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Abstract

Worldwide nanotechnology is a major focus in science and technology, and most
research in this area deals with chemical, physical and biological issues or a combina-
tion of these areas, but to date very little work has been undertaken on mathematical
modelling. Rather than employing large-scale computations using molecular dynam-
ics simulation, in this thesis elementary mechanical principles and classical applied
mathematical modelling procedures are utilised to examine three specific areas in
nanotechnology.

Firstly, the Lennard-Jones potential function for the non-bonded interaction po-
tential energy between two molecules and the continuum approximation, which as-
sumes that the interatomic interactions can be modelled by smearing the atoms
uniformly across surfaces, are undertaken to investigate the mechanical properties
of certain nanostructures, namely double-walled carbon nanotubes, nanopeapods,
nanocones and carbon onions. Owing to their special mechanical, electrical and ther-
mal properties, these nanostructures promise many applications for future nanoscale
devices, such as nano-bearings and nano-oscillators. This thesis examines issues re-
garding nano-oscillators constructed from these nanostructures. In particular, the
van der Waals interaction energy, the suction energy, the offset location and the oscil-
latory behaviour are determined. Analytical expressions are obtained as a function
of the radii and the lengths of the structures. In addition, all the predicted mechan-
ical properties derived here are in excellent agreement with results from molecular
dynamics simulations.

The second area is the joining of nanostructures by invoking the principle that
the atoms arrange themselves in such a way that the total squared deviation of the
distance between atoms at the junction and some ideal bond length is a minimum.
Initially, toroidal molecules are described, which are formed from three distinct car-
bon nanotube sections, through minimisation of the total squared deviation of the
distance between two carbon atoms at the junction from the ideal physical bond
length. Representative formulae for the mean generating toroidal radius and tube
radius of the tori are determined. Following this is to determine the perpendicular
joining structures for carbon nanotubes and flat graphene by two least squares ap-

proaches, which are the variation in bond length and the variation in bond angle.
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Such a combined structure might constitute a transmission platform for ultra small
computer chips. Given that the corresponding boron nitride nanostructures are also
good semiconductors, the corresponding combined structures are also determined.
However, the essential mathematical ideas for combining boron nitride structures are
quite different to those required for connecting the corresponding carbon structures,
since only rings with an even number of sides are energetically favourable.

The third area in this thesis involves the elastic model of carbon nanotubes.
Here, carbon nanotubes are assumed to be modelled as transversely isotropic linearly
elastic materials which have the same properties in one plane, but vary in the normal
direction to this plane. The equilibrium equations are derived and they can be
shown to generalise those for isotropic materials. Further, wave-like deformations
on the outer-most surface of the oscillating carbon nanotubes are investigated. On
neglecting any frictional effects and assuming that the inner surface atoms of the
outer tube and those located on the outer surface of the inner tube dominate the
van der Waals force, expressions for displacements in the r- and z-directions are
obtained.

The major contribution of this thesis is the use of conventional applied mathe-
matical modelling techniques to formulate analytical expressions for nanostructures.
Broadly three mechanical issues are studied, including (i) van der Waals interaction
energy and oscillatory behaviour for nanostructures, (ii) geometry of combining two
nanostructures and (iii) deformation of carbon nanotubes as transversely isotropic
materials. However, many of the theoretical structures proposed here have yet to
be confirmed either experimentally or by molecular dynamics simulations; and as
such the work might be considered as a first step to settling some of the important
physical principles in nanotechnology. In summary, the new elements of the thesis

comprise:

e Analytical expressions to determine the equilibrium locations, force distribu-

tions and oscillatory behaviours for nested nanostructures,
e Simple least squares methods to connect two nanostructures,

e Flastic model for the deformations of double-walled carbon nanotubes.
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Chapter 1

Overview

1.1 Background

Mathematics is the natural language of science which focuses on such issues as quan-
tity, structure, space, and change. Mathematicians investigate such concepts aiming
to formulate new conjectures and establish their results by expressions and defini-
tions that are universally applicable. Nowadays, mathematics is used throughout
many fields, including medicine and economics. There are two main branches for
the study of mathematics which are applied mathematics and pure mathematics.
In terms of applied mathematics, it is the application of mathematics for which a
new discovery can be inspired and made practically useful. Without having any
application in mind, pure mathematics provides its own interest and its relevance is
often made meaningful much later.

Nanotechnology is multidisciplinary, drawing from fields such as physics, chem-
istry, biology, material science, and mechanical and electrical engineering. The
underlying theme of nanotechnology is the control of matter on the atomic and
molecular levels where physical properties are size dependent. The word “nano” is
the prefix 107, so one nanometer is one billionth of a meter. To put this scale in
context, the radius of a human hair is around 7000 nanometers and the size of a virus
ranges from 15 to 600 nanometers. The word “technology” is the branch of knowl-
edge that deals with creation, such as industrial arts, engineering, applied science,
and pure science. Therefore, “nanotechnology” might be referred to as the study of
those small-scale objects which can be assembled to create a novel device. Examples
of nanotechnology in modern use are the present day manufacture of textiles, the

design of computer chips and the carbon fibre in optical wires.
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Worldwide nanotechnology is a current major focus in science and technology.
Most research in nanotechnology deals with chemical, physical and biological issues
or a combination of these areas, but to date very little work has been undertaken
on mathematical modelling which can significantly reduce the time taken in the
trial-and-error processes leading to applications, and which in turn decreases the
research cost. Rather than employing large-scale computations using molecular
dynamics simulations, here elementary mechanical principles and classical mathe-
matical modelling procedures are utilised to investigate the mechanics of nanoscale
systems. The models developed in this thesis involve the three specific areas as

follows:

1. Continuum modelling of nanostructures, particularly for the van der Waals

interaction energy and oscillatory behaviour,

2. Geometry of joining nanostructures, to form toroidal molecules from carbon

nanotube elbows and to connect nanotubes with a hexagonal sheet,

3. Elasticity of carbon nanotubes, particularly the model of carbon nanotubes as

a transversely isotropic linear elastic material.

1.1.1 Continuum modelling for nanostructures

Nanostructures such as carbon nanotubes, nanopeapods, nanocones and carbon
onions, provide a possible new basis for the creation of many nano-devices due
to their outstanding properties such as their high strength, high flexibility and
low weight. One application which has attracted much consideration is as nano-
oscillators [1-4], which can generate frequencies in the gigahertz range [4], and which
may form the basis of possible devices in the computer industry. Since the discov-
ery of ultra low friction by Cumings and Zettle [1], double-walled carbon nanotube
oscillators have been widely studied using both molecular dynamics simulations and
experiments [2, 4-7]. In addition, carbon nanotubes have received much attention
for medical applications, especially their use as nanocontainers for drug and gene
delivery. In particular, a well-known self-assembled hybrid carbon nanostructure,

so-called nanopeapods, may be regarded as a model for possible drug carriers, where
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the carbon nanotube can be thought of as the nanocontainer and the Cgg molecular
chain can be considered as the drug molecule [§].

Nanocones have received much less attention in the literature, primarily because
only a small amount of cones tend to occur in the production process [9]. How-
ever, the narrow vertex of a cone is an ideal candidate for nanoprobes in scanning
microscopy [10]. Furthermore, boron nitride structures are good electrical semicon-
ductors and may also be utilised for such nanoprobes. Carbon onions comprising
concentric fullerenes are one family of carbon nanostructures. Experimentally, elec-
tron beam irradiation methods are used to modify the multi-layers of carbon onions,
but at present there is no procedure to predict the precise shape of the resulting
structure.

The majority of work in this area is based on either experiments or molecular dy-
namics simulations, and mathematical modelling is used to a much lesser extent. In
this study, the use of elementary mechanical principles and classical applied mathe-
matical modelling techniques are employed to obtain explicit analytical criteria and
ideal model behaviour. Specifically, the mechanical behaviour of the van der Waals
interaction energy between two nanostructures, such as double-walled carbon nan-
otubes, carbon and boron nitride nanocones and carbon onions, and many-body
system, such as nanopeapods, are examined. Furthermore, once a nanostructure is
encapsulated inside the other, the nature of the resulting oscillatory behaviour is
predicted. The Lennard-Jones potential function and the continuum approximation,
which assumes that the atoms can be modelled by smearing them uniformly across

the surface, are employed throughout this study.

1.1.2 Geometry of joining nanostructures

In order to create certain transmission devices for future nanoelectromechanical sys-
tems, carbon nanotubes might be used to carry current to a platform comprising a
graphene sheet. With this in mind, the perpendicular joining between carbon nan-
otubes and a flat graphene is determined. In addition, given that a hexagonal boron
nitride crystal is geometrically similar to that of graphite in a carbon structure, the
perpendicular joining for a tube and a sheet of boron nitride is also examined. Note

that the essential mathematical ideas for the combining of boron nitride nanostruc-
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tures are quite different to those required for connecting the corresponding carbon
structures.

From the work of Cox and Hill [11], the authors have exploited the idea that
the basis of joining carbon nanostructures is an underlying requirement that each
inter-atomic distance be as close as possible to the ideal carbon-carbon bond length.
Indeed, in [11] this procedure accurately produces certain toroidial molecules which
are known to exist, along with numerous other predicted molecules. In this thesis,
two such least squares approaches are adopted, which are the variation in bond
length and the variation in bond angle, and these are undertaken to consider the
joining of various nanostructures. To begin, the least squares approach in bond
length, which is a dominant term in the bonded interaction energy [12], is employed
to investigate toroidal-shaped molecules formed from the joining of three distinct
carbon nanotube sections.

Both the variation in bond length and the variation in bond angle approaches
are carried out for both carbon and boron nitride systems. These two geometrical
approaches are directly related to computer simulations adopted by a number of
authors [13-16] for the bonded interaction energy in a small deformation system. In
addition, Euler’s polyhedra theorem is employed throughout the study to examine

the consistency of the geometrical structures for connected configurations.

1.1.3 Carbon nanotubes as transversely isotropic linearly
elastic materials

Carbon nanotubes are believed to be perfectly elastic materials, in the sense that
they return to their original configuration when the applied loads are released. There
are many experiments and molecular dynamics simulations studying the elastic prop-
erties of carbon nanotubes [17]. Yu et al. [18] obtain the values of Young’s modulus
as 270-950 GPa when a load is applied to multi-walled carbon nanotubes. A quan-
tum mechanical and molecular mechanical calculations are utilised by Zhao et al.
[19] to observe the deformation of carbon nanotubes under load. They find a larger
value of Young’s modulus than in any pervious study, around 1 TPa, and they pro-
pose that carbon nanotubes are the strongest materials known at present. Using
a force-constant model, Lu [20] presents values of elastic moduli for both single-

walled and multi-walled carbon nanotubes. Moreover, Lu [20] finds that the elastic
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properties are insensitive to the helicity, the radius and the number of walls. Shen
and Li [21] study the deformations of carbon nanotubes under a number of loading
types and propose that carbon nanotubes can be modelled as transversely isotropic
linearly elastic materials. In addition, Jin and Yuan [15] undertake molecular dy-
namics simulations using the Lennard-Jones potential function to study the elastic
properties of single-walled carbon nanotubes. They also determine the elastic mod-
uli using energy and force approaches which result in approximately the same values.
Following the work of Shen and Li [21], in three of the chapters of this thesis, car-
bon nanotubes are assumed to be modelled as transversely isotropic linearly elastic
materials.

Transversely isotropic materials possess a single axis about which the material
is isotropic, but it is not isotropic with respect to any other axis. In other words,
transversely isotropic materials have the same properties in one plane, but which
differ in the normal direction to this plane. In terms of the basic equations for trans-
versely isotropic materials, Elliott [22] first introduced the general three-dimensional
solutions for such materials. These general solutions are adopted and employed in a
number of studies [23-26] to solve many problems. Furthermore, for a problem in a
cylindrical coordinate system, Selvadurai [25] considers the displacement and stress
equations with no body force and shows that there are three potential functions
o1(r, 0, 2), po(r, 0, z) and (r, 0, z) for the solutions.

First, the equations for transversely isotropic linearly elastic materials in both
a rectangular Cartesian and a cylindrical coordinate system are derived. Utilis-
ing the expressions for the force distribution from the study of the mechanics of
double-walled carbon nanotubes, wave-like deformations on the outer surface are
determined, which are a function of the oscillation frequency and the radii of both
the inner and outer tubes. An implication of these findings, is that the waves gen-

erated might be used to transmit data in future nano-devices.

1.2 Thesis structure

There are six parts in this thesis. Part I contains an overview and a plan of the thesis
structure. The continuum modelling, involving the van der Waals interaction ener-

gies and the oscillatory behaviour for nanostructures, which are double-walled car-
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bon nanotubes, nanopeapods, nanocones and carbon onions, is presented in Part II.
Using a least squares principle, the combining of nanostructures is investigated in
Part III. In Part IV, double-walled carbon nanotubes are assumed to be modelled as
transversely isotropic materials and wave-like deformations occurring on the outer-
most surface are determined. Finally, Part V comprises some concluding remarks

for this thesis and Part VI contains seven appendices and the bibliography.
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Chapter 2

Introduction to continuum
modelling of nanostructures

The aim of this study is the use of elementary mechanical principles and classical
applied mathematical modelling techniques to formulate explicit analytical criteria
and ideal model behaviour in nanotechnology for which previously only experimental
and molecular dynamics simulation were available. The Lennard-Jones potential
function and the continuum approach, which assumes that the discrete atoms may be
replaced by a uniform surface density of atoms, are utilised to determine mechanical
behaviour such as the interaction energy, suction condition and oscillation for carbon
and boron nitride nanostructures. To start, the structures of carbon and boron
nitride are examined. Initially, Lennard-Jones potential function and the continuum

approximation are introduced in §2.2 and an overview of Part II is present in §2.3.

2.1 Carbon and boron nitride nanostructures

Carbon nanostructures including fullerenes, carbon nanotubes, nanopeapods, nano-
cones, carbon onions and nanotori have received much attention because of their
unique properties, such as their high flexibility, high thermal conductivity and are
presently the strongest materials known [27]. Comprehensive pictorial catalogues
of many diverse structures which may arise can be found in [28, 29]. Their special
properties have not only led to proposals for many potential nano-devices such as
drug carriers and scanning microscopy [4, 5, 30] but also to the desire to create
further new carbon nanostructures, such as sea urchins, bamboos, beads, helical
coils and tripod shapes, as shown in Figure 4 of [31]. All the carbon nanostructures

originate from the hexagonal graphene sheet, which may be rolled up to form a tube,
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or by adding pentagonal rings formed into a Cgy fullerene, or by cutting a part of
the sheet out and joining the edges together to form a cone, or twisting the tube-like
shape to form a torus. Therefore, the hexagonal network of carbon is examined.

The discovery of carbon nanotubes in 1991 by Iijima [32] offers many scientific
challenges for their adaption to a wide variety of applications in nanotechnology.
Single-walled carbon nanotubes can be thought of as a graphene sheet which is
rolled up to form a cylinder. Multi-walled carbon nanotubes can be envisaged as
multi-layers of graphite sheets which are rolled up co-axially. Cg, fullerenes are
similar in structure to graphene, and are composed of linked hexagonal rings, which
also contain pentagonal rings that are needed to close the surface into a spherical
shape.

The helical structures of carbon nanotubes can be described by the chiral vector,
C = na; + may, usually represented by (n,m), where n and m are integers such
that m < n, and a; and a, are the basis vectors, as shown in Figure 2.1. Moreover,
the chiral angle « is also depicted in Figure 2.1. There are three types of carbon
nanotubes: armchair, zigzag and chiral. The armchair is the structure which has
n = m and a = 30° and the zigzag is the form which has m = 0 and a = 0°.
A carbon nanotube which is neither armchair nor zigzag, is termed chiral. The
electronic structure of carbon nanotubes can also be determined by (n, m). If (n—m)
is a multiple of 3, then they will be metallic, otherwise, they will be a semiconductor.
Thus all armchair tubes are metallic.

Generally, for (n,m) carbon nanotubes, where n and m are integers, the corre-

sponding radius, denoted here by b, is determined from

b= 0+/3(n? + nm + m?2)/2m, (2.1)

where o is the carbon-carbon bond length and throughout this study o is usually
taken to be 1.42 A.

Boron nitride is a binary chemical compound consisting of equal proportions of
boron and nitrogen.

It is isoelectronic with carbon since in the periodic table, boron and nitrogen are
adjacent to carbon [33], and, like carbon, boron nitride exists as various polymorphic

forms, one of which is analogous to diamond and one analogous to graphite. The
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Figure 2.1: The graphite plane of nanotube surface

diamond-like polymorph is one of the hardest materials known and the graphite-like
polymorph is a useful lubricant. Moreover, the large band gaps in this material will
produce better electronic properties than those of carbon structures [34]. Hexagonal
boron nitride is also known to be a good electrical semiconductor with excellent
stability and thermal conductivity, which can be used in vacuum technology, nuclear
energy, x-rays and lubrication [35]. In this part, only the cone structure of boron
nitride is investigated, since it is suggested to be an ideal candidate for nanoprobes

in scanning tunneling microscopy.

2.2 Interaction energy

The non-bonded interaction energy between two molecules can be obtained by sum-

ming the potential interaction for each atom pair

b= Z Z D (pi;), (2.2)
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where ®(p;;) is a potential function for atoms ¢ and j on each molecule a distance
pi; apart. Following Girifalco et al. [36] and Hodak and Girifalco [37], a continuum
approach is adopted where atoms are assumed to be uniformly distributed over the
surfaces of the molecules. Thus, instead of the double summation in (2.2), the
interaction energy can be obtained by performing double surface integrals, averaged

over the surface of each entity

o 771772//¢<p)d2122,, (2.3)

where 7, and 7, are the mean atomic surface density of atoms on each molecule and
p denotes the distance between two typical surface elements d>; and d*, on each

molecule. In this study, the Lennard-Jones potential is employed, which is given by

®(p) = —% + /%, (2.4)
where A and B are the attractive and repulsive constants, respectively. It should
be noted that there are a number of empirically motivated models potentials in the
literature, for example, the Morse potential used in Belyschko et al. [38], Liew et
al. [39] and Walther at al. [40], and the other models and their applications can be
found in Qian et al. [17] and Rieth [41]. Alternatively, the Lennard-Jones potential

(2.4) can be written in the form

oG} e

where o is the bond length and € denotes the energy well depth, ¢ = A%/(4B). From
(2.5), the equilibrium distance py for two atoms is given by py = 2'/%0 = (2B/A)'/6,
which is depicted in Figure 2.2.

In the case of a many-body problem, the potential energy of the system is the
total energy between each pair of molecules, which is called the pair potential ap-

proximation [41], is given by

N

v=5 S El) (2.6)

1,j=1i#]
where p;; denotes the distance between a surface element ¢ and a surface element j.

The van der Waals interaction force between two typical atoms of two molecules
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Figure 2.2: Graph of Lennard-Jones potential

is given by

Foaw = —VE, (2.7)

where the energy E is given by (2.3). Accordingly, the resultant axial force (z-
direction) is obtained by differentiating the integrated Lennard-Jones potential with
respect to Z, which is defined as the distance between the centres of two molecules,
therefore (2.7) simplifies to become

The continuum approach using the Lennard-Jones potential has been successfully
employed in a number of studies to determine the van der Waals interaction energy
and the force between two carbon nanostructures. Girifalco [42] determines the in-
teraction energy between two Cgg fullerenes, and then extends the study in Girifalco
et al. [36] to find the energy between two identical parallel carbon nanotubes of infi-
nite length and between a carbon nanotube and a Cg fullerene. Girifalco et al. [36]
also provide the value of the interaction constants in the Lennard-Jones potential
for carbon atoms in graphene-graphene, Cgo-Cgo and Cgo-graphene. Further, Hodak

and Girifalco [37] propose an energy formula for universal graphitic systems includ-
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ing the interaction of an ellipsoid inside a single-walled carbon nanotube. Ruoff and
Hickamn [43] consider the interaction between a spherical fullerene and a graphite
sheet. Henrard et al. [44] use a similar technique to Girifalco [42] and obtain the
potential for bundles of single-walled carbon nanotubes. Following Girifalco et al.
[36] and Henrard et al. [44], Zheng and Jiang [4] utilise the Lennard-Jones poten-
tial to determine the van der Waals restoring force between the inner and outer
shells of a multi-walled carbon nanotube and subsequently predict a gigahertz fre-
quency of the oscillatory motion. For spherical carbon onions Cy, QCp, (No > Ny),
Iglesias-Groth et al. [45] also adopt the Lennard-Jones potential and the contin-
uum approximation to determine the interlayer interaction. By using the formula
of Iglesias-Groth et al. [45], Guérin [46] obtains the interaction energy between the
interlayer of carbon onions which is in excellent agreement to those obtained from
discrete atom-atom summation model given in Lu and Yang [47]. Further, it is also
shown in Verberck and Michel [48] that for large carbon nanotubes the continuum
approach agrees well with an atomistic model. In general, it is possible to combine
both the continuum and discrete approaches to model an interaction between two
nanostructures. As shown in both Verberck and Michel [48] and Hilder and Hill [49],
the single-walled carbon nanotube is modelled as a continuum, while the fullerene
is assumed to retain its discrete atomic structure. Finally, the validity of using the
continuum approach over the discrete atom-atom model is discussed by Girifalco et

al. [36] who point out that

“from a physical point of view the discrete atom-atom model is not nec-
essarily preferable to the continuum model. The discrete model assumes
that each atom is the centre of a spherically symmetric electron distribu-
tion while the continuum model assumes that the electron distribution
is uniform over the surface. Both of these assumptions are incorrect and
a case can even be made that the continuum model is closer to reality

than a set of discrete Lennard-Jones centres.”

We comment that the continuum approximation represents an averaging procedure
and might be expected to be mostly applicable to well defined molecular shapes, such
as the cylindrical nanotubes and spherical fullerenes studied here. For non-regular

shaped molecules, the continuum approach may not be an accurate approximation
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due to the difficulty in the determination of a mean atomic density. However, it is
possible to combine both continuum and discrete approaches to model an interaction

between regular and non-regular shaped nanostructures [49].

2.3 Overview

Part II of this thesis is divided into five chapters. The first is Chapter 2 which
contains the background and overview. In Chapter 3, analytical expressions for the
interaction energy of double-walled carbon nanotubes are determined. The issues
examined include the suction force, offset equilibrium position and oscillatory be-
haviours for certain configurations of double-walled carbon nanotubes. A well-known
self-assembled hybrid carbon nanostructure, known as a nanopeapod, is investigated
in Chapter 4. Three encapsulation mechanisms are firstly determined, and once a
number of Cgy fullerenes are encapsulated inside a single-walled carbon nanotube,
zigzag and spiral patterns of Cgy chains are examined. Equilibrium position for
two carbon, two boron nitride and carbon-boron nitride nanocones are examined
in Chapter 5. Furthermore, for the carbon cones the suction and oscillation are
also investigated where the oscillation frequency is in the gigahertz range. In Chap-
ter 6, equilibrium spacing between adjacent layers for both spherical and spheroidal
carbon onions are determined. In this part, all analytical expressions are obtained
either in terms of hypergeometric functions or Legendre functions, and the numerical

solutions are graphically shown by the algebraic computer package MAPLE.
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Double-walled carbon nanotubes

Advances in nanotechnology have led to the creation of many nanoscale devices and
carbon nanotubes are representative materials to construct these devices. Double-
walled carbon nanotubes with the inner tube oscillating can be used as gigahertz os-
cillators and form the basis of possible nano-electronic devices in the micro-computer
industry, which are predominantly based on electron transport phenomena. There
are many experiments and molecular dynamics simulations which show that a wave
is generated on the outer cylinder as a result of the oscillation of the inner carbon
nanotube, and that the frequency of this wave is also in the gigahertz range. As
a preliminary to analyse and model such devices, it is necessary to estimate accu-
rately the resultant force distribution due to the inter-atomic interactions. Here
some new analytical expressions for the van der Waals force using the Lennard-
Jones potential for general lengths of the inner and outer tubes are determined.
The suction force experienced by a single-walled carbon nanotube located near an
open end of a semi-infinite single-walled carbon nanotube, and the equilibrium po-
sition of an offset inner tube with reference to the cross-section of the outer tube
are investigated. These expressions are utilised together with Newton’s second law
to determine the motion of an oscillating inner tube, assuming that frictional effects
may be neglected. An idealised and simplified representation of the Lennard-Jones
force is used to determine a simple formula for the oscillation frequency resulting

from an initial extrusion of the inner tube.

3.1 Nomenclature

€ is an offset position of the inner tube from the outer tube axis

16
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Mg is the mean atomic number density for graphene

p is the distance between two typical surface elements

o is the carbon-carbon covalent bond length

A B are the Lennard-Jones attractive and repulsive coefficients, respectively
Etot is the total interaction potential

Frot is the total force in the z-direction

Ly, Lo are the half-lengths of the inner and the outer tubes, respectively

M is the mass of the inner tube

A is the distance between the centres of the inner and the outer tubes
a,b are the radii of the inner and the outer tubes, respectively

d is the extrusion distance

f is the oscillation frequency

Vo is the initial velocity of the inner tube

3.2 Introduction

The unique properties of carbon nanotubes, such as their high strength, high flex-
ibility, small size and low weight, have been studies by many experiments (see for
example, [17, 18, 50, 51]) and molecular dynamics simulations (see for example,
[17, 20, 52, 53]), but there are few groups using conventional applied mathematical
modelling. Single-walled carbon nanotubes can be thought of as a graphite sheet
that is rolled up as a cylinder, and multi-walled carbon nanotubes can be envisaged
as multi-layers of graphene sheets that are rolled up. Carbon nanotubes consist of
carbon atoms which have a (15)%(2s)?(2p)? electronic structure. The 7 orbitals pro-
vide weak van der Waals bonds between adjacent layers of each carbon nanotube,
whereas the ¢ orbitals provide strong in-plane bonds within individual carbon nan-
otubes. Further details on carbon nanotubes can be found in Dresselhaus et al.

[27].
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A number of nano-oscillators have been examined, including double-walled car-
bon nanotubes, a Cgp- single-walled carbon nanotube and a Cgg-carbon nanotorus
oscillator [2, 4, 5, 54, 55]. Typically these studies assume that the inner nanos-
tructure oscillates within the outer nanostructure co-axially, although Cox et al.
[54] examine the possible offset equilibrium configurations for a Cgy fullerene in a
single-walled carbon nanotube, and Hilder and Hill [55] examine the same circum-
stance for a Cgg orbiting inside a nanotorus. In this study, the suction behaviour
is investigated for a single-walled carbon nanotube entering another semi-infinite
single-walled carbon nanotube co-axially, and then the possible offset equilibrium
position for the inner tube with respect to the outer tube axis is determined. The
Lennard-Jones potential and the continuum approach are employed throughout this
work, where the continuum model assumes that the atoms at discrete locations can
be approximated by an averaged surface density of atoms which is smeared across
the entire surface.

Following the work of Cumings and Zettl [1], there are many groups who have
studied the oscillations of multi-walled carbon nanotubes. Zheng and Jiang [4]
consider multi-walled carbon nanotubes where the outer most shells have open ends
and the inner shells have capped ends, and the inner shells are pulled out of the outer
tube a certain distance and then released. Using the Lennard-Jones potential energy
and Newton’s second law, these authors propose that the oscillation of multi-walled
carbon nanotubes is in the gigahertz range, and also conclude that the frictional force
between the inner and the outer shells can be neglected. A theoretical study of this
phenomenon is found in Zheng et al. [5]. Moreover, this situation is confirmed
by Legoas et al. [2] who suggest that the configurations of the inner and outer
tubes affect the oscillation frequency. Rivera et al. [6, 7] use molecular dynamics
simulation to show that the frictional force is very low when compared with the van
der Waals force, which is in agreement with Zheng and Jiang [4].

In order to accurately model both the dynamics of the gigahertz oscillator and to
analyse the consequent wave formation on the outer carbon nanotube, the resultant
force on the inner carbon nanotube needs to be accurately estimated. The analysis
of the wave formation on the outer tube will be investigated in Chapter 13, which

utilises the transversely isotropic linearly elastic model for carbon nanotubes. Here,
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the van der Waals force distribution on the inner carbon nanotube due to the nett
interatomic interactions is calculated, using the usual continuum assumption.
Detailed derivations for the force distribution of double-walled carbon nanotubes
is presented in the following section. The suction behaviour for an inner carbon
nanotube entering an outer carbon nanotube and the offset location for an inner
carbon nanotube inside an outer carbon nanotube are determined in §3.4 and §3.5,
respectively. On making an idealization of the van der Waals force distribution and
employing Newton’s second law, a simple expression for the oscillation frequency is

obtained and shown in §3.6. Finally, a summary is given in §3.7.

3.3 Force distribution for double-walled carbon
nanotubes

x
2
X

b 0 e

N T
-L; Ly \
Ly

Figure 3.1: Double-walled carbon nanotubes of lengths 2L, and 2L,.

The interaction between the inner and outer tubes in the continuum approxima-
tion is obtained by averaging the atoms over the surface of each tube. With reference
to a rectangular Cartesian coordinate system (z1, ¥, z1) with origin located at the
centre of the outer tube, a typical point on the surface of the inner tube has coordi-
nates (a cos 6y, asinfy, z;) where a is the assumed radius of the inner tube. Similarly,
with reference to a rectangular Cartesian coordinate system (xq,ys, 29) with origin
located at the centre of the outer tube, a typical point on the surface of the outer
tube has coordinates (b cos 0, bsin 0, z5) where b is the assumed radius of the outer
tube, as shown in Figure 3.1. Now assuming the two tubes are concentric, and the
distance between their centres is Z, the distance p between two typical points is

given by

p? = (bcosfy — acosby)® + (bsinfy — asinby)* + (2 — 21)?%,
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which may be simplified to yield
p? = a® 4+ b* — 2abcos(0y — ;) + (25 — 21)%

From the Lennard-Jones potential (2.4), the total potential energy of all atoms of

the inner tube with all atoms of the outer tube is given by

27 27
B = ab / / (—Als + BI,y)d6,dbs, (3.1)
0 0

where 7, represents the mean surface density of carbon atoms, a and b are the radii

of the inner and outer tubes, respectively. Further, the integral I is defined by

/Z+L1 /L2 dzgdzl /Z+L1 / dzzdzl
Is =
L2 )\ —|— 29 — 21) ]

where A\? denotes a® + b*> — 2abcos(f; — 0). On letting © = 2z, — z;, the integral

Z+11 Lo—2z1 dxdz Z+1L1 L2 21 /)\
/ / —2 12 3= 13 / / cos® ¢ dodz,
Lo—2z1 /\ +x A —tan~1[(La+21)/A]

where the final line follows by making the substitution z = A tan ¢ to obtain
Iy = i/ZHl -t (L=} 3 MLz )
NS 18 A 8[A2 4 (L — 21)?

1 )\3<L2 — Zl) 3 1 L2 + 21 3 >\(L2 + Zl)
- tan + 3 e

+ + =
4 [)\2 -+ (L2 — 21)2]2 8 A + (LQ + 21)2]

becomes

1 )\3(L2+21)
— dzy.
I T Lt zw} “

Finally, using the two substitutions z = (Ly — 21)/A and y = (Lo + 21) /) gives

=Y (- 1>Z+1{8 E (Z 5 g") S +1<z — 0] }

=1

and by precisely the same method, I15 becomes

4

(63 (Z—0) ([ Z—1 21
I, = )y 22 ! ! - ) -
@ = 20 {256 U ( X ) 256NN + (Z = ;)7

i=

21 3 1
T G0N 4 (Z — £)22 160X N2+ (Z — 6,)2 S0N2[A\2 + (Z — ei)2]4}’
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where the four lengths ¢; (i = 1,2,3,4) are defined by ¢; = —(Ly + Ls), s =
—(Lo— Ly), 03 = L1+ Ly and ¢4 = Ly — Ly, and these are the locations for the four

critical positions for the oscillation as shown in Figure 3.2.

M\\ z=4 ¢ =- (L)
R ()
-2

Z=¢, i
: 52 =- (L2 Ll)
L L |
-Ly ! Ly
(®)
(= L+l O L (m | 0
d I ‘ 7
Ly | 2 1
©
i Z=e4 |
G=1yL, : :
i Ly |
Ly ! Ly
@

Figure 3.2: Four critical positions for two concentric nanocylinders.

Thus there are two types of integrals needed to evaluate (3.1). Formally, the
double integrals K and L} need to be evaluated which are defined by

2 2 d81d02 2 2
/ / \m )\2 I PZ) / / - tan ( h\ )d@ldeg,

where m and n denote certain positive integers, P, = Z — ¢; (i = 1,2,3,4) and
these details are subsequently presented in Appendix A.2 and A.3, respectively.
For completeness the full expression for E(Z) in terms of Appell hypergeometric
functions is given below, from which an expression for £*(0) may be deduced which
is required in §3.6.

E"(Z) = 8mabn}(—ANs + BN1y), (3.2)
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where
XFI(%; g’ b %; b (aéf[;))w (a+0)> T?Z — Ei)2>
“16(a+0)7(a +7Tb)2 Tz (% L (a4—|c—d;))2’ (a 102 T?Z = m?)] ’
and
N2 = g(_l)m Egg g S (V2(2k + 1)(22?2()121 [fo;;: (Z — ()P
XFI(%; % * %? ; (ﬁ%)r (a+t b)?éflzz - W)
5200+ b)g[(a2+17l;)2 Tzt (% L (ﬁ%)z’ (a1 0)? 4+GZZZ - m)
T1280(a + b)ﬁ[(ang)Q T Z =) (% 351 (aéfi)w CETE ialzz - ei)2>
"~ 320(a + b)1[(a EZ)Q Tz =P (% 231 (a4—|(—ﬂ;7)2’ (a 102 Zfzzz = mz)
~T60(a + )2[(a +7Tb)2 T Z =0T (% L& (ﬁ%)?’ (a +0)2 Zflzz = m?)} ’

where Fy(a;f3,3;7;2,y) is the Appell hypergeometric function of the first kind
which is defined by the double series (A.3) and given by the integral representation
(A.4).

The potential and force distributions for the double-walled carbon nanotubes are
determined here. Following the works of Girifalco et al. [36, 37] and Ma et al. [56],
the parameter values for double-walled carbon nanotubes shown in Table 3.1 are
employed. Using the algebraic computer package MAPLE, the potential function
and van der Waals force versus the difference between the centres of the tubes
Z are shown in Figure 3.3 and Figure 3.4, respectively. In this study, a (10,10)

carbon nanotube is assumed to enter into a (16,16) carbon nanotube by varying the
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inner tube lengths. It is important to note that the Appell functions are readily
summed using MAPLE by means of the series (A.4), and MAPLE is also utilised
to differentiate the total energy given by (3.2) with respect to the distance Z to
calculate the axial van der Waals force.

Due to the four critical positions of the distance between the centres of the tubes,
there are three regions for the inner tube behaviour, (¢, ls), ({2, ¢4) and ({4, ¢3). In
terms of the potential function, the inner tube will travel with decreasing potential
energy in the first region to reach a constant minimum energy in the second region,
after which the energy will increase until it becomes zero at the position that the
inner tube leaves the outer tube. For the force distribution, the force is almost zero
in the second region and there are two strong attractive forces in the first and the
third regions, which tend to keep the inner tube inside. This means that once inside
the outer cylinder, the inner tube will tend to oscillate rather than escape from the
outer tube, because of the forces at the ends tending to reverse the direction of the
motion. However, not every inner tube will necessarily be sucked in by inter-atomic
van der Waals force alone, and it may be necessary to either initiate the oscillatory

motion by initially extruding the inner cylinder or by giving the inner tube an initial

velocity.
0
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Figure 3.3: Total potential energy of a (10,10) nanotube with various L; entering
into a (16,16) nanotube with length L, = 500 A.
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Figure 3.4: Force distribution of a (10,10) nanotube with various L entering into a

(16,16) nanotube with length Ly = 500 A.

3.4 Suction force for double-walled carbon nan-

otubes

Tube 2

_________________________

Figure 3.5: Geometry of a single-walled carbon nanotube entering another single-

walled carbon nanotube.

The issue of suction of particles into a container is fundamental, particularly for

applications of encapsulating drugs or genes in nano-carriers for targeted deliveries

to tumour cells. Here the energy of a carbon nanotube being sucked into another

carbon nanotube is examined. The suction energy is defined as the total work

performed by van der Waals interaction on a molecule entering a carbon nanotube.

From a previous study, Cox et al. [57] determine the suction behaviour for a carbon

atom and a Cgg fullerene into a single-walled carbon nanotube. They find that the

suction energy depends on the radius of the carbon nanotube. In this thesis, such
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behaviour for double-walled carbon nanotubes is examined.

For convenience, Tube 1 is assumed to refer to the carbon nanotube which enters
into the open end of the semi-infinite tube, Tube 2, as shown in Figure 3.5, and the
origin of the coordinate system is assumed to be located at the left end of Tube 2
It is assuming that Tube 1 is of radius a and length 21, and its centre is located

t (0,7), which might be inside or outside Tube 2. Further, Tube 2 of radius b
is assumed to be semi-infinite in length. In an axially symmetric cylindrical polar
coordinate system (7,0, z), the parametric equations for Tube 1 and Tube 2 are
given by (acosy,asinfy, z;) and (bcos by, bsin s, z5), respectively. In this case, the

distance p between two typical surface elements on Tube 1 and Tube 2 is given by
p? = (bcosBy — acosy)? + (bsinfy — asind;)? + (z — 21)°.

Using the Lennard-Jones potential together with the continuum approximation, the

total potential energy can be written as

2m 27
Etot — abnz/ / (—AIG + B[lg)deldeg, (33)
0 0

where 7, represents the mean surface density of the carbon nanotube assumed to be

the same for both tubes. In this case, the integrals Is and I, are defined as follows

I o / /Z+L1 ledZQ / /ZJFL1 d21d2’2

° A2+ (2 — )23
o / /Z+L1 dz sz / /Z+L1 dz1dz
2o N2+ (22 — 21)2%

where A\? denotes a? + b? — 2abcos(f; — ). On letting x = 25 — z;, the integral Ig

Z+L dmdzl Z+Ly
Iy = dod
° /z /_zl A2 4 z2)3 /\5/ /—tan Z1//\)COS "o dgda,

where on substituting x = A tan ¢, it may be deduced

1[4t (37r

Ig = — il
TN ), \16 8

becomes
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Using the substitution z = z;/\, an above equation becomes

i 37TL1 l i 3(Z + Ll) tan_l Z + L1 . )\2
M8 A 8 A 8N+ (Z + L)

_% tan ! <Z _ALI) + 82 1 ();— L1)2]]'

Similarly, 115 is given by

Is =

[12 =

1 637TL1 1 i 63(Z + Ll) a 1 Z + L1 21)\2
— —— — I’l —_—
MO | 256 A 256\ ) 256[\2 + (Z + L1)?]

_ 211 B 3\ B b
640[\2 + (Z + L1)?]2  160[\2+ (Z + L1)?]> 80[N?>+ (Z + L1)?)*

63(2 — L) 1 (Z—La) | 212 . 214
————=tan
256\ ) 256[\% + (Z — L1)?] ' 640[\2 + (Z — L1)?]?

L0 T (Z - L S0V (Z - L)

3\ b }

Thus from (3.3) there are three types of integrals which need to be determined,

27 21 dg de
Jo= / / 10z
o Jo A"
2m 2m d01d62
K = 3.4
" / / A (X2 + P2’ (3.4)

2 21 1
L:; = / / —tan </\ >d01d92,

where m and n are certain positive integers and P; (j = 1,2) is the abbreviation

used for P, = Z 4+ Ly and P, = Z — L;. As shown in Appendix A, (3.4) can be

and they are given by
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integrated to yield

Jr =

(a4j—T2b)2F<n L)

. Ar? > 1/2 m/2 dab 1\’
Kn = (a+b)™[(a + b)2 +P2nz ((a+b)2) .

4ab )
(a+b)2+ P2/

1
><F<—+i,n;1+i;
2 j

PP (2k)! (1/2)i(n/2); o

Ly = 4r ;Z_: PR (R (2K + 1)(a + b)"[(a + b + PIFI2 (il)?

x (4;’66)117(1 bk sl d b ).
(a+b)? 2 2 (a+0)?+ P?
where F'(a,b;c;z) denotes the usual hypergeometric function. Although compli-
cated, numerical values for these integrals may be readily evaluated using the alge-
braic computer package MAPLE.

