H(X) with equality if and only if X and Y are

independent.

2.3. Data Compression 12

2.3 Data Compression

Data compression is an outgrowth of information theory. The aim of data compression
is to find a short description for messages of a source.

For a fixed channel, compressing messages results in a more efficient use of the
channel. There are two types of compression algorithms : lossless compression and
lossy compression. In this section, we look at the lossless compressions and the lossy
compressions are reviewed in Section 2.5. In lossless compression systems the com-
pressed data can be used to recover an exact replica of the source output. In lossy

compression only an approximate form of the source output can be recovered.

2.3.1 Source Coding

The information source may be represented by a continuous or a discrete random
variable. We only consider discrete sources. In source coding the encoder encodes a
symbol produced by the source into a codeword over an alphabet. A codeword is a
string over the code alphabet. The codeword length may be fixed or variable. An
example of a fized length code is the ASCII code. Morse code is an example of a
variable length code. By assigning shorter codewords to more frequent source symbols,

a shorter average length and hence a more efficient code is obtained.

2.3.2 Optimal Codes

Let the source be represented by a discrete random variable, X, that takes value from
a set {x1, Ty, ...,xp}. In source coding each symbol is encoded into a codeword which
is a sequence of symbols over another alphabet set, A = {ay, as, ...,ap}. Let the length

of the codeword x; be [;. The average length of a code is given by

= ZP(%)ZZ . (2.1)

The most efficient code is the one with the minimum average length. An important
property of a code is that it should be uniquely decodable. A code is uniquely decodable
if any encoded string corresponds to a unique source string. A prefiz code is a code
in which no codeword is a prefix of any other codeword. It has the property that it
is uniquely decodable. The Kraft Inequality gives a necessary and sufficient condition

that must be satisfied by a prefix code [51].

2.3. Data Compression 13

For any prefix code over an alphabet A, the Kraft inequality is :

» pi<1. (2.2)
The relationship between the entropy and the average codeword length is
H(X) <llogD . (2.3)

Equality holds if and only if p(z;) = D%, Vi ; in this case, H(X) = [log D. There
exist D-ary (alphabet consisting of D symbols) prefix codes which satisfy

41, (2.4)

The prefix code with the shortest average length is called the optimal prefix code.

2.3.3 Constructions of Optimal Codes
Huffman Code

A method of constructing an optimal prefix code is given by Huffman [35]. Assume
the set of symbols X = {z1, zy, ..., x)s} with probabilities p(x;), p(x2), ..., p(xar), where
p(r1) > p(za) > ... > p(ry), is given. Assume there are D symbols in the code
alphabet. Then the algorithm is as follows:

1. Combine D symbols with the smallest probabilities to construct a symbol
new symbol. This reduces the size of the source by D — 1. Repeat the procedure

until the number of remaining symbols becomes D.

2. Assign a single symbol from the code alphabet to each resulting symbol. This is

the code for the reduced source.

3. For any symbol obtained from combining D symbols, construct D codewords
by appending a code symbol to the codeword assigned to the combined symbol.

Repeat the procedure until all original symbols have assigned codewords.

An example is shown in Fig 2.2. The symbol set is X = {1,2,3,4,5} with proba-
bilities 0.25,0.25,0.2,0.15, 0.15 respectively and D = 2.

2.3. Data Compression 14

codeword | X | p(X)

01 | 1| 025 0.3 0.45 055 0
10 | 2 | 0.25 0.25 03 0 045 1
11 | 3| 0.2 025 0 0251

000| 4| 0150 02 1

001| 5| 0151

Figure 2.2: Example of a Huffman code.

Shannon-Fano-Elias Code

Shannon-Fano-Elias coding encodes source symbols using a cumulative distribution. It
is not an optimal coding algorithm but forms the basis of arithmetic coding, to be dis-
cussed in Section 2.3.3, which is an optimal coding algorithm. Let X be a set of source
symbols, where X = {1, 2, ..., M} and the probabilities be p(X) = {p(1), p(2), ...,p(M)}
where p(x) > 0 for all z. Then the cumulative distribution function F'(X) is defined as
F(z) =37, p(i). We define a function F(X) as F(z) = 377 p(i)+1p(x). If we use a
binary representation of F'(z) after the decimal point, i.e. removing 0., with the length
[(x) = [log ﬁ], we can construct a uniquely decodable code. Shannon-Fano-Elias
coding assigns an integral number of bits to each codewords and in this way it differs

from arithmetic coding, which will be discussed later.

Ziv-Lempel Coding

Two dictionary based compression methods are given by Ziv and Lempel [130, 131].

Lz77

The first Ziv-Lempel coding method [130], called LZ77, uses a sliding window to
the input stream. The window consists of two parts, i)search buffer, which includes
the symbols which have already been encoded, and i1)look-ahead buffer, which contains
the symbols which will be encoded.

The following example shows the method of encoding. Assuming that the encoder
encodes the input stream from left to right, the sliding window, the search buffer and
the look-ahead buffer contain 16, 8, and 4 symbols, respectively. (Typically the size of
the search buffer is the order of kilobytes and that of the look-ahead buffer is tens of
bytes.) In the example of Table 2.1, the string “ABABCABB” has already been encoded

and the encoder is going to encode “CACB...".

2.3. Data Compression 15

Table 2.1: Example of LZ77 encoding.

A B A B C A B Bl |c A Cc B
Search buffer Look-ahead buffer

(Has been encoded) (To be encoded)

1. The encoder scans the search buffer from right to left, looking for the string
“CACB...”.

2. If any matches are found, the encoder chooses the longest and left-most match.
The output of the encoder is i) the position (the distance from the look-ahead
buffer) of the matched string, i) the length of the matched string, and i) the
unmatched symbol in the string. If no match is found, the encoder outputs
(0,0, X) where X is the first unmatched symbol in the look-ahead buffer.

In this example, “CA” is found at position 4 and so the output is (4,2, “C").

3. Then the sliding window is shifted to the right direction by the amount which is
equal to the matched string size + 1.

The above procedure is repeated and as a result, variable length symbols produce
the fixed sized code.

LZ78

The second method [131], called LZ78, partitions a message into variable-length
blocks and constructs a dictionary for it. Let a message, X = (1, %9, ..., Z,), be over
an M symbol alphabet. Then the first entry in the dictionary is B; = (x;). The
shortest prefix By = (o, ..., x;) of the sequence (x9,...z,,) that is not in the dictionary
is added to the dictionary and the procedure is repeated. Each entry in the dictionary
is referred to by a pair of integers (j,zy) in such a way that x; is the last symbol in
By and B; is the sequence obtained by removing x; from B;. The codewords are given
from the pair of integers by Mj + x. Ziv-Lempel code is a universal source coding,

which compresses data without prior knowledge of the source distribution.

Data Compression Models

Statistical compression systems such as Huffman and arithmetic coding can be divided
into two parts: a model part that models the source and a coder part which uses the
information given by the model to encode the incoming symbols. If a model is fixed
throughout the coding of the message, it is a static model and the system is a non-

adaptive data compression system. In an adaptive data compression system, the model

2.3. Data Compression 16

is updated by the incoming data to reflect its local statistics.

Encoder Decoder
Compressed
Message
Message » Coder IR » Coder » Message
L Model J t Model J
Predictions Predictions

Figure 2.3: Data compression model.

In adaptive statistical compression algorithms such as adaptive Huffman [50] or
adaptive arithmetic coding [121], the probabilities of source symbols and the codewords
assigned to the source symbols are updated according to the incoming source messages.
The encoder can update the distribution of symbols by observing input symbols and

the decoder can follow the change of the encoder by observing the decoded symbols.

Arithmetic Coding

Arithmetic coding is an optimal data compression algorithm [121, 117]. It was discov-
ered independently by Pasco [77] and Rissanen [83].

Arithmetic coding encodes a message into a bit string which represents a real num-
ber interval within the interval [0,1). The encoder starts with an initial interval,
usually [0, 1), and narrows it as new symbols arrive such that the amount of narrowing
is determined by the probability of the incoming symbol.

When a message consists of a sequence of m symbols, 91,1, ...¢,,, the required
length to encode the message is

m

> —logap(th;) (2.5)
i=1
where p(1);) is the probability of the symbol ;.
The compressed data consists of an integral number of bits. In arithmetic coding,
a whole message is represented by an integral number of bits but each symbol does not
have such a restriction. If the result of encoding a symbol includes a fraction of a bit,
the fraction is passed to the next symbol. This is the advantage of arithmetic coding
over Huffman coding. In case of Huffman coding, each symbol should be translated
into an integral number of bits and so the fraction of a bit is rounded up if there is
any. The extra fraction for each output symbol cumulates as encoding proceeds and

hence adds to the length of the encoded message.

2.4. Security Systems 17

2.4 Security Systems

2.4.1 Symmetric Key Encryption

A symmetric key cryptosystem allows secure communication over an insecure channel
between two parties who share a key. A symmetric encryption algorithm is a collec-
tion e = {EFx : K = 1,2---N} of invertible transformations indexed by a piece of
information called key.

To encrypt a plaintext message X, the transmitter, who shares a key k with the
receiver, finds the ciphertezt Y = Ej(X) and sends it to the receiver who can use the
inverse transformation to recover X. The attacker does not know the key. An attacker
may use an ezhaustive key search strategy to determine the key and in this case the

number of keys gives an upper bound on the security of the system.

Plain Text Cipher Text Plain Text

................................

—— | Encryption —> Insecure Channelijt—» Decryption | ———

Figure 2.4: Model of symmetric encryption system.

Commonly used symmetric key encryption algorithms include DES [38] and AES
[73].

2.4.2 Public Key Cryptography

A public key cryptosystem allows secure communication over an insecure channel be-
tween two parties using a pair of a public key and a private key [68]. The main difference
between a public key cryptosystem and a symmetric cryptosystem is that only the pri-
vate key needs to be secret and the public key can be made publicly accessible in the
public key cryptosystem through an authentic channel.

A public key encryption algorithm is a collection of pairs of encryption and de-
cryption transformations ¢ = {(E., Dy) :e,d € K =1,2---N}, where a decryption
transformation Dy is the inverse of the associated encryption transformation FE,.

To encrypt a plaintext message X, the transmitter receives receiver’s public key e
over an insecure channel, finds the ciphertert Y = E.(X) and sends it to the receiver

who can use the inverse transformation X = Dy(Y") to recover X. For the security of a

2.4. Security Systems 18

Plain Text Cipher Text Plain Text

— | Encryption —> Insecure Channel?}—» Decryption | ———

‘—(Authentic Channe(}d—l T

Public Key Private Key

Figure 2.5: Model of public key encryption system.

public key cryptosystem, given e it must be infeasible to determine the corresponding

d. A common public key cryptosystem is RSA [87].

2.4.3 Authentication

Authentication includes i) Entity authentication (entity identification): to guarantee
that entities are those who they claim to be, ii) Data authentication (data integrity):
to guarantee the integrity of information, that is, the information has not been manipu-
lated by unauthorized parties, iii) Data origin authentication (message authentication):
to assure that the entity is the original source of data and the data has not been tam-
pered with, iv) Key authentication: to assure the identity of party which share a secret
key, and v) Non-repudiation: to prevent an entity from denying previous commitments
or actions [68].

Authentication systems are used to provide entity authentication, message authenti-
cation, data authentication, non-repudiation and key authentication. Digital signature
schemes are asymmetric key primitives for authentication. Message authentication

codes are symmetric key primitive that are used for message authentication.

2.4.4 Digital Signature

A digital signature is the main primitive for authentication, providing non-repudiation
through binding the identity of an entity to the signed document [68]. A basic digital
signature system ¢ is a signature generation algorithm S, and a signature verification
algorithm V4 and so § = (S4,Va). A signature generation S, for an entity A is a
mapping Sy, : X — S, where X is the message set and S is the signature set. A
signature verification V) is a mapping given as Vy : X x S — {true, false}.

A signer A computes s = S4(X) and transmits the pair (X, s) to a verifier, who
computes u = Vy(m, s).

For example, in the digital signature system using a public key system, the signing

2.4. Security Systems 19

transformation consists of the generation of the hash of the message h(X) using a
cryptographic hash function and the calculation of s = Dy(h) using A’s private key d.
Assuming that Alice calculates s = Sajice(X) and transmits the pair (X, s) to Bob but

Bob receives (X', s'), then the verification algorithm produces,

| true, if E(s") = h(X")
| false, if Bu(s') # h(X)

where e is Alice’s public key. There are standards for digital signature algorithms such
as ANSI X9.31 [39] and Digital Signature Standard [76].

2.4.5 Message Authentication Codes

Message authentication codes (MAC) provide assurances of the source of a message
and its integrity [68]. They are keyed hash functions which have two input parameters,
a message X and the secret key k, given as Y = hy(X). The difference between a
message authentication code and a digital signature scheme is that the digital signature
is publicly verifiable but the MAC is verifiable only by the receiver who shares the secret

information k.

2.4.6 Attacks against Encryption Systems

An encryption system can be attacked by an enemy. The goal of the attacker may be
i) key recovery, or i) finding plaintext.

There are several attack models as shown below.

Ciphertext-only attack An attacker knows only the ciphertext. That is, he/she has

access to Ei(X). This is possible if he/she can eavesdrop the channel.

Known plaintext attack An attacker knows a number of pairs of plaintexts and
their corresponding ciphertexts and tries to discover a key used for generation
of ciphertexts, or a plaintext corresponding to a ciphertext which is not in the
known set. This attack scenario is possible if he/she can eavesdrop the channel

and has partial access to the plaintexts.

Chosen plaintext attack An attacker can choose one or more plaintexts and can
obtain the corresponding ciphertexts. This is possible if he/she has access to the

encryption system.

2.4. Security Systems 20

Adaptive chosen plaintext attack A chosen plaintext attack where a plaintext can

be chosen depending on previously obtained ciphertexts.

Chosen ciphertext attack An attacker can choose one or more ciphertexts and ob-
serve the corresponding plaintexts. This is possible if he/she has access to the

decryption system.

Adaptive chosen ciphertext attack A chosen ciphertext attack where a ciphertext

can be chosen depending on previously observed plaintexts.

2.4.7 Attacks against Authentication Systems

Against authentication systems, the attacker may attempt impersonation, substitu-
tion, repudiation, and finding the key of the MAC [103]. For example, suppose the
impersonation and the substitution in a digital signature scheme are as follows. Let
X be a message and its signature be Y. Then in impersonation, the attacker, Oscar,
creates his own message X and then chooses its signature Y so that the receiver, Bob,
identifies Y as signed by another entity, Alice. In substitution, Oscar intercepts (X,Y")
generated by Alice, and modifies it to (X', Y”) or he creates (X', Y"') and hopes that it
remains acceptable.

Examples of the attacks against hash are as follows.

1. Guessing attack:

For a message X with n-bit hash h(X), choose a random bit-string X’ of the
length | < a where a is a constant and check if X' satisfies h(X) = h(X'). The
probability of h(X) = h(X') is 27™.

2. Birthday attack:

Let X and Y be the legitimate and fraudulent message, respectively, and h(X)

be an n bit one-way hash function.

(a) The attacker generates ¢t = 2"/2 messages X;,1 < i < ¢, each by making

small modification on X, and computes h(X;) and store the results.

(b) Loop: he generates Y; and computes h(Y;) and search X; such that h(Y;) =
h(X;),l <i<t.

A match can be expected after ¢ trials.

2.4. Security Systems 21

2.4.8 Redundancy of a Language

A natural language can be seen as a message source and so can be analyzed using
information theory [8]. Let S be the alphabet of a language with M symbols, and S*
denote a string of k characters. Then the rate of language rj for messages of length k

is the average amount of information per character in these messages and is given by

_ Hy(SY)

- (2.6)

Tk

The absolute rate of a language is the maximum amount of information that could
be encoded in each character using the alphabet S assuming that all combinations of

symbols are equally likely. It is given by

R =log, M . (2.7)
The redundancy of a language D with rate r is given by

D=R-r. (2.8)

For English, 7 has been estimated to be 1.0 to 1.5 bits/letter and R is 4.7 bits/letter
[68]. The high value of R means that the English language is highly redundant. For
a language, less redundancy means more statistical independence of the successive
characters in a message. Redundancy of languages can be removed by using data

compression algorithms.

2.4.9 Unicity Distance

When a language is redundant, the knowledge of statistical properties of the language
can be used to attack an encryption system [8]. The unicity distance U is the minimum
amount of ciphertext required by the attacker using ciphertext attacks with unlimited
computational resources to uniquely identify the key [68], and is given by
H(K)

Us =~

(2.9)

where H(K) is the entropy of keys and R is the redundancy of the plaintext. When
the unicity distance is small, a short ciphertext gives enough information to uniquely
identify the key K and hence the security is weak. By lowering R, that is compressing

the source and reducing redundancy, the unicity distance is increased.

2.5. Image Compression 22

2.4.10 Data Compression and Security

As shown in Section 2.4.9, compressing a message source before encryption increases
security by removing redundancy of the source and increasing the unicity distance. An
encryption algorithm produces ciphertexts that look like a random sequence and so
do not have any apparent redundancy. This means that ciphertexts do not compress
much. Encryption is now widely used in computer systems, and so compression before
encryption is an important strategy for efficient use of resources. Combining compres-
sion and encryption algorithm has the advantage of added efficiency and automatic

compression before encryption.

2.5 Image Compression

Image compression is essential for multimedia applications since the volume of image
data is very large and so can be costly for transmission and storage without compres-
sion. The digitization procedure of an image consists of sampling and quantization
[88]. A digital image is commonly represented by a rectangular array of dots called
pizels (still images) or pels (fax and video images). The number of bits assigned to a
pixel value determines the number of colors, or shades in gray scale images, a pixel can
show. The reduction of data size is achieved by either lossless or lossy compression. In
the lossless case, the compression removes the redundancy in the image data. In the
lossy case, the compression removes the irrelevant information in the image data, that
is, the information which is less important in terms of Human Visual System (HVS).
The most commonly used quality measure for lossy compression is the peak signal to
noise ratio (PSNR). Let the pixels of the original and the reconstructed image be P,
and @y, 7 € {1,2,...,n}, respectively. Then the PSNR is defined as

PSNR =

where RMSE = \/% Sor (P —Q;)? (RMSE: root mean square error). There are
different approaches to both lossless and lossy compression. For example, JPEG and
JPEG 2000 support both lossless and lossy mode. Lossy compression is used for the
images commonly seen on Internet and the lossless compression is often used for medical

images.

2.5. Image Compression 23

2.5.1 Transform

It is known that the neighboring pixels of a digitized image are highly correlated [88].
In image compression, a transform first decorrelates the pixel data and then the trans-
formed data is quantized and entropy-coded. In the following sections, we review two
transforms, the discrete cosine transform and discrete wavelet transform, which are the

most widely used in image compression.

Discrete Cosine Transform

The discrete cosine transform (DCT) [3] is a signal analysis tool that can be used to
decompose an image signal into its frequency components. The energy compaction
efficiency of the DCT is known to be near-optimal for the first order autoregressive
model, AR(1), that best models image data and so is widely used in the decomposition
stage of natural image compression systems [104]. For example, it is the transform
of choice in JPEG [45] and MPEG2 [70] coding standards. For efficient computation
of transform coefficients, the image is partitioned into blocks of sub-images and the
transform is applied to each block independently. From the coding efficiency and fast
computation viewpoints the commonly used block size is 8 X 8; this is the block size used
in JPEG and MPEG2 coding standards. The transform coefficients can be classified
into two groups, namely, DC and AC coefficients. The DC coefficient is the mean of
the pixel values of the image block and carries most of the energy in the block. The
AC coefficients carry energy depending on the amount of detail in the image block.
However, usually most of the energy is compacted in the DC coefficient and a few AC
coefficients. Image compression systems exploit the energy compaction property of the
DCT and use quantization to produce a more compact representation of the image
because of the small amount of energy in the higher frequency AC coefficients.

Let the pixel values, z;; in a given N x N image block be represented as the matrix
[X]. Let [A] denote the matrix of DCT basis vectors given by a;; = cos((j — 1)%),
i,j €{1,2,...,8}. Then [A] is given by

2.5. Image Compression 24

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.980785 0.831470 0.555570 0.195090 -0.195090 -0.555570 -0.831470 -0.980785
0.923880 0.382683 -0.382683 -0.923880 -0.923880 -0.382683 0.382683 0.923880
0.831470 -0.195090 -0.980785 -0.555570 0.555570 0.980785 0.195090 -0.831470
0.707107 -0.707107 -0.707107 0.707107 0.707107 -0.707107 -0.707107 0.707107
0.555570 -0.980785 0.195090 0.831470 -0.831470 -0.195090 0.980785 -0.555570
0.382683 -0.923880 0.923880 -0.382683 -0.382683 0.923880 -0.923880 0.382683

0.195090 -0.555570 0.831470 -0.980785 0.980785 -0.831470 0.555570 -0.195090
and the DCT of the data is given as the matrix [C]”¢T,

(€17 = [A]X][A]". (2.10)
The image block is recovered through the inverse transform as,
[X)PT = [A][C][A] (2.11)

For a given image block k, the pixel values can be written as a decomposition into a
DC and an AC component. Thus,

(X = [X]P7 + [XTR© (2.12)
Of course, [X]P¢ is constant over all i, j € N and its components are given by,

1,1
(_ka() (2.13)

where F,El’l) is a DC coefficient. In the case of JPEG where the block size is 8 x 8 the

1

multiplying factor is &;.

Discrete Wavelet Transform

The wavelet transform decomposes a signal into different scale levels, called multireso-
lution signal decomposition [64]. If this is applied to an image, the image is decomposed
into the signals which contain different level of details, and so different levels of im-
portance. This property enables the allocation of bandwidth to different scale levels
according to the importance of the signals for efficient image coding [4, 118].

The discrete wavelet transform consists of a sequence of wavelet filter banks, each
of which consist of a low-pass and a high-pass filter. The filter bank decomposes the

signal into coarse and detailed parts.

2.5. Image Compression 25

Rows Columns

Rows Columns

3 t |+ e
@H;F D2 4 H

o
-
O

w

>
o
o T
-« -«
O O
PR (SN
> o
- —-»
I (9]
T
>
o

A v b

High-pass filter
High—pass filter Low—pass filter

Low-pass filter Up-sampling (insert zero between two samples)

Down-sampling (keep one out of two samples) () Addition

Figure 2.6: Wavelet transform (left) and its inverse transform (right).

In the 2-dimensional transform, firstly each row of the image is decomposed into
coarse and detailed parts and down-sampled, and then each column of the coarse
and detailed parts is decomposed into coarse and detailed parts and is down-sampled
again. This results in four parts: coarse-coarse, coarse-detailed (both from the row
coarse part), detailed-coarse and detailed-detailed parts (both from row detailed part).
The last three parts compose the output subbands while the coarse-coarse part is the
input of the next filter bank. Hence each filter bank produces three subbands and four
subbands for the last filter bank.

In an implementation, the high-pass and low-pass filter is represented by a set of
filter coefficients and filtering the input uses convolution of the filter coefficients with
the input data. Let s; be a one-dimensional signal and ¢, denote filter coefficients
where k € {0,1,..., M}, then the convolution is

M

!/

5; = E CLS;
k=0

Let a hi-pass and low-pass filter coefficients be c,gf) and c,(é
{0,1,..., My} and k2 € {0,1,...,M5}. Then the output of the hi-pass and low-pass

filters SZ(H) and SZ(L) is obtained by SZ(H) = 2/[:10 c,(cH)si_k and SZ(L) = Z,]:fo C;L)Si_k,

), respectively, where k1 €

respectively.

There are various wavelet filters such as by Daubechies [21] and by Antonini et al.
[4]. For example, the filter coefficients of the Daubechies (9,7) filter used in JPEG2000
[44] are (0.026749, —0.016864, —0.078223, 0.266864, 0.602949, 0.266864, —0.078223,
—0.016864, 0.026749) and (0.091272, —0.057543, —0.591272, 1.115087, —0.591272,

2.5. Image Compression 26

—0.057543, 0.091272) for the high-pass and low-pass filters, respectively.

M

Coarse Detail
Coarse Coarse
N Origina image Coarse Detail
Coarse Detail
Detail Detail
1. Origina M X N image. 2. Filtering and down sampling 3. Filtering and down sampling
of each row resultsin two of each column resultsin four
M X Nblocks. M ¢ N biocks.
2 2 2

M
2

Coarse Detail
Coarse Coarse
Block from

the previous stage

Coarse Detail

N ES

Coarse Detail
Detail Detail

4. Repeat the above filtering and down sampling
on this block.

Figure 2.7: Wavelet decomposition of an image.

2.5.2 Quantization

In general, transformed coefficients of an image are real numbers and due to the re-
dundancy of the data, the number of coefficients can be large but many of them can
have close values [88]. Quantization converts the real numbers to a set of integers. The
conversion is not invertible. By quantization, if real number coefficients are converted
into a small number of integers, the data can be compressed.

There are various quantization methods. First we review scalar quantization which

is used in JPEG compression system and then more complex vector quantization.

Scalar Quantization

Scalar quantization converts a real number into an integer [88]. The method used in
JPEG is uniform scalar quantization [45]. Using uniform scalar quantization, a real
number coefficient is divided by an integer quantization step and the result is integer

rounded. More details are shown in Section 2.5.3.

2.5. Image Compression 27

Please see print copy for Figure 2.8

Figure 2.8: Wavelet decomposition of lena.pgm.

Vector Quantization

Vector quantization is used for image and sound compression. A vector quantizer
divides samples into blocks and quantizes the blocks. There are various vector quanti-
zation methods. One of the methods is described as follows.

To quantize samples using vector quantization, first sample data (i.e. pixels in an
image) is partitioned into blocks of k consecutive samples. Let X; denote a k dimen-
sional vector consisting of £ consecutive samples. Then all X; are in a k£ dimensional
space. Let v; denote k& dimensional vector where j € {1,2,..,n}. Then the k di-
mensional space is partitioned into n sub-spaces and v; is assigned to each of the n
sub-spaces. The vector v; is chosen such that the Euclidean distance of v; and X in the
sub-space corresponding to v; is minimized. A set of v; is called codebook. Each X; can
be represented by j which is the index to a vector in the codebook. In de-quantization,
to obtain k samples v; is obtained from j using the same codebook in quantization.

In the following sections, the most commonly used standards are described.

2.5. Image Compression 28

2.5.3 JPEG

JPEG compression is one of the most commonly used image compression systems. The
JPEG standard was prepared by CCITT study Group VIII and the Joint Photographic
Experts Group (JPEG) of ISO/IEC JTC 1/SC 29/WG 10 [45]. The encoder of JPEG

consists of three stages.
1. Discrete Cosine Transform
2. Quantization
3. Entropy coding

The above three stages are described in the following sections.

Discrete Cosine Transform

JPEG uses the 2-dimensional discrete cosine transform. An image is divided into 8 x 8
pixel blocks and an 8 x 8 DCT is applied to each of the blocks.

Quantization

The decomposed coefficients are quantized based on the quantization table.
Let h be an integer and r be a real number where —0.5 < r < 0.5, so that any real

number can be shown as h + r. Let an integer rounding function be rint, that is,
rint(h+1r)=h . (2.14)

The quantization table is given by an 8 x 8 matrix where the entries are Q%) € N,
u,v € {1,2,...,8}. Let F@v) and T(®?) be the original and quantized coefficients, then
T®Y) is given by

=) - (2.15)
The de-quantization of T(") is given by,

F(u,v) — T(uﬂ)) . Q(U;U) . (216)

2.5. Image Compression 29

Entropy Coding

The quantized coefficients are entropy coded by either a Huffman or an arithmetic
coder. For the DC coefficients, the differential DC values of two consecutive blocks
are calculated and entropy-coded. For the AC coefficients, the 8 x 8 matrix of the
quantized coefficients are scanned in a zig-zag order. In a scan, 63 coefficients are
encoded by repeating the following procedure. The run-length of zero coefficients
preceding a non-zero coefficient is obtained and then the pair of the run-length and
the non-zero coefficient are entropy-coded. If the run of zero coefficients includes the
last AC coefficient in the block, then the end of block code is encoded instead of the

run-length and non-zero coefficient pair.

Compression Modes

JPEG provides lossy and lossless compression. With lossy compression, it provides
different modes which determine the organization of encoded stream. We review the
most commonly used two modes, i) sequential DCT and i) progressive modes. In the
sequential DCT mode, the organization of the encoded stream is such that each of 8 x 8
blocks consisting of 64 DCT coefficients are encoded sequentially. Assuming that an
image consists of 8 x 8 pixel blocks, the order of scanning the blocks is from left to
right in a row of 8 x 8 blocks, from the top to the bottom row.

The progressive mode provides two different encoding methods, spectral selection
and successive approximation. In the spectral selection, all DC coefficients are encoded
in the first scan. Then in the ith scan all the ith AC coefficients are encoded for : = 1
to 63. In each scan, the blocks are scanned from left to right in a row of 8 x 8 blocks,
from the top to the bottom row.

Let L denote the precision of the quantized DCT coefficients. Then in the successive
approximation, in the first scan all DC coefficients are encoded. Then from the most
significant bits (j = 1) to the least (j = L), the jth bit layer of all AC coefficients are

encoded.

2.5.4 JPEG2000

The JPEG 2000 encoding procedure can be decomposed into three stages [43], namely;
1. Transformation

2. Quantization

2.5. Image Compression 30

3. Embedded Block Coding with Optimized Truncation (EBCOT) [108, 109]

Discrete Wavelet Transform

In the transformation stage, an image is decomposed into subbands which are repre-

sented by real-valued wavelet coefficient sets.

Quantization

The transformation stage is followed by a quantization stage which converts the real-

valued coefficients to whole numbers.

Embedded Block Coding with Optimized Truncation

Finally the coefficients are entropy-coded by Embedded Block Coding with Optimized
Truncation to compress the output of the quantizer. In the EBCOT stage, each sub-
band is divided into blocks and then each block is independently encoded into the
bit-stream using an adaptive binary arithmetic coder in such a way that the more im-
portant information always precedes less important information. This is the heart of

the embedded bit-stream organization.

2.5.5 MPEG

MPEG [42] video stream consists of three layers: video, audio and a system to interleave
the two streams. The video and audio layers are independent from each other. We are
only interested in the video layer. A video stream consists of a sequence of images, also
called frames. Redundancy in the sequence is of two forms [30]: i) spatial redundancy
which is due to redundancy in each frame, and i) temporal redundancy that is due to
similarities between consecutive frames. To compress the stream transform coding is
used for the former while motion compensation technique is used for the latter. The
final stage is an entropy coder that removes the remaining redundancy in the stream.
In an MPEG stream, the image sequence is encoded as a sequence of intra, forward
predicted, and bidirectional prediction frames. An intra frame (I-frame) is encoded
without reference to any other frames; a forward predicted frame (P-frame) is encoded
relative to the past reference I- or P- frame and a bidirectional prediction frame (B-
frame) is encoded relative to the past and/or future reference I- or P- frames [115].
Frames are divided into 16 x 16 macroblocks, each consisting of 4 luminance and 2

chrominance 8 X 8 blocks.

2.6. Conclusion 31

In an I-frame, the transform coding is performed on the macroblocks. Each 8 x 8
block in a macroblock of an I-frame is transformed into 64 coefficients using Discrete
Cosine Transform. This is followed by a scalar quantizer that replaces each DCT coef-
ficient with an integer depending on the quantization scale. Finally the 64 quantized
coefficients are "zig-zag” scanned to form a stream which is entropy coded.

In the P- and B- frame, to encode a macroblock, if an area similar to the macroblock
is found in a past or a future frame, then a motion vector that refers to the similar
area, and an error term between the macroblock and the area are encoded. This motion
compensation reduces the temporal redundancy. If there is no such area in a past or
a future frame, the macroblock is transform-coded in the same way as I-frame, i.e.

without reference to any past or future frame.

2.6 Conclusion

For efficient transmission and storage, in most cases digital images are compressed
either in a lossless or lossy way. Image compression systems compress digital images
by removing the spatial redundancy and video compression systems also remove the
temporal redundancy to obtain a stream with little redundancy. JPEG and MPEG
are the two widely used international standards. In all these standards, digital images
or frames are transformed and then quantization and entropy coding is used to obtain
the compressed data. JPEG and MPEG use DCT, and JPEG2000 uses DWT. The
more recent standard for image compression is JPEG2000. However both JPEG and
JPEG2000 will be used for the foreseeable future.

Encrypting compressed streams will provide increased security. However, in general
the size of the data is still large and using encryption algorithms such as RSA and DES
is computationally expensive. This motivates development of combined encryption and
compression systems that reduce the computational cost while providing reasonable
security.

Lossy compression systems alter the bit representation of the original image but
the meaning of the image will not be affected. This means that integrity checking
algorithms must tolerate compression and decompression of image data. Cryptographic
integrity checking algorithms are sensitive to a single bit change in the data and are
not suitable for image authentication.

In the following chapters we propose combined encryption and compression, and

authentication algorithms for digital images.

Chapter 3

Review of Image Encryption and Image
Authentication Systems

3.1 Introduction

In this chapter we first review existing combined encryption and compression systems.
If a data compression algorithm can be made to also provide security, less processing
overhead could be expected as a single algorithm achieves two goals. First we review
arithmetic coding encryption systems and next image encryption systems. Then we

look at image authentication systems and finally we conclude.

3.2 Arithmetic Coding Encryption Systems

A method to integrate encryption and arithmetic coding was proposed by Witten and
Cleary [120]. Adaptive arithmetic coding encryption schemes were motivated by the

following observations.

1. Models for data compression are often very large and may act as an enormous

key.

2. If an adaptive model is used, the key depends on the entire transmitted text and
finding the key would require tracking the changes to the model by decoding the

entire transmaission since initialization.

3. It is very difficult to regain synchronization if the models for compression and

decompression are different.

The proposed arithmetic coding encryption schemes are symmetric encryption al-
gorithms. Depending on which part of the arithmetic encoder/decoder contributes to

the key, the schemes are divided into two categories, which are model-based schemes

32

3.2. Arithmetic Coding Encryption Systems 33

and coder-based schemes. Also there exists a scheme which combines the two. We

describe these schemes in the following sections.

3.2.1 Model-based Schemes

In Witten et al.’s proposal [120], the model is used as the encryption key: that is the
details of the model are only known to the transmitter and the receiver. These schemes

are called model-based.

Model-based Scheme 1

The secret key of the scheme is the initial model.

In this scheme, the initial model is transmitted through a secure channel and is
shared by the transmitter and the receiver. The other parameters such as the initial
range of the coder is public. The secret are the parameters such as the initial frequencies

of symbols and the order of symbols in the frequency table.

Model-based Scheme 2

The secret key of the scheme is an initial string.

The initial model and range are public and the key is a secret string, shared by the
transmitter and receiver. The key is input to the system before the actual message is
started. The initial string is sent through a secure channel preceding the transmission
of a message. The key string modifies the models and the ranges in both the encoder

and the decoder to one which is unknown to the attacker.

3.2.2 Coder-based Schemes

An alternative approach proposed by Irvine, Cleary and Rinsma-Melchert is a coder-
based scheme [41].
The secret key of the scheme is a bit string which is used to narrow the range.
Based on the key bit sequence, either the high value A is decreased or the low value
[is increased by an amount (h — [)e where ¢ is a public parameter and 0 < & < 1.
The known parameter € can be a part of the key but it must be carefully chosen so
as not to affect the compression performance. A variation of this scheme is proposed
by Liu et al. [62].

3.2. Arithmetic Coding Encryption Systems 34

3.2.3 Effect on Data Compression Performance

One important criteria for the performance of an arithmetic encoding encryption
schemes is the effect of the added encryption on the efficiency of data compression
systems. This is measured by the compression ratio, which is the average number of
bits per input symbol, and the speed, which is the average time to process an input
symbol. In both of the model-based schemes, the initial model or the initial string
will be randomly chosen. Hence the given model for a message does not necessarily
represent the statistics of symbols in the message. If an adaptive model is used, as data
compression proceeds, the initial model is overwritten by the statistics of the incoming
message. Witten et al. estimated that 1,000 symbols are enough for order-0 adaptive
models to adjust the model to the input message. So if the length of a message is con-
siderably longer than 1,000, the impact of a randomly chosen model or initial string
on the data compression performance will be small.

In the case of coder-based schemes, the added encryption algorithm has a continuous
influence on the data compression. The drop of the compression ratio may be minimized
by an appropriate choice of e. However, the scheme will have reduced compression speed
because the extra-narrowing is equivalent to encoding another additional symbol. For
example, the combined scheme by Liu et al. [62] results in an approximately 2% drop

in the compression rate and almost doubles the coding time.

3.2.4 Security

All known attacks are chosen plaintext attacks. Attacks on adaptive schemes [11, 113]
are chosen plaintext attacks where the attacker can feed plaintexts of her/his choice
to the encoder. The attack does not discover the key (initial model) but succeeds to
modify the model into a form which is known to the attacker, and hence allowing the
attacker to decrypt the communication afterwords. By sending a long sequence of a
single symbol to the encoder, the adaptive model is modified such that the probability
of the symbol sent is maximized and that of other symbols are minimized and so the
model is known to the attacker. Similar methods can be used to attack combined
schemes [112].

To protect against this attack, a parameter of the model (e.g. re-calculation cycle
of symbol probabilities) can be regularly changed, for example every n input symbols
[11]. Another alternative is to use an additional simple operation such as a random

transposition using a pseudo random generator [112].

3.3. Image Encryption 35

3.3 Image Encryption

Advances in computer and communication technologies have resulted in efficient sys-
tems for delivery of a wide range of multimedia data such as video on demand and
pay TV over the Internet. One of the main obstacles in the wide spread deployment
of multimedia services has been enforcing security and ensuring authorized access to
the data. A naive solution is to use an encryption algorithm to mask multimedia
data streams. However direct application of encryption algorithms to multimedia data
requires high computational power and introduces an unacceptable delay in commu-
nication. To alleviate these problems there have been numerous attempts to design
encryption systems that take advantage of characteristics of this type of data and re-
sult in less expensive systems. One approach in this category has been incorporating
encryption in the compression algorithm applied to the raw data. Because of the enor-
mous size of multimedia data files and their high level of redundancy, in almost all
cases the data is compressed before it is stored or transmitted and so incorporating
security in the compression system is a very attractive approach. The main challenge
is to ensure reasonable security without reducing the compression performance.
Image data in compressed format is still large and so using conventional encryption
algorithm such as RSA and DES is computationally expensive. By combining image
compression and encryption the computational cost can be reduced without compro-
mising security. There are two approaches to achieve this : i) elementary cryptographic

operation and ii) selective encryption.

3.3.1 Elementary Cryptographic Operations

Using less expensive elementary cryptographic operations such as random permutation
lists, images can be effectively hidden. Since the operations are simple, the encryption
will not have a high computational cost. An example of this approach is an MPEG
(Motion Picture Experts Group) [42, 30] encryption system by L. Tang [107] that uses
random permutation lists. In the following sections, we review two MPEG encryption

systems, a system by L. Tang and its variant by S. U. Shin et al. [95].

MPEG Encryption System using Random Permutation Lists

In an MPEG system a motion picture consists of I-, P- and B-frames. I-frames are
encoded independently from other types of frames. To encode an I-frame, the frame

is divided into macro-blocks, each consisting of 8 x 8 pixel blocks. The pixel blocks

3.3. Image Encryption 36

are transformed using an 8 x 8 DCT and then the resulting coefficients are quantized.
The quantized coefficients in an 8 x 8 block are scanned in a zig-zag order as shown in
Figure 3.1, and then are entropy-coded. In the P- and B-frame, the frame is divided
into macro-blocks and each macro-block is encoded either using motion compensation or
using the same method of encoding a macro-block in I-frames. In motion compensation,
a pair of an error term and a motion vector that refers to a 16 x 16 area in a past (P- and
B-frames) or a future (B-frame only) frame is encoded. Motion compensation is used
if a region in a past or a future frame matches a macro-block in the P- and B-frame.
Otherwise the macro-block is encoded in the same way as encoding the macro-blocks

in I-frames. In this case, the macro-block is called I-macro-block [115].

