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Abstract

Worldwide nanotechnology is a major focus in science and technology, and most

research in this area deals with chemical, physical and biological issues or a combina-

tion of these areas, but to date very little work has been undertaken on mathematical

modelling. Rather than employing large-scale computations using molecular dynam-

ics simulation, in this thesis elementary mechanical principles and classical applied

mathematical modelling procedures are utilised to examine three specific areas in

nanotechnology.

Firstly, the Lennard-Jones potential function for the non-bonded interaction po-

tential energy between two molecules and the continuum approximation, which as-

sumes that the interatomic interactions can be modelled by smearing the atoms

uniformly across surfaces, are undertaken to investigate the mechanical properties

of certain nanostructures, namely double-walled carbon nanotubes, nanopeapods,

nanocones and carbon onions. Owing to their special mechanical, electrical and ther-

mal properties, these nanostructures promise many applications for future nanoscale

devices, such as nano-bearings and nano-oscillators. This thesis examines issues re-

garding nano-oscillators constructed from these nanostructures. In particular, the

van der Waals interaction energy, the suction energy, the offset location and the oscil-

latory behaviour are determined. Analytical expressions are obtained as a function

of the radii and the lengths of the structures. In addition, all the predicted mechan-

ical properties derived here are in excellent agreement with results from molecular

dynamics simulations.

The second area is the joining of nanostructures by invoking the principle that

the atoms arrange themselves in such a way that the total squared deviation of the

distance between atoms at the junction and some ideal bond length is a minimum.

Initially, toroidal molecules are described, which are formed from three distinct car-

bon nanotube sections, through minimisation of the total squared deviation of the

distance between two carbon atoms at the junction from the ideal physical bond

length. Representative formulae for the mean generating toroidal radius and tube

radius of the tori are determined. Following this is to determine the perpendicular

joining structures for carbon nanotubes and flat graphene by two least squares ap-

proaches, which are the variation in bond length and the variation in bond angle.
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Such a combined structure might constitute a transmission platform for ultra small

computer chips. Given that the corresponding boron nitride nanostructures are also

good semiconductors, the corresponding combined structures are also determined.

However, the essential mathematical ideas for combining boron nitride structures are

quite different to those required for connecting the corresponding carbon structures,

since only rings with an even number of sides are energetically favourable.

The third area in this thesis involves the elastic model of carbon nanotubes.

Here, carbon nanotubes are assumed to be modelled as transversely isotropic linearly

elastic materials which have the same properties in one plane, but vary in the normal

direction to this plane. The equilibrium equations are derived and they can be

shown to generalise those for isotropic materials. Further, wave-like deformations

on the outer-most surface of the oscillating carbon nanotubes are investigated. On

neglecting any frictional effects and assuming that the inner surface atoms of the

outer tube and those located on the outer surface of the inner tube dominate the

van der Waals force, expressions for displacements in the r- and z-directions are

obtained.

The major contribution of this thesis is the use of conventional applied mathe-

matical modelling techniques to formulate analytical expressions for nanostructures.

Broadly three mechanical issues are studied, including (i) van der Waals interaction

energy and oscillatory behaviour for nanostructures, (ii) geometry of combining two

nanostructures and (iii) deformation of carbon nanotubes as transversely isotropic

materials. However, many of the theoretical structures proposed here have yet to

be confirmed either experimentally or by molecular dynamics simulations; and as

such the work might be considered as a first step to settling some of the important

physical principles in nanotechnology. In summary, the new elements of the thesis

comprise:

• Analytical expressions to determine the equilibrium locations, force distribu-

tions and oscillatory behaviours for nested nanostructures,

• Simple least squares methods to connect two nanostructures,

• Elastic model for the deformations of double-walled carbon nanotubes.
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Chapter 1

Overview

1.1 Background

Mathematics is the natural language of science which focuses on such issues as quan-

tity, structure, space, and change. Mathematicians investigate such concepts aiming

to formulate new conjectures and establish their results by expressions and defini-

tions that are universally applicable. Nowadays, mathematics is used throughout

many fields, including medicine and economics. There are two main branches for

the study of mathematics which are applied mathematics and pure mathematics.

In terms of applied mathematics, it is the application of mathematics for which a

new discovery can be inspired and made practically useful. Without having any

application in mind, pure mathematics provides its own interest and its relevance is

often made meaningful much later.

Nanotechnology is multidisciplinary, drawing from fields such as physics, chem-

istry, biology, material science, and mechanical and electrical engineering. The

underlying theme of nanotechnology is the control of matter on the atomic and

molecular levels where physical properties are size dependent. The word “nano” is

the prefix 10−9, so one nanometer is one billionth of a meter. To put this scale in

context, the radius of a human hair is around 7000 nanometers and the size of a virus

ranges from 15 to 600 nanometers. The word “technology” is the branch of knowl-

edge that deals with creation, such as industrial arts, engineering, applied science,

and pure science. Therefore, “nanotechnology” might be referred to as the study of

those small-scale objects which can be assembled to create a novel device. Examples

of nanotechnology in modern use are the present day manufacture of textiles, the

design of computer chips and the carbon fibre in optical wires.

2
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Worldwide nanotechnology is a current major focus in science and technology.

Most research in nanotechnology deals with chemical, physical and biological issues

or a combination of these areas, but to date very little work has been undertaken

on mathematical modelling which can significantly reduce the time taken in the

trial-and-error processes leading to applications, and which in turn decreases the

research cost. Rather than employing large-scale computations using molecular

dynamics simulations, here elementary mechanical principles and classical mathe-

matical modelling procedures are utilised to investigate the mechanics of nanoscale

systems. The models developed in this thesis involve the three specific areas as

follows:

1. Continuum modelling of nanostructures, particularly for the van der Waals

interaction energy and oscillatory behaviour,

2. Geometry of joining nanostructures, to form toroidal molecules from carbon

nanotube elbows and to connect nanotubes with a hexagonal sheet,

3. Elasticity of carbon nanotubes, particularly the model of carbon nanotubes as

a transversely isotropic linear elastic material.

1.1.1 Continuum modelling for nanostructures

Nanostructures such as carbon nanotubes, nanopeapods, nanocones and carbon

onions, provide a possible new basis for the creation of many nano-devices due

to their outstanding properties such as their high strength, high flexibility and

low weight. One application which has attracted much consideration is as nano-

oscillators [1–4], which can generate frequencies in the gigahertz range [4], and which

may form the basis of possible devices in the computer industry. Since the discov-

ery of ultra low friction by Cumings and Zettle [1], double-walled carbon nanotube

oscillators have been widely studied using both molecular dynamics simulations and

experiments [2, 4–7]. In addition, carbon nanotubes have received much attention

for medical applications, especially their use as nanocontainers for drug and gene

delivery. In particular, a well-known self-assembled hybrid carbon nanostructure,

so-called nanopeapods, may be regarded as a model for possible drug carriers, where
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the carbon nanotube can be thought of as the nanocontainer and the C60 molecular

chain can be considered as the drug molecule [8].

Nanocones have received much less attention in the literature, primarily because

only a small amount of cones tend to occur in the production process [9]. How-

ever, the narrow vertex of a cone is an ideal candidate for nanoprobes in scanning

microscopy [10]. Furthermore, boron nitride structures are good electrical semicon-

ductors and may also be utilised for such nanoprobes. Carbon onions comprising

concentric fullerenes are one family of carbon nanostructures. Experimentally, elec-

tron beam irradiation methods are used to modify the multi-layers of carbon onions,

but at present there is no procedure to predict the precise shape of the resulting

structure.

The majority of work in this area is based on either experiments or molecular dy-

namics simulations, and mathematical modelling is used to a much lesser extent. In

this study, the use of elementary mechanical principles and classical applied mathe-

matical modelling techniques are employed to obtain explicit analytical criteria and

ideal model behaviour. Specifically, the mechanical behaviour of the van der Waals

interaction energy between two nanostructures, such as double-walled carbon nan-

otubes, carbon and boron nitride nanocones and carbon onions, and many-body

system, such as nanopeapods, are examined. Furthermore, once a nanostructure is

encapsulated inside the other, the nature of the resulting oscillatory behaviour is

predicted. The Lennard-Jones potential function and the continuum approximation,

which assumes that the atoms can be modelled by smearing them uniformly across

the surface, are employed throughout this study.

1.1.2 Geometry of joining nanostructures

In order to create certain transmission devices for future nanoelectromechanical sys-

tems, carbon nanotubes might be used to carry current to a platform comprising a

graphene sheet. With this in mind, the perpendicular joining between carbon nan-

otubes and a flat graphene is determined. In addition, given that a hexagonal boron

nitride crystal is geometrically similar to that of graphite in a carbon structure, the

perpendicular joining for a tube and a sheet of boron nitride is also examined. Note

that the essential mathematical ideas for the combining of boron nitride nanostruc-
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tures are quite different to those required for connecting the corresponding carbon

structures.

From the work of Cox and Hill [11], the authors have exploited the idea that

the basis of joining carbon nanostructures is an underlying requirement that each

inter-atomic distance be as close as possible to the ideal carbon-carbon bond length.

Indeed, in [11] this procedure accurately produces certain toroidial molecules which

are known to exist, along with numerous other predicted molecules. In this thesis,

two such least squares approaches are adopted, which are the variation in bond

length and the variation in bond angle, and these are undertaken to consider the

joining of various nanostructures. To begin, the least squares approach in bond

length, which is a dominant term in the bonded interaction energy [12], is employed

to investigate toroidal-shaped molecules formed from the joining of three distinct

carbon nanotube sections.

Both the variation in bond length and the variation in bond angle approaches

are carried out for both carbon and boron nitride systems. These two geometrical

approaches are directly related to computer simulations adopted by a number of

authors [13–16] for the bonded interaction energy in a small deformation system. In

addition, Euler’s polyhedra theorem is employed throughout the study to examine

the consistency of the geometrical structures for connected configurations.

1.1.3 Carbon nanotubes as transversely isotropic linearly
elastic materials

Carbon nanotubes are believed to be perfectly elastic materials, in the sense that

they return to their original configuration when the applied loads are released. There

are many experiments and molecular dynamics simulations studying the elastic prop-

erties of carbon nanotubes [17]. Yu et al. [18] obtain the values of Young’s modulus

as 270-950 GPa when a load is applied to multi-walled carbon nanotubes. A quan-

tum mechanical and molecular mechanical calculations are utilised by Zhao et al.

[19] to observe the deformation of carbon nanotubes under load. They find a larger

value of Young’s modulus than in any pervious study, around 1 TPa, and they pro-

pose that carbon nanotubes are the strongest materials known at present. Using

a force-constant model, Lu [20] presents values of elastic moduli for both single-

walled and multi-walled carbon nanotubes. Moreover, Lu [20] finds that the elastic
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properties are insensitive to the helicity, the radius and the number of walls. Shen

and Li [21] study the deformations of carbon nanotubes under a number of loading

types and propose that carbon nanotubes can be modelled as transversely isotropic

linearly elastic materials. In addition, Jin and Yuan [15] undertake molecular dy-

namics simulations using the Lennard-Jones potential function to study the elastic

properties of single-walled carbon nanotubes. They also determine the elastic mod-

uli using energy and force approaches which result in approximately the same values.

Following the work of Shen and Li [21], in three of the chapters of this thesis, car-

bon nanotubes are assumed to be modelled as transversely isotropic linearly elastic

materials.

Transversely isotropic materials possess a single axis about which the material

is isotropic, but it is not isotropic with respect to any other axis. In other words,

transversely isotropic materials have the same properties in one plane, but which

differ in the normal direction to this plane. In terms of the basic equations for trans-

versely isotropic materials, Elliott [22] first introduced the general three-dimensional

solutions for such materials. These general solutions are adopted and employed in a

number of studies [23–26] to solve many problems. Furthermore, for a problem in a

cylindrical coordinate system, Selvadurai [25] considers the displacement and stress

equations with no body force and shows that there are three potential functions

φ1(r, θ, z), φ2(r, θ, z) and ψ(r, θ, z) for the solutions.

First, the equations for transversely isotropic linearly elastic materials in both

a rectangular Cartesian and a cylindrical coordinate system are derived. Utilis-

ing the expressions for the force distribution from the study of the mechanics of

double-walled carbon nanotubes, wave-like deformations on the outer surface are

determined, which are a function of the oscillation frequency and the radii of both

the inner and outer tubes. An implication of these findings, is that the waves gen-

erated might be used to transmit data in future nano-devices.

1.2 Thesis structure

There are six parts in this thesis. Part I contains an overview and a plan of the thesis

structure. The continuum modelling, involving the van der Waals interaction ener-

gies and the oscillatory behaviour for nanostructures, which are double-walled car-
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bon nanotubes, nanopeapods, nanocones and carbon onions, is presented in Part II.

Using a least squares principle, the combining of nanostructures is investigated in

Part III. In Part IV, double-walled carbon nanotubes are assumed to be modelled as

transversely isotropic materials and wave-like deformations occurring on the outer-

most surface are determined. Finally, Part V comprises some concluding remarks

for this thesis and Part VI contains seven appendices and the bibliography.



Part II

Continuum modelling of

nanostructures

8



Chapter 2

Introduction to continuum
modelling of nanostructures

The aim of this study is the use of elementary mechanical principles and classical

applied mathematical modelling techniques to formulate explicit analytical criteria

and ideal model behaviour in nanotechnology for which previously only experimental

and molecular dynamics simulation were available. The Lennard-Jones potential

function and the continuum approach, which assumes that the discrete atoms may be

replaced by a uniform surface density of atoms, are utilised to determine mechanical

behaviour such as the interaction energy, suction condition and oscillation for carbon

and boron nitride nanostructures. To start, the structures of carbon and boron

nitride are examined. Initially, Lennard-Jones potential function and the continuum

approximation are introduced in §2.2 and an overview of Part II is present in §2.3.

2.1 Carbon and boron nitride nanostructures

Carbon nanostructures including fullerenes, carbon nanotubes, nanopeapods, nano-

cones, carbon onions and nanotori have received much attention because of their

unique properties, such as their high flexibility, high thermal conductivity and are

presently the strongest materials known [27]. Comprehensive pictorial catalogues

of many diverse structures which may arise can be found in [28, 29]. Their special

properties have not only led to proposals for many potential nano-devices such as

drug carriers and scanning microscopy [4, 5, 30] but also to the desire to create

further new carbon nanostructures, such as sea urchins, bamboos, beads, helical

coils and tripod shapes, as shown in Figure 4 of [31]. All the carbon nanostructures

originate from the hexagonal graphene sheet, which may be rolled up to form a tube,

9
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or by adding pentagonal rings formed into a C60 fullerene, or by cutting a part of

the sheet out and joining the edges together to form a cone, or twisting the tube-like

shape to form a torus. Therefore, the hexagonal network of carbon is examined.

The discovery of carbon nanotubes in 1991 by Iijima [32] offers many scientific

challenges for their adaption to a wide variety of applications in nanotechnology.

Single-walled carbon nanotubes can be thought of as a graphene sheet which is

rolled up to form a cylinder. Multi-walled carbon nanotubes can be envisaged as

multi-layers of graphite sheets which are rolled up co-axially. C60 fullerenes are

similar in structure to graphene, and are composed of linked hexagonal rings, which

also contain pentagonal rings that are needed to close the surface into a spherical

shape.

The helical structures of carbon nanotubes can be described by the chiral vector,

C = na1 + ma2, usually represented by (n,m), where n and m are integers such

that m ≤ n, and a1 and a2 are the basis vectors, as shown in Figure 2.1. Moreover,

the chiral angle α is also depicted in Figure 2.1. There are three types of carbon

nanotubes: armchair, zigzag and chiral. The armchair is the structure which has

n = m and α = 30◦ and the zigzag is the form which has m = 0 and α = 0◦.

A carbon nanotube which is neither armchair nor zigzag, is termed chiral. The

electronic structure of carbon nanotubes can also be determined by (n,m). If (n−m)

is a multiple of 3, then they will be metallic, otherwise, they will be a semiconductor.

Thus all armchair tubes are metallic.

Generally, for (n,m) carbon nanotubes, where n and m are integers, the corre-

sponding radius, denoted here by b, is determined from

b = σ
√

3(n2 + nm + m2)/2π, (2.1)

where σ is the carbon-carbon bond length and throughout this study σ is usually

taken to be 1.42 Å.

Boron nitride is a binary chemical compound consisting of equal proportions of

boron and nitrogen.

It is isoelectronic with carbon since in the periodic table, boron and nitrogen are

adjacent to carbon [33], and, like carbon, boron nitride exists as various polymorphic

forms, one of which is analogous to diamond and one analogous to graphite. The
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Figure 2.1: The graphite plane of nanotube surface

diamond-like polymorph is one of the hardest materials known and the graphite-like

polymorph is a useful lubricant. Moreover, the large band gaps in this material will

produce better electronic properties than those of carbon structures [34]. Hexagonal

boron nitride is also known to be a good electrical semiconductor with excellent

stability and thermal conductivity, which can be used in vacuum technology, nuclear

energy, x-rays and lubrication [35]. In this part, only the cone structure of boron

nitride is investigated, since it is suggested to be an ideal candidate for nanoprobes

in scanning tunneling microscopy.

2.2 Interaction energy

The non-bonded interaction energy between two molecules can be obtained by sum-

ming the potential interaction for each atom pair

E =
∑

i

∑
j

Φ(ρij), (2.2)
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where Φ(ρij) is a potential function for atoms i and j on each molecule a distance

ρij apart. Following Girifalco et al. [36] and Hodak and Girifalco [37], a continuum

approach is adopted where atoms are assumed to be uniformly distributed over the

surfaces of the molecules. Thus, instead of the double summation in (2.2), the

interaction energy can be obtained by performing double surface integrals, averaged

over the surface of each entity

E = η1η2

∫ ∫
Φ(ρ)dΣ1Σ2, , (2.3)

where η1 and η2 are the mean atomic surface density of atoms on each molecule and

ρ denotes the distance between two typical surface elements dΣ1 and dΣ2 on each

molecule. In this study, the Lennard-Jones potential is employed, which is given by

Φ(ρ) = −A

ρ6
+

B

ρ12
, (2.4)

where A and B are the attractive and repulsive constants, respectively. It should

be noted that there are a number of empirically motivated models potentials in the

literature, for example, the Morse potential used in Belyschko et al. [38], Liew et

al. [39] and Walther at al. [40], and the other models and their applications can be

found in Qian et al. [17] and Rieth [41]. Alternatively, the Lennard-Jones potential

(2.4) can be written in the form

Φ(ρ) = 4ε

[
−

(
σ

ρ

)6

+

(
σ

ρ

)12]
, (2.5)

where σ is the bond length and ε denotes the energy well depth, ε = A2/(4B). From

(2.5), the equilibrium distance ρ0 for two atoms is given by ρ0 = 21/6σ = (2B/A)1/6,

which is depicted in Figure 2.2.

In the case of a many-body problem, the potential energy of the system is the

total energy between each pair of molecules, which is called the pair potential ap-

proximation [41], is given by

U =
1

2

N∑

i,j=1,i 6=j

E(ρij), (2.6)

where ρij denotes the distance between a surface element i and a surface element j.

The van der Waals interaction force between two typical atoms of two molecules
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Figure 2.2: Graph of Lennard-Jones potential

is given by

FvdW = −∇E, (2.7)

where the energy E is given by (2.3). Accordingly, the resultant axial force (z-

direction) is obtained by differentiating the integrated Lennard-Jones potential with

respect to Z, which is defined as the distance between the centres of two molecules,

therefore (2.7) simplifies to become

FZ = −∂E

∂Z
. (2.8)

The continuum approach using the Lennard-Jones potential has been successfully

employed in a number of studies to determine the van der Waals interaction energy

and the force between two carbon nanostructures. Girifalco [42] determines the in-

teraction energy between two C60 fullerenes, and then extends the study in Girifalco

et al. [36] to find the energy between two identical parallel carbon nanotubes of infi-

nite length and between a carbon nanotube and a C60 fullerene. Girifalco et al. [36]

also provide the value of the interaction constants in the Lennard-Jones potential

for carbon atoms in graphene-graphene, C60-C60 and C60-graphene. Further, Hodak

and Girifalco [37] propose an energy formula for universal graphitic systems includ-
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ing the interaction of an ellipsoid inside a single-walled carbon nanotube. Ruoff and

Hickamn [43] consider the interaction between a spherical fullerene and a graphite

sheet. Henrard et al. [44] use a similar technique to Girifalco [42] and obtain the

potential for bundles of single-walled carbon nanotubes. Following Girifalco et al.

[36] and Henrard et al. [44], Zheng and Jiang [4] utilise the Lennard-Jones poten-

tial to determine the van der Waals restoring force between the inner and outer

shells of a multi-walled carbon nanotube and subsequently predict a gigahertz fre-

quency of the oscillatory motion. For spherical carbon onions CN1@CN2 (N2 > N1),

Iglesias-Groth et al. [45] also adopt the Lennard-Jones potential and the contin-

uum approximation to determine the interlayer interaction. By using the formula

of Iglesias-Groth et al. [45], Guérin [46] obtains the interaction energy between the

interlayer of carbon onions which is in excellent agreement to those obtained from

discrete atom-atom summation model given in Lu and Yang [47]. Further, it is also

shown in Verberck and Michel [48] that for large carbon nanotubes the continuum

approach agrees well with an atomistic model. In general, it is possible to combine

both the continuum and discrete approaches to model an interaction between two

nanostructures. As shown in both Verberck and Michel [48] and Hilder and Hill [49],

the single-walled carbon nanotube is modelled as a continuum, while the fullerene

is assumed to retain its discrete atomic structure. Finally, the validity of using the

continuum approach over the discrete atom-atom model is discussed by Girifalco et

al. [36] who point out that

“from a physical point of view the discrete atom-atom model is not nec-

essarily preferable to the continuum model. The discrete model assumes

that each atom is the centre of a spherically symmetric electron distribu-

tion while the continuum model assumes that the electron distribution

is uniform over the surface. Both of these assumptions are incorrect and

a case can even be made that the continuum model is closer to reality

than a set of discrete Lennard-Jones centres.”

We comment that the continuum approximation represents an averaging procedure

and might be expected to be mostly applicable to well defined molecular shapes, such

as the cylindrical nanotubes and spherical fullerenes studied here. For non-regular

shaped molecules, the continuum approach may not be an accurate approximation
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due to the difficulty in the determination of a mean atomic density. However, it is

possible to combine both continuum and discrete approaches to model an interaction

between regular and non-regular shaped nanostructures [49].

2.3 Overview

Part II of this thesis is divided into five chapters. The first is Chapter 2 which

contains the background and overview. In Chapter 3, analytical expressions for the

interaction energy of double-walled carbon nanotubes are determined. The issues

examined include the suction force, offset equilibrium position and oscillatory be-

haviours for certain configurations of double-walled carbon nanotubes. A well-known

self-assembled hybrid carbon nanostructure, known as a nanopeapod, is investigated

in Chapter 4. Three encapsulation mechanisms are firstly determined, and once a

number of C60 fullerenes are encapsulated inside a single-walled carbon nanotube,

zigzag and spiral patterns of C60 chains are examined. Equilibrium position for

two carbon, two boron nitride and carbon-boron nitride nanocones are examined

in Chapter 5. Furthermore, for the carbon cones the suction and oscillation are

also investigated where the oscillation frequency is in the gigahertz range. In Chap-

ter 6, equilibrium spacing between adjacent layers for both spherical and spheroidal

carbon onions are determined. In this part, all analytical expressions are obtained

either in terms of hypergeometric functions or Legendre functions, and the numerical

solutions are graphically shown by the algebraic computer package MAPLE.



Chapter 3

Double-walled carbon nanotubes

Advances in nanotechnology have led to the creation of many nanoscale devices and

carbon nanotubes are representative materials to construct these devices. Double-

walled carbon nanotubes with the inner tube oscillating can be used as gigahertz os-

cillators and form the basis of possible nano-electronic devices in the micro-computer

industry, which are predominantly based on electron transport phenomena. There

are many experiments and molecular dynamics simulations which show that a wave

is generated on the outer cylinder as a result of the oscillation of the inner carbon

nanotube, and that the frequency of this wave is also in the gigahertz range. As

a preliminary to analyse and model such devices, it is necessary to estimate accu-

rately the resultant force distribution due to the inter-atomic interactions. Here

some new analytical expressions for the van der Waals force using the Lennard-

Jones potential for general lengths of the inner and outer tubes are determined.

The suction force experienced by a single-walled carbon nanotube located near an

open end of a semi-infinite single-walled carbon nanotube, and the equilibrium po-

sition of an offset inner tube with reference to the cross-section of the outer tube

are investigated. These expressions are utilised together with Newton’s second law

to determine the motion of an oscillating inner tube, assuming that frictional effects

may be neglected. An idealised and simplified representation of the Lennard-Jones

force is used to determine a simple formula for the oscillation frequency resulting

from an initial extrusion of the inner tube.

3.1 Nomenclature

ε is an offset position of the inner tube from the outer tube axis

16
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ηg is the mean atomic number density for graphene

ρ is the distance between two typical surface elements

σ is the carbon-carbon covalent bond length

A, B are the Lennard-Jones attractive and repulsive coefficients, respectively

Etot is the total interaction potential

F tot
z is the total force in the z-direction

L1, L2 are the half-lengths of the inner and the outer tubes, respectively

M is the mass of the inner tube

Z is the distance between the centres of the inner and the outer tubes

a, b are the radii of the inner and the outer tubes, respectively

d is the extrusion distance

f is the oscillation frequency

v0 is the initial velocity of the inner tube

3.2 Introduction

The unique properties of carbon nanotubes, such as their high strength, high flex-

ibility, small size and low weight, have been studies by many experiments (see for

example, [17, 18, 50, 51]) and molecular dynamics simulations (see for example,

[17, 20, 52, 53]), but there are few groups using conventional applied mathematical

modelling. Single-walled carbon nanotubes can be thought of as a graphite sheet

that is rolled up as a cylinder, and multi-walled carbon nanotubes can be envisaged

as multi-layers of graphene sheets that are rolled up. Carbon nanotubes consist of

carbon atoms which have a (1s)2(2s)2(2p)2 electronic structure. The π orbitals pro-

vide weak van der Waals bonds between adjacent layers of each carbon nanotube,

whereas the σ orbitals provide strong in-plane bonds within individual carbon nan-

otubes. Further details on carbon nanotubes can be found in Dresselhaus et al.