From the symmetry of the problem, only the force in the axial direction (z-
direction) is considered, and the resultant axial force is obtained by differentiating
the total energy with respect to the axial direction Z. Noting that due to the
complexity of the expression, obtaining an analytical expression for FZ* is not a
simple task. Using the algebraic computer package MAPLE, together with the
constants given in Table 3.1, the numerical solutions for the suction force for carbon
nanotubes are illustrated in Figure 3.6, where Tube 1 is assumed to be (6,6) and its
length is 120 A.

The area under the graph in Figure 3.6 represents the work done by the van der
Waals force. For Tube 1 to be sucked into Tube 2, the sum of the work which is
obtained by moving the inner tube from Z = —oo to Zj, where Z; is the positive
root of Fi* = 0, or in the other words W, = fio F'dZ, needs to be greater than
zero. In Figure 3.6, the force experienced by a (6,6) nanotube upon entering (10,10),
(16,16) and (20,20) nanotubes are plotted. It can be seen from Figure 3.6(a) that a
(10,10) tube will not allow a (6,6) tube to enter since W, < 0, resulting in a strong
repulsive force at the tube extremity. In Figure 3.6(b), it can be seen that W, > 0,
which gives rise to a (6,6) nanotube (Tube 1) being sucked into Tube 2, which is
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either a (16,16) or (20,20) nanotube. In addition, W, decreases as the radius of the
outer tube increases. This is due to the fact that when the difference in radii of the
inner and outer tubes moves further away from 3.44 A (inter-spacing of two graphene
sheets), such a double-walled carbon nanotube is not an ideal configuration.
Further, the suction energy which is the total work performed by van der Waals
interactions on the inner tube upon entering the outer tube is considered. In other
words, the suction energy can be represented mathematically by W = [*° Fi'dZ.
In Figure 3.7, the suction energy for a (6,6) carbon nanotube entering an outer
nanotube with radii in the range 6.5 < b < 9 A is depicted. Noting from the figure
that W is positive when b > 7 A and has its maximum value when b = 7.511 A,
for which the difference in radii of the inner and outer tubes is 3.44 A, which is the

inter-spacing between two graphene sheets [2, 4, 5].

F* (eV/A)

F° (eV/IA)
J\ 1 0.07
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Figure 3.6: Force experienced by a (6,6) carbon nanotube due to van der Waals
interaction with a semi-infinite carbon nanotube (a) (10,10), (b) (16,16) and (20,20).

3.5 Offset position for double-walled carbon nan-
otubes

The Lennard-Jones potential together with the continuum approximation is utilised
to determine the preferred position of an offset inner nanotube with reference to
the cross-section of the outer single-walled carbon nanotube. The preferred position
is the location of the minimum potential energy for the inner nanostructure. The

work of Cox et al. [54] for an offset carbon atom and an offset Cg fullerene inside
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Figure 3.7: Suction energy for an inner tube (6,6) entering an outer tube.

[
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Figure 3.8: Offset location for double-walled carbon nanotube.

a single-walled carbon nanotube leads to study of an offset single-walled carbon
nanotube.

In terms of a double-walled carbon nanotube, the parametric equation for an
offset inner tube of radius a is (acos6; + €, asin 6y, z;) and the parametric equation
for an outer tube of radius b is (bcos by, bsinfy, z5). The length of the inner tube
is assumed to be 2L; and the length of the outer tube is assumed to be 2L, where
L, tends to infinity, and ¢ is the distance between the centres of two tubes in the
radial direction as shown in Figure 3.8. Thus, the distance p from any infinitesimal
point on the surface of the inner tube to any infinitesimal point on the surface of

the outer tube can be written as

p* = [bcos by — (acosOy +¢))* + (bsinfy — asinby)® + (20 — 21)?,

and the total potential energy is then given by

27 27
E't = abnﬁ/ / (=Als + Blz)dbdoy,
o Jo
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where 7, is a mean surface density of a carbon nanotube. In this case, Is is defined

by
[6 / / —dzleQ / /Ll )\2 22 — Zl> ]3d2'1d22,

where

N = [bcosby — (acost) + €)]*> + (bsinfy — asinb;)?

= a®+b* —2abcos(f; — 0y) — 2e(bcos By — acosty) + &%,

and on letting x = (23 — 21), it may be deduced

L1 L2 Z1 Ll
I = / / 5 T ogdeda = / cos® pdodz,
—Lo—2z1 ) —7/2

which is obtained by substituting x = Atan®¢ and letting L, tends to infinity.
Finally, I can be simplified to obtain

/ 1 [ 3rx 3rLy 1
= — —az1 =
TN, 8T N

By precisely the same method, I15 becomes

637rL1 1
]12—/ / ledZQ 128 /\11

Therefore, the total potential energy for the double-walled carbon nanotube with

an offset inner tube becomes

) 341 638 1
Etot — abng’/TLl/ / (— IE 198 A11>d91d92, (35)

where A\? = a? + b — 2abcos(; — 0y) — 2e(bcos Oy — acos by) + £2.

The derivation of the analytical solution for (3.5) is determined in Appendix B.
Here, using the algebraic computer package MAPLE, equation (3.5) is numerically
solved and graphically shown in Figure 3.9, for the relation of the potential energy
and the offset position for a (6,6) carbon nanotube inside a (16,16) and a (20,20)
carbon nanotube. The value of € for the (6,6) tube inside the (16,16) tube and
the (6,6) tube inside the (20,20) tube is 3.567 A and 6.300 A, respectively which
correspond to the distance (b—¢) along a radius between the centre of the inner tube

and the wall of the outer tube of 7.279 A and 7.257 A, respectively. Moreover, the
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larger the outer tube, the smaller the inter-spacing between the walls of the inner
and the outer tubes. This result agrees with the works by Girifalco et al. [36] and
Cox et al. [54].
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Figure 3.9: Potential energy of an offset (6,6) carbon nanotube inside a (16, 16) and
a (20,20) carbon nanotube with respect to the radial distance e.

3.6 Oscillation of double-walled carbon nanotubes

In this section, Newton’s second law is adopted to describe the oscillation behaviour
of double-walled carbon nanotubes with the inner tube oscillating. The frequency of
the oscillation for the case where the inner tube is pulled out with a distance d and
released is investigated, as shown in Figure 3.10. The frictional force is assumed to

be negligible for the movement on the inner tube.

d

i

Figure 3.10: Extrusion distance d for inner tube oscillating inside outer tube.

Newton’s second law on neglecting the frictional force can be written as

£z,
M= = Fy'(2), (3.6)
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where Z is the distance between centres of the tubes and M is the mass of the inner
tube. From the relation for the potential energy and the force in (2.8), equation

(3.6) becomes
d2Z 8Etot

By multiplying both sides by dZ/dt and integrating (3.7), the above equation be-

comes ,
% (‘il—f) +E(Z) = %vé + Ey, (3.8)
where vy is the prescribed initial velocity and Ej is the initial potential energy, which
is a function of the extrusion length d. Because of the symmetry of the oscillating
inner tube, two regions for its motion shown in Figure 3.11 are considered. In the
first region, the inner tube is pulled out a distance d and released, then the distance
between centres becomes Zy = Ly — L1 + d = ¢4 + d which leads to the geometric

constraint d < 2L;. On assuming that the prescribed initial velocity at this point is

Vg, it can be deduced

dz

E:—\/Ug—f—aQ(Zg—Z), by < Z < Zy,

where a? = 2E(0)/[M (¢4 — ¢3)], and F(0) is the potential energy at Z = 0. Thus
the displacement equation in this region can be written as

2

Z(t) = Zy — O‘Iﬂ —wt, U< Z< 7,

and the time for the inner tube to travel the length of this region is

2 7/
t1:§< Ug+062d—’00).

In the second region, from equation (3.8) it may be deduced

dz
E:—\/vg—l—oﬂd, 0< Z <4y

Since at t = t1, Z(t1) = {4, the displacement equation becomes

2 2
Z(t):€4+—2<v§+a2d)—<t+120>\/v3+a2d, 0<Z <.
(07 (0%
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T
-1000

Figure 3.11: Two regions for the idealised potential energy for double-walled carbon
nanotubes oscillator.

Thus the overall time for the inner tube to travel in these two regions is given by

205 — 2098/ v§ + a?d + & ({4 + 2d)
’ a?\ /v + a?d '

The period for the inner tube to move is 4t5, and then the oscillation frequency can

B a?\/vg + a2d (3.9)
4[20% = 2u0\/VE + 2d + a2(2d + £4)] '

which for prescribed vy has a maximum frequency at d = (¢, — 202)/(2a2).

be written as

f

Of particular practical interest is the case vy = 0 for which (3.9) simplifies to give
f = aV/d/[4(2d + £4)], which has a maximum value at d = £,/2. In addition, the
extrusion distance d must be less then the length of the inner tube 2L;. As detailed
in Cox et al. [58] for a physical sensible result that the frequency only applied when
the length lies within the limits L; + 2d,,;, < Lo < 5L; where d,,;, denotes the
practical limitation on the minimum extrusion distance.

The frequency always increases when the initial velocity is increased, as shown
in Figure 3.12. Further, the shorter the inner tube the higher frequency, which is in
agreement with Zheng and Jiang [4]. This is because the force is a constant in each
case, so that the lighter weight of the shorter tube increases the velocity to give a
higher frequency. Furthermore, the longer extrusion distance tends to increase the
oscillatory frequency because it leads to a higher potential energy level. This in turn

gives a higher van der Waals force, and a higher velocity, and as a result gives rise to
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a higher frequency, which is also in agreement with the observation made by Liu et
al. [59]. In the case of equal lengths, when the extrusion distance is increased, this
increases the distance for the inner tube to move from one end to the other, which
leads to a lower oscillation frequency. The longer length also leads to a larger mass
which tends to slow down the movement as shown in Figure 3.13. Noting in the case
Ly = Lo, it gives rise to small oscillations near a stable equilibrium point, moreover,
when the extrusion d = 0 and the initial velocity vy = 0, the system becomes static.

For the example of Cumings and Zettl [1] with the same parameter values and
M which is used in equation (18) in Zheng, Liu and Jiang [5], a frequency of 0.153
GHz is obtained for an extrusion of 330 nm which is the half length of the inner
tube and 1.433 GHz for a 100 nm inner tube length with an extrusion distance of
one quarter of the inner tube length. These results differ from Zheng, Liu and Jiang

[5] by only 2.68% and 3.09%, respectively.
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Figure 3.12: The frequency profile f for three lengths L, versus the initial velocity
vo when the extrusion distance is zero where Ly = 500 A.

3.7 Summary

Force distributions arising from the interatomic interactions for two concentric car-
bon nanotubes of radii @ and b (a < b) and of lengths 2L, and 2Ly (L; < Lo)
are considered. Making the usual continuum approximation, the integration of the

Lennard-Jones potential is performed to determine the van der Waals force in terms
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Figure 3.13: The frequency profile f for three lengths L versus extrusion distance
d when the initial velocity is zero where L, = 500 A.

of the Appell hypergeometric function and the standard hypergeometric function.
The complete expression for the Lennard-Jones potential can be used together with
the algebraic computer package MAPLE to show the corresponding force distribu-
tion for a variety of cylindrical geometries.

The force distribution is approximately to be a rectangular function, where the
small variations associated with the four critical positions ¢; = —(Ly + Ly), s =
—(Ly— Ly), b3 = Ly + Lo, {4 = Ly — Ly are neglected. This has the advantage that
Newton’s second law may be utilised to follow the oscillatory motion of the inner
carbon nanotube when extruded a distance d (< 2L;) and given an initial velocity
Vg in the negative z-direction, and the frequency of oscillation is determined as given
by (3.9). Note in particular that the case vy = 0 yields the simple elegant formula

for the frequency
f B ‘E<O)’1/2d1/2
C A(ML)Y2(2d + Ly — Ly)’

where M denotes the mass of the inner tube and F(0) denotes the value of E**(Z)

(3.10)

at Z = 0, which is a complicated function of the geometric parameters and can be
determined explicitly from the formula given in (3.2). The above simple formula
predicts a maximum frequency occurring at an extrusion length d = (L — L1)/2,
which is entirely consistent with known behaviour that the frequency will increase

with decreasing inner tube length. However, the singularity occurs when d = 0, vy
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and L; = L, for which the system becomes static problem.

Note that the dependence on the extrusion distance d in (3.10) is in agreement
with the formula given by Zheng, Liu and Jiang [5], and in the terminology of this
study, their A and Ay become Z, and £y, respectively, and therefore their 3/A'/?
becomes v/d/(2d + ¢;) which is in complete accord with (3.10). From the integral

(3.1), the following approximate expression for |E(0)| becomes
|E(0)| = 6.847 x 107° + 0.192L4,

for the particular values given in Table 3.1.

The suction energy for a single-walled carbon nanotube entering co-axially into
another semi-infinite tube is obtained analytically. The condition for the suction
behaviour depends on the difference of their radii (b — a), where the closer this
value to zero, the less likely the inner tube is accepted into the outer one. Further,
the inner tube is spontaneously sucked into the outer tube and has its maximum
suction energy when the difference of their radii is 3.44 A, which is the optimum
inter-spacing value for two graphene sheets. The equilibrium offset position for a
double-walled carbon nanotube is also determined, assuming that the inner tube
is already accepted inside. This equilibrium position (the global minimum energy
position) of the offset inner tube tends to be closer to the outer tube wall as the
radius of the outer tube increases. The advantage of this approach is to predict
whether or not particles might be sucked into a carbon nanotube, which will become

an important issue for applications involving drug delivery research.
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Table 3.1: Constants used in the model for the carbon system(* Reference [36])

Attractive constant - Cgy-Cagg

Repulsive constant - Cgo-Cego

Attractive constant - Cgo-graphene
Repulsive constant - Cgp-graphene
Attractive constant - graphene-graphene
Repulsive constant - graphene-graphene
Carbon-carbon bond length

Mean surface density - graphene [4v/3/(602)]
Mean surface density - Cgg [60/(47a?)]

Radius of (6,6) 4.071 A
Radius of (10, 10) 6.784 A
Radius of (16, 16) 10.846 A
Radius of (20, 20) 13.557 A
Radius of Cgg a=3.55A

A =20.0eV x A6~

B = 34.8 x10% eV x A!2*
A=174¢eV x A6~

B =29.0 x10% eV x A12*
A=152eV x A6+

B =241 x10% eV x A2+
o =142 A

n, = 0.3812 A~2

np = 0.3787 A2




Chapter 4

Nanopeapods

While the investigation of the packing of Cgy molecules inside a carbon nanotube
is usually achieved through either experimentation or large scale computation, here
this study adopts elementary mechanical principles and classical applied mathemat-
ical modelling techniques to formulate explicit analytical criteria and ideal model
behaviour for such an encapsulation. In particular, the Lennard-Jones potential and
the continuum approximation are employed to determine three encapsulation mech-
anisms for a Cg fullerene entering a tube: (i) through the tube open end (head-on),
(ii) around the edge of the tube open end and (iii) through a defect opening on the
tube wall. These three encapsulation mechanisms are undertaken for each of the
three specific carbon nanotubes (10,10), (16,16) and (20,20). All configurations are
assumed to be in a vacuum and the Cgq fullerene is initially at rest. Double inte-
grals are performed to determine the energy of the system and analytical expressions
are obtained in terms of hypergeometric functions. The results suggest that a Cgg
fullerene is most likely to be encapsulated head-on through the open tube end and
that encapsulation around the tube edge is least likely to occur because of the large
van der Waals energy barriers which exist at the tube ends.

Moreover, the packing of Cgy fullerene chains inside a single-walled carbon nan-
otube is investigated, again by utilising the Lennard-Jones potential function and
the continuum approximation. Both zigzag and spiral chain configurations inside
(10,10), (16,16) and (20,20) carbon nanotubes are examined and analytical expres-
sions in terms of hypergeometric functions for the potential energy for such config-
urations are obtained. For a (10,10) tube, the Cg fullerene chain is formed linearly

along the tube axis. In the case of both (16,16) and (20,20) tubes, both zigzag and

38



Chapter 4: Nanopeapods 39

spiral configurations are more clearly evident along the tube. In general, all results

obtained are in good agreement with experiments and computer simulations.

4.1 Nomenclature

Ngs Ny are the mean atomic number densities for graphene and fullerene, respec-
tively

p is the distance between two typical surface elements

A B are the Lennard-Jones attractive and repulsive coefficients, respectively

B is the interaction potential between a Cgo fullerene and a carbon atom

Etot is the total interaction potential

L is the half-lengths of the defect pad on the nanotube

Z is the distance in the z-direction

a is the radius of the fullerene

b is the radius of the carbon nanotube

k is the number of fullerenes inside the carbon nanotube

4.2 Introduction

Carbon nanostructures such as carbon nanotubes and Cgy fullerenes have received
considerable attention because of their underlying unique mechanical properties aris-
ing from the van der Waals interaction force and their electronic properties arising
from the large surface to volume ratio [27, 60]. The combination of a single-walled
carbon nanotube and a Cg fullerene chain, a so-called nanopeapod, also embodies
such properties and is a new hybrid nanostructure. Nanopeapods were originally
observed in 1998 by Smith et al. [61] and later synthesised by Smith and Luzzi
[62], who employed high-resolution transmission electron microscopy to show the
self-assembly of the hybrid structures. In particular, nanopeapods capable of being
realised as the prototype nanocarrier for drug delivery, where the carbon nanotube

can be thought of as the nanocontainer and the Cgy molecule chain can be considered
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as the drug molecule [8]. We comment that drug molecules may be administered
to patients in a solvent medium, and the use of carbon nanotubes may avoid the
need for solvents since the drug can cross cell membranes and react within the cell.
Therefore, the encapsulation of Cgg molecules into a carbon nanotube in vacuum
environment constitutes a necessary preliminary calculation which might provide
some overall guidelines. We refer the reader to Simon et al. [63] for the experi-
mental study of the encapsulation of Cgy fullerenes into carbon nanotubes in the
solvent medium. Moreover, the present model can easily be modified to account for
a solvent medium by choosing the appropriate Lennard-Jones parameters [64].
Several studies have proposed the actual assembly of nanopeapods by utilising
either experimentation or computer simulation. Qian et al. [3] employ molecular
dynamics studies and suggest that the (9,9) and (10,10) single-walled carbon nan-
otubes will accept a Cgg molecule from rest, but this behaviour will not occur for the
(8,8) carbon nanotube. From the study of the energetics and electronic structures
of nanopeapods, Okada et al. [65] propose that the smallest radius of a nanotube
which can encapsulate a Cgy molecule is approximately 6.4 A, which is approxi-
mately the radius of a (10,10) carbon nanotube. This result compares well with
Cox et al. [57] and Hodak and Girifalco [66], but conflicts with Qian et al. [3] who
show that the fullerene can be accepted into a (9,9) nanotube which has a radius
of 6.102 A. Moreover, from Okada et al. [65], Hodak and Girifalco [66], and others
[8, 67—70], have confirmed that the encapsulation energy of nanopeapods depends
only on the tube radius, and that it is independent of the tube chirality [69].
There are three possible scenarios for Cgg molecules to become encapsulated into
a carbon nanotube and form a nanopeapod. The first such scenario is that the Cgg
molecule is sucked in through the tube open end when the Cg, fullerene is initially
located outside the tube but situated on the tube axis, and in a head-on configuration
[71]. The encapsulation of the Cgy fullerene around the edge of the tube is a second
possible scenario, and the final possible scenario is the absorption of the Cg fullerene
through a large defect opening on the tube wall. These three encapsulation scenarios
are investigated by Berber et al. [72] who use the electronic Hamiltonian method,
and Ulbricht and Hertel [71] and Ulbricht et al. [73] who utilise molecular dynamics

calculations based on the Lennard-Jones potential function. Berber et al. [72]
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suggest that the encapsulation of the Cgy molecule is most likely to occur at a defect
opening of the tube wall. In contrast, Ulbricht and Hertel [71] and Ulbricht et al.
[73] propose that the Cg fullerene is most likely to be encapsulated by head-on at
the tube ends. Moreover, they find that although encapsulation around a tube edge
and absorption at a defect opening can occur, these outcomes are less likely.

Once a number of Cgg molecules are encapsulated into a single-walled carbon
nanotube, a nanopeapod is formed. As shown in Okada et al. [65], Hodak and
Girifalco [66, 74], Khlobystov et al. [75] and Dubay and Kresse [76], in (10,10) and
(11,11) nanotubes, the Cgy molecules form a quasi one-dimensional system, and the
energy is close to a one-dimensional system of Cgy molecules to which the interac-
tion energy with the tube is added. However, a phase transition occurs when the
tube radius becomes larger, resulting in an increase in the dimensionality of the
Cgo fullerenes inside the tube. From a Monte Carlo study, Hodak and Girifalco
[66] report a zigzag structure of Cgy molecules inside a (15,15) nanotube. To ob-
tain the interaction energy in a quasi one-dimensional system (e.g. Cgo fullerenes
in a (10,10) tube), only three nearest neighbour interactions are taken into account,
while for three-dimensional N molecules, Hodak and Girifalco [66] assume that the
potential energy consists of two parts. These comprise, firstly, the nearest neigh-
bour interactions between molecules which depend on the inter-molecular distance
measured along the axial direction, and secondly, the contribution from the energy
that depends on the offset distance of each molecule from the tube central axis.

From the literature, very little work has been undertaken on the mathemati-
cal modelling to describe the encapsulation behaviour of nanopeapods. The aim of
this study is to utilise fundamental mechanical principles and conventional applied
mathematical modelling to determine the energy behaviour for the three encapsu-
lation scenarios of the Cgo fullerene, which are presented in §4.3. In addition, the
Lennard-Jones potential function and the continuum approximation are employed
to determine the van der Waals energy for the Cgp fullerene encapsulated into a
carbon nanotube. In particular, the (10,10), (16,16) and (20,20) carbon nanotubes
are investigated where their radii are in the range 6.27 - 13.57 A following Hodak
and Girifalco [74], who determine fullerene peapod patterns. Carbon nanotubes

with radii smaller than that of a (10,10) nanotube are not studied here, since it has
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already been shown that a Cgy fullerene will not be sucked into such tubes (see for
example Cox et al. [57]). Once Cg fullerenes are encapsulated into a single-walled
carbon nanotube, the total potential energy and configuration, which is assumed to
form either a zigzag or a spiral pattern, of the nanopeapod are determined and are
shown in §4.4.

Note that by adopting the continuum approximation, the chirality effect of a
carbon nanotube is not taken into account, and the use of (n, m) therefore refers only
to a representative of the tube size given by (2.1). In all cases, a vacuum environment
and an isothermal mechanical system are assumed, and the Cgy fullerene is assumed

to be at rest.

4.3 Encapsulations of Cg, fullerene

To determine the interaction energy between a spherical fullerene and a carbon
nanotube for a typical point on the carbon nanotube, the surface integral of the
Lennard-Jones potential over the sphere is firstly performed, which is detailed in
Appendix C. The interaction energy between a Cgy molecule and a nanotube is
subsequently obtained by performing another surface integral over the cylindrical
tube. In this section, three encapsulation mechanisms for a Cgy fullerene entering a
tube, which are (i) through the tube open end (head-on), (ii) around the edge of the
tube open end and (iii) through a defect opening on the tube wall, are investigated,

and the details are presented.

4.3.1 Encapsulation of a Cg, head-on at an open end

T (bcosb, bsing, z)

Figure 4.1: Cg fullerene encapsulated in carbon nanotube head-on at an open end.

The encapsulation of a Cg, molecule into a single-walled carbon nanotube by

head-on at the tube open end, as shown in Figure 4.1, is determined here. The Cgq
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fullerene is assumed to be located on the tube axis and initially at rest. In fact, this
is the model in Cox et al. [57] for the acceptance condition and suction energy of
the Cgp fullerene and the single-walled carbon nanotube.

With reference to a rectangular Cartesian coordinate system (z,y, z) with origin
located at the tube end, a typical point on the surface of the tube has the coordinates
(bcos®,bsinf, z) where b is the radius of the semi-infinite tube. Similarly, with
reference to the same rectangular Cartesian coordinate system (z,y, z), the centre
of the Cgp molecule has coordinates (0,0, Z) where Z is the distance in the z-direction
which can be either positive or negative. Thus the distance p between the centre of

the Cgp fullerene and a typical point on the tube is given by
pP=b+(z—2)° (4.1)

Using the Lennard-Jones potential function together with the continuum approxi-

mation, the total potential can be written as

E:bng/ / E*(p)dzdeb,
—m JO0

where 7, represents the mean atomic surface density of the carbon nanotube, p is

given in (4.1) and E*(p) is defined by

20 =22 3 (e mar) 5 (Gran - pmam) | 02

By expanding the denominators, the integrals which need to be evaluated are of the

T o) 1
G, = / / ——————dzdf
-7 JO (p2 - a2)n

- [ [ =t a

where n is a certain positive integer. It is clear that (4.3) is independent of 0 so that

form

o 1
G, = 2%/0 a1 (= Z)2]ndz. (4.4)

The details of the analytical expression (4.4) are presented in Appendix D.1 and the

numerical solution is evaluated as follows.

Using the parameter values from Table 3.1, the relation between the potential
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Figure 4.2: Energy profile for Cgy encapsulated by head-on at open end.

energy and the distance Z for the Cgy molecule encapsulated into the (10,10), (16,16)
and (20,20) carbon nanotubes by head-on are shown in Figure 4.2. We comment
that this energy profile of Figure 4.2 was first given in Hodak’s thesis [77]. The en-
ergetically favourable location for the Cgy fullerene is inside the tube, in the positive
direction of Z, for all three cases. Furthermore, the binding energies which is the
energy required to separate the two bodies are 3.222, 0.326 and 0.109 eV for the
(10,10), (16,16) and (20,20) carbon nanotubes, respectively. The lowest potential
energy is observed to occur for the case of the (10,10) tube, since the preferred
location of the Cgy molecule is on the tube axis [36]. As a result, offset locations
from the tube axis for the (16,16) and (20,20) tubes are required to give rise to the
most stable configurations and these details can be found in Girifalco et al. [36] and

Cox et al. [54]. We comment that the energy profile of Figure 4.2 was first given in
Hodak’s thesis [77].

4.3.2 Encapsulation of Cgy around the edge of an open end

In this subsection, the energy for a Cgy molecule encapsulated into a carbon nanotube
by entering the tube around the tube edge at the open end is investigated. With
reference to the same rectangular Cartesian coordinate system (z,y, z), a typical
point on the surface of the tube has the coordinates (bcos@,bsin@, z) where b is

the radius of the semi-infinite tube. Similarly, with reference to the rectangular
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Figure 4.3: Cgo fullerene encapsulated in carbon nanotube around the edge of an
open end.

Cartesian coordinate system (z,¥, z), the centre of the Cgy molecule has coordinates
(2,0, 7) where Z is the distance in the z-direction which can be either positive or
negative. The distance Z and the coordinate x can also be described in terms of an
angle ¢ and the distance r in the radial direction, Z = rcos¢ and x = rsin¢ + b, as
illustrated in Figure 4.3. Thus the distance p between the centre of the Cg fullerene
and a typical point on the tube is given by

P> = (bcosh —x)? +b?sin?0 + (2 — Z)?

= (b—2)*+4bxsin®(0/2) + (z — Z)°. (4.5)

The total potential energy is obtained by integrating E*(p), which is defined by
(4.2), over the tube length and the angle . Thus there is one form of the integral

which needs to be evaluated, given by

™ e 1
H, = / / b, 46
—7 J0 (p2 - a2)n ( )

where p is given by (4.5). Further, there are three possible expressions for (4.6) and
these details are presented in the Appendix D.2. Although the analytical expressions
for (4.6) are clearly complicated, numerical values may be readily evaluated using
the algebraic computer package MAPLE. Note that the total potential energy in
terms of the distance r and the angle ¢ can be obtained by replacing Z = rcos ¢
and z = rsin ¢ + b.

To confirm the results the numerical evaluation for the encapsulation of the Cgg

molecule around the edge at the tube end are determined using both polar and
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Cartesian coordinate systems. In terms of the polar coordinate system, the relation
between the binding energy and the equilibrium distance for different angles ¢ is
presented in Table 4.1. The lowest binding energy is observed to occur at ¢ ~ 165°
for all three cases due to the edge effect. Consequently, this value of ¢ is the critical
value which determines whether or not the Cgy molecule is encapsulated into the
tube. The “equilibrium distance” refers to the cross-sectional location adopted by
the Cgg fullerene in the carbon nanotube, and it is defined as the distance between
the tube edge and the centre of the fullerene at equilibrium. The equilibrium distance
are obtained as 6.775, 6.540, and 6.550 A for ¢ = 270° and for each of the (10,10),
(16,16) and (20,20) tubes, respectively. These values are equivalent to 0.009, 4.306
and 7.007 A, respectively, away from the tube axis to the centre of the Cgo fullerene

in the x-direction, which is in agreement with the work of Cox et al. [54].

Table 4.1: Numerical values for binding energy (BE) in eV and the equilibrium
distance (Ep) in A for a Cg fullerene encapsulated in a carbon nanotube around

the tube edge at the open end for different angles ¢.

(10,10) (16,16) (20,20)

¢ BE E, BE E, BE E,

15° | 0.53424 | 25.16055 | 0.58315 | 25.14903 | 0.60398 | 25.14903
30° | 0.53026 | 13.01349 | 0.57883 | 13.00486 | 0.59953 | 13.00486
45° | 0.51050 | 9.18529 | 0.55756 | 9.20351 | 0.57737 | 9.18603
60° | 0.45467 | 7.53991 | 0.49675 | 7.56151 | 0.51479 | 7.54922
75° | 0.35970 | 6.77549 | 0.39343 | 6.79463 | 0.40775 | 6.81484
90° | 0.26722 | 6.47536 | 0.29169 | 6.51166 | 0.30211 | 6.51166
105° | 0.20322 | 6.32529 | 0.22146 | 6.36167 | 0.22892 | 6.35916
120° | 0.16640 | 6.30654 | 0.17929 | 6.32301 | 0.18476 | 6.32103
135° | 0.14647 | 6.26761 | 0.15413 | 6.21275 | 0.15967 | 6.28291
150° | 0.13894 | 6.26761 | 0.14378 | 6.21275 | 0.14722 | 6.28291
165° | 0.14169 | 6.26761 | 0.14250 | 6.21275 | 0.14412 | 6.28291
180° | 0.15563 | 6.26761 | 0.14998 | 6.21275 | 0.14929 | 6.28291
195° | 0.18511 | 6.26761 | 0.16666 | 6.21275 | 0.16318 | 6.28291
210° | 0.24079 | 6.30654 | 0.19779 | 6.30216 | 0.18779 | 6.28291
225° | 0.34809 | 6.34427 | 0.24633 | 6.30216 | 0.22694 | 6.32103
240° | 0.56623 | 6.44215 | 0.32206 | 6.34055 | 0.28746 | 6.32103
255° | 1.01175 | 6.66655 | 0.43751 | 6.42551 | 0.38012 | 6.40225
270° | 1.62119 | 6.77519 | 0.60665 | 6.53999 | 0.51827 | 6.55048

In terms of the Cartesian coordinate system, the potential energy of the system
depends on both distances in the z- and z-directions. An example of the potential

energy versus the distance Z for the encapsulation of the Cgy fullerene into the



Chapter 4: Nanopeapods 47

(10,10) tube is presented. Primarily, our interest is in the positive z-direction where
the Cgo molecule is located above the tube. As shown in Figure 4.4, the Cg fullerene
will not be encapsulated into the tube if its location is far from the edge of the tube.
This is because of the lower energy level at that position and the high energy peak
near the tube end. However, a nanopeapod might be formed if an initial energy is
given to the Cgy molecule to overcome the energy barrier. The Cgy fullerene has a
greater probability of encapsulation around the tube edge if it is initiated from rest
closer to the tube edge. If the value of z is greater than 13.034 A, the Cg fullerene
has no chance of being sucked into the carbon nanotube since the global minimum
energy position is located further along the tube in the positive z-direction. Note
that for the Cgg molecule to overcome the energy barrier and located in the negative

z-direction, the analysis for the suction by head-on applies for the encapsulation.

Potential energy (A)

Distance x (A)

Distance Z (A)

Figure 4.4: Energy profile for Cgy encapsulated into (10,10) tube.

4.3.3 Encapsulation of Cgy at a defect opening on the tube
wall

The potential energy for a Cgg fullerene encapsulated into a carbon nanotube at a
defect opening on the tube wall, which is centrally located mid-way along the tube
length, is determined here. Since the Lennard-Jones potential is only effective at

short range, the carbon nanotube is assumed to be infinite in length. From (2.3)
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the total potential energy of the system is obtained by subtracting the total energy
of the Cgg fullerene interacting with the defect pad from the total potential energy
of the Cgp fullerene interacting with the infinite carbon nanotube, as illustrated in

Figure 4.5.

,,,,,

(beosH, bsinb, z)

Figure 4.5: Cg fullerene encapsulated in carbon nanotube at defect opening on the
tube wall.

Again with reference to the rectangular Cartesian coordinate system (x,y, z), a
typical point on the surface of the tube has the coordinates (bcos#, bsin 6, z) where
b is the radius of the infinite tube. Similarly, with reference to the rectangular
Cartesian coordinate system (z,y, z) with origin located at the centre of the tube,
the centre of the Cgy molecule is assumed to have coordinates (x,0, Z) where Z is
the distance in the z-direction which can be either positive or negative. Thus the
distance p between the centre of the Cgy fullerene and a typical point on the tube is

given by

p* = (bcosf —x)* +b’sin®0 + (2 — 2)°

= (b— 1)+ 4basin?(0/2) + (= — 2)2. (4.7)

The total potential energy for the entire tube interacting with the Cgy fullerene is
given by
e = b, / / E*(p)dzdo, (4.8)

where 7, denotes the mean atomic surface density of the carbon nanotube, E*(p) is
defined by (4.2) and p is given in (4.7). The defect pad is assumed to occupy the
region Z € (—L,L) and 6§ € (—6y,0y) so that the interacting energy between the
Cgp molecule and the defect pad is given by

b0 L
Epod = bng/ / E*(p)dzdd, (4.9)
—0 J—L
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where p is also given by (4.7). Thus the total potential energy for the Cg fullerene

encapsulated in the carbon nanotube at the defect opening on the tube wall is

E:bng( /_ : /_ ZE*(p)dzd@— /_ Z /_ LL E*(,o)dzd&). (4.10)

By precisely the same analytical method as shown in the pervious section,(4.8) and

obtained from

(4.9) are separately determined and the total potential energy (4.10) is numerically
calculated for the system.

The defect pad is arbitrarily chosen to be a square such that the length L is
the radius a of the Cgy fullerene plus the equilibrium interspacing between the Cgg
fullerene and the graphene which is 3.25 A [36]. Using the arc length formula s = b6,
the limit of the integration 6 is adopted to be determined from L = bf,. Note that
varying 6 has only a minor effect on the energy profile and that the overall properties
of the system remain the same when L is greater than the critical value 6.8 A.

The relation between the potential energy and the distance Z for different values
of x, which is the interspacing between the Cgy molecule and the tube wall, is
examined, and all cases have similar behaviour. An example for the energy profile
for the interacting of the Cgy molecule and the (10,10) tube is shown in Figure 4.6.
In terms of the binding energy, such energy is concentrated at both edges of the
defect pad because of the point-force singularity effected from the edges. In this
case, an approximate value at 0.225 eV is obtained from both edges of the defect
pad. Using the Boltzmann formula 3kT/2 for kinetic energy where k = 1.38065~ %
m?kgs~ 'K, this corresponds to a temperature of approximately 1972 K, and therefore
an energy of 0.039 eV is required for the Cgy molecule to be encapsulated into the
(10,10) at room temperature 7' = 300K. Moreover, two potential energy peaks near
the edges of the defect pad for z < 13.034 A are observed, so that if the Cg
molecule is located outside the region of the pad, an initial energy is required for
the Cgp fullerene to be absorbed into the nanotube. However, the Cgy molecule is
spontaneously sucked in through the defect opening when its position is directly
above the defect. Furthermore, if the value of z is greater than 13.034 A, the global
minimum energy position is always located outside the region of the pad along the

tube in the z-position. Subsequently, the Cgq fullerene will not be adsorbed through
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the pad and a nanopeapod cannot be formed.

Potential energy (eV)

1289
Distance Z (A) Distance x (A)

. | R

Figure 4.6: Potential energy profile along the (10,10) tube.

4.4 Zigzag and spiral configurations for nanopeapods

The continuum approximation and the Lennard-Jones potential function are used
to determine the potential energy of a nanopeapod, which is assumed to form either
a zigzag or a spiral configuration. The analysis for zigzag nanopeapods comprising
(2k + 1) Cgp molecules is then presented in the following subsection. Furthermore,
the investigation for nanopeapods with a spiral configuration and comprising k Cg
molecules is presented in subsection §4.4.3. For both cases analytical expressions

are obtained and the minimum energy configurations are determined.

4.4.1 Zigzag nanopeapods comprising (2k+1) Cg molecules

The preferred pattern for a zigzag chain of Cgq fullerenes inside a single-walled carbon
nanotube, the so-called nanopeapod, is investigated, and an interaction energy is
determined in the following manner. A configuration, as shown in Figure 4.7, is
assumed to comprise (2k + 1) Cgy molecules located as indicated and the total

energy of the system is assumed to comprise:

1. (2k+1) Cg fullerenes each interacting with all the carbon atoms of the carbon

nanotube,
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2. 2(2k — 1) type I interactions, comprising two for each j = 2,3, ...,k and i =
2,3,....,k — 1 and one for each of j =1,k +1 and i = 1, k; thus 2(k — 1 + k —
2)+4=202k-1),

3. 4k type Il interactions, comprising two for each j = 2,3, ....kandi=1,2,....k
and one for each of j = 1,k + 1; thus 2(k — 1 + k) + 2 = 4k,

where the nearest neighbour interactions of types I and II are shown in Figure 4.7.
Furthermore, all other non-nearest neighbour interactions are assumed to be suf-
ficiently small such that their contributions to the total energy can be neglected.
Note that the van der Waals force is a short-range force, so that for example for two
interacting Cgo fullerenes, it operates at the van der Waals diameter of 8.9424 A,
and since the nearest neighbour approximation involves a distance between fullerene
centres of at least 10.0375 A, only a single nearest neighbour interaction needs to be
considered. The distance in the z direction between centres of adjacent molecules is
assumed to be Z. Then the centre of the upper j* Cgo molecule (j = 1,2,....k+ 1)
is located at position 2(j — 1)Z, while the centre of the lower i* Cgy molecule

(t=1,2,...,k) is located at position Z 4+ 2(i —1)Z = (2 — 1)Z.

k+1 molecules

T 1|\

1
Type I ay
It
I 1
| |
Typc II o
O @ '
1 1
vV

-L k molecules L zigzag

Figure 4.7: Zigzag configuration for (2k+1) Cg fullerenes inside a carbon nanotube.

With reference to a rectangular Cartesian coordinate system (z,y, 2), a typical
point on the surface of the tube has coordinates (bcos@,bsin6, z) where b is the
radius of the tube. The length of the tube is assumed to be 2L where L may tend
to infinity. Similarly, with reference to a rectangular Cartesian coordinate system
(z,y, z) with the origin located at the centre of the most left Cgy molecule, the centres
of the upper j* Cgy molecules have coordinates (£,0,2Z(j—1)) (j = 1,2, ..., (k+1))

and the centres of the lower i" Cgy molecules have coordinates (—e,0, Z(2i — 1))
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(1 =1,2,....k), where Z is the distance between centres of adjacent Cgy fullerenes
and ¢ is the offset position from the centre of the tube to the centre of the Cgg
fullerene in the « direction, as illustrated in Figure 4.7. Then from equation (2.6)
for a many-body system, the total potential energy is obtained by

k k+1
i=1 J=1

where d; and dy are the distances between the centres of Cgg fullerenes as shown
in Figure 4.7, and d} = 4Z% and d% = 4¢* + Z2. The potential functions E**(d;)
and E**(dy) arise from the type I and type II interactions between a pair of Cg

molecules, respectively, and are defined by

where
P _ 420’ 1 B 1 B 1 n 1
" d2-n)3—n)\2a+d)»3 d3 (2a—-d)n3 (=d)3 ’

as derived in Appendix C. The potential functions E; and E; represent the energy

of a Cg fullerene interacting with the carbon nanotube, which is obtained from

™ L
E, = bng/ / E*(pm)dzdb, (m =1,J) (4.12)
—m J—L

where 7, is the mean atomic surface density for a carbon nanotube and the length
L is subsequently taken to be infinite. The potential function E* is defined by (4.2)

and p,, (m =1 and j) are given by

p? = (b+e)? —4besin®(0/2) + [z — Z(2i — 1))?,
p; = (b—e)* +4besin®(0/2) + [z —2Z(j — 1)]%.