Figure 3.1: Zig-zag scan of 8 x 8 DCT coefficients in JPEG.

The encryption system proposed by L. Tang [107] encrypts macro-blocks in I-frames
and I-macro-blocks in P- and B-frames. To encrypt an 8 x 8 DCT block after quanti-
zation, the zig-zag scan is replaced by a random scan using a random permutation list
which is generated from a secret key and specifies the order of the scan such that the

data is randomly scanned. The method of encrypting an 8 x 8 block is as follows.

1. First the following procedure is used for the DC coefficient. Denote the DC
coefficient by an ¢ digit binary number b;b;_;...bob;. Then the value bibi_l...béﬂ
replaces the original value of the last (63rd) AC coefficient, i.e. the value of the
AC coefficient will be lost, and the value b%...bel is set to the DC coefficient.
This is called the splitting procedure. This operation is required because a DC
coefficient in general is the largest among the 64 coefficients and cannot be hidden

by the permutation.

2. Next all 64 DCT coefficients in the block are scanned using a random permutation

list and then they are entropy-coded.

The author also suggested that the encryption method can be used in the JPEG

3.3. Image Encryption 37

(Joint Photographic Experts Group) [45] compression system because JPEG compres-

sion system uses an 8 x 8 DCT and a zig-zag scan similar to MPEG.

MPEG Encryption System by S. U. Shin et al.

An MPEG encryption system [95] uses both random permutation lists and selective
encryption. For all AC coefficients, the system replaces the zig-zag scan by the random
scan using random permutation lists similar to Tang’s system. For DC coefficients, the
sign bits of the differences of two consecutive DC coefficients are encrypted using an
encryption algorithm such as DES [38], RC4 [85, 86] and RC5 [96]. (The mode of DES

is not specified in the paper but any mode can be used.)

3.3.2 Selective Encryption

It is possible to reduce the cost of computation by reducing the size of the data that
is to be encrypted. That can be achieved by encrypting only part of the data or
parameters that are required to decode images. For effective encryption, the part that

is to be encrypted must be carefully chosen.

Aegis

An MPEG encryption system called Aegis (named after the breastplate of Zeus) [99]
encrypts the MPEG video sequence header and [-frames in the MPEG stream using

DES. The reasons for encrypting the header and I-frames are as follows.

1. The MPEG video sequence header contains the information required to initialize
the decoder such as picture size (width and height), frame rate, bit rate and buffer
size and the decoder needs this information to correctly decode the subsequent

data.

2. I-frames are more important than P- and B-frames because P- and B-frames may
have reference to I-frames but each I-frame is independent from other frames and

so without I-frames, P- and B-frames will not be decoded.

SECMPEG

A video encryption system SECMPEG [69] uses DES (CBC-mode) to encrypt a video
stream similar to MPEG-I. The video stream consists of the data of the MPEG-I stream

and additional data which contains parameters for encryption and integrity check.

3.3. Image Encryption 38

The organization of MPEG-I video stream consists of the following six layers [88].

Sequence layer This layer represents the highest level of a video sequence. A video
sequence is defined as a sequence of a sequence header, one or more group of

pictures (GOP) that follow the header, and a sequence end code at the end.

GOP layer This layer represents the organization of a group of pictures. A group of

pictures consists of a GOP header and one or more frames.
Picture layer In this layer a frame consists of a picture header and one or more slices.
Slice layer A slice is a sequence of a slice header and one or more macro-blocks.

Macro-block layer A macro-block consists of a macro-block header and 8 x 8 blocks.
In a typical color video, it includes four luminance blocks and two chrominance
blocks.

Block layer This layer is only for a block in an I-macro-block and includes the entropy
coded difference of consecutive two DC coefficients and run-length coded AC
coefficients similar to JPEG.

The system provides four levels of security by choosing data in different layers for

encryption. The four security levels are as follows.
Level 1 Picture headers, slice headers and GOP headers are encrypted.

Level 2 Addition to the parts encrypted in Level 1, macro-block headers and part of
block data are encrypted.

Level 3 Addition to the parts encrypted in Level 2, all I-macro-blocks are encrypted.

Level 4 Entire MPEG stream is encrypted.

JPEG Encryption Systems by H. Cheng et al.

H. Cheng et al. proposed two systems [14]. One of the systems is based on the JPEG
compression system. The system encrypts an image by dividing the 64 DCT coefficients
in an 8 x 8 block into two parts, i) a lower frequency part and i) a higher frequency
part, and encrypts the lower frequency part.

The other system uses quad-tree image decomposition in the spatial domain [18,
105, 97] and is not based on a commonly used image compression system. The decom-

posed image (using quad-tree method) consists of two parts, i) a tree structure that

3.3. Image Encryption 39

contains the location and size of rectangular regions, and i) pixel values in the regions.
The encryption system encrypts the pixel values because they are crucial to recover
the image.

VEA by L. Qiao et al.

Video Encryption Algorithm (VEA) by L. Qiao et al. [79] is an MPEG encryption

system and encrypts I-frames as follows.
1. Randomly permute 64 1’s and 64 0’s and generate a 128 bit number K.

2. Let ajasas...ai0s denote a 128 byte sequence representing an entropy-coded I-

frame. Then construct two 64 byte sequences, My and M as follows.

Algorithm 1 : Construction of Odd List and Even List

1: Initially My and M, are zero bytes.
2. Forie{1,2,.. 128}

3 If #th bit of K is 1

4: a; 1s concatenated to M.

5 Else

6

a; is concatenated to M.

3. Then encryption of ajasas...ai95 is given by Mo@®M;+Epgs(M,), where X BY is
XORof X and Y, X+Y is concatenation of X and Y and Epgg(X) is encryption
of X using DES.

VEA by C. Shi et al.

Video Encryption Algorithm (VEA) by C. Shi et al. [92] is an MPEG encryption
system. It encrypts sign bits of DCT coefficients (for the DC coefficients, the sign bits
of differences of DC coefficients) in I-macro-blocks using the XOR operation of the sign

bits and a random bit string.

RVEA by C. Shi et al.

Real-time Video Encryption Algorithm (RVEA) by C. Shi et al. [94] is an MPEG
encryption system and encrypts sign bits of motion vectors in addition to the encryption
of sign bits of DCT coefficients in VEA [92] using DES or IDEA [53].

3.3. Image Encryption 40

3.3.3 Compression Performance of Encryption Systems

Experimental results of Tang’s system are shown in his paper[107]. For two MPEG
encoded streams “flower garden” and “table tennis”, the increase in encoding time for
encryption was -0.2% and 0.6%, and the increase in the size of the encoded stream was
21.9% and 41.9%, respectively. Hence, it can be seen that encryption using random
permutation lists is fast and the drop in the encoding speed is ignorable. However the
drop in compression rate is very large.

The results of experiments [95] show that the system proposed by S. U. Shin et
al. increased the encoded stream size by 0.3% on average. The results show that
1.2% of the entire MPEG stream was encrypted. We note that although the system
uses the same method as Tang’s method [107] to encrypt AC coefficients, the drop in
compression rate of their system [95] and Tang’s system [107] has a large difference.

The large drop in compression rate is due to the permutation of the AC coefficients.
Without this permutation, the high frequency AC coefficients are scanned consecutively
in the zig-zag order. Most of these coefficients are likely to be zero and so are run-
length coded. If the coefficients are encrypted, the random permutation will result in a
shorter run-length. The contribution of the run-length coding to the compression rate
is large [88] and so is the drop in the compression rate.

The results of experiments for SECMPEG [69] show that the increase in compu-
tation time for encryption is about 10%, 12% and 55% for security levels 1, 2 and 3,
respectively. In security level 3, SECMPEG encrypts picture headers, slice headers,
GOP headers, macro-block headers and I-macro-blocks. VEA by L. Qiao et al. en-
crypts I-frames, which is about 50% of the entire MPEG stream [79], using DES. The
comparison of VEA with encryption of the entire stream using IDEA shows that the
encryption speed of VEA is approximately 50% of IDEA [79]. VEA by C. Shi et al.
increases the encoding time by 1.81% for encrypting sign bits of DCT coefficients in
[-frames using DES. RVEA encrypts sign bits of motion vectors and DCT coefficients
using DES. About 10% of the MPEG stream is encrypted and the encryption increases
the encoding time by 2.55%.

The data size will largely affect the encoding and decoding speed. Encryption data
size largely varies with an encryption system. For example, to encrypt an I-frame,
VEA by L. Qiao et al. encrypts the entire I-frame data (50% of the entire stream) but
RVEA encrypts only sign bits of the motion vectors together with the DCT coefficients
(10% of the entire stream).

3.3. Image Encryption 41

3.3.4 Security
Encryption Using Random Permutation Lists

Analysis by L. Qiao et al. [81, 80] showed that encryption using random permutation
lists are vulnerable to a known-plaintext attack. Since many movies start with standard
header clips, such as the MGM roaring lion, an attacker can compare the original
DCT coefficients with the permuted ones to find the permutation. The analysis also
pointed out that the ciphertext only attack can reveal the images. It showed that
the DC coefficient is the largest among all DCT coefficients in a block and non-zero
AC coefficients are gathered in the low frequency part. Hence the correct order of
coefficients in a block can be recovered by sorting them.

The images in Figure 3.2 and 3.3 show the reconstructed images by sorting the quan-
tized DCT coefficients. Each image was DCT transformed and uniform-quantized. In
the images in Figure 3.2, the 16 largest coefficients were assigned to the 16 lowest
frequencies such that the larger coefficient was assigned to the lower frequency. The
other 48 frequencies were set to zero. In the images in Figure 3.3 the sorted 64 coeffi-
cients were used where the largest coefficient was assigned to the DC. Then the images
were reconstructed by de-quantizing and inverse-transforming these coefficients. The
PNSRs of the reconstructed images are given in Table 3.1. The experiments clearly

show that images can be recovered although the image quality can be low.

Table 3.1: PSNR of reconstructed images lena, mandoril and peppers by sorting
DCT coefficients : using largest 16 coefficients and 64 coefficients.
lena mandoril peppers
largest 16 coefficients | 23 dB 17 dB 18 dB
64 coefficients 13 dB 11 dB 11 dB

Selective Encryption

A JPEG encryption system by H. Cheng et al. [14] only encrypts the lower frequency
coefficients. The authors had concluded that the system is insecure because the edges
of the encrypted image are contained in the higher frequency part and so will not be
hidden.

In [2] I. Agi et al. showed that MPEG encryption systems which encrypt only
[-frames are insecure. P- and B-frames may include I-macro-blocks which are inde-
pendently decodable and the I-macro-blocks are not encrypted and so they will reveal

the images. The authors had pointed out that the number of I-macro-blocks in P- and

3.3. Image Encryption 42

Please see print copy for Figure 3.2

(a) (b) (c)

Figure 3.2: Reconstructed images using sorted largest 16 coefficients : lena (a),
mandoril (b) and peppers (c).

Please see print copy for Figure 3.3

(a) (b) (c)

Figure 3.3: Reconstructed images using sorted 64 coefficients : lena (a), mandoril (b)
and peppers (c).

B-frames can be large if the scene includes high degree of motion. Another experiment
using “Miss America I1”, where Miss America is sitting behind a desk and speaking
to camera, shows that even if all I-macro-blocks are encrypted, the stream can reveal
some features of the person. The authors of [2] concluded that encryption systems that
encrypt I-macro-blocks but do not encrypt motion vectors, such as Aegis and SECM-
PEG, are not suitable for applications which require a high level of security. We point
out that the two VEA by L. Qiao et al. and by C. Shi et al. do not encrypt motion

vectors and so will not provide a high level of security.

3.3.5 Concluding Remarks

It can be seen from above that encryption using simple operations has little impact on

the encoding speed. However, using random permutation lists with MPEG and JPEG

3.4. Image Authentication 43

does not provide high security because the lower frequencies contain higher energy
and so larger coefficient values. Obviously it is inappropriate to apply permutation
to such data since the coefficient values and their frequencies have strong correlation.
We note that the MPEG and JPEG compression algorithms exploit the correlation to
compress the data. Permutation destroys the correlation and results in a large drop in
the compression rate.

Selective encryption usually has a high computation cost and the drop in the com-
pression speed is determined by the size of the encrypted data. The advantage of
selective encryption is that well-studied encryption algorithms can be used for encryp-
tion and so if the parts to be encrypted are carefully chosen, high security can obtained.
If selective encryption is applied to entropy-coded data (e.g. SECMPEG and VEA by
L. Qiao et al.), there will be no drop in compression rate.

It can be seen from the above that to assess the security of image encryption systems
it is important to understand properties of MPEG and JPEG coded data. From the
security point of view, more analysis of the systems to assess the level of security

against various attacks is required.

3.4 Image Authentication

In recent years there has been a rapid increase in on-line multimedia services. Visual
data and in particular images have become part of nearly all Web pages. In many
applications, data must be authenticated. For example, images used in news reporting
or taken by a speed camera must be authenticated.

Authentication of image data poses many new challenges. Firstly, unlike data
authentication systems that must detect a single bit change in the data, image au-
thentication systems must remain tolerant to a range of modifications that are due to
commonly used operations on such data, including filtering operations for enhancement
and lossy compression to reduce the size of the data by removing irrelevant informa-
tion (that is, details which are not perceptible) from it. In all, the above resulting
object will have different pixel values from the original, but it remains perceptually
the same. Objects may be decompressed and re-compressed with a different quality
level and still must remain verifiable if the object is not tampered with. In other words
an authentication system must be able to distinguish between acceptable and not ac-
ceptable changes and allow the verification to succeed or fail, depending on the two

cases, respectively. Secondly, because of the very large size of data files, and in many

3.4. Image Authentication 44

cases real-time nature of the data, very efficient systems are required. That is, the
authentication algorithm should only add a small overhead to the multimedia delivery
system.

An image authentication system consists of two algorithms, i) an authentication
algorithm which takes an image and some key information and generates an authenti-
cated image, and 1) a verification algorithm that takes a candidate image and the key
information, and produces a true or a false result. The verification algorithm must not
require the original image to verify a candidate image and should be able to localize
the modified part if a candidate image is tampered. If the original image is available
in the verification process, then a given image can be verified by comparing to the
original and so watermarks or signatures are not required. However, the original image
must be securely transmitted to the verification system and this is costly compared to
transmitting signatures or keys of watermarks which are significantly smaller than the
image.

In some systems the authentication and the verification algorithms do not share
secret, information and all data which the verification algorithm requires are public. In
other systems secret information must be transmitted to the verification system using
a secure channel.

Image authentication systems can be broadly divided into watermarking system and

stgnature system. In the following we review these systems.

3.4.1 Watermarking Systems

In a watermarking system a watermark [124] signal is embedded into the image such
that it can be recovered even if the image undergoes a set of predefined operations
[128, 67]. Watermarking schemes are divided into two classes, i) robust watermarks,
which resist various image manipulations and i) fragile watermarks, which are sensitive
to change in an image. For image authentication, watermarks must detect changes and
so fragile watermarks are used.

A watermark signal can be embedded in the pixel domain or in the transform do-
main using an algorithm such as the Discrete Cosine Transform (DCT) or the Discrete
Wavelet Transform (DWT). Watermarks would be required to survive image compres-
sion such as JPEG because it is most likely that images are compressed for efficient
transmission and storage. If the watermarking algorithm uses the same transformation

as an image compression system, it can be integrated into the compression system so

3.4. Image Authentication 45

that the image in the compressed form carries the watermark. Otherwise the water-
mark should survive image compression in general.

In the following text, we review a number of recently proposed fragile watermarking
systems to give examples of this technique. A more comprehensive information of image

watermarking can be found in the papers [128, 67, 106, 98].

Watermarking System by Wu et al.

Wu and Liu [124] proposed an authentication system in which a watermark is embedded
in the image by changing the DCT coefficients after the quantization phase of JPEG
compression. In the system, all possible DCT coefficient values are flagged as either
0 or 1, and the value of a coefficient corresponding to the flag is used to embed a bit.
If the embedding bit matches the flag of the corresponding DCT coefficient value, the
coefficient is not modified and if it does not, the coefficient is modified to the closest
value, the flag of which matches the embedding bit. Embedding a watermark into the
DC and the low energy AC coefficients would result in blocking artifacts. The system

can locate the modified regions of still images and motion pictures.

Watermarking System by P. W. Wong

In the Public Key Watermark system [122], an embedding signal is generated by cal-
culating exclusive-or of a bi-level watermark image and the hash value using MD5 [84]
from the original image. The signal is digitally signed by the private key of a public
key cryptosystem and is embedded in the least significant bits of pixels in the original
image. The verification system extracts the embedded signal, and verifies it using the
public key. Then it calculates the hash value from the candidate image and recovers the
bi-level watermark image by calculating exclusive-or of the embedded signal and the
hash value. In this system the authentication algorithm uses only public information
and does not share secret information with the authentication algorithm. Since the
system uses MD5 and a public key cryptosystem that is sensitive to single bit changes,

the watermark will not survive lossy compression.

Watermarking System by J. Fridrich

The watermarking system [29] embeds watermark into the DCT coefficients. Assuming
that we embed r symbols of length m, the algorithm for embedding the watermark is

as follows.

3.4. Image Authentication 46

1. Divide the original image into 64 x 64 blocks B; where i € {1,2,...,n}.

2. Generate 64 x 64 black-and-white patterns P; where j € {1,2,...,m} by a pseu-

dorandom number generator (PRNG) using a secret key K.
3. Then smooth P; using a low-pass filter and make them DC-free.

4. Let ¢ denote a threshold value. Then obtain m bits from B; using P; using the

following algorithm.

Algorithm 2 : Obtain bits from blocks
For each block B;i € {1,2,...,n}

1

2 For each pattern P;,j € {1,2,...,m}
3 If |P; - By| > t

4: bij = 1.

5 Else

6 bi; = 0.

The value of ¢ is chosen so that approximately half of b;; are ones. In Fridrich’s
paper [29], t = 2500 was used.

5. Generating and embedding watermark signal is as follows.

Algorithm 3 : Generating and embedding watermark signal
For each block B;i € {1,2,...,n}

1
2 Initially watermark signal S; is zero.
3: For m symbols
4 Generate a pseudorandom sequences
of length D + r using PRNG with key K,i,7,and b;;.
5: According to a symbol to be embedded, choose a segment
of length D from the sequence of length D + r
where there are r possible choices.
Add the sequences of length D to S;.
Transform B; using DCT.
Choose the middle D DCT coefficients and add S; to them.

The verification algorithm executes steps 1 to 4 above. To extract the embedded
symbols in B;, it generates a pseudorandom number sequence of D + r similar to the
watermark embedding in Algorithm 3. It calculates the cross-correlation of the shifted

versions of the pseudorandom number sequence of length D + r and D coefficients in

3.4. Image Authentication 47

B;. The embedded symbol is determined by the amount of shift which gives the largest

correlation.

3.4.2 Signature Systems

The aim of a signature system is to extract some features (also called a signature, image
digest, or Message Authentication Code (MAC)) of the image that remain invariant for
images that have undergone predefined operations (e.g. JPEG compression to a given
quality level). The signature will be appended to the image and so an authenticated
image is a pair consisting of the image and a signature. For the generation and the
verification of a signature, some systems use secret information. In these systems, the
extracted features form the MAC or authentication tag.

In the following, we review a number of signature systems that use the data in
different domains to generate signatures, e.g. pixels [89], DCT coefficients [58, 126],

and wavelet coefficients [12].

Signature System by M. Schneider et al.

Schneider et al. [89] proposed a digital signature system for image authentication.
In their paper [89], the authenticity measure using features of images is defined as
follows. Let I, and I, be the original and a candidate image, and ¢(I) be a function
that computes a feature vector for image I. Then feature authenticity of I, and I, is
given by

Aeature =1 = |lg(1,) = (L)

where || X — Y| is the normalized distance between two feature vectors X and Y™ (the
distance between X and Y divided by the maximum possible distance of two feature
vectors). For example, A reqpre is 0 if g(I,) and g(7,,) has the maximum distance, and
Ajeature 18 1.0 if g(1,) = g(In).

The system uses the intensity histogram to calculate the feature vector and public
key encryption algorithm to sign the feature data. The generation of a signature is as

follows.

Algorithm 4 : Generation of a signature

1: Compute a feature vector from I, by g(Z,).
Compute H(g(l,)) where H() is a hash function.
3: Sign H(g(I,)) using the private key.

3.4. Image Authentication 48

Then choose a threshold value 7 which determines the degree of modification that

is acceptable. The verification of a signature is as follows.

Algorithm 5 : Verification of a signature
1: Compute a feature vector from I,,, by ¢(I,,).
2: Compute H(g(I)).
3: Decrypt H(g(I,)) using the public key.
4: Compare H(g(1,)) and H(g(I))-
5. If the difference between H(g(I,)) and H(g(I,)) is
equal to or smaller than 7
6: output true (I, is authentic).
Else
8: output false (I, is not authentic).

The authors noted that if 7 # 0, then cryptographic hash functions cannot be used
for H() because they are sensitive to a single bit change.

To calculate the feature vector, the following method was used.
1. An image was divided into blocks.
2. The intensity histogram [31] was calculated for each block.

3. To calculate the distance of two feature vectors, Euclidean distance between

intensity histograms was used.

The authors suggested to embed the signature into an image using watermarking

techniques in the papers [65, 20].

SARI System by Lin et al.

C. Lin and S. Chang [58] proposed an authentication system in which an authenticated
image remains authenticated after JPEG compression and decompression. The system
exploits the fact that the relationship between DCT coefficients of the same frequency
in two blocks is invariant over JPEG compression.

The system is based on the following theorem.

Theorem 1 Assume Fp(“’”) and Fq(“’”) are DCT coefficients of two arbitrarily 8 x 8
non-overlapping blocks of image X, and QW) is the quantization table of JPEG lossy
compression Yu,v € {0,...,7} and p,q € {1,...,p}, where @ is the number of blocks
in X. Define AF, ") = F,=") — F ") gnd AFISZ’U) = F,S“’”’ - Fq(u’v) where FISU’U)

3.4. Image Authentication 49

is defined as F\"" = = rint(E,"™ /Q)QY) where rint() is an integer rounding
function.
Assume a fized threshold k € R,Yu,v, and define k) = rmt(Q(u). Then, if
AF,) >k,
~ %(uav) . (u,'u) L [Z
AFIS’;’”)UU > 9 . e Q)
, (k(u,u) - 1) . Q(u,v), ﬁ ¢ 7
else if AFp,q(“’v) <k,
~ (7”) . (u,'u) L E Z
A < { N)
() +1)-Q g £ 2
else AF,) =k,
) f(wv) . Quv), % c7
AFP(;‘ZW)UU —]}(u,v) Q(u,v) or
(ko0 £1) . Qu), - @7
|

The MAC is obtained by choosing a sequence of threshold values for each pair (u, v)
and outputting one bit for each threshold value. The detail of the system is described
in Chapter 7.

Feature Extraction by Bhattacherjee et al.

Bhattacherjee and Kutter [12] proposed an authentication system that uses feature ex-
traction. The system transforms an image into wavelet coefficients using the Mexican-
Hat wavelets [12].

Let M;(Z) be a wavelet coefficient at position & in subband i. Then the feature

detection function is given by

Py (%) = |My(Z) — vM;(7)|
where v = 27079, Let N; denote a set of positions that are within radius r pixels of &
where r = 5 was used [12]. Then procedures to calculate feature points are as follows.

1. Position 7 is a candidate of a feature point if P;;(¥) = maxzen, Py;(7').

2. If the variance of the pixels in the n x n neighborhood of ¥ is larger than a user-
defined threshold, ¥ is a feature point. In [12], n = 7 and 10 was used for the
threshold.

3.4. Image Authentication 50

The authentication system inputs the original image I, and generates a set of feature
points S, = {Z, o, ...}. The verification system inputs a candidate image I,, and S,,.
It generates a set of feature points S,, from I,,, and then compares 7 € S, with 7 € S,.
Two feature points are considered matched if |7 — ¢ < 2. If all feature points in S,
and in S,, match then I, is considered as authentic.

The experiments [12] showed that the system detected modified locations and sur-

vived JPEG compression of quality level 80%.

MAC by L. Xie et al.

Approzimate Image Message Authentication Codes (IMACs) [126] uses Approzimate
Message Authentication Code (AMAC) [32, 6]. The AMAC algorithm is a probabilistic
checksum which estimates the similarity of two messages using their Hamming distance
[126]. Let K denote a secret key and m be an input binary sequence of length [X r X s
where [is the AMAC length and r,s € N. The AMAC length must be large to provide
security and its typical value is 80 <[< 400. The generation of AMAC can be divided
into four stages, i) initialization, ii) formatting, iii) randomization, and iv) majority

bits calculations.
Initialization Initialize a pseudorandom number generator (PRNG) using K.

Formatting From m construct a binary matrix M consisting of [columns and r X s

rows.

Randomization The randomization algorithm is as follows.

Algorithm 6 : Randomization

1: Generate a random permutation list to permute [items
using the PRNG.
2: For all rows in M
Permute each row using the random permutation list.
Generate a (r - s) X [binary matrix R
consisting of random bits using the PRNG.
5: Calculate T'= M @& R where & is the XOR operation.

Majority bits calculations A majority bit is defined as the most frequent binary
symbol in a set of bits. This stage consists of two rounds of majority bits calcu-

lations.

The first round

3.4. Image Authentication 51

In the first round, [X r x s bits in T are reduced to [x s bits using majority bits

calculation. Let V denote a s x [binary matrix. Then the following algorithm

generates V.

Algorithm 7 : Majority bits calculation 1

1
2
3:
4
5

Divide T into [x r matrices U;,i € {1,2,...,s}.
For each U;,i € {1,2,...,s}
For jth column of U;,j € {1,2,...,1}
Obtain a majority bit from r bits in the column.

Set the majority bit to position (j,4) in V.

The second round

In the second round, [x s bits in V' are reduced to [bits. The algorithm is as

follows.

Algorithm 8 : Majority bits calculation 2

1:
2:
3:

For jth column of V5 € {1,2,...,1}
Obtain a majority bit from s bits in the column.

Output the majority bit.

Let I, be the original image. Then the authentication system generates the AMAC

and the modified image I!, which is distributed instead of I,. The algorithm is as

follows.

1. Divide an image I into 8 x 8 blocks and obtain the DC coefficients using the

DCT.

2. Construct a bit sequence from the most significant bits of the DC coefficients and

calculate AMAC from the bit sequence using the secret key K.

3. Let ¢ denote a user defined error tolerance value. Assuming that the DC coeffi-
cient is [0, 255], divide the original DC coefficients in [0, 255] into two sets D; and
Dy, such that 0 < d; < 127 for d; € D;, and 128 < d;, < 255 for d;, € Dy,. Then d,

and d;, are modified as follows.

127 -1

d = d
l 127
127 — ¢
- —12 12 :
d}, oh (d 8) + 128+t

The modified coefficients dj and dj, are within the range [0,127 — ¢] and [128 +
t,255], respectively. The modification is used to prevent the MSBs of the DC

3.4. Image Authentication 52

coefficients from changing due to acceptable operations such as JPEG compres-
sion. For example, if JPEG compression can change the values of coefficients by
1, then 127 may change to 128 and so the MSB changes from 0 to 1. If ¢t =1, all
coefficients are either in [0, 126] or [129, 255] and the MSBs of coefficients will not
change. In the JPEG compression case, the value ¢ can be chosen to be ¢t = 0.5¢

where ¢ is the JPEG quantization step for the DC coefficients.

4. Inverse-transform the modified DCT coefficients and construct a new image I].

The verification system inputs a candidate image I,,, the AMAC, and secret key
K. Tt calculates the AMAC from [, similar to the authentication algorithm and
compares it with the received AMAC. Using the Hamming distance of two AMACs,
the authenticity of I, is determined. The verification system can tolerate bit changes

in the received image.

3.4.3 Evaluation

E. T. Lin et al. [60] give a list of desired properties of fragile watermarking systems.

Some applications may only require some of them. The properties are as follows.

1. A system must detect any tampering with high probability.

2. An embedded watermark should not be visible by human eyes. This property is

called Perceptual Transparency.

To make the watermark resistant against acceptable operations such as compres-
sion, the commonly used method is to increase the level of embedding signals.

This can degrade the image quality.

Signature systems do not have this problem because they do not modify images
(except [126]).

3. Detection should not require the original image. In many applications the original
image may not be available because they are immediately watermarked when
they are created. Since the original image will have a large size, storing and

transmitting such data using a secure channel is inefficient.
4. Verification systems should be able to locate modifications.

5. The verification systems should be able to characterize modifications. It should
be able to estimate the type of modifications such as the addition of edges. It

seems that not many system have this ability.

3.4. Image Authentication 53

6. Watermarks generated by different keys should be orthogonal. That is, an em-
bedded watermark in an image that was generated by a particular key must be

detected only by using that key.
7. The watermarking key space should be large.
8. The watermarking key should be difficult to deduce from public information.
9. The insertion of a watermark by unauthorized parties should be difficult.

10. The watermark should be embedded in the compressed domain. Conversely, the
watermark should survive compression because images are commonly stored in

compressed form.

In many papers the computational costs of the systems are not taken into account.
For example, the wavelet transform is used in several systems [12, 125, 116] which
makes the systems computationally more expensive than an 8 x 8 DCT.

M. Wu et al. [123] proposed an attack against trusted devices such as a scanner
and a digital camera, which insert a new fragile watermark in the image. The attacker
obtains an image and modifies it. Then he either scans the modified image using
the trusted scanner which inserts a new watermark into the scanned image, or takes
a picture of the modified image using a trusted digital camera which embeds a new
watermark into the image taken. The authors suggested to use a pair of robust and
fragile watermarks. The robust watermark will survive under the operations such as
scanning or taking picture although the fragile one may not. The modified and then
copied image will contain two watermarks, i.e. the original robust watermark and a
new one inserted by the device and so it is possible to detect the modified one.

For signature systems, properties 1,3,4,5 in the above list are also appropriate. In
addition to these properties, it should be difficult to find more than one distinct input
images which will generate the same signature. That is, it should be difficult to find a
collision for signatures. We note that the difficulty of finding the input image from the
signature is not required for systems such as [12] although it is required for the systems
such as SARI which allows attackers to find collisions once the relationship between

the signature bits and pixels are revealed.

3.4.4 Concluding Remarks

The advantage of watermarking systems is that, unlike signature systems, there is no

need for a separate authenticator as the image carries the authenticating information

3.5. Conclusion 54

with itself.

Watermarking systems that are used for authentication must be fragile. That is the
watermark must be destroyed (become irrecoverable) with the slightest change to the
image. However compression tolerance means that the watermark must survive changes
that are due to JPEG compression algorithm. Reconciling these two requirements,
that is fragility and compression tolerance, is a challenge that must be addressed in
this context. A number of systems have been proposed but many of the ones that
are based on fragile watermarks are less tolerant to JPEG compression [122, 29]. To
make the watermark resistant against compression, the level of noise embedded into
an image needs to be increased and so the image quality will be degraded.

Some watermarking systems such as [127] have been analyzed and shown to be

insecure [75] but many systems remain with no real security modeling or analysis.

3.5 Conclusion

We reviewed various secure compression systems and image authentication systems.
Many systems have been proposed but analysis of these systems has usually been ad
hoc. To correctly assess security of these systems, further research is required.

In the following chapters we examine attacks and propose new secure image com-

pression and image authentication systems.

Chapter 4

Attacks on Image Encryption Systems

4.1 Introduction

In recent years, numerous systems that incorporate encryption in the MPEG (Moving
Picture Experts Group) [42] compression system have been proposed [55, 107, 79, 92,
93, 95, 94]. MPEG is one of the most widely used compression standards for video
data. The proposed schemes use a range of approaches including selective encryption
of parts of the stream and permutation of transform coefficients which can completely
mask the data. The schemes can effectively reduce computation and delay but degrade
the compression performance and offer differing degrees of security. Although it is
straight forward to measure the drop in compression as a result of adding encryption,
it is much harder to assess security of the systems. In particular it is misleading to use
the length of the key as a measure of security.

In this chapter we show new attacks on the MPEG encryption systems. Firstly,
we demonstrate an attack on MPEG encryption systems that use random permutation
lists. Then we show a method to recover encrypted DC coefficients from AC coeffi-
cients and demonstrate that if AC coefficients are known, encrypting DC coefficients

is ineffective. Finally, we conclude.

4.2 Chosen DCT Coeftficients Attack on MPEG En-

cryption Schemes

In this section we present a chosen DCT coefficients attack against encryption systems
by L. Tang [107] and S. U. Shin et al. [95], which use a random permutation of DCT
coefficients. This approach is usually complemented by other methods to enhance
the security. We show that by using a number of well chosen sequences of transform

coefficients it is possible to derive the secret permutation.

%)

4.2. Chosen DCT Coefficients Attack on MPEG Encryption Schemes 56

Firstly, we briefly review the MPEG encoding and then outline encryption schemes
using random permutation lists in Section 4.2.1. In Section 4.2.2 we present our attack

and in Section 4.2.3 conclude the section.

4.2.1 Encryption Using Random Permutation

The basic approach in random permutation schemes used by Tang [107] and Shin et
al.[95], is to replace the zig-zag scan with a random permutation. The key is used to
select the permutation from a set of possible permutations and use it to read elements
of an 8 x 8 array matrix of the quantized DCT coefficients of the 8 x 8 pixel block.
This method is applied to all I-blocks [107] and only I-frames [95].

Since quantized DC coefficients are significantly larger than other coefficients, Tang
[107] proposed splitting each DC coefficient into two 4-bit numbers corresponding to the
most significant 4 bits and the least significant 4 bits respectively. One number is stored
as the DC value and the other replaces the coefficient corresponding to the highest
frequency. The highest frequency coefficient can be replaced because it is known that
the visual importance of this coefficient is negligible. As additional security measures,
[107] suggests encrypting DC coefficients using a block cipher such as DES by forming
a block of eight DC coefficients. We note that DES is no longer considered to be secure
[27, 37]. An alternative proposed method [95] is to encrypt the sign-bit of every DC

coefficient in an 8 x 8 block. We will be mainly interested in random permutation.

Decryption

To decrypt an MPEG stream that is encrypted using random permutation, the inverse
permutation is used to recover the original order of the 64 DCT coefficients and then
the Inverse Discrete Cosine Transform (IDCT) is applied to the result.

Let S = (s;), i € {0,1,...63} denote a 1 x 64 vector of input DCT coefficients, and
Q = (¢.;), 1,7 € {0,1,...63} denote the 64 x 64 inverse permutation. () is a zero-one
matrix with exactly one non-zero entry in each row and column.

Let B = (b;),i € {0,1,...63}, denote a 1 x 64 vector corresponding to the 64

inverse-permuted DCT coefficients. Then we have,
B=S-Q. (4.1)

For the variant [95] that does not permute the DC coefficient, the first row and
column of @) are of the form : g = 1, qo; = 0,5 € {1,2,...63} and ¢;o = 0,7 €

4.2. Chosen DCT Coefficients Attack on MPEG Encryption Schemes 57

{1,2,...63} and the sub-matrix Q' = (¢;), i,j € {1,2,...63}, is a permutation matrix

of size 63.

Inverse DCT

The decoder performs an IDCT on the recovered DCT coefficients.

Let C denote the 8 x 8 transform matrix of the IDCT and B denote the 8 X 8 matrix
defined from B where b;; = bg;y;, 3,7 € {0,1,...7}.

The range of b;, i € {0,1,...63} in the MPEG decoder [70] b;, Vi € {0,1,...63} is
limited to —127 < b; < 127 for MPEG-1 and —2048 < b, < 2047 for MPEG-2.

Let D, defined from D as d” = dgi+j, 1,7 € {0,1,...7}, denote the 8 x 8 matrix of
pixel values after the IDCT.

In the MPEG decoder [70] d; ; obtained from IDCT output is limited to —127 <
czi,j < 127,Vi,j € {0,1,...7}. If the result of calculations produces a value outside this
range, it is set to —127 when cZZ] < —127 and to 127 when d” > 127.

So we have,

D=(B-O)T-C)F (4.2)

which means that the two dimensional DCT is performed as two one dimensional

DCTs, the first applied to each row and the second to each column.

4.2.2 Chosen DCT Coefficients Attack

A naive security evaluation of the system is performed by counting the number of
possible permutations (size of the key space) and arguing that as long as finding the
key by exhaustive search is infeasible, the scheme is secure. Tang [107] noted that if
the attacker knows the plaintext corresponding to a ciphertext he can find the key.
However no details of how such an attack would work, or experiments supporting this
claim was presented. The systems proposed by Tang [107] and Shin et al.[95] are both
based on random permutation and were both claimed to provide sufficient security.
We assume the following scenario. The attacker has obtained a decoder with a
secret, key set in the device, and aims to recover the key. He constructs a number
of vectors of attack DCT coefficients and runs each vector through the decoder. By
studying the output of the decoder, the attacker can find out the secret key. This
attack scenario is called a chosen-ciphertext attack and is commonly used in security

assessment of cryptosystems.

4.2. Chosen DCT Coefficients Attack on MPEG Encryption Schemes 58

The attack exploits the fact that the structure of the MPEG stream is not hidden.
In the permuted DCT scheme all data other than the DCT coefficients, including
header parts, are not encrypted and so the attacker can modify the MPEG stream by
replacing the permuted DCT coefficients with any value of his choice.

The basic idea is to construct a vector of 64 DCT coefficients which, after decoding,
can reveal one or more moves of the original permutation. A move of P is defined by
a pair (i,j) where 7 is the initial position of the element and j is the position after
application of P.

Consider a vector S of 64 DCT coefficients such that there are n distinct values in
the vector. If S is given to the decoder, the decoder applies the inverse permutation
to find the original order of coefficients, and recover an image I’ from the inverse-
permuted coefficients. Next the attacker finds the DCT transform of I’, and compares
it with the original vector S. If the original n distinct coefficients can be unambiguously
determined among the DCT coefficients of I', then n, 0 < n < 63, mowves of the inverse
permutation @) (and hence in the permutation P) can be recovered.

An I-frame of MPEG-1 with 352 x 240 x 30 frames per second (fps) defined in
Source Input Format (SIF) contains 330 macro-blocks (352/16 = 22,240/16 = 15,22 x
15 = 330) and 330 x 6 = 1980 blocks. If each block reveals the position of a single
coefficient and the permutation is unchanged for [%41 blocks then it is possible to find

the permutation.

Distinct DCT Coefficients

We can summarize the above procedure by starting from S, using the decoder on
S which first calculates Q(S) and then I' = IDCT(Q(S)). Now the attacker finds
DCT(I') = Q(S), and by comparing it with S, he can recover some moves of the
permutation.

However because of inaccuracies resulting from DCT, IDCT and quantization, the
DCT(I') might be different from Q(S) and so it might not be easy to distinguish all
moves. To be able to accurately determine a move of P there must be no uncertainty
about the coefficient values calculated in DCT(I'). This means that S must be chosen
such that |s; — s3] > €, s1,82 € S, € a positive number, so that after all transformation
steps, their identities remain distinguishable in DCT(I").

Let X = {xo,z1,...,2,_1} be a set of n distinct integers such that the minimum
distance between two elements is bounded, that is, m < |z; — z;| for all z;,z; € X

where ¢ # 7.