[27].
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A number of nano-oscillators have been examined, including double-walled car-

bon nanotubes, a C60- single-walled carbon nanotube and a C60-carbon nanotorus

oscillator [2, 4, 5, 54, 55]. Typically these studies assume that the inner nanos-

tructure oscillates within the outer nanostructure co-axially, although Cox et al.

[54] examine the possible offset equilibrium configurations for a C60 fullerene in a

single-walled carbon nanotube, and Hilder and Hill [55] examine the same circum-

stance for a C60 orbiting inside a nanotorus. In this study, the suction behaviour

is investigated for a single-walled carbon nanotube entering another semi-infinite

single-walled carbon nanotube co-axially, and then the possible offset equilibrium

position for the inner tube with respect to the outer tube axis is determined. The

Lennard-Jones potential and the continuum approach are employed throughout this

work, where the continuum model assumes that the atoms at discrete locations can

be approximated by an averaged surface density of atoms which is smeared across

the entire surface.

Following the work of Cumings and Zettl [1], there are many groups who have

studied the oscillations of multi-walled carbon nanotubes. Zheng and Jiang [4]

consider multi-walled carbon nanotubes where the outer most shells have open ends

and the inner shells have capped ends, and the inner shells are pulled out of the outer

tube a certain distance and then released. Using the Lennard-Jones potential energy

and Newton’s second law, these authors propose that the oscillation of multi-walled

carbon nanotubes is in the gigahertz range, and also conclude that the frictional force

between the inner and the outer shells can be neglected. A theoretical study of this

phenomenon is found in Zheng et al. [5]. Moreover, this situation is confirmed

by Legoas et al. [2] who suggest that the configurations of the inner and outer

tubes affect the oscillation frequency. Rivera et al. [6, 7] use molecular dynamics

simulation to show that the frictional force is very low when compared with the van

der Waals force, which is in agreement with Zheng and Jiang [4].

In order to accurately model both the dynamics of the gigahertz oscillator and to

analyse the consequent wave formation on the outer carbon nanotube, the resultant

force on the inner carbon nanotube needs to be accurately estimated. The analysis

of the wave formation on the outer tube will be investigated in Chapter 13, which

utilises the transversely isotropic linearly elastic model for carbon nanotubes. Here,
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the van der Waals force distribution on the inner carbon nanotube due to the nett

interatomic interactions is calculated, using the usual continuum assumption.

Detailed derivations for the force distribution of double-walled carbon nanotubes

is presented in the following section. The suction behaviour for an inner carbon

nanotube entering an outer carbon nanotube and the offset location for an inner

carbon nanotube inside an outer carbon nanotube are determined in §3.4 and §3.5,

respectively. On making an idealization of the van der Waals force distribution and

employing Newton’s second law, a simple expression for the oscillation frequency is

obtained and shown in §3.6. Finally, a summary is given in §3.7.

3.3 Force distribution for double-walled carbon

nanotubes
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Figure 3.1: Double-walled carbon nanotubes of lengths 2L1 and 2L2.

The interaction between the inner and outer tubes in the continuum approxima-

tion is obtained by averaging the atoms over the surface of each tube. With reference

to a rectangular Cartesian coordinate system (x1, y1, z1) with origin located at the

centre of the outer tube, a typical point on the surface of the inner tube has coordi-

nates (a cos θ1, a sin θ1, z1) where a is the assumed radius of the inner tube. Similarly,

with reference to a rectangular Cartesian coordinate system (x2, y2, z2) with origin

located at the centre of the outer tube, a typical point on the surface of the outer

tube has coordinates (b cos θ2, b sin θ2, z2) where b is the assumed radius of the outer

tube, as shown in Figure 3.1. Now assuming the two tubes are concentric, and the

distance between their centres is Z, the distance ρ between two typical points is

given by

ρ2 = (b cos θ2 − a cos θ1)
2 + (b sin θ2 − a sin θ1)

2 + (z2 − z1)
2,
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which may be simplified to yield

ρ2 = a2 + b2 − 2ab cos(θ1 − θ2) + (z2 − z1)
2.

From the Lennard-Jones potential (2.4), the total potential energy of all atoms of

the inner tube with all atoms of the outer tube is given by

Etot = η2
gab

∫ 2π

0

∫ 2π

0

(−AI6 + BI12)dθ1dθ2, (3.1)

where ηg represents the mean surface density of carbon atoms, a and b are the radii

of the inner and outer tubes, respectively. Further, the integral I6 is defined by

I6 =

∫ Z+L1

Z−L1

∫ L2

−L2

dz2dz1

ρ6
=

∫ Z+L1

Z−L1

∫ L2

−L2

dz2dz1

[λ2 + (z2 − z1)2]3
,

where λ2 denotes a2 + b2 − 2ab cos(θ1 − θ2). On letting x = z2 − z1, the integral

becomes

I6 =

∫ Z+L1

Z−L1

∫ L2−z1

−L2−z1

dxdz1

(λ2 + x2)3
=

1

λ5

∫ Z+L1

Z−L1

∫ tan−1[(L2−z1)/λ]

− tan−1[(L2+z1)/λ]

cos4 φ dφdz1,

where the final line follows by making the substitution x = λ tan φ to obtain

I6 =
1

λ5

∫ Z+L1

Z−L1

{
3

8
tan−1

(
L2 − z1

λ

)
+

3

8

λ(L2 − z1)

[λ2 + (L2 − z1)2]

+
1

4

λ3(L2 − z1)

[λ2 + (L2 − z1)2]2
+

3

8
tan−1

(
L2 + z1

λ

)
+

3

8

λ(L2 + z1)

[λ2 + (L2 + z1)2]

+
1

4

λ3(L2 + z1)

[λ2 + (L2 + z1)2]2

}
dz1.

Finally, using the two substitutions x = (L2 − z1)/λ and y = (L2 + z1)/λ gives

I6 =
4∑

i=1

(−1)i+1

{
3

8

(Z − `i)

λ5
tan−1

(
Z − `i

λ

)
− 1

8λ2[λ2 + (Z − `i)2]

}
,

and by precisely the same method, I12 becomes

I12 =
4∑

i=1

(−1)i+1

{
63

256

(Z − `i)

λ11
tan−1

(
Z − `i

λ

)
− 21

256λ8[λ2 + (Z − `i)2]

− 21

640λ6[λ2 + (Z − `i)2]2
− 3

160λ4[λ2 + (Z − `i)2]3
− 1

80λ2[λ2 + (Z − `i)2]4

}
,
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where the four lengths `i (i = 1, 2, 3, 4) are defined by `1 = −(L1 + L2), `2 =

−(L2−L1), `3 = L1 + L2 and `4 = L2−L1, and these are the locations for the four

critical positions for the oscillation as shown in Figure 3.2.
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Figure 3.2: Four critical positions for two concentric nanocylinders.

Thus there are two types of integrals needed to evaluate (3.1). Formally, the

double integrals K∗
n and L∗n need to be evaluated which are defined by

K∗
n =

∫ 2π

0

∫ 2π

0

dθ1dθ2

λm(λ2 + P 2
i )n

, L∗n =

∫ 2π

0

∫ 2π

0

1

λn
tan−1

(
Pi

λ

)
dθ1dθ2,

where m and n denote certain positive integers, Pi = Z − `i (i = 1, 2, 3, 4) and

these details are subsequently presented in Appendix A.2 and A.3, respectively.

For completeness the full expression for Etot(Z) in terms of Appell hypergeometric

functions is given below, from which an expression for Etot(0) may be deduced which

is required in §3.6.

Etot(Z) = 8πabη2
g(−AN6 + BN12), (3.2)
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where

N6 =
4∑

i=1

(−1)i+1

[
3π

16

∞∑

k=0

(2k)!(Z − `i)
2k+2

22k(k!)2(2k + 1)(a + b)5[(a + b)2 + (Z − `i)2]k+1/2

×F1

(1

2
;
5

2
, k +

1

2
; 1;

4ab

(a + b)2
,

4ab

(a + b)2 + (Z − `i)2

)

− π

16(a + b)2[(a + b)2 + (Z − `i)2]
F1

(1

2
; 1, 1; 1;

4ab

(a + b)2
,

4ab

(a + b)2 + (Z − `i)2

)]
,

and

N12 =
4∑

i=1

(−1)i+1

[
63π

512

∞∑

k=0

(2k)!(Z − `i)
2k+2

22k(k!)2(2k + 1)(a + b)11[(a + b)2 + (Z − `i)2]k+1/2

×F1

(1

2
;
11

2
, k +

1

2
; 1;

4ab

(a + b)2
,

4ab

(a + b)2 + (Z − `i)2

)

− 21π

512(a + b)8[(a + b)2 + (Z − `i)2]
F1

(1

2
; 4, 1; 1;

4ab

(a + b)2
,

4ab

(a + b)2 + (Z − `i)2

)

− 21π

1280(a + b)6[(a + b)2 + (Z − `i)2]2
F1

(1

2
; 3, 2; 1;

4ab

(a + b)2
,

4ab

(a + b)2 + (Z − `i)2

)

− 3π

320(a + b)4[(a + b)2 + (Z − `i)2]3
F1

(1

2
; 2, 3; 1;

4ab

(a + b)2
,

4ab

(a + b)2 + (Z − `i)2

)

− π

160(a + b)2[(a + b)2 + (Z − `i)2]4
F1

(1

2
; 1, 4; 1;

4ab

(a + b)2
,

4ab

(a + b)2 + (Z − `i)2

)]
,

where F1(α; β, β
′
; γ; x, y) is the Appell hypergeometric function of the first kind

which is defined by the double series (A.3) and given by the integral representation

(A.4).

The potential and force distributions for the double-walled carbon nanotubes are

determined here. Following the works of Girifalco et al. [36, 37] and Ma et al. [56],

the parameter values for double-walled carbon nanotubes shown in Table 3.1 are

employed. Using the algebraic computer package MAPLE, the potential function

and van der Waals force versus the difference between the centres of the tubes

Z are shown in Figure 3.3 and Figure 3.4, respectively. In this study, a (10,10)

carbon nanotube is assumed to enter into a (16,16) carbon nanotube by varying the
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inner tube lengths. It is important to note that the Appell functions are readily

summed using MAPLE by means of the series (A.4), and MAPLE is also utilised

to differentiate the total energy given by (3.2) with respect to the distance Z to

calculate the axial van der Waals force.

Due to the four critical positions of the distance between the centres of the tubes,

there are three regions for the inner tube behaviour, (`1, `2), (`2, `4) and (`4, `3). In

terms of the potential function, the inner tube will travel with decreasing potential

energy in the first region to reach a constant minimum energy in the second region,

after which the energy will increase until it becomes zero at the position that the

inner tube leaves the outer tube. For the force distribution, the force is almost zero

in the second region and there are two strong attractive forces in the first and the

third regions, which tend to keep the inner tube inside. This means that once inside

the outer cylinder, the inner tube will tend to oscillate rather than escape from the

outer tube, because of the forces at the ends tending to reverse the direction of the

motion. However, not every inner tube will necessarily be sucked in by inter-atomic

van der Waals force alone, and it may be necessary to either initiate the oscillatory

motion by initially extruding the inner cylinder or by giving the inner tube an initial

velocity.
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Figure 3.3: Total potential energy of a (10,10) nanotube with various L1 entering
into a (16,16) nanotube with length L2 = 500 Å.
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Figure 3.4: Force distribution of a (10,10) nanotube with various L1 entering into a
(16,16) nanotube with length L2 = 500 Å.

3.4 Suction force for double-walled carbon nan-

otubes
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Figure 3.5: Geometry of a single-walled carbon nanotube entering another single-
walled carbon nanotube.

The issue of suction of particles into a container is fundamental, particularly for

applications of encapsulating drugs or genes in nano-carriers for targeted deliveries

to tumour cells. Here the energy of a carbon nanotube being sucked into another

carbon nanotube is examined. The suction energy is defined as the total work

performed by van der Waals interaction on a molecule entering a carbon nanotube.

From a previous study, Cox et al. [57] determine the suction behaviour for a carbon

atom and a C60 fullerene into a single-walled carbon nanotube. They find that the

suction energy depends on the radius of the carbon nanotube. In this thesis, such
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behaviour for double-walled carbon nanotubes is examined.

For convenience, Tube 1 is assumed to refer to the carbon nanotube which enters

into the open end of the semi-infinite tube, Tube 2, as shown in Figure 3.5, and the

origin of the coordinate system is assumed to be located at the left end of Tube 2.

It is assuming that Tube 1 is of radius a and length 2L1 and its centre is located

at (0, Z), which might be inside or outside Tube 2. Further, Tube 2 of radius b

is assumed to be semi-infinite in length. In an axially symmetric cylindrical polar

coordinate system (r, θ, z), the parametric equations for Tube 1 and Tube 2 are

given by (a cos θ1, a sin θ1, z1) and (b cos θ2, b sin θ2, z2), respectively. In this case, the

distance ρ between two typical surface elements on Tube 1 and Tube 2 is given by

ρ2 = (b cos θ2 − a cos θ1)
2 + (b sin θ2 − a sin θ1)

2 + (z2 − z1)
2.

Using the Lennard-Jones potential together with the continuum approximation, the

total potential energy can be written as

Etot = abη2
g

∫ 2π

0

∫ 2π

0

(−AI6 + BI12)dθ1dθ2, (3.3)

where ηg represents the mean surface density of the carbon nanotube assumed to be

the same for both tubes. In this case, the integrals I6 and I12 are defined as follows

I6 =

∫ ∞

0

∫ Z+L1

Z−L1

dz1dz2

ρ6
=

∫ ∞

0

∫ Z+L1

Z−L1

dz1dz2

[λ2 + (z2 − z1)2]3
,

I12 =

∫ ∞

0

∫ Z+L1

Z−L1

dz1dz2

ρ12
=

∫ ∞

0

∫ Z+L1

Z−L1

dz1dz2

[λ2 + (z2 − z1)2]6
,

where λ2 denotes a2 + b2 − 2ab cos(θ1 − θ2). On letting x = z2 − z1, the integral I6

becomes

I6 =

∫ Z+L1

Z−L1

∫ ∞

−z1

dx dz1

(λ2 + x2)3
=

1

λ5

∫ Z+L1

Z−L1

∫ π/2

− tan−1(z1/λ)

cos4 φ dφ dz1,

where on substituting x = λ tan φ, it may be deduced

I6 =
1

λ5

∫ Z+L1

Z−L1

(
3π

16
+

3

8
tan−1(z1/λ) +

3

8

λz1

(λ2 + z2
1)

+
1

4

λ3z1

(λ2 + z2
1)

2

)
dz1.
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Using the substitution x = z1/λ, an above equation becomes

I6 =
1

λ4

[
3πL1

8

1

λ
+

3(Z + L1)

8λ
tan−1

(
Z + L1

λ

)
− λ2

8[λ2 + (Z + L1)2]

−3(Z − L1)

8λ
tan−1

(
Z − L1

λ

)
+

λ2

8[λ2 + (Z − L1)2]

]
.

Similarly, I12 is given by

I12 =
1

λ10

[
63πL1

256

1

λ
+

63(Z + L1)

256λ
tan−1

(
Z + L1

λ

)
− 21λ2

256[λ2 + (Z + L1)2]

− 21λ4

640[λ2 + (Z + L1)2]2
− 3λ6

160[λ2 + (Z + L1)2]3
− λ8

80[λ2 + (Z + L1)2]4

−63(Z − L1)

256λ
tan−1

(
Z − L1

λ

)
+

21λ2

256[λ2 + (Z − L1)2]
+

21λ4

640[λ2 + (Z − L1)2]2

+
3λ6

160[λ2 + (Z − L1)2]3
+

λ8

80[λ2 + (Z − L1)2]4

]
.

Thus from (3.3) there are three types of integrals which need to be determined,

and they are given by

J∗n =

∫ 2π

0

∫ 2π

0

dθ1dθ2

λn
,

K∗
n =

∫ 2π

0

∫ 2π

0

dθ1dθ2

λm(λ2 + P 2
j )n

, (3.4)

L∗n =

∫ 2π

0

∫ 2π

0

1

λn
tan−1

(
Pj

λ

)
dθ1dθ2,

where m and n are certain positive integers and Pj (j = 1, 2) is the abbreviation

used for P1 = Z + L1 and P2 = Z − L1. As shown in Appendix A, (3.4) can be
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integrated to yield

J∗n =
4π2

(a + b)2
F

(n

2
,
1

2
; 1;

4ab

(a + b)2

)
,

K∗
n =

4π2

(a + b)m[(a + b)2 + P 2
j ]n

∞∑
i=0

(1/2)i(m/2)i

(i!)2

(
4ab

(a + b)2

)i

×

×F
(1

2
+ i, n; 1 + i;

4ab

(a + b)2 + P 2
j

)
,

L∗n = 4π2

∞∑

k=0

∞∑
i=0

P 2k+1
j (2k)!

22k(k!)2(2k + 1)(a + b)n[(a + b)2 + P 2
j ]k+1/2

(1/2)i(n/2)i

(i!)2
×

×
(

4ab

(a + b)2

)i

F
(1

2
+ i, k +

1

2
; 1 + i;

4ab

(a + b)2 + P 2
j

)
,

where F (a, b; c; z) denotes the usual hypergeometric function. Although compli-

cated, numerical values for these integrals may be readily evaluated using the alge-

braic computer package MAPLE.

From the symmetry of the problem, only the force in the axial direction (z-

direction) is considered, and the resultant axial force is obtained by differentiating

the total energy with respect to the axial direction Z. Noting that due to the

complexity of the expression, obtaining an analytical expression for F tot
Z is not a

simple task. Using the algebraic computer package MAPLE, together with the

constants given in Table 3.1, the numerical solutions for the suction force for carbon

nanotubes are illustrated in Figure 3.6, where Tube 1 is assumed to be (6,6) and its

length is 120 Å.

The area under the graph in Figure 3.6 represents the work done by the van der

Waals force. For Tube 1 to be sucked into Tube 2, the sum of the work which is

obtained by moving the inner tube from Z = −∞ to Z0, where Z0 is the positive

root of F tot
Z = 0, or in the other words Wa =

∫ Z0

−∞ F tot
Z dZ, needs to be greater than

zero. In Figure 3.6, the force experienced by a (6,6) nanotube upon entering (10,10),

(16,16) and (20,20) nanotubes are plotted. It can be seen from Figure 3.6(a) that a

(10,10) tube will not allow a (6,6) tube to enter since Wa < 0, resulting in a strong

repulsive force at the tube extremity. In Figure 3.6(b), it can be seen that Wa > 0,

which gives rise to a (6,6) nanotube (Tube 1) being sucked into Tube 2, which is
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either a (16,16) or (20,20) nanotube. In addition, Wa decreases as the radius of the

outer tube increases. This is due to the fact that when the difference in radii of the

inner and outer tubes moves further away from 3.44 Å (inter-spacing of two graphene

sheets), such a double-walled carbon nanotube is not an ideal configuration.

Further, the suction energy which is the total work performed by van der Waals

interactions on the inner tube upon entering the outer tube is considered. In other

words, the suction energy can be represented mathematically by W =
∫∞
−∞ F tot

Z dZ.

In Figure 3.7, the suction energy for a (6,6) carbon nanotube entering an outer

nanotube with radii in the range 6.5 < b < 9 Å is depicted. Noting from the figure

that W is positive when b > 7 Å and has its maximum value when b = 7.511 Å,

for which the difference in radii of the inner and outer tubes is 3.44 Å, which is the

inter-spacing between two graphene sheets [2, 4, 5].
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Figure 3.6: Force experienced by a (6,6) carbon nanotube due to van der Waals
interaction with a semi-infinite carbon nanotube (a) (10,10), (b) (16,16) and (20,20).

3.5 Offset position for double-walled carbon nan-

otubes

The Lennard-Jones potential together with the continuum approximation is utilised

to determine the preferred position of an offset inner nanotube with reference to

the cross-section of the outer single-walled carbon nanotube. The preferred position

is the location of the minimum potential energy for the inner nanostructure. The

work of Cox et al. [54] for an offset carbon atom and an offset C60 fullerene inside
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Figure 3.7: Suction energy for an inner tube (6,6) entering an outer tube.
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Figure 3.8: Offset location for double-walled carbon nanotube.

a single-walled carbon nanotube leads to study of an offset single-walled carbon

nanotube.

In terms of a double-walled carbon nanotube, the parametric equation for an

offset inner tube of radius a is (a cos θ1 + ε, a sin θ1, z1) and the parametric equation

for an outer tube of radius b is (b cos θ2, b sin θ2, z2). The length of the inner tube

is assumed to be 2L1 and the length of the outer tube is assumed to be 2L2 where

L2 tends to infinity, and ε is the distance between the centres of two tubes in the

radial direction as shown in Figure 3.8. Thus, the distance ρ from any infinitesimal

point on the surface of the inner tube to any infinitesimal point on the surface of

the outer tube can be written as

ρ2 = [b cos θ2 − (a cos θ1 + ε)]2 + (b sin θ2 − a sin θ1)
2 + (z2 − z1)

2,

and the total potential energy is then given by

Etot = abη2
g

∫ 2π

0

∫ 2π

0

(−AI6 + BI12)dθ1dθ2,
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where ηg is a mean surface density of a carbon nanotube. In this case, I6 is defined

by

I6 =

∫ L2

−L2

∫ L1

−L1

1

ρ6
dz1dz2 =

∫ L2

−L2

∫ L1

−L1

1

[λ2 + (z2 − z1)2]3
dz1dz2,

where

λ2 = [b cos θ2 − (a cos θ1 + ε)]2 + (b sin θ2 − a sin θ1)
2

= a2 + b2 − 2ab cos(θ1 − θ2)− 2ε(b cos θ2 − a cos θ1) + ε2,

and on letting x = (z2 − z1), it may be deduced

I6 =

∫ L1

−L1

∫ L2−z1

−L2−z1

1

(λ2 + x2)3
dxdz1 =

1

λ5

∫ L1

−L1

∫ π/2

−π/2

cos4 φdφdz1,

which is obtained by substituting x = λ tan2 φ and letting L2 tends to infinity.

Finally, I6 can be simplified to obtain

I6 =
1

λ5

∫ L1

−L1

3π

8
dz1 =

3πL1

4

1

λ5
.

By precisely the same method, I12 becomes

I12 =

∫ L2

−L2

∫ L1

−L1

1

ρ12
dz1dz2 =

63πL1

128

1

λ11
.

Therefore, the total potential energy for the double-walled carbon nanotube with

an offset inner tube becomes

Etot = abη2
gπL1

∫ 2π

0

∫ 2π

0

(
− 3A

4

1

λ5
+

63B

128

1

λ11

)
dθ1dθ2, (3.5)

where λ2 = a2 + b2 − 2ab cos(θ1 − θ2)− 2ε(b cos θ2 − a cos θ1) + ε2.

The derivation of the analytical solution for (3.5) is determined in Appendix B.

Here, using the algebraic computer package MAPLE, equation (3.5) is numerically

solved and graphically shown in Figure 3.9, for the relation of the potential energy

and the offset position for a (6,6) carbon nanotube inside a (16,16) and a (20,20)

carbon nanotube. The value of ε for the (6,6) tube inside the (16,16) tube and

the (6,6) tube inside the (20,20) tube is 3.567 Å and 6.300 Å, respectively which

correspond to the distance (b−ε) along a radius between the centre of the inner tube

and the wall of the outer tube of 7.279 Å and 7.257 Å, respectively. Moreover, the
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larger the outer tube, the smaller the inter-spacing between the walls of the inner

and the outer tubes. This result agrees with the works by Girifalco et al. [36] and

Cox et al. [54].

� � � � � � �

� � �

� � �

� � �

�

� �

� �

� �

� �

� �

	 
� � 

�� �� �
�

��
�

� � � � � � � � � � � � � � � �  �
e ! " #

! $ % & $ % #
! ' ( & ' ( #

) *+,

Figure 3.9: Potential energy of an offset (6, 6) carbon nanotube inside a (16, 16) and
a (20, 20) carbon nanotube with respect to the radial distance ε.

3.6 Oscillation of double-walled carbon nanotubes

In this section, Newton’s second law is adopted to describe the oscillation behaviour

of double-walled carbon nanotubes with the inner tube oscillating. The frequency of

the oscillation for the case where the inner tube is pulled out with a distance d and

released is investigated, as shown in Figure 3.10. The frictional force is assumed to

be negligible for the movement on the inner tube.

� �
� � � � �

�

Figure 3.10: Extrusion distance d for inner tube oscillating inside outer tube.

Newton’s second law on neglecting the frictional force can be written as

M
d2Z

dt2
= F tot

Z (Z), (3.6)
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where Z is the distance between centres of the tubes and M is the mass of the inner

tube. From the relation for the potential energy and the force in (2.8), equation

(3.6) becomes

M
d2Z

dt2
= −∂Etot

∂Z
. (3.7)

By multiplying both sides by dZ/dt and integrating (3.7), the above equation be-

comes
M

2

(
dZ

dt

)2

+ E(Z) =
M

2
v2

0 + E0, (3.8)

where v0 is the prescribed initial velocity and E0 is the initial potential energy, which

is a function of the extrusion length d. Because of the symmetry of the oscillating

inner tube, two regions for its motion shown in Figure 3.11 are considered. In the

first region, the inner tube is pulled out a distance d and released, then the distance

between centres becomes Z0 = L2 − L1 + d = `4 + d which leads to the geometric

constraint d ≤ 2L1. On assuming that the prescribed initial velocity at this point is

v0, it can be deduced

dZ

dt
= −

√
v2

0 + α2(Z0 − Z), `4 ≤ Z ≤ Z0,

where α2 = 2E(0)/[M(`4 − `3)], and E(0) is the potential energy at Z = 0. Thus

the displacement equation in this region can be written as

Z(t) = Z0 − α2

4
t2 − v0t, `4 ≤ Z ≤ Z0,

and the time for the inner tube to travel the length of this region is

t1 =
2

α2

(√
v2

0 + α2d− v0

)
.