According to equations (C.2), (C.3) and (4.12), the following equation needs to be

evaluated

T o0 1
I, = ————dzd#, 4.13
/_W /_oo =y (4.13)
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where n is an integer. The details for evaluating (4.13) are presented in Ap-

pendix D.3, which can be written as

w2 2(n —1) 11
[n: F __7_;1;1_ m |
22n—3(am+5m)"—1/2< n—1 > (" 279 " )

where F'(a,b;c; z) denotes the usual hypergeometric function, (z) represents the

usual binomial coefficient, v, = /(@ + Bm) (m =i and j), a; = (b+¢)? — d?,

B; = —dbe, aj = (b—¢)* — a® and §; = 4be.

4.4.2 Numerical solutions for zigzag nanopeapods

By minimising the total energy of the system, the offset location ¢ from the centre
of the tube to the centre of the Cgy fullerene and an equilibrium distance Z between
centres of a pair of Cgg molecules for zigzag nanopeapods are determined. The total
potential energy consists of two nearest neighbour interactions of two Cg fullerenes
and one interaction between the Cgg fullerene and the carbon nanotube. An infinite
length nanopeapod comprising (2k + 1) Cgp molecules inside (10,10), (16,16) and
(20,20) carbon nanotubes are examined. Using the algebraic computer package
MAPLE together with the parameter values in Table 3.1, the numerical values for
the offset location ¢, the equilibrium distance Z and the total potential energy E'*!
are presented in Table 4.2. Note that the global minimum energy location of the
system 1is first plotted to ensure a genuine global minimum and the optimisation
package in MAPLE is then utilised to find the optimum values for each parameter
at this location.

In the case of the (10,10) carbon nanotube, an offset position is obtained as e = 0
which is equivalent to a distance of 3.234 A from the tube wall to the nearest atom
on the Cgy molecule, which compares well with Okada et al. [65]. The equilibrium
distance is shown to be Z = 10.0375 A for three Cgy molecules inside the tube,
which is in excellent agreement with Rochefort [67]. As a result, all Cgo fullerenes
inside the (10,10) tube are likely to align and form a linear chain along the tube
axis. The equilibrium distance decreases slightly as the number of the Cgy molecules
is increased due to the packing of the molecules. Moreover, the Cgy fullerenes move
closer to the wall as the radius of the tube increase. The offset positions of ¢ = 4.30

A and e = 7.02 A are obtained and these are equivalent to the equilibrium distances
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Table 4.2: Equilibrium distance Z (A), offset location ¢ (A) and total potential
energy of the system E'™ (eV) for each pair of Cgg fullerenes in a zigzag configuration
nanopeapod comprising (2k + 1) Cgg molecules.

k (10,10) (16,16) (20,20)
7 c Etot 7 c Etot 7 c Etot

1 110.0550 0 -6.7632 | 5.2176 4.2977  -2.7048 0 7.0213  -2.0941
2 110.0543 0 -13.8074 | 5.0390 4.3216 -6.2354 | 5.0267 7.0220 -4.7420
3 ]10.05642 0 -20.8516 | 5.0366 4.3232 -9.7692 | 5.0269 7.0217 -7.3973
4 110.0542 0 -27.8958 | 5.0358 4.3239 -13.3031 | 5.0269 7.0215 -10.0526
5 | 10.0541 0 -34.9400 | 5.0354 4.3244 -16.8370 | 5.0269 7.0214 -12.7079
10 | 10.0541 0 -70.1612 | 5.0347 4.3251 -34.5067 | 5.0270 7.0212 -25.9845
15 | 10.0540 0 -105.3823 | 5.0345 4.3255 -52.1764 | 5.0270 7.0211 -39.2611
20 | 10.0540 0 -140.6034 | 5.0344 4.3255 -69.8460 | 5.0270 7.0211 -52.5377
25 | 10.0540 0 -175.8245 | 5.0344 4.3256 -87.5157 | 5.0270 7.0210 -65.8143
50 | 10.0540 0 -351.9301 | 5.0343 4.3257 -175.8641 | 5.0270 7.0210 -132.1973
100 | 10.0540 0 -704.1413 | 5.0342 4.3258 -352.5610 | 5.0270 7.0210 -274.9634

of Z =5.024 A and Z = 5.018 A for the (16,16) and (20,20) carbon nanotubes,
respectively. For these two cases, the zigzag pattern is more clearly evident along
the tube. However, for the three Cgy fullerenes inside the (20,20) carbon nanotube,
the equilibrium distance is obtained as Z = 0 which means that although a zigzag
pattern exists, all three of the Cgy molecules are in the same plane. This is because
there is a sufficient amount of space for the three Cgg molecules to align themselves
due to the large circumference of tube. This result is related to the investigation
made by Hodak and Girifalco [74]. Furthermore, upon considering Cg fullerenes
inside a (15,15) nanotube, the results suggest € ~ 3.6 A and Z ~ 6.9 A which agree
well with Hodak and Girifalco [66].

The offset locations for all three nanopeapod configurations found in this inves-
tigation are in a very good agreement with Cox et al. [57] for a single Cgg fullerene
inside a single-walled carbon nanotube. Moreover, the interaction energy between
the Cgp fullerenes is observed to have more effect in forming the chain conformation
than the interaction energy between the tube and the Cgy fullerene. For example,
an equilibrium distance of 10.036 A is obtained for (10,10) nanopeapod, which is
comparable to the equilibrium distance between two Cgg molecules as determined in

Appendix C. Furthermore, the number of Cgy molecules in the system makes only
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a minor contribution to the alignment of the molecules as shown in Table 4.2.

4.4.3 Spiral nanopeapod comprising k£ Cg, molecules

In this subsection, a spiral configuration is assumed for k£ Cgy fullerenes, which are
located inside a single-walled carbon nanotube, as shown in Figure 4.8. The energy
of the system is minimised and the angular spacing «, the longitudinal spacing (3
and the offset location e for a spiral pattern are determined. The total potential

energy of the system is assumed to comprise:

1. k Cgo fullerenes each interacting with all the carbon atoms of the carbon

nanotube,

2. 2(k —1) type I interactions, comprising two for each i = 2,3, ...,k — 1 and one

for each of i = 1 and i = k; thus 2(k —2) +2 =2(k — 1),

3. 2(k—2) type II interactions, comprising two for each i = 3,4, ...,k —2 and one
for each of i = 1,2 and i = k — 1, k; thus 2(k — 4) + 4 = 2(k — 2),

4. 2(k — 3) type III interactions, comprising two for each i = 4,5,...,k — 3 and
one for each of i = 1,23 and i =k — 2,k — 1, k; thus 2(k — 6) + 6 = 2(k — 3),

5. 2(k—4) type IV interactions, comprising two for each i = 5,6, ..., k—4 and one

foreachof i = 1,2,3,4andi = k—3,k—2,k—1,k; thus 2(k—8)+8 = 2(k—4),

where the four nearest neighbour interactions of types I, II, III and IV are as shown

in Figure 4.8.

T k molecules

Type I Q :’ \‘
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d O ,

N Type IV U

-L L spiral
Figure 4.8: Spiral configuration for k& Cgy molecules inside a carbon nanotube.

With reference to a rectangular Cartesian coordinate system (z,y, z), a typical

point on the surface of the tube has the coordinates (bcos#,bsinf, z) where b is
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the radius of the tube. The length of the tube is assumed to be 2L, where L can
tend to infinity. Similarly, with reference to a rectangular Cartesian coordinate
system (z,y, z) with the origin located at the centre of the left most Cgy molecule,
the centres of Cgy molecules have coordinates (e cosai,esinai, §i) (i = 1,2, .., k),
where ¢ represents the offset location, and a and 3 denote the angular and the
longitudinal spacings for the spiral shape, respectively. Noting that a = 7, gives
rise to the special case of the zigzag pattern. From a potential energy for many-body
system (2.6), the total potential energy is given by

k
E" = Y " Ei(p)+ (k= 1)E*(dy) + (k — 2)E*(do) + (k — 3)E™(ds)
i=1
+(k —4)E™(dy),
where d, (¢ = 1,2,3,4) are the distances between centres of Cg fullerenes as shown

in Figure 4.8, and

d? = 4e?sin*(La /2) + (£B)2. (4.14)
The potential function E**(dy) represents types I, II, IIT and IV interactions which
are the potential energies between a pair of Cgy fullerenes defined by (4.11). The
potential function E; (i = 1,2, .., k) represents the energy of a Cgy fullerene inter-
acting with the carbon nanotube, which is obtained from (4.12) where in this case
m =1iand i = 1,2,...,k. The function E* is defined by (4.2) and p; (i = 1,2, .., k)
is given by

p? = (b—¢)? + dbesin®[(0 — ai) /2] + (z — Bi)*

Because of the assumed symmetry of the tube, the term «: has no effect for the

integral in (4.12) so on assuming i = 0, p? simplifies to obtain
p? = (b—¢e)* + 4dbesin®(0/2) + (2 — (i)

According to equations (C.2), (C.3) and (4.12), in the limit as L tends to infinity

the following integral needs to be evaluated

s oo 1
I, = —— 4.1
n /_7r /_OO e a2)ndzd9, (4.15)

where n is an integer. Using precisely the same method as the derivation of (4.13), it

can be shown that the solution for (4.15) is again in the form of the hypergeometric
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function and can be written as

w2 2(n—1) 11
In: F __7_;1;]-_ i
22n3(ai+@-)"1/2( n—1 ) (n 22 7)

where as before F'(a,b;c;z) denotes the usual hypergeometric function, (z) rep-

resents the usual binomial coefficient, a; = (b — €)* — a?, 3; = 4be and v =

[(b—€)* = a?)/[(b+e)* - a?].

4.4.4 Numerical solutions for spiral nanopeapods

The energy minimisation technique is employed here to determine the stable con-
figurations of a spiral chain of Cg fullerenes inside a single-walled carbon nan-
otube. Nanopeapods comprising k Cgp molecules inside infinite (10,10), (16,16) and
(20,20) carbon nanotubes with four possible nearest neighbour interactions for two
Ceo molecules and one interaction between the Cgy molecule and all the atoms of
the carbon nanotube are considered. Again, using the algebraic computer package
MAPLE and the parameter values in Table 3.1, numerical values for the angular
spacing «, the longitudinal spacing 3, the offset location € and the total potential
energy E'! for such a chain are obtained, which are shown in Table 4.3. Note that
[ is analogous to the equilibrium distance Z for the zigzag configuration.

For the (10,10) carbon nanotube, the offset location is also obtained as ¢ = 0.
Moreover, from (4.14), the angular spacing a has no effect on this configuration, and
the longitudinal spacing £ is found to be 10.03 A. Subsequently, the Cgo fullerenes
form a linear chain along the tube axis. These three parameters, «, 3 and ¢, change
slightly as the number of Cg fullerenes in the tube increases. The angular spacing
is a ~ 7 for the (16,16) tube, which corresponds to the zigzag configuration, and
is close to m/2 for the (20,20) tube. For k = 100, 8 = 5.0217 A, ¢ = 4.3228 A
and = 2.2918 A, ¢ = 6.8902 A for the (16,16) and the (20,20) tubes, respectively.
Consequently, spiral patterns for Cgo fullerenes in both the (16,16) and the (20,20)
nanotubes are clearly observed.

In particular, the zigzag configuration can be thought of as a special case of the
spiral configuration with angular spacing a = 7. The comparable numerical values
for the offset location ¢ and the longitudinal spacing (3 for all sizes of the tubes are

obtained, and an example is shown for the case of a (16,16) carbon nanotube in
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Table 4.3. Moreover, in the case of a (20,20) tube, at least four Cgy molecules are
required to form a stable spiral configuration. This observation is related to the
findings of Hodak and Girifalco [74] in the sense that four molecules are required on

each layer within the carbon nanotube with radius 13.5 A to 14.05 A.

4.5 Summary

In this chapter, a well-known self-assembled hybrid carbon nanostructure of Cgq
fullerenes and a carbon nanotube, so-called nanopeapod, is investigated. Through-
out this study, Lennard-Jones potential function together with the continuum ap-
proximation and double surface integrals are evaluated to determine the potential
energy which may be expressed analytically in terms of the hypergeometric function.
Due to the complicated analytical expressions, numerical evaluations are performed
by using the algebraic computer package MAPLE.

Firstly, three suction site scenarios are considered for a Cg, molecule entering
a carbon nanotube, which are (i) by head-on at the tube open end, (ii) around
a tube edge at the tube open end and (iii) at a defect opening on the tube wall.
The Cgp fullerene is assumed to be initially at rest prior to entering into the three
specific carbon nanotubes (10,10), (16,16) and (20,20) in a vacuum environment.
The binding energies for the three encapsulation mechanisms are compared and it
is found that the Cgg molecule is most likely to enter through the carbon nanotube
by the head-on configuration. This is because of the overall attractive force arising
from the entire tube, and this mechanism avoids the point force singularity acting
at the tube edge. Absorption at a defect is the second most likely mechanism to
form the nanopeapod. There is an effect from the edges of the defect, but when the
Cego fullerene is directly above the defect it is a straightforward matter for the Cgg
fullerene to be sucked into the tube. The least feasible mechanism to encapsulate
the Cgo fullerene is entering around the edge of the tube open end, since the Cgg
molecule must overcome strong repulsive forces at the tube end and change the
moving direction to enter into the tube. However, the encapsulation around the
edge of the tube open end may provide a way for molecules which do not approach
the tube along its axis to enter into the tube, and it is an important mechanism

to collect molecules along the outside of the tube. As a result, the quantitative
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investigations in this study are in agreement with previous studies such as Ulbricht
and Hertel [71] and Ulbricht et al. [73], but our predictions contradict those of
Berber et al. [72]. This disagreement may occur due to the probability of achieving
encapsulation. While the head on configuration is the most favourable energetically,
the probability of a molecule hitting an open end is much less than a molecule going
through an edge or defect configuration. A molecule is readily adsorbed on the tube,
and its translation across the tube surface is rapid and nearly energy free.

Once Cgp molecules are encapsulated into a single-walled carbon nanotube, two
nonlinear patterns for a Cgo fullerene chain, which are assumed to be zigzag and
spiral, are examined. For the zigzag configuration, there is assumed to be (2k+1) Cg
molecules inside (10,10), (16,16) and (20,20) single-walled carbon nanotubes, and the
offset location £ and the equilibrium distance Z are determined. The total potential
energy of the system comprises the interaction energy between the Cgy fullerenes
and the tube and the two nearest neighbour interactions of the Cgy, molecules. The
chain of Cgy molecules is found to be formed linearly along the (10,10) tube axis
and discernible zigzag patterns exist for both the (16,16) and (20,20) tubes. The
spiral configuration comprising k Cgp molecules is also investigated. The interaction
energy between the Cgo fullerenes and the tube and the four nearest neighbour
interactions between the Cgy molecules is considered. The angular spacing «, the
longitudinal spacing 3 and the offset location € are determined from minimisation
of the interaction energies. A linear Cg fullerene chain along the (10,10) tube axis
and spiral patterns for the (16,16) and (20,20) tubes are obtained. In particular,
« = T gives rise to the special case of the zigzag pattern, and comparable numerical
values for the zigzag configuration from the spiral configuration by setting a = 7
are observed.

In general, the interaction energy between the Cgy molecules themselves dom-
inates the energy of the system. The interaction between the Cgy molecules de-
termines the equilibrium position and the angular spacing of the system, whereas
the interaction between the Cg fullerene and the carbon nanotube determines the
offset position of the chain. Further, in the zigzag configuration, the number of Cgq
molecules makes a minor contribution to both the offset location and the equilib-

rium distance so that the assumption of periodicity made for the molecular dynamics
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simulations is quite reasonable. However, the periodicity assumption may not ap-
ply for the spiral configuration since as the radius of the tube increases the system
requires more Cgy molecules to maintain the stability of the system. Finally, for a
tube which is finite in length, the results given here also apply providing that the
two fullerenes located closest to the tube ends are at a distance from the end which
is at least the van der Waals radius 4.4712 A. If this is not the case, some small
variation of the numerical values given here might be expected, since at the tube
ends peak-like forces exist (see for example Cox et al. [54]) which would tend to

diminish the distance between centres.
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Chapter 5

Nanocones

In the synthesis and production of carbon nanostructures, carbon nanocones tend to
occur less frequently relative to other structures, and it is known that five different
pitched cones may occur, depending on the number of pentagons in the atomic net-
work. Most of the research on carbon nanocones deal with their electronic structure,
since they are the ideal candidate for the probes of scanning tunneling microscopes.
The simple geometric structure of carbon nanocones certainly facilitates calculations
for their potential energy. Here, the Lennard-Jones potential energy function and
the continuum approximation are employed to determine the energy for two such
nested carbon nanocones which are located co-axially. The energy profiles for any
two carbon nanocones arising from the five possible structures are presented. For
two distinct cones and two identical cones, the equilibrium location moves further
away from the vertex as the number of pentagons is increased. However, this equi-
librium position occurs such that one cone is always inside the other, and therefore
nested double-cones are formed according to these results.

Moreover, their oscillatory properties inside carbon nanotubes are examined.
The carbon nanocone located co-axially is shown to be sucked into a carbon nan-
otube when the difference between the cone base radius and the tube radius exceeds
2.5 A, irrespective of the direction of the vertex, and the maximum suction energy
occurs when these radii differ by 3.0 A. The oscillatory behaviour of a nanocone
once inside a nanotube is then determined, and pulse-like forces at both ends of the
tube which maintain the oscillatory motion along the tube length are obtained. On
neglecting frictional effects and approximating the pulse-like forces by Dirac delta

functions, Newton’s second law is employed to determine the oscillation frequency.

62
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This is shown to be in the order of 15 to 90 gigahertz, which is the same order of
magnitude as that obtained for oscillating co-axial carbon atom.

The hexagonal structure of boron nitride is geometrically similar to that of
graphene in a carbon structure, since both boron and nitrogen atoms are adjacent
to carbon in the periodic table [33]. Given that boron nitride is a good electrical
semiconductor, boron nitride cones can also be a good candidate for electronic de-
vices. In this chapter, the interaction energies between two cones of boron nitride
and carbon-boron nitride cones are also studied. The results are obtained in such a
way that the equilibrium positions always occur inside the other, and therefore the

formation of nested double-cones is suggested.

5.1 Nomenclature

Q@ is the cone angle

€ is the well depth

M1, 72 are the mean atomic number densities for the two surfaces

Mo Mg are the mean atomic number densities for carbon atom and graphene,
respectively

0 is the disclination angle

p is the distance between two typical surface elements

o is the carbon-carbon covalent bond length

A B are the Lennard-Jones attractive and repulsive coefficients, respectively

Etot is the total interaction potential

Flet is the total force in the z-direction

L is the half-lengths of carbon nanotube

N, is the number of pentagons

A is the distance between cone vertices
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74 is the distance between the cone vertex and the nanotube end
Lo is the distance between the cone vertex and the nanotube centre
a,ai,as are the cone base radii

b is the radius of the carbon nanotube

h,hi,hy are the cone heights

5.2 Introduction

Many studies utilise molecular dynamics simulation to calculate the energy of carbon
nano systems and these investigations emphasise systems involving Cgo fullerenes,
carbon nanotubes and carbon nanotori, but very little of the existing literature deals
with carbon nanocones [2-5, 36, 37, 42, 54, 57, 78]. Carbon nanocones have received
less attention primarily because only a small amount tend to occur in the production
process [9]. There are five possible ways to construct carbon nanocones depending
on the number of pentagons which are needed to close the vertex, and most research
on nanocones deals with their electronic structure [10, 79]. It is believed that the
different number of pentagons in carbon nanocones is the key to the puzzle of nucle-
ation in atomic construction [10, 80]. Kim et al. [81] utilise the catalytic chemical
vapor deposition method to synthesise carbon nanocones inside carbon nanotubes,
and they find that the resulting structures have different physical and electronic
properties than that of the original carbon structure. Charlier and Rignanese [10]
use tight-binding and ab initio calcuations to examine the local density near the
apex of the five possible carbon nanocones, and propose that carbon nanocones are
ideal candidates for nanoprobes in scanning tunneling microscopy. The electronic
structure of carbon nanocones is examined by Pincak and Osipov [79]. They employ
the effective-mass theory for a graphite monolayer and gauge theory of disclinations
on fluctuating elastic surfaces to obtain a mathematical equation, and finally they
find that the electron states are dependent on the position of the pentagons. The me-
chanical properties of carbon nanocones are investigated by Jordan and Crespi [82].
They obtain the nonlinear mechanical behaviour for both the original shape and the

inverse carbon nanocone which is obtained from the original cone by inversion.
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To start, the general information including the geometric structure of nanocones
is discussed in §5.3. However, from the literature there is little work examining the
potential energy behaviour of carbon nanocones. In this study the potential energy
for two carbon nanocones, which are assumed to be co-axial, is determined and
shown in §5.4. The Lennard-Jones potential energy together with the continuum
approximation, which assumes that carbon atoms are uniformly distributed over the
surface of each molecule, is utilised throughout this study to calculate the potential
energy of the system. Furthermore, the oscillatory behaviour of a carbon nanocone
inside a single-walled carbon nanotube is investigated. In particular, the van der
Waals interaction energy and the resulting oscillatory motion are determined. The
suction energy for a carbon nanocone entering a carbon nanotube is firstly considered
and presented in §5.5. Once the cone is sucked into the tube, in §5.6 the oscillatory
behaviour of the system is examined. On assuming that the frictional force can be
neglected [1], Newton’s second law is employed to determine the frequency of the
oscillating cone inside the tube. In addition, nanocones of hexagonal boron nitride
are examined. In particular, the potential energies between carbon and boron nitride
and two boron nitride cones are investigated as shown in §5.7. A summary is then

given in §5.8.

5.3 Carbon nanocones

Carbon nanocones were discovered by Ge and Sattler [83] and subsequently synthe-
sised by Krishnan et al. [80]. Typically, carbon nanocones are observed together
with carbon nanotubes and nanotube bundles during the synthesis process [9], and
carbon nanocones tend to be found at the cap of carbon nanotubes. There are
five possible structures for nanocones, as shown in Figure 5.1, because the cone an-
gle depends on the number of pentagons needed to close the structure. Cones are
formed from hexagons on a honeycombed lattice by adding fewer pentagons than
the six which are needed by Euler’s polyhedra theorem [27] for a closed structure.
In Cg fullerenes, a hexagonal lattice of any size or shape can only form a closed
structure with precisely twelve pentagons. The carbon nanotube cap, which is a half
Cego fullerene, contains six pentagons, and therefore carbon nanocones must have a

number of pentagons which is less than six.
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Figure 5.1: Five possible nanocones with vertex angles 19.20°, 38.90°, 60.00°, 83.60°
and 112.90°.

The disclination number of pentagons on the graphene gives the change with 6

in the form

where NN, is the number of the pentagons which ranges from 0 to 6. From the
diagram of the cone shown in Figure 5.2, it is clear that sin(a/2) = r/R and ¢ =
2mr = 27(1 — N, /6) R. Therefore, the relation of the cone angle and the number of
pentagons is obtained as

N,

sin(a/2) =1 — Fp'

There are seven possible values of the angle a depending on the number of pentagons
which are shown in Table 5.1. Note that for N, = 0 a graphene sheet is formed
and for N, = 6 a capped carbon nanotube is obtained. Hence there are only five
possible values giving rise to carbon nanocones. The mean atomic surface density
of the carbon nanocones is assumed to be the mean atomic surface density of a
graphene sheet, 0.3812 A=2, due to the fact that the carbon nanocones are formed
from the graphene sheet and the number of pentagons has very small effect on the
mean atomic surface density of a cone.

The surface shown in Figure 5.3(a) is a double right cone. A right cone is one
for which the vertex is directly above the centre of the base. However, when used
without qualification, the term cone often means right cone. A right cone is the
surface in three-dimensional space generated by a line that revolves about a fixed
axis in such a way that the line passes through a fixed point on the axis and always
makes the same angle with the axis, and the fixed point is called the vertex of the

cone. A cone consists of two parts, called nappes, that intersect at the vertex [84].
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@ ®)

Figure 5.2: (a) Graphene sheet (b) forming the carbon nanocone.

Table 5.1: Relation of number of pentagons NV, and open angle a for carbon
nanocones.

Number of pentagons (N,) | Angle of cone («)
0 180°
112.90°
83.60°
60.00°
38.90°
19.20°
0°

S Tk W N~

The quadratic equation in Cartesian coordinates (x,y, z) for double cones is given

by
x2 yQ 22
— + b_2 = g, (5.1)

where a,b and ¢ are constants. Alternatively, in cylindrical coordinates (7, , z) the
equation for the cone can be defined as r = ztan(a/2) where « is the cone angle.
The surface integral of the cone is needed to calculate the Lennard-Jones potential

energy using in the continuum approach. The surface integral of a single cone is

h 27
Area = / / rdfds.
o Jo

From Figure 5.3(b), it can be seen that ds = dz/cos(/2) and r = ztan(«a/2),

given by

therefore, the surface integral is of the form

2m h 27
Area = tan( a/2 / / zdfdz = al / / zdfdz = mal,
cos(a/2) Sy Jo

where ¢ = va? + h2.
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(a) ®)

Figure 5.3: (a) Geometry of an elliptical cone and (b) diagram for surface integra-
tions.

5.4 Equilibrium locations for carbon nanocones

This section considers the equilibrium locations for any two nested carbon nanocones,
utilising the Lennard-Jones potential function and the continuum approach. The
case of two identical nanocones is also investigated, and the details of that configu-

ration are presented in the following section.

5.4.1 Model formulation for two carbon nanocones

Figure 5.4: Geometry for two distinct carbon nanocones.

With reference to a rectangular Cartesian coordinate system (x1, 41, z1) with the
origin located at the vertex of the left most cone, shown in Figure 5.4, a typical
point on its surface has coordinates (rjcosfy,rysinfy, z;). Similarly, with refer-
ence to a rectangular Cartesian coordinate system (xs,ys, 22) with origin located

at the vertex of the second cone, a typical point on its surface has coordinates
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(rg cos By, 19 8in Oy, Z + 25) with respect to the coordinate system with origin located
at the vertex of first cone, where Z is the distance between their vertices. The first
cone has the open angle ¢ with base radius a; and height A, and r; = (z; where
[ = tan(¢/2). The second cone has the open angle w with base radius ay and height
ho, and ry = 29 where v = tan(w/2). The distance between two typical points on

the first and the second cone is then given by

P> = (ricos —rocosy)? + (rysinf; —rysinfs)? + [z1 — (Z + 2))?,
= (Bzicosb — yzycosly)? + (Bzyisinfy — yzysinby)? + [21 — (Z + 22)]%,
= B+ D21+ (V¥ + 1)z — 251208y + 1) —2Z(z1 — 20) + Z°

0, —0
440672129 sin2( ! 5 2>.

By using the Lennard-Jones potential together with the continuum approxima-

tion, the total potential energy is given by

2 + h2)<a2 + h?)
Flot — a1a2 \/(al 1)\as 2
m%( I "

ho h1 27 27 A B
X / / / / 2122( % + 3) d91d92d21d22,
0 0 0 0 P p

where 7, and 7, are the mean surface densities of the first and the second carbon

nanocones, respectively. Further, the integral J is defined as

2 27 27 2
7 :/ / df,db, :/ / . 2d91d92 ’ (5.2)
o Jo P o Jo AN+ EsIn®[(0 — 6y)/2]}/2

where n =6 and 12, A = (824 1)27+ (72 +1)23 —22129( 87 +1) —2Z (21 — 22) + Z* and

& = 4Pz 2. In Appendix A.1, it is shown that the integrals J* can be evaluated
either in terms of hypergeometric functions or Legendre functions. In terms of the

hypergeometric function, they may be written as

472 1
Jg = a >3F(37_717 é )7

(A+¢ 2 A+ €&
(5.3)
. 472 1.' 19
*2“<A+§WF(&§””A+§>

These are both degenerate hypergeometric functions, for which the details are pre-
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sented in Appendix E, as such

472

R PR S Y A ]
= S aoTol A+£+8(A+£) /

(5.4)
- a3 ) )
TN ALl 2\ +HE) T A\ +¢ 8 \A+¢
(e N e e Y
128 \ A+ & 256 \A+&/ |
Then the total potential energy becomes
21 h2) (a2 + B2 ha  phi
Ewt:771772(a1a2\/(&1;—:2h21)(a2+ 2))/ / 2129(—AJ§ + BJjy)dz1dzy. (5.5)
1% o Jo

However, for the final solution for E'* equation (5.5) must be integrated with
respect to z; and 23, which may be readily evaluated using the algebraic computer

package MAPLE.

5.4.2 Model formulation for identical carbon nanocones

Figure 5.5: Geometry for two identical carbon nanocones.

For this particular case, the two identical carbon nanocones, as shown in Fig-
ure 5.5, which the distance between their vertices denoted by Z, are considered.
They both have the cone angle ¢ which corresponds to base radius a and height
h. The relations between r and z for both cones are given by r; = (#z; and
ro = [3z9, respectively, where 5 = tan(¢/2) = a/h. In cylindrical polar coordi-
nates (1,0, z), the parametric equations for the first and the second cone can be

written as (71 cos 6y, 71 8in6q, z1) and (9 cos Oy, rosinfy, Z + z5), respectively. Then
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the distance between two typical points on each cone is given by

p° = (ricos —rycosly)? + (rysinf; — rysinfs)* + [z1 — (Z + 2)]?,
= (521 COS 81 — 522 COS 92)2 + (521 sin 91 — ﬁZQ sin 92)2 -+ [2,'1 — (Z + 22)]2,

= (ﬁz + 1)(21 — 22)2 — 2Z<Zl — ZQ) + Z2 —+ 4522122 sin2[(91 — 02)/2]

Therefore, the total potential energy can be written as

4 2 h h 27 21
tot 2 f G a A B
B =g <ﬁ + ﬁ) /0 /O /0 /0 2122( — E + ﬁ) db1dO>dz1dzs,

where 7, is the mean surface density of a carbon nanocone. The integral J* defined
by (5.2) must be evaluated, where in this case A = (32 +1) (21 —29)? —2Z (21— 22) + Z?
and & = 43%z12,. By precisely the same method as used previously, it may be

deduced that

tot 9 CL4 a2 h h
E* =, (ﬁ + ﬁ> /0 /0 2120(—=AJE 4+ BJ,)dz1dz,

which is also evaluated numerically to obtain the final solution for E%*!,

5.4.3 Numerical solutions

The potential energies for two carbon nanocones of the five possible structures are
examined. Using the algebraic computer package MAPLE, the relation between
the potential energy and the distance between vertices Z is depicted. Due to the
lack of the Lennard-Jones constants, namely the attractive constant A and repul-
sive constant B specifically for carbon nanocones, the Lennard-Jones constants for
graphene sheet are employed. Following the work of Girifalco [42], A = 15.2 eVAS
and B = 24.1 x 103 eVA'2 are obtained. We comment that the the two parameters
A and B have only minor effect on the numerical results. The values of a and h are
given by a = ¢sin(a/2) = 3mosin(«/2)/2 and h = fcos(a/2) = 3mo cos(a/2)/2,
where ¢ is a carbon-carbon bond length which is taken to be o = 1.42 A and m
is a positive integer indicating the size of the carbon nanocone. For the analysis
presented here, m is chosen to be 50.

The potential energies for system of the two carbon nanocones are shown in
Figure 5.6 - 5.8. For the combination of the cone containing one pentagon, the

equilibrium distance for the other four cones is approximately 3 A between their
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vertices, illustrated in Figure 5.6, and the most stable equilibrium occurs for the
cone NN, = 2. The equilibrium distance increases and the system has less stability as
the number of pentagons increases, as shown in Figure 5.7. Of particular interest, for
two identical carbon nanocones the increased number of carbon atoms at the vertex
causes the equilibrium distance between their vertices to increase, as demonstrated
in Figure 5.8. Values for the distances between their vertices Z at the equilibrium
configuration for any two carbon nanocones is given in Table 5.2.

The shortest equilibrium distance between the two cones is denoted by z as
illustrated in Figure 5.9, and values of x are shown in Table 5.3. For the two
identical carbon nanocones, a value of 3.4 A is obtained which is also the inter-
spacing distance for two graphene sheets. Otherwise, values of approximately 2.6 A
are found, which less than the equilibrium spacing for two graphene sheets. This
discrepancy is due to the fact that the two surfaces are not parallel. By observation,

x increases as the number of pentagons increases.

Table 5.2: Distance between vertices Z at the equilibrium position for any two
carbon nanocones.

N, of inner cone 1 2 3 4 5
N, of outer cone
1 4.0955 | 3.0787 | 3.1238 | 3.1440 | 3.1591
2 - 5.1136 | 3.8643 | 3.9320 | 3.9597
3 - - 6.8717 | 5.1959 | 5.2788
4 - - - 10.3052 | 7.8713
5 - - - - 20.5229

Table 5.3: Shortest distance x between the two cones at the equilibrium position for
any two carbon nanocones.

N, of inner cone 1 2 3 4 5
N, of outer cone
1 3.4132 | 2.5658 | 2.6034 | 2.6202 | 2.6328

- 3.4084 | 2.5757 | 2.6208 | 2.6393
- - 3.4358 | 2.5980 | 2.6394
3.4315 | 2.6210
- - - - 3.4226

U= W N
|
|
I
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Potential energy (eV)

Figure 5.6: Variation of potential energy versus distance between vertices for the
cone N, =1 and N, = 2,3,4 and 5 for the second cone.

Distance between vertices (A)

Potential energy (eV)

Figure 5.7: Variation of potential energy versus distance between vertices for various
combinations of two different cones.
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Figure 5.8: Variation of potential energy versus distance between vertices for five
identical carbon nanocones.

Figure 5.9: Shortest distance z between two carbon nanocones at the equilibrium
location.
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5.5 Suction behaviour for a carbon nanocone

The corresponding suction properties for a carbon nanocone entering a single-walled
carbon nanotube are investigated. For the cone to be sucked into the tube, the total
work which is obtained by moving from —oo to oo needs to be greater than zero. For
convenience, two specific models are determined according to whether the direction

of the cone vertex is in the positive or negative direction of the z-axis.

5.5.1 Cone vertex oriented in negative z-direction

Figure 5.10: Geometry of carbon nanocone with vertex oriented in negative z-
direction.

In this section, the vertex of the carbon nanocone is assumed to point in the neg-
ative z-direction and the cone and the tube are assumed to be co-axial, as shown in
Figure 5.10. With reference to a rectangular Cartesian coordinate system (x1, 31, 21)
with the origin located at the tube edge, a typical point on the nanocone surface
has coordinates (rycosfy,rysinby,z; — Z;), where Z; is the distance between the
vertex and the tube end. The cone has vertex angle o with base radius a and height
h, and r; = (z; where 8 = tan(«/2) = a/h. Similarly, with reference to a rectan-
gular Cartesian coordinate system (zs,ys, 22) with origin located at the tube end,
a typical point on the tube surface has coordinates (bcosfs, bsinfs, z5). The tube
is assumed to be semi-infinite in length and of radius . The distance between two

typical points on the cone and the tube is given by

p? = (ricosbh —bcos )’ + (risinby — bsinby)® + [(z1 — Z1) — 2%,

= (ﬁzl — b)2 + (2’1 — Z1 — 22)2 + 4ﬁb21 Sin2[<01 — 92)/2]
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By using the Lennard-Jones potential together with the continuum approximation,

the total potential energy is given by

/5 | 1.9 h2 0o h 2 2 A B
Etot — nongab%/ / / / 21 < vy —+ E) d@ldegdzleQ, (56)
h o Jo Jo 0 P P

where 7, and 7, are mean surface densities of the carbon nanocone and the carbon
nanotube, respectively. The constants A and B are the attractive and repulsive
Lennard-Jones constants, respectively. The known numerical values for the attrac-
tive constant A and the repulsive constant B for graphene sheet are employed to
the present system, following the work of Girifalco [42], thus A = 15.2 eVA® and
B = 24.1 x 10° eVA'2. Further, the integral J* defined by (5.2) needs to be de-
termined, and in this case A\ = (Bz; — b)* + (21 — Z; — 22)? and & = 403bz;. In
Appendix A.1, the evaluation of J is presented which can be obtained either in
terms of hypergeometric functions or Legendre functions. In terms of the hypergeo-
metric function, it can be deduced to give rise to equation (5.3) which can be further
deduced to obtained the degenerate hypergeometric functions shown in (5.4). Then
the total potential energy becomes
JETRE [ [

& /o /o ol

Ftot — ToNgab —AJi 4+ BJy)dzdzs. (5.7)

However, to evaluate E'™ equation (5.7) must be integrated with respect to z
and 2o which is performed numerically. Although clearly complicated, numerical
values for these integrals may be readily evaluated using the algebraic computer
package MAPLE. The solution for F¥* is also calculated numerically by the relation
presented in (2.8).

The suction energy and the interatomic van der Waals force for the suction
behaviour of a carbon nanocone entering a single-walled carbon nanotube are ex-
amined. A larger van der Waals force experienced by a cone when it is outside the
tube (negative z) than when it is inside the tube (positive z) is observed and shown
in Figure 5.11. This is because the first interacting part is between the tube and
the cone base which has the inter-spacing distance around 3.4 A and it gives rise
to the maximum force. At this point, the entire cone is outside the tube, therefore
the greater force occur outside the tube. The area under the graph in Figure 5.11

represents the work done by the van der Waals force or suction energy and this area
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must be positive for the cone to enter the tube.

The suction energy for various radii of the carbon nanotube b is shown in Fig-
ure 5.12. The suction energy is positive when (b—a) > 2.49 A for a cone with N, = 1
and (b — a) > 2.54 A for a cone with N, = 5. The maximum suction energy values
occur at (b—a) =3.00 A and (b—a) = 3.05 A for N, = 1 and N, = 5, respectively.
Noting that for the other three possible structures of carbon nanocones, the tube
begins to suck the cone inside for 2.49 A < (b —a) < 2.54 A and the maximum
suction energies occur for 3.00 A < (b — a) < 3.05 A. The differences in the radii
are noted to be less than 3.4 A, which is the inter-spacing distance between two

graphene sheets [36], due to the fact that the two surfaces are not parallel.

| T T [ R
WA W=

Distance between cone vertex and tube end Z;(A)

Figure 5.11: Force experienced by a co-axial carbon nanocone with a semi-infinite
carbon nanotube for cone vertex in negative z-direction (b —a = 3.4 A).

5.5.2 Cone vertex oriented in positive z-direction

Here the cone vertex is assumed to be oriented in the positive z-direction and the axis
of the cone and that of the tube are co-axial, as shown in Figure 5.13. Similarly, a
typical point on the surface of the cone has coordinates (7 cos 6,7 sin 6y, —z; — Z7),
where Z; is the distance between the vertex and the tube end. As mentioned in the
previous subsection, the cone has vertex angle a with base radius a and height h, but

here 1 = —(3z; where § = tan(«/2) = a/h. A typical point on the tube surface has
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Figure 5.12: Suction energy for co-axial carbon nanocones N, = 1 and N, = 5
entering a single-walled carbon nanotube versus the difference of the radii (b — a).
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Figure 5.13: Geometry of carbon nanocone with vertex oriented in positive z-
direction.
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coordinates (bcosfs,bsinfsy, z5) and again the tube is assumed to be semi-infinite
in length and of radius . The distance between two typical points on the cone and

the tube is given by

P> = (ricos —bcosy)? + (rysinf; — bsinbs)* + [(—z1 — Z)) — z)?,

= (Bz1 +b)* + (21 + Z1 + 20)* — 48bz; sin?[(0; — 602)/2].

Therefore, the total potential energy can be written as (5.6). The integral J¥ in
(5.2) needs to be evaluated, but in this case A = (B2 + b)? + (21 + Z; + 22)? and
& = —40bz;. By precisely the same method as used previously, (5.7) is also evaluated
numerically to obtain the final solution of E™" and F¥".