4.2. Chosen DCT Coefficients Attack on MPEG Encryption Schemes 59

Let an integer u be v ¢ X and min,, |u — z;| > m.

Then S for the attack coefficients vector is chosen such that s = xg, 51 =1, ...,

Sp_1 = Tp—1, Sp = U, ..., Sg3 = u. That is, the DCT coefficients are such that n
coefficients are xg, x1,...,r,_1 and 64 — n coefficients are u where n < 63.
Experiments

We conducted an experiment using an MPEG-2 coder program [70]. The first coefficient
vector was, B = (b;), by = 64,b; = —8,i € {1,2,...63}. That is, n = 1, zp = 64 and
u = —8. Other attack coefficients vectors were 63 non-identity permutations of the
first vector. In each permutation the value “64” appeared in a different position :
that is, 63 other vectors, B(),--. B(63) swhere BU) = (b)) were defined by bgj) = 64,
)

)

= —8,i € {0,2,...63},i # j. In the experiment, only I-frames were encrypted
and the same permutation was used to encrypt a single I-frame. Each vector recovered
a single move and to recover the entire permutation, only 63 blocks were needed. To
reduce the effect of inaccuracy due to quantization we used the intra-quantization

matrix table given by

11111111
11111111
11111111
11111111
11111111
11111111
11111111

1 1 11 1 1 11
Using this matrix means that no scaling of the coefficients will be used (hence a

considerable reduction in compression performance). In the chosen coefficient attack,

the attacker can choose coefficients and the quantization matrix table as well.

Discussion

We have shown that as long as the permutation remains unchanged for 64 blocks the
random permutation can be revealed. Optimizing the attack allows recovery of more
than one move per attack DCT coefficient vector and effectively reduces the number
of required attack coefficient vectors. Finding the least number of such vectors gives a
bound on security of the system.

In the scheme by [107], an added security measure is the encryption of blocks of 8
DC coefficients using DES (Data Encryption Standard [38]). Finding DC coefficients

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 60

therefore requires finding the DES key or finding plaintext for a DES encrypted block
which is well studied in the literature (such as [66]). However correctly recovered AC
coefficients could reveal edge information in an image as shown in Figure 7 in the paper
[107]. Tt is also worth noting that this is a relatively expensive system as for 8 image
blocks (8 x 64 = 512 pixels) one DES encryption is required. For example, for 352 x 240
frame size and one I-frame / sec MPEG stream, at least 1980/8 ~ 247 DES blocks need
to be encrypted in every second. In [95], the added security measure is encrypting the
sign bits of DC coefficients using a RC4 [85, 86| stream cipher. That is, the sign bits
are XORed with the output of RC4. However the attack described in this chapter can
recover the sign bits by simply XORing the sign bits of the original DC coefficients and
the ones obtained by the attack. This is because the key for the RC4 stream cipher is
chosen independently from the input MPEG data and so the same key is used for the
attack coefficient vectors. This means that this system is completely insecure under
the above chosen attack coefficients (the attack coefficients must be chosen such that
the DC coefficient is non-zero).

Another proposed technique for improving security has been splitting DC coeffi-
cients which again will become ineffective when the permutation is found and the DC
coefficient is reassembled. The above analysis suggests extra measures, such as hiding
quantization table or structure of MPEG stream, must be used to provide reasonable

security.

4.2.3 Concluding Remarks

As shown above, chosen DCT coefficients attack can discover not only the random
permutation used in the coder but also the encryption of sign-bits. If the permutations
and the encryption of sign-bits are known, the attacker is able to recover the encrypted

stream.

4.3 Recovering the DC Coefficient in Block-based

Discrete Cosine Transform

MPEG encryption systems [107, 95] apply a secret permutation to DCT coefficients.
However in each block, the DC coefficient carries most of the signal energy and is much
larger than the other coefficients and so it is easily distinguishable after permutation.

If the DC coefficients of blocks are known, a low resolution version of the image can

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 61

be constructed. This means that permutation of the AC coefficients cannot make the
image incomprehensible. The two proposed methods [107, 95] use a strong encryption
algorithm to encrypt the DC coefficients of blocks while permuting the other coeffi-
cients. The method is claimed to produce images that are incomprehensible, and so
the scrambled images do not leak any information to outsiders.

We examine whether or not it is possible to recover the DC coefficients of image
blocks when only the AC coefficients are known and then find the quality level of the
recovered images. In Section 4.3.1, we review properties of DCT that are useful for our
attack. In Section 4.3.2, the DC recovery attack is developed and Section 4.3.3 reports

on the results of experiments. Finally we conclude our results.

4.3.1 Properties of DCT Coefficients
Block-based DCT

Let us consider an N x N image block [X], where x;; is the value of the pixels in the
ith row and the jth column. Further, let the maximum possible value of a pixel in the
image be r,.x and the smallest quantization increment of a pixel value be z;,. The
DCT of the pixel block is given by the matrix [C],

[C] = [A[X][A] (4.3)

where [A] is the matrix of DCT basis vectors. The image block is recovered through

the inverse transform as,
[X] = [A][C][A]" . (4.4)

Let [C]P¢ and [C]4¢ denote N x N matrices of DCT coefficients where all AC coef-
ficients in [C]PY are zeros and the DC coefficient in [C]4C is zero, respectively. Let
[X]P¢ and [X]A¢ be [X]PC = [A][C]PC[A]! and [X]AC = [A][C]1C[A])t, respectively.
Then for a given image block k, the pixel values can be written as a decomposition

into a DC and an AC component. Thus,

[N = [X]07 + [X]7 . (4.5)

Let F'" be a DCT coefficient of a block K at (i,7) position. Of course, [X]PC is

constant over all 7, 5 € N and its components are given by,

y 1
(xDC);J) = Ax Fk(l’l), where A = N2 (4.6)

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 62

Hence in the case of JPEG where the block size is 8 x 8, the multiplying factor is 6—14.

The dynamic range of the DC coefficients has been shown [16] to be

Ape = Tmax n2 (4.7)

Lmin

The AC coefficients can have both positive and negative values with dynamic range

given by,
N ; N i
o Tmax Yo [FOVIN L [FO)
AAC’(Za]) = T) : (in) (j’nl)) : (48)
un |F(min) | |F(min) |

The dynamic range of the AC coefficients varies from coefficient to coefficient.

Relationship between DC Coefficients of Neighboring Blocks

The DC coefficient of an image block represent the mean value of pixels in the image
block. These DC values can construct a decimated (and low-pass filtered) version
of the original image. For a natural image, the pixel level correlation structure is
carried over to the low-pass filtered version of the image. In the smooth areas of the
image, the prediction error of a first-order predictor is small and large prediction errors
are observed around the edges. In general, the values of pixels in [X]{¢ has been
modeled as a zero-mean Laplacian distributed random variable, p(x) = %e*”x‘, whose
distribution generally has a small variance.

As shown in equation (4.5), the pixel values can be decomposed into DC and AC
parts. The DC part is constant while the AC part is the mean-removed pixel value. A
large dynamic range for the AC part constrains the DC part to a small value since the
total dynamic range cannot exceed that of the pixels. We summarize these considera-

tions into two properties.

Property 1 The difference between two neighboring pixels is a Laplacian random

variable with zero mean and small variance.

Property 2 The dynamic range of [X]4¢ constrains the value of [X]”¢ because 0 <
207 < g,) € [X] and [X] = [X]P€ + [X]AC. In particular large dynamic

range for [X]4¢ implies small values for [X]P“. The converse is also true.

A pixel is in the neighborhood of pixel z;; if it belongs to ® = {x(iﬂ)(j,l), T(i1)j>

T(i+1)(j+1)s Ti(+1)s TiGi—1) T(i-1)(G—1)> T(i—1)j> T—1)(j+1) }-

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 63

Let T®) and T*+Y denote two adjacent 8 x 8 pixel blocks, with pixel values given

k+1)

by xg“) and xz(j , respectively.
k k
mgl) mgl)
k k
Tk — x§2) 30532)
k k
mgs) mgs)
k+1 k+1 k+1
$§1+ : xélJr : xé1+)
k+1 k+1 k+1
Tk+) x§2) xg2) xé2)
k+1 k+1 k+1
xger : xéf : xz(aer)

The two blocks can be horizontally or vertically adjacent. Given the distribution of
the difference of two adjacent pixels, the difference between the two neighboring pixels,
is likely to be zero. Let (p(k),p(k“)) denote a pair of neighboring pixels, where p*) is
in T® and p*+1 is in TEHD,

The two pixels can be related as,
p® = pFth e (4.9)

where ¢ has zero mean. In the following we will show that when (4.9) holds, the DC

signals of the two blocks can be related through the values of the AC signals in the

two blocks.
Assume the coefficients, Fk(i’j),i,j € {1,2,...,8} and Fk(f‘l),i,j € {1,2,...,8} are
known, except for the DC coefficient, Fk(ﬁ) of block k + 1. That is, 24, 2P and

AC DC
Ty, are known but x5 is unknown.

We apply the inverse-transform to the AC
coefficients of the two blocks to obtain the matrix of DC-free pixels values, T'®) and
IE+HD - corresponding to XA¢ and XAG, respectively.

Let (p*), p*+1)) denote a pair of neighboring DC-free pixel values of the pair
(p(k),p(k+1)).

From equation (4.5) and (4.6), we have :

P+ Al
pFD oA D (4.10)
From equation (4.9),

p(k) + A cgli) R~ p(k+1) + A cglfrl)

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 64

(k) — pk+1)
AR % + B (4.11)

Hence, since p®), p*+1) and cﬁ) are known, the value of cﬁﬂ) can be found.

4.3.2 Recovering the DC Coefficients in a Block-based DCT
Estimating the DC Coefficient of a Block

The relationship (4.11) between the DC coefficients of two neighboring blocks holds
only if we know a pair of neighboring pixels that satisfy (4.9). If the actual pixel values
of adjacent blocks are unknown but their DC-free values are given, we can use equation
(4.11) to estimate the DC value of one block in terms of its neighbors.

Consider DC-free values of pixels in two adjacent blocks. We use equation (4.11)
on pairs of horizontally neighboring pixels to obtain estimates of cgﬂ) from pairs
(pz(j), p§j+1)),i € {1,...,8}, and then obtain a final estimate as the average of all such
estimates. The following diagram shows the DC-free pixel values of two columns of

two adjacent blocks.

PO || Y
P | py Y
pd) | Pyt

Suppose the jth block is the reference block and let Ay = cﬁﬂ) — cﬁ) denote the
estimated adjustment for pixels in the 7 + 1th block. Then, we use

8 (4) (J+1)
i=1\Pi " — Py
Aj+1 — Z 1(S.A) (412)

as the final estimate of the difference and the corrected pixel values p'Ut") are calculated

as
PO = gD L ALA (4.13)

The noise induced by this estimation can be reduced by taking an average over a
number of pixels. This method will perform well only if condition (4.9) is satisfied for
most of the pixel pairs used in the estimation.

We only considered horizontal and vertical neighbors. If there is a horizontal line
across an image, the difference between two neighboring pixels along the line will be

zero but for two vertically neighboring pixels, one on the line and the other next to

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 65

the line, the difference will not be zero and so the estimates in equation (4.12) will be
poor. In the following section, we show how to improve the accuracy of estimation in

the above situation.

Improving the Algorithm

Estimating the DC value as above works well if horizontally (vertically) neighboring
pixels in two adjacent columns (rows) have close values. For regions such as Lena’s
hat in Figure 4.1, with high variation in horizontal and vertical directions but smooth
in diagonal directions, the algorithm will produce poor estimates. In the following we
modify the algorithm to find the smoothest direction among the horizontal, vertical

and the two diagonal directions, and use it to find an estimate of the DC value.

Please see print copy for Figure 4.1

Figure 4.1: Gray scale Lena picture.

The basic idea is to consider three sets of pixel pairs in two adjacent columns (rows)
that correspond to horizontal (vertical) and two diagonal directions, and use the mean
square error to choose the smoothest direction.

Let T®) be the block adjacent to T in horizontal (vertical) direction. (For two
horizontally adjacent blocks £k = 7 + 1 and for two vertically adjacent ones k = j +{
where [is the number of blocks in one row.) The three sets of pixels are: i) (pgj), pz(-k))
where 1 < i < 8 (pattern 1 in Figure 4.2), ii) (pgi)l, p"Y where 1 < i < 7 (pattern 2 in
Figure 4.2), and 117) (pz(j), pgi)l) where 4, 1 <7 <7 (pattern 3 in Figure 4.2). Then the
smoothest direction among the three possibilities is chosen to estimate the DC value.

Consider 3 vectors consisting of pixels in I'¥) and 3 vectors of pixels for I'®) ag

By = (o)

89 = (.05, o)

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform

66

Patterns

Figure 4.2: Possible pixels patterns

neighboring blocks.

5y
and
51"
ey
X

at the border in the case of a pair of horizontally

The above 3 sets of pairs are 6,@ and 6,Sk), where v = 1,2, 3.

Then the algorithm to calculate the DC is as follows.

1. Calculate the means, M,Ej) and Mék), of Béj) and Bék) as follows.

= (70, 0))
k k k
(pg)JPg)J"'Jpg))
k k k
= (0,07, (4.14)
MO 5ok
1 5)
M~ Snapi
2 "
MO = Znean
7
and w
y® _ Zazipn
b _
k
u® 8 ook
2 "
27_ n
M® = —;p (4.15)

2. Subtract the mean M,Ej) from the vector Béj) and M,Ek) from B,Sk).

3
)
)
and
2

A=)
D)
O

k k

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 67

H(k k k k k

3. Calculate the mean square difference of B,SJ) and B,Sk) as follows.
Q, = (/1Y - BP)?. (4.17)
where t = 7 when v = 1, and ¢t = 8 otherwise.
4. Find min, €2, and the corresponding 6,@ and B,Sk).
5. Assuming that the j th block is the reference block and the pixels in the £ th

block are adjusted, the adjustment value Ay is given by

MO)
Ap= (4.18)

(k)

and the new pixel values p," are calculated as

pt = A A (4.19)

Bounding the DC Value of a Block

Property 2 can be used to bound the dynamic range AY) of the DC coefficient of a
block. Let the pixels pU) in block T have the range,

A< <A, (4.20)
and assume the possible values of pixels are in the interval,
0 < P < b, Vi, i - (4.21)
Then the following must hold.
0<pD 44D <t (4.22)
From equation (4.20) and (4.22),
0< A9 + 4.7 (4.23)
and
AN+ A) < tinae - (4.24)
Hence
At < (i) < Tmax = Amin At . (4.25)

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 68

Recovering the DC Value of the Image

Using the result of Sections 4.3.2 and 4.3.2 we describe an algorithm that recovers DC
signal of blocks. The two steps of the algorithm, that is estimating relative values of
DC signals and then estimating the actual DC signal, are described in the following

two sections.

Adjusting Relative Values of the DC Signals

We use the methods described in Section Estimating the DC coefficient of a block (p.64)
to estimate the relative DC signals of blocks in an image in terms of their adjacent
blocks. If the DC signals of all blocks are unknown, then without loss of generality we
assume the top left block in the image is the reference block. The range of the DC
signal for the block can be obtained from equation (4.25). We calculate the DC signals
of all other blocks in terms of the DC signal of the reference block.

We note that to use the algorithm in Section Estimating the DC coefficient of a
block to find an estimate for [X]jDC, we may choose one of the 4 possible adjacent
blocks. This means that to cover all blocks in the image starting from a reference
block, various paths through the image blocks can be considered.

As noted earlier, to estimate the DC value of a block, one or more of its neighboring
blocks can be used. The algorithm below is an example of systematically adjusting all

blocks of an image.
1. First pass

(a) The block in the upper left corner of the image is chosen as the reference
block. Blocks in the first row are considered from left to right, and in each

case its DC value is adjusted with respect to its left block.

(b) The rows below the first are adjusted similarly to the above but each block,
except the left-most ones, is compared to its upper and left blocks and is
adjusted based on the average of the 2 estimated adjustment values. For a

left-most block, only its upper block is considered.
2. Second pass

(a) The block in the upper right corner of the image with its DC value adjusted
in the first pass, is chosen as the reference block. The first row of blocks is
adjusted from right to left. The DC of each block is calculated relative to
its left block.

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 69

(b) The rows below the first are adjusted similarly to the above but each block,
except the right-most ones, is compared with its upper and right blocks and
is adjusted based on the average of the 2 adjustment values. For a right-most

block only its upper block is considered.

3. Third pass

(a) The block in the bottom left corner of the image with its DC value adjusted
in the second pass, is chosen as the reference block. Then the blocks at
the bottom row are considered from left to right. The DC of each block is

calculated with reference to its left block.

(b) The rows above the bottom row are adjusted similarly to the above, but
each block, except the left-most ones, is compared with its lower and left
blocks and is adjusted using the average of the two adjustment values. For

a left-most block only its lower block is considered.
4. Fourth pass

(a) The block in the bottom right corner of the image with its DC value adjusted
in the third pass, is chosen as the reference block. The first row of blocks is
adjusted from right to left. The DC of each block is calculated with reference
to its left block.

(b) The rows above the bottom are adjusted similarly but each block, except the
right-most ones, is compared with its lower and right blocks and is adjusted
based on the average of the two adjustment values. For a right-most block

only its lower block is considered.

Adjustment of the Pixel Dynamic Range

After the relative adjustment of the DC values of all blocks, it is necessary to find the
actual values of the DC signal for the entire image. The adjustment in the previous
section does not take into account possible range of pixels in a block and so during the
adjustment some pixels in the image may move outside the valid pixel range.

The range of DC signal in each block can be obtained from equation (4.25). The

effective range of cﬁ’, the DC value of the reference block, is the smallest range of all

blocks. This is because changing cﬁ’ from 0 to a > 0, adds the same value to all cgj)

for all j = 2,..., and the new value of cﬁ) must stay within the dynamic range, A,

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 70

The dynamic range of the pixels may be larger than the valid pixel range due to
the inaccuracy in the recovery. To fit all pixel values within the valid range, either
all pixel values must be scaled or only the pixel values outside the valid range must
be adjusted. The exact value of [X]P¢ will be determined in a subjective way and by

examining the quality of the resulting image.

4.3.3 Experiment Results

In this section we show the distribution of differences of neighboring pixels and the
results of DC recovery experiments. For our experiments, we used four gray scale
images, airfield256x256.pgm (256 x 256 pixels), mandoril.pgm (512 x 512 pixels),
lena.pgnm (512 x 512 pixels), and peppers.pgm (512 x 512 pixels).

Distribution of Differences of Pixels

The list below shows the means and standard deviations of differences of neighboring
pixels and the pixel value ranges in the images. Figure 4.3 shows the distribution of the
differences of neighboring pixels. From the results, it can be seen that the distribution

of the differences were a zero-mean Laplacian.

Image Mean | Std. dev | Pixel range
airfield256x256.pgm | 0.04 | 33.9 0-255
mandoril.pgm -0.18 | 34.9 0-255
lena.pgm 0.01 | 11.5 24 - 245
peppers.pgm -0.35 | 19.5 0-225

DC Recovery Experiments

We used the algorithms described in Section 4.3.2 to recover the images whose DCT
coefficients, excluding the DC coefficient, are given. The steps used for the experiments

were as follows.
1. Transform the image using the 8 x 8 two dimensional DCT.

2. All the DC coefficients are set to 1023, which is the middle value of the dynamic
range of DC.

3. The methods described in Section FEstimating the DC coefficient of a block
Improving the algorithm , Adjusting relative values of the DC' signals and Ad-

gustment of the pizel dynamic range , were used to recover the DC values.

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 71

T T T T T T
airfit‘eleSGxZSG.pgmi mandoril.pgm ——

I L I I I L L
-200 -100 0 100 200 -200 -100 0 100 200
T T

T
lenapgm | T T T T pepper.pgm‘

I L I L I I I
—-200 -100 0 100 200 -200 -100 0 100 200

Figure 4.3: The distribution of differences of neighboring pixels in
airfield256x256.pgm (left top), mandoril.pgm (right top), lena.pgm (left bot-
tom), and peppers.pgn (right bottom).

DC Recovery When All DC Coefficients Are Unknown

Table 4.1, Figure 4.4, Table 4.2, and Figure 4.5 summarize the recovery results for
the two algorithms described in Section Fstimating the DC' coefficient of a block and

Improving the algorithm .

Table 4.1: Quality of the recovered images using the method in Section Estimating the
DC coefficient of a block .

Image PSNR

airfield256x256.pgm | 23.1 dB
mandoril.pgm 18.2 dB
lena.pgm 22.9 dB
peppers.pgm 17.7 dB

DC Recovery When Some of the DC Coefficients Are Known

In the row direction, the DC values of the odd position blocks were set to 1023, and
the even position blocks keep the original DC values. Hence half of all blocks have

their DC coefficients destroyed. The steps used for the experiment were as follows.

1. Transform the image using an 8 x 8 two dimensional DCT.

2. Half of the DC coefficients are set to 1023.

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 72

Please see print copy for Figure 4.4

Figure 4.4: The images recovered by the method in Section Estimating the DC co-
efficient of a block . airfield256x256.pgm (top left), mandrill.pgm (top right),
lena.pgm (bottom left) and peppers.pgm (bottom right).

3. The methods in Section Improving the algorithm , Adjusting relative values of
the DC signals and Adjustment of the pizel dynamic range , were used to recover
the DC values.

Table 4.3 and Figure 4.6 show the recovery results with half of the DC coefficients

of the images.

4.3.4 Another Application of DC Recovery

DC recovery can be used to reduce the number of DC coefficients that are encoded when
an image is compressed. Since DC coefficients can be recovered from AC coefficients,
it is not necessary to encode all DC coefficients. This can be used to reduce the size
of compressed data or to embed information in the image by encoding data instead of
DC coefficients.

Since encoding no DC coefficient would result in poor image quality, the number of
DC coefficients that are encoded can be chosen according to the required image quality.

If half of the DC coefficients of four images, airfield256x256.pgm mandoril.pgm

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 73

Table 4.2: Image quality of the recovered images using the method in Section Improving
the algorithm .

Image PSNR

airfield256x256.pgm | 23.5 dB
mandoril.pgm 17.7 dB
lena.pgm 23.8 dB
peppers.pgm 18.6 dB

Table 4.3: Quality of the recovered images with half of the DC coefficients in the image.

Image PSNR

airfield256x256.pgm | 32.1 dB
mandoril.pgm 31.0 dB
lena.pgm 37.1 dB
peppers.pgm 34.4 dB

lena.pgm and peppers.pgm are encoded, the recovered images and their PSNRs are
shown in Figure 4.6 and Table 4.3.

Table 4.4, 4.5, and 4.6 show the size of the entropy-coded DC coefficients of the
images airfield256x256.pgm mandoril.pgm lena.pgm and peppers.pgm To obtain
the data, the command cjpeg [111] was used with the quality level 50%, 75% and 90%
with the default quantization table. The DC' size shows the size of entropy-coded DC
coefficients (i.e. the difference of a DC coefficient from the previous one) using the
Huffman coder and the ratio of the size of encoded DC coefficients to the file size in
percent. The DC size in the table shows the maximum size to be reduced using DC
recovery.

To recover DC coefficients, the decoder needs to obtain all AC coefficients. If AC
coefficients in a block are lost (for example, due to transmission errors), the estimation
of DC coefficients in the block will be inaccurate and so the recovered image will have

low quality.

Table 4.4: The sizes of the JPEG file and encoded differential DC values in the file for
image quality=50%.

Image JPEG size (bytes) | DC size (bytes) | Ratio of DC in the file
airfield256x256.pgm 12935 807.5 6.2%
mandoril.pgm 50836 2905.375 5.7%
lena.pgm 20918 2959.875 14.1%
peppers.pgm 8072 829.875 10.3%

4.3. Recovering the DC Coefficient in Block-based Discrete Cosine Transform 74

Please see printk copy for Figure 4.5

Figure 4.5: The images recovered by the method in Section Improving the algorithm
. airfield256x256 (top left), mandrill (top right), lena (bottom left) and peppers
(bottom right).

4.3.5 Concluding Remarks

We showed that if block based DCT is used on images, then it is possible to find an
estimate of the DC signal of a block from the AC signal of that block and the complete
signal of its neighboring blocks. The method selects the smoothest direction of natural
images and only considers horizontal, vertical or diagonal direction. It is possible to
increase the number of directions, for example, using every 5 degree direction, to obtain
a more precise direction of smoothness and hence a better estimate of the DC signal.

An application of the results of this section is a new attack on DCT encryption
systems. It has been argued that DCT encryption systems that use permutation of the
AC coefficients together with encryption of the DC coefficients provide high security
and result in incomprehensible images. Using the attack in Section 4.2 together with
the results in this section shows that the claimed level of security of the systems [107, 95]
does not hold.

Another interesting application of the results is that in JPEG it is not necessary to
encode DC signals of all blocks. Rather it is sufficient to encode the DC signal of some

of the blocks and in the recovery phase, use methods similar to those described in this

4.4. Conclusion 75

Please see print copy for Figure 4.6

Figure 4.6: The images recovered from the half of DC signals by the method in Im-
proving the algorithm . airfield256x256.pgm (top left), mandrill.pgm (top right),
lena.pgnm (bottom left) and peppers.pgm (bottom right).

section to find the remaining ones. This results in some loss of quality, but a higher
compression ratio at the cost of increased computation for decoding. For example,
encoding only half of the DC coefficients results in a 37 dB image quality (Section
4.3.3). The trade-off between the quality of the recovered image and the required
computation, and also the theoretical limit of the quality of the recovered image are

interesting open problems.

4.4 Conclusion

We have shown new attacks on MPEG encryption systems which can be also used
on JPEG encryption systems. The chosen DCT coefficients attack is able to find
permutations of coefficients and so MPEG and JPEG encryption systems using random
permutation lists for encryption are vulnerable against the attack. We also have shown
that hiding only the DC coefficients does not provide security although it will largely
degrade image quality.

For the above two attacks to be successful, it is necessary for the attacker to obtain

4.4. Conclusion

76

Table 4.5: The sizes of the JPEG file and encoded differential DC values in the file for

image quality=75%.

Image

JPEG size (bytes)

DC size (bytes)

Ratio of DC in the file

airfield256x256.pgm 19819 957.25 4.8%
mandoril.pgm 82376 3396.75 4.1%
lena.pgm 32570 3520 10.8%
peppers.pgm 12222 984.5 8.1%

Table 4.6: The sizes of the JPEG file and encoded differential DC values in the file for

image quality=90%.

Image

JPEG size (bytes)

DC size (bytes)

Ratio of DC in the file

airfield256x256.pgm 32130 1218.75 3.8%
mandoril.pgm 128401 4320.5 3.4%
lena.pgm 59203 4453 7.5%
peppers.pgm 21157 1249.125 5.9%

frames which the decoder outputs. To avoid the attacks, hiding the parameters and

the structure of a MPEG stream can be used as an additional encryption because the

decoder fails to synchronize the stream if the parameters and the structure are hidden

and so it will not produce any output.

Chapter 5

JPEG Encryption

5.1 Introduction

Secure distribution of information is crucial in multimedia applications. Multimedia
data are mostly in compressed form. Combining security and compression can increase
system efficiency. The challenge is to provide security without significant drop in the
compression rate or large increase in computational cost.

The objective of this chapter is to propose an efficient encryption system for image
data such that) compression drop is negligible, i) high level of security is obtained,
and dii) the encrypted data conforms to the JPEG image compression standard speci-
fication.

Using a computationally expensive encryption algorithm is not acceptable in many
applications. To achieve efficient encryption for image data, there are two known
approaches : i) using computationally inexpensive primitive cryptographic operations
on the whole stream, and 1) selective encryption which only encrypts selected part of
the stream instead of encrypting the whole stream. Encryption schemes using primitive
cryptographic operations for MPEG [107, 95] are shown to be weak against known
plaintext and chosen ciphertext attacks described by Agi et al. [2, 114] and Chapter 4.

If the encrypted stream remains conformant to the data format specified by the
JPEG specification, information which is not encrypted, for example the size of an
image, can be obtained without decryption. For example, if a web page includes an
image, a web browser needs to know the size of the image to show the page in the
correct layout. If the encrypted stream remains conformant to the JPEG specification,
without decryption a web browser can display an encrypted image, which has the
correct size but is visually corrupted.

We propose a scheme that avoids high computation cost and uses selective en-

cryption. JPEG compression produces a structured stream that consists of two types

77

5.2. JPEG Compression 78

of data : i) coding parameters that provide the necessary information to decode the
stream, for example the number of color components, quantization tables and Huff-
man tables, and i) the entropy coded data. By hiding the coding parameters, the
decoder will fail to decode the entropy coded data. In the JPEG stream, parameters
are grouped into different types of data segments depending on what they specify. This
includes the Frame header, Scan header, Quantization table specification and Huffman
table specification. The number of variables in a data segment and their values vary
with data segments and so the security provided by encrypting them varies in each
case.

In this chapter we first review the structure of the JPEG stream and then examine
the level of security that will be provided by encrypting different parts of the stream.
We then identify the part that results in the highest level of security. As will be shown
in Section 5.5, most parameters are easily predictable and so encrypting them does not
provide high security. We show that encrypting the Huffman table specifications will
provide high security with a very small computational overhead. An image viewer (xv)
[13] used for the experiments recognized the encrypted file as the JPEG stream and

produced the error message for the Huffman specifications.

5.2 JPEG Compression

JPEG compression supports different methods to compress image data [45]. The com-
pression is either lossy or lossless. The lossy compression includes the sequential DC'T
and the progressive DCT modes, and lossless compression is achieved by the Lossless
mode. In this chapter, we mainly consider the sequential DCT mode with Huffman
coding, which is the most commonly used mode of operation.

JPEG compression consists of three stages : i) transform, 4i) quantization and i)
entropy coding.
Transform

The image is divided into 8 x 8 blocks. Each block is transformed into real number
coefficients using the Discrete Cosine Transform (DCT) [3].
Quantization

Next the DCT coefficients are quantized. This is done by dividing each coefficient
by an integer value and then rounding the result.
Entropy coding

Finally the quantized coefficients are entropy coded. JPEG provides two different

5.2. JPEG Compression 79

types of coders, that is, Huffman coder and arithmetic coder. The commonly used
coder is the Huffman coder. One of the reasons of common use of the Huffman coding
in JPEG is that the JPEG arithmetic coding algorithm is patented.
Compression in the Sequential DCT mode

In the sequential DCT mode, 8 x 8 pixel blocks are sequentially scanned from left to
right, and top to bottom of an image, and through the scan, each block is transformed,
quantized and entropy coded independently.

Compressed images are normally stored as files. The JPEG files will have the format
specified by the JPEG File Interchange Format (JFIF) [33].

5.2.1 Huffman Coding in JPEG

In the sequential DCT mode, to encode the quantized DCT coefficients of a block,
first the DC coefficient is encoded and then the 63 AC coefficients are zig-zag scanned
and encoded. The details of the encoding of the DCT coefficients are described in the

following sections.

Encoding DC Coefficients

Encoding of the quantized DC coefficients is as follows.

Algorithm 1 : Encoding DC coefficients

1: For all blocks (loop) :

2: Calculate the difference Dy;¢¢ of the quantized DC coefficients Dpe

in two consecutive blocks.

For Dg;ss obtain a category number Cpe, 0 < Cpe < 11, using Table 5.1.
For D¢y obtain an index number Tpe, 0 < Tphe < 2¢pc _ 1, using Table 5.1.

Huffman-encode C'p¢.

S Ot =W

Output Tpe as a C'pe bit binary value.

The method to obtain Cpe and The is as follows.
e Choose CUpc, where range includes Dyg;yy.
The range is defined as follows.
— If Dyipp < 0, then —(260¢ — 1) < Dyipp < — (260071
— If Dgip > 0, then (262¢ — 1) > Dyipp > (26071
e Choose Tp¢, which indicates the position of Dg;¢s in the range.

For example, if Dy;rs = —5, then Cpe = 3 and Tpe = 2.

5.2. JPEG Compression

80

Table 5.1: Table of category numbers and index numbers.

Category number

Dygi¢s for encoding DC, D 4¢ for encoding AC

0

1
2
3

11

0

-1 1
-3 -2 2 3

-7 -6 - -4 4 5 6

—2047 -2046 -2045 -2044 -2043 -2042 -2041

0 1 2 3 4 5) 6
Index number (Th¢ or Tac)

Note that C'p¢ is the number of bits required for The. For example, for C'pc = 3, the

range of Tpe is [0, 7] and three bits are used to represent the value.

Encoding AC Coefficients

The quantized AC coefficients D¢ in a block are zig-zag scanned, and encoded as

follows.

5.2. JPEG Compression 81

Algorithm 2 : Encoding AC coefficients
1 : [Initialize the run-length R to zero.
2 : Zig-zag scan (loop) :
3: If Doc =0,
4: R=R+1.
D If D¢ is the last AC coefficient encoded in the block,
6 : Huffman-encode End Of Block (EOB) code.
(This code indicates that no more AC coefficients
will be encoded in the block. If the encoded AC coefficient
is not the sixty fourth coefficient, subsequent
coefficients are not, encoded.)
If Dye #0,
If R > 15,
9: Huffman-encode the code 0xFO, that represents
consecutive 15 zero coefficients, | R/15] times.
10: R = R mod 15.
11: Obtain category number C'y, 0 < C'4 < 10 using Table 5.1.
12: Obtain index number The, 0 < Tae < 2¢4¢ — 1 using Table 5.1.
13: Create an 8 bit value a = 16 R + C 4.
14: Huffman-encode a.
15: Output Ty as a C'4¢ bit binary value.
16: Initialize run-length R to zero.

Huffman Coding in JPEG

In the following, we review Huffman coding and describe the relationship between the
Huffman code and the DCT coefficients.

Let H be the set of the Huffman codewords that is generated for an alphabet A
with probability distribution P. Let M be a function that maps the source symbol
a € A to the code word h € H, i.e. M :a — h, and let M~! be the inverse of
M. Then the encoding and the decoding are shown as h = M(a), and a = M~1(h),
respectively.

The alphabet for the DC Huffman code is the set of category numbers C'p which are
used in the encoding. The alphabet only includes the category numbers corresponding
to Dg;rs that appear in the image.

For the AC Huffman code, the alphabet is the set of eight bit values 16 R 4+ Cy¢,

5.3. JPEQG Stream 82

corresponding to pairs of run-length and category number that appear when encoding
the image.

When the encoder encodes an image, it constructs the Huffman code from the
frequencies of the source symbols.

In the encoded bit stream, an index number of Cpe bits and C'yc bits follows
a codeword corresponding to DC and AC coefficient, respectively. For the correct
decoding, it is necessary to locate the beginning of a codeword and so the size of the
index number following a codeword must be known. This size is determined by the

source symbol that is encoded as a codeword right before the index number.

5.3 JPEG Stream

JPEG data is a structured stream where different parts of the stream are separated by
markers. To maintain the conformance with the JPEG standard, the markers must be
kept intact. The compressed image data consists of a frame, and the frame contains
one or more scan. The structure of a JPEG stream is as follows.

Frame A frame begins with a frame header and contains one or more scan data.
The frame header may be preceded by one or more table-specification (optional)
or miscellaneous marker segments (optional).

Scan A scan begins with a scan header and contains one or more entropy-coded data
segments.

Each scan header may be preceded by one or more table-specification or miscel-

laneous marker segments.

The high-level structure of the compressed image data is shown in Table 5.2.

5.3.1 JPEG Data Components

There are several types of data segments which contain coding parameters.

1. A frame header contains the information of the entire image such as the image

geometry and the number of color components.

2. A quantization table specification specifies the quantization values used for the
8x8 DCT coefficients. Different quantization tables can be used for the luminance

and the chrominance components.

5.3. JPEQG Stream 83

Table 5.2: The high-level structure of the JPEG stream.
[Table specifications]
Frame header
Scan 1 [Table specifications]
Scan header 1
Entropy coded segment 1
Scan 2 [Table specifications]
Scan header 2
Entropy coded segment 1

Scan last [Table specifications]
Scan header last
Entropy coded segment last

3. A Huffman table specification provides the necessary parameters to construct a
Huffman table used for the decoding. In JPEG, two types of Huffman tables are
used : a DC Huffman table for DC coefficients and an AC' Huffman table for AC
coefficients. Different DC/AC Huffman table pairs are commonly used for the

luminance and the chrominance components for color images.

4. A scan header, preceding an entropy coded data segment, specifies which quanti-
zation and Huffman tables to be used for the decoding and contains the structural

information of the following entropy coded segment.

The above four data segments are essential components of a lossy JPEG data
stream. In the following, the contents of the frame header, the scan header, the quan-
tization table specification, and the Huffman table specifications are described. We use

the representations used in the JPEG standard document [45].

Frame Header

The frame header consists of the following information.

Frame header length (Lf) The length of the header in bytes including the header
length.

Sample precision (P) The precision in bits for the samples.
Number of lines (Y) The number of lines in the source image.

Number of samples per line (X) The number of columns in the source image.

5.3. JPEQG Stream 84

Number of image components in frame (N f) The number of components in the

source image.

Image components Information about the image components. The number of image
components is given by the Number of image components in frame. For the

following four items composing Image components, i € {1,2,3,..., N f}.

Component identifier (C;) Unique number assigned to each component.

Horizontal sampling factor (H;) The factor that specifies the relationship
between the component horizontal dimension and the number of samples

per line in the source image.

Vertical sampling factor (V;) The factor that specifies the relationship be-
tween the component vertical dimension and number of lines in the source

image.

Quantization table destination selector (7'¢;) The identifier that specifies
which one among the four quantization tables should be used in the de-

quantization.

The values of the parameters in the frame header are shown in Table 5.3.

Table 5.3: Frame header.

parameter | bits | values

Lf 16 | 3 + 3 x Number of components

P 8 8 (baseline), 8,12 (extended,progressive), 2-16 (lossless)
Y 16 | 0-65,535

X 16 | 1-65,535

Nf 8 1-255 (baseline, extended,lossless), 1-4 (progressive)

C; 8 0-255

H; 4 1-4

Vi 4 1-4

Tq; 8 0 (lossless), 0-3 (other processes)

Scan Header

The scan header consists of the following information.

Scan header length (Ls) The length of the header in bytes including the header
length.

5.3. JPEQG Stream 85

Number of image components (/Ns) The number of source image components in

the scan. For the following three items, j € {1,2,3,..., Ns}.
Scan component selector (Cs;) The identifier that specifies the place of the
components specified in the frame header in subsequent data segments.

DC entropy coding table destination selector (7'd;) The identifier that spec-
ifies one of the four possible DC entropy coding tables.

AC entropy coding table destination selector (7'a;) The identifier that spec-
ifies one of the four possible AC entropy coding tables.

Start of spectral selection (Ss) The first DCT coefficient in each block in zig-zag

order.

End of spectral selection (Se) The last DCT coefficient in each block in zig-zag

order.

Successive approximation bit position high (Ah) In the sequential DCT mode,

the value is always 0.

Successive approximation bit position low (Al) In the sequential DCT mode,

the value is always 0.

The values of the parameters in the scan header are shown in Table 5.4.

Table 5.4: Scan header.

parameter | bits | values

Ls 16 | 6 + 2 x Number of image components

Ns 8 1-4

Cs; § 0255

Td, 4 0-1 (baseline), 0-3 (other)

Ta; 4 0-1 (baseline), 0-3 (seq. extended/progressive), 0 (lossless)
Ss 8 0 (sequential), 0-63 (progressive), 1-7 (lossless)

Se 8 63 (sequential),Ss-63 (progressive), 0 (lossless)

Ah 4 0-13 (progressive), 0 (other)

Al 4 0 (sequential), 0-13 (progressive), 0-15 (lossless)

There are two types of data segments which define the parameters of the quan-
tization and the entropy coding, that is, the quantization table and Huffman table

specification segment. In the following, these two types of data segments are described.