In the second region, from equation (3.8) it may be deduced

dZ

dt
= −

√
v2

0 + α2d, 0 ≤ Z ≤ `4.

Since at t = t1, Z(t1) = `4, the displacement equation becomes

Z(t) = `4 +
2

α2

(
v2

0 + α2d
)
−

(
t +

2v0

α2

)√
v2

0 + α2d, 0 ≤ Z ≤ `4.
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Figure 3.11: Two regions for the idealised potential energy for double-walled carbon
nanotubes oscillator.

Thus the overall time for the inner tube to travel in these two regions is given by

t2 =
2v2

0 − 2v0

√
v2

0 + α2d + α2(`4 + 2d)

α2
√

v2
0 + α2d

.

The period for the inner tube to move is 4t2, and then the oscillation frequency can

be written as

f =
α2

√
v2

0 + α2d

4[2v2
0 − 2v0

√
v2

0 + α2d + α2(2d + `4)]
, (3.9)

which for prescribed v0 has a maximum frequency at d = (α2`4 − 2v2
0)/(2α

2).

Of particular practical interest is the case v0 ≡ 0 for which (3.9) simplifies to give

f = α
√

d/[4(2d + `4)], which has a maximum value at d = `4/2. In addition, the

extrusion distance d must be less then the length of the inner tube 2L1. As detailed

in Cox et al. [58] for a physical sensible result that the frequency only applied when

the length lies within the limits L1 + 2dmin < L2 < 5L1 where dmin denotes the

practical limitation on the minimum extrusion distance.

The frequency always increases when the initial velocity is increased, as shown

in Figure 3.12. Further, the shorter the inner tube the higher frequency, which is in

agreement with Zheng and Jiang [4]. This is because the force is a constant in each

case, so that the lighter weight of the shorter tube increases the velocity to give a

higher frequency. Furthermore, the longer extrusion distance tends to increase the

oscillatory frequency because it leads to a higher potential energy level. This in turn

gives a higher van der Waals force, and a higher velocity, and as a result gives rise to
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a higher frequency, which is also in agreement with the observation made by Liu et

al. [59]. In the case of equal lengths, when the extrusion distance is increased, this

increases the distance for the inner tube to move from one end to the other, which

leads to a lower oscillation frequency. The longer length also leads to a larger mass

which tends to slow down the movement as shown in Figure 3.13. Noting in the case

L1 = L2, it gives rise to small oscillations near a stable equilibrium point, moreover,

when the extrusion d = 0 and the initial velocity v0 ≡ 0, the system becomes static.

For the example of Cumings and Zettl [1] with the same parameter values and

M which is used in equation (18) in Zheng, Liu and Jiang [5], a frequency of 0.153

GHz is obtained for an extrusion of 330 nm which is the half length of the inner

tube and 1.433 GHz for a 100 nm inner tube length with an extrusion distance of

one quarter of the inner tube length. These results differ from Zheng, Liu and Jiang

[5] by only 2.68% and 3.09%, respectively.
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Figure 3.12: The frequency profile f for three lengths L1 versus the initial velocity
v0 when the extrusion distance is zero where L2 = 500 Å.

3.7 Summary

Force distributions arising from the interatomic interactions for two concentric car-

bon nanotubes of radii a and b (a < b) and of lengths 2L1 and 2L2 (L1 < L2)

are considered. Making the usual continuum approximation, the integration of the

Lennard-Jones potential is performed to determine the van der Waals force in terms
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Figure 3.13: The frequency profile f for three lengths L1 versus extrusion distance
d when the initial velocity is zero where L2 = 500 Å.

of the Appell hypergeometric function and the standard hypergeometric function.

The complete expression for the Lennard-Jones potential can be used together with

the algebraic computer package MAPLE to show the corresponding force distribu-

tion for a variety of cylindrical geometries.

The force distribution is approximately to be a rectangular function, where the

small variations associated with the four critical positions `1 = −(L1 + L2), `2 =

−(L2 − L1), `3 = L1 + L2, `4 = L2 − L1 are neglected. This has the advantage that

Newton’s second law may be utilised to follow the oscillatory motion of the inner

carbon nanotube when extruded a distance d (≤ 2L1) and given an initial velocity

v0 in the negative z-direction, and the frequency of oscillation is determined as given

by (3.9). Note in particular that the case v0 ≡ 0 yields the simple elegant formula

for the frequency

f =
|E(0)|1/2d1/2

4(ML1)1/2(2d + L2 − L1)
, (3.10)

where M denotes the mass of the inner tube and E(0) denotes the value of Etot(Z)

at Z = 0, which is a complicated function of the geometric parameters and can be

determined explicitly from the formula given in (3.2). The above simple formula

predicts a maximum frequency occurring at an extrusion length d = (L2 − L1)/2,

which is entirely consistent with known behaviour that the frequency will increase

with decreasing inner tube length. However, the singularity occurs when d = 0, v0
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and L1 = L2 for which the system becomes static problem.

Note that the dependence on the extrusion distance d in (3.10) is in agreement

with the formula given by Zheng, Liu and Jiang [5], and in the terminology of this

study, their ∆ and ∆0 become Z0 and `4, respectively, and therefore their β/∆1/2

becomes
√

d/(2d + `4) which is in complete accord with (3.10). From the integral

(3.1), the following approximate expression for |E(0)| becomes

|E(0)| = 6.847× 10−5 + 0.192L1,

for the particular values given in Table 3.1.

The suction energy for a single-walled carbon nanotube entering co-axially into

another semi-infinite tube is obtained analytically. The condition for the suction

behaviour depends on the difference of their radii (b − a), where the closer this

value to zero, the less likely the inner tube is accepted into the outer one. Further,

the inner tube is spontaneously sucked into the outer tube and has its maximum

suction energy when the difference of their radii is 3.44 Å, which is the optimum

inter-spacing value for two graphene sheets. The equilibrium offset position for a

double-walled carbon nanotube is also determined, assuming that the inner tube

is already accepted inside. This equilibrium position (the global minimum energy

position) of the offset inner tube tends to be closer to the outer tube wall as the

radius of the outer tube increases. The advantage of this approach is to predict

whether or not particles might be sucked into a carbon nanotube, which will become

an important issue for applications involving drug delivery research.
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Table 3.1: Constants used in the model for the carbon system(∗ Reference [36])

Radius of (6, 6) 4.071 Å
Radius of (10, 10) 6.784 Å
Radius of (16, 16) 10.846 Å
Radius of (20, 20) 13.557 Å
Radius of C60 a = 3.55 Å
Attractive constant - C60-C60 A = 20.0 eV × Å6 ∗

Repulsive constant - C60-C60 B = 34.8 ×103 eV × Å12 ∗

Attractive constant - C60-graphene A = 17.4 eV × Å6 ∗

Repulsive constant - C60-graphene B = 29.0 ×103 eV × Å12 ∗

Attractive constant - graphene-graphene A = 15.2 eV × Å6 ∗

Repulsive constant - graphene-graphene B = 24.1 ×103 eV × Å12 ∗

Carbon-carbon bond length σ = 1.42 Å

Mean surface density - graphene [4
√

3/(6σ2)] ηg = 0.3812 Å−2

Mean surface density - C60 [60/(4πa2)] ηf = 0.3787 Å−2



Chapter 4

Nanopeapods

While the investigation of the packing of C60 molecules inside a carbon nanotube

is usually achieved through either experimentation or large scale computation, here

this study adopts elementary mechanical principles and classical applied mathemat-

ical modelling techniques to formulate explicit analytical criteria and ideal model

behaviour for such an encapsulation. In particular, the Lennard-Jones potential and

the continuum approximation are employed to determine three encapsulation mech-

anisms for a C60 fullerene entering a tube: (i) through the tube open end (head-on),

(ii) around the edge of the tube open end and (iii) through a defect opening on the

tube wall. These three encapsulation mechanisms are undertaken for each of the

three specific carbon nanotubes (10,10), (16,16) and (20,20). All configurations are

assumed to be in a vacuum and the C60 fullerene is initially at rest. Double inte-

grals are performed to determine the energy of the system and analytical expressions

are obtained in terms of hypergeometric functions. The results suggest that a C60

fullerene is most likely to be encapsulated head-on through the open tube end and

that encapsulation around the tube edge is least likely to occur because of the large

van der Waals energy barriers which exist at the tube ends.

Moreover, the packing of C60 fullerene chains inside a single-walled carbon nan-

otube is investigated, again by utilising the Lennard-Jones potential function and

the continuum approximation. Both zigzag and spiral chain configurations inside

(10,10), (16,16) and (20,20) carbon nanotubes are examined and analytical expres-

sions in terms of hypergeometric functions for the potential energy for such config-

urations are obtained. For a (10,10) tube, the C60 fullerene chain is formed linearly

along the tube axis. In the case of both (16,16) and (20,20) tubes, both zigzag and

38



Chapter 4: Nanopeapods 39

spiral configurations are more clearly evident along the tube. In general, all results

obtained are in good agreement with experiments and computer simulations.

4.1 Nomenclature

ηg, ηf are the mean atomic number densities for graphene and fullerene, respec-

tively

ρ is the distance between two typical surface elements

A, B are the Lennard-Jones attractive and repulsive coefficients, respectively

E∗ is the interaction potential between a C60 fullerene and a carbon atom

Etot is the total interaction potential

L is the half-lengths of the defect pad on the nanotube

Z is the distance in the z-direction

a is the radius of the fullerene

b is the radius of the carbon nanotube

k is the number of fullerenes inside the carbon nanotube

4.2 Introduction

Carbon nanostructures such as carbon nanotubes and C60 fullerenes have received

considerable attention because of their underlying unique mechanical properties aris-

ing from the van der Waals interaction force and their electronic properties arising

from the large surface to volume ratio [27, 60]. The combination of a single-walled

carbon nanotube and a C60 fullerene chain, a so-called nanopeapod, also embodies

such properties and is a new hybrid nanostructure. Nanopeapods were originally

observed in 1998 by Smith et al. [61] and later synthesised by Smith and Luzzi

[62], who employed high-resolution transmission electron microscopy to show the

self-assembly of the hybrid structures. In particular, nanopeapods capable of being

realised as the prototype nanocarrier for drug delivery, where the carbon nanotube

can be thought of as the nanocontainer and the C60 molecule chain can be considered
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as the drug molecule [8]. We comment that drug molecules may be administered

to patients in a solvent medium, and the use of carbon nanotubes may avoid the

need for solvents since the drug can cross cell membranes and react within the cell.

Therefore, the encapsulation of C60 molecules into a carbon nanotube in vacuum

environment constitutes a necessary preliminary calculation which might provide

some overall guidelines. We refer the reader to Simon et al. [63] for the experi-

mental study of the encapsulation of C60 fullerenes into carbon nanotubes in the

solvent medium. Moreover, the present model can easily be modified to account for

a solvent medium by choosing the appropriate Lennard-Jones parameters [64].

Several studies have proposed the actual assembly of nanopeapods by utilising

either experimentation or computer simulation. Qian et al. [3] employ molecular

dynamics studies and suggest that the (9,9) and (10,10) single-walled carbon nan-

otubes will accept a C60 molecule from rest, but this behaviour will not occur for the

(8,8) carbon nanotube. From the study of the energetics and electronic structures

of nanopeapods, Okada et al. [65] propose that the smallest radius of a nanotube

which can encapsulate a C60 molecule is approximately 6.4 Å, which is approxi-

mately the radius of a (10,10) carbon nanotube. This result compares well with

Cox et al. [57] and Hodak and Girifalco [66], but conflicts with Qian et al. [3] who

show that the fullerene can be accepted into a (9,9) nanotube which has a radius

of 6.102 Å. Moreover, from Okada et al. [65], Hodak and Girifalco [66], and others

[8, 67–70], have confirmed that the encapsulation energy of nanopeapods depends

only on the tube radius, and that it is independent of the tube chirality [69].

There are three possible scenarios for C60 molecules to become encapsulated into

a carbon nanotube and form a nanopeapod. The first such scenario is that the C60

molecule is sucked in through the tube open end when the C60 fullerene is initially

located outside the tube but situated on the tube axis, and in a head-on configuration

[71]. The encapsulation of the C60 fullerene around the edge of the tube is a second

possible scenario, and the final possible scenario is the absorption of the C60 fullerene

through a large defect opening on the tube wall. These three encapsulation scenarios

are investigated by Berber et al. [72] who use the electronic Hamiltonian method,

and Ulbricht and Hertel [71] and Ulbricht et al. [73] who utilise molecular dynamics

calculations based on the Lennard-Jones potential function. Berber et al. [72]
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suggest that the encapsulation of the C60 molecule is most likely to occur at a defect

opening of the tube wall. In contrast, Ulbricht and Hertel [71] and Ulbricht et al.

[73] propose that the C60 fullerene is most likely to be encapsulated by head-on at

the tube ends. Moreover, they find that although encapsulation around a tube edge

and absorption at a defect opening can occur, these outcomes are less likely.

Once a number of C60 molecules are encapsulated into a single-walled carbon

nanotube, a nanopeapod is formed. As shown in Okada et al. [65], Hodak and

Girifalco [66, 74], Khlobystov et al. [75] and Dubay and Kresse [76], in (10,10) and

(11,11) nanotubes, the C60 molecules form a quasi one-dimensional system, and the

energy is close to a one-dimensional system of C60 molecules to which the interac-

tion energy with the tube is added. However, a phase transition occurs when the

tube radius becomes larger, resulting in an increase in the dimensionality of the

C60 fullerenes inside the tube. From a Monte Carlo study, Hodak and Girifalco

[66] report a zigzag structure of C60 molecules inside a (15,15) nanotube. To ob-

tain the interaction energy in a quasi one-dimensional system (e.g. C60 fullerenes

in a (10,10) tube), only three nearest neighbour interactions are taken into account,

while for three-dimensional N molecules, Hodak and Girifalco [66] assume that the

potential energy consists of two parts. These comprise, firstly, the nearest neigh-

bour interactions between molecules which depend on the inter-molecular distance

measured along the axial direction, and secondly, the contribution from the energy

that depends on the offset distance of each molecule from the tube central axis.

From the literature, very little work has been undertaken on the mathemati-

cal modelling to describe the encapsulation behaviour of nanopeapods. The aim of

this study is to utilise fundamental mechanical principles and conventional applied

mathematical modelling to determine the energy behaviour for the three encapsu-

lation scenarios of the C60 fullerene, which are presented in §4.3. In addition, the

Lennard-Jones potential function and the continuum approximation are employed

to determine the van der Waals energy for the C60 fullerene encapsulated into a

carbon nanotube. In particular, the (10,10), (16,16) and (20,20) carbon nanotubes

are investigated where their radii are in the range 6.27 - 13.57 Å following Hodak

and Girifalco [74], who determine fullerene peapod patterns. Carbon nanotubes

with radii smaller than that of a (10,10) nanotube are not studied here, since it has
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already been shown that a C60 fullerene will not be sucked into such tubes (see for

example Cox et al. [57]). Once C60 fullerenes are encapsulated into a single-walled

carbon nanotube, the total potential energy and configuration, which is assumed to

form either a zigzag or a spiral pattern, of the nanopeapod are determined and are

shown in §4.4.

Note that by adopting the continuum approximation, the chirality effect of a

carbon nanotube is not taken into account, and the use of (n,m) therefore refers only

to a representative of the tube size given by (2.1). In all cases, a vacuum environment

and an isothermal mechanical system are assumed, and the C60 fullerene is assumed

to be at rest.

4.3 Encapsulations of C60 fullerene

To determine the interaction energy between a spherical fullerene and a carbon

nanotube for a typical point on the carbon nanotube, the surface integral of the

Lennard-Jones potential over the sphere is firstly performed, which is detailed in

Appendix C. The interaction energy between a C60 molecule and a nanotube is

subsequently obtained by performing another surface integral over the cylindrical

tube. In this section, three encapsulation mechanisms for a C60 fullerene entering a

tube, which are (i) through the tube open end (head-on), (ii) around the edge of the

tube open end and (iii) through a defect opening on the tube wall, are investigated,

and the details are presented.

4.3.1 Encapsulation of a C60 head-on at an open end
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Figure 4.1: C60 fullerene encapsulated in carbon nanotube head-on at an open end.

The encapsulation of a C60 molecule into a single-walled carbon nanotube by

head-on at the tube open end, as shown in Figure 4.1, is determined here. The C60
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fullerene is assumed to be located on the tube axis and initially at rest. In fact, this

is the model in Cox et al. [57] for the acceptance condition and suction energy of

the C60 fullerene and the single-walled carbon nanotube.

With reference to a rectangular Cartesian coordinate system (x, y, z) with origin

located at the tube end, a typical point on the surface of the tube has the coordinates

(b cos θ, b sin θ, z) where b is the radius of the semi-infinite tube. Similarly, with

reference to the same rectangular Cartesian coordinate system (x, y, z), the centre

of the C60 molecule has coordinates (0, 0, Z) where Z is the distance in the z-direction

which can be either positive or negative. Thus the distance ρ between the centre of

the C60 fullerene and a typical point on the tube is given by

ρ2 = b2 + (z − Z)2. (4.1)

Using the Lennard-Jones potential function together with the continuum approxi-

mation, the total potential can be written as

E = bηg

∫ π

−π

∫ ∞

0

E∗(ρ)dzdθ,

where ηg represents the mean atomic surface density of the carbon nanotube, ρ is

given in (4.1) and E∗(ρ) is defined by

E∗(ρ) =
πaηf

ρ

[
A

2

(
1

(ρ + a)4
− 1

(ρ− a)4

)
− B

5

(
1

(ρ + a)10
− 1

(ρ− a)10

)]
. (4.2)

By expanding the denominators, the integrals which need to be evaluated are of the

form

Gn =

∫ π

−π

∫ ∞

0

1

(ρ2 − a2)n
dzdθ

=

∫ π

−π

∫ ∞

0

1

[b2 − a2 + (z − Z)2]n
dzdθ, (4.3)

where n is a certain positive integer. It is clear that (4.3) is independent of θ so that

Gn = 2π

∫ ∞

0

1

[b2 − a2 + (z − Z)2]n
dz. (4.4)

The details of the analytical expression (4.4) are presented in Appendix D.1 and the

numerical solution is evaluated as follows.

Using the parameter values from Table 3.1, the relation between the potential
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Figure 4.2: Energy profile for C60 encapsulated by head-on at open end.

energy and the distance Z for the C60 molecule encapsulated into the (10,10), (16,16)

and (20,20) carbon nanotubes by head-on are shown in Figure 4.2. We comment

that this energy profile of Figure 4.2 was first given in Hodak’s thesis [77]. The en-

ergetically favourable location for the C60 fullerene is inside the tube, in the positive

direction of Z, for all three cases. Furthermore, the binding energies which is the

energy required to separate the two bodies are 3.222, 0.326 and 0.109 eV for the

(10,10), (16,16) and (20,20) carbon nanotubes, respectively. The lowest potential

energy is observed to occur for the case of the (10,10) tube, since the preferred

location of the C60 molecule is on the tube axis [36]. As a result, offset locations

from the tube axis for the (16,16) and (20,20) tubes are required to give rise to the

most stable configurations and these details can be found in Girifalco et al. [36] and

Cox et al. [54]. We comment that the energy profile of Figure 4.2 was first given in

Hodak’s thesis [77].

4.3.2 Encapsulation of C60 around the edge of an open end

In this subsection, the energy for a C60 molecule encapsulated into a carbon nanotube

by entering the tube around the tube edge at the open end is investigated. With

reference to the same rectangular Cartesian coordinate system (x, y, z), a typical

point on the surface of the tube has the coordinates (b cos θ, b sin θ, z) where b is

the radius of the semi-infinite tube. Similarly, with reference to the rectangular
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Figure 4.3: C60 fullerene encapsulated in carbon nanotube around the edge of an
open end.

Cartesian coordinate system (x, y, z), the centre of the C60 molecule has coordinates

(x, 0, Z) where Z is the distance in the z-direction which can be either positive or

negative. The distance Z and the coordinate x can also be described in terms of an

angle φ and the distance r in the radial direction, Z = r cos φ and x = r sin φ+ b, as

illustrated in Figure 4.3. Thus the distance ρ between the centre of the C60 fullerene

and a typical point on the tube is given by

ρ2 = (b cos θ − x)2 + b2 sin2 θ + (z − Z)2

= (b− x)2 + 4bx sin2(θ/2) + (z − Z)2. (4.5)

The total potential energy is obtained by integrating E∗(ρ), which is defined by

(4.2), over the tube length and the angle θ. Thus there is one form of the integral

which needs to be evaluated, given by

Hn =

∫ π

−π

∫ ∞

0

1

(ρ2 − a2)n
dzdθ, (4.6)

where ρ is given by (4.5). Further, there are three possible expressions for (4.6) and

these details are presented in the Appendix D.2. Although the analytical expressions

for (4.6) are clearly complicated, numerical values may be readily evaluated using

the algebraic computer package MAPLE. Note that the total potential energy in

terms of the distance r and the angle φ can be obtained by replacing Z = r cos φ

and x = r sin φ + b.

To confirm the results the numerical evaluation for the encapsulation of the C60

molecule around the edge at the tube end are determined using both polar and
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Cartesian coordinate systems. In terms of the polar coordinate system, the relation

between the binding energy and the equilibrium distance for different angles φ is

presented in Table 4.1. The lowest binding energy is observed to occur at φ ≈ 165◦

for all three cases due to the edge effect. Consequently, this value of φ is the critical

value which determines whether or not the C60 molecule is encapsulated into the

tube. The “equilibrium distance” refers to the cross-sectional location adopted by

the C60 fullerene in the carbon nanotube, and it is defined as the distance between

the tube edge and the centre of the fullerene at equilibrium. The equilibrium distance

are obtained as 6.775, 6.540, and 6.550 Å for φ = 270◦ and for each of the (10,10),

(16,16) and (20,20) tubes, respectively. These values are equivalent to 0.009, 4.306

and 7.007 Å, respectively, away from the tube axis to the centre of the C60 fullerene

in the x-direction, which is in agreement with the work of Cox et al. [54].

Table 4.1: Numerical values for binding energy (BE) in eV and the equilibrium
distance (E0) in Å for a C60 fullerene encapsulated in a carbon nanotube around
the tube edge at the open end for different angles φ.

(10,10) (16,16) (20,20)
φ BE E0 BE E0 BE E0

15◦ 0.53424 25.16055 0.58315 25.14903 0.60398 25.14903
30◦ 0.53026 13.01349 0.57883 13.00486 0.59953 13.00486
45◦ 0.51050 9.18529 0.55756 9.20351 0.57737 9.18603
60◦ 0.45467 7.53991 0.49675 7.56151 0.51479 7.54922
75◦ 0.35970 6.77549 0.39343 6.79463 0.40775 6.81484
90◦ 0.26722 6.47536 0.29169 6.51166 0.30211 6.51166
105◦ 0.20322 6.32529 0.22146 6.36167 0.22892 6.35916
120◦ 0.16640 6.30654 0.17929 6.32301 0.18476 6.32103
135◦ 0.14647 6.26761 0.15413 6.21275 0.15967 6.28291
150◦ 0.13894 6.26761 0.14378 6.21275 0.14722 6.28291
165◦ 0.14169 6.26761 0.14250 6.21275 0.14412 6.28291
180◦ 0.15563 6.26761 0.14998 6.21275 0.14929 6.28291
195◦ 0.18511 6.26761 0.16666 6.21275 0.16318 6.28291
210◦ 0.24079 6.30654 0.19779 6.30216 0.18779 6.28291
225◦ 0.34809 6.34427 0.24633 6.30216 0.22694 6.32103
240◦ 0.56623 6.44215 0.32206 6.34055 0.28746 6.32103
255◦ 1.01175 6.66655 0.43751 6.42551 0.38012 6.40225
270◦ 1.62119 6.77519 0.60665 6.53999 0.51827 6.55048

In terms of the Cartesian coordinate system, the potential energy of the system

depends on both distances in the x- and z-directions. An example of the potential

energy versus the distance Z for the encapsulation of the C60 fullerene into the
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(10,10) tube is presented. Primarily, our interest is in the positive z-direction where

the C60 molecule is located above the tube. As shown in Figure 4.4, the C60 fullerene

will not be encapsulated into the tube if its location is far from the edge of the tube.

This is because of the lower energy level at that position and the high energy peak

near the tube end. However, a nanopeapod might be formed if an initial energy is

given to the C60 molecule to overcome the energy barrier. The C60 fullerene has a

greater probability of encapsulation around the tube edge if it is initiated from rest

closer to the tube edge. If the value of x is greater than 13.034 Å, the C60 fullerene

has no chance of being sucked into the carbon nanotube since the global minimum

energy position is located further along the tube in the positive z-direction. Note

that for the C60 molecule to overcome the energy barrier and located in the negative

z-direction, the analysis for the suction by head-on applies for the encapsulation.

Figure 4.4: Energy profile for C60 encapsulated into (10,10) tube.

4.3.3 Encapsulation of C60 at a defect opening on the tube
wall

The potential energy for a C60 fullerene encapsulated into a carbon nanotube at a

defect opening on the tube wall, which is centrally located mid-way along the tube

length, is determined here. Since the Lennard-Jones potential is only effective at

short range, the carbon nanotube is assumed to be infinite in length. From (2.3)
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the total potential energy of the system is obtained by subtracting the total energy

of the C60 fullerene interacting with the defect pad from the total potential energy

of the C60 fullerene interacting with the infinite carbon nanotube, as illustrated in

Figure 4.5.
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Figure 4.5: C60 fullerene encapsulated in carbon nanotube at defect opening on the
tube wall.