The same behaviour and the same values for the suction energy in terms of the
difference between the cone base radius and the tube radius are observed as in §5.5.1.
However, they differ in terms of the force experienced by the carbon nanocone. In
this case, the force experienced by the carbon nanocone when the cone is inside the
tube (positive z) is greater than that when the cone is outside the tube (negative z)
as shown in Figure 5.14. This is because the entire cone has to enter into the tube
to reach the maximum van der Waals force when the tube interacting with the cone

base.

LI T T
B AW N =

F°,(eV/A)

T T
-40 -20 40

Distance between cone vertex and tube end Z; (A)

Figure 5.14: Force experienced by co-axial carbon nanocone with semi-infinite car-
bon nanotube for cone vertex in positive z-direction (b —a = 3.4 A).
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5.6 Oscillatory behaviour for carbon nanocone

In order to accurately model the dynamics of the gigahertz oscillator, the force expe-
rienced by the carbon nanocone oscillating inside the single-walled carbon nanotube
needs to be accurately estimated. The Lennard-Jones potential function together
with the usual continuum approximation is utilised to calculate the van der Waals
force. In this study, the frictional force is assumed to be negligible, and Newton’s

second law is employed to determine the oscillatory behaviour.

5.6.1 Force distribution for a carbon nanocone oscillating
inside a carbon nanotube

(bcos0,, bsin,, z,)

[ ercosel,rlsinel Zzy)

0 G

Figure 5.15: Geometry for carbon nanocone oscillating inside single-walled carbon
nanotube.

From the result in §5.5, only the case when the cone vertex is in the negative z-
direction is considered. With reference to a rectangular Cartesian coordinate system
(21,41, 21) with the origin located at the vertex of the carbon nanocone, a typical
point on the surface of the carbon nanocone has coordinates (r1 cos 0y, ry sin 6y, Zs +
z1), where Zy is the distance between the vertex of the cone and the centre of
the tube. Similarly, with reference to a rectangular Cartesian coordinate system
(22, Y2, 29) With origin located at the centre of the tube, a typical point on the tube
surface has coordinates (bcos 6y, bsin s, z5), where b is the assumed radius of the 2L
length tube, as shown in Figure 5.15. The distance p between two typical points is

given by

p? = (ricosf —bcosby)? + (risinfy — bsiny)? + [(Zy + 21) — 20)%,

= (621 — b)2 + (Zg + 21— 22>2 + 46[)21 sinz[(Ql — 92)/2]
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Using the Lennard-Jones potential function with the usual continuum approach, the

total potential energy for the system is given by

) hQ L h 27 27 A B
Jtot _ nang@b% / / / / 2 ( v + 3>d91d92d21d22,
h —Jo Jo Jo PP

where 7, and 7, are the mean surface densities of the carbon nanocone and the
carbon nanotube, respectively. The integral J*, which is given by (5.2) needs to be
determined, but in this case A = (821 — b)? + (Zs + 21 — 22)? and & = 48bz;. By

precisely the same method as used previously, it can be deduced
Va2 +hn2 (Lot
Etot — naﬁgabT/ / Zl(—AJg —+ BJfQ)dzldz%
- Jo

and the force distribution may be obtained numerically by the relation (2.8).

By using the algebraic computer package MAPLE, the potential energy and the
force distribution for the carbon nanocone oscillating inside the single-walled carbon
nanotube are shown in Figure 5.16 and Figure 5.17, respectively. The potential
energy can be modelled by use of the rectangular function E,,..[H(Zy + L+ h) —
H(Zy — L — h)] where H(z) is a Heaviside step function. In terms of the force
distribution, the force is very close to zero everywhere except at both ends of the
tube where there are pulse-like forces which tend to attract the cone back towards
the centre of the tube. As both a and b tend to zero in such a way that a < b << L,

F' can be estimated using the Dirac delta functions, and can be written as
Fyl = Enaol0(Zy + L+ h) — 6(Zy — L+ h)], (5.8)
where F,,,. is the energy of the cone which is defined by

0 e
e = / Fldz, = — / Fiotdz,,

—00 0

5.6.2 Oscillation of a carbon nanocone inside a carbon nan-
otube

In this subsection, Newton’s second law is applied to describe the oscillatory be-
haviour of a carbon nanocone oscillating inside a single-walled carbon nanotube.
The frictional forces is assumed negligible, which may be justified for certain chirali-

ties and diameters of the tube [2]. From Newton’s second law on neglecting friction,
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Figure 5.16: Potential energy for cone oscillating inside tube.
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Figure 5.17: Force distribution for cone oscillating inside tube.
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it can be deduced
d?>Z,
dt?

M - Féogt(ZQ)a

where 7, is the distance between the vertex of the cone and the centre of the tube and
M is the mass of the cone. The force distribution of the system can be approximated
by two Dirac delta functions, as indicated in Figure 5.17, and from (5.8), it can be

written as

d*Z,
dt?

By multiplying both sides of (5.9) by dZ;/dt and using the fact that dH(x)/dx =

M = Epaz|0(Zoy + L+ h) — 8(Zy — L+ h)]. (5.9)

d(z), equation (5.9) becomes

d222d22 d dZQ
2 g H(Zy+ L+ h) — H(Zy — L+ 1) 222,
ar dt az, (%ot Lt h) = H(Zy = L+ )l

(5.10)

By integrating both sides of (5.10) with respect to ¢ and since H(Zy + L + h) —
H(Zy—L+h)=1for =L —h < Zy < L — h and zero elsewhere, it may be deduced

M (dZ,\* M,
2\ dt )~ T

where vy is the assumed initial velocity of the nanocone. This equation implies
that the carbon nanocone travels inside the carbon nanotube at a constant speed
dZy/dt = v = (2Emqee/M +v2)"/? and therefore, the frequency is given by f = v/4L.

On assuming that the cone base radius @ is 3.4 A smaller than the tube radius
b, which is the inter-spacing distance between two graphene sheets [36], the relation
between the frequency and the length of the tube is shown. For a difference in the
radii of more than 2.5 A (see §5.5) a prescribed initial velocity v is not necessary,
since a carbon nanocone which is initially at rest outside the carbon nanotube will
be sucked into the tube due to the attractive force. The frequencies obtained are in
the gigahertz range, which are 15 - 90 GHz, for the half-length of the tube between
100 - 300 A for the five investigated structures of carbon nanocones. From the graph
in Figure 5.18, a shorter tube provides a higher frequency, which is in accordance
with the observations made by Liu et al. [59] for the oscillation of a Cgy fullerene
inside a single-walled carbon nanotube. This is because of a decrease in the distance
for the cone to travel between the tube ends. Moveover, the smaller the cone, the

higher the frequency. Note that the word smaller cone is used to indicate the number
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of carbon atoms, which depend on the disclination number of the pentagons, and
a cone with five pentagons is the smallest cone of the five possible structures. The
smaller cone has the lighter weight which increases the velocity and therefore results
in a higher frequency. This result is also in agreement with the observation made

by Zheng and Jiang [4] for multi-walled carbon nanotube oscillators.
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Figure 5.18: Variation of oscillatory frequency for five possible structures of carbon
nanocones with respect to half-length of carbon nanotube.

5.7 Boron nitride nanocones

Boron nitride is a good semiconducting compound, and the large band gap in this
material may produce better electronic properties than those of carbon structures
[34]. There are two crystal structures for boron nitride, the cubic and the hexagonal
structures, but only the hexagonal boron nitride, which is comparable to a carbon
graphene sheet [33], is considered here

For carbon nanocones, there are five possible structures depending on the number
of pentagons which are needed to close the vertex [9]. The five cone angles «
can be obtained from sin(a/2) = 1 — N,,/6 where N, is the number of pentagons.
For boron nitride cones, Bourgeois et al. [85] investigate the conical structure of
boron nitride using transmission electron microscopy and they measure their angles

using an electron diffraction technique. From an analysis of the diffraction patterns,
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they observe a layer of nanocones and propose two possible models, which are the
monolayer boron nitride cones one inside the other and cones formed from helical
overlapping sheets. Moreover, they find that an angle of 84° occurs at the apex
because of a stable square ring at the vertex. Bourgeois et al. [86] also observe two
other conical structures with apex angles of 19.2° and 38.9°, arising from 300° and
240° disclinations, respectively. They suggest that these two configurations arise
because of the different stiffness in the chemical bonds of boron nitride compounds,
and square rings which are the favoured ring defects in boron nitride. Furthermore,
Han et al. [87] study conical nanotubes using high-resolution transmission electron
microscopy and electron energy loss spectroscopy, and suggest that nested cones
occur with the same apex angle as for boron nitride. Xu et al. [88] successfully
synthesise conical helices of graphitic boron nitride and they examine theoretically
their elastic properties. These structures hold considerable promise for potential
applications in new-generation high performance composite materials.

The Lennard-Jones potential function is utilised by Lee [89] who determines
gigahertz frequencies for boron nitride oscillators and finds that the frequencies
generated by the boron nitride nanotubes are higher than those generated by the
corresponding carbon nanotubes. Lee [89] also examines hybrid carbon-boron nitride
nanotube oscillators by applying a well known mixing rule for the Lennard-Jones
parameters.

In this study, equilibrium structures for two nested nanocones comprising either
boron nitride or carbon-boron nitride are examined, again using the Lennard-Jones
potential function and the continuum approximation. The analytical expressions
obtained in the previous two sections are exploited and numerical results are deter-
mined for the equilibrium distance Z between two vertices and the perpendicular
distance = between the inner cone vertex and the surface of the outer cone, as shown
in Figure 5.19. For the hybrid carbon-boron nitride nanocones, the same numerical

results are obtained irrespective of which cone is inside the other.

5.7.1 Model formation for boron nitride cones

In §5.4, the Lennard-Jones potential function and the continuum approximation

are utilised to determine the energetically most favourable structures for nested
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Figure 5.19: Geometry for any two nested nanocones.

cones. Here the results for both boron nitride and carbon-boron nitride cones are
examined. Using the continuum approximation, the total potential energy of the
system is obtained by performing double cone surface integrals. Two Lennard-
Jones parameters, the well depth ¢ = A?/(4B) and the van der Waals diameter
o = (BJA)'Y5, for carbon, boron and nitrogen atoms are taken from Lee [89] and
shown in Table 5.4 where A is the attractive constant and B is the repulsive constant.
Note that the constants for boron nitride and carbon-boron nitride systems are
obtained from the mixing rules which are given by €19 = /€16, and 015 = (014 02)/2
[90].

Table 5.4: Lennard-Jones constants for boron nitride and carbon-boron nitride sys-
tems.

Interaction | € (eV) |[o (A) | A (A% | B (A~1?)
C-C 0.002635 | 3.369 | 15.412 | 22534.750
B-B 0.004116 | 3.453 | 27.907 | 47303.611
N-N 0.006281 | 3.365 | 36.475 | 52955.321
C-B 0.003293 | 3.411 | 20.748 | 32678.989
C-N 0.004068 | 3.367 | 23.710 | 34544.753
B-N 0.005085 | 3.410 | 31.921 | 50099.811

C - BN 0.003660 | 3.390 | 22.203 | 33668.474

Two cones, which do not necessarily have the same vertex angle, are assumed
to be located co-axially, the distance between their vertices is denoted by Z and
the perpendicular distance from the vertex of the inner cone to the surface of
the outer cone at the equilibrium location is denoted by z, as illustrated in Fig-

ure 5.19. The outer cone has the apex angle ¢ with base radius a; and height hq,
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and m = [z; where 8 = tan(¢/2). The inner cone has the vertex angle w with
base radius ay and height hy, and 7y = vz where v = tan(w/2). With reference
to a rectangular Cartesian coordinate system (x1,y;, 21) with origin located at the
vertex of the outer cone, a typical point on the outer cone surface has coordinates
(ricosfy,rysinfy, z1). Similarly, with reference to the same rectangular Cartesian
coordinate system (s, Y9, 22), a typical point on the inner cone surface has coordi-
nates (rocosfy, rosinbly, Z + z5). The distance between two typical points on the
outer and the inner cones is then given by p? = (32 +1)2? + (72 +1)22 — 22129(3y +
1) =27 (21— 29)+ Z2+48v21 25 sin?[ (0, —0) /2], and the total Lennard-Jones potential
energy can be written as

aia at + h?)(a3 + h3
plot — 72 ( 1 2\/ 1h2h2)< 2 ))X

ho h1 B
/ / / / 2’12’2< ﬁ) d91d02d2’1d2’2, (511)

where 7; and 7, denote mean atomic surface densities of the outer and the inner

cones, respectively. Analytical expressions for the #; and 5 integrals can be eval-
uated either in terms of hypergeometric functions or Legendre functions, and the
details of these calculations are referred to in §5.4. Again, the integrations with
respect to z; and z; need to be performed numerically using the algebraic computer
package MAPLE.

We note that for the total interaction energy between two carbon nanocones,
the energy is simply obtained using (5.11) where A = Ac.¢, B = Bc.c, as given in
Table 5.4. However, for the case of the interaction between two boron nitride cones,
there are three different interactions which are B-B, N-N and B-N interactions, so
that the total interaction energy can be obtained as

plot _ %%E*(AB—Ba Brp)+ 21 7722 E*(Axx, Bax) + 27721 22 E*(Apx, Bpx), (5.12)

where E*(A, B) is defined by E* = E™ /(mn,) and E™" is given in (5.11). Sim-
ilarly, for the case of the interaction between carbon - boron nitride cones, there

are two different interactions which are C-B and C-N interactions, so that the total

interaction energy can be obtained as

B =, ";1 E*(Ac.g, Bep) + 1, 7721 E*(Ac.x, Box). (5.13)
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We comment that using (5.12) and (5.13) with different values of the constants A
and B as shown in Table 5.4 results only in a minor effect on the numerical values for
the total interaction energy. In other words, we may determine the total interaction
energy of the system using (5.11) where A = Ag.y and B = Bp_y for the interaction
between two boron nitride cones, and A = Ac.gy and B = Bc.gy for the interaction
between carbon - boron nitride cones. In this thesis, we employ the later method to

determine the interaction energy of the nanocone systems.

5.7.2 Numerical results for boron nitride cones

Following the work of Bourgeois et al. [85, 86], the apex angles a assumed for the
three different boron nitride cones which tend to occur in practice are 19.2°, 38.9°
and 83.6°. The height & is assumed to be 50 A which corresponds to base radii of
8.338, 16.649 and 33.327 A, respectively, which are determined from a = h tan(a/2).
Numerical values for the equilibrium distance Z between the two vertices and the
perpendicular distance x at the equilibrium location between the vertex of the inner
cone and the surface of the outer cone for any two of the above three boron nitride
cones are presented in Table 5.5. Moreover, the other two vertex angles for boron
nitride cones corresponding to the equivalent carbon nanocones are also considered
and shown in Table 5.5. Corresponding values for any of the five possible carbon-
boron nitride cones are shown in Table 5.6. For the carbon-boron nitride cones, the
numerical results essentially depend on the outer cone angle and they indicate that
the same results are obtained irrespective of which cone is inside the other.

For two identical cones, the equilibrium distance Z decreases with increasing cone
angle, which is due to the repulsive force arising from the vertices. The interspacing
distance z is found to be approximately 3.4 A, which is in excellent agreement with
Bourgeois et al. [86] for nested cones. Furthermore, the equilibrium distance Z
decreases for the case when the inner cone angle is smaller than that of the outer
cone. This is because the inner cone can move closer to the outer vertex for the
distance z to attain the value 3.4 A. In this case, the perpendicular distance z which
is illustrated in Figure 5.19 is the shortest distance between the inner vertex and the
outer wall. Consequently, the equilibrium distance Z is increased when the inner

cone angle is larger than that of the outer cone, and the distance x between the
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Table 5.5: Equilibrium distance Z (A) between two vertices and the perpendicular

distance z (A) for boron nitride cones.

Outer angels 19.2° | 38.9° | 60.0° | 83.6° | 112.9°
Inner angles

19.2° Z | 20.317 | 8324 | 5901 | 4.746 | 4.143

x| 3.388 | 2.772 | 2.951 | 3.163 | 3.453

38.9° Z | 34.378 | 10.708 | 5.823 | 4.718 | 4.097

x | 5.733 | 3.566 | 2.912 | 3.145 | 3.414

60.0° Z | 39.926 | 23.363 | 7.586 | 4.646 | 4.051

x | 6.658 | 7.780 | 3.793 | 3.097 | 3.376

83.6° Z | 42.800 | 30.344 | 17.873 | 6.146 | 3.995

x | 7.138 | 10.104 | 8.937 | 4.097 | 3.329

112.9° Z | 44.603 | 34.625 | 24.619 | 14.672 | 5.320

r | 7.438 | 11.530 | 12.310 | 9.779 | 4.434

Table 5.6: Equilibrium distance Z (A) between two vertices and the perpendicular

distance z (A) for carbon-boron nitride cones.

Outer angels 19.2° | 38.9° | 60.0° | 83.6° | 112.9°
Inner angles

19.2° Z | 20.188 | 8.278 | 5.863 | 4.732 | 4.101

x| 3.367 | 2.756 | 2.936 | 3.154 | 3.418

38.9° Z | 34.321 | 10.667 | 5.754 | 4.685 | 4.070

x| 5.724 | 3.552 | 2.877 | 3.123 | 3.392

60.0° Z | 39.873 | 23.316 | 7.554 | 4.630 | 4.025

x | 6.650 | 7.764 | 3.777 | 3.086 | 3.354

83.6° Z | 42.772 | 30.316 | 17.835 | 6.099 | 3.962

x | 7.133 | 10.095 | 8.918 | 4.065 | 3.302

112.9° Z | 44.560 | 34.598 | 24.592 | 14.642 | 5.282

x | 7.431 | 11.521 | 12.296 | 9.759 | 4.402
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inner vertex and the outer wall is actually the greatest distance between the two
surfaces.

The relation between the cone angles and the distance Z for boron nitride
nanocones is shown in Figure 5.20 - 5.22. For two identical boron nitride cones
at the equilibrium location, the system is observed to be more stable for the larger
apex angle. This is because the large apex angle reduces the repulsive force arising
from the vertex. In the case when the outer cone has a larger apex angle than
the inner cone, the stability of the system also increases for increasing inner cone
angle. On the other hand, the system is less stable at the equilibrium location if the
outer cone angle is smaller than the inner cone. This indicates that nested cones
are less likely to occur when the vertex angle of the outer cone is smaller than that
of the inner cone. Also note that the energy profiles for the carbon-boron nitride

nanocones are similar to those for boron nitride nanocones.
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Figure 5.20: Potential energy versus the distance Z between two vertices for five
identical possible boron nitride nanocones.
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Figure 5.21: Potential energy versus the distance Z between two vertices for boron

nitride cones when the outer cone angle o = 112.9° and the inner cone angles o =
19.2°, 38.9°, 60.0° and 83.6°.
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Figure 5.22: Potential energy versus the distance Z between two vertices for boron

nitride cones when the outer cone angle @ = 19.2° and the inner cone angles o =
38.9°, 60.0°, 83.6° and 112.9°.



Chapter 5: Nanocones 92

5.8 Summary

This chapter considers three related problems of system of nanocones, which are
(i) the potential energy for two carbon, two boron nitride and carbon-boron nitride
nanocones for both cases of identical and non-identical cones, (ii) the suction en-
ergy for a carbon nanocone entering a carbon nanotube and (iii) the frequency of
oscillation of a carbon nanocone moving co-axially within the interior of a carbon
nanotube. Two types of nanocones, carbon and boron nitride, are investigated us-
ing the Lennard-Jones potential energy and the continuum approximation. Due to
the lack of specific data for carbon nanocones, the known Lennard-Jones constants
determined for plane sheets of carbon-carbon atoms are employed, and the mixing
rule is used for the boron nitride cones.

In terms of carbon nanocones, the value 3 A for the distance between the two
vertices at the equilibrium position for the system of two identical single-pentagon
cones is obtained, and if this cone is paired with the other four possible cones this
distance increases with decreasing cone angle or increasing number of pentagons.
Moreover, in the case of two identical carbon nanocones, the equilibrium position
moves away from the vertex as the cone angle is reduced. However, the equilibrium
location is always inside the cone, hence nested double-cones from any two possible
combinations of carbon nanocones might be constructed. For both boron nitride
and carbon-boron nitride nanocones, all five possible vertex angles which occur for
carbon nanocones are also examined. The interspacing between two monolayer cones
is obtained to be approximately 3.4 A for both systems, and this result is in excellent
agreement with the finding of Bourgeois et al. [86]. Furthermore, the equilibrium
location always occurs with one cone inside the other, so that nested double-cones
might also be expected to form in practice.

In terms of the suction behaviour, since the van der Waals force only operates at
relatively short distances, a semi-infinite tube is used to model the open end of the
carbon nanotube. The carbon cone is assumed initially at rest outside of the tube.
The cone is sucked into the tube when the cone base radius and the tube radius differ
by 2.49 A to 2.54 A for the cones which consist of one to five pentagons, and this
is irrespective of the direction of the vertex. The maximum suction energy occurs

when the radii differ by 3.00 A to 3.05 A.
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The oscillatory behaviour is then examined, assuming that the carbon nanocone
is located co-axially and that it is sucked into the tube by van der Waals forces
alone. The potential energy can be assumed to be approximated by rectangular
functions, and the corresponding force distribution can be approximated by two
Dirac delta functions. The strong attractive forces at the ends of the tube ensure
that the cone remains inside, so that it becomes an oscillator. Newton’s second law
neglecting the frictional force is employed to determine the frequency of the system.
The frequencies obtained are in the gigahertz range, 15 to 90 GHz, for various values
of the tube length, and are the same order of magnitude as for an oscillating co-
axial carbon nanotubes. Moreover, the shorter the tube and the smaller the cone,

the higher the frequency.
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Carbon onions

Experimentally, a wide variety of different shapes are obtained, including both spher-
ical and spheroidal carbon onions. A spheroid is an ellipsoid with two equal axes
and the term onion refers to a multi-layered composite structure. Assuming struc-
tures of either concentric spherical or ellipsoidal fullerenes comprising n layers, this
study examines the interaction energy between adjacent shells for both spherical
and spheroidal carbon onions. The Lennard-Jones potential together with the con-
tinuum approximation is employed to determine the equilibrium spacing between
two adjacent shells. Analytical formulae for the potential energy, which may be
expressed either in terms of hypergeometric or Legendre functions, are determined.
The equilibrium spacing between shells is found to decrease for shells further out
from the inner core owing to the decreasing curvature of the outer shells of a con-

centric structure.

6.1 Nomenclature

P is the van der Waals potential function

M1, 72 are the mean atomic number densities for the two surfaces

p is the distance between two typical surface elements

o is the carbon-carbon covalent bond length

A B are the Lennard-Jones attractive and repulsive coefficients, respectively
Etot is the total interaction potential

Z is the interspacing between two adjacent layers of carbon onion

94
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6.2 Introduction

The special properties of nanostructures have not only led to proposals for many
potential nano-devices [4, 5, 30] but also to the desire to create new carbon nanos-
tructures, and the spherical and ellipsoidal carbon onions are examples of such struc-
tures. Carbon onions comprise multi-layer composite structures and here those of
both spherical and spheroidal shapes are considered, note that a spheroid is simply
an ellipsoid with two axes of equal length. Experimentally, electron beam irradiation
methods are used to modify the multi-layers of carbon onions, but at present there
are no procedures to predict the precise shape of the resulting structures. The major
issue in this regard is the determination of the interspacing layer of such structures.
Recently, molecular dynamics simulation techniques have been used to examine the
formation of such nanostructures. This calculation may be performed using den-
sity functional theory and a tight binding method such as that described in [91]
and [92]. However, rather than undertake such large scale calculations, elementary
mechanical principles and classical mathematical modelling are employed here to in-
vestigate the interaction energies between adjacent shells of spherical and spheroidal
carbon onions, which leads to the determination of the equilibrium spacings of such
structures.

While there are a number of studies on spherical carbon onions [46, 47, 93],
very little work has been undertaken for other forms of carbon onions. Kitahara
et al. [94] employ an electron beam irradiation technique to experimentally create
ellipsoidal carbon onions and they also investigate the stability of these structures
by using molecular mechanics and molecular orbital calculations. Narita et al. [95]
also utilise electron beam irradiation methods to produce tetrahedral carbon onions,
and they determine their energy levels and the density of different states.

For spherical and spheroidal carbon onions, this chapter utilises the Lennard-
Jones potential together with the continuum approximation to determine the po-
tential energy between two adjacent layers. From the energy minimisation of the
structure, this method can be used to predict the spacings between adjacent lay-
ers, and therefore the lateral and vertical dimensions for each layer of spherical and
ellipsoidal carbon onions. Using curve fitting techniques, an expression for the equi-

librium spacing for any two neighbouring layers of the carbon onions are obtained
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and shown in §6.4. Finally, a summary of the results is given in §6.5.

6.3 Interaction energies between shells

Here the interaction energy between two adjacent shells of an ellipsoidal (or spheri-
cal) carbon onion is considered. The ellipsoidal carbon onion is assumed to comprise
a family of concentric nested spheroidal fullerenes located co-axially, as shown in

Figure 6.1.

Figure 6.1: Double-shell ellipsoidal carbon onion

From Figure 6.1, with reference to the rectangular Cartesian coordinate system

the parametric equations for the outer and inner spheroids are given by
(1,91, 21) = (bsin ¢y cos Oy, bsin ¢y sin Oy, ¢ cos ¢1),

and

(2, Ys, 22) = (dsin ¢y cos Oy, d sin ¢ sin Oy, £ cos ¢s),

respectively, where 01,60, € [0,2x] and ¢1,¢9 € [0,7|. If the interspacing along
the three coordinate axes between two neighbouring shells of the carbon onion is
assumed to be given by Z, then it may be deduced { = c— Z and d = b — Z. The
distance p between two typical surface elements on the inner and the outer spheroids

is given by

p® = (bsing, cosf — dsin ¢y cosy)? + (bsin ¢ sin @) — dsin ¢y sin 6)?
+(ccos ¢y — £ cos ¢y)?
= (bsin¢; — dsin ¢y)* + 4bdsin ¢, sin ¢y sin®[(0; — 0) /2] 4 (ccos ¢y — £ cos ¢2)>.
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For the continuum approach, the atoms are assumed to be uniformly distributed
over the surface of the molecule, and a constant average atomic density which is
simply the number of atoms divided by the surface area of the molecule is utilised.
Thus, the total potential energy E%! for the two molecules can be obtained by
performing the surface integrals of a potential function over the two molecules,

namely
Emt :7717]2//(I)(p)d21d22, (61)

where 1; and 7, denote the mean surface densities of the outer and inner ellipsoidal
fullerenes and p is the distance between the two surface elements »; and > on the

outer and inner spheroidal fullerenes, which are given respectively by

Di = bsingiy/bcos? gy + c2sin? g dbide,

Yo = dsin ¢ \/d2 cos2 ¢y + £2 sin? podBydpo,

and the integration is performed over the entire surface of the two ellipsoids. Fur-
ther, ®(p) denotes the interatomic interaction potential for two typical single atoms
located one on each ellipsoid and here the classical six-twelve Lennard-Jones po-
tential is again adopted, so that the interaction energy (6.1) between shells of the

ellipsoidal carbon onion takes the form

T T 27 2w A B
Etot = M7 Y — — + — d91d02d¢1d¢27
o Jo Jo Jo Pt

where 7 = bdsin ¢ sin ¢/ (b2 cos? ¢y + c2sin? ¢y)(d? cos? ¢y + £2sin? ¢y). Further,

the integrals J are defined as

J* _ /2# /27r d01d02 _ /27r 2 dé’ld@g
" Jo o p" o Jo {A+Esin®[(6) - 6y) /2]

where n = 6 and 12, A = (bsing; — dsin@y)* + (ccos ¢y — Lcos¢g)? and € =

4bd sin ¢ sin ¢o. Note that none of the terms in v, A and & depend on #; or 6.
In Appendix A.1, the integrals J are evaluated either in terms of hypergeometric

functions or Legendre functions. In terms of the hypergeometric function, it may
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be deduced
4r? 1 19
Jo= e F(3ihie ).
° (A +¢)3 ( 2 A+5)

. 472 1. ¢
= et (rtre)

Since these equations are degenerate hypergeometric functions (see Appendix E),

they can be written as

o 4—%2‘1_L 5(4)]
6 A2/ AN+ 6) L +& 8\A+¢) [

o 4_ﬁ'1_§(i>+ﬁ(;)2_§(i)3
12 NyAA+E L 2\A+¢ 4 \XN+¢€ 8 \\+¢

LI e NP g N
128 \ X\ + ¢ 256 \AN+&/ |
Thus, the total potential energy becomes

B = 771772/0 /0 Y(=AJ§ + BJy)doi1dos. (6.2)

To obtain the final result for £ the integral of (6.2) needs to be evaluated with
respect to ¢; and ¢9, and these integrals are performed numerically. Although clearly
complicated, numerical values for these integrals can be readily evaluated using the
algebraic computer package MAPLE.

For the special case of the spherical carbon onion for which all three major axes
are equal, d = ¢ for the core and b = ¢ for the outer shell. In this case, the interaction

energy between shells can be obtained explicitly, and is given by
Ey = =P+ Pra, (6.3)

where P, (n = 6,12) are defined by

872bdCyminy 1 B 1
(2—mn) (b+d)2 (b—d)2)’

P, =

where Cs = A, C'15 = B and again 7; and 7, represent the surface densities of carbon
atoms on the outer and inner spherical fullerenes, respectively. The derivation of P,

can be found in Appendix C.
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6.4 Numerical results

The algebraic computer package MAPLE is used to show graphically the relation
between the potential energy and the interspacing between two neighbouring shells
for spherical and ellipsoidal carbon onions. The attractive and repulsive constants
A and B for graphitic carbon interactions are taken to be A = 17.4 eVAS and
B =29 x 10® eVA'? [36]. Due to the short range interaction of the van der Waals
force, the interactions between adjacent layers is only taken into account for the
calculation of the resultant potential energy [41].

For the spherical carbon onion, the 1st-shell, or the core, is assumed to be the
spherical Cgo fullerene, which has a radius of 3.55 A. This is consistent with ex-
perimental results, where the core of a fully formed spherical carbon onion has the
diameter of 7-10 A [60]. From (6.3), upon substituting d = 3.55, b is the radius of
the 2nd-shell, which is the critical value for which the energy E,/(n;172) is minimum.
Repeatedly, by using the radius of the (n — 1)th-shell as the value of d in (6.3), the
radius of the nth-shell, b, is determined by minimising E,/(n:72). Following this
procedure, the radius for each shell of an eight-layer spherical carbon onion is ob-
tained, as shown in Table 6.1. These values are the critical radii shown in Figure 6.2
for each shell. The spherical carbon onion comprising shells with radii shown in
Table 6.1 are approximately the structure proposed by Kroto and McKay [96] which
is the Cgp@QCo40QC540@QCo60QC1500@Q...QC N spherical carbon onion, where N is the
number of carbon atoms in Goldberg fullerenes of I;, symmetry type I, given by
N = 60n? where n is an integer [27]. The average radii of Cy are referred to Ta-
ble 6.2, which are taken from Itoh et al. [97] for Cayg, Cs40, Cogo, Ca160 and Csggp and
from Dunlap and Zope [98] for Cy509. For Goldberg fullerenes of I}, symmetry type
I, the average radius is approximated by R =~ 2.46n, where & is the average bond
length [47]. Using & = 1.421 A and n = 7, the average radius of Cagyp is obtained,

as shown in Table 6.2.

Table 6.1: Radius of each shell for a spherical carbon onion predicted from minimi-
sation of the energy F,/(m172) (6.3) and assuming a Cgq core.

nth-shell | Cgp | 2nd 3rd 4th 5th 6th 7th 8th
Radius (A) 3.55 | 7.042 | 10.516 | 13.981 | 17.442 | 20.900 | 24.356 | 27.811
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Figure 6.2: Potential energy profile for a spherical carbon onion showing the possible
radii of the nth-shell for which the energy is minimum.

Table 6.2: Radii of spherical fullerenes Cy.

Fullerene Caa0 | Csao Coso Cis00 Caie0 Caga0 Cas40
Radius (A) 7.06 | 10.53 | 14.02 | 17.5225 | 20.95 | 23.8728 | 27.95

For spheroidal carbon onions, two cases are considered using Cgy [93] and Cgg [94]
as the core. From (6.2) with the substitution ¢ = /+Z7 and b = d+Z, the equilibrium
distance Z between two adjacent layers may be obtained from minimisation of the
energy E™/(nns). Using a Cgg ellipsoidal fullerene which has a lateral size £ = 4.73
A and a vertical size d = 3.58 A [93] as the inner core, from (6.2) the equilibrium
distance Zj5 is determined which is the critical value shown in Figure 6.3 (—)
that minimises the interaction energy between the 1st- and 2nd-shells. Knowing 7,
gives rise to the lateral and vertical sizes of the 2nd-shell, which then become ¢ and
d in the determination of Zy3. Repeatedly, the equilibrium spacing Z(,_1), for the
(n — 1)th- and nth-shells interaction is determined, and Figure 6.3 shows the rela-
tion between the energy E™/(n11,) and the interspacing between two neighbouring
shells for the ellipsoidal carbon onion with Cgy as the core. The critical values that
minimise the potential energy are the equilibrium distances between each layer of

the ellipsoidal carbon onion. The lateral and vertical sizes for a five-shell ellipsoidal
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carbon onion with Cgy core are given in Table 6.3. Using a similar procedure to
that described above, Table 6.4 gives the dimensions of the outer shells for the
ellipsoidal carbon onion where Cyy is the core. For the ellipsoidal carbon onions
with a Cgg core, the equilibrium interlayer spacing between neighbouring shells is
approximately 3.4 A. Further, from Terrones et al. [99], it can be found that the
mean radii of Cago, Csgo and Cogg are 7.662, 11.057 and 14.588 A, respectively. As a
result of Table 6.3, assuming Cgy as a core gives rise to the carbon onion structure
Cgo@Cap0@C560QC0o50@QC 1 599...QC Ny where N = 20(m? + mn + n?). As such, this
study confirms the possible creation of the nested chiral icosahedral fullerenes of

type I symmetry as proposed by Terrones et al. [99].
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Figure 6.3: Potential energy profile for a five-shell Cgy carbon onion.

Table 6.3: Lateral and vertical sizes for five-layer ellipsoidal carbon onion where Cgg
is the assumed inner core.

nth-shell Cgo 2nd 3rd 4th 5th
Lateral radius (A) | 4.73 |8.222 | 11.699 | 15.167 | 18.629
Vertical radius (A) | 3.58 | 7.072 | 10.549 | 14.017 | 17.479
Mean radius (A) | 4.155 | 7.647 | 11.124 | 14.542 | 18.054

From the tables, the values of the equilibrium spacing Z between two adjacent
layers for both spherical and ellipsoidal carbon onions decrease the further away the
shell is from the inner core, which results from the effect of decreasing the curvature

of the spheroids. The high curvature of the inner shells means that for any atom
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Table 6.4: Lateral and vertical sizes for five-layer ellipsoidal carbon onion where Coy
is the assumed inner core.

nth-shell Cos | 2nd | 3rd 4th 5th
Lateral radius (A) | 2.315 | 5.846 | 9.324 | 12.792 | 16.256
Vertical radius (A) | 1.665 | 5.196 | 8.674 | 12.142 | 15.606

on the surface, there can be more than one interacting atom on the neighbouring
shell. Moreover, the shells which are further away from the inner core become
more like a flat surface, for which the interaction energy of the neighbouring shells
is approximately the equilibrium spacing of two graphite sheets. The equilibrium
spacing between two adjacent layers is obtained approximately as 3.4 A for both
cases. This result is in excellent agreement with the observations made by Terrones
et al. [99].

The relation between the equilibrium spacing between two adjacent shells is
shown in Figure 6.4 for a spherical carbon onion. Using a first order exponential
curve fitting technique from Microcal Origin 6.0 and the values of constants provided
previously, an equation which describes the interspacing between each shell of a

spherical carbon onion is obtained, namely
Equilibrium spacing (A) = 3.455 + 0.131e~ 59"

where n is the shell number.

For an ellipsoidal carbon onion, the relation between the spacing number and the
equilibrium distance between each layer is shown in Figure 6.5. Again, using a first
order exponential curve fitting technique from Microcal Origin 6.0 and the values of
constants provided previously, the equations which describe the equilibrium spacing
between any two neighbouring layers for the Cyy and Cgy ellipsoidal carbon onions

are obtained, namely
Equilibrium spacing for Cyy onion(A) = 3.458 4 0.757¢ 851",

and

Equilibrium spacing for Cgg onion(A) = 3.453 + 0.102¢ 2061

where n is the shell number. Figure 6.5 shows that the large equilibrium spacing
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between the 1st- and the 2nd-shells of Cy4 carbon onion occurs due to the unstable

structure of Cqy [93].
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6.5 Summary

The interspacing between two adjacent layers of spherical and ellipsoidal carbon
onions is considered here. The Lennard-Jones potential together with the continuum
approximation is employed to determine the preferred position or the equilibrium
distance for each layer of various carbon onions. The analysis gives rise to the
possible dimensions for each shell of the carbon onions. Moreover, the equilibrium
spacing is observed to decrease as the shell is further away from the inner core and
this is due to the decreasing curvature for the larger spheroids. However, this is
not the case when high temperatures and pressures are applied to the onion, as
shown by Banhart and Ajayan [100]. Upon heating the particle up to 700°C and
simultaneously irradiating it with electrons, the interlayer spacing in the onion is
actually shown to decrease from the outside to the inside, indicating an increasing
compressive stress towards the centre, giving rise to a diamond core. Finally, an
approximate equation for the determination of the equilibrium spacing for any two

adjacent layers of a spherical and an ellipsoidal carbon onion is presented.
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Chapter 7

Introduction to the geometry of
joining nanostructures

Since the discovery of carbon nanostructures such as graphene sheets, Cg, fullerenes
and carbon nanotubes, a number of researchers have investigated the topological
properties for such structures utilising FEuler’s polyhedra theorem and computa-
tional molecular dynamics simulation [28, 101-103]. Kroto [101] proposes the basic
empirical arguments for the stability of spherical carbon cages which mainly consist
of pentagonal and hexagonal rings. By introducing the pentagonal, heptagonal and
octagonal rings on the graphene sheet, Terrones and Terrones [28] and Terrones and
Mackay [102] examine carbon nanostructures with various Euler characteristics. A
defect on a carbon nanotube with a pentagon-heptagon pair as considered by Dun-
lap [104] is believed to strongly affect the electronic properties of carbon nanotubes
[103, 105-108]. Furthermore, a pentagon-heptagon defect pair can be introduced to
connect two different chiral nanotubes [104-106] or to change the helicity within a
single tube [107].

For future nanoelectromechanical signalling, graphene sheets might be needed as
the platform to transmit signals to other materials through joined carbon nanotubes.
Thus connecting graphene sheets with carbon nanotubes is an interesting problem
with potential applications, and to the author’s knowledge this problem has not
previously been addressed in the literature. In Part III, two geometrical approaches,
a variation in bond length and a variation in bond angle, are employed to determine
the connection between a flat sheet and a tube open end, and the details for these
two approaches are presented in §7.1. These two geometrical approaches are closely

related to the bonded interaction energy for a small deformation system which is
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detailed in §7.3. Euler’s polyhedra theorem, which is presented in §7.2, is utilised to
determine the connected structure in terms of a geometrical point of view. Finally,

an overview of this part is given in §7.4.

7.1 Least squares methods

From the work of Cox and Hill [11], the authors have exploited the idea that the
basis of joined carbon nanostructures is an underlying requirement that each inter-
atomic distance be as close as possible to the ideal carbon-carbon bond length.
Accordingly, in [11] certain toroidial carbon nanostructures are constructed from
elbows comprising sections of two distinct carbon nanotubes in such a way that the
total squared deviation of all inter-atomic bond distances from the carbon-carbon
bond length is minimised. The underlying hypothesis is that carbon nanostructures
are formed in such a way that each inter-atomic bond length is as close as possible
to the bond length, and indeed in [11] this procedure accurately produces certain
toroidial molecules which are known to exist, along with numerous other predicted
molecules. This leads us to ask, “To what extent is this least squares approach
applicable to other carbon nanostructures?”, or equivalently “To what extent are
carbon nanostructures dominated by geometric issues as well as energetic issues?”
Although this approach appears to be geometric in nature, by trying to make each
inter-atomic bond length as close as possible to the bond length, the requirement to
minimise the energy is taken into account. In this thesis, two variation approaches,
which are the variation in bond length and the variation in bond angle, are under-
taken to consider the joining of two nanostructures, carbon and boron nitride, and

the details of these two methods are given as follows.