5.3. JPEQG Stream 86

Quantization Table Specification

This data segment includes the following information.

Length (Lg) The length of the quantization table specifications in bytes including
the header length.

Quantization table element precision (Pgq[t]) The precision of the quantization
value which is either 0 (8 bits) or 1 (16 bits).

Quantization table id (T¢[t]) The identifier of the table.
Quantization table element (Q[t]) The 64 quantization values (k € {1,2,3,...,64}).

The contents of the table are shown in Table 5.5.

Table 5.5: Quantization table specification (o is the number of quantization tables in
the quantization table specifications).

parameter | bits | values

Lq 16 |24 >, ,(65+64 x Pqlt])
Pqlt] 4 0,1

Tqlt] 4 0-3

Qr[t] 8,16 | 0-255, 0-65535

Huffman Table Specification

The Huffman table specification consists of the following parameters.

Length (Lh) The length of the Huffman table specifications in bytes including the
header length. A Huffman table specification includes o table specifications (in
the following part, t € {1,2,3, ..., 0}).

Table class (T'c[t]) DC table (0) or AC table (1).
Identifier (T'h[t]) The identifier of the table.

Number of Huffman codewords of length i (L;[t]) The number of Huffman code-
words for each of the 16 possible lengths (i.e. i € {1,2,...,16}).

Value (V;[t]) The value associated with each codeword of length i. If there are
L; Huffman codewords for length i, then there are L; values for length i (i.e.
je{1,2,....L;}, my = 2;21 Number of Huf fman codes of length i).

5.4. Encrypting Markers 87

Table 5.6: Huffman table specification.

parameter | bits values

Lh 16 2+ >0 (17 + 530 Lilt])
Tclt] 4 0,1

Thit] 4 0-3

L;[t] 8 x 16 | 0-255

Vijlt] 8 xmy | 0-255

The values of the parameters are shown in Table 5.6.

In the sequential DCT, H, a set of codewords, is determined by the Number of
Huffman codes of length 1. The mapping between Huffman codewords and source
symbols, M, is determined by Value (V; ;).

5.4 Encrypting Markers

There are markers that indicate the beginning of headers, table specifications and
data segments. A possible way of making the stream unintelligible to the decoder
is to encrypt the markers and give the key and their positions as part of the secret
key information. However, i) the JPEG stream with encrypted markers will not be
recognized as a JPEG stream, ii) the positions of the markers in the JPEG stream
need to be given as the secret information and so this increases the size of the secret
data, and i) encrypting only markers will not entirely hide the data structure because
the contents of some data segments such as quantization table specifications could be
easily recognized in the JPEG stream even if the markers are hidden. Because of these

reasons, encryption of markers is not considered.

5.5 Encryption of JPEG Components

Selective encryption reduces the computational cost by encrypting small amount of
data. The information to be encrypted should be carefully chosen to minimize the
amount of data to be encrypted while providing high security. The encrypted data

should satisfy the following conditions.
Condition 1 Without the encrypted data, it is difficult to decode the JPEG stream.

Condition 2 It is difficult to derive the encrypted data from other information in the

same JPEG stream.

5.5. Encryption of JPEG Components 88

Condition 3 The encrypted data is highly dependent on the image and so the corre-

sponding data from similar images are not useful.

Condition 4 The search space of the encrypted data must be large.

Some of the coding parameters in the JPEG stream have small number of possible
values. For example, the Number of image components in the frame header can be one
(gray scale) or three (color image) and the Table class in the Huffman table specifica-
tions is either for DC or AC. The parameters such as the header length in the frame
header is likely to be either 12 (gray) or 17 (color). If a parameter has a small number
of possible values, it is easy to guess and verify the guess using the encrypted data.
Hiding such parameters does not provide large search space and so it will have minimal
effect on security.

Parameters that have relatively large number of choices are as follows.

e Image geometry
e (Quantization table

e Huffman table specifications

In the following sections, we examine these parameters and show whether or not

they satisfy the above four conditions.

5.5.1 Encrypting Headers

In this section, we examine the complexity of finding parameters in the encrypted
headers. The range of the parameters in JPEG varies with the type of compression.
In the following analysis, we consider the sequential DCT mode which is the most

commonly used mode and assume that the markers are not encrypted.

Frame Header

The following shows the cost of finding the parameters in the encrypted frame header.
We assume that all other data segments are unencrypted. The number of quantization
and Huffman table specifications can be obtained from their markers. It is known
that for sequential DCT coding, each luminance and chrominance component has one
quantization table and two Huffman tables for DC and AC.

Frame header length (Lf) The length is known from the positions of the frame

header marker and the marker of the next data segment.

5.5. Encryption of JPEG Components 89

Sample precision (P) It is either 8 or 12.

Number of lines (Y) The value can be between 0 and 65535 but this can be found
if all DCT blocks are correctly decoded. In the sequential DCT mode, rows of
blocks are encoded from the top to the bottom of the image and so if the sequence
of decoded blocks is correctly partitioned, the image can be reconstructed by
arranging the partitions from top to bottom. The partition can be easily found
because consecutive decoded blocks in a partition should look natural. If two
blocks belong to different partitions, the edge part between them would not
match. If the number of blocks in horizontal direction is found, the geometry of

the image will be known.

Number of samples per line (X) The value can be between 1 and 65535. However

this can be found similar to above.

Number of image components in frame (N f) The value can be between 1 and
255.

Component identifier (C;) This can be calculated from the scan header lengths.
Horizontal sampling factor (H;) The value can be between 1 and 4.
Vertical sampling factor (V;) The value can be between 1 and 4.

Quantization table destination selector (7'¢;) The value can be between 0 and 3.

From above, the total number of possibilities for the combination of N f,P,H,;,V;
and T'g; is 255 x 2 x 4 x 4 x 4 ~ 26,

The image geometry (Number of lines and Number of samples per line in the frame
header) can vary with images and hiding this information provides a 65536 x 65535 =
231 search space. However, if all the 8 x 8 blocks are correctly decoded, the image can
be easily reconstructed even if the width and the height of the image are encrypted.

This violates Condition 2.

Scan Header

The cost of finding the JPEG parameters for the scan header is shown below.

Scan header length (Ls) The length is known from the positions of the frame header

marker and the marker of the next data segment.

5.5. Encryption of JPEG Components 90

Number of image components (/Ns) This can be calculated from Ls.
Scan component selector (C's;) The value is between 0 and 255.

DC entropy coding table destination selector (7'd;) The value is between 0 and
3.

AC entropy coding table destination selector (7'a;) The value is between 0 and
3.

Start of spectral selection (Ss) The value is 0.
End of spectral selection (Se) The value is 63.
Successive approximation bit position high (Ah) The value is 0.

Successive approximation bit position low (Al) The value is 0.

From the above, the total number of possibilities for C's;, T'd; and T'a; is 256 x4 x4 =
2'2. We note that typical values of N f for a color image is three and so C's; will be
0,1 and 2 although C's; has the range [0,255]. Hence, the number of possibilities for

this parameter is small and Condition 4 is not satisfied.

5.5.2 Encrypting Quantization Table Specifications

Quantization tables vary with images and values in the table depend on the image
and the compression quality. However even if the table entries are not correct, it is
possible to recover a reasonable quality image. The experimental results are shown
in Section 5.7.4. The quantization table can be closely approximated by the example
quantization table given in the JPEG specification and so Condition 3 is not satisfied
for this table.

For successful de-quantization, the correct Huffman decoding, i.e. correct Huffman

table, is required.

5.5.3 Encrypting Huffman Table Specifications

If Huffman tables are hidden, the decoding of the data segments will fail. The Huffman
codes are constructed from the Huffman table specifications in the JPEG data using the
algorithm given in the JPEG standard document [45]. The examples in Section 5.8.1

show that parameters Number of Huffman codes of length i and Values associated with

5.6. Security of Huffman Code 91

each Huffman code vary not only with images but also with the compression quality
and are critical for correct re-construction of the Huffman table in the decoder. They
are also sensitive to the bit change of the table entries as shown in the experiment
results in Section 5.7.6 and 5.7.5.

One advantage of encrypting the Huffman table specifications is that the size of
encrypted data, compared with the size of the JPEG file, is very small. The sizes of
the JPEG files and the Huffman table specifications in the above examples are shown
in Table 5.7.

Table 5.7: Examples of sizes of encrypted Huffman table specifications.

The JPEG file size Huffman table specifications
39246 bytes (Quality=75%) 161 bytes (0.4 %)
23027 bytes (Quality=50%) 148 bytes (0.65 %)

The above analysis shows that only Huffman table specifications satisfy Condition
1 to 4. For other data segments, some of the parameters can be derived from other
parts of data in the same stream or from publicly available data, such as examples in

the JPEG standard, and others only provide small search space.

5.6 Security of Huffman Code

In this section, we examine security of encrypting Huffman code in more details. The
source alphabet for the DC Huffman code is the category numbers C'pe and for the
AC Huffman code is the 8 bit values calculated from R and C4¢. The codewords are
determined using the probability distribution of these values. For correct decoding
of the JPEG stream, i) codewords of the Huffman code and i) correct mapping be-
tween the codewords and source symbols must be known. When table specifications
are encrypted, this information is hidden. We assume that the entire Huffman table
specifications are hidden and estimate how much information can be obtained under

the following attacks.

1. The attacker does not know the image that is encrypted and tries to find the

hidden parameters by exhaustive search.

2. The attacker has some knowledge about the image that is encrypted and has

access to images that are similar to the encrypted one.

First we examine the first attack and estimate the cost of the exhaustive search and

then, consider the second case and examine the chance of success. Finally we discuss

5.6. Security of Huffman Code 92

applicability of attacks similar to those against arithmetic coding encryption schemes

[11, 17, 40, 56, 113, 112] to Huffman code encryption system proposed here.

5.6.1 Complexity of Recovering the Huffman Table Using Ex-

haustive Search

Let n be the number of source symbols. Then to recover the Huffman table, the

following information is required.

e The number of Huffman codewords L; of each length i € {1,2,...,16}. We have
>ty Li=n.

e The set A of source symbols. For DC, possible source symbols a € A are 0 <
a < 11. For AC, possible source symbols are a = 16R + Cyc where 0 < R < 15
and 0 < Cy¢ < 10. In the Huffman code of an image, A only includes the source

symbols which have appeared in the encoding.

The number of the source symbols n can be derived from the size of the Huffman
table definition and so n is public. In the DC case, 1 < n < 12 and for the AC
case, 1 <n < 176.

e The mapping between the Huffman code and the source alphabet.
The recovery can be divided into the following problems.

Problem 1 Finding the number of codewords L; for each length i € {1,2,...,16}

16 :
where) ", L; = n is known.

Problem 2 Finding n, the number of source symbols, where 1 <n <12and 1 <n <
176 for DC and AC, respectively.

12 176
The cost is <) for DC and <) for AC.
n n

Problem 3 Finding the mapping between n source symbols and codewords requires

at most n! tries.

The Huffman code is obtained by constructing a Huffman binary tree. In a Huffman
binary tree for n source symbols, there are n leaf nodes, each corresponding to a source
symbol. Each node is assigned 0 or 1 and a codeword corresponds to the path from the

2n — 2 . .
/n possible binary

root to a leaf. It is known that for a given n, there are ()
n J—

5.6. Security of Huffman Code 93

trees with n leaves [49]. If the probability distribution of source symbols is not known,
the attacker needs to try all possible trees to find the codewords and so the cost of
the attack is the cost of exhaustive search over all possible Huffman codes. Once the
correct binary tree is found, then the number of codewords for length 7 € {1,2,3, ..., 16}
can be obtained.

The complexity of recovering the DC and AC tables are shown in the following

sections.

Recovering the DC Table

24 -2
To solve Problem 1, the maximum value of n is 12 and so the cost is at most (12 1) /12

/12 = 705432 ~ 219,

The number of symbols n depends on the image and the compression quality level
and becomes smaller as the quality level drops. The reason for this can be seen from
the distribution of differential DC value over category ranges given in Section 5.8. As
the quality level drops, the differential DC values moves toward zero and so only the
smaller category numbers are required to encode the values. The range of n is not very

large and the cost of solving Problem 2 is maximized when n = 6 and the maximum
o 12
cost is given by 6| = 924 ~ 210,

For Problem 3, the maximum cost is when n = 12, and the number of possible

assignments of the source symbols is 12! ~ 229

Recovering the AC Table

Recovering the AC table is similar to the DC case. To solve Problem 1, the maximum

352 — 2 350
value of n is 176 and so the cost is smaller than /176 = /176.
176 — 1 175

176
The cost of solving Problem 2 is maximized when n = 88 and the cost is 88) S

2172 To solve Problem 8, the maximum cost of finding the mapping between the

Huffman code and the source alphabet is n! = 176!.

To find L;, it is necessary to find the source symbol distribution. This is more
difficult in AC case than the DC case because the source symbols in the AC case are
pairs of run-length and category number and so compared to the DC case there is one

more unknown variable.

5.6. Security of Huffman Code 94

The Total Complexity of Recovering the Huffman Table

From above analysis, we note that both DC and AC tables must be given to the decoder
and so the total cost is the product of the cost of the cases.

For Problem 1, Problem 2 and Problem 3, the maximum costs are approxi-
350
mately 21 (175> /176, 2'%2 and 2%176!, respectively.

As can be seen from example data in Sections 5.8 and 5.8.1, there are some similar-
ities between the distributions of differential DC values for the same image compressed
with different quality levels. This means that the Huffman table specifications will not
be completely independent and so if an attacker has an encrypted image of lower qual-
ity and a valid secret key, finding the Huffman table for the same image with higher

quality would cost less than the maximum given above.

5.6.2 Security Analysis : Using the Information from Similar

Images

In the following, we assume that the attacker has some knowledge about the encrypted
image. Assuming the same size source alphabet is used, if a different Huffman code is
used for the encoding and decoding, the original message and the decoded one will not
be the same. The decoded symbols will be different from the encoded ones and the
number of symbols in the original and decoded messages will be also likely to differ.
We consider the following case. There are two similar images. For one of them, all
the information required for decoding, such as Huffman and quantization table specifi-
cations, is known but the corresponding information for the other image is encrypted.
The question is whether or not the attacker can correctly decode the second image.
Suppose there are two alphabets A; and A, of the same size with the probability
distributions P; and P,. Then for the corresponding Huffman codes Hp, and Hp,,
with the mapping functions M; : a; — h; and My : ay — hy, where a; € Ay,

hi € Hp,, ay € Ay, and hy € Hp,, we consider the following cases.

5.6. Security of Huffman Code 95

1. A #A In this case the two alphabet sets are
different.
2. A=Ay, P #£Po The two alphabet sets are the same but

the set of probabilities are different.

3. A=Ay, Pr =Py, My # M, The two alphabet sets and the set of
probabilities are the same but they are
allocated to the alphabet with a different
mapping.

4. A, = Ay, P =Py, My = My The two alphabet sets are the same. The
two probability distributions and the

mappings are the same too.

If Ay = Ay, Py = P, and M; = M, then the decoder can correctly decode the

encoded data.

Same Codewords and Different Mapping

This corresponds to the case 3 above. In the JPEG stream, Huffman code word is
followed by the encoded index number. If M; # M,, that means the decoded category
number is wrong. Since the category number determines the number of bits required
to represent the subsequent index number, the wrong category number means the
incorrect decoding of the index number. As a result, the decoded index number is
incorrect and the decoder fails to correctly position the next codeword and resulting
in the loss of synchronization. In addition, since the source symbols include the run-
length of the AC coefficients, if the run-length of zero coefficients is wrong, the decoded
non-zero coefficients will be allocated in the wrong position in the 8 x 8 DCT coefficient
block.

If the two mappings are partially equal, as long as the encoder and the decoder use
the same mapping, the decoding will be correct. However, once a part which uses a
different mapping starts, the Huffman decoder will lose synchronization and the rest

of decoding will fail.

Different Codewords

Use of different codewords will result in the failure of the decoding. If the codewords
are partially the same, as long as the encoded streams contain codewords and mapping

which the encoder and the decoder agree, the decoder will correctly decode. If the

5.6. Security of Huffman Code 96

decoder reaches a codeword which the encoder has used a different mapping on, the

synchronization will be lost.

Images and Huffman Codes

The relationship of two Huffman codes depends on the following parameters.

The size of A The size of A; and A, determines the number of codewords, and so

different sizes mean different number of codewords.

This number can be obtained from the size of the Huffman table specification

segment and so this parameter is known.

The source symbols in A In JPEG, the source symbols are determined by the set
of i) distinct category numbers for DC and i) distinct pairs of category number
and run-length for AC.

The probability distribution P If P; and P, consist of the same probabilities while
they are assigned to different source symbols, then H; = Hy but M; # M,.

This is determined by the frequencies of i) distinct category numbers for DC and

i1) distinct pairs of category number and run-length for AC.

The mapping M This is also determined by i) frequencies of distinct category num-

bers for DC and i) frequencies of distinct pairs of category number and run-length
for AC.

If there is a difference in the edges of the two images, then AC values will be different
and also the DC values may differ. This will result in different probability distributions
for coefficients and different run-lengths and so the different Huffman codes for the two
images. As shown in Section 5.7.1, the AC Huffman table is sensitive to changes in the
high frequency components. Since smoothing changes the high frequency components
over the whole image, the category numbers of the AC coefficients and the run-lengths
of zero coefficients will change. As a result, the probability distribution of the source
symbols of the AC Huffman code changes. This implies that if the difference in two
images is local and the number of blocks that are different is small, the probability
distribution of source symbols will not change very much even if the difference is
relatively large. Hence in this case the Huffman table will not change.

For example, consider a service which provides maps. The maps are regularly

updated and the new maps are delivered to the customers in encrypted form. Assuming

5.6. Security of Huffman Code 97

that the attacker owns an old map and then he intercepts a new encrypted map sent to
someone else. If the difference between the old and the new map is small, it is feasible
for him to decode the new map using the Huffman table specifications of the old one.

As shown in Section 5.7.2, Huffman code is sensitive to the quality level because
the Huffman code is derived from the probability distribution of category numbers and
the distribution of category numbers is determined by the quantized coefficients. The
categories correspond to the partitions over an interval [—2047,2047] and quantized
coefficients are in the interval. The range of each partition is constant regardless of
image quality although values of quantized coefficients vary with image quality. This
means that different image quality will result in different number of coefficients in
each partition (category). The number of coefficients in a partition determines the
probability of the corresponding category number and so different image quality will
result in different probability distribution of category numbers.

It is shown by Fraenkel and Klein [28] that given the Huffman encoded stream
of a natural language text the problem of decoding the stream, that is, finding the
codewords is NP-complete. It has also been shown that if a bit stream is a sequence of
pairs of a codeword of a prefix code and a short random bit string then the decoding
problem is NP-complete. This is very similar to the entropy coded stream in JPEG
where the random bit strings correspond to index numbers. However, in the case
of JPEG, the bit strings are not random. The frequency (i.e. probability) of index
numbers corresponds to the number of DCT coefficients in the two intervals which have
the same size in the negative and the positive parts as shown in Table 5.1. It is known
that the distribution of DCT coefficients is the generalized Gaussian [25, 47, 54], the
density function of which is given by [26]

plo) = [ST cop((sl

where

nv,o0)=0! EE?;Z;] 1/2

and so the distribution of index numbers in the interval is close to Gaussian. Hence
the index numbers close to 0, both the negative and the positive parts, have higher
frequencies. The distribution of index numbers in four Huffman codes (to encode DC
and AC coefficients of luminance and chrominance components) of lena.pgm is shown
in Figure 5.1. Since the distribution of index numbers is skewed and not uniform, the
analysis shown in [28] does not apply to JPEG and the cost of finding the Huffman

code will be smaller than the analysis in [28].

5.7. Experiments 98

Figure 5.1: Distribution of index numbers for four Huffman codes.

5.6.3 Huffman Coding and Arithmetic Coding

There are encryption schemes for adaptive arithmetic coding systems in which the
probability distribution of source symbols is a secret [120, 62]. For these schemes,
there are known attacks [10, 11] that try to synchronize the adaptive model by sending
a chosen bit string. The Huffman coder in JPEG uses a non-adaptive model and so

similar attacks are not applicable.

5.6.4 Chosen plaintext and ciphertext attacks

By choosing input images, the attacker can generate the Huffman specification of his
choice and mount a chosen plaintext attack to find the key. Similarly, he can mount a
ciphertext attack by choosing ciphertexts (encrypted images). The Huffman specifica-
tion is encrypted by an encryption algorithm such as AES and so the cost to find the
key largely depends on the algorithm which is used for encryption.

5.7 Experiments

We conducted various experiments to verify the security analysis. Section 5.7.1 and
5.7.2 show the sensitivity of Huffman tables to smoothing and image quality levels.
In Section 5.7.3 the probability distributions of binary symbols in the Huffman coded
stream are shown. The stream consists of codewords of Huffman code and index
numbers. Although index numbers will not have uniform distribution, the distribution
of binary symbols in the stream can be considered as uniform. Section 5.7.4 and 5.7.5
show the decoding experiments of JPEG streams which have modified quantization

and Huffman table specifications, respectively. Finally the decoding result of the JPEG

5.7. Experiments 99

stream using encrypted Huffman table specifications is shown in Section 5.7.6.

5.7.1 Tables with Different Smoothness

This experiment used the smoothing function of ¢jpeg to modify the original image. The
comparison was done between the 75% quality level image and the smoothed image

with the same quality. The procedure of the experiment was as follows.

1. Create the JPEG file 1ena_75. jpg using cjpeg command from lena.ppm.

cjpeg -optimize -baseline —quality 75 <lena.ppm >lena_75.jpg

2. Create the JPEG file lena_75_1. jpg using cjpeg command from lena.ppm.
cjpeg -optimize -baseline -quality 75 -smooth 1 <lena.ppm >lena_75_1.jpg

The smooth value 0 means no smoothing. (The algorithm is not described by

the cjpeg manual.)

3. Compare the corresponding Huffman specification segments of the two files, i.e.
DC table for luminance, AC table for luminance, DC table for chrominance, and

AC table for chrominance,

The PSNR of both files was 50.23 dB. The quantization tables of the two images
were the same. The DC tables of luminance and chrominance and AC table of lumi-
nance were the same. The AC table for chrominance were as follows.

Without smoothing,

00000000 : 00 2b 11 00 02 02 02 02 02 02 02 02 02 03 00 03
00000010 : 00 00 00 00 01 02 11 03 21 12 31 04 41 22 32 51
00000020 : 61 13 42 23 71 33 81 91 52 al £f0

and Lh = 43Tc = 1,Th =1, L; = 0,2,2,2,2,2,2,2,2,2,3,0,3,0,0,0, i = 1,2, ..., 16,

and the values of V; ; are as follows:

5.7. Experiments

100

© 00 N O Ot = W N

—_ =
w = O

w NN O

18

34
81
19
35
ol
82

113
129
161

145
240

With smoothing,

00000000 :
00000010 :
00000020 :

and Lh = 43 Tc =1Th=1, L; = 0,2,2,2,2,2,2,1,5,0,3,0,3,0,0,0, i = 1,2, ...

and the values of V; ; are as follows:

00 2b 11 00 02 02 02 02 02
00 00 00 00 01 02 11 03 21
13 23 42 61 71 33 81 91 52

02 01 05 00 03 00 03
12 31 04 41 22 32 51
al f0

j=
1 2 31 4 3
2 0 1
3 2| 17
4 31 33
5> | 18| 49
6 4| 65
1= 7 | 34| 50
8 |81
9 19| 35| 6697|113
11 151 | 129 | 145
13 | 82 | 161 | 240

, 16,

If Huffman tables of 1ena without smoothing replaces the ones with smoothing, the

viewer xv produces the error Corrupt JPEG data: bad Huffman code. The produced

5.7. Experiments 101

image is shown in Figure 5.2. This shows that with small difference in encoding the
same image with or without smoothing, one Huffman table cannot be used for the

other.

Please see print copy for Figure 5.2

Figure 5.2: The image with the Huffman AC chrominance table of the image with
smoothing.

5.7.2 Tables with Different Quality Levels

This experiment shows sensitivity of the Huffman code to image quality, i.e. the

quantization divisors. The image used was lena.ppm. The experiment was as follows.

1. Create the JPEG file 1ena_75. jpg using cjpeg command from lena.ppm.

cjpeg -optimize -baseline —quality 75 <lena.ppm >lena_75.jpg

2. Create the JPEG file lena_74. jpg using cjpeg command from lena.ppm.

cjpeg -optimize -baseline —quality 74 <lena.ppm >lena_74.jpg

3. Compare the corresponding Huffman specification segments of these two files, i.e.
DC table of luminance, AC table of luminance, DC table of chrominance, and

AC table of chrominance,

The PSNR of the two files were 47.26 dB. The DC tables for both luminance and
chrominance were the same. The AC tables for luminance and chrominance were as
follows.

Luminance : Quality 75%

00000000 : 00 40 10 00 01 03 03 03 02 04 03 07 03 03 04 03
00000010 : 00 01 05 01 02 03 11 00 04 21 05 12 31 41 51 06
00000020 : 13 22 61 32 71 81 14 23 91 al bl cl £f0 42 dl el
00000030 : 07 15 52 24 33 62 f1 34 43 82 72 16 26 92 a2 b2

5.7. Experiments

Luminance : Quality 74%

00000000 : 00 3f 10 00 01 03
00000010 : 00 02 03 01 02 03
00000020 : 13 22 61 32 71 81
00000030 : 07 15 52 24 33 62

Chrominance : Quality 75%

00000000 : 00 2b 11 00 02 02
00000010 : 00 00 00 00 01 02
00000020 : 61 13 42 23 71 33

Chrominance : Quality 74%

00000000 : 00 2b 11 00 02 02
00000010 : 00 00 00 00 01 02
00000020 : 13 23 42 61 71 81

If the Huffman tables of 75% quality replaces the ones of a 74% quality JPEG file,
the viewer xv produces the error Corrupt JPEG data: bad Huffman code. The resulting
image is shown in Figure 5.3. This shows that if different JPEG quality levels are used,

the two compressed images obtained from the same image produce different Huffman

03
11
91
f1

02
11
33

03
00
14
34

02
03
91

02
03
91

02
04

43

02
21
52

02
21
52

04
21
bl
82

02

al

al

04
05
cl
16

02
31
f0

01
31
f0

04
12
23
72

02
04

04
04

tables and one Huffman table cannot replace the other.

05
31
42
26

02

Figure 5.3: 74% quality image with 75% quality Huffman AC tables.

03
41
d1
92

03
22

02
22

04
51
el
b2

00
32

03
32

03
06
f0

03
51

00
51

5.7.3 Probability Distribution of Binary Symbols

The following graphs show the probability distribution of n bit binary symbols. Fig-
ure 5.4 shows the probability distribution of one bit (left) and two bit (right) binary

5.7. Experiments 103

symbols for the entropy coded data segment. Figure 5.5 and 5.6 show the probability
distribution of three and four bit, and five and six bit binary symbols for the entropy
coded data segment, respectively. The variances of probabilities for n bit symbols are
shown in Table 5.8. An example of the bit sequence of the entropy coded data segment
is shown below. From Figure 5.4, 5.5 and 5.6, it can be seen that the distribution
of binary symbols are close to uniform and so it will be resistant against statistical

analysis.

11010000 10010010 00101001 10101011 01010100 01001111 01001100 00011010
01101001 00011000 10000000 01111101 11101011 11000100 11001101 01111001
00101110 01000111 11010101 10100100 00100010 10010101 10000001 11011010
10010011 01110100 00101011 00100110 00101001 01001101 00110100 00000011

T
of bits : 2

‘#ofb\!s:l

L I L L I I
0 1 0 1 2 3

Figure 5.4: Probability distribution of one bit binary symbols (left) and two bit binary
symbols (right).

T T T
of bits : 4

T T
#of bits : 3

L L L L L L L L L L L L L L
0 1 2 3 4 5 6 7 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.5: Probability distribution of three bit binary symbols (left) and four bit
binary symbols (right).

5.7.4 Modification of Quantization Table Specifications

The following shows an example of the change of the quantization table specifications.

The original quantization table specifications are as follows.

5.7. Experiments 104

T LT T T T T T T TTT
HHH"H‘HHHHHH‘#‘#O‘fb‘iIS‘:%H‘ Yof bits - 6

e bbb bbb bbb b b b b e e B e b b e e B e b e B D B by AR RnnnannnnnnRnnannRnann R
012345678 9101112131415161718192021222324252627282930BI123456789102345678902!

Figure 5.6: Probability distribution of five bit binary symbols (left) and six bit binary
symbols (right).

Table 5.8: Variances of probabilities for n bit symbols.
bits | variance
0.16
0.034
0.0082
0.0020
0.00049
0.00012
0.000031
0.000008

OO Tt i W N

DQT
len 67 Pq 0 Tq O
8 6 6 7 6 5 8 7 T T 9 9 8 10 12 20
13 12 11 11 12 256 18 19 156 20 29 26 31 30 29 26
28 28 32 36 46 39 32 34 44 35 28 28 40 55 41 44
48 49 52 52 562 31 39 657 61 56 650 60 46 51 52 50
DQT
len 67 Pq 0 Tq 1
9 9 9 12 11 12 24 13 13 24 50 33 28 33 50 650
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 60
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 650
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 650

The modified quantization table specifications are as follows.

DQT

len 67 Pq 0 Tq O
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

5.7. Experiments 105

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
DQT
len 67 Pq 0 Tq 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

The resulting images are shown in Figure 5.7. The PSNR of the modified image
(right) is 17.6 dB with respect to the original image (left). Although the PSNR is low,

the contents of the image are intact and so hiding quantization tables is not effective.

Please see print copy for Figure 5.7

Figure 5.7: Decoding with different quantization tables: the original image (left) and
recovered image using different quantization tables (right).

5.7.5 Modification of Huffman Table Specifications

The following experiment result shows an example of the change of the Huffman table
specifications.

The first Huffman table specification is as follows.

DHT

len 26

Tc 0 Th O L i 0 2 3 1 0 O O O O o o o0 o
1: 0
3: 4 b

5.8. Distribution of Differential DC Values 106

and the last line was changed to
5: 3

In Figure 5.8, the original image is on the left. The image on the right has a
modified Huffman table and results in xv producing the error message “corrupted
Huffman table”. Modifications may result in the complete failure of the decoding, i.e.
no output image. The Huffman table specification is very sensitive to change and the

decoding fails even if the change is small.

Please see print copy for Figure 5.8

Figure 5.8: Destruction of Huffman table: Viewing the original image (left) and the
image with “corrupted” Huffman table (right) using zv.

5.7.6 Encryption of Huffman Table Specification

The Huffman table specifications in a JPEG file are encrypted using DES 8-bit CFB
mode [129, 38]. DES can be replaced by AES. Their sizes of these specifications are
multiples of 8 bits (i.e. bytes), and so any encryption algorithm which can encrypt
arbitrary number of bytes can be used. If we attempt to display the file using the
command xv, it results in the error message “Bogus Huffman table definition” and

fails to display the file.

5.8 Distribution of Differential DC Values

The DC Huffman table is determined by the distribution of differential DC values. If
each image has the distinct distribution and the difference among images is large, then
the resulting Huffman table differs largely and the difficulty of recovering the encrypted
table from known tables will increase.

In the following experiments, we consider two images: lena and pepper. We compare
the distribution of differential DC values of these images with various compression

quality. The distributions of differential DC values (without quantization) are shown

5.8. Distribution of Differential DC Values 107

in Figure 5.9. The x-axis is the differential DC value and the y-axis is the frequency

of each value.

DC diff ——

Ww

Figure 5.9: Distributions of differential DC values of lena.pgnm (left) and pepper.pgm
(right).

500 -1000 =500 (] 500 1000 15600 -1000 -500 1000 150

The distributions of differential DC values (with quantization) over intervals spec-
ified by the category numbers are shown in Figure 5.10, 5.11, 5.12, 5.13, and 5.14.

The x-axis is the category and the y-axis is the frequency of the differential DC
values which are in the range of the category number.

If the quantization value is 2, the appeared symbols are {0,1,2,3,4,5,6,7,8,9,10}.
For two symbols X; and X, with their length L; and Ly, respectively, if L; > Lo, the
probabilities of X; and X, will satisfy P(X;) < P(X5).

In the lena case, the probabilities are P(5) > {P(3), P(4), P(6),P(7),P(8)} >
P(9) > P(2) > P(1) > P(0) > P(10),

The two graphs showed different distributions although they both had zero mean
and similar ranges, and so they resulted in two different Huffman codes. From the

graphs, it follows that distribution can be roughly known from other similar images.

I I I I I I I I
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.10: Distributions of differential DC values of lena.pgm (left) and pepper . pgm
(right) for Q,=2.

5.8. Distribution of Differential DC Values 108

8 —o—

L L L L L L
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.11: Distributions of differential DC values of lena.pgm (left) and pepper .pgm
(right) for Q1 =S8.

L L L L L L
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.12: Distributions of differential DC values of lena.pgm (left) and pepper .pgn
(right) for Q,=16.

5.8.1 Huffman Table Specifications of Various Images
Huffman Table Specifications and Huffman Code

The following examples show that even if the original image is the same, different
quality levels produce different Huffman tables. This shows that finding the Huffman
tables of an image is not easy even if the Huffman tables of the same image with
different quality levels is known. The examples are the Huffman table specifications
of two JPEG images created from lena.ppm with quality level 75% and 50 % and the
resulting Huffman codewords generated by the algorithm in CCITT Rec.T.81(1992 E) :
Annex C, Figure C.1, C.2 and C.3.

Quality level 75 %

DC table 0

e Length = 28
e Table class = 0

e Identifier = 0

The following data is :

5.8. Distribution of Differential DC Values 109

T T T T
32 —o— 2 —o

I I 5 I I I &
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.13: Distributions of differential DC values of lena.pgm (left) and pepper .pgn
(right) for Qy=52.