Again with reference to the rectangular Cartesian coordinate system (x, y, z), a

typical point on the surface of the tube has the coordinates (b cos θ, b sin θ, z) where

b is the radius of the infinite tube. Similarly, with reference to the rectangular

Cartesian coordinate system (x, y, z) with origin located at the centre of the tube,

the centre of the C60 molecule is assumed to have coordinates (x, 0, Z) where Z is

the distance in the z-direction which can be either positive or negative. Thus the

distance ρ between the centre of the C60 fullerene and a typical point on the tube is

given by

ρ2 = (b cos θ − x)2 + b2 sin2 θ + (z − Z)2

= (b− x)2 + 4bx sin2(θ/2) + (z − Z)2. (4.7)

The total potential energy for the entire tube interacting with the C60 fullerene is

given by

Etube = bηg

∫ π

−π

∫ ∞

−∞
E∗(ρ)dzdθ, (4.8)

where ηg denotes the mean atomic surface density of the carbon nanotube, E∗(ρ) is

defined by (4.2) and ρ is given in (4.7). The defect pad is assumed to occupy the

region Z ∈ (−L,L) and θ ∈ (−θ0, θ0) so that the interacting energy between the

C60 molecule and the defect pad is given by

Epad = bηg

∫ θ0

−θ0

∫ L

−L

E∗(ρ)dzdθ, (4.9)
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where ρ is also given by (4.7). Thus the total potential energy for the C60 fullerene

encapsulated in the carbon nanotube at the defect opening on the tube wall is

obtained from

E = bηg

( ∫ π

−π

∫ ∞

−∞
E∗(ρ)dzdθ −

∫ θ0

−θ0

∫ L

−L

E∗(ρ)dzdθ

)
. (4.10)

By precisely the same analytical method as shown in the pervious section,(4.8) and

(4.9) are separately determined and the total potential energy (4.10) is numerically

calculated for the system.

The defect pad is arbitrarily chosen to be a square such that the length L is

the radius a of the C60 fullerene plus the equilibrium interspacing between the C60

fullerene and the graphene which is 3.25 Å [36]. Using the arc length formula s = bθ,

the limit of the integration θ0 is adopted to be determined from L = bθ0. Note that

varying θ0 has only a minor effect on the energy profile and that the overall properties

of the system remain the same when L is greater than the critical value 6.8 Å.

The relation between the potential energy and the distance Z for different values

of x, which is the interspacing between the C60 molecule and the tube wall, is

examined, and all cases have similar behaviour. An example for the energy profile

for the interacting of the C60 molecule and the (10,10) tube is shown in Figure 4.6.

In terms of the binding energy, such energy is concentrated at both edges of the

defect pad because of the point-force singularity effected from the edges. In this

case, an approximate value at 0.225 eV is obtained from both edges of the defect

pad. Using the Boltzmann formula 3kT/2 for kinetic energy where k = 1.38065−23

m2kgs−1K, this corresponds to a temperature of approximately 1972 K, and therefore

an energy of 0.039 eV is required for the C60 molecule to be encapsulated into the

(10,10) at room temperature T = 300K. Moreover, two potential energy peaks near

the edges of the defect pad for x ≤ 13.034 Å are observed, so that if the C60

molecule is located outside the region of the pad, an initial energy is required for

the C60 fullerene to be absorbed into the nanotube. However, the C60 molecule is

spontaneously sucked in through the defect opening when its position is directly

above the defect. Furthermore, if the value of x is greater than 13.034 Å, the global

minimum energy position is always located outside the region of the pad along the

tube in the z-position. Subsequently, the C60 fullerene will not be adsorbed through
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the pad and a nanopeapod cannot be formed.

Figure 4.6: Potential energy profile along the (10,10) tube.

4.4 Zigzag and spiral configurations for nanopeapods

The continuum approximation and the Lennard-Jones potential function are used

to determine the potential energy of a nanopeapod, which is assumed to form either

a zigzag or a spiral configuration. The analysis for zigzag nanopeapods comprising

(2k + 1) C60 molecules is then presented in the following subsection. Furthermore,

the investigation for nanopeapods with a spiral configuration and comprising k C60

molecules is presented in subsection §4.4.3. For both cases analytical expressions

are obtained and the minimum energy configurations are determined.

4.4.1 Zigzag nanopeapods comprising (2k+1) C60 molecules

The preferred pattern for a zigzag chain of C60 fullerenes inside a single-walled carbon

nanotube, the so-called nanopeapod, is investigated, and an interaction energy is

determined in the following manner. A configuration, as shown in Figure 4.7, is

assumed to comprise (2k + 1) C60 molecules located as indicated and the total

energy of the system is assumed to comprise:

1. (2k+1) C60 fullerenes each interacting with all the carbon atoms of the carbon

nanotube,
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2. 2(2k − 1) type I interactions, comprising two for each j = 2, 3, ..., k and i =

2, 3, ..., k − 1 and one for each of j = 1, k + 1 and i = 1, k; thus 2(k − 1 + k −
2) + 4 = 2(2k − 1),

3. 4k type II interactions, comprising two for each j = 2, 3, ..., k and i = 1, 2, ..., k

and one for each of j = 1, k + 1; thus 2(k − 1 + k) + 2 = 4k,

where the nearest neighbour interactions of types I and II are shown in Figure 4.7.

Furthermore, all other non-nearest neighbour interactions are assumed to be suf-

ficiently small such that their contributions to the total energy can be neglected.

Note that the van der Waals force is a short-range force, so that for example for two

interacting C60 fullerenes, it operates at the van der Waals diameter of 8.9424 Å,

and since the nearest neighbour approximation involves a distance between fullerene

centres of at least 10.0375 Å, only a single nearest neighbour interaction needs to be

considered. The distance in the z direction between centres of adjacent molecules is

assumed to be Z. Then the centre of the upper jth C60 molecule (j = 1, 2, ..., k + 1)

is located at position 2(j − 1)Z, while the centre of the lower ith C60 molecule

(i = 1, 2, ..., k) is located at position Z + 2(i− 1)Z = (2i− 1)Z.

�

� � � � �

� � � � � �

� � � 	 
 � � � 
 � � �

� 	 
 � � � 
 � � � � � � � � �

� � � �

� � �

� �

�
e

-e

�

�

Figure 4.7: Zigzag configuration for (2k+1) C60 fullerenes inside a carbon nanotube.

With reference to a rectangular Cartesian coordinate system (x, y, z), a typical

point on the surface of the tube has coordinates (b cos θ, b sin θ, z) where b is the

radius of the tube. The length of the tube is assumed to be 2L where L may tend

to infinity. Similarly, with reference to a rectangular Cartesian coordinate system

(x, y, z) with the origin located at the centre of the most left C60 molecule, the centres

of the upper jth C60 molecules have coordinates (ε, 0, 2Z(j−1)) (j = 1, 2, ..., (k+1))

and the centres of the lower ith C60 molecules have coordinates (−ε, 0, Z(2i − 1))
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(i = 1, 2, ..., k), where Z is the distance between centres of adjacent C60 fullerenes

and ε is the offset position from the centre of the tube to the centre of the C60

fullerene in the x direction, as illustrated in Figure 4.7. Then from equation (2.6)

for a many-body system, the total potential energy is obtained by

Etot =
k∑

i=1

Ei(ρi) +
k+1∑
j=1

Ej(ρj) + (2k − 1)E∗∗(d1) + 2kE∗∗(d2),

where d1 and d2 are the distances between the centres of C60 fullerenes as shown

in Figure 4.7, and d2
1 = 4Z2 and d2

2 = 4ε2 + Z2. The potential functions E∗∗(d1)

and E∗∗(d2) arise from the type I and type II interactions between a pair of C60

molecules, respectively, and are defined by

E∗∗(d) = η2
f (AP6 + BP12), (4.11)

where

Pn =
4π2a2

d(2− n)(3− n)

(
1

(2a + d)n−3
− 1

dn−3
− 1

(2a− d)n−3
+

1

(−d)n−3

)
,

as derived in Appendix C. The potential functions Ei and Ej represent the energy

of a C60 fullerene interacting with the carbon nanotube, which is obtained from

Em = bηg

∫ π

−π

∫ L

−L

E∗(ρm)dzdθ, (m = i, j) (4.12)

where ηg is the mean atomic surface density for a carbon nanotube and the length

L is subsequently taken to be infinite. The potential function E∗ is defined by (4.2)

and ρm (m = i and j) are given by

ρ2
i = (b + ε)2 − 4bε sin2(θ/2) + [z − Z(2i− 1)]2,

ρ2
j = (b− ε)2 + 4bε sin2(θ/2) + [z − 2Z(j − 1)]2.

According to equations (C.2), (C.3) and (4.12), the following equation needs to be

evaluated

In =

∫ π

−π

∫ ∞

−∞

1

(ρ2
m − a2)n

dzdθ, (4.13)
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where n is an integer. The details for evaluating (4.13) are presented in Ap-

pendix D.3, which can be written as

In =
π2

22n−3(αm + βm)n−1/2

(
2(n− 1)

n− 1

)
F

(
n− 1

2
,
1

2
; 1; 1− γm

)
,

where F (a, b; c; z) denotes the usual hypergeometric function,
(

x
y

)
represents the

usual binomial coefficient, γm = αm/(αm + βm) (m = i and j), αi = (b + ε)2 − a2,

βi = −4bε, αj = (b− ε)2 − a2 and βj = 4bε.

4.4.2 Numerical solutions for zigzag nanopeapods

By minimising the total energy of the system, the offset location ε from the centre

of the tube to the centre of the C60 fullerene and an equilibrium distance Z between

centres of a pair of C60 molecules for zigzag nanopeapods are determined. The total

potential energy consists of two nearest neighbour interactions of two C60 fullerenes

and one interaction between the C60 fullerene and the carbon nanotube. An infinite

length nanopeapod comprising (2k + 1) C60 molecules inside (10,10), (16,16) and

(20,20) carbon nanotubes are examined. Using the algebraic computer package

MAPLE together with the parameter values in Table 3.1, the numerical values for

the offset location ε, the equilibrium distance Z and the total potential energy Etot

are presented in Table 4.2. Note that the global minimum energy location of the

system is first plotted to ensure a genuine global minimum and the optimisation

package in MAPLE is then utilised to find the optimum values for each parameter

at this location.

In the case of the (10,10) carbon nanotube, an offset position is obtained as ε = 0

which is equivalent to a distance of 3.234 Å from the tube wall to the nearest atom

on the C60 molecule, which compares well with Okada et al. [65]. The equilibrium

distance is shown to be Z = 10.0375 Å for three C60 molecules inside the tube,

which is in excellent agreement with Rochefort [67]. As a result, all C60 fullerenes

inside the (10,10) tube are likely to align and form a linear chain along the tube

axis. The equilibrium distance decreases slightly as the number of the C60 molecules

is increased due to the packing of the molecules. Moreover, the C60 fullerenes move

closer to the wall as the radius of the tube increase. The offset positions of ε = 4.30

Å and ε = 7.02 Å are obtained and these are equivalent to the equilibrium distances
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Table 4.2: Equilibrium distance Z (Å), offset location ε (Å) and total potential
energy of the system Etot (eV) for each pair of C60 fullerenes in a zigzag configuration
nanopeapod comprising (2k + 1) C60 molecules.

k (10,10) (16,16) (20,20)
Z ε Etot Z ε Etot Z ε Etot

1 10.0550 0 -6.7632 5.2176 4.2977 -2.7048 0 7.0213 -2.0941
2 10.0543 0 -13.8074 5.0390 4.3216 -6.2354 5.0267 7.0220 -4.7420
3 10.0542 0 -20.8516 5.0366 4.3232 -9.7692 5.0269 7.0217 -7.3973
4 10.0542 0 -27.8958 5.0358 4.3239 -13.3031 5.0269 7.0215 -10.0526
5 10.0541 0 -34.9400 5.0354 4.3244 -16.8370 5.0269 7.0214 -12.7079
10 10.0541 0 -70.1612 5.0347 4.3251 -34.5067 5.0270 7.0212 -25.9845
15 10.0540 0 -105.3823 5.0345 4.3255 -52.1764 5.0270 7.0211 -39.2611
20 10.0540 0 -140.6034 5.0344 4.3255 -69.8460 5.0270 7.0211 -52.5377
25 10.0540 0 -175.8245 5.0344 4.3256 -87.5157 5.0270 7.0210 -65.8143
50 10.0540 0 -351.9301 5.0343 4.3257 -175.8641 5.0270 7.0210 -132.1973
100 10.0540 0 -704.1413 5.0342 4.3258 -352.5610 5.0270 7.0210 -274.9634

of Z = 5.024 Å and Z = 5.018 Å for the (16,16) and (20,20) carbon nanotubes,

respectively. For these two cases, the zigzag pattern is more clearly evident along

the tube. However, for the three C60 fullerenes inside the (20,20) carbon nanotube,

the equilibrium distance is obtained as Z = 0 which means that although a zigzag

pattern exists, all three of the C60 molecules are in the same plane. This is because

there is a sufficient amount of space for the three C60 molecules to align themselves

due to the large circumference of tube. This result is related to the investigation

made by Hodak and Girifalco [74]. Furthermore, upon considering C60 fullerenes

inside a (15,15) nanotube, the results suggest ε ' 3.6 Å and Z ' 6.9 Å which agree

well with Hodak and Girifalco [66].

The offset locations for all three nanopeapod configurations found in this inves-

tigation are in a very good agreement with Cox et al. [57] for a single C60 fullerene

inside a single-walled carbon nanotube. Moreover, the interaction energy between

the C60 fullerenes is observed to have more effect in forming the chain conformation

than the interaction energy between the tube and the C60 fullerene. For example,

an equilibrium distance of 10.036 Å is obtained for (10,10) nanopeapod, which is

comparable to the equilibrium distance between two C60 molecules as determined in

Appendix C. Furthermore, the number of C60 molecules in the system makes only



Chapter 4: Nanopeapods 55

a minor contribution to the alignment of the molecules as shown in Table 4.2.

4.4.3 Spiral nanopeapod comprising k C60 molecules

In this subsection, a spiral configuration is assumed for k C60 fullerenes, which are

located inside a single-walled carbon nanotube, as shown in Figure 4.8. The energy

of the system is minimised and the angular spacing α, the longitudinal spacing β

and the offset location ε for a spiral pattern are determined. The total potential

energy of the system is assumed to comprise:

1. k C60 fullerenes each interacting with all the carbon atoms of the carbon

nanotube,

2. 2(k− 1) type I interactions, comprising two for each i = 2, 3, ..., k− 1 and one

for each of i = 1 and i = k; thus 2(k − 2) + 2 = 2(k − 1),

3. 2(k−2) type II interactions, comprising two for each i = 3, 4, ..., k−2 and one

for each of i = 1, 2 and i = k − 1, k; thus 2(k − 4) + 4 = 2(k − 2),

4. 2(k − 3) type III interactions, comprising two for each i = 4, 5, ..., k − 3 and

one for each of i = 1, 2, 3 and i = k− 2, k− 1, k; thus 2(k− 6) + 6 = 2(k− 3),

5. 2(k−4) type IV interactions, comprising two for each i = 5, 6, ..., k−4 and one

for each of i = 1, 2, 3, 4 and i = k−3, k−2, k−1, k; thus 2(k−8)+8 = 2(k−4),

where the four nearest neighbour interactions of types I, II, III and IV are as shown

in Figure 4.8.
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Figure 4.8: Spiral configuration for k C60 molecules inside a carbon nanotube.

With reference to a rectangular Cartesian coordinate system (x, y, z), a typical

point on the surface of the tube has the coordinates (b cos θ, b sin θ, z) where b is



Chapter 4: Nanopeapods 56

the radius of the tube. The length of the tube is assumed to be 2L, where L can

tend to infinity. Similarly, with reference to a rectangular Cartesian coordinate

system (x, y, z) with the origin located at the centre of the left most C60 molecule,

the centres of C60 molecules have coordinates (ε cos αi, ε sin αi, βi) (i = 1, 2, .., k),

where ε represents the offset location, and α and β denote the angular and the

longitudinal spacings for the spiral shape, respectively. Noting that α = π, gives

rise to the special case of the zigzag pattern. From a potential energy for many-body

system (2.6), the total potential energy is given by

Etot =
k∑

i=1

Ei(ρi) + (k − 1)E∗∗(d1) + (k − 2)E∗∗(d2) + (k − 3)E∗∗(d3)

+(k − 4)E∗∗(d4),

where d` (` = 1, 2, 3, 4) are the distances between centres of C60 fullerenes as shown

in Figure 4.8, and

d2
` = 4ε2 sin2(`α/2) + (`β)2. (4.14)

The potential function E∗∗(d`) represents types I, II, III and IV interactions which

are the potential energies between a pair of C60 fullerenes defined by (4.11). The

potential function Ei (i = 1, 2, .., k) represents the energy of a C60 fullerene inter-

acting with the carbon nanotube, which is obtained from (4.12) where in this case

m = i and i = 1, 2, ..., k. The function E∗ is defined by (4.2) and ρi (i = 1, 2, .., k)

is given by

ρ2
i = (b− ε)2 + 4bε sin2[(θ − αi)/2] + (z − βi)2.

Because of the assumed symmetry of the tube, the term αi has no effect for the

integral in (4.12) so on assuming αi = 0, ρ2
i simplifies to obtain

ρ2
i = (b− ε)2 + 4bε sin2(θ/2) + (z − βi)2.

According to equations (C.2), (C.3) and (4.12), in the limit as L tends to infinity

the following integral needs to be evaluated

In =

∫ π

−π

∫ ∞

−∞

1

(ρ2
i − a2)n

dzdθ, (4.15)

where n is an integer. Using precisely the same method as the derivation of (4.13), it

can be shown that the solution for (4.15) is again in the form of the hypergeometric
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function and can be written as

In =
π2

22n−3(αi + βi)n−1/2

(
2(n− 1)

n− 1

)
F

(
n− 1

2
,
1

2
; 1; 1− γi

)
,

where as before F (a, b; c; z) denotes the usual hypergeometric function,
(

x
y

)
rep-

resents the usual binomial coefficient, αi = (b − ε)2 − a2, βi = 4bε and γi =

[(b− ε)2 − a2]/[(b + ε)2 − a2].

4.4.4 Numerical solutions for spiral nanopeapods

The energy minimisation technique is employed here to determine the stable con-

figurations of a spiral chain of C60 fullerenes inside a single-walled carbon nan-

otube. Nanopeapods comprising k C60 molecules inside infinite (10,10), (16,16) and

(20,20) carbon nanotubes with four possible nearest neighbour interactions for two

C60 molecules and one interaction between the C60 molecule and all the atoms of

the carbon nanotube are considered. Again, using the algebraic computer package

MAPLE and the parameter values in Table 3.1, numerical values for the angular

spacing α, the longitudinal spacing β, the offset location ε and the total potential

energy Etot for such a chain are obtained, which are shown in Table 4.3. Note that

β is analogous to the equilibrium distance Z for the zigzag configuration.

For the (10,10) carbon nanotube, the offset location is also obtained as ε = 0.

Moreover, from (4.14), the angular spacing α has no effect on this configuration, and

the longitudinal spacing β is found to be 10.03 Å. Subsequently, the C60 fullerenes

form a linear chain along the tube axis. These three parameters, α, β and ε, change

slightly as the number of C60 fullerenes in the tube increases. The angular spacing

is α ' π for the (16,16) tube, which corresponds to the zigzag configuration, and

is close to π/2 for the (20,20) tube. For k = 100, β = 5.0217 Å, ε = 4.3228 Å

and β = 2.2918 Å, ε = 6.8902 Å for the (16,16) and the (20,20) tubes, respectively.

Consequently, spiral patterns for C60 fullerenes in both the (16,16) and the (20,20)

nanotubes are clearly observed.

In particular, the zigzag configuration can be thought of as a special case of the

spiral configuration with angular spacing α = π. The comparable numerical values

for the offset location ε and the longitudinal spacing β for all sizes of the tubes are

obtained, and an example is shown for the case of a (16,16) carbon nanotube in
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Table 4.3. Moreover, in the case of a (20,20) tube, at least four C60 molecules are

required to form a stable spiral configuration. This observation is related to the

findings of Hodak and Girifalco [74] in the sense that four molecules are required on

each layer within the carbon nanotube with radius 13.5 Å to 14.05 Å.

4.5 Summary

In this chapter, a well-known self-assembled hybrid carbon nanostructure of C60

fullerenes and a carbon nanotube, so-called nanopeapod, is investigated. Through-

out this study, Lennard-Jones potential function together with the continuum ap-

proximation and double surface integrals are evaluated to determine the potential

energy which may be expressed analytically in terms of the hypergeometric function.

Due to the complicated analytical expressions, numerical evaluations are performed

by using the algebraic computer package MAPLE.

Firstly, three suction site scenarios are considered for a C60 molecule entering

a carbon nanotube, which are (i) by head-on at the tube open end, (ii) around

a tube edge at the tube open end and (iii) at a defect opening on the tube wall.

The C60 fullerene is assumed to be initially at rest prior to entering into the three

specific carbon nanotubes (10,10), (16,16) and (20,20) in a vacuum environment.

The binding energies for the three encapsulation mechanisms are compared and it

is found that the C60 molecule is most likely to enter through the carbon nanotube

by the head-on configuration. This is because of the overall attractive force arising

from the entire tube, and this mechanism avoids the point force singularity acting

at the tube edge. Absorption at a defect is the second most likely mechanism to

form the nanopeapod. There is an effect from the edges of the defect, but when the

C60 fullerene is directly above the defect it is a straightforward matter for the C60

fullerene to be sucked into the tube. The least feasible mechanism to encapsulate

the C60 fullerene is entering around the edge of the tube open end, since the C60

molecule must overcome strong repulsive forces at the tube end and change the

moving direction to enter into the tube. However, the encapsulation around the

edge of the tube open end may provide a way for molecules which do not approach

the tube along its axis to enter into the tube, and it is an important mechanism

to collect molecules along the outside of the tube. As a result, the quantitative
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investigations in this study are in agreement with previous studies such as Ulbricht

and Hertel [71] and Ulbricht et al. [73], but our predictions contradict those of

Berber et al. [72]. This disagreement may occur due to the probability of achieving

encapsulation. While the head on configuration is the most favourable energetically,

the probability of a molecule hitting an open end is much less than a molecule going

through an edge or defect configuration. A molecule is readily adsorbed on the tube,

and its translation across the tube surface is rapid and nearly energy free.

Once C60 molecules are encapsulated into a single-walled carbon nanotube, two

nonlinear patterns for a C60 fullerene chain, which are assumed to be zigzag and

spiral, are examined. For the zigzag configuration, there is assumed to be (2k+1) C60

molecules inside (10,10), (16,16) and (20,20) single-walled carbon nanotubes, and the

offset location ε and the equilibrium distance Z are determined. The total potential

energy of the system comprises the interaction energy between the C60 fullerenes

and the tube and the two nearest neighbour interactions of the C60 molecules. The

chain of C60 molecules is found to be formed linearly along the (10,10) tube axis

and discernible zigzag patterns exist for both the (16,16) and (20,20) tubes. The

spiral configuration comprising k C60 molecules is also investigated. The interaction

energy between the C60 fullerenes and the tube and the four nearest neighbour

interactions between the C60 molecules is considered. The angular spacing α, the

longitudinal spacing β and the offset location ε are determined from minimisation

of the interaction energies. A linear C60 fullerene chain along the (10,10) tube axis

and spiral patterns for the (16,16) and (20,20) tubes are obtained. In particular,

α = π gives rise to the special case of the zigzag pattern, and comparable numerical

values for the zigzag configuration from the spiral configuration by setting α = π

are observed.

In general, the interaction energy between the C60 molecules themselves dom-

inates the energy of the system. The interaction between the C60 molecules de-

termines the equilibrium position and the angular spacing of the system, whereas

the interaction between the C60 fullerene and the carbon nanotube determines the

offset position of the chain. Further, in the zigzag configuration, the number of C60

molecules makes a minor contribution to both the offset location and the equilib-

rium distance so that the assumption of periodicity made for the molecular dynamics



Chapter 4: Nanopeapods 60

simulations is quite reasonable. However, the periodicity assumption may not ap-

ply for the spiral configuration since as the radius of the tube increases the system

requires more C60 molecules to maintain the stability of the system. Finally, for a

tube which is finite in length, the results given here also apply providing that the

two fullerenes located closest to the tube ends are at a distance from the end which

is at least the van der Waals radius 4.4712 Å. If this is not the case, some small

variation of the numerical values given here might be expected, since at the tube

ends peak-like forces exist (see for example Cox et al. [54]) which would tend to

diminish the distance between centres.



Chapter 4: Nanopeapods 61

T
ab

le
4.

3:
A

n
gu

la
r

sp
ac

in
g

α
,
lo

n
gi

tu
d
in

al
sp

ac
in

g
β
,
off

se
t

lo
ca

ti
on

ε
in

Å
an

d
to

ta
l
p
ot

en
ti

al
en

er
gy

of
th

e
sy

st
em

E
to

t
(e

V
)

fo
r

ea
ch

p
ai

r
of

C
6
0

fu
ll
er

en
es

in
a

sp
ir

al
co

n
fi
gu

ra
ti

on
n
an

op
ea

p
o
d

co
m

p
ri

si
n
g

k
C

6
0

m
ol

ec
u
le

s.

k
(1

0,
10

)
(1

6,
16

)
(2

0,
20

)
α

β
ε

E
to

t
α

β
ε

E
to

t
α

β
ε

E
to

t

3
0

10
.0

54
5

0
-1

0.
28

52
3.

14
16

5.
04

42
4.

31
95

-4
.4

67
1

1.
34

90
4.

90
83

7.
02

51
-3

.6
70

9
4

0
10

.0
54

3
0

-1
3.

80
75

3.
14

16
5.

03
85

4.
32

16
-6

.2
39

5
1.

55
66

0.
88

31
7.

02
39

-5
.2

97
8

5
0

10
.0

54
3

0
-1

7.
32

97
3.

14
16

5.
03

66
4.

32
26

-8
.0

12
0

1.
54

36
2.

49
84

7.
00

57
-6

.6
96

6
10

0
10

.0
54

1
0

-3
4.

94
09

3.
14

16
5.

03
41

4.
32

44
-1

6.
87

49
1.

55
65

2.
50

63
6.

98
40

-1
4.

94
46

15
0

10
.0

54
0

0
-5

2.
55

21
3.

14
16

5.
03

35
4.

32
49

-2
5.

73
79

1.
56

49
2.

50
78

6.
97

09
-2

3.
19

89
20

0
10

.0
54

0
0

-7
0.

16
33

3.
14

16
5.

03
33

4.
32

51
-3

4.
60

29
1.

71
94

2.
29

31
6.

91
81

-3
3.

57
03

25
0

10
.0

54
0

0
-8

7.
77

45
3.

14
16

5.
03

31
4.