7.1.1 Variation in bond length

To start, the ith terminal atoms at a join location are defined by the position vectors
a; = (agi, Qy;, 0z) and b; = (by;, by, by;) for a sheet and a tube open end, respectively.
The sheet is assumed to be located on the (z,y) plane (ie. a,; = 0) and it is allowed
to move in both the x- and y-directions by distances X and Y, respectively, which
can be either positive or negative. The atoms on the sheet are assumed to remain

in the z = 0 plane because here the bond angle is considered fixed. However, in the
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variation of bond angle approach an out of plane displacement for the atoms on the
sheet is incorporated. The position vector for the atoms at the defect sheet is given
by a; = (az;+X, a,;+Y,0). In terms of the atoms on the tube open end, the spacing
between the tube and the sheet is assumed to be ¢, and the tube can be rotated
about the z-axis through an angle . Consequently, the position vector for the atoms
at the tube open end can be written as b; = (b,; cos @ —by,; sin 6, b,,; sin 0+b,,; cos 9, ().

The Euclidean distance between the atoms at the junction is then given by

|a2- — bz| = {[am + X — (ba:z cosf — byi sin@)]2

+Hayi +Y — (byisin @ + by, cos 0)]? 4 (212, (7.1)

Given these distances between matching atoms, the procedure attempts to determine
X, Y, ¢ and 6 by minimising the least squares variation of these distances from the
ideal bond length . Therefore, the objective function, given by (7.2) needs to be
minimised,

f(X7 Y7£79) = Z(|az - bz| - 0-)2‘ (72)

Throughout this study, the optimisation package in MAPLE is utilised to find the

values for each parameter by minimising (7.2).

7.1.2 Variation in bond angle

In this subsection, the bond lengths are assumed to be fixed at ¢ and the bond
angles at connection sites are varied so as to minimise the least square derivations
from the physical bond angle for both the sheet and the tube. The bond length is
assumed to be o, the bond angles of the sheet are assumed to be 120°, and the bond
angles on the tubes are taken from a new model of carbon nanotubes which properly
incorporates curvature [109]. Since the atomic networks on both the sheet and the
tube are formed from hexagonal rings, a general procedure is proposed to determine

the position vectors of all atoms at the junction through the following steps:
1. Find the point M which is the mid-point of A; and A,.

2. Find the vector U = MA;.

3. Find the unit vector V = A1A,/|A1A,| which is perpendicular to U.
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4. Determine the vector W which is perpendicular to both U and V and has the

same magnitude as U; namely W = U X V.

5. The atom position is then given by M + U cos ¢ + W sin ¢.

Here, Ay, A; and Aj, are the atoms positions as shown in Figure 7.1. The atom Ag,
which is the joining position, can move around a circular path and its position is
determined by an angle ¢. Moreover, each bond length which joins between an atom
on the tube to one on the sheet is restricted to be o. Comment that in this approach
the atoms can move out of plane (ie. a,; # 0). The number of parameters in each
system depends on both the symmetry of the defect and the number of atoms at

the tube open end which need to be joined.

Figure 7.1: Position vectors for variation in bond angle approach.

We note that the variation in bond length and the variation in bond angle give
very similar results because the bond angle approach automatically minimise the
variation in bond length so that the two approaches are rather like a converging

iterative procedure.

7.2 FEuler’s polyhedra theorem

Euler’s polyhedra theorem, which involves the topological structure of the molecule,

is considered here to investigate the connected configuration for two nanostructures.
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Euler’s polyhedra theorem states that
F+V -FE =y, (7.3)

where F', V and E denote the numbers of faces, vertices and edges for the given
polyhedron and x is the Euler characteristic. Note that any surface which is home-
omorphic to a sphere has an Euler characteristic of 2, and further details of Euler’s
polyhedra theorem can be found in [110]. The notation P, is used to denote the
number of n-gonal sides, e.g. Ps is the number of pentagonal sides, and every atom
is linked with three others in the sp? structure, therefore three terms in (7.3) can be

deduced

F = P+ P+ Ps+ Pr + Py + Py + Py,
3V = AP, +5Ps+ 6P + TP + 8P + 9P, + 10Py, (7.4)

9F = AP, +5P5+ 6P+ TP; + 8Py + 9Py + 10Py.
By substituting (7.4) into (7.3) with x = 2, Euler’s polyhedra theorem simplifies to
9P, + Ps — P; — 2Py — 3Py — 4Py = 12. (7.5)

For example, a Cgq fullerene is formed by pentagons and hexagons, and (7.5) implies
that there are precisely twelve pentagons required to close the spherical shape. This

is a result of the number of hexagonal sides Py being an invariant of (7.5).

7.3 Bonded interaction for small deformations

A number of authors [13-16] adopt a numerical minimum energy principle such that

the bonded potential energy for a small deformation is given by

1

Ebonded = 5 Z (1{37«(7’ — 7“0)2 —+ k¢(q§ _ ¢0)2 + /{JT[l — COS(’/LT — To)]), (76)

where k., k4 and k; are certain bond stretching, bending angle and torsional con-
stants, respectively, 1o, o9 and 7y are equilibrium values of the bond length, bond
angle and ideal phase angle for this bond type, respectively, and n is an integer re-
lating to the periodicity of the bonding in sp?, n = 3. The parameters r, ¢ and 7 are

shown in Figure 7.2. Ramani et al. [12] have reported all three force constants for
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both carbon and hexagonal boron nitride, in the case of carbon, the force constants
are obtained as k, = 4.79 dynem™, ks = 0.895 dyncm™! and &, = 0.156 dyncm™*,
and in the case of boron nitride, the force constants are obtained as k., = 4.84
dynem™, ky = 0.43 dynem™! and k, = 0.156 dyncm™!. Following their study,
the bond stretching constant k, is large, and is approximately five times and ten
times larger than the bending angle constant k4 for carbon and boron nitride, re-
spectively. In general, the variation in bond length approach corresponds to taking
only the bond stretching energy. Similarly, the variation in bond angle approach
corresponds to taking only the angle bending energy from equation (7.6) into ac-
count. Furthermore, according to [13-16], in terms of the relative magnitudes of the
force constants, the torsional term plays only a minor effect on the system and it
may be neglected. Therefore, the geometrical criteria are the more important under-
lying physical principles. Thus, the geometrical approaches adopted here correlate

strongly to existing energy minimisation schemes.

Figure 7.2: Definitions of variables r, ¢ and 7 for bonded potential energy given by
equation (7.6).
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7.4 Overview

Connecting structures from a geometrical point of view for both carbon and boron
nitride are determined in Part III. Throughout this part, least squares methods, Eu-
ler’s polyhedra theorem and the bonded interaction energy are employed to study
the possible joined structures. Utilising the variation in bond length concept, in
Chapter 8 a connecting of three distinct carbon nanotubes to form a torus is pre-
sented. In order to create an ideal transmission platform, connection between a
carbon nanotube and a flat graphene sheet is investigated in Chapter 9. Further-
more, given that the energetically favourable bond in the hexagonal boron nitride
network is the bond between the boron and the nitrogen atoms, boron nitride struc-
tures are formed from an even number of sides to each ring such as squares, hexagons
and octagons. Therefore, the essential mathematical ideas for joining a sheet and a

nanotube of boron nitride are presented in Chapter 10.



Chapter 8

Toroidal molecules formed from
three distinct carbon nanotubes

In order to design nanotori for nanomechanical systems, perhaps involving oscillat-
ing components, precise physical parameters for the nanotori are needed. Toroidal
shaped carbon molecules have been investigated previously and are constructed
by connecting elbow sections formed from joining armchair and zigzag nanotubes
through a pentagonal-heptagonal pair defects. In this chapter, this design is ex-
tended by constructing the elbow structures from three distinct carbon nanotubes.
Since for a toroidal molecule, there is a constraint on the bend angles in the elbow
sections to add up to 360°, particular elbow types which can accommodate this
requirement are (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4). A least squares approach for
the bond length is adopted to minimise the variation from the ideal carbon-carbon
bond length, which is taken to be o = 1.42 A. Moreover, formulae for the mean gen-
erating radius of the nanotori and the mean radius of the nanotubes are obtained
from certain integral expressions. This geometrical approach can be directly related
to certain numerical energy minimisation methods used by a number of authors

[13-16].

8.1 Nomenclature

01, O are the elbow bend angles between tubes A and B, and tubes B and C,

respectively
o is the carbon-carbon covalent bond length

Ry, Ry are the distances from the centres of a nanotorus to the elbow corners of

113



Chapter 8: Carbon nanotori 114

tubes A and B, and tubes B and C, respectively
a;, b;,c; are the positions of terminal atoms on tubes A, B and C, respectively
a is the representative tube radius for an ideal nanotorus
ai,as,as3 are the radii of tubes A, B and C, respectively
c is the representative generating radius for an ideal nanotorus
k, K are the elliptic modulus and complementary modulus, respectively
l1,05, 05 are the half lengths of tubes A, B and C, respectively
n is the number of elbow sections

r1,79,73 are the perpendicular distances from the centre of a nanotorus to tube A,

B and C sections, respectively

8.2 Introduction

Dunlap [111] first proposed the torus as a stable form of graphitic carbon. He con-
structs toroidal molecules by joining two different carbon nanotubes with matching
radii and introduces the pentagon-heptagon pair [104, 111, 112]. Moreover, Dunlap
[104, 111, 112] predicts that the molecule comprises twelve connecting sections oc-
curring for the 360° turn, and therefore the tubule bend angle is 30° for each section.
The energetic stability of molecules that are constructed based on the Cgy fullerene
and carbon nanotube structures are investigated by Itoh et al. [113], Ihara et al.
[114] and Itoh and Ihara [115]. They find that these structures are more thermody-
namically stable [114, 116] and such toroidal shapes are expected to be physically
more interesting than those of the two original structures [115]. Although these the-
oretically proposed structures have not been confirmed by experiment [117], they
are believed to give rise to fascinating electrical, magnetic and elastic properties
arising from the pattern of the hexagonal rings [116].

In a recent paper Cox and Hill [11] show that certain toroidal molecules may be
constructed from two types of carbon nanotubes, such that the bend angle and the

two nanotube lengths are determined by minimising the total squared deviations
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of the inter-atomic spacings from the ideal spacing o = 1.42 A. This procedure
generates certain toroidal shaped molecules previously known to exist, along with
numerous other toroidal molecular structures. The question arises as to the gen-
erality of the procedure, and whether or not other toroidal shaped molecules are
determined, such as ones constructed from three distinct nanotubes.

This chapter examines the geometry of the basic repeatable units, comprising
three distinct carbon nanotubes, which are needed to assemble the toroidal molecule.
Following [11], these repeating units are joined according to the least squares minimi-
sation of the deviations of the inter-atomic spacing from the ideal spacing o = 1.42
A. In this study, all the carbon nanotube sections are assumed to be either zigzag or
armchair. This is because from previous studies only these two types of nanotubes
are thought to form nanotori [104, 111, 112, 118]. In addition, there is no experimen-
tal evidence to indicate that chiral tubes can be formed into toroidal structures [117].
The model formation for the elbow comprising three distinct carbon nanotubes is
presented in the following section. In §8.4, the toroidal molecules constructed by
connecting n elbows are determined, and formulae for a representative radius of such
tori and a representative radius of the toroidal tube are also given. The results and

discussion are presented in §8.5, and a summary is made in §8.6.

8.3 Model formation for an elbow

The elbow structure required for toroidal molecules is investigated here by joining
three distinct carbon nanotubes of lengths 24, 2¢5 and 2/3 utilising the least squares
in bond length approach. Only zigzag and armchair carbon nanotubes are examined.
The proposed model assumes that the basic repeating unit comprises tubes A and
C as half unit lengths and tube B as one unit length. Further, it is assumed that
the origin O of a rectangular Cartesian coordinate system (z,y, z) is located at the
central point of tube B, such that the axis of tube B is aligned along the z-axis, as
illustrated in Figure 8.1.

The ith terminal atom at a join location is defined by position vectors a; =
(Qig, Qiy, Qiz), Dy = (big, biy, biz) and ¢; = (¢jq, Ciy, ¢i) for tubes A, B and C, respec-
tively. At the junction of tubes A and B with 2’-axis as shown in Figure 8.2(a), a

translation of the tube B in the negative z-direction is performed by a length /54,
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Figure 8.1: Basic double elbow unit formed from three nanotube sections.

where 20y = (94 + lop and fop is as defined later in the text. Tube A is also trans-
lated in the positive z-direction by a length ¢; and rotated by an angle ¢; about
the g/-axis. Therefore, the Euclidean distance between the atoms at the junction is

given by

la; — b;| = {|aicosdr + (a;. + {1)sinp; — bix]z + (azy — biy)2

[(aiz + 51) COS @1 — @y SIN P — (biz - €2A)]2}1/2-

Similarly, at the junction of tubes B and C with z”-axis as shown in Figure 8.2(b),
tube B is translated in the positive z-direction by a length /55, tube C is translated
in the negative z-direction by a length ¢35 and rotated by an angle ¢5 about the

y”-axis. The distance between the atoms at the join location is then given by

lci = bi| = {[cizcosda+ (c;. — l3)sin gy — bix]2 + (ciy — biy)2
[(Ciz — gg) COS §b2 — Cig sin ¢2 — (bzz + ng)P}l/Q.
Given these distances between matching atoms, the procedure is to determine

l1,05, 03, ¢1 and ¢ by minimising the least squares variation of these distances from

the ideal carbon-carbon bond length which is taken to be o = 1.42 A. Consequently,
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(@ ®
Figure 8.2: Cartesian coordinate system for two single nanotube elbows.

this approach is seeking to minimise the following objective functions,

f(ly,lan, é1) = Z(|ai —bi| — 0)2,

%

9(lap, b, p2) = Z(‘Cj —by[ - o)

J
Given that the parameters (1, (5, 3, ¢1 and ¢ are determined, the basic repeating
unconstrained elbow unit can be obtained and is illustrated in Figure 8.3. However,
in the case of a nanotorus, an even number of elbow sections are required to form
a symmetrical torus, so that the angles ¢; and ¢5 must be constrained to the value
1 + ¢ = 180°/n where n € {2,3,4,...}. So in this case, the objective function

becomes

F(ly,loa,lop, ls, 1) = f(ly,loa, ¢1) + g(lap, U5, 180° /n — ¢y).

In consequence, with this additional constraint, slightly different values for ¢;, /5 and
{3 might be obtained. The resulting nanotorus structure is achieved by translating
the elbow in the z-direction by a distance ry which is obtained by the procedure

given in the following section.

8.4 Model formation for a toroidal molecule

In this section, nanotoroidal structures formed from the elbows determined in §8.3

are investigated here. A representative radius of the toroidal shapes is determined
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(5,0)-(4,4)-(7,0) (3,3)-(6,0)-(4,4)
Figure 8.3: Elbows formed from three distinct nanotube sections.

by connecting the basic elbow units with ¢; and ¢5 constrained for the 360° turn.
Firstly, the upper quadrilateral shown in Figure 8.4 is considered which comprises
four sides, namely rq, {1, {24 and 79, and the configuration also depend on the angle

¢1. On using the compound angle formula for sine which can be deduced
sin ¢; = sin @) cos 4 + sin a4 cos by = (£17ry + loar1)/R3,

and therefore,
r = (R% sin ¢1 - €1T2>/£2A. (81)

Similarly, from the compound angle formula for cosine,
cos ¢ = cos 0y cos foq — sin b sin oy = (1119 — £1€94)/ RS,
and therefore, r; simplifies to become
r1 = (R3cos ¢y + £1lan) /T (8.2)
By equating equations (8.1) and (8.2), 5 can be rearranged and is given by

TQR% sin gbl = EQAR% COS gbl + 51(7”% + E%A))
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Figure 8.4: Elbow skeleton formed from three distinct nanotube sections.

where R? = r3 + (3, is strictly positive. By dividing by R? and rearranging, ro
simplifies to obtain

ro9 = lo4 cOt @1 + €1 CSC 1, (8.3)

and likewise

r1 = {1 cot ¢ + Loy csc @y.

By precisely the same process for the quadrilateral comprising the sides ry, lo5, {3

and r3, ro and r3 can be deduced

Ty = 623 cot d)g —{—ﬁg CSC ¢2, (84)

r3 = fl3cot ¢y + o csc ¢o.

The parameters ¢34 and ¢op can be rearranged from (8.3) and (8.4), respectively,

r9 — {1 CSC
loy = 2 A o1 = ry tan ¢ — 1 sec ¢y,
cot ¢

r9 — {3 CSC
b = u:rgtangbg—ﬁgsecqﬁg.
cot ¢
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Since 20y = l94 + lop, therefore

~ lysec gy + 205 + L3 5eC Py
N tan ¢; + tan ¢ '

T2 (8.5)

By substituting (8.5) into the above equations, r; and r3 are obtained

1 = {pcot(pr + d2) + 205 csc(pr + ¢a) cos pg + l3 csc(dr + ¢a), (8.6)

rg = Llycsc(@r + ¢o) + 205 csc(py + ¢o) cos @1 + U3 cot(pr + ¢2). (8.7)

These two formulae provide the appropriate generalisation of those given in Cox and
Hill [11] for the case of two distinct tubes. The corresponding equations given in

Cox and Hill [11] can be obtained from (8.6) and (8.7) with the formal identification
ly =y = 0.

To calculate a representative radius a and a representative generating radius c in
terms of the perpendicular distances ry, 7o and r3, the integral formula for a mean

radius 7 of a circle is utilised, which is given by

%o
ron= [ r(0)do,
0
For a right-angled triangle which consists of r1, £; and R; sides, ¢y and r are obtained
as ¢g = tan~1(¢1/ry) and r(¢) = 71 sec ¢ and it can be deduced

tan—1(€1/r1) / /02 2
601 zrl/ sec pd¢ = r1In (—l—l-ﬁ).
0 r

1 1

Since sinh ™' 2 = In(z + /22 + 1), therefore 7760, simplifies to obtain
r_101 =" Sinh_l(&/rl).

The same procedure is repeated to obtain the mean radii for ro and r3 and finally

by averaging, the representative toroidal generating radius c is obtained to be given

by

c = {rysinh ™' (€, /r))+ra[sinh ™ (bo4 /ro)+sinh ™ (Cop /172)]+rssinh ™ (L3 /r3) }/ (p1+d2).
(8.8)
This process is then extended to determine a representative expression for the
representative tube radius a. Here a surface integral for a torus is undertaken to de-

termine such a radius. The surface element for the tube is obtained by transforming
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X

Figure 8.5: Toroidal coordinate system (a, @, 1).
the toroidal coordinate system (a, ¢, %) into a Cartesian coordinate system via
r=(c+acosy)cosp, y=(c+acosy)sing, z=asiny,

where ¢ and a denote the mean radii for the torus and the tube, and ¢ and ¢ are
the torus and the tube angles, respectively (see Figure 8.5). By using the Jacobian

matrix, the surface element integral for the torus can then be written as

¢o 2w _
/0 /0 (o, )l (&) + (6, ) cos Yldibdd = 2nBdc,

where b(¢, 1) is the radius of the tube, and as before r(¢) is the torus generating
radius. For the section of tube A, 6, = tan=1(¢1/ry),7(¢) = rysec¢ and b(¢, 1)) =
a1y/sec? ¢ cos? 1) + sin® ¢, it can be deduced

1 91 27
a = / / ary sec gb\/sec? & cos? v + sin® Ydipdo,
271'091 0 0

L oam /91 2 /1 —sin® ¢sin®

2mch, cos? ¢

dido.

Upon the substitution of & = sin ¢, the above integral can be written as

~ 2a1m /”/2 /Zl/Rl k2 sin wdkdw _ 2a171 /él/R1 E(k;)dk
0

7TC01 7TC(91 k'3

where E(k) is the complete elliptic integral of the second kind with modulus k& and
k' = +/1 — k? is the complementary modulus. Using these definitions with equivalent

expressions for tubes B and C and then combining, the following formula may be
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derived for the representative tube radius

2
“= m{amh(&/&)ﬂ%zrz[h(sz/Rl)+h(€23/32)]+a37“3h(53/32)}7 (8.9)

where

/{3’3

The analytical expression in terms of an infinite series for (8.10) can be found in

hz) = /0 CEW) g (8.10)

Appendix A of Cox and Hill [11], and is given by

—2 2m — 1)!!
h(z) = 3;T—Tx—l—zsm T+ = Z(m—i—l) {%sinlx

o amt mZ:l m—k-1DI2m+ DI (1 2
(2m+1)r xQ c— 2%Hml(2m — 2k — 1)!! ’

where 7 = (1—2?)/2 and the double factorial (2n—1)!! denotes (2n—1)(2n—3) - - - 5-3.

The above procedures for the determination of the representative parameters a and
¢ are by no means unique, but appear as the most natural and simplest for the

determination of these quantities.

8.5 Results and discussion

In this section, elbows made from the smallest possible nanotube sections are deter-
mined. By precisely the same procedure as that given in [11], the basic parameter
for elbows are given in Table 8.1. The smallest possible nanotube sections which
can be formed from the elbows are referred to as the base unit, and other possible
structures can be obtained by adding further incremental units. The same nomen-
clature formulated in [11] for toroidal shaped molecules is employed by utilising the
notation N(n,m), where (n, m) refers to a section of nanotube which is constructed
from p atoms and N is a number of base units.

Numerical results from the least squares procedure when applied to various dis-
tinct nanotube elbows are presented here. Two different elbow structures, which
are (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4), are considered. Using the new polyhedral
facetted model for carbon nanotubes which incorporates curvature [109] and the
value of the bond length ¢ = 1.42 A, the tube radii are obtained. Once the atom

positions are determined, the physical parameters (1, {5, {3, ¢1 and ¢, are determined



Chapter 8: Carbon nanotori

123

Table 8.1: Fundamental parameters for nanotube elbows formed from three distinct

carbon nanotube sections.

Base unit Incremental unit
Nanotube | Radius (A) | Number atoms | Number atoms | Length (A)
(5,0) 2.0551 17 120 14.7986
(4,4) 2.7582 48 +16 +2.4380
(7.0) 2.8094 19 +28 +4.2230
(3,3) 2.0965 12 +12 +2.4206
(6,0) 2.4298 32 +24 +4.1580
(4,4) 2.7582 24 +16 +2.4380

by the minimisation process, both for no constraints and again with the constraint

&1 + ¢ = 180°/n where n € {2,3,4,..}. In Table 8.2, the results for the uncon-

strained case and the constrainted case when ¢; + ¢ = 60° (that is n = 3) for two

different nanotori are presented. Note that the sum of the angles ¢; and ¢, needs

to be exactly or close to a common factor of 360° for toroidal structures, and there

is only one case arising for these particular two structures.

Moreover, there is no

straightforward procedure to choose the elbow structures for which ¢1+¢9 ~ 180°/n,

so that only (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4) are presented here.

Table 8.2: Bend angles and base unit section for nanotube elbows.

Elbow type
(570)'(4?4)'(770) (373)'(670)'(474)
¢1 + @9 unconstrained

#1(°) 25.59 31.38
®2(°) 36.00 33.80

1(A) 3.7089 3.2202
(5(A) 3.6571 2.4085
l3(A) 3.1727 2.3430

9251 + ¢2 - 600

»1(°) 24.00 26.20
$2(°) 36.00 33.80
(1(A) 3.3396 3.9716
05(A) 3.6571 2.4085
l3(A) 3.1727 2.3430

Using the parameters for the constrained elbows, the toroidal parameters rq, 79

and 73 from equations (8.6), (8.5) and (8.7) are calculated, and values for the mean
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torus generating radius ¢ and mean tube radius a are derived from the expressions
(8.8) and (8.9). These results are presented in Table 8.3. Two of these nanotori
are illustrated graphically in Figure 8.6 and Figure 8.7. In Figure 8.6, the toroidal
structure of 3(5,0)176(4,4)4s3(7,0)19 is depicted, which can be referred to as a Csgg
molecule, and also in Figure 8.7, the toroidal structure of 3(3,3)126(6,0)323(4,4)24

is shown, which can be referred to as a Csgy molecule.

Table 8.3: Physical parameters of two specific toroidal structures.

Toroidal structures ri(A) | ra (A) [ rs (A) | ¢(A) | a(A)
3(5,0)176(4, 4)153(7, 0)19 | 12.4230 | 12.7083 | 13.4038 | 12.9935 | 2.6209
3(3,3)126(6, 0)323(4, 4)00 | 9.2163 | 9.7138 | 10.1213 | 9.7980 | 2.4780

8.6 Summary

The principle contribution of this study is applying a least squares approach to
determine the basic elbow unit and toroidal structures formed from three distinct
carbon nanotubes. Within each constituent nanotube structure, the relative atom
positions are assumed to remain unchanged. The connection to adjacent atoms
on each of the two sections is assumed to be as close as possible to the carbon-
carbon bond length, taken to be ¢ = 1.42 A. The variation in the bond length
is minimised which gives rise to the physical parameters, namely the bend angles,
¢1 and ¢, and the half-lengths /1, /5 and ¢3. We comment that this minimisation
procedure ignores angle bending because the bending force constant is small relative
to the bond length constant. There are two approaches in the minimisation routines,
which are the unconstrained and constrained cases for the bend angles. In terms
of the unconstrained procedure, all the physical parameters are allowed to attain
their optimum values themselves which are necessary to form the elbow structures.
However, in such a procedure there is no guarantee that the elbow sections can
be joined to each other and form a toroidal shaped structure with a 360° turn.
Therefore, the analysis is repeated with the angles ¢; and ¢, constrained to the
value ¢ + ¢o = 180°/n where n € {2,3,4,..}.

Here, two distinct elbows are considered which are (5,0)-(4,4)-(7,0) and (3,3)-
(6,0)-(4,4), and all the physical parameters are given in Table 8.2. Since the principal
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Figure 8.6: Nanotorus formed from 3(5,0)176(4,4)4s3(7,0)19 where ¢1 + ¢o = 60°.

Figure 8.7: Nanotorus formed from 3(3, 3)126(6,0)323(4, 4)24 where ¢ + ¢ = 60°.
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aim is to construct toroidal molecules by joining elbow sections, the bend angles must
sum to 360°. The two elbows which are studied here correspond to cases for which
360/(¢1 + ¢2) is approximately an integer.

Following the analysis of two elbow types [11], toroidal shaped molecules are then
investigated. A straightforward procedure is established to determine the mean
generating toroidal radius ¢ and the mean tube radius a. Once the bend angles
and tube lengths are obtained, the perpendicular lengths from the torus centre can
be determined, as given in Table 8.3. Such theoretical structures have yet to be
confirmed either experimentally or by molecular dynamics simulations, nonetheless
their theoretical existence is a first step in understanding the complex geometrical

structures of such molecules.



Chapter 9

Joining carbon nanotubes and flat
graphene sheets

In order to transmit signals from future nanoelectromechanical graphene sheets
to other materials, connections with carbon nanotubes are required. Here, three
particular perpendicular connections of carbon nanotubes are examined employing
two simple distinct least squares approaches and using Euler’s polyhedra theorem.
Firstly, for (8,0) and (4,4) carbon nanotubes, a least squares approach is applied
to the bond lengths. Sixteen distinct defects and two possible orientations for the
armchair tube (4,4) are identified. Assuming that only pentagons, hexagons, hep-
tagons and occasionally octagons are accepted, the number of possibilities is greatly
reduced. By excluding octagonal rings, the number of possible configurations may
be further reduced to only one and two most likely configurations for the zigzag
(8,0) and the armchair (4,4) tubes, respectively. Secondly, for (6,0) and (8,0) car-
bon nanotubes, a least squares approach is applied to bond angles, and for one
particular (8,0) junction, the two least squares approaches are shown to produce
similar structures in terms of atom locations. These geometric approaches can be
formally related directly to certain numerical energy minimisation methods used by

a number of authors [13-16].

9.1 Nomenclature

o is the carbon-carbon covalent bond length
0 is the rotational angle of the carbon nanotube
L is the spacing between the carbon nanotube and the graphene sheet,

127
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equivalent to ¢ + o(v/3sin¢pcosw — 1) where ¢ is the bond half-angle

and w is the angle of incline [109]

= is the number of n-gonal sides
XY are the translation distances in the z- and y-directions, respectively
a;, b; are the positions of terminal atoms on the graphene sheet and the carbon

nanotube, respectively

l is the spacing between the graphene sheet and the carbon nanotube in

the positive z-direction

9.2 Introduction

As a first step to examine the joining of two different carbon nanotubes, the radius
of one tube is assumed to be much larger than the radius of the other. This line of
reasoning leads to the notion of joining a tube to a flat graphene sheet. The basic
idea of connecting a graphene sheet to a tube is also involved in the root-growth
process for single-walled nanotubes [119-122], where the tubes are grown from the
base metal-catalyst. Gavillet et al. [119] investigate the catalytic growth of single-
walled carbon nanotubes using high-resolution transmission electron microscopy.
Utilising quantum molecular dynamics simulation, they also find that hexagons and
pentagons occur at the connection, but there are difficulties arising from computa-
tional limitations. Maiti et al. [122] use Euler’s polyhedra theorem and undertake
molecular dynamics calculations to determine the polygons which occur at the base
of the nanotube during the growth process. In terms of stability, they obtain results
relating the type of polygonal rings occurring in Euler’s polyhedra theorem and the
energy at the growth site.

Here, the approach of [11] is developed with reference to the perpendicular joining
of a plane graphene sheet to three particular carbon nanotubes. For this problem,
two least squares approaches are employed, which are the variation in the bond
length as in [11], and an alternative idea which is fixing all bond lengths to be
exactly the assumed bond length ¢ and minimising the variation in the bond angle

as mentioned in §7.1. In the following section, the connecting of a zigzag (8,0) and
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an armchair (4,4) carbon nanotube with sixteen different defect sites on a graphene
sheet are examined by the variation in the bond length. For the ideal case of
connecting a (6,0) tube with a symmetric defect, the variation in the bond angle is
exploited using a least squares method to determine the connecting structure, which
is presented in §9.4. The polygons which occur at the junction are determined and
are shown to be consistent with Euler’s polyhedra theorem in §9.5. Additionally,
the most likely structure for the (8,0) tube and the sheet as determined from §9.5
is investigated using the bond angle variation method, and it is found that the two
arrangements using least squares are very similar in terms of atom locations. Finally,

a summary is presented in §9.6.

9.3 Variation in the bond length

The possibility of connecting zigzag (8,0) and armchair (4,4) nanotubes with a flat
graphene sheet is investigated here by fixing the atom positions on the tube end and
the graphene sheet. Then the variation in distance between an atom on the tube
open end and an atom on the sheet from the bond length o between two carbon
atoms, taken to be 1.42 A, is minimised. In both cases, there are eight atoms which
are connected to the tube by two carbon bonds so that they require one other bond
to complete the sp? structure. Consequently, the defect on the graphene sheet must
have eight atoms and each require one further bond to complete the structure. In
Figure 9.1, sixteen possible defects are depicted to which the (8,0) and the (4,4)
tubes might be joined. The first atom on the sheet is denoted by a black square
and atoms indicated by grey circles are numbered sequentially and counterclockwise
from the first atom. Because of the symmetric locations of all atoms on the open end
of the zigzag tube, there are sixteen possible configurations denoted by an integer
#n from 1 to 16, corresponding to the sixteen possible defects. For the armchair
tube, there are two connected forms for the adjacent atoms on the tube end which
are either connected by three bonds, as in the first atom to the second atom, or by a
single bond, as in the second atom to the third atom. This pattern alternates around
the tube end as depicted in Figure 9.1. Therefore, the joining of the first atom on
the tube with the first atom on the sheet is denoted by #n-a and the joining of the

second atom on the tube with the first atom on the sheet is denoted by #n-b where
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#n is again an integer from 1 to 16 corresponding to the 16 possible defects.

As in §7.1.1, the variation in bond length for joining a flat graphene sheet and a
carbon nanotube can be determined. In a Cartesian coordinate system, the graphene
sheet is assumed to be located in the (z,y) plane and the ith atom on the sheet is
assumed to have the position vector a; = (a,; + X, ay; +Y,0) where i =1,2,3, ..., 8.
The sheet is allowed to move in both x- and y-directions by distances X and Y,
respectively, which can be either positive or negative. To keep the approach as
simple as is possible, the atoms in the graphene sheet are assumed to remain in
the z = 0 plane. A refinement of the present approach would be to assume a
displacement Z out of the z = 0 plane, but this additional complexity makes no
substantial qualitative changes to the final geometric structure obtained, and in this
section z = 0 is adopted because the bond angle is considered fixed.

The position vector of the ith atom on the tube open end is assumed to be
given by b; = (bsi, byi, {) where £ is the spacing between the tube and the sheet in
the positive z-direction. In addition, the tube can be rotated by an angle #. The
distance between the atom on the tube end and the atom on the sheet is then given

by

\az- — b1| = {[(am + X) — (bm cosf — byi sin@)]Q

+[(ayi +Y) — (bys 5in 6 + by; cos 0)]% + £2}1/2.

Using the least squares method, this study aims to determine X, Y, ¢ and 6 which

minimises the function

8

f(X7Y7€70) :Z(|ai_bi| _0)2- (91)

i=1
Using the algebraic computer package MAPLE, the numerical values for the least
squares function f defined by (9.1) and the distance ¢ are presented in Table 9.1
and Table 9.2 for the zigzag and the armchair tubes, respectively, where the radii
of the tubes are taken from [109]. The global minimum values for the least squares
are first graphed to ensure a genuine global minimum and the optimisation package
in MAPLE is then utilised to find the values for each parameter which gives the

minimum.
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oLt

Figure 9.1: Sixteen possible defects which require another eight bonds for the sp?
network.
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Table 9.1: Values of least square function f (A?) and distance ¢ (A) for 16 con-
figurations of an (8,0) tube and corresponding polygons P, where n is number of
sides.

Configurations # f l P | B | Pr| Ps| Py
1 0.0239 | 1.3243 | - | 4 | 2 | 2 | -
2 02092 | 1.1663 | 1 | 3 | 1 | 3 | -
3 0.0018 | 1.3027 | - | 4 | 2 | 2 | -
4 0.0676 | 09471 | 1 | 2 | 3 | 2 | -
5 1.2631 | 0.0010 | 2 | - | 4 | 2 | -
6 0.0817 | 1.3218 | - | 2 | 6 | - | -
7 00729 | 1.1823 | 1 | 1 | 5 | 1 | -
8 0.0020 | 1.3500 | 1 | 2 | 3 | 2 | -
9 0.0592 | 1.3349 | 2 | 2 | - | 4 | -
10 0.0793 | 1.2210 | 2 | 1 | 2 | 3 | -
11 0.5513 09560 | 2 | - | 5 | - | 1
12 02498 109191 | 2 | - | 4 | 2 | -
13 0.0404 | 1.1951 | 2 | 1 | 2 | 3 | -
14 0.6005 09841 | 3 | - | 2 | 2 | 1
15 0.5262 109482 | 3 | - | 2 | 2 | 1
16 0.5284 109227 | 4 | - | - | 2 | 2

9.4 Variation in the bond angle

In this section, a second approach for joining a carbon nanotube to a graphene sheet
is examined, the variation of the bond angle method as described in §7.1.2. For the
graphene sheet, the bond angle is assumed to be 120°, while the bond angle for
the carbon nanotube is again taken from [109]. Firstly, the case of a (6,0) carbon
nanotube connecting with a six-fold type symmetric defect shown in Figure 9.2 is
considered. Due to the six-fold type symmetry of the configuration, there is only
one joining site that needs to be considered for which atom Ajz on the sheet connects
with atom C' on the tube. Moreover, atoms A; and A, are assumed to be fixed but
atom Ajz can move around a circular path and its position is determined by an angle
0. The five steps for determining atom positions at the connection site can be found
in §7.1.2. In terms of a graphene sheet and on assuming that the bond length o is

1.42 A, the bond angle is 120° and from the diagram in Figure 9.2, the coordinates
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Table 9.2: Values of least square function f (A?) and distance £ (A) for 32 config-
urations of a (4,4) tube and corresponding polygons P, where n is the number of

sides. By symmetry #1-a and #1-b are equivalent.

Configurations # f 14 P | Ps | Ps | P | Ps| Py| P
1-a 0.0526 | 1.1548 | - 2 1 3 1 1 -
1-b 0.0526 | 1.1548 | - 211113 |1 1 -
2-a 0.0638 | 1.1501 | - 1 2 1 4 - 1 -
2-b 0.0528 | 1.1798 | 1 2 - 2 1 2 -
3-a 0.4494 | 1.2208 | - 4 - - 2 2 -
3-b 0.0643 | 1.1157 | - - 216 | - - -
4-a 0.3751 | 1.0544 | - 213 - 1] 2 -
4-b 0.0847 | 0.9834 | 1 - 1142 - -
0-a 0.0435 | 0.6723 | - 6 | - - 2 -
5-b 0.2458 | 0.6746 | 2 | - - 214 ] - -
6-a 0.5177 | 1.1151 | - - 4 | 2 2 - -
6-b 0.3802 | 1.1098 | - 201 2] - 4 | - -
7-a 0.3132 | 1.0767 - 311121 -
7-b 0.2498 | 1.1093 | - 113 1] 3] - -
8-a 0.0273 | 1.1968 | - - 3141 - -
8-b 0.1637 | 1.2151 | 1 2 1 - 2 2 -
9-a 0.0127 | 1.2968 | - - 216 | - - -
9-b 0.0161 | 1.3612 | 2 | 2 | - - - 4 -
10-a 0.0687 | 1.1979 | 1 - 213 |1 1 -
10-b 0.0393 | 1.1624 | 1 1 2 1 1 2 -
11-a 0.0272 | 1.1240 | 2 - 2 - 3 - 1
11-b 0.5537 | 1.0920 | - - 5 | - 3 | - -
12-a 0.0430 | 0.6309 | 2 | - 2 | - 21 2 -
12-b 0.1764 | 1.0026 | - - 4 | 2 2 - -
13-a 0.2451 | 0.8439 | 2 - 2 1 - 3 -
13-b 0.0425 | 1.1583 | - 1 2 3 2 - -
14-a 0.0176 | 0.7303 | 2 - 1 2 2 - 1
14-b 0.2985 | 1.1284 | 1 - 4 - 1 2 -
15-a 0.0494 | 1.0936 | 3 - 1 - 1 2 1
15-b 0.4425 | 1.1057 | - - 4 1 2 2 - -
16-a 0.0561 | 1.0353 | 4 | - - - - 2 2
16-b 0.3448 | 1.1007 - 4 | 2 2 - -
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Figure 9.2: Model formation for joining a (6,0) tube with most symmetric defect
where (a) and (b) are for a graphene sheet and (c) and (d) are for a (6,0) tube.

for the atoms Ay, Ay, A3 and A4 are given by

A= o(280), a=e(2 V2
(330 wr(a-o)

27 2" 27 2
5 1 1. 7T V3
A; = 0(5—5C089,0,§Sln9>, A4—a(2 TR >

By precisely the same procedure, the coordinates for the atoms A, B, C' and D on

the tube can be expressed as

= (2.105,-1.215,L +1.42), B =(2.105,—1.215, L),

C = (2.105+0.735sin¢,0,L — 0.735cos ¢), D = (2.105,1.215, L),

where the atom C' moves around a circular path given by the angle ¢ and L is the
spacing between the tube and the sheet as shown in Figure 9.2(d). Noting that
L = (0+0.659 A where ¢ is defined in §9.3. Again following the work of Cox and Hill
[109] the radius of the (6,0) tube is 2.430 A and the bond angle is given by 117.65°.
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The variations of § and ¢ from the normal physical bond angles, which are 120°
and 117.65° are minimised where each bond length which joins between an atom of
the tube to one on the sheet is restricted to be 1.42 A. Therefore, the constraints are
the maximum distances of the hexagonal network which are |AC| = |[BA;| = 2.474
A and |CA;| = |A3A4| = 2.460 A. Using the optimisation package in MAPLE,
all parameters are obtained as 6 = 30.73°, ¢ = 9.39° and L = 2.315 A, and the
three-dimensional figure is depicted in Figure 9.3 where the dashed and solid lines

represent bonds in the background and foreground, respectively.