T T T T
80 —o— 80 —o—

I I & 5 I I & &
0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.14: Distributions of differential DC values of lena.pgm (left) and pepper .pgm
(right) for Q1=80.

length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 1 5 1 1 1.0 0 0 0 O O O O O O
symbols 4 1 7 0 8

2

3

5

6

and the resulting Huffman codewords are :
0:11110 1:010 2:011 3:100 4:00 5:101 6:110 7:1110 8:111110
AC table 0

e Length = 64
e Table class = 1

e [dentifier = 0

The following data is :

5.8. Distribution of Differential DC Values 110

length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |O 1 3 3 3 2 4 3 7 3 3 4 3 0 1)
symbols 1 2 0 &5 65 6 50 20 66 7 36 52 114 22
3 4 18 81 19 113 35 209 21 51 67 38
17 33 49 34 129 145 225 82 98 130 146
97 161 241 162
177 178

193

240

and the resulting Huffman codewords are :

0:1010 1:00 2:010 3:011 4:1011 5:11010 6:1111000

7:11111111010 17:100 18:11011 19:1111001 20:111110110 21:11111111011
22:1111111111111010 33:1100 34:1111010 35:111110111 36:111111111010
38:1111111111111011 49:11100 50:11111000 51:111111111011 52:1111111111100
65:111010 66:1111111010 67:1111111111101 81:111011 82:11111111100
97:1111011 98:111111111100 113:11111001 114:111111111111100 129:11111010
130:1111111111110 145:111111000 146:1111111111111100 161:111111001
162:1111111111111101 177:111111010 178:1111111111111110 193:111111011
209:1111111011 225:1111111100 240:111111100 241:111111111101

Quality level 50 %

DC table 0

e Length = 27
e Table class = 0
e [dentifier = 0

The following data is :

length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 2 3 1.1 1.0 0 0 0 O O O O O O
symbols 2 1 0 6 7
3 4
5

and the resulting Huffman codewords are :
0:1110 1:100 2:00 3:01 4:101 5:110 6:11110 7:111110
AC table 0

5.8. Distribution of Differential DC Values

111

e Length = 60
e Table class =

e [dentifier = 0

1

The following data is :

length 1 2 3 4 6 7 11 12 13 14 15 16
of symbols [0 1 4 3 3 3 3 4 2 3 0
symbols 1 0 33 5 19 51 36 21 67 37
2 18 65 34 193 98 114 83 52
3 49 81 97 209 240 225 162

17 241

and the resulting Huffman codewords are :
0:010 1:00 2:011 3:100 4:11010 5:111010 6:1111111000

17:101 18:11011 19:1111010 20:111111000 21:1111111111010 33:1100
34:1111011 35:111111001 36:111111111010 37:111111111111100 49:11100
50:11111010 51:11111111010 52:111111111111101 65:111011 66:1111111001
67:11111111111100 81:111100 82:1111111010 83:11111111111101 97:1111100
98:111111111011 113:11111011 114:1111111111011 129:111111010 145:111111011

161:1111111011 162:111111111111110 177:1111111100 193:11111111011

209:11111111100 225:1111111111100 240:111111111100 241:1111111111101

Huffman Table Specifications for lena

Quality=95%

Quantization table

© O W W =~ N
~N O N,
D OO OO N N -
D N NN

10 10 10 10
12 11 10 12

O ©O© OO N N =

10

o O O N =

11

10

0 0 O O H NN

10

O© N O D D

11
10

5.8. Distribution of Differential DC Values 112
DC table
length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 1 5 1 1 1 1 1 0 0 O O O o0 0 o
symbols 5 3 9 2 1 0 10
4
6
7
8
AC table
length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols [0 1 3 2 4 3 6 4 3 7 3 3 3 2 2 11
symbols 1 2 4 0 7 8 129 20 36 22 67 23 162 68
3 5 6 49 19 145 50 21 82 51 114 52 37 146
17 18 65 34 161 177 35 241 98 130 10
33 81 240 66 24
97 193 39
113 209 83
225 99
115
131
178
194
Quality=75%
Quantization table
8 6 6 7 6 5 8 7
7 7 9 9 8 10 12 20
13 12 11 11 12 25 18 19
15 20 29 26 31 30 29 26
28 28 32 36 46 39 32 34
44 35 28 28 40 55 41 44
48 49 52 52 52 31 39 b7
61 56 50 60 46 51 52 50

DC table

5.8. Distribution of Differential DC Values 113
length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols|O 1 5 1 1. 1 0 0 0 O O O O O O O
symbols 4 1 7 0 8

2

3

)

6
AC table

length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#ofsymbols [0 1 3 3 3 2 4 3 7 2 6 1 5 0 1 5

symbols 1 0 4 5 65 6 50 20 82 7T 98 37 130 22

2 17 18 81 19 113 35 209 21 52 38
3 33 49 34 129 66 36 67 83
97 145 51 114 146
161 225 241 178
177 240
193
Quality=50%
Quantization table
16 11 12 14 12 10 16 14
13 14 18 17 16 19 24 40
26 24 22 22 24 49 35 37
29 40 58 b1 61 60 57 b1
56 55 64 72 92 78 64 68
87 69 55 56 80 109 81 87
95 98 103 104 103 62 77 113
121 112 100 120 92 101 103 99
DC table
length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 2 3 1 1 1. 0 0 0 O O O O O O O
symbols 2 1 0 6 7
3 4
)

5.8. Distribution of Differential DC Values 114
AC table
length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |O 1 4 1 3 3 3 2 3 7 3 4 0 7 10
symbols 1 0 33 4 5 19 50 35 6 98 36 21 162
2 18 65 34 113 129 20 193 114 37
3 49 81 97 145 51 209 225 52
17 66 240 67
82 83
161 146
177 241
Quality=25%
Quantization table
32 22 24 28 24 20 32 28
26 28 36 34 32 38 48 80
b2 48 44 44 48 98 70 T4
58 80 116 102 122 120 114 102
112 110 128 144 184 156 128 136
174 138 110 112 160 218 162 174
190 196 206 208 206 124 154 226
242 224 200 240 184 202 206 198
DC table
length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 2 3 1 1. 0 0 0O O 0O O O O O O O
symbols 1 0 5 6
2 3
4

AC table

5.8. Distribution of Differential DC Values 115
length 1 2 3 4) 6 7 8 9 10 11 12 13 14 15 16
#of symbols [0 2 2 1 3 3 3 2) 3 3 3) 1 0O O
symbols 0 2 3 4 18 34 19 5 bl 82 20 52 67
1 17 33 65 50 113 35 161 193 36 114
49 81 97 66 177 209 98 225
129 240
145 241
Quality=10%
Quantization table
80 55 60 70 60 50 80 70
656 70 90 85 80 95 120 200
130 120 110 110 120 245 175 185
145 200 255 255 255 255 255 255
265 265 255 255 255 255 255 255
265 265 255 2565 255 255 255 255
265 265 255 2565 255 255 255 255
265 265 255 255 255 255 255 255
DC table
length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 3 1 1. 1.0 0 0 0O 0O O O O O O O
symbols 0 3 4 5
1
2
AC table
length 1 2 3 4) 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols [1 1 0 2 2 2 1 5 0 1 3 4 3 1 1 0
symbols 0 1 2 33 3 18 34 4 66 19 98 82 193
17 49 65 50 129 35 161
81 145 ol 225
97 177

113

5.8. Distribution of Differential DC Values 116
Huffman Table Specifications for pepper
Quality=95%
QQuantization table
2 1 1 1 1 1 2 1
1 1 2 2 2 2 2 4
3 2 2 2 2 5 4 4
3 4 6 5 6 6 6 5
6 6 6 7 9 8 6 7
9 7 6 6 8 11 8 9
10 10 10 10 10 6 8 11
12 11 10 12 9 10 10 10
DC table
length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 2 2 3 1 1 i1 1t 0 0 O O O O 0 O
symbols 6 5 3 2 1 10 0
7 8 4
9
AC table
length 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols [0 I 3 2 4 4 4 4 3 6 5 2 5 4 3 0
symbols 1 2 4 6 0 19 9 50 21 22 225 10 24 53
3 5 18 7 34 20 145 35 36 241 23 67 83
17 33 8 81 113 161 66 82 37 115 210
49 65 97 129 177 98 51 130
193 209 114
240
Quality=75%
Quantization table
8 6 6 7 6 5 8 7
7 7 9 9 8 10 12 20
13 12 11 11 12 25 18 19

5.8. Distribution of Differential DC Values

117

15 20 29 26 31 30 29 26
28 28 32 36 46 39 32 34
44 35 28 28 40 55 41 44
48 49 52 b2 52 31 39 b7
61 56 50 60 46 51 52 50
DC table
length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 2 3 1 1 1 1 0 0 O O O O O O O
symbols 4 2 7 1 0 8
5 3
6
AC table
length 1 2 3 4 6 7 9 10 11 12 13 14 15 16
#of symbols | 0 1 3 2 3) 4 7)) 7 5 0 0 0
symbols 1 2 0 6 19 20 7T 21 22 37 38
3 4 18 65 34 50 35 36 114 51 68
17 33 81 97 145 66 82 130 67 115
49 113 161 177 98 146 99 131
129 193 225 241 116 132
209 162
240 194
Quality=50%
Quantization table
16 11 12 14 12 10 16 14
13 14 18 17 16 19 24 40
26 24 22 22 24 49 35 37
29 40 58 b1 61 60 b7 b1
56 55 64 72 92 78 64 68
87 69 5bbo 56 80 109 81 87
95 98 103 104 103 62 77 113
121 112 100 120 92 101 103 99

5.8. Distribution of Differential DC Values 118
DC table
length 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 2 3 1 1 1. 0 0 0 O O O O O O O
symbols 3 1.6 0 7
4 2
)
AC table
length 1 2 3 4) 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols [0 1 3 3 3 1))) 6 2 10 3 1 0 O
symbols 1 0 4 5 65 19 6 20 51 21 36 37 130
2 17 18 34 50 35 66 114 52 67
3 33 49 81 129 177 82 68 83
97 145 193 178 98
113 161 209 225 99
240 115
131
146
147
241
Quality=25%
Quantization table
32 22 24 28 24 20 32 28
26 28 36 34 32 38 48 80
b2 48 44 44 48 98 70 T4
58 80 116 102 122 120 114 102
112 110 128 144 184 156 128 136
174 138 110 112 160 218 162 174
190 196 206 208 206 124 154 226
242 224 200 240 184 202 206 198

DC table

5.8. Distribution of Differential DC Values 119
length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols |0 2 3 1 1.0 0 0O O 0O O O O O O O
symbols 2 1 0 6

4 3
)
AC table

length 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16

#ofsymbols [0 1 4 1 2 4 2 9 3 3 5 1 0 0 0

symbols 1 0 33 4 65 5 50 20 35 36 52 240

2 18 81 19 113 66 51 83 67
3 49 34 82 193 98 115
17 97 114 130
129 209
145
146
161
177

Quality=10%

Quantization table

80 55 60 70 60 50 80 70O

656 70 90 85 80 95 120 200

130 120 110 110 120 245 175 185

145 200 255 255 2565 255 255 255

265 265 255 2565 255 255 255 255

265 265 255 255 255 255 255 255

265 265 255 255 255 255 255 255

265 265 255 2565 255 255 255 255
DC table
length 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16
of symbols | 0 1100 0 0O O O O o0 o0 0 0
symbols 3 4

N = O W N

5.8. Distribution of Differential DC Values 120

AC table
length 1 2 3 4) 6 7 8 9 10 11 12 13 14 15 16
#ofsymbols [0 2 2 1 3 3 3 4 3 1 1 0O 0 O 0 O
symbols 0 2 3 18 65 34 4 35 161 66
1 17 33 81 97 19 51

49 113 145 50 129
82

Summary of Experiments

From the results of the above experiments, it can be seen that the Huffman tables of
the two images which are generated from the same image, will be different if different
quality levels are used and the tables of one image cannot be used for the other image.
If Huffman code is unknown, it is known that recovering information from the Huffman-
coded data is not easy. For methods to recover information from coded data without

knowing the Huffman code, further research is required.

5.8.2 Conclusion

From above, the most effective part to be encrypted will be the Huffman table spec-
ifications. The specifications vary not only with images but also with quality levels
as shown in Section 5.8 and 5.6.2. The failure of the re-construction of the Huffman
tables in the decoder is fatal for the correct decoding. The advantages of this method
are i) the size of data to be encrypted is very small (less than 1 % of the JPEG stream
in Table 5.7) and so it is computationally inexpensive, and by using a well-established
encryption algorithm, it can provide high level of security, i) the encryption and the
decryption of the Huffman table specifications can be applied directly to the JPEG
stream without decoding it and so already existing JPEG files can be easily encrypted,
and 4ii) the structure of the stream conforms to the JPEG standard and the stream is
still recognized as a JPEG stream.

An image viewer (xv) used for the experiments in Section 5.7.6, recognizes the
encrypted file as a JPEG stream and produces the error message for the Huffman
specifications. Since the size of data to be encrypted is very small and the Huffman
table varies with images, this scheme provides the computationally inexpensive secure

encryption of JPEG streams.

Chapter 6

Wavelet Compression and Encryption

6.1 Introduction

Wavelet compression is a recently developed compression method for digital images. It
achieves very high compression with a reasonably high image quality. Various wavelet
image compression systems have been proposed in the last decade [4, 90, 91, 7]. Wavelet
compression is also used as the basis of a new international standard for image com-
pression, JPEG2000, proposed by ISO/IEC [43].

To prevent unauthorized access to image data, the data needs to be encrypted.
Although images are compressed for efficient storage and transmission, generally the
compressed data is still large and so applying conventional encryption to the com-
pressed data is computationally expensive. To reduce the computational cost, there are
two approaches : i) selective encryption and i) elementary cryptographic operations.
In this chapter, we propose encryption schemes for the Discrete Wavelet Transform
(DWT) [64] that fall into the latter approach and use random permutation lists.

Firstly, we examine a method using random permutation lists for a DWT-based
compression system and then present a scheme for JPEG2000. Finally, we conclude

our results.

6.2 Encryption with Discrete Wavelet Transform

We use a simple key dependent transformation: a family of permutations indexed by
the key, on wavelet coefficients. The decoder applies the inverse permutation before
processing the coefficients. An unauthorized user who does not know the key cannot
recover the image because the correct order of coefficients is not known. The amount of
masking will depend on the number of subbands to which the permutation is applied.

In this section we investigate the security and efficiency of the above system using

121

6.2. Encryption with Discrete Wavelet Transform 122

a specific implementation [22]. We will show that this basic system can provide various
degrees of masking of information and the transformation does not have a drastic effect
on the compression ratio. To assess the security of the system we will examine possible
attacks. In particular, we demonstrate a plaintext attack that uses a number of well
chosen transform coefficients to derive the secret permutation. We argue that if higher
security is required, then a block cipher algorithm can be used to mask the coefficients
of the lowest subband while permutations are used for the other subbands.

This section is organized as follows. Firstly, we briefly review the wavelet compres-
sion system used in our experiments and then in Section 6.2.2 present the encryption
scheme use a random permutation. In Section 6.2.3 and 6.2.4 we present our attack
and using block encryption to enhance security. In Section 6.2.5 and 6.2.6 we show the

results of the experiments and in Section 6.2.7 we conclude.

6.2.1 Wavelet Image Compression

In a wavelet compression system an image is decomposed into subbands which are
represented by real-valued wavelet coefficients. The transform stage is followed by a
quantization stage which converts the real-valued coefficients to whole numbers. Finally
an entropy coder is used to compress the output of the quantizer. The transform stage is
invertible and the compression is the result of quantization and entropy coding stages.

There are numerous approaches to quantization with varying levels of performance.

Transform

The Discrete Wavelet Transform (DWT) consists of a sequence of wavelet filter banks
[64]. In the 2-dimensional transform, firstly each pixel row in the image is decomposed
into coarse and detailed parts and is down-sampled, and then each column of the
coarse and detailed parts is decomposed into coarse and detailed parts and is down-
sampled again. This results in four parts: coarse-coarse, coarse-detail (both from the
row coarse part), detail-coarse and detail-detail parts (both from row detailed part).
The last three parts compose the output subbands while the coarse-coarse part is the
input of the next filter bank. Hence each filter bank produces three subbands except
for the last filter bank which has four subbands.

6.2. Encryption with Discrete Wavelet Transform 123

Quantization and Entropy Coding

The implementation uses a quantization algorithm [110] which quantizes the wavelet
coefficients of each subband independently. The entropy coder is an adaptive arithmetic
coder [9].

6.2.2 Encryption Using Random Permutation

Encrypting MPEG coded data using key dependent permutations to permute transform
coefficients of the Discrete Cosine Transform (DCT) has been proposed in [107, 95]. In
using a permutation of the wavelet transform coefficients, the following points must be
taken into account. Firstly, the DCT is used on fixed size (n x n) blocks of pixels in
the image and produces the same number of coefficients for each block, while wavelet
coefficients are computed for the whole image and so the number of coefficients depends
on the image size. Secondly, the quantization precision will be subband dependent and
so the number of bits allocated to each coefficient will vary for different subbands. This
means that the permutation must be applied to each subband separately, otherwise a
large compression rate drop or distortion can be expected.

We use a subband-based permutation system with a different permutation for each
subband. Let V() = (véb),vgb),véb), . .,UZ@, ...) be the wavelet coefficient block in
subband b, and vfb) denote the ith coefficient in the subband and V)| be the number
of coefficients. The permutation can permute all |V)| coefficients, or we may break
the block into sub-blocks and permute the coefficients in each sub-block. For simplicity
we assume the former.

There are |V®)|! permutations for subband b and so the number depends on the
image size and b, i.e. the subband which is permuted. Let K® be the key used for
generation of the permutation for subband b. Keys can be chosen independently for
each subband, or by using a master key K and a key generation algorithm that has K
as input and produces keys for all subbands.

Permutation of coefficients may be implemented in the following two ways.
Case 1 Wavelet coefficients in each subband are permuted after transformation and
before quantization.
Case 2 Quantized coefficients in each subband are permuted after quantization and
before entropy coding.

The implementation uses an arithmetic coder to encode the quantized coefficients.

The coder encodes the i th bits of all coefficients in a subband, starting from the most

6.2. Encryption with Discrete Wavelet Transform 124

significant bits and moving to the least significant bits and produces the entropy coded
stream in an embedded manner, that is, the stream consists of number of segments,
from the most significant segment to the least significant segment, each of which con-
tains the encoded data.

The two methods could result in different compression rates if the quantization
method depends on the order of coefficients (context). For example, with vector quan-
tization, the compression rate in Case 1 will be affected. In both cases, if the entropy
coding is sensitive to the order of quantized coefficients then a drop in compression

rate will be expected.

6.2.3 Chosen Plaintext Attack

To evaluate the security of the system, firstly we need to find the number of keys. In the
above the key determines the permutation and there are |V (®)|! possible permutations
for subband b consisting of [V coefficients and so >,_, n|V®|! possible permutation
for the image which consists of n subbands. For example, a 512 x 512 gray scale image
with four subbands, [V, [V®)|, |[VO)|, and [V¥| are 256 x 256 = 65536 and so
S 4 V@)l =4 x 256]. As can be seen from above, the value can be very large. This
ensures that an ezhaustive search attack will be infeasible. However this would not
guarantee security of the system as more efficient attacks could be possible. In the
following we describe a chosen plaintext attack that recovers the secret permutation
by examining the system output on a number of well chosen attack images.

In a chosen plaintext attack, the attacker has access to an encoder with a secret
key. He can choose a plaintext, i.e. an image, obtain the corresponding ciphertext
and analyze the relationship between the plaintext and ciphertext to gain information
about the key. He can repeat this analysis on a number of images. The attack uses
the fact that key dependent permutations only change the order of coefficients but do
not change the values of coefficients. Hence if the attacker can create an image which
produces distinct values for coefficients in a subband, he can find the permutation
applied to that subband by capturing the coefficients in his decoder and observing
their order.

The assumptions are:

i) The algorithms of transform, quantization, entropy coding and the permutation
are known but the key is secret. ii) The attacker can obtain ciphertext (compressed
images) corresponding to any chosen plaintext (original images). ii7) The attacker can

create an image with coefficients of his choice.

6.2. Encryption with Discrete Wavelet Transform 125

The attack steps are as follows.

1. The attacker generates an image which has distinct coefficients in one or more
subbands.

2. He/she gives the image to the target encoder.
3. The encoder transforms, permutes, quantizes and encodes the image.

4. The attacker obtains the encoded image and decodes the compressed image using
his/her decoder.

5. The attacker captures the decoded values between the de-quantization and the
inverse-transform and compares the values with his/her chosen values and finds

the permutation.

A single attack image in general may recover only part of the permutation.

For the attack to be successful care must be taken against the following types of
errors.

i) The pixel values that are obtained from the coefficients must be in the valid range
(typically 0 to 255). ii) The error in converting real-valued coefficients to integer-valued
pixels should not destroy the distinctness of coefficients calculated in the decoder. i)
The quantization process in the target encoder should not destroy the distinctness of
the coefficients.

In [22], calculation of the transform and inverse-transform has considerable precision
and so many distinct coefficients can be chosen. The main restriction is due to the
quantization precision. If each of the coefficients in subband b is represented by ¢
bits then there can be at most 27" distinct coefficients and 2¢” distinct values can
reveal the permutation of 21" coefficients in a single attack attempt.

This means that coarser subbands are more vulnerable to the attack because, i) the
quantization precision for the coarser subbands is higher than the detailed ones, and so
the number of distinct coefficients that can be used in a single attack will be larger and
iﬁi) less number of attack attempts are required for the coarser subbands since coarser

subbands have smaller number of coefficients compared with the higher subbands.

6.2.4 Enhancing Security

The chosen plaintext attack is mainly effective for the lowest subband which largely

contributes to PSNR in general. To improve the security of the scheme we can use a

6.2. Encryption with Discrete Wavelet Transform 126

traditional block cipher algorithm such as AES [73] to encrypt coefficients in the lowest
subband similar to encrypting DC coefficients of a DCT transformed image in [107].
Using AES ensures that the lowest subband is highly secure, and using permutations
for the higher subbands ensures that the detail information are hidden too.

It is interesting to note that the cost of block encryption for wavelet based systems
is lower than DCT based systems. The following example clarifies this point.

We compare the wavelet transform with the DCT applied to MPEG-1. In MPEG-

mxn
16x16

macro-blocks is decomposed into 4 luminance and 2 chrominance 8 x 8 blocks. This

1, a color image of m x n pixels is broken into macro-blocks, where each of

means that the image is represented by 62ng 8 x 8 blocks. Each of the 8 x 8 blocks is

DCT-transformed into one 8 bit DC coefficient and 63 AC coefficients. To encrypt the

DC coefficients, 42’5%” = 0.1875mn bits must be encrypted.

In a wavelet transform with five 2-D filter banks, we assume the 2 chrominance

components have half the size of the luminance component (as in the DCT case). In
each filter bank, the size of each component is reduced by half in width and height, i.e.

1/4 in total, and 1/45 for 5 filter banks. In this case each of the color components will

mn
4x45

luminance and chrominance subbands, respectively. So overall, the transform of the

coefficients in the coarsest

be independently transformed which results in 75 and
3 color components produces 52”—6” coefficients. If the quantization precision for the
coefficients is 8 bits, this results in 404’2" ~ 0.0098mn bits which is approximately 1/20
of the DCT case.

It is worth noting that the above comparison assumes that the information in DC

coefficients of 8 x 8 DCT is almost the same as that of the coarsest subband of the

above wavelet transform. To find the exact amount of information in the two cases
(DC coefficients of DCT and the lowest subband of wavelet), a more detailed analysis

is required.

6.2.5 Experiments

We used an implementation [22] that uses the Antonini wavelet [4], employs a 2-
dimensional transform, has five filter banks and decomposes the image into 3x4+4 = 16
subbands. The program takes the compression rate as an input parameter and adjusts
the quantization precisions of subbands to achieve the compression rate. The exact
compression rate may not be achievable simply because a one bit change in the precision
of subband b results in [V ()| bits change in the quantizer output size and the output

size will be decreased by |V (®)| bits. If the permutation results in a considerable drop in

6.2. Encryption with Discrete Wavelet Transform

127

Table 6.1: Compression rate and PSNR with permuted subbands when the target
compression rate is specified to 8:1.

Permuted | I-permuted | Comp. | PSNR
subband # | subband # rate

in encoding | in decoding | (bpp)

None None 0.9975 | 39.448
0 None 0.9975 | 13.051
1 None 0.9975 | 20.947
2 None 0.9975 | 28.620
3 None 0.9975 | 26.837
4 None 0.9975 | 24.494
5 None 0.9975 | 29.814
6 None 0.9975 | 29.900
7 None 0.9983 | 26.995
8 None 0.9978 | 31.359
9 None 0.9978 | 31.722
10 None 1.0014 | 29.946
11 None 0.9993 | 33.460
12 None 0.9995 | 34.907
13 None 1.0040 | 34.003
14 None 1.0005 | 36.746
15 None 0.9982 | 38.602
0to7 None 0.9983 | 11.634
8 to 15 None 1.0162 | 24.979
0 to 15 None 1.0168 | 11.444
0 to 15 0 to 15 1.0168 | 39.448

the compression then the precisions in some of the subbands will be reduced to achieve
the given compression rate and will result in lower quality image and drop in PSNR
(Peak Signal to Noise Ratio).

The test image is lena.pgm, which is a 512 x 512 image with 256 level gray scale
(8 bits/pixel). The compression rate was set to 8:1, i.e. 1 bit/pixel (bpp).

The results of the experiment are shown in Table 6.1 and Figure 6.1 - 6.3. Firstly
the image is encoded and decoded without permutations and PSNR is calculated. Then
coefficients in various subbands are permuted and PSNR is calculated. It can be seen
that the permutation of coarser subbands results in a larger PSNR drop compared to

the detailed part. In all the above cases, the drop in compression rate is less than 2%.

6.2. Encryption with Discrete Wavelet Transform 128

Please see print copy for Figure 6.1

Figure 6.1: The original image (left) and the recovered image without inverse-
permutations when the image is encoded with subband 0 permuted (right).

Please see print copy for Figure 6.2

Figure 6.2: The recovered image without inverse-permutations when the image is
encoded with subband 15 permuted (left) and the recovered image without inverse-
permutations when the image is encoded with subbands 0 to 15 permuted (right).

6.2.6 Compression Rate

It can be seen from the experiment results the drop in compression rate is small.
This is mainly due to the type of the quantization and entropy coding algorithms: the
quantization algorithm processes one coefficient at a time and does not depend on other
coefficients in the subband, and the entropy coder uses context information which is
orthogonal to the direction of the permutation. The number of permuted subbands
does not change the precision of the quantization process because the drop in the
compression rate is not large enough to necessitate a change in the precision. In the
experiment the permutations were applied between the transform and the quantization

but similar results can be expected if the permutations are used after the quantization

6.3. A JPEG2000 Encryption System 129

Please see print copy for Figure 6.3

Figure 6.3: The recovered image without inverse-permutations when the image is en-
coded with subbands 0 to 7 permuted (left) and the recovered image without inverse-
permutations when the image is encoded with subbands 8 to 15 permuted (right).

because of the above reasons. The permutation has a small impact on the compression

rate in the implementation.

6.2.7 Concluding Remarks

We have shown that permuting one or a small number of subbands in a wavelet based
compression system can add security without having a large effect on the compression
rate. By increasing the number of subbands with permuted coefficients the security can
be increased and so the system provides variable levels of security. We have shown that
despite reasonable perceptual masking of the information and the very large size of the
key space, the system is vulnerable to a chosen plaintext attack in which a specially
constructed image is encoded and the output of the decoder is analyzed. The attack
is particularly effective against the lowest subband. We proposed an extension of the

system that provides protection against this attack.

6.3 A JPEG2000 Encryption System

JPEG2000 is a new image compression international standard proposed by ISO/IEC
[43]. It uses the Discrete Wavelet Transform (DWT) for its transform and has a number
of advantages over JPEG [45]. In particular it provides i) better rate-distortion perfor-
mance at low bit-rates, i) better lossless and lossy compression in a single codestream,
i41) support for images with size larger than 2'® x 2'6 pixels (this is the maximum

size for JPEG), iv) simple single decompression architecture, compared to 44 modes

6.3. A JPEG2000 Encryption System 130

in JPEG decoders, v) error resiliency, vi) better image quality for computer generated
images compared to JPEG, and vii) better image quality for bi-level images [44].

In Chapter 5, we considered possible ways of incorporating encryption into the
JPEG compression system. Not all proposed methods can be extended to JPEG2000.
In particular it is not possible to use the selective encryption of JPEG Huffman table
specifications described in Chapter 5. This is because in JPEG, the Huffman table
specifications are critical for correct decoding and must be known before decoding
starts. JPEG2000 uses an adaptive arithmetic coder. The coder starts from a fixed
known model and updates the model adaptively according to the input symbols. Since
the initial model is public, the entropy coder cannot be used for encryption. Instead,
we apply elementary cryptographic operations on transform coefficients to encrypt
JPEG2000 data. We propose an encryption scheme using random permutation lists
for JPEG2000. The objective of the scheme is to encrypt image data without significant
drop in compression performance and conform to the JPEG2000 image compression
standard. Using computationally expensive encryption algorithms on image data with
large size will reduce the coding efficiency. Our proposed scheme avoids the drop
in compression performance by using a simple cryptographic operation. The scheme
provides various degrees of image masking by allowing the choice of subbands and
bit-planes that are encrypted.

We first review the JPEG2000 compression system and then describe the proposed
encryption scheme and show our experiment results. We analyze security of the scheme
against chosen-coefficient attack described in Section 6.3.3 and finally give concluding

remarks.

6.3.1 JPEG2000 Compression System

The JPEG 2000 encoding procedure is decomposed into three stages:
1. Transformation
2. Quantization

3. Embedded Block Coding with Optimized Truncation (EBCOT) [108, 109]

Transformation

In the transformation stage, pixels are transformed into wavelet coefficients in sub-
bands using the Discrete Wavelet Transform (DWT). JPEG 2000 provides two types

6.3. A JPEG2000 Encryption System 131

of transforms: 7) an integer wavelet transform that is invertible, and) a real num-
ber wavelet transform that is not invertible. Their transforms produce integer and
real number coefficients respectively. For lossless compression, the invertible integer

wavelet transform must be used.

Quantization

After the transformation stage, each of the subbands is divided into rectangular blocks
called code-blocks.

In the quantization stage, the wavelet coefficients in a code-block is divided by a
quantization step size and the decimal part is truncated. The quantization step size
for each code-block is determined by the required image quality and bit-rate.

A quantized coefficient is represented by its sign and magnitude, that is, a sign bit

and the absolute value of the coefficient.

Embedded Block Coding with Optimized Truncation (EBCOT)

In the EBCOT stage, each code-block is independently encoded into the bit-stream
in such a way that the more important information always precedes less important
information. This is the heart of the embedded bit-stream organization. The bit-
stream is organized using a Coefficient Bit Modeler (CBM) . Using the CBM, the
coefficients in a code-block are encoded using an adaptive binary arithmetic coder.
Code-block

A code-block is a rectangular block of sign-magnitude pairs representing quantized
coefficients. A pair consists of a sign bit and an absolute value of a coefficient. Each
bit layer of the binary representation of the absolute values forms a bit-plane. For
example, the rectangular block of the most significant bits of the absolute values forms
the most significant bit-plane.
Significance state

Each coefficient in the code-block has an associated binary state variable called
significance state. The significance state of a coefficient is initialized to 0 and becomes
1 when the bit in a bit-plane is 1 during the encoding of bit-planes from the Most
Significant Bit (MSB) to the Least Significant Bit (LSB).

In the following, we describe the procedure of coefficient bit modeling.

e The bit-planes are encoded from the MSB to the LLSB.

6.3. A JPEG2000 Encryption System 132

e Starting from the most significant bit-plane, the number of consecutive bit-planes
consisting of all zeros is recorded in the header of the compressed data. No coding

is made for these bit-planes.

e Once a non-zero value in a bit-plane is detected, all the subsequent bit-planes are
coded. The encoding of a bit-plane consists of three coding passes.
1. Significance propagation
2. Magnitude refinement

3. Cleanup

To encode a bit-plane, it is divided into groups of 1 x 4 bits and the groups are
scanned from left to right and from top to bottom.

Let B be a binary m X n matrix representing an m x n bit-plane.

big bai ... bmp

b1’2 b2’2 bm’Q

B=|" 2 (6.1)
bin b o bon

Then group g, of four bits is given by g, = (b;j, bi j+1, bij+2, bi j+3) where 1 <7 < m,
J€{1,5,9,13,....,n—3} and k =i + %m. In the three coding passes, all g, in the

bit-plane are scanned in the order of k = 1,2, 3, ..., 7i*.

In the following section, the details of the three coding passes are described.

Coding Passes

The three coding passes take place in the following manners.

1. For the first bit-plane that includes a non-zero bit, cleanup pass is executed.

2. Once the first bit-plane including non-zero bit is encoded using the cleanup pass
(the above case), the three passes take place in the following order.
(a) Significance propagation
(b) Magnitude refinement

(c) Cleanup

6.3. A JPEG2000 Encryption System 133

Bit-plane

_“l

7 _I
MMI’
IIIII/’J

Bit Coefficient Code-block

Figure 6.4: Code-block and bit-planes : A quantized coefficient consists of bits and A
code-block consists of m x n quantized coefficients. The ith bit-plane is the collection
of #th significant bits of the m x n quantized coefficients. The bits in a bit-plane are
scanned as shown by the arrows.

These passes produce a sequence of pairs of decision and context that are passed to

the arithmetic coder. There are 10 contexts.

Significance propagation The significance propagation includes only the coefficients
of significance state = 0 and non-zero context. In this pass, the context is obtained

from the neighbors of the coefficient. The decision is the bit of each coefficient.

Magnitude refinement The magnitude refinement pass includes the coefficients of
significance state = 1 except the coefficients whose significance state has changed
from 0 to 1 in the immediately proceeding significance propagation pass. In this
pass, the context is obtained from the neighbors of the coefficient. The decision

is the bit of each coefficient.

Cleanup The cleanup includes all the coefficients with the significance state = 0 and
Context 0. In this pass, the groups of four bits are run-length coded. The deci-
stons are the result of the run-length coding of the four bits and the UNIFORM

context is used to encode the decisions.

6.3. A JPEG2000 Encryption System 134

Adaptive Binary Arithmetic Coder

The entropy-coder used in JPEG 2000 is an adaptive binary arithmetic coder. The
input of the arithmetic coder is a sequence of pairs of decision and context produced by
the CBM. The arithmetic coder consists of 7) 10 models, which represent the probability
distribution of binary source symbols corresponding to 10 contexts and a context used
in the run-length coding, and i) a coder, which encodes source symbols based on
the source symbol probability distribution given by the models corresponding to the
conterts.

The arithmetic coder encodes the decision based on the model of the corresponding
context. The encoding is done by dividing the current interval into two sub-intervals
according to the probabilities of the binary symbols, and choosing one of the sub-
intervals as a new interval. The choice of the intervals is determined by the binary
symbol to be encoded. There are 9 flags corresponding to the 9 contexts and each of
them indicates which binary symbol is the Less Probable Symbol (LPS), i.e. the binary
symbol which has smaller probability.

A model is assigned to each of the 9 contexrts. A model holds the probability of
the LPS. The probability is approximated by one of the forty six values given in [44]
and the index to one of the forty six values is kept in the model. This means that the
adaptive model is order-0, that is, the probabilities of symbols are determined by how
frequently each symbol appears in the input data without taking into account of its

preceding symbols. After encoding a decision, the corresponding model is updated.

6.3.2 Encryption Using Random Permutation Lists

For an image to be correctly decoded, the encoding order of the coefficients must be
known to the decoder. If the encoding order of coefficients is secret then the decoder
cannot, correctly decode the image. The scheme described herein realizes this by using
random permutation lists. The coding order is determined by random permutation
lists that are generated using a secret key. The method such as [71, 72] can be used
although this thesis does not cover the method of generating random permutation lists
in details.

The JPEG2000 encryption takes place in the EBCOT stage. The random permu-
tation list encryption mechanism is inserted into the coefficient bit modeler subsystem
so as to minimize the impact of the encryption on the compression rate.

In the JPEG 2000 standard specification, in the three coding passes the groups of

6.3. A JPEG2000 Encryption System 135

4 coefficients g, in a bit-plane are scanned in the order of £ =1,2,3,...,7, i.e. from
left to right from top to bottom. To add encryption to this stage, groups are scanned
based on random permutation lists generated from the secret key.

Let IT be a permutation of integers 1, 2,3, ..., f*. Then the scanning order of groups
specified by JPEG2000 can be represented by (1,2,3,..., "), and after using permu-
tation will become II, II,, I3, ..., H%. That is, the order of scanning the groups will
be (gnl,gm,gny...,gn%ﬂ). For example, IT = (14,3,7,...,5) shows that the groups
are scanned as ¢4, g3, g7, ..., g5. Lhe encoder and the decoder scan the groups of the
coefficients in the order specified by S,qn4-

A different scanning order is used for each bit-plane of each code-block. That is,
every bit-plane has its unique scanning order. The same secret key K must produce

the same set of II for all bit-planes in encoding and decoding.

6.3.3 Security of JPEG2000 Encryption

In this section we examine security of the proposed JPEG2000 encryption system.
Firstly, we briefly review existing encryption systems for MPEG using random permu-
tation lists and the attacks against these systems, and then investigate whether or not
these attacks are effective on the JPEG 2000 encryption system. Finally we examine
the effectiveness of the chosen-coefficient attack in Section 6.2.

For MPEG, the systems in [107] and [95] use random permutation lists to permute
DCT coefficients in blocks. These systems are known to be insecure [2, 114] because

of the following reasons.

1. It is known that lower frequency coefficients carry larger energy and so coefficient
values of the lower frequencies are larger than those of higher frequencies. Because
of this energy distribution, the original coefficient order in a block can be roughly

recovered by sorting the coefficients.

2. If known images are encrypted, it is possible to find the permutation by comparing

DCT coefficients of the known images and those of the permuted ones.

In the wavelet case, the reason 1 above is not applicable because coefficients in a
subband, having the same frequency component, are permuted. Permutation of the
coefficients will hide the local energy distribution over the entire image. Since the
energy distribution over regions of images varies by image, sorting coefficients will not
be an effective attack against the permutation of wavelet coefficients. To address reason

2 above, we examine the effectiveness of the chosen-coefficient attack.

6.3. A JPEG2000 Encryption System 136

Chosen Coefficient Attack

The assumptions are as follows.

e The secret is the random permutation lists that determine the scanning order of

bit-planes.

e The attacker has access to the decoder with the key loaded and can conduct

repeated experiments on the decoder.

The chosen coefficient attack is defined as follows. Let v be a w dimensional input
vector of coefficients, F}, be a key dependent permutation and Fk’1 be the inverse of
F}. The ciphertext u = F},(v) is also a w dimensional vector.

The attacker chooses C' which consists of distinct values, ¢y, ¢y, ..., ¢, where ¢, # ¢,
Va,b € {1,2,...,w}, a # b. Then he calculates P, '(C), that is, decodes C' using the
decoder with the key k loaded and obtains V' = P, *(C). By analyzing C' and V’, the
attacker can find the permutation P U and its inverse P.

If the number of the possible values of ¢, is w' and w’ < w, then the attacker
chooses w' distinct values and constructs C' = (€1, 2, vy Cur 1, Cury Cty -vy Gy) fOT ONE
experiment. This will reveal the permutation of w' — 1 coefficients, and —*= times
repetition of this experiment will reveal the whole permutation.

In JPEG2000 encryption system, groups of 4 bits are randomly scanned. Let D be
a set of distinct binary vectors of length 4. Then a group of 4 bits can be represented

by a vector in D. D is given as follows.
D = {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),...,(1,1,1,1)} (6.2)

and the number of vectors w in D is w = 2* = 16.

Let d be a subset of D and w' as the number of vectors in d. The encryption
algorithm permutes groups of 4 bits, i.e. a set of binary vectors of length 4. If the
groups are a subset of D, i.e. the groups are d, then the permutation of w’ vectors
can be traced. From above, if the attacker constructs a compressed image so that it
consists of a set of distinct vectors, then the permutation of the vectors can be traced
from the decoded image.

For the attack, first the attacker constructs a JPEG 2000 compressed attack image
consisting of bit-planes, each of which includes the vectors in D. Let x be the number

of groups in a bit-plane. Then the method to construct an attack image is as follows.

6.3. A JPEG2000 Encryption System 137

Algorithm 1 : Construction of a compressed attack image.
For each code-block
For each bit-plane
If z <w

Construct the bit-plane using x vectors in D.
Else
Construct the bit-plane so that

one vector in D appears © — w + 1 times

8: and the other w — 1 vectors in DD appear once.

Next, the attacker decodes the attack image using the decoder with the secret key
and obtains the decoded image.

Then he transforms the decoded image and obtains the coefficients. The coefficients
are quantized to obtain the same representation as the bit-planes. The vectors in bit-
planes are inverse-permuted from the attack image and then the permutation of distinct
vectors is found.

We note that if + < w, the permutation of all groups can be found. However, if
x > w, the permutation of w — 1 groups can be found. In practice, it will be reasonable
to assume that x > w. For example, the default value of z in the implementation [36]
is 1024.

Assuming x > w, if the same permutation lists are used for all the bit-planes in a
code-block, the attacker can choose vectors such that the w —1 distinct vectors in each
bit-plane covers different regions so that each bit-plane can reveal w — 1 permutations.
This single experiment can reveal [(w — 1) permutations where [is the number of

bit-planes in a m x n code-block. The cost of the attack for a code-block is as follows.

mn

€same — m (63)

The attacker needs to repeat the experiment €g,,,, times to find the permutation for a
m X n code-block.

If different permutation lists are used for the bit-planes, the attacker can find the
permutation of w — 1 vectors for each bit-plane in one attempt and the number of

attempts required to reveal the permutation lists used for all bit-planes is as follows.

mn

€diff = m (64)

The total cost depends on the image size and the number of filter banks. Let A be

the number of m xn blocks in the image and © denote the number of filter banks. Then

6.3. A JPEG2000 Encryption System 138

the number of blocks in a subband of the output of the jth filter bank is approximately

where 1 < 7 < ©. The total number of blocks = is as follows.

2w 23(2?)2 + (22)2 =A. (6.5)

j=1

For each attempt, the attacker obtains same amount of information about the
permutation lists.
For example, when m = 64 and n = 64, and the number of bit-planes [in a code-

block is | = 10, €5ame = 10(1{)62:) = 6.83 &~ 22% and we have €455 = % = 68.27 ~ 26.

Impact of the Adaptive Arithmetic Coder on the Attack

The chosen-coefficient attack works only if the correctly inverse-permuted coefficients
are obtained. To obtain the correctly inverse-permuted coefficients, the compressed
attack image must be correctly decoded by the decoder to be attacked. However, as
described in Section 6.3.1 the adaptive arithmetic coder is unable to correctly decode
the compressed attack image without knowing the random permutation lists.

The arithmetic coder uses more than one adaptive model and the models are chosen
by contexrts and so if the order of conterts in the encoder and the decoder does not
match, the encoder and the decoder will lose synchronization. The order of contexts is
determined by the scanning order of 4 bit groups in bit-planes and the scanning order
is chosen by the random permutation lists. Hence, the order of contexrts cannot be
found without knowing the random permutation lists.

To make the decoder successfully recover the coefficients, the attacker needs to
exhaustively experiment the permutation of pairs of decision and context when he
constructs the compressed attack image.

Let n; be the number of occurrences of context ¢+ in encoding of the whole image.
Then Z}il n; decision and context pairs are encoded by the arithmetic coder. If the

attacker tries all possible order of the pairs, the number of trials N will be

(i, m)!

N=—i |
ny.ng....M10-

(6.6)

which is very large and so the attack is impractical.

6.3. A JPEG2000 Encryption System 139

6.3.4 Experiments

In this section we show the results of our experiments on the JPEG2000 encryption
system. The implementation of the system is based on the JPEG2000 codec, JasPer-
0.072 [36]. For each color component, subband, coefficient block and bit-plane, a
different permutation was used. The images used in the experiments were lena.ppm,
mandril.ppm, peppers.ppm. All image sizes were 512 x 512. The compression rate
was set to 32:1. 50 trials of encryption were done for each of the images using different
keys to observe the dependency of the compression rate and the quality of encrypted
image on a secret key. For the encryption and the decryption, different secret key was
used. Firstly, the encryption was applied to different subbands. All the bit-planes in
the chosen subbands were encrypted. The sets were {0}, {7}, {13}, {1, 2,3}, {7,8,9},
{13,14,15}. Then one of bit-plane 0 (the most significant bit-plane), 1 and 2 was
chosen for encryption of the subband sets {1,2,3}, {7,8,9}, {13, 14, 15}.

Figure 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, and 6.11 show the encrypted images of 1ena.ppm,
mandoril.ppm, and peppers.ppm encrypting subbands {0}, {7}, {13}, {1, 2,3}, {7, 8,9},
{13,14,15}, and all subbands (0 to 15), respectively.