32
53

-4
3.

46
40

1.
71

94
2.

29
34

6.
91

63
-4

2.
50

48
50

0
10

.0
54

0
0

-1
75

.8
30

6
3.

14
16

5.
03

29
4.

32
56

-8
7.

77
91

1.
71

94
2.

29
41

6.
91

26
-8

7.
17

85
10

0
0

10
.0

53
9

0
-3

51
.9

42
6

3.
14

16
5.

03
27

4.
32

59
-1

76
.4

09
3

1.
71

94
2.

29
44

6.
91

08
-1

76
.5

26
9



Chapter 5

Nanocones

In the synthesis and production of carbon nanostructures, carbon nanocones tend to

occur less frequently relative to other structures, and it is known that five different

pitched cones may occur, depending on the number of pentagons in the atomic net-

work. Most of the research on carbon nanocones deal with their electronic structure,

since they are the ideal candidate for the probes of scanning tunneling microscopes.

The simple geometric structure of carbon nanocones certainly facilitates calculations

for their potential energy. Here, the Lennard-Jones potential energy function and

the continuum approximation are employed to determine the energy for two such

nested carbon nanocones which are located co-axially. The energy profiles for any

two carbon nanocones arising from the five possible structures are presented. For

two distinct cones and two identical cones, the equilibrium location moves further

away from the vertex as the number of pentagons is increased. However, this equi-

librium position occurs such that one cone is always inside the other, and therefore

nested double-cones are formed according to these results.

Moreover, their oscillatory properties inside carbon nanotubes are examined.

The carbon nanocone located co-axially is shown to be sucked into a carbon nan-

otube when the difference between the cone base radius and the tube radius exceeds

2.5 Å, irrespective of the direction of the vertex, and the maximum suction energy

occurs when these radii differ by 3.0 Å. The oscillatory behaviour of a nanocone

once inside a nanotube is then determined, and pulse-like forces at both ends of the

tube which maintain the oscillatory motion along the tube length are obtained. On

neglecting frictional effects and approximating the pulse-like forces by Dirac delta

functions, Newton’s second law is employed to determine the oscillation frequency.

62
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This is shown to be in the order of 15 to 90 gigahertz, which is the same order of

magnitude as that obtained for oscillating co-axial carbon atom.

The hexagonal structure of boron nitride is geometrically similar to that of

graphene in a carbon structure, since both boron and nitrogen atoms are adjacent

to carbon in the periodic table [33]. Given that boron nitride is a good electrical

semiconductor, boron nitride cones can also be a good candidate for electronic de-

vices. In this chapter, the interaction energies between two cones of boron nitride

and carbon-boron nitride cones are also studied. The results are obtained in such a

way that the equilibrium positions always occur inside the other, and therefore the

formation of nested double-cones is suggested.

5.1 Nomenclature

α is the cone angle

ε is the well depth

η1, η2 are the mean atomic number densities for the two surfaces

ησ, ηg are the mean atomic number densities for carbon atom and graphene,

respectively

θ is the disclination angle

ρ is the distance between two typical surface elements

σ is the carbon-carbon covalent bond length

A, B are the Lennard-Jones attractive and repulsive coefficients, respectively

Etot is the total interaction potential

F tot
z is the total force in the z-direction

L is the half-lengths of carbon nanotube

Np is the number of pentagons

Z is the distance between cone vertices
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Z1 is the distance between the cone vertex and the nanotube end

Z2 is the distance between the cone vertex and the nanotube centre

a, a1, a2 are the cone base radii

b is the radius of the carbon nanotube

h, h1, h2 are the cone heights

5.2 Introduction

Many studies utilise molecular dynamics simulation to calculate the energy of carbon

nano systems and these investigations emphasise systems involving C60 fullerenes,

carbon nanotubes and carbon nanotori, but very little of the existing literature deals

with carbon nanocones [2–5, 36, 37, 42, 54, 57, 78]. Carbon nanocones have received

less attention primarily because only a small amount tend to occur in the production

process [9]. There are five possible ways to construct carbon nanocones depending

on the number of pentagons which are needed to close the vertex, and most research

on nanocones deals with their electronic structure [10, 79]. It is believed that the

different number of pentagons in carbon nanocones is the key to the puzzle of nucle-

ation in atomic construction [10, 80]. Kim et al. [81] utilise the catalytic chemical

vapor deposition method to synthesise carbon nanocones inside carbon nanotubes,

and they find that the resulting structures have different physical and electronic

properties than that of the original carbon structure. Charlier and Rignanese [10]

use tight-binding and ab initio calcuations to examine the local density near the

apex of the five possible carbon nanocones, and propose that carbon nanocones are

ideal candidates for nanoprobes in scanning tunneling microscopy. The electronic

structure of carbon nanocones is examined by Pincak and Osipov [79]. They employ

the effective-mass theory for a graphite monolayer and gauge theory of disclinations

on fluctuating elastic surfaces to obtain a mathematical equation, and finally they

find that the electron states are dependent on the position of the pentagons. The me-

chanical properties of carbon nanocones are investigated by Jordan and Crespi [82].

They obtain the nonlinear mechanical behaviour for both the original shape and the

inverse carbon nanocone which is obtained from the original cone by inversion.
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To start, the general information including the geometric structure of nanocones

is discussed in §5.3. However, from the literature there is little work examining the

potential energy behaviour of carbon nanocones. In this study the potential energy

for two carbon nanocones, which are assumed to be co-axial, is determined and

shown in §5.4. The Lennard-Jones potential energy together with the continuum

approximation, which assumes that carbon atoms are uniformly distributed over the

surface of each molecule, is utilised throughout this study to calculate the potential

energy of the system. Furthermore, the oscillatory behaviour of a carbon nanocone

inside a single-walled carbon nanotube is investigated. In particular, the van der

Waals interaction energy and the resulting oscillatory motion are determined. The

suction energy for a carbon nanocone entering a carbon nanotube is firstly considered

and presented in §5.5. Once the cone is sucked into the tube, in §5.6 the oscillatory

behaviour of the system is examined. On assuming that the frictional force can be

neglected [1], Newton’s second law is employed to determine the frequency of the

oscillating cone inside the tube. In addition, nanocones of hexagonal boron nitride

are examined. In particular, the potential energies between carbon and boron nitride

and two boron nitride cones are investigated as shown in §5.7. A summary is then

given in §5.8.

5.3 Carbon nanocones

Carbon nanocones were discovered by Ge and Sattler [83] and subsequently synthe-

sised by Krishnan et al. [80]. Typically, carbon nanocones are observed together

with carbon nanotubes and nanotube bundles during the synthesis process [9], and

carbon nanocones tend to be found at the cap of carbon nanotubes. There are

five possible structures for nanocones, as shown in Figure 5.1, because the cone an-

gle depends on the number of pentagons needed to close the structure. Cones are

formed from hexagons on a honeycombed lattice by adding fewer pentagons than

the six which are needed by Euler’s polyhedra theorem [27] for a closed structure.

In C60 fullerenes, a hexagonal lattice of any size or shape can only form a closed

structure with precisely twelve pentagons. The carbon nanotube cap, which is a half

C60 fullerene, contains six pentagons, and therefore carbon nanocones must have a

number of pentagons which is less than six.
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Figure 5.1: Five possible nanocones with vertex angles 19.20◦, 38.90◦, 60.00◦, 83.60◦

and 112.90◦.

The disclination number of pentagons on the graphene gives the change with θ

in the form

θ =
πNp

3
,

where Np is the number of the pentagons which ranges from 0 to 6. From the

diagram of the cone shown in Figure 5.2, it is clear that sin(α/2) = r/R and c =

2πr = 2π(1−Np/6)R. Therefore, the relation of the cone angle and the number of

pentagons is obtained as

sin(α/2) = 1− Np

6
.

There are seven possible values of the angle α depending on the number of pentagons

which are shown in Table 5.1. Note that for Np = 0 a graphene sheet is formed

and for Np = 6 a capped carbon nanotube is obtained. Hence there are only five

possible values giving rise to carbon nanocones. The mean atomic surface density

of the carbon nanocones is assumed to be the mean atomic surface density of a

graphene sheet, 0.3812 Å−2, due to the fact that the carbon nanocones are formed

from the graphene sheet and the number of pentagons has very small effect on the

mean atomic surface density of a cone.

The surface shown in Figure 5.3(a) is a double right cone. A right cone is one

for which the vertex is directly above the centre of the base. However, when used

without qualification, the term cone often means right cone. A right cone is the

surface in three-dimensional space generated by a line that revolves about a fixed

axis in such a way that the line passes through a fixed point on the axis and always

makes the same angle with the axis, and the fixed point is called the vertex of the

cone. A cone consists of two parts, called nappes, that intersect at the vertex [84].
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Figure 5.2: (a) Graphene sheet (b) forming the carbon nanocone.

Table 5.1: Relation of number of pentagons Np and open angle α for carbon
nanocones.

Number of pentagons (Np) Angle of cone (α)
0 180◦

1 112.90◦

2 83.60◦

3 60.00◦

4 38.90◦

5 19.20◦

6 0◦

The quadratic equation in Cartesian coordinates (x, y, z) for double cones is given

by
x2

a2
+

y2

b2
=

z2

c2
, (5.1)

where a, b and c are constants. Alternatively, in cylindrical coordinates (r, θ, z) the

equation for the cone can be defined as r = z tan(α/2) where α is the cone angle.

The surface integral of the cone is needed to calculate the Lennard-Jones potential

energy using in the continuum approach. The surface integral of a single cone is

given by

Area =

∫ h

0

∫ 2π

0

rdθds.

From Figure 5.3(b), it can be seen that ds = dz/ cos(α/2) and r = z tan(α/2),

therefore, the surface integral is of the form

Area =
tan(α/2)

cos(α/2)

∫ h

0

∫ 2π

0

zdθdz =
a`

h2

∫ h

0

∫ 2π

0

zdθdz = πa`,

where ` =
√

a2 + h2.
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Figure 5.3: (a) Geometry of an elliptical cone and (b) diagram for surface integra-
tions.

5.4 Equilibrium locations for carbon nanocones

This section considers the equilibrium locations for any two nested carbon nanocones,

utilising the Lennard-Jones potential function and the continuum approach. The

case of two identical nanocones is also investigated, and the details of that configu-

ration are presented in the following section.

5.4.1 Model formulation for two carbon nanocones

�
f w

� �

� �

� �

� �

Figure 5.4: Geometry for two distinct carbon nanocones.

With reference to a rectangular Cartesian coordinate system (x1, y1, z1) with the

origin located at the vertex of the left most cone, shown in Figure 5.4, a typical

point on its surface has coordinates (r1 cos θ1, r1 sin θ1, z1). Similarly, with refer-

ence to a rectangular Cartesian coordinate system (x2, y2, z2) with origin located

at the vertex of the second cone, a typical point on its surface has coordinates
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(r2 cos θ2, r2 sin θ2, Z + z2) with respect to the coordinate system with origin located

at the vertex of first cone, where Z is the distance between their vertices. The first

cone has the open angle φ with base radius a1 and height h1, and r1 = βz1 where

β = tan(φ/2). The second cone has the open angle ω with base radius a2 and height

h2, and r2 = γz2 where γ = tan(ω/2). The distance between two typical points on

the first and the second cone is then given by

ρ2 = (r1 cos θ1 − r2 cos θ2)
2 + (r1 sin θ1 − r2 sin θ2)

2 + [z1 − (Z + z2)]
2,

= (βz1 cos θ1 − γz2 cos θ2)
2 + (βz1 sin θ1 − γz2 sin θ2)

2 + [z1 − (Z + z2)]
2,

= (β2 + 1)z2
1 + (γ2 + 1)z2

2 − 2z1z2(βγ + 1)− 2Z(z1 − z2) + Z2

+4βγz1z2 sin2

(
θ1 − θ2

2

)
.

By using the Lennard-Jones potential together with the continuum approxima-

tion, the total potential energy is given by

Etot = η1η2

(
a1a2

√
(a2

1 + h2
1)(a

2
2 + h2

2)

h2
1h

2
2

)
×

×
∫ h2

0

∫ h1

0

∫ 2π

0

∫ 2π

0

z1z2

(
− A

ρ6
+

B

ρ12

)
dθ1dθ2dz1dz2,

where η1 and η2 are the mean surface densities of the first and the second carbon

nanocones, respectively. Further, the integral J∗n is defined as

J∗n =

∫ 2π

0

∫ 2π

0

dθ1dθ2

ρn
=

∫ 2π

0

∫ 2π

0

dθ1dθ2

{λ + ξ sin2[(θ1 − θ2)/2]}n/2
, (5.2)

where n = 6 and 12, λ = (β2+1)z2
1 +(γ2+1)z2

2−2z1z2(βγ+1)−2Z(z1−z2)+Z2 and

ξ = 4γβz1z2. In Appendix A.1, it is shown that the integrals J∗n can be evaluated

either in terms of hypergeometric functions or Legendre functions. In terms of the

hypergeometric function, they may be written as

J∗6 =
4π2

(λ + ξ)3
F

(
3,

1

2
; 1;

ξ

λ + ξ

)
,

(5.3)

J∗12 =
4π2

(λ + ξ)6
F

(
6,

1

2
; 1;

ξ

λ + ξ

)
.

These are both degenerate hypergeometric functions, for which the details are pre-
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sented in Appendix E, as such

J∗6 =
4π2

λ2
√

λ(λ + ξ)

[
1− ξ

λ + ξ
+

3

8

(
ξ

λ + ξ

)2]
,

(5.4)

J∗12 =
4π2

λ5
√

λ(λ + ξ)

[
1− 5

2

(
ξ

λ + ξ

)
+

15

4

(
ξ

λ + ξ

)2

− 25

8

(
ξ

λ + ξ

)3

+
175

128

(
ξ

λ + ξ

)4

− 63

256

(
ξ

λ + ξ

)5]
.

Then the total potential energy becomes

Etot = η1η2

(
a1a2

√
(a2

1 + h2
1)(a

2
2 + h2

2)

h2
1h

2
2

) ∫ h2

0

∫ h1

0

z1z2(−AJ∗6 + BJ∗12)dz1dz2. (5.5)

However, for the final solution for Etot, equation (5.5) must be integrated with

respect to z1 and z2, which may be readily evaluated using the algebraic computer

package MAPLE.

5.4.2 Model formulation for identical carbon nanocones

f f

� � �

�

�

Figure 5.5: Geometry for two identical carbon nanocones.

For this particular case, the two identical carbon nanocones, as shown in Fig-

ure 5.5, which the distance between their vertices denoted by Z, are considered.

They both have the cone angle φ which corresponds to base radius a and height

h. The relations between r and z for both cones are given by r1 = βz1 and

r2 = βz2, respectively, where β = tan(φ/2) = a/h. In cylindrical polar coordi-

nates (r, θ, z), the parametric equations for the first and the second cone can be

written as (r1 cos θ1, r1 sin θ1, z1) and (r2 cos θ2, r2 sin θ2, Z + z2), respectively. Then
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the distance between two typical points on each cone is given by

ρ2 = (r1 cos θ1 − r2 cos θ2)
2 + (r1 sin θ1 − r2 sin θ2)

2 + [z1 − (Z + z2)]
2,

= (βz1 cos θ1 − βz2 cos θ2)
2 + (βz1 sin θ1 − βz2 sin θ2)

2 + [z1 − (Z + z2)]
2,

= (β2 + 1)(z1 − z2)
2 − 2Z(z1 − z2) + Z2 + 4β2z1z2 sin2[(θ1 − θ2)/2].

Therefore, the total potential energy can be written as

Etot = η2
σ

(
a4

h4
+

a2

h2

) ∫ h

0

∫ h

0

∫ 2π

0

∫ 2π

0

z1z2

(
− A

ρ6
+

B

ρ12

)
dθ1dθ2dz1dz2,

where ησ is the mean surface density of a carbon nanocone. The integral J∗n defined

by (5.2) must be evaluated, where in this case λ = (β2+1)(z1−z2)
2−2Z(z1−z2)+Z2

and ξ = 4β2z1z2. By precisely the same method as used previously, it may be

deduced that

Etot = η2
σ

(
a4

h4
+

a2

h2

) ∫ h

0

∫ h

0

z1z2(−AJ∗6 + BJ∗12)dz1dz2,

which is also evaluated numerically to obtain the final solution for Etot.

5.4.3 Numerical solutions

The potential energies for two carbon nanocones of the five possible structures are

examined. Using the algebraic computer package MAPLE, the relation between

the potential energy and the distance between vertices Z is depicted. Due to the

lack of the Lennard-Jones constants, namely the attractive constant A and repul-

sive constant B specifically for carbon nanocones, the Lennard-Jones constants for

graphene sheet are employed. Following the work of Girifalco [42], A = 15.2 eVÅ6

and B = 24.1× 103 eVÅ12 are obtained. We comment that the the two parameters

A and B have only minor effect on the numerical results. The values of a and h are

given by a = ` sin(α/2) = 3mσ sin(α/2)/2 and h = ` cos(α/2) = 3mσ cos(α/2)/2,

where σ is a carbon-carbon bond length which is taken to be σ = 1.42 Å and m

is a positive integer indicating the size of the carbon nanocone. For the analysis

presented here, m is chosen to be 50.

The potential energies for system of the two carbon nanocones are shown in

Figure 5.6 - 5.8. For the combination of the cone containing one pentagon, the

equilibrium distance for the other four cones is approximately 3 Å between their
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vertices, illustrated in Figure 5.6, and the most stable equilibrium occurs for the

cone Np = 2. The equilibrium distance increases and the system has less stability as

the number of pentagons increases, as shown in Figure 5.7. Of particular interest, for

two identical carbon nanocones the increased number of carbon atoms at the vertex

causes the equilibrium distance between their vertices to increase, as demonstrated

in Figure 5.8. Values for the distances between their vertices Z at the equilibrium

configuration for any two carbon nanocones is given in Table 5.2.

The shortest equilibrium distance between the two cones is denoted by x as

illustrated in Figure 5.9, and values of x are shown in Table 5.3. For the two

identical carbon nanocones, a value of 3.4 Å is obtained which is also the inter-

spacing distance for two graphene sheets. Otherwise, values of approximately 2.6 Å

are found, which less than the equilibrium spacing for two graphene sheets. This

discrepancy is due to the fact that the two surfaces are not parallel. By observation,

x increases as the number of pentagons increases.

Table 5.2: Distance between vertices Z at the equilibrium position for any two
carbon nanocones.

Np of inner cone 1 2 3 4 5
Np of outer cone

1 4.0955 3.0787 3.1238 3.1440 3.1591
2 - 5.1136 3.8643 3.9320 3.9597
3 - - 6.8717 5.1959 5.2788
4 - - - 10.3052 7.8713
5 - - - - 20.5229

Table 5.3: Shortest distance x between the two cones at the equilibrium position for
any two carbon nanocones.

Np of inner cone 1 2 3 4 5
Np of outer cone

1 3.4132 2.5658 2.6034 2.6202 2.6328
2 - 3.4084 2.5757 2.6208 2.6393
3 - - 3.4358 2.5980 2.6394
4 - - - 3.4315 2.6210
5 - - - - 3.4226
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Figure 5.6: Variation of potential energy versus distance between vertices for the
cone Np =1 and Np = 2, 3, 4 and 5 for the second cone.
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Figure 5.7: Variation of potential energy versus distance between vertices for various
combinations of two different cones.
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Figure 5.8: Variation of potential energy versus distance between vertices for five
identical carbon nanocones.
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Figure 5.9: Shortest distance x between two carbon nanocones at the equilibrium
location.
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5.5 Suction behaviour for a carbon nanocone

The corresponding suction properties for a carbon nanocone entering a single-walled

carbon nanotube are investigated. For the cone to be sucked into the tube, the total

work which is obtained by moving from −∞ to ∞ needs to be greater than zero. For

convenience, two specific models are determined according to whether the direction

of the cone vertex is in the positive or negative direction of the z-axis.

5.5.1 Cone vertex oriented in negative z-direction

� �

� �

�
�

�

� �

� �

� �

�

a

Figure 5.10: Geometry of carbon nanocone with vertex oriented in negative z-
direction.

In this section, the vertex of the carbon nanocone is assumed to point in the neg-

ative z-direction and the cone and the tube are assumed to be co-axial, as shown in

Figure 5.10. With reference to a rectangular Cartesian coordinate system (x1, y1, z1)

with the origin located at the tube edge, a typical point on the nanocone surface

has coordinates (r1 cos θ1, r1 sin θ1, z1 − Z1), where Z1 is the distance between the

vertex and the tube end. The cone has vertex angle α with base radius a and height

h, and r1 = βz1 where β = tan(α/2) = a/h. Similarly, with reference to a rectan-

gular Cartesian coordinate system (x2, y2, z2) with origin located at the tube end,

a typical point on the tube surface has coordinates (b cos θ2, b sin θ2, z2). The tube

is assumed to be semi-infinite in length and of radius b. The distance between two

typical points on the cone and the tube is given by

ρ2 = (r1 cos θ1 − b cos θ2)
2 + (r1 sin θ1 − b sin θ2)

2 + [(z1 − Z1)− z2]
2,

= (βz1 − b)2 + (z1 − Z1 − z2)
2 + 4βbz1 sin2[(θ1 − θ2)/2].
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By using the Lennard-Jones potential together with the continuum approximation,

the total potential energy is given by

Etot = ησηgab

√
a2 + h2

h2

∫ ∞

0

∫ h

0

∫ 2π

0

∫ 2π

0

z1

(
− A

ρ6
+

B

ρ12

)
dθ1dθ2dz1dz2, (5.6)

where ησ and ηg are mean surface densities of the carbon nanocone and the carbon

nanotube, respectively. The constants A and B are the attractive and repulsive

Lennard-Jones constants, respectively. The known numerical values for the attrac-

tive constant A and the repulsive constant B for graphene sheet are employed to

the present system, following the work of Girifalco [42], thus A = 15.2 eVÅ6 and

B = 24.1 × 103 eVÅ12. Further, the integral J∗n defined by (5.2) needs to be de-

termined, and in this case λ = (βz1 − b)2 + (z1 − Z1 − z2)
2 and ξ = 4βbz1. In

Appendix A.1, the evaluation of J∗n is presented which can be obtained either in

terms of hypergeometric functions or Legendre functions. In terms of the hypergeo-

metric function, it can be deduced to give rise to equation (5.3) which can be further

deduced to obtained the degenerate hypergeometric functions shown in (5.4). Then

the total potential energy becomes

Etot = ησηgab

√
a2 + h2

h2

∫ ∞

0

∫ h

0

z1(−AJ∗6 + BJ∗12)dz1dz2. (5.7)

However, to evaluate Etot equation (5.7) must be integrated with respect to z1

and z2 which is performed numerically. Although clearly complicated, numerical

values for these integrals may be readily evaluated using the algebraic computer

package MAPLE. The solution for F tot
Z is also calculated numerically by the relation

presented in (2.8).

The suction energy and the interatomic van der Waals force for the suction

behaviour of a carbon nanocone entering a single-walled carbon nanotube are ex-

amined. A larger van der Waals force experienced by a cone when it is outside the

tube (negative z) than when it is inside the tube (positive z) is observed and shown

in Figure 5.11. This is because the first interacting part is between the tube and

the cone base which has the inter-spacing distance around 3.4 Å and it gives rise

to the maximum force. At this point, the entire cone is outside the tube, therefore

the greater force occur outside the tube. The area under the graph in Figure 5.11

represents the work done by the van der Waals force or suction energy and this area
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must be positive for the cone to enter the tube.

The suction energy for various radii of the carbon nanotube b is shown in Fig-

ure 5.12. The suction energy is positive when (b−a) > 2.49 Å for a cone with Np = 1

and (b− a) > 2.54 Å for a cone with Np = 5. The maximum suction energy values

occur at (b− a) = 3.00 Å and (b− a) = 3.05 Å for Np = 1 and Np = 5, respectively.

Noting that for the other three possible structures of carbon nanocones, the tube

begins to suck the cone inside for 2.49 Å < (b − a) < 2.54 Å and the maximum

suction energies occur for 3.00 Å < (b − a) < 3.05 Å. The differences in the radii

are noted to be less than 3.4 Å, which is the inter-spacing distance between two

graphene sheets [36], due to the fact that the two surfaces are not parallel.
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Figure 5.11: Force experienced by a co-axial carbon nanocone with a semi-infinite
carbon nanotube for cone vertex in negative z-direction (b− a = 3.4 Å).

5.5.2 Cone vertex oriented in positive z-direction

Here the cone vertex is assumed to be oriented in the positive z-direction and the axis

of the cone and that of the tube are co-axial, as shown in Figure 5.13. Similarly, a

typical point on the surface of the cone has coordinates (r1 cos θ1, r1 sin θ1,−z1−Z1),

where Z1 is the distance between the vertex and the tube end. As mentioned in the

previous subsection, the cone has vertex angle α with base radius a and height h, but

here r1 = −βz1 where β = tan(α/2) = a/h. A typical point on the tube surface has
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Figure 5.12: Suction energy for co-axial carbon nanocones Np = 1 and Np = 5
entering a single-walled carbon nanotube versus the difference of the radii (b− a).
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Figure 5.13: Geometry of carbon nanocone with vertex oriented in positive z-
direction.
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coordinates (b cos θ2, b sin θ2, z2) and again the tube is assumed to be semi-infinite

in length and of radius b. The distance between two typical points on the cone and

the tube is given by

ρ2 = (r1 cos θ1 − b cos θ2)
2 + (r1 sin θ1 − b sin θ2)

2 + [(−z1 − Z1)− z2]
2,

= (βz1 + b)2 + (z1 + Z1 + z2)
2 − 4βbz1 sin2[(θ1 − θ2)/2].

Therefore, the total potential energy can be written as (5.6). The integral J∗n in

(5.2) needs to be evaluated, but in this case λ = (βz1 + b)2 + (z1 + Z1 + z2)
2 and

ξ = −4βbz1. By precisely the same method as used previously, (5.7) is also evaluated

numerically to obtain the final solution of Etot and F tot
Z .

The same behaviour and the same values for the suction energy in terms of the

difference between the cone base radius and the tube radius are observed as in §5.5.1.