Figure 9.3: Three dimensional illustration for a (6,0) tube perpendicularly connected
to a graphene sheet.

graphene sheet

Figure 9.4: Model formation for joining an (8,0) tube with defect #6 where (a) is
for a graphene sheet and (b) and (c) are for an (8,0) tube.
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The same method is exploited to examine the joining of the (8,0) tube with defect
#6 identified as the most likely configuration, which details of the classification can
be found in §9.5. Since the defect #6 has four-fold symmetry, only the atoms in the
first quadrant are examined and the positions of every atom are shown in Figure 9.4.
Note that the spacing L, illustrated in Figure 9.4(c), is equivalent to L = ¢ + 0.681
A where ¢ is defined in §9.3. The calculation of the circular paths are examined and

the coordinates for each atom are then given by:

1 3V3
A, = 0(5,2\/3,0), A2:0<2,T\/_,0),
5 1 V3 V3 1. 5
A; = O(Z_ZCOSQI’T_TCOSHI’§SIHHI>’ A4:0(§,2\/§,O),
5 5
B, = 0(5,\/10), BQ:O(E,O,O),
5 1 V31 7
B; = 0’(5—500862,775811162), B4:a(§,\/§,0),

A = (3.192,0,1L),

B = (2.7254 0.224 cos ¢1 + 0.629sin ¢, 1.129 + 0.093 cos ¢; + 0.261 sin ¢y,
L — 0.681 cos ¢y + 0.243 sin ¢),

C = (2.257,2.257,1L),

D = (1.129 + 0.093 cos ¢ + 0.261 sin ¢g, 2.725 + 0.224 cos ¢ + 0.629 sin ¢,
L — 0.681 cos ¢ + 0.243 sin ¢y,

E = (0,3192,L), F=(3.192,0,L+1.42), G =(2.257,2.257, L + 1.42),

where the radius of the (8,0) tube is 3.192 A and the bond angle is given by 118.70°
[109]. The computer package MAPLE is also employed to minimise the bond angles
of the system with the set of the constraints |[FB| = |AB;3| = |GD| = |CA3| = 2.468
A and |B,B,| = |BB,| = |A3A4| = [DA,| = 2.460 A, where |BB3| = [DA3| = 1.42
A. For this configuration, the parameters are obtained as L = 2.222 A, #; = 38.85°,
Oy = 17.16°, ¢, = —42.29° and ¢ = 2.53° and the three-dimensional figure is
presented in Figure 9.5(a). The corresponding structure previously obtained by
minimisation of the bond length is shown in Figure 9.5(b), and it is clear that the

two approaches give closely related structures in terms of atom locations. In order
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to give a more mathematical measure for the difference between the atom locations

of these two structures, the mean absolute error is determined, defined by
Brror =3 oy~ 9:2)
rror = — T — Tai|, :
n 2 1 2

where in this case n = 16 and Error = 0.372 A (26.19% of bond length). Moreover,
the difference in the spacing between the (8,0) tube and the graphene sheet in terms
of L is obtained as 0.22 A. Therefore, in this case the two approaches give similar

outcomes.

e o o B e —

l--.--n.:-;.-

@

Figure 9.5: Three dimensional illustrations for an (8,0) connection with a graphene
sheet by (a) variation in bond angle and (b) variation in bond length.

9.5 Results and discussion

Euler’s polyhedra theorem is utilised here to examine the joining of a graphene
sheet and a carbon nanotube. The details for Euler’s theorem are presented in §7.2,
and here the zigzag (8,0) and the armchair (4,4) tube, which topologically can be
considered to be capped at one end with a hemispherical Cgq fullerene comprising
six pentagons, are considered. In order to maintain the Fuler characteristic of any
shape that a nanotube is joined to, the connection must necessarily become the
six pentagons with the six heptagons or an equivalent number of other polygons.
Therefore, the polygons which occur at the junction of the tube and the graphene

sheet must satisfy
—2P4—P5+P7+2P8+3P9+4P10:6, (93)

and this equation is confirmed by the results in Table 9.1 and Table 9.2. Note that

(9.3) is also true for any surface comprising of only hexagonal sides, e.g. connecting
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a nanotube to a section of another nanotube to form a T-junction [108]. However,
the square ring is very unstable for the carbon network [101] and heptagons and oc-
tagons can be introduced into the system [102], therefore there are twelve and eleven
possible configurations for joining the (8,0) and the (4,4) tubes with the graphene
sheet, respectively. Nevertheless, defects in a nanotube are experimentally observed
with only pentagonal and heptagonal rings [103], and imposing this experimental re-
quirement leaves only configuration #6 for the zigzag tube. Figure 9.6(a) illustrates
the three-dimensional structure, where the solid lines are for foreground bonds and
the dashed lines indicate hidden or background bonds. In a least squares sense, the
configuration #3 gives the minimum value of f, which is 0.0018 A2, and therefore
this configuration might also be accepted despite the existence of octagonal rings as
shown in Figure 9.6(b). Similarly by considering only pentagons and heptagons, the
#3-b and #9-a configurations for the armchair (4,4) tube might be the most likely
occurring structures. These structures coincide with the findings of Menon and Sri-
vastava [108] for the T-junction of two carbon nanotubes. The three-dimensional
illustrations for these two configurations are presented in Figure 9.7, where the solid
lines are for foreground bonds and the dashed lines indicate hidden or background
bonds. Noting that, the #9-a defect configuration (see Figure 9.7(b)) is more likely
from a comparison of the values of the least squares function given in equation (9.1).

From these results, the joining of (8,0) tube to the defect #6 and the joining
of (4,4) tube to the defect #9-a are the most likely to occur. In Table 9.3 and
Table 9.4, numerical values of the atom positions in the Cartesian coordinate system
are presented for the purpose of future comparisons. The configurations given are
the sixteen atom positions at the junctions after the optimisation process for the
(8,0) and the (4,4) tubes with the #6 and the #9-a defects, respectively. Note
that the atom positions on the tubes are calculated from the new model for carbon
nanotubes [109] and the atom positions on the graphene sheet are evaluated as
usual, and for these two particular configurations X, Y and 6 can be taken to be
zero by an appropriate choice of the coordinate axes, as might be expected from the

symmetries of both configurations.
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Figure 9.6: Connecting an (8,0) tube with a graphene sheet for the defect configu-
rations (a) #6 and (b) #3.

£

LY

Figure 9.7: Connecting a (4,4) tube with a graphene sheet for (a) #3-b and (b)
#9-a configurations. The second configuration has the smallest variation in bond

length in a least squares sense.

Table 9.3: Eight coordinate positions for joining an (8,0) tube with defect #6 using
the variation in bond length method.

Positions 1 2 3 4 5 6 7 8
(8,0) tube
x 2.949 | 2.949 | 1.222 | -1.222 | -2.949 | -2.949 | -1.222 | 1.222
Y -1.222 1 1.222 | 2.949 | 2.949 | 1.222 | -1.222 | -2.949 | -2.949
z 1.322 | 1.322 | 1.322 | 1.322 | 1.322 | 1.322 | 1.322 | 1.322
#6 sheet
x 2.840 | 2.840 | 1.420 | -1.420 | -2.840 | -2.840 | -1.420 | 1.420
Y -1.230 | 1.230 | 3.689 | 3.689 | 1.230 | -1.230 | -3.689 | -3.689
z 0 0 0 0 0 0 0 0
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Table 9.4: Eight coordinate positions for joining a (4,4) tube with defect #9-a using
the variation in bond length method.

Positions 1 2 3 4 5 6 7 8
(4,4) tube
T 2.389 | 1.379 | -1.379 | -2.389 | -2.389 | -1.379 | 1.379 | 2.389
Y 1.379 | 2.389 | 2.389 | 1.379 | -1.379 | -2.389 | -2.389 | -1.379
z 1.297 | 1.297 | 1.297 | 1.297 | 1.297 | 1.297 | 1.297 | 1.297
#9-a sheet
T 2.840 | 0.710 | -0.710 | -2.840 | -2.840 | -0.710 | 0.710 | 2.840
Y 1.230 | 2.460 | 2.460 | 1.230 | -1.230 | -2.460 | -2.460 | -1.230
z 0 0 0 0 0 0 0 0

9.6 Summary

Two distinct least square approaches are utilised in this chapter to determine the
perpendicular joining of three particular carbon nanotubes to a flat graphene sheet.
Firstly, all possible structures for connecting the zigzag (8,0) and the armchair (4,4)
carbon nanotubes to a flat graphene sheet are determined. Here, the least squares
method is employed to minimise the variation in bond length at each inter-atomic
junction from the bond length between two carbon atoms. There are eight carbon
atoms at the open end of both (8,0) and (4,4) tubes which require the other bond
to satisfy the sp? network, and therefore sixteen defect patterns in the graphene
sheet are identified. Furthermore, an adjacent atom on the armchair tube end is
bonded either by three bonds or a single bond so that there are in total thirty-two
configurations that connect the armchair tube and the sheet. There are sixteen
structures for joining the zigzag tube due to the symmetric locations of the atoms
on the tube end. From a topological point of view, Euler’s polyhedra theorem is
utilised to prescribe the polygons which occur at the junction. In order to maintain
the Euler characteristic by connecting the nanotube, (9.3) must be satisfied. This
applies for all cases when a carbon nanotube is connected to a surface comprising
of only hexagonal sides. For reasons of stability, the only carbon rings realizable
are pentagonal, hexagonal, heptagonal and octagonal, and by imposing this the
number of configurations is reduced to twelve and eleven for the zigzag and the
armchair tubes, respectively. Furthermore, octagonal rings are considered less likely

to occur, and therefore only configuration #6 for the zigzag tube and #3-b and
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#9-a for the armchair tube might be expected to be found in practice. The result of
the least squares analysis indicates that the junction which is most favoured is the
configurations #3 for the zigzag and #9-a for the armchair, which are illustrated in
Figure 9.6(b) and Figure 9.7(b).

In terms of the least squares bond angle approach, which assumes that all bond
lengths are fixed to be ¢ = 1.42 A, a simple example for joining a flat graphene sheet
to a (6,0) carbon nanotube is presented, which is the most symmetric possibility for
the defect. Subsequently, for the (8,0) tube and the defect structure #6, which is
believed to be the most favoured configuration, a least squares bond angle approach
is undertaken. The structure obtained for the (8,0) and the sheet is shown to be very

similar in terms of atom locations to that found using the bond length approach.



Chapter 10

Joining boron nitride nanotubes
and flat sheets

Since boron nitride nanostructures are considered to be good electronic materials
[34], in this chapter and with reference to the same problem in Chapter 9, the clas-
sification of defect geometries for combining boron nitride structures is elucidated.
Specifically, possible joining structures between a boron nitride nanotube and a flat
sheet of hexagonal boron nitride are determined. Firstly, the appropriate defect
configurations are investigated on which the tube can be connected, given that the
energetically favourable rings for boron nitride structures are rings with an even
number of sides. A new formula F = 6 + 2J relating the number of edges E and
the number of joining positions J is established for each defect, and the number of
possible distinct defects is related to the so-called necklace and bracelet problems
of combinatorial theory. Two least squares approaches, which are the variation in
bond length and the variation in bond angle, are also employed to determine the
perpendicular connection of both zigzag and armchair boron nitride nanotubes with
a boron nitride sheet. Here, three boron nitride tubes, which are (3,3), (6,0) and
(9,0) tubes, are joined with the sheet, and Euler’s theorem is used to verify geo-
metrically that the connected structures are sound, and their relationship with the
bonded potential energy function approach is discussed. For zigzag tubes (n,0), it
is proved that such connections investigated here are possible only for n divisible by
3. The essential mathematical ideas elucidated here are relevant to combining all
boron nitride nanostructures and are quite different to those required for connecting

the corresponding carbon structures.
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10.1 Nomenclature

o(d) is the Euler’s totient function

o is the boron-nitrogen covalent bond length

0 is the rotational angle of the boron nitride nanotube

E is the number of edges of the polyhedron

F is the number of faces of the polyhedron

J is the number of joining position between the boron nitride sheet and the

boron nitride nanotube

P, is the number of n-gonal sides

V is the number of vertices of the polyhedron

Vi, Vi are the variation summations of bond length and bond angle, respectively
a;, b; are the positions of terminal atoms on the boron nitride sheet and the

boron nitride nanotube, respectively

l is the spacing between the boron nitride sheet and the boron nitride nan-

otube in the positive z-direction

10.2 Introduction

Boron nitride is a binary chemical compound consisting of equal number of boron
and nitrogen atoms with various polymorphic forms. The diamond-like polymorph
of boron nitride is one of the hardest materials known. The hexagonal structure
of boron nitride is geometrically similar to that of graphite in carbon structures
[33, 123], and in the periodic table, boron and nitrogen are adjacent to carbon
[33]. With excellent stability and thermal conductivity, boron nitride can be used in
vacuum technology, the nuclear energy industry, and for the development of X-rays
and lubrication [35].

As with carbon nanostructures, boron nitride nanostructures such as nanotubes

and fullerene-like structures have been widely investigated, with Rubio et al. [34]
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being the first to study a boron nitride nanotube. These authors find that the
electronic properties of boron nanotubes are independent of both their chirality
and the tube radii, and all nanotubes are semiconducting materials. Employing
an arc discharge technique, Terrone et al. [124] synthesise boron nitride nanotubes
and find that the ratio of boron to nitrogen atoms is approximately one to one. A
number of studies show that the most energetically favourable bond in the hexagonal
boron nitride network is the bond between the boron and the nitrogen atoms (see
for example [125-130]). Consequently, boron nitride structures are formed from an
even number of sides to each ring with the atom species alternating, and these rings
are normally squares, hexagons and octagons.

In order to transmit signals to future nanoelectromechanical devices, connections
between a platform and other nanostructures may need to be considered. Given the
consistent electronic properties of boron nitride nanostructures, a hexagonal boron
nitride sheet can be considered as the platform for such devices. Since the electronic
properties of boron nitride nanotubes do not depend on their physical configurations,
this material is a good candidate to transmit signals to other materials. With this
in mind, the perpendicular joining configurations between a boron nitride tube with
a hexagonal boron nitride plane sheet is investigated.

The first question which arises is how defects are determined to which the tube
can be joined such that all the polygons at the junction comprise rings which all
have an even number of sides, such as squares, hexagons and octagons. Firstly, the
relation between the number of edges, which form the defect, and the number of
atoms on the defect, that can be joined with the tube, are determined. Since a closed
defect is required, it is clear that the total angle of such a defect needs to comprise
a complete 360° turn. Therefore, each of the six edges of a hexagonal lattice are
assigned the angle values as shown in Figure 10.1. Furthermore, all possible defect
structures that can be joined with the tube open end are examined, and the distinct
number of possible defects relates to the so-called necklace and bracelet problems of
combinatorics.

After the geometric analysis, the least squares minimisation method is further
utilised to examine the perpendicular joining of a boron nitride nanotube and a

flat boron nitride sheet. Here, variations in both bond length and bond angle are
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Figure 10.1: Angle values defined by each of the six sides of a hexagonal lattice.

studied as described in §7.1. In the first method, the distance between an atom on
the tube open end and an atom on the sheet from the ideal bond length, taken to
be ¢ = 1.45 A, is minimised. In the latter technique, all bond lengths are assumed
to be fixed to be exactly the assumed bond length ¢ and the variation in the bond
angle at the connecting site is minimised. Both of these geometric approaches can
be directly related to certain numerical energy minimisation methods used by a
number of authors [13-16] as discussed in §7.3. Moreover, Euler’s polyhedra theorem
is applied for all connected configurations to verify that rings with an even number
of sides occur at the junction.

In the following two sections, a procedure to classify the defect configurations on
hexagonal boron nitride sheet to which the boron nitride nanotubes can be joined is
proposed. Using the two variation methods presented in §7.1, connected structures
are discussed in §10.6 which involve in Euler’s polyhedra theorem and the bonded

interaction energy. A summary of results is presented in §10.7.

10.3 Defect classification

In this and the following sections, the appropriate defect structures on a hexagonal
boron nitride sheet to which boron nitride nanotubes can be perpendicularly joined
such that the connected structures also satisfy Euler’s polyhedra theorem are de-
termined. All the atoms are assumed to require the sp? configuration to form an
even number-sided polygonal ring network. Compared to the previous study on car-
bon nanotube connections in Chapter 9, there are less possible defect configurations

for boron nitride structures, due to the even number side rings being energetically
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Zigzag Armchair
(2) (b)

Figure 10.2: Atoms at open end of (a) a zigzag tube and (b) an armchair tube.

more favourable. One implication of this constraint is that a zigzag tube where
two adjacent atoms at the tube open end are connected by two bonds, as shown in
Figure 10.2(a), must join to a defect which has an even number of bonds joining
between the two nearest atoms in order to complete the sp? structure. Likewise,
two adjacent atoms on the open end of an armchair tube have either one or three
bonds connecting them, as shown in Figure 10.2(b), and therefore an armchair tube
must join to a defect which has an odd number of bonds joining nearest atoms.
Initially, the relationship between the number of edges and the number of atoms
for any defect which will bond to the open end of the nanotube to complete the sp?
structure is determined. In Figure 10.3, some typical defects are depicted and all the
connecting positions for each defect are shown, where atoms are denoted by either
black dots or gray squares depending on whether they require one or two bonds to
complete the sp? structure, respectively. Consequently, there is one joining position
for the black dot and there are two joining positions for the gray square. In the
case that two hexagons share a side, the edges need to be counted twice. Therefore,
the number of edges and the number of joins which correspond to the defects in
Figure 10.3 are presented in Table 10.1. It can be seen that the number of edges

(E) depends on the number of joining positions (J) which can be written as
E=6+2J. (10.1)

Next, defects are determined such that all atoms which need to be joined with the
tube are connected by either an odd or even number of bonds, and this problem leads
one to consider the angles of the sides for a hexagonal ring. There are six possible
angles with respect to an atom position corresponding to the six sides of the hexagon

as shown in Figure 10.1, and note that the angles are defined in a counter-clockwise
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Figure 10.3: Some typical defects showing the number of edges and the number of
atoms that can be joined (those marked * are possible boron nitride defects).

direction. In other words, each angle is related to the number of bonds connecting
between two adjacent atoms. Consequently, for an armchair (zigzag) tube which
requires an odd (even) number of bonds for the defect, the defect structure needs to
be constructed with 1F,3E and 5E (0F, 2E and 4F) edges as defined in Figure 10.1.
Note that for convenience, the number of edges 1E,2F,3FE,4FE,5E,6E are simply
referred to by the integers 1, 2, 3,4, 5,6 in order to construct the sequences examined
in §10.4. At any joining position there are three possible paths to choose from to
form the defect, and the angle between two of them is -120° in a clockwise direction.
Moreover, in every moving step (side), the angle will change by 60°. Hence, this
can be written as —120J + 60E. From the fact that the defect must be closed, the
total angle obtained by joining the sides of the hexagonal lattice needs to make a

complete 360° turn and from (10.1), it can be deduced
—120°7 + 60°(6 + 2J) = 360°, (10.2)

which indicates that the total angle of the system will always be 360°, but note that a
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Table 10.1: Relation between the number of edges (£) and number of joins (J) for
defects (those marked * are possible boron nitride defects).

Configuration | Number of edges | Number of joins
#1 6 0
#2* 10 2
#3* 12 3
#4 14 4
#5* 14 4
#6 14 4
#7 14 4
#8 16 5
#9* 18 6
#10 30 12
#11 16 5

turn of 360° only satisfies the rotational requirement but not necessarily the transla-
tional condition that the two end points meet. Alternatively, this argument leading
to equation (10.2) may be viewed as a formal derivation of equation (10.1). In the
next section, combinatorial theory for the so-called necklace and bracelet problems
is employed to determine the distinct defect configurations for both armchair and

zigzag boron nitride tubes.

10.4 Combinatorial theory and possible defects

Only the sequence of 1,3, 5 and 0, 2, 4 for an armchair (n,n) and a zigzag (n, 0) boron
nitride tube, respectively, can be used, so as to add up to the value of E defined by
(10.1), where J is 2n for an armchair tube and n for a zigzag tube. Moreover, the
number of terms in the sequence must be equal to 2n and n for the armchair and
the zigzag tubes.

For example, for a (6,0) tube F is obtained as £ = 18 and six terms chosen from
0,2, 4 are needed to form a sequence. In this case, there are two distinct ways to gen-
erate the sequences, which are [4,4,4,2,2,2] and [4, 4,4, 4,2,0]. The permutations of
these two sets of data, ignoring rotationally symmetric representations, are required

from which all possible defects are determined, and they are given respectively by

{4,4,4,2,2,2}, {4,4,2,4,2,2}, {4,4,2,2,4,2}, {4,2,4,2,4,2},
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and
{4,4,4,4,2,0}, {4,4,4,4,0,2}, {4,4,4,2,4,0}, {4,4,4,0,4,2}, {4,4,2,4,4,0},

noting that square brackets is used to designate the unordered combination, while
the curly braces designate a particular ordering of the permutation. After a rotation,
the second and the third permutations in the first group have a mirror image or flip
symmetry property. Similarly, the first and the second permutations, and the third
and the fourth permutations in the second group also have a mirror image or flip
symmetry property after a rotation. Once the defects are determined, the mirror
image symmetry configurations will provide the same structure when the tube is
joined, and therefore they can be ignored.

This problem is closely related to necklace permutations representing the number
of distinct ways in which a k bead necklace of ¢ colours can be made. Following the
work of Knuth [131] and Ruskey and Sawada [132], the expression for the necklace

permutation may be written

1 k/d)!
Hlh 0= Edlgcd(g md)(d)(<k:1/d>!(iiz//df!...(ki/d)!)’ (103)

where k = ky + ko + ... + k; and ¢(d) is Euler’s totient function given by

1

¢(d) = dH I—- )
P
pld

where the product ranges only over all distinct primes p which divide d. In the case
where there are only j beads of black and k£ — j beads of white for the necklace, the
expression (10.3) simplifies to become

1 k/d
M) = 3 ol (M) (10

where d denotes all common divisors of £ and j and the last term is the usual
binomial coefficient.

However, due to the symmetry of the joining nanotubes, the mirror image sym-
metric configurations need not be considered, and this problem is referred to as the
bracelet permutation, which is a necklace permutation which remains unchanged

when flipped over. To the author’s knowledge, there is no general formula to de-
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termine the necklace permutations for a k bead bracelet of ¢ colours. Nevertheless,
Bower [133] has developed a sequence for k beads of j black and k — j white beads
which can be found in A052307 [133] and can be written as

B(kd) = (N1 + 700 ),
where N(k, j) is defined in (10.4) and
T(k,j) = (f;g) k and j are even,
(6o
(7 —1)/2
_ (! /2 1s odd and j is even
I Q-

- (Ej - 3?;) k and j are odd.

Here, the algebraic computer package MAPLE is utilised to determine the defect

) k is even and j is odd,

possibilities by undertaking the bracelet permutations for beads of three colours.
Firstly, all bracelet permutations are determined for both armchair and zigzag boron
nitride nanotubes for every possible form of sequences. Given that the defects are
required to close a circuit, the number of permutations is reduced, and only the
number of the closed circuit defects are presented in Table 10.2. Clearly some of
the defects do not have a physically sensible structure for which to join an open end
of a circular tube, and such defects will not occur in practice. Since the number of
physically appropriate defects rapidly increases for increasing n for armchair (n,n)
and zigzag (n,0) tubes, in Figure 10.4, only the defects which are most likely to

occur physically corresponding to certain values of n are depicted.

Table 10.2: Number of possible defects for zigzag (n,0) and armchair (n,n) boron
nitride tubes.

Zigzag tube | Number of defects || Armchair tube | Number of defects
(3,0) 1 (3,3) 4
(6,0) 2 (4,4) 5
(9,0) 7 (5,5) 17
(12,0) 35 (6,6) 40
(15,0) 231 (7,7) 138
(8,8) 422
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Figure 10.4: Most likely physical defects for various zigzag and armchair nanotubes.
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Numerical results indicate that defects for the zigzag (n,0) tubes only occur if
n is divisible by 3, a result which can be formally established as follows. To begin,
the defect for the smallest zigzag tube which is the (3,0) tube is determined, and
subsequently this defect is extended to that for (6,0) as shown in Figure 10.4, and
so on. The smallest closed circuit defect corresponding to the (3,0) tube is a closed
circuit defect {4, 4, 4}, as shown in Figure 10.4. The aim is to add edges to this
defect such that the complete circuit defect is still closed and comprises only an even
number of edges between adjacent atoms. As previously noted, zigzag tubes require
a defect which comprise only 0, 2, and 4 edges between connecting atoms. Given
that boron and nitrogen atoms are alternately bonded to form a hexagonal lattice,
two triangular sublattices may be thought of as the basis units super-imposing to
form such a hexagonal network. In Figure 10.5(a), the directional vectors for 2 and 4
are observed to be in opposite directions, and are provided three different directions
for the three sides of the triangular lattices. Consequently, any closed circuit system
will be invariant under translation when adding one of 2 and one of 4 in opposite
directions. Likewise, a closed circuit will be rotationally invariant by adding one of
0 and one of 4 into the system, since the -120° of 0 and 120° of 4 will balance each
other out, as shown in Figure 10.5(b). Accordingly, there are three possibilities to
add the set of [0, 2, 4] to any closed circuit such that the new defect will still be valid

for a zigzag boron nitride tube and these are:
1. add three 2’s in distinct directions,

2. add three 4’s in distinct directions, and three 0’s to maintain the rotational

invariance,

3. add one 2 in the opposite direction to one 4, and one 0 to maintain the rota-

tional invariance.

For the above three possibilities, it can be seen that if three of 2 are added
to make a complete circuit, the defect is invariant under translation, and the de-
fect is automatically invariant under rotations since the rotational angle of 2 is 0°.
Similarly, by adding three 0’s and three 4’s provides the zero rotational angle for
the defect, and three 4’s also provide the closed circuit defect which maintains the

translational property. Finally, the directional vectors of 2 and 4 are in opposite
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directions and the system maintains the translational property by adding one of

each, and one 0 is required to maintain the rotational property.

2 start
---> depart

(@ (b)

Figure 10.5: Hexagonal lattice formed from two triangular sublattices for boron
nitride network, (a) translational vectors and (b) rotational angles.

Now, if x,y and z are assigned to be the respective number of each of these

possibilities present in a given defect, it can be shown that

number of 0's = 3y + z,
number of 2’s = 3x + z,

number of 4’s = 3+ 3y + z,

where the smallest defect for the zigzag tube is {4, 4, 4}, which is added for the

number of 4’s in the last equation. Then, by addition of the above, it can be deduced
(n/3)=14+z+2y+ 2z, (10.5)

and therefore n must be divisible by 3 for a zigzag boron nitride tube. Alternatively,
(10.5) may be derived from (10.1) which becomes E = 2(3x + z) + 4(3 + 3y + 2).
Since £ =6 +2J and J = n for a zigzag tube, one can deduce (10.5).
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10.5 Two least squares approaches

Following the methodology of [11] and §7.1, two least squares approaches, the varia-
tion in bond length and the variation in bond angle, are employed here to determine
the perpendicular connecting structures between a boron nitride nanotube and a
hexagonal boron nitride sheet. The ideal bond length between boron and nitrogen
atoms is assumed to be o = 1.45 A [33, 34], and all atoms are connected by the sp?
structure. In this study, all the atom positions and bond angles for the boron nitride
tube are calculated using the same routine as that used by Cox and Hill [109], which
provides a new geometric model of carbon nanotubes, but where the bond length
here is taken to be o = 1.45 A.

A brief review for the variation in bond length approach is given here. The ith
terminal atoms at a join location is defined by the position vectors a; = (ayi, @y, @2i)
and b; = (by, by, b,;) for a sheet and a tube open end, respectively. The boron
nitride sheet is assumed to be located in the (z,y) plane z = 0, and it is allowed to
move in both z- and y-directions by distances X and Y, respectively, which can be
either positive or negative. The position vector for the atoms at the defect on the
boron nitride sheet is given by a; = (a,; + X, ay; + Y, 0). In terms of the atoms on
the tube open end, the spacing between the tube and the sheet is assumed to be
£, and the tube can be rotated about the z-axis through an angle 6. Consequently,
the position vector for the atoms at the tube open end can be written as b, =
(byi cos @ — by; sin 6, by; sin @+ by; cos 0, £). Therefore, Euclidean distance between the
atoms is obtained, as given by (7.1), and the objective function (7.2) needs to be
determined.

Again, only a brief summary for the variation in bond angle method is presented,
and full details can be found in §7.1.2. For this approach, the bond lengths are
assumed to be fixed at o and the bond angles at connection sites are varied so as to
minimise the least square deviations from the physical bond angle values for both
the sheet and the tube. The boron-nitrogen bond length is taken to be o = 1.45 A,
the bond angles of the boron nitride sheet are assumed to be 120°, and the bond
angles on the boron nitride tubes are taken from the new model of carbon nanotubes
[109]. A five steps procedure for determining the position vectors for all atoms at

the junction is presented in §7.1.2.
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10.6 Results and discussion

Once a number of appropriate defects are determined, both the variation in bond
length and the variation in bond angle approaches are undertaken to determine the
most likely connected structures for the tube and the sheet of boron nitride. Here,
some examples of such structures are demonstrated where (3,3), (6,0) and (9,0)
boron nitride nanotubes are joined to the defects shown in Figure 10.6(a), (b) and
(c), which are those where the geometry of the defect corresponds to the circular
cross-section of the tube open end. All numerical calculations are carried out using
the algebraic computer package MAPLE. Three dimensional figures for the (3,3),
(6,0) and (9,0) boron nitride tubes joined with the hexagonal boron nitride sheets
are illustrated in Figure 10.7 - 10.9 for both approaches.

In terms of polygonal rings which occur at the connection site, Euler’s polyhedra
theorem is utilised to verify that the proposed structures are geometrically sound.

Euler’s polyhedra theorem states that
F+V —-FE=y,

where F,V and FE denote the numbers of faces, vertices and edges for the given
polyhedron and x is the Euler characteristic. For the sheet, letting P, be the number
of n-gon sides and every atom is linked with three others in the sp? structure, Euler’s
theorem states that

2P+ P — P, — 2P =0, (10.6)

where any surface which is homeomorphic to a flat sheet has an Euler characteristic
of 0. Given that only an even number of side rings are most energetically favourable,
P5 and P; are zero. For the junction, once the sheet is joined with the tube three
Py’s are required to form a cap at the unjoined end of the tube to provide the closed

structure, and therefore the equation corresponding to (10.6) is obtained
Ps— Py =3. (10.7)

For all three cases examined here, three octagonal rings, zero square rings and
n hexagonal rings occur at the connection site. These results all satisfy Euler’s

polyhedra theorem since hexagons do not arise in equation (10.7) and the three
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SotTecgteect

Figure 10.6: Defect configurations for (a) (3,3), (b) (6,0) and (3) (9,0) boron nitride
nanotubes.

(b)

Figure 10.7: (3,3) nanotube connected with a hexagonal boron nitride sheet by (a)
variation in bond length and (b) variation in bond angle.

Figure 10.8: (6,0) nanotube connected with a hexagonal boron nitride sheet by (a)
variation in bond length and (b) variation in bond angle.
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(a) (b)

Figure 10.9: (9,0) nanotube connected with a hexagonal boron nitride sheet by (a)
variation in bond length and (b) variation in bond angle.

nanotubes can be considered to be capped at one end with the polygonal network,
which also satisfies Euler’s polyhedra theorem, so that three octagons are required
to form a closed structure.

A number of authors [13-16] adopt a numerical minimum energy principle such
that the bonded potential energy for small deformations is given by (7.6). The
numerical values for the variation of bond stretching as well as the percentage dif-
ference from the assumed bond length 1.45 A, and the bending angle as well as the
percentage difference from the assumed bond angle 120° for all three examples in
this study are given in Table 10.3. It is clear from (7.6) that the energy of the system
is linearly dependent on the force constants, and all the force constants are positive.
Therefore, the energy of the systems may be compared by separately considering
the various summations in equation (7.6) for which

V=Y (r—r)? Vo= (0—06)

In terms of the variation in bond length, all bond lengths on the tube and the
sheet are fixed. However, the bond lengths which connect between the atoms at the
tube open end and the atoms on the sheet may vary from the assumed bond length,
and the bond angles at the connection sites may also vary. This means that the
variation in bond length approach affects both the bond stretching and the bending
angle terms in the energy equation. On the other hand, all the bond lengths are fixed
for the variation in bond angle approach and only the bond angle varies, therefore
the bond stretching term will always be zero. The differences between (a) and (b)

in Table 10.3 arise from the fact that for (a) the sheet atoms are fixed in the plane,
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while for (b) the sheet atoms are allowed to move. With these considerations in
mind, it can be said that the variation in bond angle approach (b) gives rise to more
stable structures than those arising from the variation in bond length approach (a).

In addition, the percentage differences are very small so that the harmonic terms in

(7.6) are valid.

Table 10.3: Numerical values for the sum of squared derivations (percentage dif-
ferences) for joining (3,3), (6,0) and (9,0) boron nitride tubes with a boron nitride
sheet by the variation in bond length (a) and the variation in bond angle (b).

78.048 43.839

171.782  49.135

Values (3.3) 6.,0) (9,0)
(a) (b) (a) (b) (a) (b)
V. (A?) 0 0 0 0 0.064 0
Percentage difference (%) 0 0 0 0 0.49 0

179.760 21.717

Vo ()

Percentage difference (%) | 1.08 1.02 3.98 1.14 2.77 0.35

Some of the numerical data for the determination of the possible defect configu-
rations, and the least squares approach for the variation in bond length to find the
best defect configuration for both zigzag and armchair boron nitride tubes are ex-
amined. Using combinatorial theory, all possible defects can be obtained. However,
some of them, such as those shown in Figure 10.10 are thought to be less likely to
be joined with a tube, than those shown in Figure 10.11 which are believed to be
physically more reasonable. Subsequently, only the quasi-circular defects such as
those shown in Figure 10.11 are examined. In Table 10.4 and Table 10.5, the value
for the function f defined in (7.2) and the interspacing between the sheet and the
tube ¢ for zigzag and armchair tubes are respectively presented for certain defects

which are considered to be physically more likely to occur.

10.7 Summary

With reference to the particular problem of the perpendicular connecting of boron
nitride nanotubes with a boron nitride sheet, this chapter considers two aspects of
defect classification and connection for combining boron nitride structures. Given
that rings with an even number of sides are energetically favourable for boron nitride

nanostructures, the most appropriate defect configurations on the sheet need to be
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determined. The number of possible distinct defect configurations is related to the
necklace and bracelet problems of combinatorial theory. The necklace permutation
method is employed to classify all distinct closed defect possibilities where an arm-
chair (zigzag) tube requires all odd (even) number of bonds connecting between two
adjacent atoms at the defect site. Since additional mirror image symmetrical defects
can be neglected, the bracelet permutation concept is utilised to quantify the most
physically meaningful defects.

Once the defects are obtained, two distinct least squares approaches are em-
ployed to determine the connected structures for the tube and the sheet of boron
nitride. Firstly, the variation in bond length is exploited to minimise the inter-
atomic distance from the assumed bond length ¢ = 1.45 A between an atom at
the tube open end and one at the defect on the sheet. In this case, all atoms are
assumed to remain in their own positions on the perfect tube and the perfect sheet
structures. However, the tube is allowed to rotate about its axis and to move in the
axial direction, while the sheet is assumed to be fixed in the plane. Secondly, the
least squares bond angle approach is examined, which assumes that all the bond
lengths are fixed to be o = 1.45 A. The atoms at the joining positions for both at
the tube end and at the defect can move around a defined circular path to determine
the most suitable locations to be connected.

Three examples of perpendicular joining boron nitride nanotubes, (3,3), (6,0) and
(9,0) tubes, and the most symmetrical defects are used to illustrate such approaches.
Using the algebraic computer package MAPLE, three dimensional illustrations for
all cases of the two variation approaches are depicted, and Euler’s polyhedra theo-
rem is utilised to verify that the connected structures are geometrically acceptable.
Furthermore, the bonded potential energy for small deformations is evaluated to
determine a measure of the stability of the system. Since the value for the bond
stretching constant is significantly larger than that of the bending angle and from
the least squares calculations, this are led to conclude that the minimisation of the
bond angle procedure provides lower energy values than the minimisation of the
bond length procedure, so that the former most likely provides a better model for

physically occurring molecular structures.
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Table 10.4: Values of least squares function f (A?) defined by (7.2) and distance ¢

(A) for joining zigzag boron nitride tubes with some defects.
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Table 10.5: Values of least squares function f (A?) defined by (7.2) and distance ¢
(A) for joining armchair boron nitride tubes with some defects.

Defect configurations f 14
(3,3) tubes

{3, 3, 3, 3, 3, 3} 0 1.450000
{5,1,5,1,5, 1} 0.000042 | 1.235115
(4,4) tube

{5,1,3,3, 33,3 1} 0.028538 | 1.147819
(5,5) tubes

{3,3,3,3,1, 3,3, 3, 3, 0.449559 | 0.959827
{5,1,3,3,3,3,1,5, 1, 0.980817 | 0.798733
{5,1,3,3,3,1,5, 1, 3, 0.292789 | 1.097115
{(5,1,3,3,1,5, 1,3, 3, 0.906751 | 1.032654
{(5,1,5,1,1,5, 1,5, 1, 4.507192 0
(6,6) tubes

{3,3,3,1,3,3,3, 1,3, 1} 0.511011 | 1.223435
{5, 1,3,3,3,1, 3, 3, 3, 1} 2.132008 | 0.816330
{(5,1,3,3,1,3, 3,3, 3, 1) 0.397135 0
(5,1,3,3,3,1,5, 1, 1, 1 1.966639 | 0.439799
{5,1,3,1,5, 1,3, 1, 5, 1} 0.774044 | 1.007332
(7,7) tubes

{3,3,3,3,1,3, 3,1, 3, 3,1, 1 5.627837 0
{3,3,3,3,1,3 1,3, 3, 1,31 4919751 0
(3,3,3,1,3,3 1,3, 3, 3.3 1 1.483391 | 1.119239
{5,1,3,3,1,3,3,3, 1, 3,1, 1 1.634777 | 0.930209
{5,1,3,1,3,3,3, 1, 3, 1,3, 1 0.905888 | 0.982272
(5,1,3,1,51,1,5, 1, 51,1 3.977454 0
(8,8) tubes

{3,3,3,3,1,3,1,3,3,3, 1,3, 3, 8.093382 | 0.449886
{3,3,3,1,3,3,1, 3,3, 1, 3, 3, 3, 1.808325 | 1.020557
{5,1,3,3,1,3,3,1,3,3,3, 1, 3, 4.099844 | 0.776275
{5,1,3,1,3,3,3,1,3,3,1,3,3 1.742843 | 0.902405
{(5,1,3,3,1,3,3,3,1,3, 31,5, 6.940624 0
{(5,1,3,3,1,3,3,3, 1,3, 1,5, 1, 5.301284 0
(5,1,3,1,5,1,1,3,3,3, 1, 3, 3, 5.726062 | 0.846815
{(5,1,3,1,5,1,1,5, 1,1, 5, 1,1 12.354890 0
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{5,3,3,3,3,1,1,
53,3, 1,111}

Figure 10.10: Some typical defect configurations considered to be non-physical.
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Some quasi-circular defects considered to more likely candidates to

be joined with a nanotube.

Figure 10.11:



Part 1V

Transversely isotropic linearly

elastic materials

164



Chapter 11

Introduction to transversely
isotropic linearly elastic materials

The discovery of carbon nanotubes by lijima [32] has led to the possible creation
of many new nanoscale devices such as nano-oscillators. The aim of Part IV is
to investigate the wave-like deformation on the tube wall of a double-walled car-
bon nanotube when the inner tube oscillates. In this study, carbon nanotubes are
assumed to be transversely isotropic materials and by using the resultant force dis-
tribution determined in Chapter 3, the deformations are determined. In §11.1, a
background study of elasticity for carbon nanotubes is introduced and an overview

of Part IV is given in §11.2.