If the lower subbands were encrypted, the image showed large color spots. A spot
corresponds to a coefficient in the encrypted subband. Encrypting the middle subbands
showed noise pattern similar to moire and encrypting the highest subband showed very
small impact on the quality of the decompressed image. Encrypting the lower subbands
resulted in the lower PSNR but if higher subbands were intact, the edges can be clearly

seen.

Figure 6.5: Encrypting subband 0 : lena.ppm (left), mandoril.ppm (middle) and
peppers.ppm (right). The color spots correspond to low subband coefficients. The
encryption decreased the image quality but the details (i.e. edges) are visible.

6.3. A JPEG2000 Encryption System 140

Please see print copy for Figure 6.6

Figure 6.6: Encrypting subband 7 : lena.ppm (left), mandoril.ppm (middle) and
peppers.ppm (right). The encryption decreased the quality less compared to encrypt-
ing low subbands. The images are recognizable.

Please see print copy for Figure 6.7

Figure 6.7: Encrypting subband 13 : lena.ppm (left), mandoril.ppm (middle) and
peppers.ppn (right). Some noise can be found in the active regions but the encryption
did not decrease the quality very much. The images are similar to the original ones.

Figure 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, and 6.20 shows the encrypted im-
ages of lena.ppm, mandoril.ppm, and peppers.ppm encrypting bit-plane 0 of subbands
{1, 2, 3}, bit-plane 1 of subbands {1, 2, 3}, bit-plane 2 of subbands {1, 2, 3}, bit-plane 0
of subbands {7, 8,9}, bit-plane 1 of subbands {7, 8, 9}, bit-plane 2 of subbands {7, 8,9},
bit-plane 0 of subbands {13, 14,15}, bit-plane 1 of subbands {13, 14,15}, and bit-plane
2 of subbands {13, 14,15}, respectively.

From the images, it can be seen that the more significant bit-plane of the lower
subband has larger impact on the image quality than the less significant bit-plane of
the higher subband.

Table 6.2 shows the ratio of the encrypted file sizes to the compressed file size
without encryption. The columns labeled “Average”, “Minimum”, “Maximum” and
“Std. dev.” show the average, minimum, maximum and standard deviation of the

ratios, respectively, over 50 trials.

6.3. A JPEG2000 Encryption System 141

Please see print copy for Figure 6.8

Figure 6.8: Encrypting subband 1, 2, and 3 : lena.ppm (left), mandoril.ppm (middle)
and peppers.ppm (right). The quality drop due to the encryption is large but the
edges are visible.

Please see print copy for Figure 6.9

Figure 6.9: Encrypting subband 7, 8, and 9 : lena.ppm (left), mandoril.ppm (middle)
and peppers.ppn (right). The encryption has a similar effect to “oil painting”. It may
be visually disturbing but the images remain recognizable.

Table 6.3 shows the PSNRs of the decrypted images using wrong keys. The columns
labeled “Average”, “Minimum”, “Maximum” and “Std. dev.” show the average,
minimum, maximum and standard deviation of PSNRs, respectively, over 50 trials.

The graphs in Figure 6.21 (page 149) show the frequencies of each contert when
images were compressed with and without encryption. The graphs in Figure 6.22 (page
150) show frequencies of pairs of contert and decision when images were compressed

with and without encryption. Only 5 contexts appeared in the encoding.

6.3.5 Compression Rate

To provide the various degrees of masking, subbands and bit-planes can be selectively
encrypted. Selective encryption of image regions can be achieved by selecting specific

code-blocks for encryption. Hence the scheme provides flexibility in both in terms of

6.3. A JPEG2000 Encryption System 142

Please see print copy for Figure 6.10

Figure 6.10: Encrypting subband 13, 14, and 15 : lena.ppm (left), mandoril.ppm
(middle) and peppers.ppm (right). Some noise can be found in the active regions but
the quality drop is small.

Please see print copy for Figure 6.11

Figure 6.11: Encrypting all subbands (0 to 15) : lena.ppm (left), mandoril.ppm (mid-
dle) and peppers.ppm (right). The images are not comprehensible.

the level of masking and region of protection.

In the following, we analyze the impact of permuting the scanning order on the
compression rate. JPEG2000 system uses an adaptive binary arithmetic coder of order-
0. For such arithmetic coders, the order of input symbols has little impact on the
compression rate as long as the size of the input data is large and the probabilities of
symbols do not largely change through the encoding. By changing the scanning order,
the correlation between an input symbol and its preceding symbols can be destroyed
but it is not taken into account in order-0 arithmetic coders. Regardless of the order of
the symbols, the model converges into the probability distribution of the input source
during encoding.

From the results of our experiments in Section 6.3.4, it can be seen that replacing the
original JPEG2000 scan by the random scan does not change the frequencies of context-

decision pairs very much. This means that the random scan will change the order of

6.3. A JPEG2000 Encryption System 143

Please see print copy for Figure 6.12

Figure 6.12: Encrypting bit-plane 0 of subbands 1, 2 and 3 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

Please see print copy for Figure 6.13

Figure 6.13: Encrypting bit-plane 1 of subbands 1, 2 and 3 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

context-decision pairs but does not change their frequencies much. Since changing order
has little impact on order-0 adaptive arithmetic coders, the compression rate drop is
very small. The random scan does not change the scanning order of 4 bits in each
group and so this will also contribute in minimizing the compression rate drop.

The compression rate of the arithmetic coder is approximately 10 % and so its
contribution to the entire compression is small. Even if the compression rate drops in

the arithmetic coder part, its impact on the overall compression rate will be small.

6.3.6 Concluding Remarks

We proposed a JPEG 2000 compression and encryption scheme using random permuta-
tion lists. The tests and simulation results indicate that it provides a simple mechanism
of adding encryption to JPEG2000 without significantly degrading the compression
performance. The cost of a chosen-coefficient attack against the system is large (equa-

tion (6.6)) and so the system is resistant against the attack although the resistance to

6.4. Conclusion 144

Please see print copy for Figure 6.14

Figure 6.14: Encrypting bit-plane 2 of subbands 1, 2 and 3 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

Please see print copy for Figure 6.15

Figure 6.15: Encrypting bit-plane 0 of subbands 7, 8 and 9 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

specific attacks is not a guarantee of security.

6.4 Conclusion

We presented two schemes for a specific implementation by Geoff Davis [22] and
JPEG2000 image compression system using elementary cryptographic operations, that
is, random permutation lists. We showed that if designed it carefully, then permuta-
tion can have little influence on the compression rate. Compression systems exploit
the correlation among data. Permuting data can destroy this correlation and results in
compression rate drops. To avoid this, the permutation was applied before the entropy
coding which does not depend on the order of data.

We examined the chosen coefficient attack and showed that in JPEG2000 encryption
the attack is ineffective. We note that for the sorting coefficient attack, there is a

fundamental difference between the random scan of DWT coefficients and that of DCT

6.4. Conclusion 145

Please see print copy for Figure 6.16

Figure 6.16: Encrypting bit-plane 1 of subbands 7, 8 and 9 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

Please see print copy for Figure 6.17

Figure 6.17: Encrypting bit-plane 2 of subbands 7, 8 and 9 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

coefficients as described in [107] and [95]. In the DCT case, the permutation of 64
DCT coefficients in a block can be easily reconstructed by sorting the coefficients.
This is because the value of a lower frequency coefficient is larger than that of a higher
frequency. In the wavelet case, coefficients in a subband of the same frequency are
permuted. The permutation of the coefficients will hide the local energy distribution
of the image and since the distribution depends on the image, image recovery is more
difficult than the DCT case. Hence the sorting coefficient attack is ineffective against

wavelet coefficient permutation. For other types of attacks further research is required.

6.4. Conclusion 146

Please see print copy for Figure 6.18

Figure 6.18: Encrypting bit-plane 0 of subbands 13, 14 and 15 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

Please see print copy for Figure 6.19

Figure 6.19: Encrypting bit-plane 1 of subbands 13, 14 and 15 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

Please see print copy for Figure 6.20

Figure 6.20: Encrypting bit-plane 2 of subbands 13, 14 and 15 : lena.ppm (left),
mandoril.ppm (middle) and peppers.ppm (right).

6.4. Conclusion 147
Table 6.2: Compressed file sizes of the random permutation list encryption.
Bit-plane | Subband | Image Average | Minimum | Maximum | Std. dev.
All 0 lena 1.0005 0.9996 1.0007 0.0002

mandril | 1.0004 1.0001 1.0006 0.0001

peppers 1.0003 1.0001 1.0007 0.0001

7 lena 0.9998 0.9960 1.0007 0.0010
mandril | 1.0003 0.9994 1.0059 0.0015

peppers 1.0000 0.9974 1.0010 0.0011

13 lena 0.9996 0.9980 1.0007 0.0008
mandril 1.0028 1.0011 1.0043 0.0010

peppers | 0.9995 0.9975 1.0010 0.0010

1,2,3 lena 1.0000 0.9994 1.0003 0.0002
mandril | 1.0018 0.9994 1.0059 0.0029

peppers | 0.9999 0.9995 1.0004 0.0002

7,8,9 lena 0.9999 0.9954 1.0007 0.0007
mandril | 1.0007 0.9996 1.0056 0.0016

peppers | 0.9985 0.9974 1.0009 0.0012

13,14,15 | lena 0.9998 0.9986 1.0007 0.0006
mandril | 1.0033 0.9994 1.0059 0.0022

peppers | 0.9979 0.9896 1.0010 0.0026

Bit 0 1,2,3 lena 0.9999 0.9995 1.0002 0.0002
mandril | 1.0001 0.9994 1.0059 0.0012

peppers | 0.9999 0.9996 1.0003 0.0002

7,8,9 lena 1.0000 0.9996 1.0005 0.0002
mandril | 1.0000 0.9996 1.0003 0.0002

peppers 1.0005 0.9975 1.0009 0.0005

13,14,15 | lena 0.9995 0.9965 1.0007 0.0011
mandril | 1.0025 0.9979 1.0058 0.0018

peppers | 0.9996 0.9956 1.0009 0.0011

Bit 1 1,2,3 lena 1.0000 0.9995 1.0003 0.0002
mandril | 1.0001 0.9995 1.0003 0.0002

peppers | 0.9998 0.9995 1.0003 0.0002

7,8,9 lena 1.0002 0.9995 1.0007 0.0005
mandril | 1.0006 1.0001 1.0058 0.0008

peppers | 0.9982 0.9974 1.0010 0.0011

13,14,15 | lena 0.9987 0.9954 1.0007 0.0014
mandril | 1.0040 0.9995 1.0059 0.0020

peppers | 0.9997 0.9967 1.0010 0.0010

Bit 2 1,2,3 lena 1.0000 0.9995 1.0003 0.0002
mandril | 1.0003 0.9994 1.0059 0.0019

peppers | 0.9998 0.9994 1.0002 0.0002

7,8,9 lena 1.0003 0.9995 1.0007 0.0003
mandril | 1.0001 0.9997 1.0006 0.0002

peppers | 0.9990 0.9974 1.0010 0.0016

13,14,15 | lena 0.9997 0.9969 1.0007 0.0008
mandril | 1.0023 0.9988 1.0059 0.0021

peppers | 0.9992 0.9974 1.0009 0.0010

6.4. Conclusion 148
Table 6.3: PSNRs of decrypted images using wrong secret keys.
Bit-plane | Subband | Image Average | Minimum | Maximum | Std. dev.
All 0 lena 10.5 8.6 11.9 0.66

mandril 9.5 8.5 11.1 0.63

peppers 9.3 8.5 10.4 0.47

7 lena 20.1 17.2 25.4 2.30
mandril 16.9 15.4 18.8 0.90

peppers 20.9 16.6 27.5 2.72

13 lena 25.8 24.6 27.4 0.60
mandril 18.3 17.6 18.7 0.26

peppers 20.3 17.9 23.6 1.23

1,2,3 lena 17.0 14.7 19.5 1.00
mandril 14.8 13.5 15.9 0.56

peppers 14.3 11.5 16.5 1.14

7,8,9 lena 17.8 15.8 23.3 1.45
mandril 14.4 12.9 16.1 0.73

peppers 17.5 14.9 20.7 1.45

13,14,15 | lena 24.8 23.0 25.8 0.52
mandril 14.6 13.8 15.8 0.40

peppers 16.8 15.5 18.5 0.59

Bit 0 1,2,3 lena 16.9 15.1 19.5 1.02
mandril 14.4 12.7 15.5 0.64

peppers 14.3 12.0 16.3 0.96

7,8,9 lena 17.6 15.4 20.6 1.18
mandril 14.1 12.7 16.2 0.65

peppers 16.5 13.8 19.3 0.96

13,14,15 | lena 24.2 23.1 25.5 0.50
mandril 14.2 13.5 14.8 0.28

peppers 16.4 15.1 17.7 0.58

Bit 1 1,2,3 lena 20.6 19.1 22.5 0.67
mandril 16.9 16.2 17.5 0.31

peppers 17.6 15.6 19.3 0.83

7,8,9 lena 23.0 20.0 24.7 0.99
mandril 174 16.6 18.0 0.30

peppers 21.8 20.1 241 0.81

13,14,15 | lena 28.9 28.3 29.6 0.26
mandril 17.8 17.5 18.1 0.15

peppers 24.3 22.2 26.2 1.03

Bit 2 1,2,3 lena 24.5 23.6 25.0 0.33
mandril 18.3 18.1 18.5 0.09

peppers 21.5 20.0 22.7 0.55

7,8,9 lena 25.3 24.3 26.0 0.35
mandril 18.2 18.0 18.4 0.09

peppers 24.5 23.0 25.3 0.45

13,14,15 | lena 29.9 29.7 30.2 0.11
mandril 18.9 18.8 18.9 0.03

peppers 29.0 27.6 29.8 0.52

6.4. Conclusion 149

T T T
Freq. of Context 1to 9

T T T
Freq. of Context 1t0 9

L L L L L L L L L L L L L L
[1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

lena without encryption lena with encryption

T T T T T T
Freq. of Context 1t0 9 Freq. of Context 1to 9

L L L L L L L L L L L L L L L L
[1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

mandoril without encryption mandoril with encryption

T T T
Freq. of Context 1to 9

T T T
Freq. of Context 1t0 9

L L L L L L L L L L L L L L
[1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

peppers without encryption peppers with encryption

Figure 6.21: Frequencies of 10 conteztsin the encoding of lena.ppm, mandoril.ppm and
peppers.ppm without encryption (left column) and with encryption (right column).

6.4. Conclusion

150

T T
Freq. of Context 1t0 9 i
Freq. of Context 1to 9 : decision=1 -

T T
s decision=0 ——

T T T
Freg. of Context 1t0 9

T T
: decison=0 ——
Freq. of Context 1t0 9: decision=1 -

0 1 2 3 4 5 6 7 8 1 2 3 5 6 7 8
lena without encryption lena with encryption
‘ ‘ ‘ " Freq. of Context 110 9 : decision=0 —— ‘ ‘ " Freq. of Context'1t0 9 : décision=0 ——
L Freq. of Context 1to 9 : decision=1 - Freq. of Context 1t0 9: decision=1 - i
I I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 1 2 3 5 6 7 8
mandoril without encryption mandoril with encryption
‘ ‘ ‘ ‘ Freq. of‘ Comexl‘lloQ:de‘)cisjon:O‘i ‘ ‘ ‘ ‘ Freq. oe Comex(‘llos):d‘ecgs:onzo‘i
A Freqg. of Context 1t0 9 : decision=1 - Freg. of Context 1t0 9: decision=1 - i
o 1 2 s 4 5 s 7 s T2 s 5 & 7 s

peppers without encryption

peppers with encryption

Figure 6.22: Frequencies of pairs of contexts and decision in the encoding of lena.ppm,
mandoril.ppm and peppers.ppm without encryption (left column) and with encryption

(right column).

Chapter 7

Image Authentication

7.1 Introduction

Image authentication aims to provide assurance about the integrity of images. In
general, image data is in a compressed form due to its large size and the compression
is lossy because of perceptual limitations of the human visual system. Because of this,
unlike data authentication systems that must detect a single bit change in data, image
authentication systems must remain tolerant to perceptually insignificant changes due
to lossy compression.

JPEG [45] is the industry standard and is widely used in practice. In JPEG com-
pression, by choosing different quality levels, the size of the output can be traded
against the quality of the decompressed image. Using lower quality levels results in
smaller file sizes at the expense of lower image quality after decompression.

An image authentication system that is tolerant to JPEG compression to a given
quality level /, must have the property that changes to the image resulting from com-
pression to levels higher than ¢, does not produce a ’false’ response in the verification
phase. However, malicious changes must be detectable. Compression tolerant im-
age authentication systems can be broadly divided into message authentication codes
(MACs) and watermarking systems. In the former, the aim of the system is to extract
some features (also called signatures or image digests) of the image that remain in-
variant for images that have undergone JPEG compression to the given quality level.
These features form MACs or authentication tags that will be appended to the image
data and so an authenticated image is a pair consisting of the image and a tag.

In the latter approach, a watermark [124] signal is embedded into the image such
that it can be recovered even if the image is compressed and decompressed. The advan-
tage of the approach is that there is no need for a separate authenticator as the image

carries the authenticating information with itself. However watermarking systems for

151

7.2. Preliminaries 152

authentication must be fragile. That is, the watermark must be destroyed (become
irrecoverable) with the slightest change to the image. However compression tolerance
means that the watermark must survive changes that are due to JPEG compression
algorithm. Reconciling these two requirements, that is fragility and compression tol-
erance is a challenge that must be addressed in this context. Another disadvantage
of the watermarking approach is that the system embeds noise into an image and so
it degrades the image quality. A number of systems from the latter type have been
proposed but many of those based on fragile watermarking are less tolerant to JPEG
compression [29]. Some of these systems have been shown to be insecure [75, 123], but
many systems remain with no real security modeling or analysis.

In this chapter we will consider image authentication systems based on a MAC that
are tolerant to the changes which are due to the JPEG image compression algorithm
to a certain level compression quality. We review the JPEG compression system and a
compression tolerant image authentication system called SARI by C. Lin and S. Chang
[58] in Section 7.2. We also review an attack on this system proposed by Regunathan
and Memon [82]. In Section 7.3 we present new attacks against SARI system and
propose a method to improve security of the system. In Section 7.4 we propose a new

compression tolerant image authentication system and finally we conclude.

7.2 Preliminaries

In this section first we review the JPEG image compression system and then following

SARI image authentication system.

7.2.1 JPEG Compression

JPEG compression [45] is the image compression standard. JPEG, although it does
have a lossless compression mode, is usually used as a lossy compression system and so
the original and the compressed image have, in general, different values for the same
pixel. In JPEG, the image is sub-divided into 8 x 8 pixel blocks. For each block, first the
Discrete Cosine Transform (DCT) [3] coefficients are calculated, then quantized and
then entropy-coded. The information loss is primarily due to quantization however
computational error also contributes to the difference between the values of a pixel,
before and after compression.

Let P = {p1,p2,...,p,} denote the set of blocks, assuming that there are p blocks

in the image. For a real value R we write R = h + r where h is an integer and

7.2. Preliminaries 153

r € R—0.5 <r < 0.5. Then the integer rounding function rint() is defined as

rint(R) = rint(h+7)
= h.

The main processing steps on a block during compression are the following.

e The DCT is applied to an 8 x 8 pixel block to produce 64 coefficients. The
coefficients of a block p are written as Fp(“’”) u,v € {1,2,...,8}.

e Scalar quantization is used to obtain an integer value for Fp(“’”). Each coefficient
is divided by an integer and the result is rounded. The quantization table is given
by Q™) € N, u,v € {1,2,...,8}. The quantized value of the (u,v) coefficient in
block p is given by

. (u0)

Tp(uﬂ}) = m'nt(é)(u,v)) : (71)

e The quantized coefficients are entropy coded.

Decompression has the same three steps in reverse order. That is entropy decoding

followed by dequantization of Tp(“’”), given by

(o) — o (w) Q)

’ T
. F, U,
= rint(5(%”))R (7.2)

and finally applying the inverse DCT to reconstruct the image. The quality of the

reconstructed image is determined by the quality level, which determines Q). The
first and the last step of the compression are completely reversible (although in practice
calculating DCT coefficients might introduce some computational error) but the second

step is in general lossy and not reversible.

7.2.2 SARI Authentication System

Lin and Chang proposed a JPEG tolerant compression system [58], also known as the
SARI system [57, 59]. The system operates on 8 x 8 Discrete Cosine Transformed image
so it can be easily integrated into a JPEG compression system. The authors prove the
soundness of the authentication system and argue that although it is possible to create
tampered images that are acceptable by the authentication system, such images will

include artifacts that make them detectable by human eyes. The system was later

7.2. Preliminaries 154

shown to be insecure. In [82], Regunathan and Memon showed how to construct
fraudulent images that are acceptable by SARI authentication system if the same key
is used for signature generation of more than one image. However, the attack becomes
ineffective if the signature is encrypted.

In Section 7.3 we show that with a relatively small amount of computation, it is
possible to create a tampered image which is acceptable and the changes do not result
in any visually detectable artifacts.

SARI system uses the property that the relative order of coefficients of a pair of
blocks in the original image and the image after decompression remains the same.
Hence the difference between two reconstructed coefficients can be bounded. That is,
if AF, ") = F,@%) — F0" >k then AR = B — F{"") satisfies

- i k(uﬂ))Q(u:U), ﬁ & Z
(k(u,v) _ 1)Q(u,v), ¢ 7

where k € R is a fixed threshold and k() = rint(ﬁ)ﬁu, v.
Similarly, if AFp,q(“’") < k,

ARG <

pq —

{ i k(uav) . Q(U‘:U), ﬁ & Z
(kv 1) - Q) % ¢ 7

and if AF, (") =k,

A —

byq

L) Q(u,v), ﬁ €7
E(uw) Q(u,v) Or(k(u,v) + 1) . Q(u,v), % Z7

Generation of the signature

The signature is obtained by encoding the difference between coefficients of two
blocks and generating a signature for all pairs of blocks and all the chosen frequencies.

A set selection algorithm is used to produce two sets of blocks, P, = {p1, pa, . .. ,pg}
and P, = {q1, ¢, - - .,q%} that partition the set of image blocks, and then a pairing
function is used to pair the blocks in the two sets. Finally, protected frequencies and
the precisions of the frequencies are chosen.

The signature consists of all the feature codes, which are the encoded differences of
coefficient pairs, together with the precision (number of bits) allocated to all frequen-

cies.

Verification

7.3. New Attacks against the SARI System 155

The verification process uses the relationship between reconstructed coefficients in
the two blocks. That is, if the difference between reconstructed coefficients is within
an interval associated with the corresponding feature code and the pre-defined quan-
tization error tolerance, the image is considered authentic. The interval is determined
by the precision of the feature codes and acceptable quality level.

In this comparison, the effect of sources of error other than quantization, such as
computational error due to the implementation of JPEG using finite precision arith-

metic is also taken into account.

Evaluation

Security In this scheme, if the block pairing is public then a pair of blocks can be con-
currently modified without the system detecting the modification. The authors
of [57] argued that such an attack will result in noticeable artifacts and although

undetectable by the verification system but will be visually detectable.

However, in general this is not true and methods such as those given in [52] can
be used to modify a pair of blocks without creating any artifact. For security, it
is necessary to hide block pairing but then the cost of finding the pairing is small.
Our new attacks in Section 7.3.1 show that once the pairing is found, the attacker
can simultaneously modify pairs of blocks and hence defeat the authentication

system.

Length of the signature The size of the signature grows linearly with the number
of frequencies that are protected. This number can range from 1 to 64. For each

frequency different precision can be used. The length of the signature is

% 3y p(w0)

for all chosen (u,v)

where b(“?) is the precision of frequency (u,v). For example, the size of the
signature for a 512 x 512 image, protecting DC, AC1, AC2 and AC3 with 10 bits
precision, is (64 x 64)/2 x (10+10+ 10+ 10) = 81920 bits (approximately 11kilo
bytes).

7.3 New Attacks against the SARI System

In this section, we present new attacks against the SARI system [58]. We present ways

of constructing fraudulent images that are accepted as authentic by the verification

7.3. New Attacks against the SARI System 156

system, and the modifications are visually undetectable. The attacks will work even if
the feature code is encrypted. We also propose modifications to the system to make

these attacks ineffective.

7.3.1 Attacks

Regunathan and Memon [82] showed a method of finding the secret block pairing if
O(loggp) authenticated images using the same key are found. Once the pairing is discov-
ered, the block pairs can be modified without being detected by the verification system.
However an arbitrary modification, most likely, will result in visually detectable arti-
facts, as had been noted by the original authors [58]. Moreover, encrypting the feature
code will make the attack completely ineffective.

We note that not all modifications result in visually detectable changes. For ex-
ample, the method used in [52], uses combinations of DCT coefficients such that the
central part of a block is modified in a smooth way, while the border of the block
is unchanged. In Section 7.3.1, we describe an attack which generates a fraudulent
image with no visual sign of being fraudulent, and succeeds even if the feature code is

encrypted.

New Attacks

We consider two types of attacks.

1. The image is modified by simultaneously changing a pair of blocks by the same
amount. The attack will succeed regardless of the precision of the feature codes
and the number of protected coefficients. The modifications include,

e adding or removing figures, letters and objects to the original image.

e modifying figures, letters or objects in the original image.

2. If some of the coefficients are not protected, they can be arbitrarily changed.

Modifying Block Pairs

This attack succeeds if block pairing is known even if all the coefficients are protected
and long precision feature codes are used. In Section 7.3.1 we show how to find the
pairing even if the feature code is encrypted. The attack is made by modifying quan-

tized coefficients of a JPEG compressed image by an equal amount in pairs of blocks.

7.3. New Attacks against the SARI System 157

Figures, letters or objects can be added or removed to pairs of blocks by adding an
8 x 8 block of quantized coefficients to the quantized coefficients of the pair. This is

based on the following proposition.

Proposition 1 Let D be an 8 x 8 pizel block, and G(u,v), u,v € {1,...,8} denote its
transformed and then quantized DCT coefficient in (u,v) position. Let ﬁ’p(u,v)l and
Fq(u,v)l denote the coefficients of the reconstructed blocks corresponding to Tp(“’”) +
G(u,v) and Tq(“’v) + G(u,v), respectively, and AF}SZ’U)I denote the difference F,Su’v)l —
Fq(u’v)l. Then AF}S?}”,’U) = Aﬁ}%’v)l.

Proof:

AF[SZ’U) — Tp(uﬂ}) . Q(U,U)
o (w) lu)

and

AF(U7U)/ — Tp(u7u)[. Q(uav)
_Tq(uav)/ . Q(uﬂv)
= T, Q)
T (w0) L Q)
= AF®)

p.q

This is true because of the following.

Tp(uav)[. Q(uav) _ Tq(U‘:U)[. Q(uav)
= (T,"") + G(u,v)) - Q™Y
—(Tq(“’”) + G(u,v)) - Q)
= T, . Q) T, (wv) . Qlu)

p

Now suppose the attacker has a compressed image and its feature code. The attack

is as follows.
1. The attacker creates the pattern D that is to be added to the block pair p and g¢.
2. He transforms D, and quantizes the coefficients by Q%) to obtain G, Vu, v.

3. Then he finds Tp(“’”) + G™Y) and Tq(“’”) + G™?) and dequantizes the result.

7.3. New Attacks against the SARI System 158

We note that the system does not require the original image to verify the image
and so the original image is not available for the verification.
The method will produce visually undetectable changes if the following conditions

are satisfied.

C1 To make the block artifacts undetectable, the pixels on the edges of block D
should be close to 0. This condition can be ignored if the pattern includes figures

or letters with sharp edges at block edges.

C2 The difference of the modified block p and ¢ must be exactly the same as the
difference of the original p and ¢. Note that the use of the transformed version of
the modified block without quantization by @ may result in the difference AE} %"
not to be a multiple of Q(*) although the original difference is a multiple of Q).

If the verification algorithm requires uncompressed image as input, we can gen-

erate it from the JPEG compressed image.

C3 G must be chosen such that the de-quantization and then the inverse-transform
of the modified coefficients Tp(“’”) + G@?) and Tq(“’”) + G®?) do not produce a

value outside the valid pixel range (for example, [0, 255]).

Figure 7.2 and 7.3 give an example of adding a pattern to the image. We followed
the steps above, showing the case of pairing odd number and even number blocks for
pattern “8” which is the pairing used in the original paper, and pairing distant location

blocks for a pattern similar to “x%”.

Figure 7.1: Pattern “8” (left) and a pattern similar to ¢ (right).

The pattern D that is added to the image is given in Figure 7.1. The attack
succeeded because the two paired blocks have been smooth. We note that in the case
of pattern “8”, it is obvious that the same pattern appears twice but in the case of
the other pattern, the modification on one of the two blocks (in the background) is
not distinguishable. In some cases it might be more difficult to succeed. For example

consider removing black numbers from a white license plate. Assume that the image

7.3. New Attacks against the SARI System 159

Please see print copy for Figure 7.2

Figure 7.2: Example: Original image (left) and close up (right).

Please see print copy for Figure 7.3

Figure 7.3: Close up of the modified image (left) and difference between the original
and modified images (right). The large gray region, the darker part and the brighter
part correspond to 6@ =0, ¢4 < 0 and 67 > 0, respectively.

is gray scale and pixel values are in the range [0,255], and the black and white pixel
values are 0 and 255, respectively. Then to modify the numbers on the plate, some
pixels need to be changed from black to white, or from white to black and so 255 has to
be added to, or subtracted from these pixels, respectively. If the pixel to be modified
is black and the pixel in the corresponding location in the paired block is white, then
adding 255 to the pixel in the paired block will violate condition C3.

Let r;,(,i’j),i,j € {1,---8}, and r(gi’j),i,j € {1,---8}, denote the pixel values of block p
and ¢, respectively, and 6% i, j € {1,---8} denote the pixel values of the modification
block.

Then the following must be satisfied.

7"p
rld) 4 §0:9) < 255 (7.3)

q

(4,4) + 5007 < 255
(i

IA A

for all 4,5 € {1,2,...,8}.

For example, if we want % to be as bright (i.e. large) as possible, we choose
the largest possible (/) that satisfies condition (7.3). That is, we choose min{(255 —
ri (255 — rSPO)YTE p89) s large, then 255 — ri7) is small and so is 6¢+). Hence,

7.3. New Attacks against the SARI System 160

rz(,i’j) cannot be increased by a large amount. From above, the range of §%-) is given as

follows.

Theorem 2 The range of 6%9) is given by [0, min{(255 — r,(,i’j)), (255 — rgi’j))}] and
[(—1) min{r,(,i’j),r(gi’j)},O] for the brightening and darkening modification, respectively.

proof: For an 8 bit pixel r,(,i’j) and r(gi’j), 0< r,(,i’j) and r((f’j) < 255. From Condition
(7.3), the possible minimum value of §(»7) is 0 and the possible maximum value is either
255 — r,(,i’j) or 255 — r((,i’j) and the smaller value of these two satisfies Condition (7.3).
Figure 7.5 shows the removal of letters from a license plate shown in Figure 7.4.
Assuming even and odd block pairing, two horizontally neighboring blocks are modified.
As an example, two digits were made bright so that it became the same color as the

background of the plate.

Please see print copy for Figure 7.4

Figure 7.4: Original license plate.

Please see print copy for Figure 7.5

Figure 7.5: Removal experiments of “9” (left) and “5” (right).

From the above observations, we define a vulnerable property as follows.
Vulnerable property
If the range of §(»7), given by Theorem 2, is large, then ri) and r(gi’j) are vulnerable

to large modifications.

Finding Block-pairs

To increase security, block pairings can be kept secret. Suppose the attacker has
an authenticated image (image together with its authenticator) and also access to
a verification oracle: that is the verification program that inputs an image and its
authenticator tag and produces a yes or no answer if the image does match or does not

match the authenticator, respectively.

7.3. New Attacks against the SARI System 161

Algorithm 1 : finding a block pair.

1: The attacker chooses a block p;
to be modified.

loop until the pairing block is found.
Choose a block py, where k # 1.
Modify p; and p; by the same amount.

Give the modified image to the oracle
and observe its output.

6: If it is accepted

T Exit the loop.

Note that the attacker does not have to find all block pairs but only those which

he intends to modify.

The cost of finding p for a chosen p; is p — 1. To find all block pairs, Algorithm
1 is iteratively applied to the blocks. In each iteration, it finds a pair. Initially there
are /2 pairs to find and in the first iteration it tries at most o — 1 blocks. Then
the number of pairs becomes /2 — 1 in the second iteration and it experiments p — 3
blocks. The number of blocks to be examined at ith iteration is p — (2 — 1). There
are /2 pairs and so the cost of finding all pairs is

p/2
Y (p—(2i-1)
/2 — 1

= ¢°/4.

For example, the 512 x 512 image lena has 4096 blocks. The cost of finding p;, for a
chosen p; is 4095 ~ 2'2 and that of finding all pairs is 2?2, which is considered small in
cryptographic systems. If each of 64 frequencies uses a different pairing, each pairing
can be independently found and in this case, the cost of finding a single and all pairs

becomes 22 x 64 = 28, and 222 x 64 = 228, respectively.

Attack on Unprotected Coefficients

When only some of the coefficients are protected, the unprotected ones can be arbitrar-
ily modified. Because of visual significance of lower frequencies, it is more likely that
they will be chosen for protection. So if the added pattern is obtained by modifying the
higher frequency components, then the resulting modification will look like spraying
the image with black or white dots.

Figure 7.6 shows an example of such attacks.

7.3. New Attacks against the SARI System 162

Please see print copyfor Figure 7.6

Figure 7.6: The two images will be authenticated with the coefficients 0-10 (left) and
0-59 (right) protected.

7.3.2 Improvement

The attacks in [82] and our new attacks clearly show that simply hiding the block-
pairing will not add security because each signature bit can be tied to a single pair
and so the pairing can be found easily. If we allow the pairs to overlap, that is, allow a
block to be shared by more than one pair, then a signature bit will be linked to more
than a single pair.

Let a subset of £ pairs be S; consisting of s pairs and including s + 1 blocks, such
that every pair in §; has a common block with one other element of S;. Assuming

S;NS; = ¢, 1 # j, the number of S; required to include p blocks is ?pl and the number

©S
s+1°

For example if two pairs share a block, the computational cost of the attack will

of pairs in §;,V7 is

increase. Let S; = {(Pa1,Pa2), (Pa2; Pa3)}. Assuming an attacker tries to find a block
paired to p,; among o — 1 blocks, he needs to modify Algorithm 1 in Section 7.3.1 such
that he modifies a triplet of blocks by the same amount instead of a block pair. This
increases the order of the cost to O(gp?) from O(p?). In general the cost of finding s+ 1
blocks in S; will be of the order O(p**).

The disadvantage of this method is that the number of pairs increases s% =2— ﬁ
times compared with the original system, and so the signature size increases. For
example, if S; consists of two pairs sharing one block, i.e. s = 2, the signature size
is % times larger than the signature generated by the original system. To reduce the
signature size, the method can be applied to a selected set of blocks. We suggest the
following two approaches.

Approach 1

1. First construct pairs so that they do not have vulnerable property given in Section
7.3.1.

2. If there are pairs which have vulnerable property, then reconstruct pairs for these

7.4. A Secure and Flexible Authentication System for Digital Images 163

blocks using the method of sharing blocks in pairs.

Approach 2
The important blocks are interactively selected, i.e. a user chooses their region
of interest interactively when the signature is generated. Then the above method is

applied to these chosen blocks.

7.3.3 Concluding Remarks

We have shown methods of modifying authenticated images, which are visually unde-
tectable and pass the verification test, and defined the vulnerable property of pixels.
Although modifications are restricted on pixels which have the vulnerable property, if
the system fails to provide the assurance of protecting these pixels, then images are
vulnerable against the attack. We showed a modification to the system which increases

the cost of the attack to O(p*™!) to the extent that the system can be considered secure.

7.4 A Secure and Flexible Authentication System
for Digital Images

In this section we propose an image authentication system in which the MAC remains
invariant after JPEG compression to a given quality level. We propose a model for
analyzing security which captures the attacking power of a typical adversary in a real-
life application of the system. To our knowledge this is the first clear model for security
evaluation of image authentication systems. We show that the proposed system is
secure in this model and verify this result by a number of experiments.

The system has a number of attractive properties.

1. The main computation of the system is in computing the DCT of image blocks
which is part of the JPEG compression algorithm. This means that the system
can be effectively integrated into the compression system. This is particularly
important because in many applications image processing hardware is not suit-
able for traditional cryptographic operations and so calculating cryptographic
checksums either requires a cryptographic co-processor, or will significantly slow

down the system.

2. The computation is parallelizable and the system can be used for real-time data.

The system is stream oriented. That is, as data arrives it is processed and

7.4. A Secure and Flexible Authentication System for Digital Images 164

the checksum is generated accordingly. The system can be easily extended to
frame-based moving picture data (MJPEG [102]) and with more efforts to motion
compensated compression systems, such as MPEG (Moving Pictures Experts
Group [42]).

3. The system has flexible protection. That is, by allowing longer checksums the
level of protection can be increased. The system allows selective protection: that
is the key information may be chosen in an image dependent way such that
the sensitive parts of the image receive higher protection. This is a very useful

property that can be be used to protect regions of interest in the image.

In Section 7.4.1 we describe our system and show its properties. Section 7.4.2 gives
the design of our system and in Section 7.4.4 we analyze the security of our system

and finally we conclude.

7.4.1 A Secure and Flexible Authentication Scheme

We propose a message authentication code (MAC) that consists of feature codes 0b-
tained by encoding a linear combination of DCT coefficients in subsets of blocks. A
MAC is generated from an original image and it corresponds to all images which are
created by compressing the original image using JPEG compression with various qual-
ity levels. The image is partitioned into subsets of blocks, called groups and blocks
in each group are used to generate feature codes. This system can be considered as a
generalization of the SARI system.

In the following, without loss of generality, we assume A;Y) are non-negative
integer constants. The approach can be used for any value of A4;®").

Let {G1,G2 -} be a set of £ groups, each group consisting of m blocks, such that
U;G; = P, and G; N G), = ¢ for all i and j.

The outline of the MAC generation algorithm is as follows.
1. For all blocks in P, obtain the 64 DCT coefficients.

2. Let F; ;" denote the DCT coefficient in (u,v) position of the ith block in G.
Then Yj(“’”) = Evl.e[m} Ai(“’”)F},j(“’”) is the weighted sum of all coefficients in
Gj(“’”).

3. The feature code is generated by encoding Yj(“’”) as shown in this section.

7.4. A Secure and Flexible Authentication System for Digital Images 165

Theorem 3 shows that the same linear combination in the reconstructed image is closely
related to that of the original image. This property forms the basis of correct verifica-

tion.

Hash generation

. . :
Calculation of (uv) Generation | .
Secret (uv) Y j ! Signature|
2 Ai Fij of U(N) '
-— -— "
, R ,\
‘| 8x sDCT tizati Entropy : JPEG
- : #[Quan 28 Io} # Coding : data
N/ . J :

JPEG compression

Figure 7.7: MAC generation and JPEG compression.

Verification

1
1
1
Signature #: Decoding #
1
1
1
1
1
: |
: Comparison - true / false
1
1
1
1
1
1
1
1
1
1
1
1
1

.

x

~ (uyv)

Y j
I Calculation of ! D
Secret iy ' 8X 8DCT, |
\) \ L

JPEG .| Entropy De- 8X 8IDCT| :
data : Decoding quantizatio : ‘ ‘

JPEG decompression Image

Figure 7.8: MAC verification and JPEG decompression.

Let i € {1,2,3,...,m}.

Fp(u,v) Fp(uﬂ))
Let Jmmy be Gam

Then, F,®") and FIS“’”) are the original and reconstructed values of a DCT coefficient.