However, they differ in terms of the force experienced by the carbon nanocone. In

this case, the force experienced by the carbon nanocone when the cone is inside the

tube (positive z) is greater than that when the cone is outside the tube (negative z)

as shown in Figure 5.14. This is because the entire cone has to enter into the tube

to reach the maximum van der Waals force when the tube interacting with the cone

base.
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Figure 5.14: Force experienced by co-axial carbon nanocone with semi-infinite car-
bon nanotube for cone vertex in positive z-direction (b− a = 3.4 Å).



Chapter 5: Nanocones 80

5.6 Oscillatory behaviour for carbon nanocone

In order to accurately model the dynamics of the gigahertz oscillator, the force expe-

rienced by the carbon nanocone oscillating inside the single-walled carbon nanotube

needs to be accurately estimated. The Lennard-Jones potential function together

with the usual continuum approximation is utilised to calculate the van der Waals

force. In this study, the frictional force is assumed to be negligible, and Newton’s

second law is employed to determine the oscillatory behaviour.

5.6.1 Force distribution for a carbon nanocone oscillating
inside a carbon nanotube
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Figure 5.15: Geometry for carbon nanocone oscillating inside single-walled carbon
nanotube.

From the result in §5.5, only the case when the cone vertex is in the negative z-

direction is considered. With reference to a rectangular Cartesian coordinate system

(x1, y1, z1) with the origin located at the vertex of the carbon nanocone, a typical

point on the surface of the carbon nanocone has coordinates (r1 cos θ1, r1 sin θ1, Z2 +

z1), where Z2 is the distance between the vertex of the cone and the centre of

the tube. Similarly, with reference to a rectangular Cartesian coordinate system

(x2, y2, z2) with origin located at the centre of the tube, a typical point on the tube

surface has coordinates (b cos θ2, b sin θ2, z2), where b is the assumed radius of the 2L

length tube, as shown in Figure 5.15. The distance ρ between two typical points is

given by

ρ2 = (r1 cos θ1 − b cos θ2)
2 + (r1 sin θ1 − b sin θ2)

2 + [(Z2 + z1)− z2]
2,

= (βz1 − b)2 + (Z2 + z1 − z2)
2 + 4βbz1 sin2[(θ1 − θ2)/2].
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Using the Lennard-Jones potential function with the usual continuum approach, the

total potential energy for the system is given by

Etot = ησηgab

√
a2 + h2

h2

∫ L

−L

∫ h

0

∫ 2π

0

∫ 2π

0

z1

(
− A

ρ6
+

B

ρ12

)
dθ1dθ2dz1dz2,

where ησ and ηg are the mean surface densities of the carbon nanocone and the

carbon nanotube, respectively. The integral J∗n, which is given by (5.2) needs to be

determined, but in this case λ = (βz1 − b)2 + (Z2 + z1 − z2)
2 and ξ = 4βbz1. By

precisely the same method as used previously, it can be deduced

Etot = ησηgab

√
a2 + h2

h2

∫ L

−L

∫ h

0

z1(−AJ∗6 + BJ∗12)dz1dz2,

and the force distribution may be obtained numerically by the relation (2.8).

By using the algebraic computer package MAPLE, the potential energy and the

force distribution for the carbon nanocone oscillating inside the single-walled carbon

nanotube are shown in Figure 5.16 and Figure 5.17, respectively. The potential

energy can be modelled by use of the rectangular function Emax[H(Z2 + L + h) −
H(Z2 − L − h)] where H(x) is a Heaviside step function. In terms of the force

distribution, the force is very close to zero everywhere except at both ends of the

tube where there are pulse-like forces which tend to attract the cone back towards

the centre of the tube. As both a and b tend to zero in such a way that a < b << L,

F tot
Z2

can be estimated using the Dirac delta functions, and can be written as

F tot
Z2

= Emax[δ(Z2 + L + h)− δ(Z2 − L + h)], (5.8)

where Emax is the energy of the cone which is defined by

Emax =

∫ 0

−∞
F tot

Z2
dZ2 = −

∫ ∞

0

F tot
Z2

dZ2.

5.6.2 Oscillation of a carbon nanocone inside a carbon nan-
otube

In this subsection, Newton’s second law is applied to describe the oscillatory be-

haviour of a carbon nanocone oscillating inside a single-walled carbon nanotube.

The frictional forces is assumed negligible, which may be justified for certain chirali-

ties and diameters of the tube [2]. From Newton’s second law on neglecting friction,
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Figure 5.16: Potential energy for cone oscillating inside tube.
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Figure 5.17: Force distribution for cone oscillating inside tube.
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it can be deduced

M
d2Z2

dt2
= F tot

Z2
(Z2),

where Z2 is the distance between the vertex of the cone and the centre of the tube and

M is the mass of the cone. The force distribution of the system can be approximated

by two Dirac delta functions, as indicated in Figure 5.17, and from (5.8), it can be

written as

M
d2Z2

dt2
= Emax[δ(Z2 + L + h)− δ(Z2 − L + h)]. (5.9)

By multiplying both sides of (5.9) by dZ2/dt and using the fact that dH(x)/dx =

δ(x), equation (5.9) becomes

M
d2Z2

dt2
dZ2

dt
= Emax

d

dZ2

[H(Z2 + L + h)−H(Z2 − L + h)]
dZ2

dt
. (5.10)

By integrating both sides of (5.10) with respect to t and since H(Z2 + L + h) −
H(Z2−L + h) = 1 for −L−h ≤ Z2 ≤ L−h and zero elsewhere, it may be deduced

M

2

(
dZ2

dt

)2

= Emax +
M

2
v2

0,

where v0 is the assumed initial velocity of the nanocone. This equation implies

that the carbon nanocone travels inside the carbon nanotube at a constant speed

dZ2/dt = v = (2Emax/M +v2
0)

1/2 and therefore, the frequency is given by f = v/4L.

On assuming that the cone base radius a is 3.4 Å smaller than the tube radius

b, which is the inter-spacing distance between two graphene sheets [36], the relation

between the frequency and the length of the tube is shown. For a difference in the

radii of more than 2.5 Å (see §5.5) a prescribed initial velocity v0 is not necessary,

since a carbon nanocone which is initially at rest outside the carbon nanotube will

be sucked into the tube due to the attractive force. The frequencies obtained are in

the gigahertz range, which are 15 - 90 GHz, for the half-length of the tube between

100 - 300 Å for the five investigated structures of carbon nanocones. From the graph

in Figure 5.18, a shorter tube provides a higher frequency, which is in accordance

with the observations made by Liu et al. [59] for the oscillation of a C60 fullerene

inside a single-walled carbon nanotube. This is because of a decrease in the distance

for the cone to travel between the tube ends. Moveover, the smaller the cone, the

higher the frequency. Note that the word smaller cone is used to indicate the number
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of carbon atoms, which depend on the disclination number of the pentagons, and

a cone with five pentagons is the smallest cone of the five possible structures. The

smaller cone has the lighter weight which increases the velocity and therefore results

in a higher frequency. This result is also in agreement with the observation made

by Zheng and Jiang [4] for multi-walled carbon nanotube oscillators.
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Figure 5.18: Variation of oscillatory frequency for five possible structures of carbon
nanocones with respect to half-length of carbon nanotube.

5.7 Boron nitride nanocones

Boron nitride is a good semiconducting compound, and the large band gap in this

material may produce better electronic properties than those of carbon structures

[34]. There are two crystal structures for boron nitride, the cubic and the hexagonal

structures, but only the hexagonal boron nitride, which is comparable to a carbon

graphene sheet [33], is considered here

For carbon nanocones, there are five possible structures depending on the number

of pentagons which are needed to close the vertex [9]. The five cone angles α

can be obtained from sin(α/2) = 1 − Np/6 where Np is the number of pentagons.

For boron nitride cones, Bourgeois et al. [85] investigate the conical structure of

boron nitride using transmission electron microscopy and they measure their angles

using an electron diffraction technique. From an analysis of the diffraction patterns,
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they observe a layer of nanocones and propose two possible models, which are the

monolayer boron nitride cones one inside the other and cones formed from helical

overlapping sheets. Moreover, they find that an angle of 84◦ occurs at the apex

because of a stable square ring at the vertex. Bourgeois et al. [86] also observe two

other conical structures with apex angles of 19.2◦ and 38.9◦, arising from 300◦ and

240◦ disclinations, respectively. They suggest that these two configurations arise

because of the different stiffness in the chemical bonds of boron nitride compounds,

and square rings which are the favoured ring defects in boron nitride. Furthermore,

Han et al. [87] study conical nanotubes using high-resolution transmission electron

microscopy and electron energy loss spectroscopy, and suggest that nested cones

occur with the same apex angle as for boron nitride. Xu et al. [88] successfully

synthesise conical helices of graphitic boron nitride and they examine theoretically

their elastic properties. These structures hold considerable promise for potential

applications in new-generation high performance composite materials.

The Lennard-Jones potential function is utilised by Lee [89] who determines

gigahertz frequencies for boron nitride oscillators and finds that the frequencies

generated by the boron nitride nanotubes are higher than those generated by the

corresponding carbon nanotubes. Lee [89] also examines hybrid carbon-boron nitride

nanotube oscillators by applying a well known mixing rule for the Lennard-Jones

parameters.

In this study, equilibrium structures for two nested nanocones comprising either

boron nitride or carbon-boron nitride are examined, again using the Lennard-Jones

potential function and the continuum approximation. The analytical expressions

obtained in the previous two sections are exploited and numerical results are deter-

mined for the equilibrium distance Z between two vertices and the perpendicular

distance x between the inner cone vertex and the surface of the outer cone, as shown

in Figure 5.19. For the hybrid carbon-boron nitride nanocones, the same numerical

results are obtained irrespective of which cone is inside the other.

5.7.1 Model formation for boron nitride cones

In §5.4, the Lennard-Jones potential function and the continuum approximation

are utilised to determine the energetically most favourable structures for nested
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Figure 5.19: Geometry for any two nested nanocones.

cones. Here the results for both boron nitride and carbon-boron nitride cones are

examined. Using the continuum approximation, the total potential energy of the

system is obtained by performing double cone surface integrals. Two Lennard-

Jones parameters, the well depth ε = A2/(4B) and the van der Waals diameter

σ = (B/A)1/6, for carbon, boron and nitrogen atoms are taken from Lee [89] and

shown in Table 5.4 where A is the attractive constant and B is the repulsive constant.

Note that the constants for boron nitride and carbon-boron nitride systems are

obtained from the mixing rules which are given by ε12 =
√

ε1ε2 and σ12 = (σ1+σ2)/2

[90].

Table 5.4: Lennard-Jones constants for boron nitride and carbon-boron nitride sys-
tems.

Interaction ε (eV) σ (Å) A (Å−6) B (Å−12)
C - C 0.002635 3.369 15.412 22534.750
B - B 0.004116 3.453 27.907 47303.611
N - N 0.006281 3.365 36.475 52955.321
C - B 0.003293 3.411 20.748 32678.989
C - N 0.004068 3.367 23.710 34544.753
B - N 0.005085 3.410 31.921 50099.811

C - BN 0.003660 3.390 22.203 33668.474

Two cones, which do not necessarily have the same vertex angle, are assumed

to be located co-axially, the distance between their vertices is denoted by Z and

the perpendicular distance from the vertex of the inner cone to the surface of

the outer cone at the equilibrium location is denoted by x, as illustrated in Fig-

ure 5.19. The outer cone has the apex angle φ with base radius a1 and height h1,
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and r1 = βz1 where β = tan(φ/2). The inner cone has the vertex angle ω with

base radius a2 and height h2, and r2 = γz2 where γ = tan(ω/2). With reference

to a rectangular Cartesian coordinate system (x1, y1, z1) with origin located at the

vertex of the outer cone, a typical point on the outer cone surface has coordinates

(r1 cos θ1, r1 sin θ1, z1). Similarly, with reference to the same rectangular Cartesian

coordinate system (x2, y2, z2), a typical point on the inner cone surface has coordi-

nates (r2 cos θ2, r2 sin θ2, Z + z2). The distance between two typical points on the

outer and the inner cones is then given by ρ2 = (β2 +1)z2
1 +(γ2 +1)z2

2 − 2z1z2(βγ +

1)−2Z(z1−z2)+Z2+4βγz1z2 sin2[(θ1−θ2)/2], and the total Lennard-Jones potential

energy can be written as

Etot = η1η2

(
a1a2

√
(a2

1 + h2
1)(a

2
2 + h2

2)

h2
1h

2
2

)
×

×
∫ h2

0

∫ h1

0

∫ 2π

0

∫ 2π

0

z1z2

(
− A

ρ6
+

B

ρ12

)
dθ1dθ2dz1dz2, (5.11)

where η1 and η2 denote mean atomic surface densities of the outer and the inner

cones, respectively. Analytical expressions for the θ1 and θ2 integrals can be eval-

uated either in terms of hypergeometric functions or Legendre functions, and the

details of these calculations are referred to in §5.4. Again, the integrations with

respect to z1 and z2 need to be performed numerically using the algebraic computer

package MAPLE.

We note that for the total interaction energy between two carbon nanocones,

the energy is simply obtained using (5.11) where A = AC-C, B = BC-C, as given in

Table 5.4. However, for the case of the interaction between two boron nitride cones,

there are three different interactions which are B-B, N-N and B-N interactions, so

that the total interaction energy can be obtained as

Etot =
η1

2

η2

2
E∗(AB-B, BB-B)+

η1

2

η2

2
E∗(AN-N, BN-N)+2

η1

2

η2

2
E∗(AB-N, BB-N), (5.12)

where E∗(A,B) is defined by E∗ = Etot/(η1η2) and Etot is given in (5.11). Sim-

ilarly, for the case of the interaction between carbon - boron nitride cones, there

are two different interactions which are C-B and C-N interactions, so that the total

interaction energy can be obtained as

Etot = ηg
η1

2
E∗(AC-B, BC-B) + ηg

η1

2
E∗(AC-N, BC-N). (5.13)
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We comment that using (5.12) and (5.13) with different values of the constants A

and B as shown in Table 5.4 results only in a minor effect on the numerical values for

the total interaction energy. In other words, we may determine the total interaction

energy of the system using (5.11) where A = AB-N and B = BB-N for the interaction

between two boron nitride cones, and A = AC-BN and B = BC-BN for the interaction

between carbon - boron nitride cones. In this thesis, we employ the later method to

determine the interaction energy of the nanocone systems.

5.7.2 Numerical results for boron nitride cones

Following the work of Bourgeois et al. [85, 86], the apex angles α assumed for the

three different boron nitride cones which tend to occur in practice are 19.2◦, 38.9◦

and 83.6◦. The height h is assumed to be 50 Å which corresponds to base radii of

8.338, 16.649 and 33.327 Å, respectively, which are determined from a = h tan(α/2).

Numerical values for the equilibrium distance Z between the two vertices and the

perpendicular distance x at the equilibrium location between the vertex of the inner

cone and the surface of the outer cone for any two of the above three boron nitride

cones are presented in Table 5.5. Moreover, the other two vertex angles for boron

nitride cones corresponding to the equivalent carbon nanocones are also considered

and shown in Table 5.5. Corresponding values for any of the five possible carbon-

boron nitride cones are shown in Table 5.6. For the carbon-boron nitride cones, the

numerical results essentially depend on the outer cone angle and they indicate that

the same results are obtained irrespective of which cone is inside the other.

For two identical cones, the equilibrium distance Z decreases with increasing cone

angle, which is due to the repulsive force arising from the vertices. The interspacing

distance x is found to be approximately 3.4 Å, which is in excellent agreement with

Bourgeois et al. [86] for nested cones. Furthermore, the equilibrium distance Z

decreases for the case when the inner cone angle is smaller than that of the outer

cone. This is because the inner cone can move closer to the outer vertex for the

distance x to attain the value 3.4 Å. In this case, the perpendicular distance x which

is illustrated in Figure 5.19 is the shortest distance between the inner vertex and the

outer wall. Consequently, the equilibrium distance Z is increased when the inner

cone angle is larger than that of the outer cone, and the distance x between the
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Table 5.5: Equilibrium distance Z (Å) between two vertices and the perpendicular
distance x (Å) for boron nitride cones.

Outer angels 19.2◦ 38.9◦ 60.0◦ 83.6◦ 112.9◦

Inner angles
19.2◦ Z 20.317 8.324 5.901 4.746 4.143

x 3.388 2.772 2.951 3.163 3.453
38.9◦ Z 34.378 10.708 5.823 4.718 4.097

x 5.733 3.566 2.912 3.145 3.414
60.0◦ Z 39.926 23.363 7.586 4.646 4.051

x 6.658 7.780 3.793 3.097 3.376
83.6◦ Z 42.800 30.344 17.873 6.146 3.995

x 7.138 10.104 8.937 4.097 3.329
112.9◦ Z 44.603 34.625 24.619 14.672 5.320

x 7.438 11.530 12.310 9.779 4.434

Table 5.6: Equilibrium distance Z (Å) between two vertices and the perpendicular
distance x (Å) for carbon-boron nitride cones.

Outer angels 19.2◦ 38.9◦ 60.0◦ 83.6◦ 112.9◦

Inner angles
19.2◦ Z 20.188 8.278 5.863 4.732 4.101

x 3.367 2.756 2.936 3.154 3.418
38.9◦ Z 34.321 10.667 5.754 4.685 4.070

x 5.724 3.552 2.877 3.123 3.392
60.0◦ Z 39.873 23.316 7.554 4.630 4.025

x 6.650 7.764 3.777 3.086 3.354
83.6◦ Z 42.772 30.316 17.835 6.099 3.962

x 7.133 10.095 8.918 4.065 3.302
112.9◦ Z 44.560 34.598 24.592 14.642 5.282

x 7.431 11.521 12.296 9.759 4.402
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inner vertex and the outer wall is actually the greatest distance between the two

surfaces.

The relation between the cone angles and the distance Z for boron nitride

nanocones is shown in Figure 5.20 - 5.22. For two identical boron nitride cones

at the equilibrium location, the system is observed to be more stable for the larger

apex angle. This is because the large apex angle reduces the repulsive force arising

from the vertex. In the case when the outer cone has a larger apex angle than

the inner cone, the stability of the system also increases for increasing inner cone

angle. On the other hand, the system is less stable at the equilibrium location if the

outer cone angle is smaller than the inner cone. This indicates that nested cones

are less likely to occur when the vertex angle of the outer cone is smaller than that

of the inner cone. Also note that the energy profiles for the carbon-boron nitride

nanocones are similar to those for boron nitride nanocones.
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Figure 5.20: Potential energy versus the distance Z between two vertices for five
identical possible boron nitride nanocones.
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Figure 5.21: Potential energy versus the distance Z between two vertices for boron
nitride cones when the outer cone angle α = 112.9◦ and the inner cone angles α =
19.2◦, 38.9◦, 60.0◦ and 83.6◦.
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Figure 5.22: Potential energy versus the distance Z between two vertices for boron
nitride cones when the outer cone angle α = 19.2◦ and the inner cone angles α =
38.9◦, 60.0◦, 83.6◦ and 112.9◦.
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5.8 Summary

This chapter considers three related problems of system of nanocones, which are

(i) the potential energy for two carbon, two boron nitride and carbon-boron nitride

nanocones for both cases of identical and non-identical cones, (ii) the suction en-

ergy for a carbon nanocone entering a carbon nanotube and (iii) the frequency of

oscillation of a carbon nanocone moving co-axially within the interior of a carbon

nanotube. Two types of nanocones, carbon and boron nitride, are investigated us-

ing the Lennard-Jones potential energy and the continuum approximation. Due to

the lack of specific data for carbon nanocones, the known Lennard-Jones constants

determined for plane sheets of carbon-carbon atoms are employed, and the mixing

rule is used for the boron nitride cones.

In terms of carbon nanocones, the value 3 Å for the distance between the two

vertices at the equilibrium position for the system of two identical single-pentagon

cones is obtained, and if this cone is paired with the other four possible cones this

distance increases with decreasing cone angle or increasing number of pentagons.

Moreover, in the case of two identical carbon nanocones, the equilibrium position

moves away from the vertex as the cone angle is reduced. However, the equilibrium

location is always inside the cone, hence nested double-cones from any two possible

combinations of carbon nanocones might be constructed. For both boron nitride

and carbon-boron nitride nanocones, all five possible vertex angles which occur for

carbon nanocones are also examined. The interspacing between two monolayer cones

is obtained to be approximately 3.4 Å for both systems, and this result is in excellent

agreement with the finding of Bourgeois et al. [86]. Furthermore, the equilibrium

location always occurs with one cone inside the other, so that nested double-cones

might also be expected to form in practice.

In terms of the suction behaviour, since the van der Waals force only operates at

relatively short distances, a semi-infinite tube is used to model the open end of the

carbon nanotube. The carbon cone is assumed initially at rest outside of the tube.

The cone is sucked into the tube when the cone base radius and the tube radius differ

by 2.49 Å to 2.54 Å for the cones which consist of one to five pentagons, and this

is irrespective of the direction of the vertex. The maximum suction energy occurs

when the radii differ by 3.00 Å to 3.05 Å.
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The oscillatory behaviour is then examined, assuming that the carbon nanocone

is located co-axially and that it is sucked into the tube by van der Waals forces

alone. The potential energy can be assumed to be approximated by rectangular

functions, and the corresponding force distribution can be approximated by two

Dirac delta functions. The strong attractive forces at the ends of the tube ensure

that the cone remains inside, so that it becomes an oscillator. Newton’s second law

neglecting the frictional force is employed to determine the frequency of the system.

The frequencies obtained are in the gigahertz range, 15 to 90 GHz, for various values

of the tube length, and are the same order of magnitude as for an oscillating co-

axial carbon nanotubes. Moreover, the shorter the tube and the smaller the cone,

the higher the frequency.



Chapter 6

Carbon onions

Experimentally, a wide variety of different shapes are obtained, including both spher-

ical and spheroidal carbon onions. A spheroid is an ellipsoid with two equal axes

and the term onion refers to a multi-layered composite structure. Assuming struc-

tures of either concentric spherical or ellipsoidal fullerenes comprising n layers, this

study examines the interaction energy between adjacent shells for both spherical

and spheroidal carbon onions. The Lennard-Jones potential together with the con-

tinuum approximation is employed to determine the equilibrium spacing between

two adjacent shells. Analytical formulae for the potential energy, which may be

expressed either in terms of hypergeometric or Legendre functions, are determined.

The equilibrium spacing between shells is found to decrease for shells further out

from the inner core owing to the decreasing curvature of the outer shells of a con-

centric structure.

6.1 Nomenclature

Φ is the van der Waals potential function

η1, η2 are the mean atomic number densities for the two surfaces

ρ is the distance between two typical surface elements

σ is the carbon-carbon covalent bond length

A, B are the Lennard-Jones attractive and repulsive coefficients, respectively

Etot is the total interaction potential

Z is the interspacing between two adjacent layers of carbon onion

94
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6.2 Introduction

The special properties of nanostructures have not only led to proposals for many

potential nano-devices [4, 5, 30] but also to the desire to create new carbon nanos-

tructures, and the spherical and ellipsoidal carbon onions are examples of such struc-

tures. Carbon onions comprise multi-layer composite structures and here those of

both spherical and spheroidal shapes are considered, note that a spheroid is simply

an ellipsoid with two axes of equal length. Experimentally, electron beam irradiation

methods are used to modify the multi-layers of carbon onions, but at present there

are no procedures to predict the precise shape of the resulting structures. The major

issue in this regard is the determination of the interspacing layer of such structures.

Recently, molecular dynamics simulation techniques have been used to examine the

formation of such nanostructures. This calculation may be performed using den-

sity functional theory and a tight binding method such as that described in [91]

and [92]. However, rather than undertake such large scale calculations, elementary

mechanical principles and classical mathematical modelling are employed here to in-

vestigate the interaction energies between adjacent shells of spherical and spheroidal

carbon onions, which leads to the determination of the equilibrium spacings of such

structures.

While there are a number of studies on spherical carbon onions [46, 47, 93],

very little work has been undertaken for other forms of carbon onions. Kitahara

et al. [94] employ an electron beam irradiation technique to experimentally create

ellipsoidal carbon onions and they also investigate the stability of these structures

by using molecular mechanics and molecular orbital calculations. Narita et al. [95]

also utilise electron beam irradiation methods to produce tetrahedral carbon onions,

and they determine their energy levels and the density of different states.

For spherical and spheroidal carbon onions, this chapter utilises the Lennard-

Jones potential together with the continuum approximation to determine the po-

tential energy between two adjacent layers. From the energy minimisation of the

structure, this method can be used to predict the spacings between adjacent lay-

ers, and therefore the lateral and vertical dimensions for each layer of spherical and

ellipsoidal carbon onions. Using curve fitting techniques, an expression for the equi-

librium spacing for any two neighbouring layers of the carbon onions are obtained
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and shown in §6.4. Finally, a summary of the results is given in §6.5.

6.3 Interaction energies between shells

Here the interaction energy between two adjacent shells of an ellipsoidal (or spheri-

cal) carbon onion is considered. The ellipsoidal carbon onion is assumed to comprise

a family of concentric nested spheroidal fullerenes located co-axially, as shown in

Figure 6.1.

�

�

�
�

�

�

�

�

l

�

�

Figure 6.1: Double-shell ellipsoidal carbon onion

From Figure 6.1, with reference to the rectangular Cartesian coordinate system

the parametric equations for the outer and inner spheroids are given by

(x1, y1, z1) = (b sin φ1 cos θ1, b sin φ1 sin θ1, c cos φ1),

and

(x2, y2, z2) = (d sin φ2 cos θ2, d sin φ2 sin θ2, ` cos φ2),

respectively, where θ1, θ2 ∈ [0, 2π] and φ1, φ2 ∈ [0, π]. If the interspacing along

the three coordinate axes between two neighbouring shells of the carbon onion is

assumed to be given by Z, then it may be deduced ` = c − Z and d = b − Z. The

distance ρ between two typical surface elements on the inner and the outer spheroids

is given by

ρ2 = (b sin φ1 cos θ1 − d sin φ2 cos θ2)
2 + (b sin φ1 sin θ1 − d sin φ2 sin θ2)

2

+(c cos φ1 − ` cos φ2)
2

= (b sin φ1 − d sin φ2)
2 + 4bd sin φ1 sin φ2 sin2[(θ1 − θ2)/2] + (c cos φ1 − ` cos φ2)

2.
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For the continuum approach, the atoms are assumed to be uniformly distributed

over the surface of the molecule, and a constant average atomic density which is

simply the number of atoms divided by the surface area of the molecule is utilised.