11.1 Elasticity of carbon nanotubes

Carbon nanotubes are capable of being realised to be perfectly elastic materials in
the sense that they return to their original configurations when the applied loads
are released [17]. There are many experiments and molecular dynamics simulations
which study their elastic properties (see for example, [15, 17-21, 134]). Yu et al. [18]
study multi-walled carbon nanotubes under load, and obtain values in the range of
270-950 GPa for the Young’s modulus. Alternatively, Zhao et al. [19] use quantum
mechanical and molecular mechanical calculations to model the deformation in car-
bon nanotubes under an applied load. They determine a value in the order of 1 TPa
for the Young’s modulus, which is much higher than values proposed in previous in-
vestigations. These authors suggest that carbon nanotubes are the strongest known
material. Lu [20] presents values of elastic moduli using constant-force models for

both single-walled and multi-walled carbon nanotubes, as well as for nanoropes. He
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finds that the elastic properties are insensitive to the helicity, radius and number
of walls. Tersoff and Ruoff [135], Popov et al. [136], Thostenson and Chou [137]
and Shen and Li [21, 134] propose that carbon nanotubes might be modelled as
a transversely isotropic linearly elastic material. Shen and Li [21, 134] also study
the deformation of carbon nanotubes under loading and obtain values for the elastic
constants and elastic moduli. Jin and Yuan [15] use molecular dynamics simulations
as well as the Lennard-Jones potential to study the elastic properties of single-walled
carbon nanotubes. They determine the elastic moduli using energy and force ap-
proaches which give rise to approximately the same numerical values as Shen and
Li [21, 134].

In terms of the development of the theory for transversely isotropic linearly elas-
tic materials, Elliott [22] is the first to introduce a general three dimensional solution
for such materials. He finds that the solutions for displacements and stresses can be
described in terms of two harmonic functions, and subsequently many researchers
examine the physical properties of such materials. Moreover, Elliott [138] solves
the problems of the rigid conical punch, rigid spherical ball indentation, cylindrical
punch and a disk-shaped ‘Griffith’ crack in solids under tension. The line force in
an infinite plate, elliptical crack and punch and isolated force with plane boundary
are studied by Shield [23]. Payne and Green [24] modify these transversely isotropic
solutions and introduce another potential function for curvilinear coordinates, which
corresponds to Mehler’s expansion theorem. They also study the punch problem, the
Boussinesq problem and crack problems for both pressure prescribed and displace-
ment prescribed cases. Furthermore, Selvadurai [25] studies a rigid disc inclusion
embedded in a transversely isotropic elastic medium of infinite extent. He considers
the displacement and stress equations with no body force and shows that in general
there are three potential functions ¢, (r, 0, ), ¢2(r, 0, z) and ¥(r, 6, z) needed for the

solution of transversely isotropic materials.

11.2 Overview

In Part IV, the phenomenon of nanoscale oscillators is investigated, and in particular
the generation of a wave-like formation on the outer surface of a double-walled

carbon nanotube arising from the motion of an oscillating inner tube is examined.
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In the following chapter, the basic governing equations for transversely isotropic
linearly elastic materials are formulated. Chapter 13 presents the model formulation
and the analysis of assumed solutions for the displacements and stresses, and the
key mathematical solution details are outlined. Values for the elastic constants for
single-walled and multi-walled carbon nanotubes are discussed in Chapter 13, and

detailed tables of numerical values are listed in Appendix G.



Chapter 12

Governing equations for
transversely isotropic linearly
elastic material

_______________________________

Figure 12.1: Diagram for transversely isotropic materials.

Transversely isotropic materials possess a single axis about which the material
is isotropic, but it is not isotropic with respect to any other axis. In other words,
transversely isotropic materials have the same properties in one plane, x — y plane,
but which differ in the normal direction to this plane, the z-direction, which is illus-
trated in Figure 12.1. Such a constitutive assumption has been proposed for carbon
nanotubes (see for example [20, 21]). Isotropic materials are a particular case of
transversely isotropic materials, and for linearly elastic materials a good deal is
known about isotropic materials. Accordingly, results are frequently specialised to
the well known version arising from isotropic linearly elastic materials. We com-

ment that isotropic in materials engineering refers to materials which have the same
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mechanical properties in all crystallographic directions, not in all directions, for
example a material of cubic symmetry will behave the same in each of the face di-
rections which differ from the vertex directions. While homogeneous materials will

have the same mechanical properties in any direction as in a sphere.

12.1 Nomenclature

Eij are elements of the strain tensor

O, 1,2 are the assumed harmonic solutions

A, b are the Lamé constants
n is the shear modulus in the longitudinal direction
v,V are the Poisson’s ratios in the transverse plane and in the longitudinal

direction, respectively

0ij are elements of the Cauchy stress tensor

T is the coefficient of tangential friction

W is an harmonic function

Che are the elastic constants

E.FE are the Young’s moduli in the transverse plane and in the longitudinal

direction, respectively
a,b are the radii of the inner and the outer carbon nanotubes, respectively
r, 0,z are a system of cylindrical coordinates
U, V, W are the displacements in Cartesina coordinates x, ¥, z, respectively

T,Y, 2 are a system of Cartesian coordinates



Chapter 12: Governing equations 170

12.2 Hooke’s law for transversely isotropic lin-
early elastic materials

For transversely isotropic linearly elastic materials, the stiffness matrix can be writ-

ten in the form

Ozxx Cn Crp Ci3 0 0 0 Exx
Oyy 012 011 013 0 0 0 Eyy
Ozz 013 Cld 033 0 0 0 Ezz
= . (12.1)
0y 0 0 0 204 0 0 £y
Oxy 0 0 0 0 0 Cll — 012 Exy

where Cyy; (k,l = 1,2,3,4) denote certain constants, o;; (i,j = 1,2,3) denote the
Cauchy stress tensor in Cartesian coordinates x; (j = 1,2,3) = (z,y, z) and here

the strain tensor €;; are defined by

1/0u; Ou; .
eijzé( Ui ug)’ (i, =1,2,3),

oxi ~ Oxt
where u;(x,y, z) (i = 1,2,3) denote the three displacements (u, v, w). Explicitly in

terms of (z,y, z), the strain tensor can be written as

o L ou
Tr T 81‘7 yy — 8y7 -
(12.2)

_1fov  ow _ (0w Ou _Lf0u v
== 9\0: Ty ) T o\ar Taz) T o\ay " ax)

and this notation is adopted by Fung [139], page 94, Sokolnikoff [140], page 22 and
Landau and Lifshitz [141], page 3. However, some authors employ the notation
referred to as the engineering strain such as Ding et al. [142], page 4, Lure [143],
page 9, and Tran-Cong [144], page 2, which are given by

ou ov ow

o

o = B W=y

(00, ow _ (0w, O (0w, 0w
r}/yz - 02 ay 9 ’y,zx - 8:1: 82 9 ’me - 8y ax 9
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while others, such as Elliott [22], Green and Zerna [145], page 176, Love [146], page
38, and Rekach [147], page 25, employ the strain tensor

ou ov ow

e;m:_a_xa eyy:a_ya €2z = 9z’

(o ey (e oy (o
==\ o2 oy )’ = \or 9z ) Cay = oy Ox)

We comment that the last two equations have the same definitions but differ only
in the notations for the strain tensor. Throughout the present work, the notation
(12.2) for the strain tensor is consistently adopted.

For transversely isotropic linearly elastic materials, the notations which are in-

verse to (12.1) (i.e. the so-called compliance matrix) becomes

€ St S Siz 0 0 0 Ora
Eyy 512 511 513 0 0 0 Oyy
Ezz Sis Sz Ss3 0 0 0 Oz
_ . (12.3)
Eya 0 0 0 Sw?2 0 0 Oye
€2 0 0 0 0 Su/2 0 O
Exy 0 0 0 0 0 Sn — Slg Ozy

Poisson’s ratio and Young’s modulus in the transverse plane and Poisson’s ratio,
Young’s modulus and shear modulus in the longitudinal directions; namely v, E' and

/ ! / .
v, E i, respectively, are expressed as

!

— ) -2 1
Exx = —=(Opg — VOyy) — =04z, €oz = 5 7022
E vy E 2[u
1 v 1
Eyy = E(_Vazz + 0yy) — Eazm Eyz = Q_MIOZ!Z’
” 1 14+v
Erz = _E<0'mm + Uyy) + Eazza Exy = E Oy,

as well as the following values for the constants S;;

v 1 1
13 E/ ) 33 E./ ) 44 [1,/

1 v
S = — S = ——
=g 12 ok
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The constants Cj; can be shown to be given by the expressions

(EV?—F) (E'v+ Ev?)
Ch=ar =) Cro=—A—————,
1 (1+v) . (1+v)
. E"? /
013:—AEV, ngZAF(V—1)7 044:M7 (124)

where the quantity A is defined by

E

A= :
(E'v— E +2Ev'?)

In cylindrical coordinates (7,6, z) the stiffness matrix involves the same constants

as in Cartesian coordinates, and is given by

Orr Cii Ci2 Cis 0 0 0 Err
O Cips Cip Cis 0 0 0 €00
[ Ciz Cig Cs3 0 0 0 €22
_ . (125)
0o 0 0 0 2Cyu 0 0 €02
U'rz 0 0 0 0 2044 O 57’2
Orp 0 0 0 0 0 011 — 012 Ero

12.3 Hooke’s law for isotropic linearly elastic ma-
terials

For isotropic linearly elastic materials the stiffness matrix (12.1) and compliance

matrix (12.3) become

- O - - 1—v v v 0 0 0 11 Exx
Tyy v 1l—-v v 0 0 0 Eyy
Oz E v v 1—v 0 0 0 €z
Gye CAEA=Y s s 0 e
oo 0 0 0 0 1—-2v 0 €2z
Oy 0 0 0 0 0 1-2v Eqy
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€z 1 —v —v 0 0 0 Oz
Eyy -v 1 —-v 0 0 0 Oyy
€2z 1 v —v 1 0 0 0 Oz
e E s
Eyz 0O 0 0 1+v O 0 Oyz
Exy 0 0 O 0 0 14+v Oy

where v is the Poisson’s ratio and E is the Young’s modulus. Alternatively, these

relations can be expressed as

_1—1—1/ v

€ij = TUU E5ij0kk, (12-6)
E . vE 5
Oij = Eij ij€kks
Tl T T a2 +y) T

and in terms of the Lamé constants A and p defined by

vE FE

A= 1-201+v) M 2010y

(12.6) becomes

Oi5 = 2/,LEZ‘J‘ + Aéijgkk-

12.4 Equilibrium equations for transversely isotropic
linearly elastic materials
12.4.1 Cartesian coordinates (z,y, z)

The equilibrium equations for a force balance in Cartesian coordinates are

004, 00y 00,
+

Ox oy 0z + =0,
0oy 0oy, 0oy

= 12.
o + Dy + ER + f, =0, (12.7)
00, N oy, N 00, b =0,

ox dy 0z
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The equilibrium equations can be also concisely written in tensor form

where u; (i=1,2,3) denotes displacements. From (12.1), the stress equations are
given explicitly by

Ogx = Cllgxx + Ol2£yy + 0135%, Oyy = 0126;rz + C’ll€yy + 01357;,37
Ozz = 013(51‘96 + Eyy) + 0335zza Oyz = 20445;/27
Oz = 20445127 Oxy = (Cll - ClQ)Exy-

From (12.1) and (12.7), three equilibrium equations in terms of displacements are

obtained and then given by

82u (CH — 012) 3216 82u 8 (011 — 012) 81} @U) .
C”agﬂ + 5 Oy + 044@ + E (Ta_y + (Ch3 + 044)5 =0,
(Cll — 012) 621} 821} 621} 0 (Cll + 012 ou 8_1U .

5 92 + C’11ay2 + 044822 + 3y 5 o + (Ci3 + Cua) o2 ) = 0,
C 82—w+82—w +C 82—w+(C +C)2 @—l—% =0 (12.8)
M\ 922 T a2 3922 BT \o: Tay) '
On assuming that
u = % v = % w = k%
oz’ oy’ P
is a solution of the equilibrium equations for some function ¢(z,y, z), (12.8) becomes
P¢  0?%¢ D¢
011 (@ + 8_342) + [044 + k’(Clg + C44)]$ = 0,
Po 99 D¢
011 <@ + a—y2> + [044 + k(Clg + C44>]ﬁ = 0,

%y  0%¢ 0%
[k044 + (013 + 044)] (@ + a—yz) + kcggﬁ =0.



Chapter 12: Governing equations 175

These equations will be identical if

Cys + k(Ci3 + Cu4) _ kCss
Cn kCyy + (Cis + Cua)

:19’

where 1 is a constant. From this equation, the quadratic equation for & is obtained

which is
Cua(Crs + C'44)]<72 + [024 + (Ci3 + 044)2 — C11Cs3)k + Cuy(Ci3 + Cuy) =0, (12.9)

and if &y and ks are the solutions of (12.9) then ¥; (i = 1,2) are given by

_ Cug + ki(Crz + Cuy) _ kiCss
Chy kiCyy + (Ciz + Cu)’

v

and ¢;(z,y, z) satisfies the equation

9% ,
V2¢+ﬁz@ :Oa (Z: 172)7

where V2 = 8—;2 + 83—;2. (12.9) can be simplified to give
B+ Q2+p)k+1=0,

where 3 = (C% — C11C33)/(C1s(Cus + C13)), and the displacements become

0

u= gt e, =g ité),  w=g(hoithe) (1211

In linear elasticity, the super position principle plays an important role, so that if
two solutions for the displacement for transversely isotropic linearly elastic materials
are linearly independent to each other, then adding the two solutions gives rise a
more general solution of the system. Assuming that

_ W _ %
Oy’ ox’

u w =0, (12.12)
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is a solution where 9 is a harmonic function (12.8) becomes

(Ci1 — C) (0% 0% >y
2 Ox? + Oy? Cu 022 0
(Cii — Ch) (0% 0% Y
5 92 + o7 C'44a > =0, (12.13)

oy 0%
(Cis + Caa) 5 <8z8y 028y) =

Since (12.13)3 is always true for ¥ # 0, on introducing 93 such that

2C

=, 12.14
Ch—Cp ° (12.14)

1 satisfies the equation
0%

2 —
\Y w+193622

=0.

For the isotropic case, k1 = ko = 1 and ¥, = ¥5 = )3 = 1, where the passage to this
limit has to be done carefully.

Thus, by superposition of the two solution (12.11) and (12.12), the displacements
in Cartesian coordinates for a transversely isotropic linearly elastic material are given

by

o )
w

0y _9 _® _9
. ay(¢1+¢2) ) ) —82(

= %(% + ¢2) + k11 + kag2),

and the stress equations in terms of the functions ¢1(x, y, z), ¢2(z, y, 2) and ¥ (x, y, 2)
are obtained from the relations of strain, displacements solutions, and equation
(12.1) as the following:

0%y

2
Opr — 011 0 (¢1 + ¢2) + C’12 8 <¢1 + ¢2) (011 a 012>8a:0y

62
7t

+Ch3 kip1 + kag2),
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0? 0? 0%
Oyy = 012 (¢1 + ¢2) + 011 (¢1 + ¢2) — (C11 — Clz)axﬁy
82
+0138 5 (k161 + kaop2),
82 82 82
O = C13 (¢1 + ¢2) + BIE —— (01 + ¢2)1 + 033@(]?1% + kap2),
_ | P Py 0%y
0. = Cuy _(1+k1)8y82 +(1+k2)ayaz] — Gy o
[ P Py 0
= 1 _
Oaz Caa ( * kl)@xaz 1+ kQ)(?xaz} T Cu 0x0z’

92
Oxy — (011 - 012)a$

ay (gbl + ¢2) -

(Cri — Cuo) {aw a?w]‘

2 ox®  Oy?

12.4.2 Cylindrical polar coordinates (r,6, z)

In cylindrical polar coordinates (r, 6, z), the equilibrium equations can be written in

vector form as follows:

60-7“7“ 1 80r9 8Urz Orr — 009
- F, = )
or r 00 0z r + 0
Jog 10099 Do, 2
1 0+ Fy = 12.1
ar Tr o0 9. g0t Ee=0 (12.15)
do,, 100y, 0o, 1 B
or r 00 0z + ;UTZ + £ =0,

and the strain relations in term of displacements for transversely isotropic materials

are

B 18u+@_2 _1 8_w+@ 1 0v+
o = rod  or r)’ gm_Q or 0z)’ 892_5 0z

€00 = — 55+ =

10v wu 8_w
r 00 N
(12.16)

10w
r 00
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where (u,v,w) = (u,,up,u,). From the matrix for Hooke’s law (12.5), the stress
equations are
orr = Ci&r + Cr2ggo + Chsezz, 099 = Cragyr + Criop + Chsess,
0.2 = Ciz(err + €0p) + C33622, 092 = 2C 1480, (12.17)
Ory = 204457‘,27 Org = (Cll - 012)57’9-

From these relations, the equilibrium equations (12.15) for transversely isotropic

materials can be written as

82U (011 — 012) 1 82 8211, (011 + C12) 1 82’0 82111
gzt 5 mae et T 2 rams Ot O,
10u (3011 — Cu) 1 ov
NS T T 5 2gp C’ll—u+F =0,
(CH - 012> 82 C 1 (92 C 8% (CH + Cm)l 82 (C + C >1 8211)
2 o2 T age T MM 2 roroe P T 6002
(3011 — 012) 1 ou (011 — 012) 10w _ (011 — 012)
i 2 r2 00 i 2 ror 2 v+t =0, (12.18)
0w 1 0%w 0w 0%u 1 0%
Cu—— o2 + Cu— 2 902 + O35 5.2 + (Crz + C44)8r82 (Ciz+ Cu)— 900
10 10
(OI3+C44>_6_u+C44—a—w+F —0

where Cy; are the constants appearing in Hooke’s law as given by (12.1). Following
the same strategy as in Cartesian coordinates, the general solutions are obtained in
form of

19y

oy B
TR v

0
= _%@1 + ¢2) — P = %(/ﬁ@ + ko),
(12.19)
where k; and ks are the roots of (12.9) which correspond to ¥, and 95 in (12.10).

(¢1 + ¢2) +

Following (12.1), the strain relations and the displacement solution (12.19), the
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stress equations in term of displacements can be written as

Orr . 82¢1 82¢2 2 [ 10 1 82 181&
G = k)G (4 k)55 — o _(?E + 72%) (01+62) = 5 (?" ae)]
Te9 32¢1 Poy 2| 6 1 sz

Ozz (klcSS - 191013) 82¢1 + <k2033 - 7-926113) a2¢2

044 044 022 044 072 ’
(12.20)
o 2[1 & 10 200 0% 2 0%
Cu U5 [rarae > ae}(qbl*@)* { ar T T
06> 1 32¢1 1 82¢2 8%
Cy (1+ kl)r 000z +(L+ 2)7“ 000z Ordz’
Orz o 82¢1 82¢2 8277Z)
T P SRl v et 7

12.5 Simple shear problem for transversely isotropic
linearly elastic materials

The simple shear problem shown in Figure 12.2 is considered by assuming that
¢ = Ar?z 4+ Bz3 + Czlogr, ¢y = Dr?z + E2* + Fzlogr, (12.21)

are the solutions for a transversely isotropic linearly elastic material, where A, B, C, D, FE

and F' are constants. Since they satisfy

92 10 1 9 0? ,
<ﬁ+ra+ﬁ@+§i@)‘bi:0’ =

the following conditions are obtained
2A+ 30, B =0, 2D + 39, F = 0.

In this problem, the oscillation of carbon nanotubes in the axial-direction (z-

direction) is considered and the two boundary conditions for each tube are assumed
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Cpr=0

Gp=1

Inner tube r=a

Outer tube r="» 6,,=0

Opr=0

Figure 12.2: Diagram of double-walled carbon nanotubes.

to be

where 7 denotes the tangential friction generated by the inner tube which is assumed
to be constant. From the stress equations in (12.20); and (12.20)g, the boundary
conditions and the solutions given by (12.21), they may be deduced
2 C F
——(2A+ 42D+ = | —6(1+k)B—6(1+ky)E =0,
U3 b2 b2

C F
(1+k1)(2Ab+ 3> + (1 +k2) <2Db+ 3) =0,
F
——(2A+a—+2D+§) —6(1+k1)B —6(1+ky)E =0,

T

(1 +k’1)(2Aa+ %) + (1+ k) (2Da+ %) =
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On solving these equations, the constants A, B,C, D, ' and F are obtained

7&191[192 — 193(1 + kg)]

A:zmw—aawmx@—k9+ﬁgm—ﬁgu+kgu+km’
B . —Ta[192 — ’193(1 —f- k’g)]

©3u(b? — a?)[V19 (ke — ki) 4+ D3(91 — Do) (1 + k1) (1 + ko)’

—T1ab?

g o &
D o —Ta’l92[’l91 — 193(]. + k’l)]

B 2/1,([)2 — a2)[191192(k:2 — kl) + 193(191 — 792)(]. + l{?1>(1 + ]{32)],
o ra[ty — O5(1 + ky)]

3u(b? — a?)[010a(ky — k1) + Os(91 — D) (1 + k1) (1 + k)]’
e Tab?

p(0* — a?) (kg — k1)

Further, the displacements in the r-direction and z-direction can be written as fol-

lows:
= Taﬁg[ﬂg(l + k‘l) — 191(1 + kg)] o
(b2 — &2)[191192(]{32 — kl) + 193(’[91 — ’192)(1 + k‘l)(l + k’g)] ’
i = Ta{klﬁl[ﬁg — 193(1 + k?Q)] - k?2’192[791 — 193(1 + kl)]} 2 TCLb2 10g’)“

200 — a)[010a(ks — k) + U3(0r — D2)(L+ k1) (L + ko)) (02 — a2)

Ta{k1[02 — U5(1 + ko)] — ko[th — U3(1 + k1)]} 2
= ) Wi0alhs — k) + 200 — T k) (L E)] 12:22)

If in the quadratic equation (12.9), values of C;; are substituted for the isotropic
linearly elastic material, then k; = ks = 1 and the values of 9; corresponding to k;
in (12.10) are ¢y = ¥J5 = ¥3 = 1. Thus, in order to deduce the isotropic solution

from the above equations, k; and ko are assumed to be given by
k1:1+6, k’gz]_—E,

where € < 1. From (12.10) and (12.14), 91,9, and ¥5 are determined to be

€ €
2(1_1/)a 7~92 193 )

=1+ 2(1—v)’
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and on substituting those values of k; and ¥; into (12.22); and (12.22); and then

letting € tend to zero, it can be shown that

it — —Tav ro
(0?2 —a?)(1+v)
Ta 5 9 Tab?
= - ———logr.
Hw 2(6% — a2)(1 + v) (7 =17) + (b2 — a?) ogr

12.6 Simple shear problem for isotropic linearly
elastic materials

In this section, the solution for the simple shear problem of a isotropic linearly elastic
material as given by Lure [143] is formally derived. The displacement equations for
isotropic linearly elastic materials of torsion-free axial-symmetric problems are given

in [143], and can be written as

0
u = 4(1—-v)B, — 8_(TBT + zB, + By),
r

0
w = 4(1 — V)BZ — 8_<TBT + ZBZ + Bo),
z

where B,, B, and By satisfy Laplace’s equation. Suppose B, is zero and that

A
By = 5(223 —321*) + Bzlogr, B, = %(222 —7r%) + Blogr,

are solutions for the isotropic linearly elastic material. From the stress and dis-
placement equations for the isotropic linearly elastic material and the boundary

conditions

Orr :07 Orz = T0, fOT T:b,

Orr = 07 Orz = —T1, fO’I" r=a,
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the following four equations are obtained

(3A+C) +8v(1 — v)C — 6v(A+C)+ (1 —20)(B + D)b—12 =0,

(3A+C) +80(1 = 1)C — 60(A+C) + (1 — 2)(B + D)% —0,
(3A+C) —2(1— )CJb+ [2(1 — v)D — (B + D)]% _ w
[(BA+C) 201~ »)Cla+ 201~ )D — (B + )] = #
On solving these equations, A, B,C and D are given by
A= (47/ + 1)(7’0[) + 7'1&) _ a,b(]_ —+ ]/)(Toa + le)
6E(b? —a?) 2E(1 —v)(0? — a?)
o — —(nb+ma) 5 _ —ab(1+v)(ma+nib)
2E(b? —a?)’ 2E(1— )02 — a2)

and the displacement equations for torsion-free axial-symmetric deformations for

isotropic linearly elastic materials yield

v(Tob + ma)
u = rz
A R T R
(12.23)
(10b + T10) 5 oy ab(moa + 7b)
= — ——————logr.
M= s ) ) T T 8
Now, for the special case 7 = 0 and 71 = —7 the displacements become
—Tav
u = rz
M= =)+
Ta 5 9 Tab?
= — —1
Hw 262 — a2)(1 + v) (" =7r7) + (0% — a?) ogr,

which are in complete agreement with those obtained in the previous section.
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Wave-like deformations for
oscillating carbon nanotubes

Double-walled carbon nanotubes are widely studied as possible gigahertz oscillators,
where the inner tube oscillates within the outer tube. These oscillators can gener-
ate frequencies in the gigahertz range. They are also known to generate wave-like
deformations on the outer surface. In this chapter, such induced deformations on
the surface of the outer tube are studied, as generated by the moving inner tube.
Double-walled carbon nanotubes are modelled as transversely isotropic linearly elas-
tic materials. Using a force distribution for the resultant van der Waals forces arising
from the interatomic interactions, a dynamical linearly elastic problem is solved, and

it is shown that the resulting solution exhibits wave-like behaviour.

13.1 Nomenclature

Oij are element of the Cauchy stress tensor
T is the coefficient of tangential friction
Cij are the elastic constants

I is the Bessel function of the first kind

Ly, Ly are the half-lengths of the inner and the outer tubes, respectively

Y, is the Bessel function of the second kind
|44 is the maximum force value
a,b are the radii of the inner and the outer carbon nanotubes, respectively

184
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h is the thickness of the outer tube
r, 0,z are a system of cylindrical coordinates
U, W are the displacements in the r- and z-directions, respectively

13.2 Model formulation and boundary conditions

A double-walled uncapped carbon nanotube is considered where the half-length of
the inner and outer tubes are L; and Ly, respectively, the inner tube has radius a, the
outer tube has radius b and the thickness of the outer tube is assumed to be h, and
for convenience, ¢ is defined as ¢ = b+ h. The force distribution for double-walled
carbon nanotubes is determined using the continuum approach for which the atoms
are assumed to be smeared over the surfaces on both the inner and outer tubes as
derived in §3.3. The resultant van der Waals force is calculated assuming prescribed
surface densities of carbon atoms along the surfaces » = a for the inner tube and
r = b for the outer tube, and is evaluated by two surface integrals. Further, these
surface inter-atomic interactions described by the van der Waals force are assumed
to dominate. Transversely isotropic linearly elastic equations are utilised to model
the deformations for the outer tube assuming a stress free boundary condition on
the outer surface r = ¢ and a stress ¢,, = 7 and ¢, = 0 acting on the inner surface
r = b. The stress 7 is the van der Waals force per unit contact area which is assumed
to arise from the motion of the inner tube moving in the z-direction, as illustrated

in Figure 13.1.

Figure 13.1: Diagram of double-walled carbon nanotube.

The length of the outer tube is assumed to be very long in comparison to the

length of the inner tube, so that the contact area is given by A = 4wal,. Further,
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the force distribution for double-walled carbon nanotubes, derived in §3.3 and shown
in Figure 13.2, can be idealised by the dotted line shown, that is, the actual force

distribution is approximated in terms of rectangular functions as follows

f(z)=WI[H(z+ Ly + Ly) — H(z — L1 + Ly)]
—WI[H(z+ Ly — Ly) — H(z — L1 — Ly)], (13.1)

where W denotes the maximum value on the force axis. The Fourier series expansion

for an odd function is given by

= an sinnz, bn / f(2)sin (mrz)dz (13.2)
n=1

where f(z) is a piecewise continuous function in the interval [—2L,2L] and has
period 4L. Using (13.1) and (13.2), the Fourier series expansion for the van der
Waals force with period 4(L; + L) for arbitrary lengths L, and Ly can be written

o %{ ( >_COS{%H$H{%} (13.3)

as

Figure 13.2: Force distribution approximated by rectangular functions.

From the oscillatory behaviour, this force is time dependent with angular fre-
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quency w and from (13.3) it may be supposed

2W = 1 nm nm(Le — L ) nwz ’
f(z,t) = — ; ﬁ{ cos <7> — cos [—2(212+ L23)] } sin [—2(L1 n Lz)] et

(13.4)
Further, the angular frequency w is assumed to be obtained from the oscillation
frequency f derived in §3.3 where w = 27 f and Ly # L,. This oscillation frequency
is derived for an inner tube extruded an initial distance d from the end of the outer
tube and simultaneously given an initial velocity vy in the negative z-direction.
Finally, the stress boundary conditions at r = ¢ are o,, = 0, = 0, while at » = b
they can be written as

W i 1 nw nm(Ly — L) _ nmz it
Oy = —<cos | — | —cos | —————| psin | ———|e"",
2(1L17T2 1 n 2 2([/1 + LQ) 2(L1 + Lg)

o = 0.

In the process of modelling the van der Waals force by equation (13.3), the usual
continuum practice of ignoring the small scale effects are employed, which occur at
the four points Z = +(L; + Lo) and Z = +(Ly — Lo).

In adopting this approach, by necessity any information pertaining to the atomic
lattice length characteristics is excluded, and the critical length characteristic em-
bodied in (13.3) is the macro-length (L; + Ls). Having established (13.3) as the van
der Waals force, (13.4) is merely the time-dependent form of (13.3) with a prescribed
angular velocity w, which is specifically adopted in order that the governing contin-
uum equations admit separable solutions. However, (13.4) is by no means unique
and other forms are possible, but these alternatives would not necessarily give rise

to tractable equations.

13.3 Displacement and shear force solutions

Assuming that the displacements of the outer tube (u, v, w), where u, v and w are the
physical components of displacement in the r, # and z directions, are synchronised
with respect to the motion of the inner tube and they therefore have the same

angular frequency. Moreover, assuming that there is no torsional motion, v becomes
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zero and v and w can be written as

u(r, z,t) an Yeos(kpz)e™t,  w(r, z,t) Zgn ) sin(k,z)e™".

On solving the momentum equations (12.18) neglecting any body force, it may be

readily shown that the functions f,(r) and g,(r) are given by

fn(T) - Anljl(pn1/r> + AnZ}/i(pan) + AnSJI(anT) + An4Yi (pn2T)7

gn('r) = Snl [An1J0<pn1T) + An2YE)(pn1T>] + SnQ[An?)JO(anT) + An4%(pn2r>]7

where Jy, J; and Yp, Y7 are Bessel functions of the first and second kinds, respectively,
A1, Ano, Anz and A,4 denote four arbitrary constants and p,1, pp2, Sp1 and S,s are

constants which involve the elastic constants and are given by

Doy = \/(0123 — C11053 + 2C13C4) k2 4 (Ci + Caa) pw? + /G
nl — ,

20110y
(Cf3 — C11Cs3 + 2C13C ) k2 + (Ch1 + Cua) pw? — \/Gn
Pno = )
2011Cuy
Snl — Pn1 |:(2013044 + 0123 + 011033)]{‘1721
an(Clg + C44)(Pw2 - CSngQL)

+(Caa — Cn)ﬂw2 - \/q_n} )

Pn2 9 9
= 2
S 2k, (Ci3 + Cua)(pw? — Cs3k2) {( CiaCua+ Cia + CuC )k,

+(Cyy — Cpp) pw* + \/q_n] )

and

C
qn = (011033 - 0123) |:O11033 - <C44 + TB) :|k:i + (Cll _ 044)2p2w4

—2pw2ki{0330121 - [2024 + (033 + 2013)044 + 0123]011 - 2013054 - 0123044}.

From the stress-strain relations for .. and o,, in (12.16) and (12.17), they can
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be written as
Opp = f:cos(knz)em Al [anJo(pnlr) — @Jl (pnlr)}
n=1 r

C
+An2 |:Oén}/0 (pnlr) - %}/l(pnlr)] + An3 |:/6n<]0<pn2r)

C r C
—%Jl (pm?“)] + An4 ﬁn}/o(an’f’) - Tll}fl(anT)] }7
(13.5)
Op, =  — Z Cysin(kn2)e™" | Ani¥n 1 (D7) + An2¥a Y1 (Pir)
n=1 -

+An35nt]1 (pn2r) + An45nY1 (anT):| )
where «a,, 3,7, and ¢, are further constants defined by

oy, = Pp1Cii — kpSn1Cis, Bn = pn2Ci1 — knSp2Cis,

Tn = pnlSnl + kna 571 = pn2Sn2 + kn

From the boundary conditions at r = b and (13.5),, it can be deduced

hp = —— " p = S — cos [—mr(LQ — Ll)] — oS (n_7r>
" 2<L1 + 1—42)7 " 27”L(J,L17T2C44 2(L1 -+ Lz) 2 ’

and from the stress boundary conditions, a system of four equations in the four un-
knowns A,; (i = 1,2,3,4) can be formulated. These may be readily solved using the
algebraic computer package MAPLE and the details are summarised in Appendix F.

13.4 Tables of elastic constants

Experiments and theoretical studies have shown that carbon nanotubes can be mod-
elled as transversely isotropic linearly elastic materials where the elastic constants
and elastic moduli define their elastic properties. In this study, three contributions
by Jin and Yuan [15], Lu [20] and Shen and Li [134] are examined, all of whom eval-
uate the elastic constants and elastic moduli for both single-walled and multi-walled
carbon nanotubes.

Jin and Yuan [15] use molecular dynamics simulations as well as the Lennard-
Jones potential to study the elastic properties of single-walled carbon nanotubes.

They determine the values of elastic moduli, denoted as Poisson’s ratio r.g, 1.,
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Young’s moduli E,, Ey and shear modulus Gy,, and elastic constants C33 and Cys,
by using energy and force approaches, which give approximately the same numeri-
cal values. Here, the values of elastic moduli from the force approach are employed
throughout. Terminology utilised here: F, FE, ,u' and C3 refer to their E., Ey, Gy,
and Cbs, respectively. Poisson’s ratio in longitudinal direction v’ is given by averag-
ing 14, and v,y and Poisson’s ratio in transverse plane v is obtained by solving Cs3
in (12.4). Thus, the values of elastic constants for single-walled carbon nanotubes
based on Jin and Yuan [15] are shown in Appendix G, Table G.1.

Lu [20] uses an empirical force-constant model and the Lennard-Jones potential
function to investigate the elastic properties of carbon nanotubes and nanoropes.
For the carbon nanotube structures, he finds that the elastic moduli are insensitive to
the radius, the helicity and the number of walls. He also reports values of the elastic
constants C7; and Cs3 and elastic moduli, namely Poisson ratio v, bulk modulus
B, Young’s modulus Y and shear modulus M for both single-walled and multi-
walled carbon nanotubes. Here, Poisson ratio, Young’s modulus and shear modulus
are defined by v/, E' and p, respectively. E and v are obtained by solving the
equations for C1; and Cs3 in (12.4). Finally, the elastic constants for single-walled
and multi-walled carbon nanotubes based on Lu [20] are shown in Appendix G,
Table G.2 and Table G.3, respectively.

Shen and Li [134] also study the elastic properties of single-walled and double-
walled carbon nanotubes by assuming that carbon nanotube structures are trans-
versely isotropic linearly elastic materials. They calculate five elastic moduli, de-
noted as Poisson’s ratio 12, Young’s modulus E;q, shear moduli G5, Go3 and bulk
modulus Ks3, by analysing the deformations under loading conditions. Note that in
their work 1 denotes the longitudinal or Z direction, and Fiy, 112, G129, Ko3 and Gag
refer to E', v/, ii', K and G, respectively. Therefore, the values of elastic constants
are obtained by using the formulae in (12.4), shown in Appendix G, Table G.4 and
Table G.5.

The large variation in the numerical values of these elastic constants is primarily
due to the uncertainty regarding the actual values of the wall thickness, the different
potential functions in the study, the calculation methods, and the size of the time

step [148, 149].
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13.5 Numerical results

In this section, the displacements u and w for a double-walled carbon nanotubes
modelled as a transversely isotropic linearly elastic material are plotted. Using the
algebraic computer package MAPLE, the displacements u and w versus an arbitrary
point on the z axis of the outer surface of the outer tube are shown. Following the
determination in §3.3, the same values of the van der Waals constants to determine
the van der Waals force are used. For the elastic constants C;;, the values given in
Table G.3 for n = 2 are used. Of particular practical interest is the case when the
initial velocity is zero and the extrusion distance is d = Ly, for which the graphs of
the displacements u and w are given in Figure 13.3 and Figure 13.4 where W = 1,
h=0.66 A, L; = 10 nm and Ly = 500 nm.

The wave-like deformations which depend on both space and time on the outer
surface of the outer tube are observed. The deformation in the r-direction is a
transverse wave representing the rippling on the surface, whereas the deformation
in the z-direction is a longitudinal wave tending to compress the tube. Further,
the deformation amplitude in the z-direction is much larger than that in the -
direction, showing that the tube behaves more like a spring. Moreover, the largest
deformations are at the ends of the outer tube arising from the large attractive force
there. Due to the assumed negligible friction, the deformation has the same pattern
every 14.24 ps, which is the period T of the oscillation. At ¢t = 0 and t = T/2,
the deformations have the same shape in both r and z directions but are opposite
in phase. Similarly for t = T'/4 and t = 37'/4, the deformations at these times
also have the same pattern but are opposite in phase, as shown in Figure 13.3 and

Figure 13.4.

13.6 Summary

Here oscillating carbon nanotubes have been modelled as transversely isotropic lin-
early elastic materials where the oscillating inner tube moves in the axial direction
while the outer tube remains fixed. Furthermore, the length of the inner tube L,
is assumed to be very small in comparison to the length of the outer tube L,. The

van der Waals force distribution evaluated in §3.3 is assumed. On neglecting any
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frictional effects and assuming that the inner surface atoms of the outer tube and
those located on the outer surface of the inner tube dominate the van der Waals
force, the transversely isotropic linear elastic model is applied to the outer tube and
expressions for displacements in the r- and z-directions are calculated. Deformations
on the outer surface of the double-walled carbon nanotube due to the oscillations of
the inner tube occur in both the r- and z-directions. A transverse wave occurs in
the r-direction which gives a rippling effect on the surface, while a longitudinal wave
occurs in the z-direction which tends to compress the tube. The amplitude of the
deformation in the axial direction is much larger than that in the radial direction,
which implies that the nanotube oscillator behaves like a spring.

The analysis presented here represents only a first step, and a more realistic
model might result if the two effects of inter-tube friction and fluctuations in the
nanotube due to a finite temperature are incorporated. These effects may con-
ceivably be larger than those examined here. We comment that these calculations
ignore the small variations in potential arising from the discrete structure or the
corrugation of the tubes and there are two points to be noted. The first is that
the corrugation energy gives rise to a conservative potential which does not give
a frictional force and ultimately these interaction will decrease the amplitudes to
zero. Secondly, the corrugation energy per bump is small but there are many bumps
per cycle, and these corrugation barriers convert some potential energy to heat and

thermal effects.
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Chapter 14

Summary

In this thesis, applied mathematical modelling and elementary mechanical tech-
niques have been employed to formulate analytical expressions for certain systems
of nanostructures. In addition, the algebraic computer package MAPLE is utilized
throughout to calculate numerical solutions of each of the problems. These theoreti-
cal investigations have generated new physical formulae applicable at the nanoscale,
and which might be seen as a first step to create new derives in the field of nan-

otechnology. There are three main focuses in this thesis:

1. Continuum modelling of nanostructures,
2. Geometry of joining nanostructures,
3. Carbon nanotubes as transversely isotropic materials,

and a brief summary of each of these three topics is given below.

14.1 Continuum modelling for nanostructures

The Lennard-Jones potential function and the continuum approximation employed
throughout Part II are introduced in Chapter 2. The van der Waals interaction
energies and the resulting oscillatory behaviours for both carbon and boron nitride
nanostructures are studied.

In Chapter 3, force distributions arising from the interatomic interactions for
two concentric carbon nanotubes are considered and shown to be approximated by
the Heaviside step functions. This has the advantage that Newton’s second law can
be utilized to describe the oscillatory motion of the inner carbon nanotube when it

is extruded and given an initial velocity. The oscillation frequency is shown to be in
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the order up to 80 gigahertz, and the shorter the inner tube the higher the frequency.
In terms of the suction energy, its value depends on the difference of the tube radii,
where the closer this value to zero, the less likely the inner tube will be accepted into
the outer one. Further, the inner tube is spontaneously sucked into the outer tube
and has its maximum suction energy when the difference of their radii is precisely
equal to 3.44 A. The equilibrium offset position for a double-walled carbon nanotube
is also determined, assuming that the inner tube is already accepted inside. This
equilibrium position of the offset inner tube tends to be closer to the outer tube wall
as the radius of the outer tube increases. Particularly, the two notions of acceptance
and suction energy are fundamental to the process of encapsulating drugs or genes
in nano-carriers for targeted deliveries.