= R, = h, + r, where h, is an integer and —0.5 < r, < 0.5.

Fp(“’”) - RpQ(“’”)

7.4. A Secure and Flexible Authentication System for Digital Images 166

—= hpQ(u7v) + /r-pQ(uav)

}7}5“’”) = rmt(Rp)Q(“’”)
— B, QY
= F,) Q0 (7.4)

As noted in [82] and Section 7.2.2 using a pair of blocks allows the attacker to find
the pairing and find two images with the same MAC value. Using the combination
of many blocks effectively links a large number of blocks together and makes it much
more difficult for the attacker to determine the groups that are linked. The weighting
can be used to emphasize regions of interest in the image.

In the following we prove a theorem which shows that the reconstructed value of
Yj(“’”) can be bounded. This property can be used to estimate the difference between
the linear sum in the reconstructed image and that in the original image and so can be
used to detect tampering with the image. (For simplicity and without loss of generality,

we omit the floor and ceiling in the following.)

Theorem 3 Let K = k" Q) Y, qs defined above, Y uv) = vicim] }72.(5’”),
and L =3 g;cim 14
Then for all j, the relationship between Y) and Y(v) s given as follows:

1. If ;™ =k,
(R — 051+ Y [A4M)QM) < v
Vi€ [m]
< (K" 0514+) (A4
Vie[m]

2. If Y;"") < k, then

f/‘(u,v) <]}(u,v)Q(u,v) +0-5Q(u’v)(1+ Z |Ai(u,v)|) .

J
Vi€ [m]
9. If ;" > k, then

Y 5 paoglue) _ 0.5Q™) (1 + Z | A4;(0)) (7.5)

J
Vie[m]

7.4. A Secure and Flexible Authentication System for Digital Images 167

Proof of Theorem 3:

We have
k—05Q™Y < K < k+0.5Q™)

and from Theorem 4

Y.

](u,v) —0.5QU L < f/j(u,v) < Yj(u,v) 1 0.5QM0 L,
The relationship between Y;(**) — k and f/j(u’v) — k) Q) g given by
Y, —0.5QWV L — (k+0.5QY) < V"V — K < v, 4+ 0.5Q") L — (k —0.5Q))
and so
(V) — k) — 0.5Q (L + 1) < V" — K < (Y;) — k) + 0.5Q“ (L + 1) . (7.6)
Now we have the following cases.
1. If V;(*" =k, and so Y;**) — k = 0 in equation (7.6) and so

~0.5Q(L+1) < V" — K < 0.5Q"" (L +1)

That is
K —05Q")(L+1) < V" < K +0.5Q™"(L + 1)

and

Q) —0.5Q0 0 (14 3 4] < Y
Vi€ [m]

< E0Qu 0 5Qu (14 3 |40

Vie[m]

) .

Note that because 4;™") and ﬁ'l(z”’) are integers, the sum >, ., Ai(“’")ﬁi(g’v) is

an integer and so the above relationship becomes

[EeDQEY —0.5Q0) (14 3 [A4,00])] < ¥
Vie[m]

< K@ QUY) 4 0.5QMY) (1 4 Z | A |

Vie[m]

2. It V;*%) < k, and so Y;“") —k < 0 in equation (7.6) and (Y;“*) —k)+0.5Q") (L+
1) < 0.5Q™") (L +1). Then 17].(“’”) — K always satisfies

Y — K < 0.5QW(L +1)

7.4. A Secure and Flexible Authentication System for Digital Images 168

and so
Y < K +0.5Q0) (L + 1) .

That is,

}N/—.(u,v) < I;(u,v)Q(u,v) +05Q(u,v)(1+ Z |Al(u,v)|)]

J
Vie[m]

Note that the sum }7]-(“’”) is an integer because A;(*") and F‘l(z”’) are integers and

so we have

}h/"‘(u’/u) S L%(M7U)Q(u7v) + 05Q(uﬂv)(1 _|_ Z |AZ(U’U)

J

)

Vie[m]

3. If Yj(“’”) > k, then Yj(“’”) — k > 0 in equation (7.6) and so as k approaches S,
;) —k approaches 0 and (Y;("") —k)—0.5Q(“*) (L+1) approaches —0.5Q ") (L+
1). Since Y;®" — & >0, (V;*") — k) — 0.5Q") (L + 1) > —0.5Q") (L +1).

Then f/j(u’v) — K satisfies

v — K > —0.5QW (L + 1)

and so
o (u,) % u,v
Vo > K —0.5Q™" (L+1) .

That is,

y) S f(mw) Quw) 0_5Q(uav)(1 + Z |Ai(u,v)

J

).

Vie[m]
Note that the sum 17]-(“’”) is an integer because A;(“") and ﬁ'l(;”’) are integers and
so the above relationship becomes

v > TEDQE) —0.5QM) (14 Y [A™)] .

J
Vi€ [m]

Let A,%%) be integers. Then the relationship between ZVie[m] A,V pwv) and
> vicim] A, FEY) s as follows.

7

Theorem 4 The sum 3 ycim A, FEY s bounded as follows. (The difference in

)

the three cases is including or excluding equality).

7.4. A Secure and Flexible Authentication System for Digital Images

169

o if A, >0 Vi,

ZAU.’U (u,w 05qu Z|Auv|<ZAuv

Vi€[m] Vi€[m] Vi€ [m)]

<2Auv uv_|_05qu Z|Auv

Yie[m Vie[m]
o if A"V <0 Vi,

ZAUU (u,w 05qu Z|Auv|<2Auv

Vi€[m] Vi€[m] Vi€[m)]

< ZAuv (u,v) _|_05qu

Yie[m Vie[m]

o if A, includes negative and positive integers,

ZAU.’U uv_05qu Z|Auv|<ZAuv

Vi€ [m] Vi€[m] Vi€ [m)]

<2Auv uv_|_05qu Z|Auv

Vie[m Vie[m]

Proof:

Since —0.5 <1, < 0.5,

Fp(uav) _ 05Q(u’v) < Fp(uav) _ TpQ(u,v) S Fp(uav) _|_ 05Q(u7v)

and so
F,t") — 0.5QM") < Fmv) < F,m0) 4 0.5Q0)
We have
ZAUU (uw) (u,v) ZAuvh+qu ZAUU
Vi€[m Vi€[m Vie[m
— (u,v) ZAUU _UU _|_qu ZAiuvrl
Vi€[m] Vie[m]
and

S AR — Qe 3T g,

Vie[m] Vze[]

Since —0.5 < r; < 0.5,

7.4. A Secure and Flexible Authentication System for Digital Images 170

o if 4, >0, ie A, = |4,

(uv)

i(“ﬂ’)Q(“a”) r; < O5|

and from equation (7.8),

A0 0 0 514,00 Q) < 4,00 B < g @) Bl 4o 5] 4,00 Q)

o if 4, <0, ie A, =

(u0)

) < A0 Q) <

and from equation (7.8),

A0 R0 _ 5] 4,00 | Q) < 4,000 f0) o 4, 000)) 4 5] 4,00 | QU0 (
The theorem follows by summing equation (7.9) for all i € [m].

Feature Code

A feature code is a binary string representing Yj(“’"). The coding process also generates
an interval whose length determines the acceptable accuracy. For verification, an error
tolerance value is needed. This can be chosen by considering the acceptable quality
levels of the compression algorithm.

Encoding starts with an initial interval. This interval is then halved and labeled
by 0, for the lower, and 1 for the upper subintervals. The first bit of feature code is
obtained by determining the subinterval that Yj(“’”) belongs to. The initial interval is
now replaced by the subinterval containing Yj(“’”). In each step a bit is generated by
determining the subinterval containing Y-(“’") and the step is repeated.

Let [FMIN() Furax ™) be the range of the DCT coefficients in the (u, v) position,
and Zj(ﬁ’”), ZJ@; v Zj,N denote the bit sequence generated from Y;™%). For example,
Frn™? = 0 and Farax™?) = 2048 for DC coefficients and Fyrn™?) = —1024 and
Frrax™?) = 1024 for AC coefficients. Let I(n) and U(n) be defined as follows.

I(n) = (Fyax™" — Fypn™)2™" n e {1,2,3,..., N} (7.10)
and for all n € {1,2,3,..., N}

U(O) = FM[N(U’U)
Un) = Uln—1)+ 2" 1(n)

7.9)

7.4. A Secure and Flexible Authentication System for Digital Images 171

N

= Furv™” + (Farax™ — Fan™) Z Z](ff’v)Q’l : (7.11)
=1

u,v)

The coding procedure for Yj(is given in Algorithm 2.

Algorithm 2 : Coding Yj(“’”)
1: Initially the interval d is d = [U(0), U(0) + 2I(1)) = [Farrn ™Y, Farax™?).
22 n=0.
3: Repeat while (n < N)
4: n=mn-+1.
5: Divide d = [U(n —1),U(n — 1) + 2I(n)) into two intervals,
d=[Un-1),Un—1)+1I(n))
and d, =[U(n — 1)+ I(n),U(n —1) + 21(n)).
6: if ;) € d,,,
7. Z4W" =1
8: else if Yj(“’”) € dy,
9: Z](-,ul’v) =0
10: output Z](ﬁ,u)
11: d=[Un—1)+Z4"1(n),Un—1)+I(n) + 2" 1(n))
= [U(n),U(n) +2I(n+1))

After n rounds, [U(n),U(n) + 2I(n + 1)) is the interval containing Y;*).
The feature code generated above gives a binary representation for Yj(“’”) and U(N)

gives the precision interval for Yj(“’"). That is,

UN) <Y;"" < UN) + (Fyax™ = Fyn)27V (7.12)

Finding the Tolerance Interval

The difference between Yj(“’”) and the decompressed value 17].(“’”

)is due to quantization
error and calculation errors. In the following we find an estimate of the two types
of errors. Using these two estimates we can determine an error tolerance interval
corresponding to acceptable compression quality level.
Quantization Error

The quantization error A = 17]-(“’”) —Y;{"") is the sum of m random variables, each

corresponding to the quantization error of a single coefficient. That is,

A =376 where §; = B4 — F 00)

i=1

7.4. A Secure and Flexible Authentication System for Digital Images 172

To model the behavior of this variable, we have conducted a number of experiments
reported in Section 7.4.6. Our experimental results on the distribution of the quanti-
zation error of a single coefficient (linear combination of size one) is in Section 7.4.6
and shows that i) at lower quality levels and lower frequencies, the distribution of the
quantization error values is close to the uniform distribution and i) at higher quality
levels and higher frequencies, it is a symmetric Gaussian-like distribution with zero-
mean. In between the two, that is for other quality levels and other frequencies the
distribution is also Gaussian-like always with zero mean and the variance depending
on the quality level.

An interesting observation is that when m is large, the sum of the quantization
errors will have a smaller variance. This is expected because assuming each error 9; is
normally distributed and has variance 0;2, then A will have the variance ZT("R This
means that 37]-(“’”) will be closer to Y;(**) and hence a tighter interval for 17]-(“’”) is
resulted.

Computation Error

Let " € R denote the computation error in calculating ﬁ'l(;”’) due to the finite
precision calculations used in the implementation of JPEG and other sources such as
integer representation of real value coefficients. Computation errors introduce inaccu-

. ~. . ~ . . (u,v) (u,v) .
racy in Fi(f;’v), that is Fl(z”’) = rmt(%)@)(“’”). Then equation (7.9) becomes

Ai(u,v)(FviJ(u,v)_'_gZ(u,U)) 05|A u,v) |Q u,) < A u,v) uv)

;J

< AZ.(%U)(FZ.,J.(UU) _+_82(_)+0-5|Az’ u,v) |Q u,v)

and Theorem 4 becomes

Z A u,v) Z]uv 05Q(u,v) Z _(u,v)|_|_ Z A_(u,v) (u,v) < Z A_(u,v)N

Vie[m)] Vie[m)] vVie[m vie[m
< ZAquJ _|_05qu Z |A uv|_|_ ZAuv
Vie[m Vie[m Vie[m

We can ignore the error in calculation of k@) by using high enough precision and

so Theorem 3 becomes

L If Y0 =k,

(l{?(1+ Z |A u,v) 'u.v)_|_ Z Ai(u,v)gguyv) < Y/j(uyv)
Vi€[m] Vle[]

<(k(uv)+051+ Z |Azuv uv_|_ ZAU’U uv ‘

Vie[m] Vie[m

7.4. A Secure and Flexible Authentication System for Digital Images 173

2. If ;) < k, then

f/'j(u,v) < k(u,v)Q(u,v) +05Q(u,u)(1+ Z |Al(u,v)|)_|_ Z Ai(u,v)ggu,v) .

Vie[m] Vie[m]
3. If Y;™") >k, then

Y 5 o) gluy) 0.5Q") (1 + Z |4,())) + Z PRCORCON

J)
Vie[m] Vie[m]

) ~(u,)
Jst <

has a normal distribution with zero-mean. Then

Let 7(“?) be a non-negative real number such that —7(") < D viem] (wv)g

70 for all G, and assume 61()

for large m, > vic(m Al U)&“E) is expected to have

ZA“ () ~ 0 . (7.13)
Vie[m
That is, the calculation errors tend to cancel each other. This is an advantage of using
larger sums. However, as will be seen in Section 7.4.2; using larger sums has other

problems.

Verification

The verification process uses an error tolerance interval and as long as Yj(u’v)

, calculated
from the image, is within this interval around U(N), calculated from the recovered
feature codes, the verification is successful. For a given quality level £, an error tolerance
level E(?) can be calculated (see below equation (7.14)), where E(?) € R and E(®¥) >
0.

Verification proceeds as follows.

Algorithm 3 : Verification of f/j(u’v)

Set a tolerance level to E(“ V),

Calculate Y u) = vicim] FZ(;”)

Obtain U(N) from the feature code (equations (7.10) and (7.11)).

if UN) — E® < Y < U(N) + E®@ 4 (Farax™® — Fypy®)2-N
(From equation (7.12), the difference |Y;™*) — U(N)| can be
as large as (Farax ™ — Fan®9)27N)

5% verification of 17].(“’”)

is successful.
else

T the image is tampered.

7.4. A Secure and Flexible Authentication System for Digital Images 174

Algorithm 3 is repeated for all feature codes and if it succeeds for all feature codes
then the image is considered authentic. To choose E(®?) for tolerance to quality level
¢ and assuming the computation error 7(**) as defined in Section 7.4.1 and Theorem

4, we have

EWY) < 0_5Q(u,v)1Z Z |Ai(“’”)| 4 puw)
Vie[m]
Q™) in the above is the maximum value of Q") corresponding to the lowest JPEG
quality level that must be accepted by the system. In practice, because of the reasons

described in Section 7.4.1, smaller values of E(*?) can be chosen.

Theorem 5 (soundness) The authentication system described above tolerates image

degradation due to JPEG compression to a designated quality level £.

(uv)
Fuax

() L
. Not authentic : / E : The quantization error tolerance

(uv)

Y j " :Thevalue encoded \

U(N) : Thevalue represented by 101 —7 \
i T W (uyv)
E

(u,

V) (uyv) -N
~<— (FmAX - FMIN') 2

: The quantization error tolerance

0 ; ; © Not authentic

(uv)
Fuin

Figure 7.9: Encoding of Yj(“’”) and error tolerance.

SARI System

The SARI system is a special case of the proposed system where m = 2 and A, "), 4,v)
are 1 and —1, respectively, and s0 3,y | AV =2,

From Theorem 3, the following is true.
1. If Y;®) = k, then 17].(“’”) can take one of three possible values,

Fl(u,'u) . F2(u,v) _ (I;(u,'u) . 1)Q(u,v) ,I;;(u,v)Q(u,v) ,Or(];(u,v) + 1)Q(u,v)

2. If ;) < k, then
Fl(u,v) . }7—12(u,v) < (];(u,v) + I)Q(u,v)

3. If ;% > k, then
Fl(“ﬂ’) _ F’Z(uav) > (]Ng(u,v) . 1)Q(u,u)

7.4. A Secure and Flexible Authentication System for Digital Images 175
Theorem 6 Assuming a fized threshold k € R, Yu, v, define k) = rint(sk
if AF, Y >k,
fuoQue k¢
AFY) > o “ Qb (7.14)
’ (K =), ¢Z
else if AF),) < k,
- I:;(uﬂ)) (uﬂ)), E Z
AFW) < ¢ “ g (7.15)
) (k(u,v) + I)Q(u,v), ¢ 7
else if AFp,q(“’v) =k,
u,v)]Ng(u,v)Q(u,v), % €7
AFM = {~ Q . (7.16)

) Qo) op (hwo) £ 1)Quw), g7,

From Theorem 3, the following is true.

1. If Y;®) =k, then

(K) — 1.5)Q") < F™) — F) < (k) 4 1.5)Q")

but F™ — F{**) is an integer and so
FI(U,U) _ FQ(U,U) — (];(u,v) . I)Q(u,v)’

Fl(u,v) _ pZ(u,v) _ ig(u,v)Q(u,v),Or

B0) _ () 4 1)g0)
2. If ;) < k, then
F{ — B0 < (k) 4 1.5)Q)
but Ffu’v) - FQ(U’U) is an integer and so
FI(u,v) _ F~12(u,u) < (l;(“’”) n 1)Q(u’v)
3. If ;™) > k, then
Fl(u,v) _ FQ(u,v) > (l%(“’“) B 1‘5)Q(u7v)
but Ffu’v) — ﬁ;(u’v) is an integer and so

Fl(“ﬂ’) _ F’Z(uav) > (]Ng(u,v) . 1)Q(u,u)

7.4. A Secure and Flexible Authentication System for Digital Images 176

These relationships are the same as those in [58]. If the same k(") is used, the
system will produce the same values for feature codes as those generated by the system
described in Section 7.4.1. For example, Yj(“’”) =11, n = 4 and the sequence of k()
is k) =16, 8,12, 10 then the bits generated are 0101 which is the same as the linear

combination scheme.

7.4.2 Designing a Message Authentication Code

The main requirement for a cryptographic hash function is collision intractability with-
out using a secret key. In our proposed system, if all design parameters of the systems
are public, it will be easy to construct two images that have the same feature codes and
so finding a collision will be easy. To provide collision security, some of the parameters
of the system must be used as secret key. Hence the system is effectively a keyed hash
function or a message authentication code.

The system’s parameters are the following.

1. The number of blocks in a group, m, and the composition of the groups, Gj(“’“),
j€4{1,2,3,...,9}.

2. Coefficients of the linear combination A, i e {1,2,3,...,m}.
3. The set of protected frequencies (u,v).
4. The precision (number of bits) N®) allocated to feature codes.

5. The error tolerance E(?),

To construct a message authentication code some of the above parameters must be
kept as shared secrets between the sender and the receiver. The aim is to minimize the
length of secret key while maintaining a high security and ensure that the key bits are
all affecting the value of the MAC.

After careful examination of possible subsets of parameters (details omitted), we

propose the following information to be the key information.
e The group composition Gj(“’”), j€41,2,3,...,9}
e The linear combination coefficients A,(*%), i € {1,2,3,...,m}.

Other parameters such as the group size, precision of the feature codes, error tolerance

and the choice of protected frequencies will be public. We assume that the secret key

7.4. A Secure and Flexible Authentication System for Digital Images 177

15 changed with every image. That is, all system parameters including the composition
of groups are public but the correspondence between image blocks and their abstract
representation will be the secret key. This means that the size of the key space for the
group composition is @!.

For precision of the feature codes and error tolerance, the subsections Feature Code,
Finding the Tolerance Interval, Quantization Error and Computation Error in Section

7.4.1 give more details on how to choose the key parameters.

Selecting the Linear Combination Coefficients

Let Ayrn®™® and Ay ax ™) be two integers denoting the maximum and the minimum

w?) g randomly chosen from

value of a linear combination coefficient, and assume A;
the interval [AMIN) Aprax™)]. Hence, there are Ap;ax ™" — Apyrn ™Y 41 possible
values for A;®

u) and

The value of A4;™?) determines the protection level of the coefficient Fi,j(
can be measured in terms of the number of protected bits.
In general, a DCT coefficient modified by « is multiplied by A;*") and the larger

A;™) means that the modification is scaled up by a larger factor. This means that the

same amount of change is scaled by A“(:’z; for F(“’”) compared to F(“’”). In other words

F™" has log, & A ((:z; more protected bits compared to F) if A, (“’“) > A4, For

a,j
example, if A, = 24,(*") the bit strlng representing Fé,j v)

bit than Fb(l;) in the sum ZZ LAY 1; Fl)

Hence if all regions of the image have the same significance, then 4;*) must be

has 1 more protected

chosen close to each other. On the other hand if parts of the image need higher

protection, their corresponding coefficients must be chosen to have higher values.

Determining the Coefficient Range

To determine the range of the linear combination coefficients, we must estimate the
effect of changing DCT coefficients in pixel domain. Our experimental results show
that modifying a DCT coefficient by 47 results in the value of pixels changing by
+1, and modifying it by £15 results in the values of pixels changing by +3. Since

a +1 change in the pixel domain is visually insignificant, the relative value of these

Ag (u:v)

yRCD < 23. This results in the effect of scaling to be within

coefficients are chosen as

+1 in the pixel domain and so

Apn®? < A,V < 8Ap ™Y

7.4. A Secure and Flexible Authentication System for Digital Images 178

To choose AMIN(“’”), we note that the range of A, g given as

p = 8Aun™ — Apy™? +1
= TAyin™ +1

“v) increases, and so the

and for larger AMIN(“’”), the number of possible values of Al
size of the key space increases. Now if an attacker wants to modify a block, he has
to find other blocks in the same group and their corresponding A;“") to make the
compensating modification. In the case of using an exhaustive search to find A;*),
the size of key space and g determine the cost of attack and so larger A ™) will
require more computation. However, larger A, x*") means longer feature codes will
be generated.

The number of bits for Ai(“’”)ﬂ,j(“’”), that is |Yj(“’”)|, is given by

V)] = logy (mApax ™ Farax ™) . (7.17)

Construction of Groups

There are p blocks in the image and the aim is to construct groups of size m that to-
gether cover the whole image. The group composition can be described by an incidence
matrix, where rows correspond to groups and columns correspond to blocks. The ma-
trix entries are 0 and 1 with 1 in the (4, j) position showing that group j includes block
1. Given a matrix as above, a random labeling of image blocks can be used to map
groups into the image block. The number of groups and their composition determine

the length and security of the MAC and so must be chosen carefully.

Number of Groups

To determine the number of groups, the following should be considered. (We assume
groups have the same size, although it is possible to have varying sizes when some parts
of the image need higher protection.) A larger size for a group gives more flexibility to
an attacker to make his modification of a chosen block imperceptible as he can spread
the compensating change over a large number of blocks.

In general larger groups result in less sensitivity to change in a block because the
distribution of DCT coefficients is known to be a generalized Gaussian [25, 47, 54], the
density function of which is given by [26]

plo) = [T con(()l

7.4. A Secure and Flexible Authentication System for Digital Images 179

where

r(3/y)] 12
L'(1/v)

and summing a large number of coefficients will even out the local variations in the

o) =ot|

image. We noted that larger group size reduces the average calculation time and
quantization error, and allows the choice of a narrower error tolerance interval compared
to the sum of these errors. Larger means less groups are required to cover the whole
image and so a shorter MAC will be produced. The number of blocks in a group must
be chosen by taking these conflicting requirements into account. Typical values are 8§,
16, and 32.

Choosing Groups

If the groups are disjoint, the change to a block will stay local and it will be easier
to find the group members using an attack similar to Algorithm 1 in Section 7.3.1
although the attacker has to find more than one block in the same group and so the
cost is larger. Here the attacker needs to modify blocks in one group such that the
corresponding feature code is unaffected. By linking the groups together, that is, by
allowing blocks to belong to more than one group, the attacker will have a more difficult
task as the change in one block will affect many more blocks in the image. For example
by requiring each block to belong to two groups, a change in a block will affect two
groups (two feature codes) and to compensate this change at least one more block in
each group needs to be modified. Assuming the two groups intersect with one block,
one of the two blocks is not in the intersection of the two groups and so the effect
spreads to other feature codes.

Summarizing the above discussion, we give two conditions that need to be satisfied

by groups.
Condition 1 Each block belongs to A groups where A > 2.

Condition 2 Two groups intersect in 1 block.

These conditions can be optimally met by a combinatorial structure called Steiner
system.

A Steiner system is defined as follows.

Definition 1 A Steiner system is a set X of v points, and a collection of subsets of

X of size k, such that any t points of X are in exactly one of the subsets [19].

7.4. A Secure and Flexible Authentication System for Digital Images 180

Using a Steiner system ensures that all groups have the size (v), each block appears
in exactly r groups and two groups have ¢ — 1 blocks in common.

It is known that Steiner systems S(t, k,v) exist for S(2,n+ 1,n? + n + 1) where n
is the order of a projective plane and S(2, ¢, ¢%) where ¢ is a prime power [119].

Relaxing the conditions that need to be met by groups allows us to use a wider
range of combinatorial constructions. In Section 7.4.3 we give an algorithm that can

generate groups satisfying Condition 1 and Condition 2 for any image size.

7.4.3 Constructing Groups

The above two methods restrict the choice of m and g. In the following, we describe a
method that has less restrictions.

Let each block belong to two groups, m be an even number and m < g — 1 (a
restriction). Let M be an % x g matrix and let z;; be the element in row j and column
i of M, where i € {1,2,...,9}, j € {1,2,..., 5 }. We construct M as,

1 00 0
010 ... 0
0 01 0

—_ = =

In other words, z;; is given as,

1 ifi=0ori=j+1
" 0 ifi#£0andi#j+1.

Let the right rotation of a row be defined as moving z;; to position (i+1 mod g).
There are g possible rotations of a row given by, (j(14k) mod g Tj,(2+k) mod g> - - - 5
Tj(g+k) modg)s k € {0,1,...,g — 1}. For example, rotations of the 1st row in M are
given by, (1,1,0,0,...,0), (0,1,1,0,...,0), ..., and (1,0,0,0,...,1). Then for all j, k,
we have 39 % k) modg = 2 and for all j,i, we have S0 02 ik moag = 2. We
randomly assign a block to each row and include the block in G; if z;; = 1.

If we repeat the above procedure for % rows in M, we will obtain g x 3 =

rows. Each row will be randomly assigned to a block and so each group G; will have

2 x 7 = m blocks. This method guarantees that all blocks are linked.

m

5 to be the number of rows in M to prevent the rotation of different

We choose
rows from the colliding result. If two rows where ith and 7+ ath columns are 1 and the

ith and 7 + bth columns are 1 are rotated, they will collide if @ + b = g. Since this can

7.4. A Secure and Flexible Authentication System for Digital Images 181

be avoided if a,b < £, we choose the number of rows in M as % and set the restriction
to be m < g — 1, as given above.

The procedure is as follows.

Algorithm 4 : Construction of groups
G; = ¢, foralli e {1,2,...,g}.

A set P includes all blocks.

For jth row in M where j € {1,2,...,%

Generate g rotated rows from jth row in M.
For each rotated row
Randomly choose a block in P.
If 2th column of the rotated row is 1
Include the block in Gj.
Remove the block from P.

7.4.4 Evaluation of the MAC

We evaluate the security and efficiency of the proposed MAC system. For security, we
propose an attack model that corresponds to a likely real life application of the system,
and show that it is infeasible to construct a forged image, MAC pair in that model.

For efficiency we consider the length of the MAC and the time spent on generating
a MAC.

Security

In this section we propose a model for evaluating the security of a MAC system for im-
ages. All previously proposed systems use an ad-hoc approach with no clear definition
of attacks, and capabilities and goals of the attacker.

We consider the following application scenario.

An attacker owns a client decoder and aims at constructing a fraudulent image after

(or before) receiving an authentic one.

The attacker succeeds if he can construct a forged image, MAC pair that (i) passes
the verification test, and (i) does not have any visual artifacts that make it suspicious.
We assume the attacker does not have access to the decoder key (black box) but
can query the decoder with other image, MAC pairs. The attacker can supply image,
MAC pairs to the decoder and receive a true response if the pair is valid and false

otherwise.

7.4. A Secure and Flexible Authentication System for Digital Images 182

We assume that the authentication key changes with each original image. The
same MAC is used for all images generated from the original image by compressing the
original image with different quality level (or re-compressing the compressed image).
This is a reasonable assumption because as noted before regions of interest in images
are different and so the multipliers should be adapted to the protection that is required
for the particular image. With this assumption, although the attacker can access the
MAC generation oracle many times but since the key changes with each image, then the
attacker cannot gain any new information about the key by using multiple queries to
the MAC generation oracle. Hence we only consider the information that the attacker
will gain by interacting with the verification oracle.

This attack scenario corresponds to the case that a malicious user having a decoder
tries to impersonate a server that sells authenticated images. This model and as-
sumption match most of the existing terminal architectures that support digital rights
management and assume trusted hardware for decoding of data [15, 48].

We assume that attacker knows the system parameters i) the range of A, i)
the coefficients (u,v) that are protected, #i) the number of groups ¢g and hence the
number of blocks m in a group, and iv) the feature code.

The attacker does not know i) the blocks in each group, and i) the coefficients
A;(%)and his aim is to either construct a valid image-MAC pair, or modify an image
so that its MAC value does not change. These two attacks correspond to impersonation
and substitution attacks in authentication codes with the difference that the attacker
has a decoder box but does not know the key. It is straightforward to see that the suc-
cess chance of an attacker in a substitution attack, that is modifying an authenticated
image, is higher than trying to construct a pair of a valid image and MAC and so we
only consider the substitution attack. In the following we consider the computation
cost of possible attacks.

Cost of Modifying a Block

To modify a chosen block the attacker has to find other blocks in the same group
and modify them such that the change to the chosen block is compensated. He also
has to find the linear combination coefficients corresponding to those blocks.

To simplify the analysis first we assume that each coefficient belongs to only one

group. The attacker does the following.

1. Add ¢ to DCT coefficient in block p;, which he intends to modify.

2. Repeat until the verification succeeds.

7.4. A Secure and Flexible Authentication System for Digital Images 183

(a) Choose a block pb, lo € {1,2,....,9}, l1 # ls.

(b) Subtract 22§ from the DCT coefficient in block lo to cancel out the

modiﬁcatlon of block [;.

A O]

(c) Input the modified image and the authenticator to the verification oracle.
The verification will succeed if the choice of the blocks p;,,p;, € Gj(“’”) and

N

coefficients A;, (“") and A;, ") are correct.

The attacker does not know the mapping between groups and blocks and the co-
efficients 4;, ") and A;,™") and so he has to try all possible I, € {1,2,...,g}, I; # I
and all possible values of 4;, ™" and A;,". Let A;%" be independently chosen in
the range [AMIN(“’”), AMAX(“’“)]. Then the number of possible combinations of Ail(“’”)
and A;, (0) g (AMAX(“’”) — Aprrn ™) 4 1)2. The attacker tries o — 1 blocks for the

above combination and so the number of the trials C' is,
C = (p—1D)(Anax™" = Ay ™ + 1) . (7.18)

For example, if p = 4096 and Ay ax™" — Ay =8, C = 212(23)2 ~ 218,
Assume a block is in two groups. Now the number of blocks that the attacker has

to modify increases because

e The coefficient Ail(“’“) of a chosen block can take Ay ax™? —AMIN(“’”) +1 values
and so using exhaustive search for each Ail v) , requires Ay ax Y — Ay ™Y+
1 experiments. Each DCT coefficient belongs to two groups. The position
of the DCT coefficient in dem} Ai(“’”)Fz-,j(“’”) in each group is independently
chosen and so will be different in the two groups and so the corresponding linear
combination coefficients in the two groups will be different. Hence, to find two
linear combination coefficients for one DCT coefficient, (AMAX(“’”) — Aprrn ™) +

1)? experiments are required.

e Two DCT coefficients, each belonging to one of the two groups, have to be mod-
ified to compensate for the above modification of the chosen block and so their
corresponding four linear combination coefficients need to be found. The cost

will be (Aprax ™ — Aprn ™™ +1)3.

e If all groups are linked, the attacker needs to modify all blocks and so he has to
find the linear combination coefficients for all blocks. The cost is (A, Ax) —
Aprrn ™ +1)9". Also he has to find the mapping between groups and blocks

to add or subtract a value for the modification. The values and the required

7.4. A Secure and Flexible Authentication System for Digital Images 184

operations (addition or subtraction) depend on which group a block belongs
to. The cost of finding blocks in G is C(p — (m — 1)(j — 1), m) However, the

attacker needs to find blocks of G; for all j simultaneously and so the cost is
i=1Clp = (m—=1)(j = 1),m).

For example, if o = 4096 and Anrax® — Ay = 8, then gm = 2p because
each block belongs to two groups and so the cost of finding the linear combination
coefficients is C' = 2'°(28)? ~ 22, The attacker also needs to find blocks of all groups.

As described above, the compensating modification propagates to a large number
of blocks and so becomes more likely to be detected as more and more blocks with
unknown multipliers must be modified.

Length of the Signature
The length of the MAC is given by L = gz(

protected frequencies. We note that,

ww) eIt N®@Y) where II is the set of

1. To protect all blocks the union of blocks in all groups must cover the whole image.

2. The length of the MAC is proportional to the number of groups. This suggests
having fewer groups but fewer groups means larger number of blocks in a group.
(See Section 7.4.2 Construction of groups, Number of groups, and Choos-

ing groups for further discussion.)

3. The protected frequencies can be image dependent. An image with not much

detail does not need to have the high frequency components protected.

4. The number of bits allocated to the feature codes corresponding to Yj(“’") is
determined by the compression level that must be tolerated. If only high quality

images must be acceptable, then more bits must be allocated to the feature codes.

Decreasing the MAC size will increase the probability of false acceptance. Example
MAC sizes for 512 x 512 gray scale image with all frequencies protected are 24K bytes
(m = 8) and 16K bytes (m = 16).

Implementation

The proposed system can be integrated into the JPEG compression and decom-
pression system as shown in Figure 7.7 and 7.8.

The MAC generation system inputs 8 x 8 DCT blocks and the secret key, together
with parameters such as ¢ and (u,v) and outputs the MAC. The MAC verification
system inputs 8 x 8 blocks of dequantized DCT coefficients, the MAC and the secret

7.4. A Secure and Flexible Authentication System for Digital Images 185

key, together with the MAC generation parameters and outputs a true or false result.
The decompressed image can be also used for the verification. In this case, the image
needs to be transformed using an 8§ x8 DCT instead of the dequantized DCT coefficients
from the JPEG decompression system.

The important properties of the system are :

e Computing feature codes are independent from each other and so can be made
in parallel. This means that the effective computation time for the MAC is equal

to computing a single feature code and so is very fast.

e The scheme uses an 8 x 8 DCT. That is, hardware and software implementation

of system can be made by only a small change to the JPEG implementation.

We implemented the systems and performed a number of experiments to verify our
theoretical results. More details on the experiments are given in Section 7.4.5. Our
experiments show that local and global modifications can be effectively detected for
MAC sizes of 24K and 16K bytes. However small modifications may not be detected
with the smaller size MAC.

7.4.5 Experiments

In our experiments the groups were chosen as follows.

e The blocks in each group were randomly chosen so that each block was included

in at least two groups.
e Each group consisted of the same number of blocks.

o A;™") =1 for all i. This means all coefficients of the same frequency are equally
protected. This will be used if the protection level is chosen independent of image

contents, i.e. the same protection level is used for various images.

The image was the 512 x 512 gray scale lena. Two different types of modification
were made on the image,

i) local modification on a small region and i) global modification of the whole
image.

For i), the modification made was to add a beauty mark to lena by adding a 3 x 3
pixel dot below Lena’s left eye as shown in Figure 7.10. For i), the original image was
modified using a median filter with 3 x 3, 5x 5, 7 x 7 and 9 x 9 window sizes, as shown

in Figure 7.11.

7.4. A Secure and Flexible Authentication System for Digital Images 186

Please see print copy for Figure 7.10

Figure 7.10: Lena with a beauty mark (left) and close-up of the modified region (right).

Please see print copyfor Figure 7.11

(a) (b) () (d)

Figure 7.11: Lena using a median filter. 3 x 3 (a), 5 x5 (b), 7x 7 (¢) and 9 x 9 (d)
window sizes.

The original image was used for the feature code generation. The MAC sizes for
m = §8,16,32,64 are shown in Table 7.1. For the lena image with a beauty mark,
quality level 95%, 75% and 50% JPEG compressed images were generated from the
modified image. For the experiments of the median filtered images, the filtered images
were created from the original image.

The numbers of groups were 1024, 512, 256 and 128 and the number of blocks
in a group m were 8, 16, 32 and 64, respectively. The feature code included all the
frequencies from DC' to ACgs3. The precisions (i.e. the number of bits) corresponding
to the 8 x 8 DCT feature codes in positions (u,v) for m = 8 are shown in Table 7.2.
For m = 16, 32, 64, the values in the table were increased by 1,2 and 3, respectively.
This is because if m is doubled, it requires one more bit to represent the sum of 2m
coefficients, compared to the case with m coefficients.

They are chosen by analyzing the compressed images (quality=95, 75, 50 %) so
that all these images will be authenticated, that is, the largest quantization error level
for those images was chosen. They correspond to the 8 x 8 DCT positions (u,v).

The tolerance values are the same scale as the (sum of) dequantized coefficient

values. In the same scale, the ranges of a DC coefficient and an AC coefficient are

7.4. A Secure and Flexible Authentication System for Digital Images 187

[0,2048) and [—1024,1024), respectively (i.e. 256 (pixel value) x8(scaling factor)). The
DC quantization error interval for the above case is [—0.5x 16 x 16, 0.5 x 16 x 16], where
Q) = 16 for 50% quality level, m = 16 and Am-(“’") = 1, and so it is [—128,128].
Compared with the value of 128, the quantization error tolerance of 60 is about half.
The results of the verification of i) and i) are shown in Table 7.4. The upper table
in Table 7.4 shows the number of DCT coefficients in a group, the compression quality
used, the verification result and the number of groups which failed the verification. For
m = 8,16, the modification was detected. The reason of this would be that the larger
m means that the larger sum of quantization errors and so the errors are too large
compared with the change by the modification, which is not very large, as shown in
Table 7.3. This suggests that protecting an image against a small change, m cannot be
large. The lower table in Table 7.4 shows the number of DCT coefficients in a group,
the median filter window size, the verification result and the number of groups which
failed the verification, and all the filtered images failed the verification. The reason
of this is that the modification by the filter spreads over the whole image and the
amount of changes is large. This can be seen from the number of blocks which failed
the verification in the table. Compared with the beauty mark modification case, it is

significantly larger.

Table 7.1: Number of coefficients per group and the MAC size.
of coef / group MAC size
8 | 24576 bytes

16 | 16384 bytes

32 | 10240 bytes

64 | 6144 bytes

Table 7.2: Precisions for linear sums (m = 8).

5 5 5 4 4 4 3 3
5 5 4 4 4 3 3 3
5 4 4 4 3 3 3 2
4 4 4 3 3 3 2 2
4 4 3 3 3 2 2 2
4 3 3 3 2 2 2 1
33 3 2 2 2 11
33 2 2 2 1 11

7.4. A Secure and Flexible Authentication System for Digital Images

188

Table 7.3: DCT coefficients of modified 8 x 8 block of lena (top) and those of the
original (bottom).