Thus, the total potential energy Etot for the two molecules can be obtained by

performing the surface integrals of a potential function over the two molecules,

namely

Etot = η1η2

∫ ∫
Φ(ρ)dΣ1dΣ2, (6.1)

where η1 and η2 denote the mean surface densities of the outer and inner ellipsoidal

fullerenes and ρ is the distance between the two surface elements Σ1 and Σ2 on the

outer and inner spheroidal fullerenes, which are given respectively by

Σ1 = b sin φ1

√
b2 cos2 φ1 + c2 sin2 φ1dθ1dφ1,

Σ2 = d sin φ2

√
d2 cos2 φ2 + `2 sin2 φ2dθ2dφ2,

and the integration is performed over the entire surface of the two ellipsoids. Fur-

ther, Φ(ρ) denotes the interatomic interaction potential for two typical single atoms

located one on each ellipsoid and here the classical six-twelve Lennard-Jones po-

tential is again adopted, so that the interaction energy (6.1) between shells of the

ellipsoidal carbon onion takes the form

Etot = η1η2

∫ π

0

∫ π

0

∫ 2π

0

∫ 2π

0

γ

(
− A

ρ6
+

B

ρ12

)
dθ1dθ2dφ1dφ2,

where γ = bd sin φ1 sin φ2

√
(b2 cos2 φ1 + c2 sin2 φ1)(d2 cos2 φ2 + `2 sin2 φ2). Further,

the integrals J∗n are defined as

J∗n =

∫ 2π

0

∫ 2π

0

dθ1dθ2

ρn
=

∫ 2π

0

∫ 2π

0

dθ1dθ2

{λ + ξ sin2[(θ1 − θ2)/2]}n/2
,

where n = 6 and 12, λ = (b sin φ1 − d sin φ2)
2 + (c cos φ1 − ` cos φ2)

2 and ξ =

4bd sin φ1 sin φ2. Note that none of the terms in γ, λ and ξ depend on θ1 or θ2.

In Appendix A.1, the integrals J∗n are evaluated either in terms of hypergeometric

functions or Legendre functions. In terms of the hypergeometric function, it may
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be deduced

J∗6 =
4π2

(λ + ξ)3
F

(
3,

1

2
; 1;

ξ

λ + ξ

)
,

J∗12 =
4π2

(λ + ξ)6
F

(
6,

1

2
; 1;

ξ

λ + ξ

)
.

Since these equations are degenerate hypergeometric functions (see Appendix E),

they can be written as

J∗6 =
4π2

λ2
√

λ(λ + ξ)

[
1− ξ

λ + ξ
+

3

8

(
ξ

λ + ξ

)2]
,

J∗12 =
4π2

λ5
√

λ(λ + ξ)

[
1− 5

2

(
ξ

λ + ξ

)
+

15

4

(
ξ

λ + ξ

)2

− 25

8

(
ξ

λ + ξ

)3

+
175

128

(
ξ

λ + ξ

)4

− 63

256

(
ξ

λ + ξ

)5]
.

Thus, the total potential energy becomes

Etot = η1η2

∫ π

0

∫ π

0

γ(−AJ∗6 + BJ∗12)dφ1dφ2. (6.2)

To obtain the final result for Etot, the integral of (6.2) needs to be evaluated with

respect to φ1 and φ2, and these integrals are performed numerically. Although clearly

complicated, numerical values for these integrals can be readily evaluated using the

algebraic computer package MAPLE.

For the special case of the spherical carbon onion for which all three major axes

are equal, d = ` for the core and b = c for the outer shell. In this case, the interaction

energy between shells can be obtained explicitly, and is given by

Eo = −P6 + P12, (6.3)

where Pn (n = 6, 12) are defined by

Pn =
8π2bdCnη1η2

(2− n)

(
1

(b + d)n−2
− 1

(b− d)n−2

)
,

where C6 = A, C12 = B and again η1 and η2 represent the surface densities of carbon

atoms on the outer and inner spherical fullerenes, respectively. The derivation of Pn

can be found in Appendix C.
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6.4 Numerical results

The algebraic computer package MAPLE is used to show graphically the relation

between the potential energy and the interspacing between two neighbouring shells

for spherical and ellipsoidal carbon onions. The attractive and repulsive constants

A and B for graphitic carbon interactions are taken to be A = 17.4 eVÅ6 and

B = 29 × 103 eVÅ12 [36]. Due to the short range interaction of the van der Waals

force, the interactions between adjacent layers is only taken into account for the

calculation of the resultant potential energy [41].

For the spherical carbon onion, the 1st-shell, or the core, is assumed to be the

spherical C60 fullerene, which has a radius of 3.55 Å. This is consistent with ex-

perimental results, where the core of a fully formed spherical carbon onion has the

diameter of 7-10 Å [60]. From (6.3), upon substituting d = 3.55, b is the radius of

the 2nd-shell, which is the critical value for which the energy Eo/(η1η2) is minimum.

Repeatedly, by using the radius of the (n− 1)th-shell as the value of d in (6.3), the

radius of the nth-shell, b, is determined by minimising Eo/(η1η2). Following this

procedure, the radius for each shell of an eight-layer spherical carbon onion is ob-

tained, as shown in Table 6.1. These values are the critical radii shown in Figure 6.2

for each shell. The spherical carbon onion comprising shells with radii shown in

Table 6.1 are approximately the structure proposed by Kroto and McKay [96] which

is the C60@C240@C540@C960@C1500@...@CN spherical carbon onion, where N is the

number of carbon atoms in Goldberg fullerenes of Ih symmetry type I, given by

N = 60n2 where n is an integer [27]. The average radii of CN are referred to Ta-

ble 6.2, which are taken from Itoh et al. [97] for C240, C540, C960, C2160 and C3840 and

from Dunlap and Zope [98] for C1500. For Goldberg fullerenes of Ih symmetry type

I, the average radius is approximated by R̄ ≈ 2.4σ̄n, where σ̄ is the average bond

length [47]. Using σ̄ = 1.421 Å and n = 7, the average radius of C2940 is obtained,

as shown in Table 6.2.

Table 6.1: Radius of each shell for a spherical carbon onion predicted from minimi-
sation of the energy Eo/(η1η2) (6.3) and assuming a C60 core.

nth-shell C60 2nd 3rd 4th 5th 6th 7th 8th

Radius (Å) 3.55 7.042 10.516 13.981 17.442 20.900 24.356 27.811
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Figure 6.2: Potential energy profile for a spherical carbon onion showing the possible
radii of the nth-shell for which the energy is minimum.

Table 6.2: Radii of spherical fullerenes CN .

Fullerene C240 C540 C960 C1500 C2160 C2940 C3840

Radius (Å) 7.06 10.53 14.02 17.5225 20.95 23.8728 27.95

For spheroidal carbon onions, two cases are considered using C24 [93] and C80 [94]

as the core. From (6.2) with the substitution c = `+Z and b = d+Z, the equilibrium

distance Z between two adjacent layers may be obtained from minimisation of the

energy Etot/(η1η2). Using a C80 ellipsoidal fullerene which has a lateral size ` = 4.73

Å and a vertical size d = 3.58 Å [93] as the inner core, from (6.2) the equilibrium

distance Z12 is determined which is the critical value shown in Figure 6.3 (—–)

that minimises the interaction energy between the 1st- and 2nd-shells. Knowing Z12

gives rise to the lateral and vertical sizes of the 2nd-shell, which then become ` and

d in the determination of Z23. Repeatedly, the equilibrium spacing Z(n−1)n for the

(n − 1)th- and nth-shells interaction is determined, and Figure 6.3 shows the rela-

tion between the energy Etot/(η1η2) and the interspacing between two neighbouring

shells for the ellipsoidal carbon onion with C80 as the core. The critical values that

minimise the potential energy are the equilibrium distances between each layer of

the ellipsoidal carbon onion. The lateral and vertical sizes for a five-shell ellipsoidal
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carbon onion with C80 core are given in Table 6.3. Using a similar procedure to

that described above, Table 6.4 gives the dimensions of the outer shells for the

ellipsoidal carbon onion where C24 is the core. For the ellipsoidal carbon onions

with a C80 core, the equilibrium interlayer spacing between neighbouring shells is

approximately 3.4 Å. Further, from Terrones et al. [99], it can be found that the

mean radii of C260, C560 and C980 are 7.662, 11.057 and 14.588 Å, respectively. As a

result of Table 6.3, assuming C80 as a core gives rise to the carbon onion structure

C80@C260@C560@C980@C1520...@CN where N = 20(m2 + mn + n2). As such, this

study confirms the possible creation of the nested chiral icosahedral fullerenes of

type I symmetry as proposed by Terrones et al. [99].
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Figure 6.3: Potential energy profile for a five-shell C80 carbon onion.

Table 6.3: Lateral and vertical sizes for five-layer ellipsoidal carbon onion where C80

is the assumed inner core.

nth-shell C80 2nd 3rd 4th 5th

Lateral radius (Å) 4.73 8.222 11.699 15.167 18.629
Vertical radius (Å) 3.58 7.072 10.549 14.017 17.479
Mean radius (Å) 4.155 7.647 11.124 14.542 18.054

From the tables, the values of the equilibrium spacing Z between two adjacent

layers for both spherical and ellipsoidal carbon onions decrease the further away the

shell is from the inner core, which results from the effect of decreasing the curvature

of the spheroids. The high curvature of the inner shells means that for any atom
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Table 6.4: Lateral and vertical sizes for five-layer ellipsoidal carbon onion where C24

is the assumed inner core.

nth-shell C24 2nd 3rd 4th 5th

Lateral radius (Å) 2.315 5.846 9.324 12.792 16.256
Vertical radius (Å) 1.665 5.196 8.674 12.142 15.606

on the surface, there can be more than one interacting atom on the neighbouring

shell. Moreover, the shells which are further away from the inner core become

more like a flat surface, for which the interaction energy of the neighbouring shells

is approximately the equilibrium spacing of two graphite sheets. The equilibrium

spacing between two adjacent layers is obtained approximately as 3.4 Å for both

cases. This result is in excellent agreement with the observations made by Terrones

et al. [99].

The relation between the equilibrium spacing between two adjacent shells is

shown in Figure 6.4 for a spherical carbon onion. Using a first order exponential

curve fitting technique from Microcal Origin 6.0 and the values of constants provided

previously, an equation which describes the interspacing between each shell of a

spherical carbon onion is obtained, namely

Equilibrium spacing (Å) = 3.455 + 0.131e−1.593n,

where n is the shell number.

For an ellipsoidal carbon onion, the relation between the spacing number and the

equilibrium distance between each layer is shown in Figure 6.5. Again, using a first

order exponential curve fitting technique from Microcal Origin 6.0 and the values of

constants provided previously, the equations which describe the equilibrium spacing

between any two neighbouring layers for the C24 and C80 ellipsoidal carbon onions

are obtained, namely

Equilibrium spacing for C24 onion(Å) = 3.458 + 0.757e−0.851n,

and

Equilibrium spacing for C80 onion(Å) = 3.453 + 0.102e−2.061n,

where n is the shell number. Figure 6.5 shows that the large equilibrium spacing
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between the 1st- and the 2nd-shells of C24 carbon onion occurs due to the unstable

structure of C24 [93].
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Figure 6.4: Equilibrium spacing between adjacent shells of spherical carbon onion
assuming a C60 core.
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Figure 6.5: Equilibrium spacing between adjacent shells of spheroidal carbon onions
assuming a C24 and a C80 core.
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6.5 Summary

The interspacing between two adjacent layers of spherical and ellipsoidal carbon

onions is considered here. The Lennard-Jones potential together with the continuum

approximation is employed to determine the preferred position or the equilibrium

distance for each layer of various carbon onions. The analysis gives rise to the

possible dimensions for each shell of the carbon onions. Moreover, the equilibrium

spacing is observed to decrease as the shell is further away from the inner core and

this is due to the decreasing curvature for the larger spheroids. However, this is

not the case when high temperatures and pressures are applied to the onion, as

shown by Banhart and Ajayan [100]. Upon heating the particle up to 700◦C and

simultaneously irradiating it with electrons, the interlayer spacing in the onion is

actually shown to decrease from the outside to the inside, indicating an increasing

compressive stress towards the centre, giving rise to a diamond core. Finally, an

approximate equation for the determination of the equilibrium spacing for any two

adjacent layers of a spherical and an ellipsoidal carbon onion is presented.



Part III

Geometry of joining

nanostructures
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Chapter 7

Introduction to the geometry of
joining nanostructures

Since the discovery of carbon nanostructures such as graphene sheets, C60 fullerenes

and carbon nanotubes, a number of researchers have investigated the topological

properties for such structures utilising Euler’s polyhedra theorem and computa-

tional molecular dynamics simulation [28, 101–103]. Kroto [101] proposes the basic

empirical arguments for the stability of spherical carbon cages which mainly consist

of pentagonal and hexagonal rings. By introducing the pentagonal, heptagonal and

octagonal rings on the graphene sheet, Terrones and Terrones [28] and Terrones and

Mackay [102] examine carbon nanostructures with various Euler characteristics. A

defect on a carbon nanotube with a pentagon-heptagon pair as considered by Dun-

lap [104] is believed to strongly affect the electronic properties of carbon nanotubes

[103, 105–108]. Furthermore, a pentagon-heptagon defect pair can be introduced to

connect two different chiral nanotubes [104–106] or to change the helicity within a

single tube [107].

For future nanoelectromechanical signalling, graphene sheets might be needed as

the platform to transmit signals to other materials through joined carbon nanotubes.

Thus connecting graphene sheets with carbon nanotubes is an interesting problem

with potential applications, and to the author’s knowledge this problem has not

previously been addressed in the literature. In Part III, two geometrical approaches,

a variation in bond length and a variation in bond angle, are employed to determine

the connection between a flat sheet and a tube open end, and the details for these

two approaches are presented in §7.1. These two geometrical approaches are closely

related to the bonded interaction energy for a small deformation system which is

106
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detailed in §7.3. Euler’s polyhedra theorem, which is presented in §7.2, is utilised to

determine the connected structure in terms of a geometrical point of view. Finally,

an overview of this part is given in §7.4.

7.1 Least squares methods

From the work of Cox and Hill [11], the authors have exploited the idea that the

basis of joined carbon nanostructures is an underlying requirement that each inter-

atomic distance be as close as possible to the ideal carbon-carbon bond length.

Accordingly, in [11] certain toroidial carbon nanostructures are constructed from

elbows comprising sections of two distinct carbon nanotubes in such a way that the

total squared deviation of all inter-atomic bond distances from the carbon-carbon

bond length is minimised. The underlying hypothesis is that carbon nanostructures

are formed in such a way that each inter-atomic bond length is as close as possible

to the bond length, and indeed in [11] this procedure accurately produces certain

toroidial molecules which are known to exist, along with numerous other predicted

molecules. This leads us to ask, “To what extent is this least squares approach

applicable to other carbon nanostructures?”, or equivalently “To what extent are

carbon nanostructures dominated by geometric issues as well as energetic issues?”

Although this approach appears to be geometric in nature, by trying to make each

inter-atomic bond length as close as possible to the bond length, the requirement to

minimise the energy is taken into account. In this thesis, two variation approaches,

which are the variation in bond length and the variation in bond angle, are under-

taken to consider the joining of two nanostructures, carbon and boron nitride, and

the details of these two methods are given as follows.

7.1.1 Variation in bond length

To start, the ith terminal atoms at a join location are defined by the position vectors

ai = (axi, ayi, azi) and bi = (bxi, byi, bzi) for a sheet and a tube open end, respectively.

The sheet is assumed to be located on the (x, y) plane (ie. azi = 0) and it is allowed

to move in both the x- and y-directions by distances X and Y , respectively, which

can be either positive or negative. The atoms on the sheet are assumed to remain

in the z = 0 plane because here the bond angle is considered fixed. However, in the
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variation of bond angle approach an out of plane displacement for the atoms on the

sheet is incorporated. The position vector for the atoms at the defect sheet is given

by ai = (axi+X, ayi+Y, 0). In terms of the atoms on the tube open end, the spacing

between the tube and the sheet is assumed to be `, and the tube can be rotated

about the z-axis through an angle θ. Consequently, the position vector for the atoms

at the tube open end can be written as bi = (bxi cos θ−byi sin θ, bxi sin θ+byi cos θ, `).

The Euclidean distance between the atoms at the junction is then given by

|ai − bi| = {[axi + X − (bxi cos θ − byi sin θ)]2

+[ayi + Y − (bxi sin θ + byi cos θ)]2 + `2}1/2. (7.1)

Given these distances between matching atoms, the procedure attempts to determine

X, Y , ` and θ by minimising the least squares variation of these distances from the

ideal bond length σ. Therefore, the objective function, given by (7.2) needs to be

minimised,

f(X,Y, `, θ) =
∑

i

(|ai − bi| − σ)2. (7.2)

Throughout this study, the optimisation package in MAPLE is utilised to find the

values for each parameter by minimising (7.2).

7.1.2 Variation in bond angle

In this subsection, the bond lengths are assumed to be fixed at σ and the bond

angles at connection sites are varied so as to minimise the least square derivations

from the physical bond angle for both the sheet and the tube. The bond length is

assumed to be σ, the bond angles of the sheet are assumed to be 120◦, and the bond

angles on the tubes are taken from a new model of carbon nanotubes which properly

incorporates curvature [109]. Since the atomic networks on both the sheet and the

tube are formed from hexagonal rings, a general procedure is proposed to determine

the position vectors of all atoms at the junction through the following steps:

1. Find the point M which is the mid-point of A1 and A2.

2. Find the vector U = MA3.

3. Find the unit vector V̂ = A1A2/|A1A2| which is perpendicular to U.
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4. Determine the vector W which is perpendicular to both U and V̂ and has the

same magnitude as U; namely W = U× V̂.

5. The atom position is then given by M + U cos φ + W sin φ.

Here, A1,A2 and A3, are the atoms positions as shown in Figure 7.1. The atom A3,

which is the joining position, can move around a circular path and its position is

determined by an angle φ. Moreover, each bond length which joins between an atom

on the tube to one on the sheet is restricted to be σ. Comment that in this approach

the atoms can move out of plane (ie. azi 6= 0). The number of parameters in each

system depends on both the symmetry of the defect and the number of atoms at

the tube open end which need to be joined.

� �

� �

� � �
�

�

�

Figure 7.1: Position vectors for variation in bond angle approach.

We note that the variation in bond length and the variation in bond angle give

very similar results because the bond angle approach automatically minimise the

variation in bond length so that the two approaches are rather like a converging

iterative procedure.

7.2 Euler’s polyhedra theorem

Euler’s polyhedra theorem, which involves the topological structure of the molecule,

is considered here to investigate the connected configuration for two nanostructures.
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Euler’s polyhedra theorem states that

F + V − E = χ, (7.3)

where F , V and E denote the numbers of faces, vertices and edges for the given

polyhedron and χ is the Euler characteristic. Note that any surface which is home-

omorphic to a sphere has an Euler characteristic of 2, and further details of Euler’s

polyhedra theorem can be found in [110]. The notation Pn is used to denote the

number of n-gonal sides, e.g. P5 is the number of pentagonal sides, and every atom

is linked with three others in the sp2 structure, therefore three terms in (7.3) can be

deduced

F = P4 + P5 + P6 + P7 + P8 + P9 + P10,

3V = 4P4 + 5P5 + 6P6 + 7P7 + 8P8 + 9P9 + 10P10, (7.4)

2E = 4P4 + 5P5 + 6P6 + 7P7 + 8P8 + 9P9 + 10P10.

By substituting (7.4) into (7.3) with χ = 2, Euler’s polyhedra theorem simplifies to

2P4 + P5 − P7 − 2P8 − 3P9 − 4P10 = 12. (7.5)

For example, a C60 fullerene is formed by pentagons and hexagons, and (7.5) implies

that there are precisely twelve pentagons required to close the spherical shape. This

is a result of the number of hexagonal sides P6 being an invariant of (7.5).

7.3 Bonded interaction for small deformations

A number of authors [13–16] adopt a numerical minimum energy principle such that

the bonded potential energy for a small deformation is given by

Ebonded =
1

2

∑
i

(
kr(r − r0)

2 + kφ(φ− φ0)
2 + kτ [1− cos(nτ − τ0)]

)
, (7.6)

where kr, kφ and kτ are certain bond stretching, bending angle and torsional con-

stants, respectively, r0, φ0 and τ0 are equilibrium values of the bond length, bond

angle and ideal phase angle for this bond type, respectively, and n is an integer re-

lating to the periodicity of the bonding in sp2, n = 3. The parameters r, φ and τ are

shown in Figure 7.2. Ramani et al. [12] have reported all three force constants for
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both carbon and hexagonal boron nitride, in the case of carbon, the force constants

are obtained as kr = 4.79 dyn cm−1, kφ = 0.895 dyn cm−1 and kτ = 0.156 dyn cm−1,

and in the case of boron nitride, the force constants are obtained as kr = 4.84

dyn cm−1, kφ = 0.43 dyn cm−1 and kτ = 0.156 dyn cm−1. Following their study,

the bond stretching constant kr is large, and is approximately five times and ten

times larger than the bending angle constant kφ for carbon and boron nitride, re-

spectively. In general, the variation in bond length approach corresponds to taking

only the bond stretching energy. Similarly, the variation in bond angle approach

corresponds to taking only the angle bending energy from equation (7.6) into ac-

count. Furthermore, according to [13–16], in terms of the relative magnitudes of the

force constants, the torsional term plays only a minor effect on the system and it

may be neglected. Therefore, the geometrical criteria are the more important under-

lying physical principles. Thus, the geometrical approaches adopted here correlate

strongly to existing energy minimisation schemes.

Figure 7.2: Definitions of variables r, φ and τ for bonded potential energy given by
equation (7.6).
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7.4 Overview

Connecting structures from a geometrical point of view for both carbon and boron

nitride are determined in Part III. Throughout this part, least squares methods, Eu-

ler’s polyhedra theorem and the bonded interaction energy are employed to study

the possible joined structures. Utilising the variation in bond length concept, in

Chapter 8 a connecting of three distinct carbon nanotubes to form a torus is pre-

sented. In order to create an ideal transmission platform, connection between a

carbon nanotube and a flat graphene sheet is investigated in Chapter 9. Further-

more, given that the energetically favourable bond in the hexagonal boron nitride

network is the bond between the boron and the nitrogen atoms, boron nitride struc-

tures are formed from an even number of sides to each ring such as squares, hexagons

and octagons. Therefore, the essential mathematical ideas for joining a sheet and a

nanotube of boron nitride are presented in Chapter 10.



Chapter 8

Toroidal molecules formed from
three distinct carbon nanotubes

In order to design nanotori for nanomechanical systems, perhaps involving oscillat-

ing components, precise physical parameters for the nanotori are needed. Toroidal

shaped carbon molecules have been investigated previously and are constructed

by connecting elbow sections formed from joining armchair and zigzag nanotubes

through a pentagonal-heptagonal pair defects. In this chapter, this design is ex-

tended by constructing the elbow structures from three distinct carbon nanotubes.

Since for a toroidal molecule, there is a constraint on the bend angles in the elbow

sections to add up to 360◦, particular elbow types which can accommodate this

requirement are (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4). A least squares approach for

the bond length is adopted to minimise the variation from the ideal carbon-carbon

bond length, which is taken to be σ = 1.42 Å. Moreover, formulae for the mean gen-

erating radius of the nanotori and the mean radius of the nanotubes are obtained

from certain integral expressions. This geometrical approach can be directly related

to certain numerical energy minimisation methods used by a number of authors

[13–16].

8.1 Nomenclature

φ1, φ2 are the elbow bend angles between tubes A and B, and tubes B and C,

respectively

σ is the carbon-carbon covalent bond length

R1, R2 are the distances from the centres of a nanotorus to the elbow corners of

113



Chapter 8: Carbon nanotori 114

tubes A and B, and tubes B and C, respectively

ai,bi, ci are the positions of terminal atoms on tubes A, B and C, respectively

a is the representative tube radius for an ideal nanotorus

a1, a2, a3 are the radii of tubes A, B and C, respectively

c is the representative generating radius for an ideal nanotorus

k, k′ are the elliptic modulus and complementary modulus, respectively

`1, `2, `3 are the half lengths of tubes A, B and C, respectively

n is the number of elbow sections

r1, r2, r3 are the perpendicular distances from the centre of a nanotorus to tube A,

B and C sections, respectively

8.2 Introduction

Dunlap [111] first proposed the torus as a stable form of graphitic carbon. He con-

structs toroidal molecules by joining two different carbon nanotubes with matching

radii and introduces the pentagon-heptagon pair [104, 111, 112]. Moreover, Dunlap

[104, 111, 112] predicts that the molecule comprises twelve connecting sections oc-

curring for the 360◦ turn, and therefore the tubule bend angle is 30◦ for each section.

The energetic stability of molecules that are constructed based on the C60 fullerene

and carbon nanotube structures are investigated by Itoh et al. [113], Ihara et al.

[114] and Itoh and Ihara [115]. They find that these structures are more thermody-

namically stable [114, 116] and such toroidal shapes are expected to be physically

more interesting than those of the two original structures [115]. Although these the-

oretically proposed structures have not been confirmed by experiment [117], they

are believed to give rise to fascinating electrical, magnetic and elastic properties

arising from the pattern of the hexagonal rings [116].

In a recent paper Cox and Hill [11] show that certain toroidal molecules may be

constructed from two types of carbon nanotubes, such that the bend angle and the

two nanotube lengths are determined by minimising the total squared deviations
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of the inter-atomic spacings from the ideal spacing σ = 1.42 Å. This procedure

generates certain toroidal shaped molecules previously known to exist, along with

numerous other toroidal molecular structures. The question arises as to the gen-

erality of the procedure, and whether or not other toroidal shaped molecules are

determined, such as ones constructed from three distinct nanotubes.

This chapter examines the geometry of the basic repeatable units, comprising

three distinct carbon nanotubes, which are needed to assemble the toroidal molecule.