In Chapter 4, a well-known self-assembled hybrid carbon nanostructure com-
prising the Cgo fullerenes and a carbon nanotube, the so-called nanopeapods, is
investigated. Firstly, three suction site scenarios for a Cgy molecule entering a car-
bon nanotube are determined. The binding energies for the three mechanisms are
compared and it is found that the Cgy molecule is most likely to enter through the
carbon nanotube by the head-on configuration, and least likely by the molecule en-
tering around the edge of the tubes open end. Once Cgq fullerenes are encapsulated
into a single-walled carbon nanotube, two nonlinear patterns for a Cgy fullerene
chain, zigzag and spiral, are examined. The chain is found to be formed linearly
along the (10,10) tube axis and discernible zigzag patterns exist for both the (16,16)
and (20,20) tubes. Likewise, a linear Cg fullerene chain is observed along the (10,10)
tube axis and spiral patterns are detected for the (16,16) and (20,20) tubes. In gen-
eral, the interaction between the Cgy molecules determines the equilibrium position
and the angular spacing of the system, whereas the interaction between the Cgg
fullerene and the carbon nanotube determines the offset position of the chain.

Chapter 5 considers the three related problems for nanocones entering carbon
nanotubes, which are (i) the potential energy, (ii) the suction energy and (iii) the
frequency of oscillation. Both carbon and boron nitride nanocones are investigated.
Due to the lack of specific data, the known Lennard-Jones constants determined
for plane sheets of carbon-carbon atoms are employed for carbon cones, and the

mixing rule is undertaken for boron nitride cones. The equilibrium position increases
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with decreasing cone angle or increasing number of pentagons. Furthermore, the
equilibrium location always occurs when one cone is inside the other, so that nested
double-cones might be expected to form in practice. The carbon cone which is
assumed initially at rest outside the tube is sucked into the tube when the cone
base radius and the tube radius differ by 2.49 A to 2.54 A, and this is irrespective
of the direction of the vertex. The oscillatory behaviour is then examined assuming
that the carbon nanocone is located co-axially and that it is sucked into the tube
by van der Waals forces alone. Newton’s second law, neglecting the frictional force,
is employed to determine the frequency, which is shown to be in gigahertz range, 15
to 90 GHz.

In Chapter 6, the interspacing between two adjacent layers of spherical and ellip-
soidal carbon onions is considered. The analysis gives rise to the possible dimensions
for each shell of the carbon onions. Moreover, the equilibrium spacing is observed
to decrease as the shell is further away from the inner core and this is due to the de-
creasing curvature for the larger spheroids. Finally, an approximate equation for the
determination of the equilibrium spacing for any two adjacent layers of a spherical

and an ellipsoidal carbon onion is provided.

14.2 (Geometry of joining nanostructures

A key new concept for determining the joining of nanostructures is presented in
Chapter 7. Here, the principle is invoked that two nanostructures join in such a way
that the total least squares derivations from some ideal bond length is minimized.
Two geometric approaches, the variations in bond length and in bond angle, are
employed to determine model structures for physically occurring molecules for nan-
otori and connecting structures for tubes and sheets of carbon and boron nitride.
Furthermore, Euler’s theorem is used to check the consistency for each topologi-
cal configuration for such structures, and the calculations for the bonded potential
energy for a small deformation are carried out to verify combined molecules.

The main contribution of Chapter 8 is the application of the a least squares
approach to determine the basic elbow unit and toroidal structures formed from
three distinct carbon nanotubes. There are two approaches used in the minimization

routines, which are the unconstrained and constrained cases for the bend angles. In
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terms of the unconstrained procedure, all the physical parameters are allowed to
attain their optimum values themselves, however there is no guarantee that the
elbow sections can be joined to each other and form a complete toroidal shaped
structure with a 360° turn. Therefore, the analysis is repeated with the angles ¢,
and ¢y constrained to the value ¢; + ¢ = 180°/n where n € {2,3,4,..}. Here,
two distinct elbows are considered which are (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4).
Since the principal aim is to construct toroidal molecules by joining elbow sections,
these elbow sections are exploited so that the sum of their bend angles is a factor of
360. Following the analysis of two elbow types, toroidal shaped molecules are then
investigated. A straightforward procedure is established to determine the mean
generating toroidal radius ¢ and the mean tube radius a.

In Chapter 9, the use of two distinct least squares approaches are employed to
determine the perpendicular joining of three particular carbon nanotubes to a flat
graphene sheet. Firstly, all possible structures for connecting the zigzag (8,0) and
the armchair (4,4) carbon nanotubes to a flat graphene sheet are determined using
the variation in bond length to minimize the bond length between two carbon atoms
at each inter-atomic junction. There are sixteen structures for joining the zigzag
tube and thirty-two configurations for joining the armchair tube. Euler’s theorem
is utilized to prescribe the polygons which occur at the junction, and for reasons
of stability, the only carbon rings realizable are pentagonal, hexagonal, heptagonal
and octagonal, and by imposing these conditions the number of configurations is
reduced. Furthermore, octagonal rings are considered less likely to occur in practice,
and therefore only one configuration for the zigzag tube and two structures for the
armchair tube might be expected to be found in practice. In terms of the variation
in bond angle approach, a simple example for joining a flat graphene sheet to a
(6,0) carbon nanotube is presented, which is the most symmetrical possibility for
the defect. Subsequently for the (8,0) tube and the defect structure, a least squares
bond angle approach is undertaken. The structure obtained for the (8,0) and the
sheet is shown to be very similar in terms of atom locations to that found using the
bond length approach.

Chapter 10 considers two aspects of defect classification and connection for boron

nitride structures. Given that rings with an even number of sides are energetically
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favourable for boron nitride nanostructures, the number of possible distinct defect
configurations is determined utilizing the necklace and bracelet problems from com-
binatorial theory, where an armchair (zigzag) tube requires all odd (even) number
of bonds connecting between two adjacent atoms at the defect site. Once the de-
fects are obtained, two distinct least squares approaches are employed to determine
the connected structures for the tube and the sheet of boron nitride. Three exam-
ples of perpendicular joining boron nitride nanotubes, which are (3,3), (6,0) and
(9,0) tubes and the most symmetrical defects are used to illustrate such approaches.
Three dimensional illustrations for all cases of the two variation approaches are de-
picted, and Euler’s theorem is utilized to verify that the connected structures are
geometrically acceptable. Furthermore, the bonded potential energy for small de-
formations is evaluated to determine a measure of the stability of the system. Since
the value for the bond stretching constant is significantly larger than that for the
bending angle and from the least squares calculations, this are led to conclude that
the minimization for the bond angle procedure provides lower energy values than the
minimization for the bond length procedure, so that the former most likely provides

a better model for physically occurring molecular structures.

14.3 Carbon nanotubes as transversely isotropic
linearly elastic materials

A brief overview of the elasticity of carbon nanotubes is given in Chapter 11. As-
suming that the carbon nanotube can be modelled as transversely isotropic linearly
elastic materials, Hooke’s law and the equilibrium equations for such materials are
presented in Chapter 12. In addition, a simple shear problem for both isotropic
and transversely isotropic materials is investigated and it is found that there is a
relationship between the two types of isotropic materials.

In Chapter 13, oscillating carbon nanotubes are modelled as transversely isotropic
linearly elastic materials, and the oscillating inner tube moves only in the axial di-
rection while the outer tube remains fixed. Furthermore, the length of the inner
tube is assumed to be very small in comparison to the length of the outer tube. The
van der Waals force distribution is calculated from the continuum approximation.

On neglecting any frictional effects and assuming that the inner surface atoms of
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the outer tube and those located on the outer surface of the inner tube dominate
the van der Waals force, the transversely isotropic linear elastic model is applied to
the outer tube and expressions for the displacements in the r- and z-directions are
obtained. A transverse wave occurs in the r-direction, which gives rise to a rippling
effect on the surface, while a longitudinal wave occurs in the z-direction which tends
to compress the tube. The amplitude of the deformation in the axial direction is
much larger than that in the radial direction, implying that the nanotube oscillator
behaves like a spring.

In summary, the new elements of this thesis comprise:

e Analytical expressions to determine the equilibrium locations, force distribu-
tions and oscillatory behaviour for nested carbon and boron nitride nanostruc-
tures including double-walled carbon nanotubes, nanopeapods, nanocones and

onions,

e Two simple least squares procedures to connect two nanostructures, and a

method to classify the defects for a boron nitride sheet,

e Transversely isotropic linearly elastic model for the deformations of double-

walled carbon nanotubes with an oscillating the inner tube.
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Appendix A

Analytical solution for
double-walled carbon nanotubes

Analytically three types of integrals for the Lennard-Jones potential function are
evaluated. These three integrals are involved in the solution for the total potential
energy of the nanostructure system, mainly for the double-walled carbon nanotubes,

and they are determined in following sections.

A.1 Evaluation of the integral J,

27 21 de d@
n= ] (A1)
o Jo A"

where A\? = a? + b* — 2abcos(f; — 65). Since the integrand is a symmetric function

Consider the integral

of 6; — 0,, the intermediate integral J* defined by

2m d@l
o {o+ Bsin’[(01 — 6s)/2]}/2

where o = (a — b)? and 3 = 4ab can be shown by differentiation with respect to 6,

k¥
J)" =

to be independent of 5, namely

%—/%—i . dfy =0
do, — Jo 901 \{a + Bsin®[(0, — 0,)/2]}/2 1 =Y

Thus, 6, is set to zero and one can trivially perform the # integration so that (A.1)

w/2
Jr = 87T/ d—x,
0o A"

becomes
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where A2 = (a — b)? + 4absin® x and the integral .J,, may be defined by

™2 dg /2 dx
Jp, = — = )
/0 A /0 (a + Bsin®z)"/?

Making the substitution ¢ = cot x to obtain

00 2\n/2—1 oo 2yn/2—1
Jn:/ (1+1) gr— 1 / A+
o (B4 a+ at?)/? (a+08)"2 Jy (14 ~t2)/?2

where v = a/(a + ). Now on writing this integral in the form

1 00 1 dt
;= W/o (1= (L =)/ (1 + )2 (1 +12)’

this leads to make the substitution

B t L z g — dz
c= (1 +t2)1/2’ - (1 _ 22)1/2’ o (1 _ 22)3/2’

and the substitution u = 22 gives

1 dz

= e ), AT

B 1 1 u—1/2<1 _ u)—1/2
N 2<a+6)"/2/o 1= (=)™

From Gradshteyn and Ryzhik [150] (p. 995, eq. 9.111) it may be deduced

I = s (n 1 4ab )7

Sar by \23 G rb)

where F'(a, b; c; z) denotes a hypergeometric function. From Erdélyi [151], since two
of the numbers £(1 — ¢), £(a — b), £(a + b — ¢) are equal to each other it can be
shown that this result admits a quadratic transformation, which leads to a Legendre

function. Using the transformation
F(a,b;2b;4z/(1+ 2)*) = (1 + 2)**F(a,a + 1/2 — b; b+ 1/2; 2%),

gives

_ (148 e
Jn — WF(n/2an/2717€ )7
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where ¢ = b/a. Using the definitions from Gradshteyn and Pyzhik [150] (pp. 960,

998)
1 2—1\ M2 /24 1\ 2—1
=) (5) F(vrmowig),

F(a,b;c,2) = (1 = 2)“F(c—a,c — b c; 2),

and

where P¥(z) is a Legendre function of the first kind. In this case p is zero, and the

integral in terms of the Legendre function is obtained and given by

T a® + b?
In = @ gyt (fb)
A.2 Evaluation of the integral K,

Here the integral K, is determined. Since A? is an even function of 6; — 0y, as
mentioned in §A.1 either intermediate integral is independent of the other variables,
and therefore this second variable is assigned to have zero value. In this event one

integration may be trivially performed and may be deduced

w/2 dr
K:; = 87T/ o )
y X P

where \2 = (a —b)2 +4absin® x. Instead of considering the above equation, only the

integral K, is considered which is given by

K, / AQ L PQ) (A2)

On letting p = (a — b)*, 0 = (a — b)* + P} and v = 4ab, (A.2) becomes

i _/ dx
" Jo (p+vsin?a)m2(o +vsin® )

Making the substitution ¢ = cot x to obtain

o) 1 t2 n+2—1
o Wt p+pt)"2(v+ o+ ot?)

B 1 /OO (1+t2>’l’b+*—1 dt
I R e e L A O e K C R T L
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where § = u/(u+v) and v = o/(0 + v). Now on writing this integral in the form

1
K, — X
(u+v)™2(o+v)"

o 1 dt
: /0 1= =0/ + )21 = (1 —y)e2 /(L + )] (1 +12)

and makes the substitution

B t L z g — dz
= (1 —|—t2)1/2’ o (1— 22)1/2’ o (1— 22)3/2’

and the substitution u = 22, so that

1 1 u—1/2(1 _ u)—1/2
2(p+v)m(o +v) /0 1= @1 =321 = (1= 7)ul”
noting that u+v = (b+a)?, o+ v = (b+a)*+ P}, B = (b—a)*/(b+ a)* and
v =[(b—a)*+ P?]/[(b+a)*+ P?]. According to Bailey [152] (p. 73), the definition

K, = du,

of an Appell hypergeometric function of two variables and of the first kind is defined
by

8 G N @ BB
F1<C¥ '575777x>y> ;T;) m'n'<7>m+n -y . (AB)

Also from Bailey [152], the expression for the function F} in terms of a definite

integral and a series involving the ordinary hypergeometric function (pp. 77 and

79), are

F(a)T(y)— oz)F1 (a; 8.5 x,y) _ /01 (ual(l — )yt .

INGY 1 —ux)8(1 — uy)?
(A4)
A oo, _ - (Oé)2<ﬁ)z .o . i
F1<aaﬂ7ﬁ77a$ay> Z Z'(’}/) F(Oé—i—l,ﬂ,’}/—{—hy)l’,
i=0 NI
so that K, becomes
_ m — (1/2)i(m/2);
Bn = 2(a +b)™[(a +b)* 4 P?I" ;} (i!)2 x

1 4ab 4ab 1"
Fl=4+11n1+14;
X <2+Z,n, +Z’(a+b)2+Pj2)[(a+b)2}’

where F'(a, b; c; z) denotes the usual hypergeometric function.
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A.3 Evaluation of the integral L,

Similar to the previous two sections, the integral L, can be written as

/21 P;
L = 87?/ —tan~! (—J> dx,
0 A" A

where A2 = (a — b)? + 4absin® z. For convenience, L, is defined b
Y

/21 P;
L, = /0 Ftan_l (ﬁ) dx.

Since (Pj/)\)?* < oo, from Gradshteyn and Ryzhik [150] (p. 59, eq. 1.644.1), it is

obtained

00 k
- (5) R o )] ( i )
A /\2 t P2 2% (K1)2(2k + 1) \ N2 + P?

and thus

9] P-2k+1 2k)! w/2 1
Ly = Z 2% ]| 2 ) / n(\2 2 k+1/2d$'
— 2%(KN2(2k+1) Jo AN+ PF)

From the result for K,, in Appendix A.2, it may be deduced

>~ P!
L, = Ty AR ! «
2 2 KRk + 1) (ut 1) (o + v

1n 1
F< k4 =1:1—61— )
X I 5o +2 B Y

and using the reduction of Appell’s hypergeometric functions (A.4), the formula for

L, is given by

Eii pj2k:+1(2k)! (1/2)i(n/2); .
2 2 2 PRk + D(at b lla + 07+ FFE (i)
1 1 4ab dab 7’
F(-= ey | ;. .
X <2‘|‘Z, +27 +Z’(a+b)2+Pj2>[(a+b)2]

Commenting that Colavecchia et al. [153] examine in some detail the numerical

evaluation of the usual hypergeometric and the Appell hypergeometric functions.
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Analytical solution for an offset
position defined in (3.5)

The analytical solution of the total potential energy for an offset inner tube inside an
outer tube given by (3.5) is determined. For convenience, the integral E,, is defined

by

w/2  pm/2 1
E, :/ / L d0,dy,  n=5.11, (B.1)
0 o A"

where

M = a®+b* — 2abcos(0) — 0y) — 2e(bcos By — acos ;) + €. (B.2)

On letting x = acosf; — bcosfy, and y = asinf; — bsin #,, it may be deduced
22 +y? = a® +b* — 2abcos(f; — 0y).

From (B.2), A = (z + €)% + y? is deduced and the Jacobian matrix can be written

as

drdy = \/4a2b? — [a2 + b2 — (22 + y2)]2d6,dbs.
Then (B.1) becomes

I _// dxdy
e AR @R @ Pl e+ g

(B.3)

where R is a region shown in Figure B.1(b). The equations for each segment can
be written as AB: x € [~b,a —b] and y = \/a®> — (z +b)%, BC: z € [~b,0] and
y=a—+Vb?—22 CD: v € [0,a] and y = —b+ a2 — 22 and AD: = € [a — b, d]

and y = —/b% — (x — a)?.
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Figure B.1: Mapping diagram of (a) #; — 0 plane to (b) x — y plane.

Firstly, = rcosf and y = rsin 6 are substituted into (B.3) to deduce

7o // rdrdf
" s \/4a2? — (a? + b2 — 12)2[r2 + 2re cos 0 + 52]”/2’

where S is a region shown in Figure B.2. On letting A = 72 + &2, B = 2re and

C = \/4a2? — (a2 + b% — r2)2, the expression E,, becomes

I _// rdrdf
" s C(A+ Bcosf)n/?

Using the fact that cos# = 1 — 2sin?(#/2), it may be deduced

rdrdt
E,=2 , B.4
/ g C(A+ B)"2(1 — k2sin? t)n/2 (B4)

where t = 0/2 and k?* = 2B/(A + B) > 0 and S* denotes the region shown in

Figure B.2. For convenience, the intermediate integral is defined as

! ds
Fn = ’ = 57 117
/0 (1 — k2sin? s)/2 "

which is given by

1 2 2
B = gga—pplt = DF(K) = 20 = 2)B(t, )

(B.5)
E2{5 — k2[3 4 2(2 — k?)sin® 1]}

— 30— 12(1 — KZsin® 1)772 sintcost,
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0 c
Figure B.2: Diagram of r? — § plane.
and
By = ;[4(/& — 1)(k* — 2)(16k* — 31k + 31)F(t, k)
1T B15(k2 — 1) ’

—(128K® — 616K° + 1179k* — 1126k* + 563)E(t, k)]
k?sint cost

T35 — 15(1 — K2sin? 1)

+563) cos® t — 4kO(k* — 1)(128k% — 632k° + 1242k* — 1219k + 625) cos® ¢

[k®(128k® — 616k° + 1179k* — 1126k>

+E(k? — 1)*(768k® — 3888Kk° + 7878k — 8015k* + 4265) cos® t (B.6)
—2k?(k? — 1)*(256K® — 1328k + 2784k* — 2973k 4 1681) cos® t

+(k* — 1)*(128k® — 680k° + 1479k* — 1681k> + 1069)],

where F' and E are the incomplete elliptic integral of the first kind and the second
kind, respectively. Substituting (B.5) and (B.6) back into (B.4), the final integral
with respect to r is numerically determined to obtain E,.

Alternatively, (B.3) can be evaluated by defining the intermediate integral G,,

G —/ dy
" AP B @ T e+ 0 +

n=>511,

and letting y? = a®>+ > —2%2 &, P = a®> +0* +2xe+e%, A = 4a®+V*, B = a®> +b* — 22
and C' = —4a?b? to obtain

_ 1 ad
=3 /R (P—&)m=02\/[P=€)(A=€)(B &)~ C)
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where R* denotes the region shown in Figure B.1 with y? = a? + b* — 22 — £. This
integral structure has been evaluated by Byrd and Friedman [154], and in this case
(n—1)/2 = 2 and 5. From the formula by Byrd and Friedman [154] (eq. 253.24)
which is given by

C i = J b — o%sn’u)™du
/ <b—t)W(a—t)(b—t)(a—t)(t—d)_<b—c>m/o ! Jdu, (B.1)

where snu is a Jacobian elliptic function, k* = [(a — b)(c — d)]/[(a — ¢)(b — d)],
snuy = sing = /[(b—d)(c—y)|/[(c—d)(b—y)], &® = (¢ —d)/(b—d) and g =
2/y/(a —¢c)(b—d). It follows from Byrd and Friedman [154] (eq. 331) that

Vo = /(1 — o’sn*u)™du, (B.8)
and
Y = U,
(k* — a®)u + o*E(¢, k)
71 = L2 )
1
e = glBk — 60 + 20" + Ka'yu + 230°%K — o' — KB (6, k)
+a*k*snu enu dnul,
1
Tt = GrrgEn DB 0* K + (ot 3)(20% 4 20°

—at = 3EH) Y1 + 2(m + 1) (a? — 1)(k* — &®)ym + o*(1 — aPsn?u)™ ! x

xsnu cnu dnul,

where u = F(¢,k), k> =1 — k%, F and E are the incomplete elliptic integral of
the first kind and the second kind, respectively, and cnu and dnu are the Jacobian
elliptic functions. By using (B.7) and (B.8) together with the recurrence formulae
for 7,,, it is possible to determine E’ analytically. However, for the final solution
for E,, equation (B.3) needs to be integrated with respect to z which is determined

numerically.
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Derivation of interaction energy
for Cgo fullerenes

The derivation of the potential energy between two Cgy molecules is summarised
here. To start, the calculation of the interaction energy between a carbon atom
and a Cgg fullerene is reviewed, utilising the Lennard-Jones potential function and
the continuum approximation. Subsequently, the potential energy between the two
Cgo fullerenes is obtained by performing another surface integral over a spherical

fullerene.

atom

Figure C.1: Diagram of atom interacting with Cg, fullerene

The derivation of the potential energy between a carbon atom and a Cgq fullerene
was first given by Ruoff and Hickman [43] and Mahanty and Ninham [155] and then
later adopted by Cox et al. [57]. As shown in Figure C.1, with the carbon atom
located outside the spherical fullerene, the distance between the atom and a typical
atom on the Cgg fullerene p is given by p? = a? +r? — 2ar; cos ¢, where a is a radius

of a Cgg fullerene. The potential energy for a carbon atom interacting with the
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spherical fullerene is obtained by E* = —Qg + 12 where Q),, (n = 6,12) are defined
by
1
Qn = Unljy —ndE,
s P
where p denotes the distance from a carbon atom to a typical surface element of the
spherical molecule d¥. The constants Cg and (5 are the Lennard-Jones potential
constants A and B, respectively, and 7y represents the atomic surface density of a
Cgo fullerene. Therefore, the interaction energy between the carbon atom and the

Cego fullerene is given by

B(ry) = = E((rl ia)4 " : a)4) _§<(r1 +1a)10 e ja)lo)]' (€1

Following the work of Cox et al. [57], the fractions over common denominators are

expanded and reduced to fractions in terms of powers of (r? — a?), hence

A 1 1 1 2a?
2 - — _daA 2
o, (m L ro a>4> ‘ (<r% Sy R v >> (©2)
and
B 1 _ 4B 5 s
5ry \ (r1 +a)l%  (r; —a)t0 N 5 \(r? —a?)b  (r}—a?)
(C.3)
336a* 512a8 25648
5 s T2 w9 T2 a0 )
(ri —a?)®  (r{ —a?)?  (r{ —a?)

The full details of the derivation of (C.1) can be found in Cox et al. [57].

(asinB,cosd,, asind sing,, acoso,)

"
i a
a ing,

) (o)

C
60 C60

Figure C.2: Diagram of two interacting Cgo fullerenes

To determine the interaction between two spherical fullerenes, with their centres
at a distance r apart, a surface integral of (C.1) over another spherical fullerene needs

to be performed, which has the parametric equation (z1,y1,21) = (asin6; cos ¢y,
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asin 0y sin ¢, acos ). Here, the distance ry, as illustrated in Figure C.2, is given
by r? = a®> + r? — 2arcos¢;. Thus, the potential energy between two spherical

fullerenes is obtained from E** = — P + Pjo, where P, (n = 6,12) are defined by

2 T
Pn = 77f/ / Qna2 sin ¢1d¢1d91.
o Jo
By using appropriate substitutions and integrations, P, becomes

Ar2a2C, >
P T=a un 1 _ 1_ B 1 . 1_ 7 (0.4)
r2-n)3—-n)\ 2a+r)»3 3 (2a—r)"3 (—r)3

and for n even this simplifies to yield

_ Ara’Con ( 1 1 2)

B\ @a S Ga s

a formula which is also given in Girifalco [42]. Using the constant values given in
Table 3.1, the equilibrium distance for two Cg fullerenes is obtained and given by

ro = 10.0550 A.



Appendix D

Analytical solution for
nanopeapods

The analytical calculations for the potential energy of nanopeapods in Chapter 4

are presented.

D.1 Evaluation of the integral G,

Firstly, the integral G,, is defined, which can be written as

o dz
6 | T T

On letting A\? = b* — ¢ and making the substitution z = z — Z, it can be deduced

e° dz
T
/—Z (A2 4 22)n

where n is a certain positive integer. Then the substitution z = Atan yields

w/2 2
G = / Asec” Y )

—tan=1(Z/X) AP sec?n w

1 w/2
= — / cos?" Y ). (D.1)

AL a1z
The evaluation for (D.1) can be found in Gradshteyn and Ryzhik [150] (page 149,
No. 2.513 3) from which it can be deduced

oo gl (e B )R]

(D.2)

215



Appendix D 216

where (:1) is the binomial coefficient. By evaluating (D.2) at ¢ = 7/2 and ¢ =

—tan~!(Z/\) an analytical expression for G,, may be obtained.

D.2 Evaluation of the integral H,

The integral H,, is defined in the form of

T 00 1
H, — / / L,
-7 JO (p2 - a2)n

where n is a certain positive integer and p* = (b— z)? +4bxsin(0/2) + (2 — Z)%. On
letting \? = (b — x)% + 4bx sin®(0/2) — a?, it can be deduced

™ o0 1
H = dzdb.
" // N+ (z— 2z

On making the substitution u = z — Z, H,, becomes

T oo 1
H, = /W/ —)\2+u2 —dudf
w/2 A 2
_ / / ATV,
—m J—tan"1(Z/)) A% sec™ ¢

where the final line is obtained by substituting x = Atant. Finally, H, simplifies

to become

1 ™ w/2
H,=—— / / cos®™ V) ypdupd.
A —m J —tan"1(Z/\)

By using the formula given by (D.2) and evaluating the above equation at ) = /2
and ¢ = —tan~*(Z/\), there are three forms for the integral for § € (0, 7/2) which

need to be determined, and are given by

™2 dy m/2 dv ™2 q A
s = —, K= —— L,= —tan~ (= |dv, (D.
=[5 K= [ ety [y (A)“( )

where ) is defined by A2 = (b — z)2 + 4bx sin®(v/2) — a?. The detailed integrations
of (D.3) can be found in Appendix A.

D.3 Evaluation of the integral I,

The integral [, is given by

o s 1
I, = ————dzdb,
/_m / A
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where m = i and j. On letting A = (b + ¢)? — 4besin®(0/2) — a® and A} =
(b—¢)? + 4be sin*(0/2) — a2, I,, becomes

-7 L 1
I, = dzdo),
L / N2+ (2 + Zn))

where Z; = Z(2i—1) (1 =1,2,...,k) and Z; =2Z(j — 1) (j =1,2,...,k+1). Upon

making the substitution z,, = z + Z,,, it can be deduced

Zm+L /2 sec?
I, = e —du,dd = AnSeCY b
/ /Z m v /71' —7/2 )\Qn SeCQn ¢ w

where the final line is obtained by substituting x,, = \,, tan ¢ and letting L tend to
infinity. Finally, I,, simplifies to become

1 T /2
[n = W/ / p COSQp wdwde, (D4)

where p = n — 1. The solution for (D.4) can be found in Gradshteyn and Ryzhik
[150] (page 149, No. 2.513 3) and is given by (D.2). By evaluating (D.2) at ¢ = 7/2

and 1) = —7/2 and using the fact that sin 2z = 2sin x cos z, it may be deduced

T (2p 1 47r 2p T2

where = 0/2 and \? = (b+¢)? —4besin® z —a® and A} = (b—¢)? +4be sin® z — a”.

The analytical expression for this equation can be found in Appendix A.1.
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Degenerate hypergeometric
functions

The details of the degenerate hypergeometric function of (5.3) are presented in this
appendix. The degenerate hypergeometric function is the hypergeometric function
which can be written as the finite summation of a polynomial. For convenience, J,,

is defined as

I = F(m,1/2;1; 2), (E.1)

where m is a positive integer. Following Erdélyi [151], (E.1) admits the degenerate

hypergeometric function in the case number 16 (p.72) with a degenerated solution
F(a,b;c;2) = (1 — 2)“F(c—a,c— b;c; 2).
Then it can be deduced
I = (1= 2)2"F(1—m,1/2;1;2). (E.2)

In terms of a series, the hypergeometric function is given by

F(a,b;c;2) = Z (a)n(b)nz",

“— nl(c)n

where

(@), =T(a+n)/T(a) =ala+1)(a+2)..(a+n—1) and (a)) =1
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Here, J3 and Jg need to be evaluated, and from (E.2) they can be written as

B 1 2 (_2)n<1/2)n2n:; —z §2’2
= L e (1 )

n—

B 1 (=5),(1/2)n
o = (1—2)11/2; n!(1), :
1

5 15, 25, 175, 63 4
= ——— | l—=24+—2"——=2"+ —=2 z
(1= )1/ 2" "4 8 1287 256
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Mathematical solution for A,;
(2=1,2,3,4) defined in §13.3

In this appendix, the main details for solving the stress boundary conditions, as a
system of four equations in four unknowns, is shown. The system of four equations

and four unknowns can be written in matrix form which is given by

My, My Mg My A 0
Moy May Moz Moy Ana 0
MA = = : (F.1)
M3z, Msy Mg Msy Ans 0
My Myy Myz My An4 Tn

where the components of the matrix M depend on n and are defined by

C C
M, = OénJo(me) - %Jl(pnlc)y My = OénYo(pnlC) - %Yl(me),

C C
M13 - 5n‘]0(pn20) - %Jl(p’rﬂc)a M14 - ﬁn%(pn?c) - %Yl(p’rﬂc)a
My = anl(me% Myy = ’Ynyl(pn10)7
M3 = 6njl(pn20)7 My = 5nY1(pn20)7

C C

M31 == anJO(pnlb) - %Jl(pnlb)a M32 = an}/()(pnlb) - THle(pnlb)a
C C

Mss = B Jo(pnab) — %Jl (Pn2b), Mg = 3, Yo(pnab) — T”Ympngm,

My = ’Ynjl(pnlb)7 My = ’Ynyl(pnlb)7

Myz = 6n<]1(pn2b)7 My = 5n}/1(pn2b)v
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and 7, is defined by

w

Thn — = 5~
27’LCLL17T2044

(et oo

On using Cramer’s rule to solve (F.1), it can be obtained

O M12 M13 M14
Mo
110 My Mg Moy —T,
Ap = A A | M2
0 My Msz Msy
M3,
Tn My Mys My
My, 0 Mz My
My,
1 My 0 My Moy Th
An2 - Z = Z M21
Mz 0 Msz Msy
M3,
My 1, Myz My
My My 0 My
My
1 Moy My 0 Moy —T,
Anz = A ~ A | Ma
Mz My 0 Msy
e
My My 7, My
My My, Mz 0
My
1 My, Msy Mss 0O Th
Apg = A A | Ma
M3z, Msy Mss 0
M3,
My My Myz 7,

where A = det(M).

M3
Mg

M33

M3
Mas

M33

M12
M22

M32

M12
M22

M3,

7))

M14
Moy

M3y

My
Moy

M3,

M14
M24

M3,

M13
Mo

M33
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Relationship of moduli for
transversely isotropic linearly
elastic materials

With the notation

E = Young’s modulus, v = Poisson’s ratio

K = bulk modulus, i and A are Lamé constants,

the relationships between these constants are given by:

2y w(E —2pu) 2 Ev 3Kv
1—2v 3u—FE 3 1+v)(1-2v) 1+4v
A1 —2v 3 E 3K(1—-2v 3KE
2v 2 2(1+v) 2(1+v) 9K — FE
B A A FE 3K -2up 3K-F
T 2A+pu) 3K—X 2u  2B8K+p) 6K
p(BAN+2u)  AMl4v)(1—2v) 9K(K —N)
At v 3K — A it +v)
9K
= =3K(1-2
2 A(1 20 (1 E E
- S CE) R () BTN |
3 3v 3(1—-2v) 3Bu—FE) 3(1-2v)
Moreover, the following expressions are frequently used,
N W) A v
A+ A2 1—v
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The formulae (12.4) are utilised to convert the elastic moduli to the elastic con-
stants C;; and to compare the values of the elastic constants based on the work of
Jin and Yuan [15], Lu [20] and Shen and Li [134].

The values of the elastic constants based on the three sets of data given by Jin
and Yuan [15], Lu [20] and Shen and Li [134] are shown in Tables G.2 - G.5. The
values of the elastic moduli and elastic constants for single-walled carbon nanotubes
(10,10) are compared as shown in Table G.6. The major problem in this study is
that every author describes the various elastic moduli by a different nomenclature.
However, the values of the elastic moduli in the longitudinal direction of each author
compare very well, but there are quite significant differences in the transverse plane.
In terms of the elastic constants, the results from Jin and Yuan [15] and Lu [20] are
only slightly different, but there are significant differences with the results of Shen
and Li [134]. The value of the in-plane shear modulus (Gag) from [134] is reported

in GPa, whereas the other elastic moduli are expressed in TPa.

Table G.1: Elastic constants of single-walled carbon nanotubes (n,n) based on Jin
and Yuan [15].

n Cn Cia Ci3 Cs3 Cua Ci — Chz
6 | 1.368 | 0.198 | 0.254 | 1.432 | 0.483 1.169
7 | 1.348 | 0.145 | 0.251 | 1.432 | 0.487 1.203
8 [ 1.388 | 0.075 | 0.249 | 1.432 | 0.489 1.263
9 | 1.388 | 0.054 | 0.247 | 1.432 | 0.492 1.284
10 | 1.342 | 0.125 | 0.246 | 1.431 | 0.493 1.217
11 | 1.346 | 0.139 | 0.245 | 1.431 | 0.494 1.210
12 1 1.336 | 0.073 | 0.244 | 1.430 | 0.493 1.263
13| 1.341 | 0.098 | 0.243 | 1.430 | 0.494 1.243
14 | 1.335 | 0.065 | 0.243 | 1.429 | 0.494 1.269
15| 1.339 | 0.092 | 0.242 | 1.427 | 0.495 1.247
16 | 1.335 | 0.064 | 0.242 | 1.428 | 0.495 1.271
17 1 1.332 | 0.030 | 0.242 | 1.428 | 0.495 1.302
18 | 1.335 | 0.064 | 0.241 | 1.428 | 0.492 1.271
19 | 1.338 | 0.087 | 0.241 | 1.427 | 0.495 1.251
20 | 1.337 | -0.022 | 0.241 | 1.427 | 0.495 1.359
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Table G.2: Values of elastic constants for single-walled carbon nanotubes (ng,ns)
based on Lu [20].

(nl, 712) Cn Cia Cis Cs3 Cua Ci — Cha
) 0.397 | 0.132 | 0.148 | 1.054 | 0.436 0.265
) 0.397 | 0.126 | 0.146 | 1.054 | 0.437 0.271
) 0.397 | 0.126 | 0.146 | 1.055 | 0.454 0.271
) 0.397 | 0.132 | 0.148 | 1.057 | 0.452 0.265
( , ) 0.396 | 0.140 | 0.150 | 1.058 | 0.465 0.256
(10,0) 0.396 | 0.133 | 0.148 | 1.058 | 0.451 0.263
(10,10) 0.398 | 0.133 | 0.147 | 1.054 | 0.457 0.265
(50,50) 0.399 | 0.135 | 0.148 | 1.054 | 0.458 0.264
(100,100) 0.399 | 0.135 | 0.148 | 1.054 | 0.462 0.264
(200,200) | 0.399 | 0.135 | 0.148 | 1.054 | 0.478 0.264

Table G.3: Values of elastic constants for the series of multi-walled carbon nanotubes
(5n,5n) where n = 1,2,3,...and N is a number of walls based on Lu [20].

N | Cuy Ci2 Ci3 Cs3 Cu | Cii — Ch
1 10397 |0.113 | 0.143 | 1.050 | 0.436 0.283
2 104121 0.137 | 0.148 | 1.130 | 0.455 0.275
3 10413 0.071 | 0.130 | 1.150 | 0.464 0.342
4 10412 | 0.141 | 0.149 | 1.170 | 0.472 0.271
5 10411 1] 0.142 | 0.149 | 1.180 | 0.481 0.269
6 | 0.411 | 0.142 | 0.149 | 1.180 | 0.491 0.269
7 10.410 | 0.074 | 0.130 | 1.180 | 0.502 0.336
& [0.410 | 0.143 | 0.149 | 1.190 | 0.514 0.267
9 10.410 | 0.143 | 0.149 | 1.190 | 0.527 0.267
10| 0.410 | 0.143 | 0.149 | 1.190 | 0.541 0.267

Table G.4: Values of elastic constants of single-walled carbon nanotubes (n, n) based
on Shen and Li [134].

n Cn Cha Ci3 Cs3 Cua Ci — Chz
10 | 0.00664 | 0.00330 | 0.00161 | 1.06052 | 0.44200 | 0.00334
15 | 0.00198 | 0.00099 | 0.00048 | 0.70715 | 0.30100 | 0.00099
20 | 0.00083 | 0.00042 | 0.00020 | 0.53106 | 0.22700 | 0.00042
25 | 0.00043 | 0.00021 | 0.00010 | 0.42503 | 0.18200 | 0.00021
30 | 0.00025 | 0.00012 | 0.00006 | 0.35402 | 0.15200 | 0.00012
35 | 0.00016 | 0.00008 | 0.00004 | 0.30401 | 0.13100 | 0.00008
40 | 0.00010 | 0.00005 | 0.00002 | 0.26601 | 0.11400 | 0.00005
45 | 0.00007 | 0.00004 | 0.00002 | 0.23601 | 0.10200 | 0.00004
50 | 0.00005 | 0.00003 | 0.00001 | 0.21300 | 0.09200 | 0.00003
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Table G.5: Values of elastic constants of double-walled carbon nanotubes which the
inner tube (5,5) and the outer tube (n,n) based on Shen and Li [134].

n Cn Cha Cis Css Cua Cin—Cip
10 | 0.04090 | 0.01972 | 0.00946 | 1.58295 | 0.49300 | 0.02118
15| 0.03492 | 0.01675 | 0.00775 | 1.41233 | 0.39800 | 0.01818
20 | 0.03129 | 0.01496 | 0.00680 | 1.32200 | 0.35300 | 0.01633
251 0.02882 | 0.01376 | 0.00618 | 1.27179 | 0.32700 | 0.01506
30 | 0.02703 | 0.01290 | 0.00571 | 1.24163 | 0.31000 | 0.01413
35 1 0.02565 | 0.01224 | 0.00538 | 1.21153 | 0.29800 | 0.01341
40 | 0.02454 | 0.01171 | 0.00511 | 1.19144 | 0.28900 | 0.01284
45| 0.02365 | 0.01128 | 0.00489 | 1.18137 | 0.28200 | 0.01236
50 | 0.02288 | 0.01092 | 0.00470 | 1.17131 | 0.27700 | 0.01196

Table G.6: The values of elastic moduli and elastic constants for single-walled carbon
nanotube (10, 10) of three studies [15, 20, 134].

Elastic moduli, constants | [15] | [20] [134]
FE 1.235 | 0.972 | 1.060
v 0.259 | 0.278 | 0.162
n 0.493 | 0.457 | 0.442
E 1.241 | 0.344 | 0.005
v 0.019 | 0.296 | 0.497
Ch 1.342 | 0.398 | 0.00664
Clz 0.125 | 0.133 | 0.00330
Chs 0.246 | 0.147 | 0.00161
Chs 1.431 | 1.054 | 1.06052
Cua 0.493 | 0.457 | 0.44200
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