865.9 13.0 11.6 55 -164 -355 54 -26
-80.2 -19.2 6.6 -9.3 -20.7 -15.0 1.6 4.0
-221 -15 19 -1.7 -11.8 -10.2 1.0 1.6
-2 -16 6.1 27 -29 02 -45 -6.2
2.9 04 -11 -09 06 43 -29 -48
-3.6 3.4 57 -34 00 24 -09 25
3.1 -1.6 02 -1.7 1.2 23 -39 -33
-3.9 09 -18 35 19 -15 -3.0 -23
805.6 57.6 387 -442 31 -30 152 -223
-35.0 -52.6 -129 274 -358 -16.0 -6.1 18.5
44 -206 -11.2 205 -19.0 -129 -3.1 10.9
-50.2 348 279 -372 126 1.8 5.0 -23.5
254 -15.0 -77 140 -71 6.5 -8.6 2.5
-1.9 2.9 35 -18 14 03 -1.1 4.2
143 -96 -59 92 31 01 -18 -31
-245 154 9.5 -154 8.2 25 -40 -59

Please see print copy for Figure 7.12

Figure 7.12: Close up of the right eye of lena. The center 8 x 8 block is at position
(264,272) modified by a median filter with 9 x 9 window sizes.

7.4.6 Quantization Error Distribution

The following experimental results show the JPEG quantization errors with various
quality levels.
The method of obtaining quantization errors for a JPEG compressed image is as

follows.

1. Using the cjpeg command, create a JPEG compressed image from the original

pgm image.

2. Decode the compressed image using the djpeg command and obtain the de-

compressed image in pgm format.

7.4. A Secure and Flexible Authentication System for Digital Images 189

3. Then DCT transform both the original and the de-compressed images. The error
is obtained by finding the difference between two corresponding DCT coefficients

in the two images.

The distribution of the errors was obtained by integer-rounding the error values
and then counting the number of each error value.

The quality levels used for the image lena were 95%, 75%, 50% and 25%.

The graphs in Figure 7.13, 7.14, and 7.15 show the results. Fach graph shows
the distribution of a particular coefficients over the whole image when the image is
compressed and decompressed to the given quality values. The x axis shows the quan-
tization errors, the y axis is the quality level and the z axis is the frequencies of the
error values. The positions of the graphs correspond to the frequencies in 8 x 8 DCT
coefficient matrix, i.e. the top left corner corresponds to the DC coefficients, and the
bottom right corner is the distribution of AC63. The graphs show Gaussian like distri-
bution with zero mean and the lower frequency has larger variance. This means that
a sum of errors will also have Gaussian like distribution with zero mean but with a

smaller variance (See Section 7.4.1).

BE

Figure 7.13: Distribution of errors : lena.

7.5. Conclusion 190

Figure 7.14: Distribution of errors : peppers.

7.4.7 Concluding Remarks

The scheme proposed in this section uses the secret linear combination of DCT coef-
ficients so that the cost of finding the secret increases and the addition of the same
value to the DCT coefficients results in the different value without knowing the com-
bination. We showed the model of the attacks which use the verification system as the
verification oracle. In this model, it is necessary for the attacker to find all groups of
blocks to succeed. With the method in which each DCT coefficient belongs to more

than one group, the cost of attacking the system will largely increase.

7.5 Conclusion

The original scheme proposed by C. Lin and S. Chang is not secure when the pairing
function is known. The scheme does not provide security with the bounding of the DCT
coefficient ranges because the difference of two DCT coefficients does not change if the
same amount of modification is made to the both coefficients. Such modification does
not necessarily produce artifacts and so the modification can be visually undetectable.
Our scheme has improvements over SARI system for the following two points : i) the

cost of finding groups of blocks is largely increased, and i) the MAC size will be smaller

7.5. Conclusion 191

Figure 7.15: Distribution of errors : airplane.

for the same level of protection because the sum of more than two blocks is used.
The problem of the security assessment is that there is no established quantitative

method to distinguish between the change of an image due to the compression and

the malicious modification of an image. The quantitative measure is necessary for the

correct security assessment and for this, further research is needed.

7.5. Conclusion 192

Table 7.4: Detection of lena’s beauty mark (top) and detection of lena modified by a
median filter with 3 x 3, 5 x5, 7 x 7 and 9 x 9 window sizes (bottom).

m | Quality | Verification | # of grps failed
8 95% false 3
5% false 3
50% false 2
16 | 95% false 1
5% false 4
50% false 1
32 95% true
5% true
50% true
64| 95% false 1
5% true
50% true
m | filter size | Verification | # of grps failed
8 3 false 430
5 false 3462
7 false 5258
9 false 6128
16 3 false 228
5 false 2041
7 false 3115
9 false 3524
32 3 false 135
5 false 1166
7 false 1742
9 false 1951
64 3 false 105
5 false 727
7 false 971
9 false 1050

Table 7.5: Tolerance values for linear sums of m = 8 (left) and m = 16 (right).
33 22 19 33 38 43 41 391|129 26 19 34 40 47 52 49
26 25 29 26 37 58 43 55|21 25 38 37 53 93 60 54
30 26 28 50 42 35 55 28|29 29 33 50 63 58 51 35
19 36 26 31 51 44 25 25|40 35 41 52 73 80 47 44
24 23 39 51 49 24 21 320129 45 74 91 62 44 54 33
26 34 39 33 39 23 24 19|50 37 56 52 34 44 34 29
30 33 47 19 32 25 24 21|43 39 32 27 32 25 36 22
23 29 20 22 23 21 20 12|29 21 37 22 22 31 21 21

7.5. Conclusion 193

Table 7.6: Tolerance values for linear sums of m = 32 (left) and m = 64 (right).
47 26 32 50 59 111 84 63|66 40 47 8 77 75 83 86
2r 31 30 39 71 92 122 57| 60 36 28 56 92 113 77 82
42 38 39 66 53 58 67 58|39 60 40 98 73 90 73 71
42 42 45 58 59 87 66 40|39 58 57 91 144 69 80 43
55 45 80 70 70 77 40 49|66 63 114 113 73 76 51 43
66 57 56 58 50 53 26 54|57 50 70 57 53 56 34 60
45 39 33 54 40 34 26 24|45 63 50 40 39 29 29 32
36 29 22 30 33 33 44 24|46 38 36 33 41 24 34 29

Table 7.7: Tolerance values for linear sums (m = 128).
57 47 45 91 83 119 150 67
56 47 69 64 68 125 118 91
57 61 72 113 97 135 112 86
70 8 162 136 97 99 62 54
68 136 110 171 103 76 57 42
99 88 107 99 T6 96 64 56
65 44 75 49 71 48 38 30
47 47 68 54 30 37 52 29

Table 7.8: Detection of lena with an 8 x 8 block at (264,272) position, modified by a
median filter with 3 x 3, 5 x5, 7 x 7 and 9 x 9 window sizes.

of coef / group | filter size | Verification | # of groups failed
8 3 true

5 false 4

7 false 8

9 false 8
16 3 true

5 false 4

7 false 4

9 false 6
32 3 true

5) true

7 false 4

9 false 4
64 3 true

5 true

7 false 2

9 false 2
128 3 true

5) true

7 true

9 false 2

Chapter 8

Conclusion

8.1 Introduction

In this thesis, we investigated two security goals for image data, 7) image encryption
that hides the content of images, and ii) image authentication that provides assurance
for the authenticity of images. We studied existing image encryption and authenti-
cation systems and demonstrated various attacks. We proposed a number of security
systems and analyzed their security. In this chapter, we summarize image encryption

and authentication systems and give some final remarks.

8.2 Image Encryption

To design an encryption system for image data, it is important to understand how a
compression system exploits the properties of image data to remove redundancy. In
the following paragraphs we summarize the properties used to compress data in the
JPEG, MPEG and JPEG2000 compression systems.

In the JPEG and MPEG systems, pixels are transformed into coefficients using the
Discrete Cosine Transform. As the result of the transformation, the energy is packed
in the lower frequency parts, that is, lower frequency coefficients have larger values
and higher ones have smaller values. After quantization of the coefficients, many of
the higher frequency coefficients will be zero. JPEG and MPEG exploit this property
for compression by using a zig-zag scan and run-length coding of zero coefficients. If
encryption changes the order of coefficients in a block, it will result in shorter run-length
of zero coefficients and so the compression rate drops.

In JPEG2000, an image is decomposed into different frequency components, i.e.
subbands, using the Discrete Wavelet Transform. A subband that consists of wavelet

coefficients is divided into code-blocks and each code-block is independently encoded

194

8.2. Image Encryption 195

from other code-blocks. In encoding a code-block, coefficients are divided into bit-
planes and bit-planes are encoded one by one in the order of their significance, i.e. from
the most significant bit-plane to the least significant bit-plane. To generate decision-
context pairs, the encoder exploits the correlation of 3 x 3 bit neighboring regions.
Also groups of four consecutive bits are run-length coded to generate decision-context
pairs. The decision-context pairs are encoded using the adaptive binary arithmetic
coder. If encryption destroys the correlation of neighboring regions or that of the four
consecutive bits, the compression rate will drop.

Image encryption systems must be computationally inexpensive to be able to cope
with the large size of image data. To encrypt images, there are two approaches :
i) using elementary cryptographic operations, and i) selective encryption. These two
can be combined together. First we summarize systems using elementary cryptographic

operations and then selective encryption systems.

8.2.1 Encryption Using Elementary Cryptographic Operations

Elementary cryptographic operations require small computational power and hence the
drop in coding speed can be ignored. In some existing systems, including the JPEG2000
encryption system proposed in this thesis, encryption takes place after quantization and
before entropy encoding. Permutation of DCT coefficients as used by Tang [107] and

Shin et al. [95] is ineffective because of the following reasons.

1. The permutation changes the order of frequencies, and so the higher frequency
parts in 8 x 8 blocks will include many non-zero coefficients. This will result in

shorter run-lengths of zero coefficients and so the compression rate will drop.

2. Lower frequency coefficients have larger values and so images can be reasonably
approximated by sorting coefficients in blocks. This can be seen in Figure 3.2
and 3.3 in Chapter 3. Hence, the permutation of DCT coefficients by itself does

not provide high security.

In our JPEG2000 encryption system, groups of four consecutive bits in a bit-plane
are randomly scanned. The random scan was designed to satisfy the following two

conditions :

1. The original four bit sequences are kept intact and so the correlation of the four

bits is not destroyed.

8.2. Image Encryption 196

2. We chose a random scan instead of a random permutation of coefficients because
the random scan does not change the positions of coefficients in the code-block

and so there is no impact on the correlation of neighboring 3 x 3 bit regions.

3. The random scan changes the order of decision-contert pairs that are encoded
using the adaptive binary arithmetic coder. However, the adaptive binary arith-
metic coder uses an order-0 model and the order of input symbols has very small

impact on its compression ratio.

As shown in our experiments in Table 6.2 in Chapter 6, the drop in compression rate
due to encryption is less than 3%.

The permuted DCT coefficients can be easily recovered by sorting them but this is
not true for the DW'T coefficients. This is because in the case of DW'T, the coefficients
in the same subband (frequency) are permuted while in the case of DCT, those in
different frequencies are permuted. If two dimensional discrete wavelet transform is
used, DWT coefficients in a subband and pixels at the corresponding region in the
image have relationship and so the values of coefficients vary with images. This means
that if the original image is not known, it is difficult to recover the correct order of the
coefficients.

We showed that the chosen coefficients attack is not effective against the JPEG2000
encryption system. The chosen coefficients attack tries to find the permutation by
comparing the original coefficients with the inverse-permuted ones. To obtain the
inverse-permuted coefficients, it is necessary to correctly decode the encrypted stream.
In JPEG2000, the adaptive arithmetic coder uses more than one model and the order
that the models are used is hidden by the random scan. If the same adaptive model is

not used in the encoder and the decoder, decoding will fail and so will the attack.

8.2.2 Selective Encryption

Selective encryption allows the use of well-studied security algorithms for encryption. In
a selective encryption system, data is encrypted i) after quantization and before entropy
coding, or ii) after entropy coding. The data to be encrypted can be i) transformed
coefficients, and/or 1) decoding parameters such as Huffman tables. The chosen data
are encrypted using encryption algorithms such as DES. The choice of the part to be
encrypted is crucial for security.

The encryption system proposed by Shin et al. [95] encrypts the sign bits of the

8.2. Image Encryption 197

difference of two DC coefficients using DES, RC4 and RC5, and permutes AC coef-
ficients. The permutation can be found by a known image attack which compares
the coefficients of a known picture sequence with the permuted ones, or the chosen
coefficient attack. We have shown in Chapter 4 that if the AC coefficients are known,
DC coefficients can be recovered by exploiting the smoothness of images. In an image,
neighboring pixels are likely to have similar values. If AC coefficients are known, we
can construct DC-free 8 x 8 pixel blocks from AC coefficients and then estimate DC
values of blocks by modifying all pixel values in a block by the same amount such that
the pixels on the border of the block and its neighboring ones have similar values.
For a JPEG stream, we showed the following four conditions that need to be satisfied

for choosing the parts to be encrypted.

Condition 1 Without the encrypted data, it must be difficult to decode the JPEG

stream.

Condition 2 It must be difficult to derive the encrypted data from other information

in the same JPEG stream.

Condition 3 The encrypted data must be highly dependent on the image and so the

corresponding data from similar images will not be useful.
Condition 4 The search space of the encryption key must be large.

For the JPEG system, we chose the Huffman table specification part, which satisfies
these four conditions. It is image dependent and the number of possible the Huffman
codes is large. It is shown by Fraenkel and Klein [28] that finding Huffman code for
an Huffman coded stream which is similar to the JPEG one, is NP-complete and so
finding the Huffman code from the entropy coded data in the JPEG stream will be
hard.

Typically the size of Huffman table specification data is less than 200 bytes per
JPEG stream and so the additional computational cost for encryption is very small.
Since the data is encrypted after compression, there is no impact on compression rate.
The typical size for MPEG encryption systems [69, 79, 92, 94] is 10% to 50% of the
MPEG stream, although it cannot be directly compared with that of JPEG encryption

systems because of the difference of the structures of the two streams.

8.3. Image Authentication 198

8.3 Image Authentication

In general image data is in a compressed form due to its large size, and the compression
algorithms are usually lossy. Because of this, unlike data authentication systems that
must detect a single bit change in data, image authentication systems must remain
tolerant to changes due to lossy compression.

Image authentication systems are divided into two classes :

1. Watermarking systems which embed a watermarking signal when signing images

and extract the same signal when verifying images.

2. Signature systems which generate hashes from images when signing images and
compare the hashes of the original images with the ones generated from the

received images when verifying them.

In watermarking systems for image authentication, fragile watermarking is used
which is sensitive to modifications. However, if a fragile watermark is embedded in the
pixel domain, it is likely not to survive lossy compression. For a fragile watermark to
survive lossy compression, the level of the embedded signal must be increased and this
will degrade the quality of the image.

On the other hand, signature systems do not degrade image quality. They use either
hash functions or a MAC, and so require appending data to the image. For example,
a signature system proposed by Bhattacharjee and Kutter [12] extracts features that
are signed by the private key of a public key encryption system, and SARI [58] uses a
MAC. Our proposed system is an extension of the SARI system. The original SARI
system is not secure when the pairing function is known because the difference of two
DCT coefficients does not change if the same amount of modification is made to both
the coefficients. Such modification can be made visually undetectable. Our scheme
improves the SARI system in terms of : i) security because the cost of finding groups
of blocks is largely increased, and i) efficiency because the MAC size is smaller for the

same level of protection.

8.4 Further Research

8.4.1 Image Encryption

There are combined compression and encryption schemes for entropy coders [120, 56,

40, 62, 113]. Since many image compression systems use entropy coders, such combined

8.4. Further Research 199

compression and encryption systems can replace the original entropy coders in image
compression systems. Secure entropy coders usually have a small computation cost and
a small drop in compression rate, and so are suitable to be incorporated in the image
compression systems. Although there are attacks against the combined compression
and encryption systems [11, 56, 40, 113, 112], all known attacks are chosen plaintext
attacks and the security of these systems against other types of attacks is an open

problem.

8.4.2 Image Authentication

An attack against watermarking systems that are used in trusted devices, such as
digital cameras described by Wu and Liu [123], raises an important question about
the applicability of image authentication systems. The problem can be described as
follows. An attacker can obtain a modified image which will pass the verification check
of the authentication system by taking a picture of a modified image using the trusted
device. The picture taken is unlikely to contain the original fragile watermark because
of its fragility. The verification system will detect the new watermark inserted by the
device but it does not detect the old watermark in the original image and so it fails to
detect the modifications of the image.

To avoid this attack, Wu and Liu [123] suggested the use of a pair of robust and
fragile watermarks. If an image is modified using the attack, the verification system
can detect the two robust watermarks, the one which the original image had and the
other that was newly inserted by the device. However, most of the proposed fragile
watermarking systems are not able to detect multiple watermarks in images. If the
attack is used against image signature systems, a new signature will be generated by
the trusted device when the picture of the modified image is taken. The verification
system does not have ability to find that the picture is taken from the modified image
because the signature is not embedded in the image and so there is no evidence that
shows the link between the original image and the new signature corresponding to the
modified one. For signature systems, protecting against this type of attacks is an open
problem.

Although there are many proposed image authentication systems using watermarks,
many of them have not been cryptanalyzed. There are publicly accepted definitions
of attack operations for robust watermarking systems, and they are implemented in
software such as Stirmark [78], Checkmark [24] and Optimark [1]. However, there are

no such well defined operations for image authentication systems and such well defined

8.4. Further Research 200

attack operations are essential to assess security of the systems. To define such attack

operations further research is required.

Bibliography

1]
2]

[10]

Optimark. http://poseidon.csd.auth.gr/optimark/, 2002.

I. Agi and L. Gong. An Empirical Study of Secure MPEG Video Transmissions.
In Proceedings of the Internet Society Symposium on Network and Distributed
Systems Security, pages 137-144, Feb 1996.

N. Ahmed, T. Natarajan, and K. R. Rao. Discrete Cosine Transform. IEEE
Trans. on Computers, C-23:90-93, 1974.

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image Coding Using
Wavelet Transform. IEEE transactions on image processing, 1:205-220, Apr 1992.

K. Aoki and H. Lipmaa. Fast Implementations of AES Candidates. Third AES
Candidate Conference, 2000.

G. R. Arce, L. Xie, and R. F. Gravemen. Approximate message authenti-
cation codes. In Proc. jrd Annual Fedlab Symp. Advanced Telecommunica-
tion/Information Distribution, Mar 2000.

A.Said and W.A.Pearlman. A New, Fast, and Efficient Image Codec Based on
Set Partitioning in Hierarchical Trees. IEEFE transactions on circuits and systems
for video technology, 6:243-250, 1992.

H. Beker and F. Piper. Cipher Systems, The Protection of Communications.
Northwood Publications, 1982.

T. C. Bell, I. H. Witten, and J. G. Cleary. Text Compression. Prentice-Hall,
1990.

H. A. Bergen and J. M. Hogan. Data security in a fixed-model arithmetic coding
compression algorithm. Computers and Security, 11:445-461, 1992.

201

BIBLIOGRAPHY 202

[11]

[12]

[13]

[14]

[15]

[21]

[22]

H. A. Bergen and J. M. Hogan. A chosen plaintext attack on an adaptive arith-
metic coding compression algorithm. Computers and Security, 12:157-167, 1993.

S. Bhattacharjee and M. Kutter. Compression tolerant image authentication.
in Proc. IEEE Int. Conference in Image Processing, vol. 1, pages 435-439, Oct
1998.

J. Bradley. zv. ftp.cis.upenn.edu, 1994.

H. Cheng and X. Li. On The Application of Image Decomposition to Image
Compression and Encryption. Communication and multimedia Security II, pages
116-127, 1996.

S. Cheng, P. Litva, and A. Main. Trusting DRM Software. W3C' Workshop on
DRM, January 2001 : http://www.w3.org/2000/12/drm-ws/pp/cloakware. html,
2001.

R. J. Clarke. Transform Coding of Images. Academic Press, London, 1985.

J. G. Cleary, S. A. Irvine, and I. Rinsma-Melchert. On the Insecurity of Arith-
metic Coding
. http://www. cs.waikato.ac.nz/ sirvine/, Sep 1995.

Y. Cohen, M. Landy, and M. Pavel. Hierarchical Coding of Binary Images. IEEE
Trans. on Pattern Analysis and Machine Intelligence, pages 284-298, 1985.

C. J. Colbourn and J. H. D. (Eds.). CRC Handbook of Combinatorial Designs.
FL: CRC Press, 1996.

[. J. Cox, J. Kilian, T. Leighton, and T. Shamoon. Secure Spread Spectrum
Watermarking for Multimedia. NEC' Research Institute Technical Reporrt 95-10,
Oct 1995.

[. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Comm.
Pure Appl. Math, 41:909-996, 1988.

G. Davis. Baseline Wawvelet Transform Coder Construction Kit.

http://www.cs.dartmouth.edu/~gdavis/ wavelet/wavelet.html, 1997.

S. Devadhar, C. Krumbein, and K. M. Liu. MPEG Background.
http://bmre.berkeley.edu/research/mpeg/mpeg_overview.html, 2000.

BIBLIOGRAPHY 203

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

37]

S. P. et al. Checkmark. http://watermarking.unige.ch/Checkmark/indez.htm,
2002.

F. Miiller. Distribution shape of two-dimensional DCT coefficients of natural
images. FElectron. Lett., 29:1935-1936, 1999.

N. Farvardin and J. W. Modestino. Optimum quantizer performance for a class of
non-Gaussian memoryless sources. IEEE Trans. Inform. Theory, 30(3):485-497,
1984.

E. F. Foundation. EFF DES Cracker Project.
http://www.eff.org/descracker.html, 1999.

A. S. Fraenkel and S. T. Klein. Complexity Aspects of Guessing Prefix Codes.
Algorithmica, 12:972-976, 1994.

J. Fridrich. Image Watermarking for Tamper Detection. Proc. IEEE Int. Conf.
on Image Proc., pages 404-408, Oct 1998.

D. L. Gall. MPEG : A Video Compression Standard for Multimedia Applications.
Communications of the ACM, 34:46-58, Apr 1991.

R. Gonzalez and R. Woods. Digital Image Processing. Addison-Wesley, 1992.

R. F. Gravemen and K. Fu. Approximate message authentication codes. In
Proc. 3rd Annual Fedlab Symp. Advanced Telecommunication/Information Dis-
tribution, Feb 1999.

E. Hamilton. JPEG File Interchange Format. 1992.

J. J. Hoy. Declaration of John J. Hoy, Superior Court of the State of California.
Awailable at http://cryptome.org/dvd-v-521.htm#3, 1999.

D. Huffman. A Method for the Construction of Minimum Redundancy Codes.
Proc. IRE, 40:1098-1101, Sept 1952.

Image Power, Inc. and University of British Columbia. JasPer Version 0.072.

http://www.ece.ubc.ca/ mdadams/jasper/, 2000.

R. S. Inc. RSA Laboratories — Cryptography FAQ — Has DES been broken?
http://www.rsasecurity.com/rsalabs/faq/3-2-2.html, 2003.

BIBLIOGRAPHY 204

[38]

[39]

[40]

[41]

[42]

[43]

[46]

[47]

[48]

[49]

[50]

[51]

A. N. S. Inst. ANSIT X.3.92 American National Standard for Data Encryption
Algorithm. Amer. Nat. Stand. Inst., 1981.

A. N. S. Institute. ANSI X9.31 : Public Key Cryptography Using Reversible
Algorithms for the Financial Services Industry: Part 2: The MDC-2 Hash Algo-
rithm. American National Standard X9.31-1992, 1993.

S. A. Irvine. PhD thesis
. http://www. cs.waikato.ac.nz/ " sirvine/, 1995.

S. A. Trvine, J. G. Cleary, and I. Rinsma-Melchert. The subset sum problem and
arithmetic coding
. http://www. cs.waikato.ac.nz/ sirvine/, Sep 1995.

ISO/IEC. MPEG Standard. http://www.mpeg.org, 1998.

ISO/IEC. JPEG 2000 Part 1 Final Committee Draft Version 1.0. ISO/IEC JTC
1/SC29 WG 1, March 2000.

ISO/IEC. JPEG 2000 Verification Model 8.5. ISO/IEC JTC 1/SC29 WG 1,
September 2000.

ITU. JPEG Standard : CCITT Recommendation T.81. International Telecom-

munication Union, 1993.
J. Johansen. DeCSS. Available at hitp://www-2.cs.cmu.edu/ dst/DeCSS/, 1999.

R. L. Joshi and T. R. Fischer. Comparison of Generalized Gaussian and Laplacian
Modeling in DCT Image Coding. [EEE Signal Processing Letters, 2(5):81-82,
1995.

D. Kirovski, M. Peinado, and F. A. P. Petitcolas. Digital Rights Management
for Digital Cinema. Security in Imaging: Theory and Applications, International

Symposium on Optical Science and Technology, 2001.

D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume
3. Journal of Algorithms, 1973.

D. E. Knuth. Dynamic Huffman Coding. Journal of Algorithms, 6:163-180, 1985.

L. Kraft. A Device for Quantizing, Grouping and Coding Amplitude Modulated
Pulses. M.S. Thesis, Dept. Elec. Eng., MIT, Cambridge, MA, 1949.

BIBLIOGRAPHY 205

[52]

[53]

[54]

[58]

[61]

[62]

[63]

M. Kuribayashi and H. Tanaka. A Watermarking Scheme Based on the Char-
acteristic of Addition among DCT coefficients. Proceedings of ISW2000, pages
1-14, 2000.

X. Lai and J. L. Massey. A Proposal for a New Block Encryption Standard.
Advances in Cryptology - EUROCRYPT’90 Proceedings, pages 390-404, 1991.

E. Lam and J. Goodman. A mathematical analysis of the DCT coefficient dis-
tributions for images. IEEFE transactions on image processing, 9:1661-1666, Oct
2000.

Y. Li, Z. Chen, S.-M. Tan, and R. H. Campbell. Security Enhanced MPEG
Player. In Proceedings of IEEFE first International Workshop on Multimedia Soft-
ware Development (MMSD 96), pages 169-175, Mar 1996.

J. Lim, C. Boyd, and E. Dawson. Cryptanalysis of Adaptive Arithmetic Coding
Encryption Schemes. ACISP, pages 216-227, 1997.

C. Lin and S. Chang. A Robust Image Authentication Method Distinguishing
JPEG Compression from Malicious Manipulation. CU/CTR Technical Report
486-97-19, Dec 1997.

C.-Y. Lin and S.-F. Chang. Robust Image Authentication Method Surviving
JPEG Lossy Compression. Storage and Retrieval for Image and Video Databases
(SPIE), pages 296-307, 1998.

C.-Y. Lin and S.-F. Chang. SARI : Self-Authentication-and-Recovery Image
Watermarking System. Proc. of ACM Multimedia 2001, pages 628-629, 2001.

E. T. Lin and E. J. Delp. A Review Of Fragile Image Watermarks. Proceedings
of the Multimedia and Security Workshop, ACM Multimedia '99, pages 25—29,
Oct 1999.

H. Lipmaa. AES Candidates: A Survey of Implementations. available at
http://www.tcs.hut.fi/ helger/aes/, 2003.

X. Liu, P. G. Farrell, and C. Boyd. Resisting the Bergen-Hogan Attack on
Adaptive Arithmetic Coding. IMA Conference on Coding and Crypt, 1998.

B. Macq and J. Quisquater. Cryptology for Digital TV Broadcasting. Proceedings
of the IEEE, 83:944-957, June 1995.

BIBLIOGRAPHY 206

[64]

[65]

S. G. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation. IFEFE transactions on pattern analysis and machine intelligence,
11:647-693, Jul 1989.

K. Matsui and K. Tanaka. Video-steganography : How to Secretly Embed a
Signature in a Picture. IMA Intellectual Property Project Proceedings, pages
187-206, Oct 1994.

M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryp-
tology - Eurocrypt 93, Proceedings, 765:386-397, 1994.

N. Memon and P. W. Wong. Protecting Digital Media Content. Comm. of the
ACM, pages 35—43, July 1998.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press [SBN 0-8493-8523-7, 1996.

J. Meyer and F. Gadegast. Security Mechanisms for Multimedia-Data with the
Example MPEG-1-Video. Project description of SECMPEG. Technical University
of Berlin, Germany, May 1995.

MPEG Software Simulation Group. MPEG-2 encoder/decoder.
http://www.mpeg.org/ MPEG/MSSG/, 1996.

M. Naor and O. Reingold. On the construction of pseudo-random permutations:
Luby-Rackoff revisited. J. of Cryptology, pages pp29-66, 1999.

M. Naor and O. Reingold. Constructing Pseudo-Random Permutations with a

Prescribed Structure. .J. of Cryptology, 2001.

National Institute of Standards and Technology. Advanced Encryption Standard
(AES). http://csre.nist.gov/publications/drafts/dfips-AES.pdf, 2001.

NEC Electronics America, Inc. puPD61132 MPEG2 Decoder available at
http://www.necelam.com/digitalav/uPD61132.cfm. 2003.

N.Memon, S.Shende, and P.Wong. On the security of the Yueng-Mintzer Au-
thentication Watermark. Final Program and Proceedings of the IS€T PICS 99,
pages 301-306, 1999.

BIBLIOGRAPHY 207

[76] U. of Commerce/National Institute of Standards and Technology. FIPS PUB 186-
2 : Digital Signature Standard (DSS). Federal Information Processing Standards
Publication, 2000.

[77] R. Pasco. Source Coding Algorithms for Fast Data Compression. 1976.

[78] F. A. P. Petitcolas. Stirmark. http://www.cl.cam.ac.uk/fapp2/watermarking/stirmark/,
2002.

[79] L. Qiao and K. Nahrstedt. A New Algorithm for MPEG Video Encryption. In
Proceedings of The First International Conference on Imaging Science, Systems,
and Technology (CISST’97), July 1997.

[80] L. Qiao and K. Nahrstedt. Comparison of MPEG Encryption Algorithms. In-
ternational Journal on Computers and Graphics, Special Issue: Data Security in

Image Communication and NetWork, Jan 1998.

[81] L. Qiao, K. Nahrstedt, and M.-C. Tam. Is MPEG Encryption Using Random
Lists instead of Zig Zag Order Secure? In Proceedings of 1997 IEEE International

Symposium on Consumer FElectronics, Dec 1997.

[82] R. Radhakrishnan and N. Memon. On the Security of the SARI Image Authen-
tication System. Proc. of International Conference on Image Processing, pages
971-974, 2001.

[83] J. Rissanen. Generalized Kraft Inequality and Arithmetic Coding. IBM
J.Res.Devel., 20:198-203, 1976.

[84] R. L. Rivest. The MD5 Message Digest Algorithm. Internet draft RFC1321,
April 1992.

[85] R. L. Rivest. The RC/ Encryption Algorithm. RSA Data Security, Inc, Mar
1992.

[86] R. L. Rivest. The RC4 Encryption Algorithm. Dr Dobb’s Journal, 20:146-148,
Jan 1995.

[87] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the ACM, 21:120—
126, 1978.

BIBLIOGRAPHY 208

38

[89]

[90]

[91]

[92]

93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

D. Salomon. Data compression : the complete reference 2nd edition. Springer-
Verlag NewYork, Inc. ISBN 0-387-95045-1, 2000.

M. Schneider and S. F. Chang. A Robust Content Based Digital Signature for
Image Authentication. 1996.

J. M. Shapiro. An Embedded Wavelet Hierarchical Image Coder. Intl. Conf. on
Acoustics, Speech, and Signal Processing, 4:657-660, 1992.

J. M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coefficients.
IEEFE transactions on signal processing, pages 3445-3462, 1993.

C. Shi and B. Bhargava. A Fast MPEG Video Encryption Algorithm. In Proceed-
ings of 6th ACM International Multimedia Conference, pages 81-88, Sep 1998.

C. Shi and B. Bhargava. An Efficient MPEG Video Encryption Algorithm. In
Proceedings of 17th IEEE Symposium on Reliable Distributed Systems, pages
381-386, Oct 1998.

C. Shi, S.-Y. Wang, and B. Bhargava. MPEG Video Encryption in Real-time
Using Secret Key Cryptography. 1999.

S. U. Shin, K. S. Sim, and K. H. Rhee. A Secrecy Scheme for MPEG Video Data
Using the Joining of Compression and Encryption. ISW’99, pages 191-201, 1999.

B. Shneier. Applied Cryptography, Second Edition. John Wiley & Sons, Inc,
ISBN0-471-12845-7, 1996.

E. Shusterman and M. Feder. Image Compression via Improved Quadtree De-

composition. IEEE Trans. on Image Processing, pages 207-215, 1994.

[. S. P. Society. Signal Processing Magazine : Digital Watermarking, ISSN 1053-
888. Sep 2000.

G. Spanos and T. Maples. Performance Study of a Selective Encryption Scheme
for the Security of Networked, Real-time Video. In Proceedings of 4th Interna-

tional Conference on Computer Communications and Network, Sep 1995.

F. A. Stevenson. Cryptanalysis of Contents Scrambling System.
http://www.derfrosch.de/, 1999.

F. A. Stevenson. Successfull attack on CSS algorithm. Livid-dev, 1999.

BIBLIOGRAPHY 209

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

114]

B. Stickney. MPEG-2 or MJPEG? Videomedia
http://www.videomedia.com/mpeg.htm, 1993.

D. R. Stinson. Cryptography : Theory and Practice. CRC Press ISBN 0-8493-
8521-0, 1995.

G. Strang. The Discrete Cosine Transform. G. Strang, The Discrete Cosine
Transform, STAM Review, 1999.

P. Strobach. Quadtree-structured Recursive Plane Decomposition Coding of Im-
ages. IEEE Trans. on Signal Processing, pages 1380-1397, 1991.

M. D. Swanson, M. Kobayashi, and A. H. Tewfik. Multimedia Data-Embedding
and Watermarking Technologies. Proc. of the IEFE, 86:1064-1087, June 1998.

L. Tang. Methods for Encrypting and Decrypting MPEG Video Data Efficiently.
In Proceedings of the ACM Multimedia96, pages 219-229, Nov 1996.

D. Taubman. High Performance Scalable Image Compression with EBCOT.
Proceedings of International Conference on Image Processing, 3:344-348, 1999.

D. Taubman. High Performance Scalable Image Compression with EBCOT.
IEEFE Transactions on Image Processing, 9:1158-1170, July 2000.

D. Taubman and A. Zakhor. Multirate 3-D Subband Coding of Video. IEFEE
transactions on image processing, 3:572—588, Sep 1994.

The Independent JPEG Group. JPEG software release 6b (jpeg-6D).
http://www.ijg.org, 1998.

T. Uehara and R. Safavi-Naini. Attack on Liu/Farrell/Boyd Arithmetic Coding
Encryption Scheme. Proc. of Communications and Multimedia Security Joint
Work Conference IFIP TC6 and TC11, Sep 1999.

T. Uehara and R. Safavi-Naini. Attacking and Mending Arithmetic Coding En-
cryption Schemes. Proc. of Australasian Computer Science Conference, pages
408-419, Jan 1999.

T. Uehara and R. Safavi-Naini. Chosen DCT Coefficients Attack on MPEG
Encryption Schemes. Proc. of IEEE Pacific-Rim Conf. on Multimedia, pages
316-319, Dec 2000.

BIBLIOGRAPHY 210

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

B. University of California. MPEG Background.
http://bmre.berkeley.edu/research/mpeg/, 2000.

R. Venkatesan, S.-M. Koon, M. H. Jakubowski, and P. Moulin. Robust Image
Hashing. Proc. IEEFE Int. Conf. on Image Proc., 2000.

S. Verdu’. Fifty Years of Shannon Theory. IEEE Trans. on Information Theory,
pages 2057-2078, Oct 1998.

J. D. Villasenor, B. Belzer, and J. Liao. Wavelet Filter Evaluation for Image
Compression. IEEFE transactions on image processing, 4:1053-1060, Aug 1995.

E. W. Weisstein. Steiner System — from MathWorld. MathWorld :
http://mathworld.wolfram.com/SteinerSystem.html, 1999.

I. H. Witten and J. G. Cleary. On the Privacy Afforded by Adaptive Text
Compression. Computers and Security, 7:397—408, 1988.

I. H. Witten, R. Neal, and J. G. Cleary. Arithmetic Coding for Data Compression.
Comm ACM, pages 520-540, June 1987.

P. W. Wong. A Public Key Watermark for Image Verification and Authentication.
Proc. IEEE Int. Conf. on Image Proc., 1:455-459, Oct 1998.

M. Wu and B. Liu. Attacks on Digital Watermarks. 33th Asilomar Conference
on Stgnals, Systems, and Computers, pages 1508-1512, 1999.

W. Wu and B. Liu. Watermarking For Image Authentication. Proc. IEEE Int.
Conf. on Image Proc., pages 437-441, 1998.

L. Xie and G. R. Arce. Joint wavelet compression and autheitcation watermark-
ing. In Proc. IEEE Int. Conf. on Image Processing, pages 427-431, Oct 1998.

L. Xie and G. R. Arce. Approximate Image Message Authentication Codes. IEFE
Trans. on Multimedia, pages 242-252, June 2001.

M. Yeung and F. Mintzer. An Invisible Watermarking Technique for Image
Verification. Proc. IEEE Int. Conf. on Image Proc., 1997.

M. M. Yeung. Digital Watermarking. Comm. of the ACM, pages 31-33, July
1998.

BIBLIOGRAPHY 211

[129] E. Young. DES library. FreeBSD, 1997.

[130] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, 1T-23:337-343, May 1977.

[131] J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-rate

Coding. IEEFE Transactions on Information Theory, 1T-24:530-536, Sept 1978.

	University of Wollongong - Research Online
	Cover page

	Copyright warning
	Title page
	Declaration
	Abstract
	Acknowledgments
	Publications
	Contents
	List of tables
	List of figures
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	Chapter six
	Chapter seven
	Chapter eight
	Bibiography

	Please see print copy for Figure 1:
	1: Please see print copy for Figure 1.1
	2: Please see print copy for Figure 1.2

	Please see print copy for Figure 2:
	8: Please see print copy for Figure 2.8

	Please see print copy for Figure 3:
	2: Please see print copy for Figure 3.2
	3: Please see print copy for Figure 3.3

	Please see print copy for Figure 4:
	1: Please see print copy for Figure 4.1
	4: Please see print copy for Figure 4.4
	5: Please see printk copy for Figure 4.5
	6: Please see print copy for Figure 4.6

	Please see print copy for Figure 5:
	2: Please see print copy for Figure 5.2
	7: Please see print copy for Figure 5.7
	8: Please see print copy for Figure 5.8

	Please see print copy for Figure 6:
	1: Please see print copy for Figure 6.1
	2: Please see print copy for Figure 6.2
	3: Please see print copy for Figure 6.3
	5:
	6: Please see print copy for Figure 6.6
	7: Please see print copy for Figure 6.7
	8: Please see print copy for Figure 6.8
	9: Please see print copy for Figure 6.9
	10: Please see print copy for Figure 6.10
	11: Please see print copy for Figure 6.11
	12: Please see print copy for Figure 6.12
	13: Please see print copy for Figure 6.13
	14: Please see print copy for Figure 6.14
	15: Please see print copy for Figure 6.15
	16: Please see print copy for Figure 6.16
	18: Please see print copy for Figure 6.18
	19: Please see print copy for Figure 6.19
	20: Please see print copy for Figure 6.20

	Please see print copy for Figure 6:
	17: Please see print copy for Figure 6.17

	Please see print copy for Figure 7:
	2: Please see print copy for Figure 7.2
	3: Please see print copy for Figure 7.3
	4: Please see print copy for Figure 7.4
	5: Please see print copy for Figure 7.5
	6: Please see print copyfor Figure 7.6
	10: Please see print copy for Figure 7.10
	11: Please see print copyfor Figure 7.11
	12: Please see print copy for Figure 7.12