Following [11], these repeating units are joined according to the least squares minimi-

sation of the deviations of the inter-atomic spacing from the ideal spacing σ = 1.42

Å. In this study, all the carbon nanotube sections are assumed to be either zigzag or

armchair. This is because from previous studies only these two types of nanotubes

are thought to form nanotori [104, 111, 112, 118]. In addition, there is no experimen-

tal evidence to indicate that chiral tubes can be formed into toroidal structures [117].

The model formation for the elbow comprising three distinct carbon nanotubes is

presented in the following section. In §8.4, the toroidal molecules constructed by

connecting n elbows are determined, and formulae for a representative radius of such

tori and a representative radius of the toroidal tube are also given. The results and

discussion are presented in §8.5, and a summary is made in §8.6.

8.3 Model formation for an elbow

The elbow structure required for toroidal molecules is investigated here by joining

three distinct carbon nanotubes of lengths 2`1, 2`2 and 2`3 utilising the least squares

in bond length approach. Only zigzag and armchair carbon nanotubes are examined.

The proposed model assumes that the basic repeating unit comprises tubes A and

C as half unit lengths and tube B as one unit length. Further, it is assumed that

the origin O of a rectangular Cartesian coordinate system (x, y, z) is located at the

central point of tube B, such that the axis of tube B is aligned along the z-axis, as

illustrated in Figure 8.1.

The ith terminal atom at a join location is defined by position vectors ai =

(aix, aiy, aiz), bi = (bix, biy, biz) and ci = (cix, ciy, ciz) for tubes A, B and C, respec-

tively. At the junction of tubes A and B with x′-axis as shown in Figure 8.2(a), a

translation of the tube B in the negative z-direction is performed by a length `2A,
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Figure 8.1: Basic double elbow unit formed from three nanotube sections.

where 2`2 = `2A + `2B and `2B is as defined later in the text. Tube A is also trans-

lated in the positive z-direction by a length `1 and rotated by an angle φ1 about

the y′-axis. Therefore, the Euclidean distance between the atoms at the junction is

given by

|ai − bi| = {[aix cos φ1 + (aiz + `1) sin φ1 − bix]
2 + (aiy − biy)

2

[(aiz + `1) cos φ1 − aix sin φ1 − (biz − `2A)]2}1/2.

Similarly, at the junction of tubes B and C with x′′-axis as shown in Figure 8.2(b),

tube B is translated in the positive z-direction by a length `2B, tube C is translated

in the negative z-direction by a length `3 and rotated by an angle φ2 about the

y′′-axis. The distance between the atoms at the join location is then given by

|ci − bi| = {[cix cos φ2 + (ciz − `3) sin φ2 − bix]
2 + (ciy − biy)

2

[(ciz − `3) cos φ2 − cix sin φ2 − (biz + `2B)]2}1/2.

Given these distances between matching atoms, the procedure is to determine

`1, `2, `3, φ1 and φ2 by minimising the least squares variation of these distances from

the ideal carbon-carbon bond length which is taken to be σ = 1.42 Å. Consequently,
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Figure 8.2: Cartesian coordinate system for two single nanotube elbows.

this approach is seeking to minimise the following objective functions,

f(`1, `2A, φ1) =
∑

i

(|ai − bi| − σ)2,

g(`2B, `3, φ2) =
∑

j

(|cj − bj| − σ)2.

Given that the parameters `1, `2, `3, φ1 and φ2 are determined, the basic repeating

unconstrained elbow unit can be obtained and is illustrated in Figure 8.3. However,

in the case of a nanotorus, an even number of elbow sections are required to form

a symmetrical torus, so that the angles φ1 and φ2 must be constrained to the value

φ1 + φ2 = 180◦/n where n ∈ {2, 3, 4, ...}. So in this case, the objective function

becomes

F (`1, `2A, `2B, `3, φ1) = f(`1, `2A, φ1) + g(`2B, `3, 180◦/n− φ1).

In consequence, with this additional constraint, slightly different values for `1, `2 and

`3 might be obtained. The resulting nanotorus structure is achieved by translating

the elbow in the x-direction by a distance r2 which is obtained by the procedure

given in the following section.

8.4 Model formation for a toroidal molecule

In this section, nanotoroidal structures formed from the elbows determined in §8.3

are investigated here. A representative radius of the toroidal shapes is determined
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Figure 8.3: Elbows formed from three distinct nanotube sections.

by connecting the basic elbow units with φ1 and φ2 constrained for the 360◦ turn.

Firstly, the upper quadrilateral shown in Figure 8.4 is considered which comprises

four sides, namely r1, `1, `2A and r2, and the configuration also depend on the angle

φ1. On using the compound angle formula for sine which can be deduced

sin φ1 = sin θ1 cos θ2A + sin θ2A cos θ1 = (`1r2 + `2Ar1)/R
2
1,

and therefore,

r1 = (R2
1 sin φ1 − `1r2)/`2A. (8.1)

Similarly, from the compound angle formula for cosine,

cos φ1 = cos θ1 cos θ2A − sin θ1 sin θ2A = (r1r2 − `1`2A)/R2
1,

and therefore, r1 simplifies to become

r1 = (R2
1 cos φ1 + `1`2A)/r2. (8.2)

By equating equations (8.1) and (8.2), r2 can be rearranged and is given by

r2R
2
1 sin φ1 = `2AR2

1 cos φ1 + `1(r
2
2 + `2

2A),
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Figure 8.4: Elbow skeleton formed from three distinct nanotube sections.

where R2
1 = r2

2 + `2
2A is strictly positive. By dividing by R2

1 and rearranging, r2

simplifies to obtain

r2 = `2A cot φ1 + `1 csc φ1, (8.3)

and likewise

r1 = `1 cot φ1 + `2A csc φ1.

By precisely the same process for the quadrilateral comprising the sides r2, `2B, `3

and r3, r2 and r3 can be deduced

r2 = `2B cot φ2 + `3 csc φ2, (8.4)

r3 = `3 cot φ2 + `2B csc φ2.

The parameters `2A and `2B can be rearranged from (8.3) and (8.4), respectively,

`2A =
r2 − `1 csc φ1

cot φ1

= r2 tan φ1 − `1 sec φ1,

`2B =
r2 − `3 csc φ2

cot φ2

= r2 tan φ2 − `3 sec φ2.
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Since 2`2 = `2A + `2B, therefore

r2 =
`1 sec φ1 + 2`2 + `3 sec φ2

tan φ1 + tan φ2

. (8.5)

By substituting (8.5) into the above equations, r1 and r3 are obtained

r1 = `1 cot(φ1 + φ2) + 2`2 csc(φ1 + φ2) cos φ2 + `3 csc(φ1 + φ2), (8.6)

r3 = `1 csc(φ1 + φ2) + 2`2 csc(φ1 + φ2) cos φ1 + `3 cot(φ1 + φ2). (8.7)

These two formulae provide the appropriate generalisation of those given in Cox and

Hill [11] for the case of two distinct tubes. The corresponding equations given in

Cox and Hill [11] can be obtained from (8.6) and (8.7) with the formal identification

`2 ≡ φ2 ≡ 0.

To calculate a representative radius a and a representative generating radius c in

terms of the perpendicular distances r1, r2 and r3, the integral formula for a mean

radius r of a circle is utilised, which is given by

rφ0 =

∫ φ0

0

r(φ)dφ.

For a right-angled triangle which consists of r1, `1 and R1 sides, φ0 and r are obtained

as φ0 = tan−1(`1/r1) and r(φ) = r1 sec φ and it can be deduced

r1θ1 = r1

∫ tan−1(`1/r1)

0

sec φdφ = r1 ln

(
`1

r1

+

√
`2
1 + r2

1

r1

)
.

Since sinh−1 x = ln(x +
√

x2 + 1), therefore r1θ1 simplifies to obtain

r1θ1 = r1 sinh−1(`1/r1).

The same procedure is repeated to obtain the mean radii for r2 and r3 and finally

by averaging, the representative toroidal generating radius c is obtained to be given

by

c = {r1 sinh−1(`1/r1)+r2[sinh−1(`2A/r2)+sinh−1(`2B/r2)]+r3 sinh−1(`3/r3)}/(φ1+φ2).

(8.8)

This process is then extended to determine a representative expression for the

representative tube radius a. Here a surface integral for a torus is undertaken to de-

termine such a radius. The surface element for the tube is obtained by transforming
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Figure 8.5: Toroidal coordinate system (a, φ, ψ).

the toroidal coordinate system (a, φ, ψ) into a Cartesian coordinate system via

x = (c + a cos ψ) cos φ, y = (c + a cos ψ) sin φ, z = a sin ψ,

where c and a denote the mean radii for the torus and the tube, and φ and ψ are

the torus and the tube angles, respectively (see Figure 8.5). By using the Jacobian

matrix, the surface element integral for the torus can then be written as

∫ φ0

0

∫ 2π

0

b(φ, ψ)[r(φ) + b(φ, ψ) cos ψ]dψdφ = 2πbφ0c,

where b(φ, ψ) is the radius of the tube, and as before r(φ) is the torus generating

radius. For the section of tube A, θ1 = tan−1(`1/r1), r(φ) = r1 sec φ and b(φ, ψ) =

a1

√
sec2 φ cos2 ψ + sin2 ψ, it can be deduced

a1 =
1

2πcθ1

∫ θ1

0

∫ 2π

0

a1r1 sec φ

√
sec2 φ cos2 ψ + sin2 ψdψdφ,

=
a1r1

2πcθ1

∫ θ1

0

∫ 2π

0

√
1− sin2 φ sin2 ψ

cos2 φ
dψdφ.

Upon the substitution of k = sin φ, the above integral can be written as

a1 =
2a1r1

πcθ1

∫ π/2

0

∫ `1/R1

0

√
1− k2 sin2 ψ

k′3
dkdψ =

2a1r1

πcθ1

∫ `1/R1

0

E(k)

k′3
dk,

where E(k) is the complete elliptic integral of the second kind with modulus k and

k′ =
√

1− k2 is the complementary modulus. Using these definitions with equivalent

expressions for tubes B and C and then combining, the following formula may be
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derived for the representative tube radius

a =
2

πc(φ1 + φ2)
{a1r1h(`1/R1)+a2r2[h(`2A/R1)+h(`2B/R2)]+a3r3h(`3/R2)}, (8.9)

where

h(x) =

∫ x

0

E(k)

k′3
dk. (8.10)

The analytical expression in terms of an infinite series for (8.10) can be found in

Appendix A of Cox and Hill [11], and is given by

h(x) =
3πx

8r
+

π

8
sin−1 x +

π

2

∞∑
m=1

( −1
2

m + 1

)2{
(2m− 1)!!

2mm!
sin−1 x

− x2m+1

(2m + 1)r

[
1 +

(
r2

x2

) m−1∑

k=0

(m− k − 1)!(2m + 1)!!

2k+1m!(2m− 2k − 1)!!

(
1

x

)2k]}
,

where r = (1−x2)1/2 and the double factorial (2n−1)!! denotes (2n−1)(2n−3) · · · 5·3.

The above procedures for the determination of the representative parameters a and

c are by no means unique, but appear as the most natural and simplest for the

determination of these quantities.

8.5 Results and discussion

In this section, elbows made from the smallest possible nanotube sections are deter-

mined. By precisely the same procedure as that given in [11], the basic parameter

for elbows are given in Table 8.1. The smallest possible nanotube sections which

can be formed from the elbows are referred to as the base unit, and other possible

structures can be obtained by adding further incremental units. The same nomen-

clature formulated in [11] for toroidal shaped molecules is employed by utilising the

notation N(n,m)p where (n,m) refers to a section of nanotube which is constructed

from p atoms and N is a number of base units.

Numerical results from the least squares procedure when applied to various dis-

tinct nanotube elbows are presented here. Two different elbow structures, which

are (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4), are considered. Using the new polyhedral

facetted model for carbon nanotubes which incorporates curvature [109] and the

value of the bond length σ = 1.42 Å, the tube radii are obtained. Once the atom

positions are determined, the physical parameters `1, `2, `3, φ1 and φ2 are determined
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Table 8.1: Fundamental parameters for nanotube elbows formed from three distinct
carbon nanotube sections.

Base unit Incremental unit
Nanotube Radius (Å) Number atoms Number atoms Length (Å)

(5,0) 2.0551 17 +20 +4.7986
(4,4) 2.7582 48 +16 +2.4380
(7,0) 2.8094 19 +28 +4.2230
(3,3) 2.0965 12 +12 +2.4206
(6,0) 2.4298 32 +24 +4.1580
(4,4) 2.7582 24 +16 +2.4380

by the minimisation process, both for no constraints and again with the constraint

φ1 + φ2 = 180◦/n where n ∈ {2, 3, 4, ..}. In Table 8.2, the results for the uncon-

strained case and the constrainted case when φ1 + φ2 = 60◦ (that is n = 3) for two

different nanotori are presented. Note that the sum of the angles φ1 and φ2 needs

to be exactly or close to a common factor of 360◦ for toroidal structures, and there

is only one case arising for these particular two structures. Moreover, there is no

straightforward procedure to choose the elbow structures for which φ1+φ2 ' 180◦/n,

so that only (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4) are presented here.

Table 8.2: Bend angles and base unit section for nanotube elbows.

Elbow type
(5,0)-(4,4)-(7,0) (3,3)-(6,0)-(4,4)

φ1 + φ2 unconstrained
φ1(

◦) 25.59 31.38
φ2(

◦) 36.00 33.80
`1(Å) 3.7089 3.2202
`2(Å) 3.6571 2.4085
`3(Å) 3.1727 2.3430

φ1 + φ2 = 60◦

φ1(
◦) 24.00 26.20

φ2(
◦) 36.00 33.80

`1(Å) 3.3396 3.2716
`2(Å) 3.6571 2.4085
`3(Å) 3.1727 2.3430

Using the parameters for the constrained elbows, the toroidal parameters r1, r2

and r3 from equations (8.6), (8.5) and (8.7) are calculated, and values for the mean
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torus generating radius c and mean tube radius a are derived from the expressions

(8.8) and (8.9). These results are presented in Table 8.3. Two of these nanotori

are illustrated graphically in Figure 8.6 and Figure 8.7. In Figure 8.6, the toroidal

structure of 3(5, 0)176(4, 4)483(7, 0)19 is depicted, which can be referred to as a C396

molecule, and also in Figure 8.7, the toroidal structure of 3(3, 3)126(6, 0)323(4, 4)24

is shown, which can be referred to as a C300 molecule.

Table 8.3: Physical parameters of two specific toroidal structures.

Toroidal structures r1 (Å) r2 (Å) r3 (Å) c (Å) a (Å)
3(5, 0)176(4, 4)483(7, 0)19 12.4239 12.7083 13.4038 12.9935 2.6209
3(3, 3)126(6, 0)323(4, 4)24 9.2163 9.7138 10.1213 9.7980 2.4780

8.6 Summary

The principle contribution of this study is applying a least squares approach to

determine the basic elbow unit and toroidal structures formed from three distinct

carbon nanotubes. Within each constituent nanotube structure, the relative atom

positions are assumed to remain unchanged. The connection to adjacent atoms

on each of the two sections is assumed to be as close as possible to the carbon-

carbon bond length, taken to be σ = 1.42 Å. The variation in the bond length

is minimised which gives rise to the physical parameters, namely the bend angles,

φ1 and φ2, and the half-lengths `1, `2 and `3. We comment that this minimisation

procedure ignores angle bending because the bending force constant is small relative

to the bond length constant. There are two approaches in the minimisation routines,

which are the unconstrained and constrained cases for the bend angles. In terms

of the unconstrained procedure, all the physical parameters are allowed to attain

their optimum values themselves which are necessary to form the elbow structures.

However, in such a procedure there is no guarantee that the elbow sections can

be joined to each other and form a toroidal shaped structure with a 360◦ turn.

Therefore, the analysis is repeated with the angles φ1 and φ2 constrained to the

value φ1 + φ2 = 180◦/n where n ∈ {2, 3, 4, ..}.
Here, two distinct elbows are considered which are (5,0)-(4,4)-(7,0) and (3,3)-

(6,0)-(4,4), and all the physical parameters are given in Table 8.2. Since the principal
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Figure 8.6: Nanotorus formed from 3(5, 0)176(4, 4)483(7, 0)19 where φ1 + φ2 = 60◦.

Figure 8.7: Nanotorus formed from 3(3, 3)126(6, 0)323(4, 4)24 where φ1 + φ2 = 60◦.
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aim is to construct toroidal molecules by joining elbow sections, the bend angles must

sum to 360◦. The two elbows which are studied here correspond to cases for which

360/(φ1 + φ2) is approximately an integer.

Following the analysis of two elbow types [11], toroidal shaped molecules are then

investigated. A straightforward procedure is established to determine the mean

generating toroidal radius c and the mean tube radius a. Once the bend angles

and tube lengths are obtained, the perpendicular lengths from the torus centre can

be determined, as given in Table 8.3. Such theoretical structures have yet to be

confirmed either experimentally or by molecular dynamics simulations, nonetheless

their theoretical existence is a first step in understanding the complex geometrical

structures of such molecules.



Chapter 9

Joining carbon nanotubes and flat
graphene sheets

In order to transmit signals from future nanoelectromechanical graphene sheets

to other materials, connections with carbon nanotubes are required. Here, three

particular perpendicular connections of carbon nanotubes are examined employing

two simple distinct least squares approaches and using Euler’s polyhedra theorem.

Firstly, for (8,0) and (4,4) carbon nanotubes, a least squares approach is applied

to the bond lengths. Sixteen distinct defects and two possible orientations for the

armchair tube (4,4) are identified. Assuming that only pentagons, hexagons, hep-

tagons and occasionally octagons are accepted, the number of possibilities is greatly

reduced. By excluding octagonal rings, the number of possible configurations may

be further reduced to only one and two most likely configurations for the zigzag

(8,0) and the armchair (4,4) tubes, respectively. Secondly, for (6,0) and (8,0) car-

bon nanotubes, a least squares approach is applied to bond angles, and for one

particular (8,0) junction, the two least squares approaches are shown to produce

similar structures in terms of atom locations. These geometric approaches can be

formally related directly to certain numerical energy minimisation methods used by

a number of authors [13–16].

9.1 Nomenclature

σ is the carbon-carbon covalent bond length

θ is the rotational angle of the carbon nanotube

L is the spacing between the carbon nanotube and the graphene sheet,

127
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equivalent to ` + σ(
√

3 sin φ cos ω − 1) where φ is the bond half-angle

and ω is the angle of incline [109]

Pn is the number of n-gonal sides

X, Y are the translation distances in the x- and y-directions, respectively

ai,bi are the positions of terminal atoms on the graphene sheet and the carbon

nanotube, respectively

` is the spacing between the graphene sheet and the carbon nanotube in

the positive z-direction

9.2 Introduction

As a first step to examine the joining of two different carbon nanotubes, the radius

of one tube is assumed to be much larger than the radius of the other. This line of

reasoning leads to the notion of joining a tube to a flat graphene sheet. The basic

idea of connecting a graphene sheet to a tube is also involved in the root-growth

process for single-walled nanotubes [119–122], where the tubes are grown from the

base metal-catalyst. Gavillet et al. [119] investigate the catalytic growth of single-

walled carbon nanotubes using high-resolution transmission electron microscopy.

Utilising quantum molecular dynamics simulation, they also find that hexagons and

pentagons occur at the connection, but there are difficulties arising from computa-

tional limitations. Maiti et al. [122] use Euler’s polyhedra theorem and undertake

molecular dynamics calculations to determine the polygons which occur at the base

of the nanotube during the growth process. In terms of stability, they obtain results

relating the type of polygonal rings occurring in Euler’s polyhedra theorem and the

energy at the growth site.

Here, the approach of [11] is developed with reference to the perpendicular joining

of a plane graphene sheet to three particular carbon nanotubes. For this problem,

two least squares approaches are employed, which are the variation in the bond

length as in [11], and an alternative idea which is fixing all bond lengths to be

exactly the assumed bond length σ and minimising the variation in the bond angle

as mentioned in §7.1. In the following section, the connecting of a zigzag (8,0) and



Chapter 9: Joining carbon structures 129

an armchair (4,4) carbon nanotube with sixteen different defect sites on a graphene

sheet are examined by the variation in the bond length. For the ideal case of

connecting a (6,0) tube with a symmetric defect, the variation in the bond angle is

exploited using a least squares method to determine the connecting structure, which

is presented in §9.4. The polygons which occur at the junction are determined and

are shown to be consistent with Euler’s polyhedra theorem in §9.5. Additionally,

the most likely structure for the (8,0) tube and the sheet as determined from §9.5

is investigated using the bond angle variation method, and it is found that the two

arrangements using least squares are very similar in terms of atom locations. Finally,

a summary is presented in §9.6.

9.3 Variation in the bond length

The possibility of connecting zigzag (8,0) and armchair (4,4) nanotubes with a flat

graphene sheet is investigated here by fixing the atom positions on the tube end and

the graphene sheet. Then the variation in distance between an atom on the tube

open end and an atom on the sheet from the bond length σ between two carbon

atoms, taken to be 1.42 Å, is minimised. In both cases, there are eight atoms which

are connected to the tube by two carbon bonds so that they require one other bond

to complete the sp2 structure. Consequently, the defect on the graphene sheet must

have eight atoms and each require one further bond to complete the structure. In

Figure 9.1, sixteen possible defects are depicted to which the (8,0) and the (4,4)

tubes might be joined. The first atom on the sheet is denoted by a black square

and atoms indicated by grey circles are numbered sequentially and counterclockwise

from the first atom. Because of the symmetric locations of all atoms on the open end

of the zigzag tube, there are sixteen possible configurations denoted by an integer

#n from 1 to 16, corresponding to the sixteen possible defects. For the armchair

tube, there are two connected forms for the adjacent atoms on the tube end which

are either connected by three bonds, as in the first atom to the second atom, or by a

single bond, as in the second atom to the third atom. This pattern alternates around

the tube end as depicted in Figure 9.1. Therefore, the joining of the first atom on

the tube with the first atom on the sheet is denoted by #n-a and the joining of the

second atom on the tube with the first atom on the sheet is denoted by #n-b where
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#n is again an integer from 1 to 16 corresponding to the 16 possible defects.

As in §7.1.1, the variation in bond length for joining a flat graphene sheet and a

carbon nanotube can be determined. In a Cartesian coordinate system, the graphene

sheet is assumed to be located in the (x, y) plane and the ith atom on the sheet is

assumed to have the position vector ai = (axi + X, ayi + Y, 0) where i = 1, 2, 3, ..., 8.

The sheet is allowed to move in both x- and y-directions by distances X and Y ,

respectively, which can be either positive or negative. To keep the approach as

simple as is possible, the atoms in the graphene sheet are assumed to remain in

the z = 0 plane. A refinement of the present approach would be to assume a

displacement Z out of the z = 0 plane, but this additional complexity makes no

substantial qualitative changes to the final geometric structure obtained, and in this

section z = 0 is adopted because the bond angle is considered fixed.

The position vector of the ith atom on the tube open end is assumed to be

given by bi = (bxi, byi, `) where ` is the spacing between the tube and the sheet in

the positive z-direction. In addition, the tube can be rotated by an angle θ. The

distance between the atom on the tube end and the atom on the sheet is then given

by

|ai − bi| = {[(axi + X)− (bxi cos θ − byi sin θ)]2

+[(ayi + Y )− (bxi sin θ + byi cos θ)]2 + `2}1/2.

Using the least squares method, this study aims to determine X, Y , ` and θ which

minimises the function

f(X,Y, `, θ) =
8∑

i=1

(|ai − bi| − σ)2. (9.1)

Using the algebraic computer package MAPLE, the numerical values for the least

squares function f defined by (9.1) and the distance ` are presented in Table 9.1

and Table 9.2 for the zigzag and the armchair tubes, respectively, where the radii

of the tubes are taken from [109]. The global minimum values for the least squares

are first graphed to ensure a genuine global minimum and the optimisation package

in MAPLE is then utilised to find the values for each parameter which gives the

minimum.
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Figure 9.1: Sixteen possible defects which require another eight bonds for the sp2

network.
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Table 9.1: Values of least square function f (Å2) and distance ` (Å) for 16 con-
figurations of an (8,0) tube and corresponding polygons Pn where n is number of
sides.

Configurations # f ` P5 P6 P7 P8 P9

1 0.0239 1.3243 - 4 2 2 -
2 0.2092 1.1663 1 3 1 3 -
3 0.0018 1.3027 - 4 2 2 -
4 0.0676 0.9471 1 2 3 2 -
5 1.2631 0.0010 2 - 4 2 -
6 0.0817 1.3218 - 2 6 - -
7 0.0729 1.1823 1 1 5 1 -
8 0.0020 1.3500 1 2 3 2 -
9 0.0592 1.3349 2 2 - 4 -
10 0.0793 1.2210 2 1 2 3 -
11 0.5513 0.9560 2 - 5 - 1
12 0.2498 0.9191 2 - 4 2 -
13 0.0404 1.1951 2 1 2 3 -
14 0.6005 0.9841 3 - 2 2 1
15 0.5262 0.9482 3 - 2 2 1
16 0.5284 0.9227 4 - - 2 2

9.4 Variation in the bond angle

In this section, a second approach for joining a carbon nanotube to a graphene sheet

is examined, the variation of the bond angle method as described in §7.1.2. For the

graphene sheet, the bond angle is assumed to be 120◦, while the bond angle for

the carbon nanotube is again taken from [109]. Firstly, the case of a (6,0) carbon

nanotube connecting with a six-fold type symmetric defect shown in Figure 9.2 is

considered. Due to the six-fold type symmetry of the configuration, there is only

one joining site that needs to be considered for which atom A3 on the sheet connects

with atom C on the tube. Moreover, atoms A1 and A2 are assumed to be fixed but

atom A3 can move around a circular path and its position is determined by an angle

θ. The five steps for determining atom positions at the connection site can be found

in §7.1.2. In terms of a graphene sheet and on assuming that the bond length σ is

1.42 Å, the bond angle is 120◦ and from the diagram in Figure 9.2, the coordinates
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Table 9.2: Values of least square function f (Å2) and distance ` (Å) for 32 config-
urations of a (4,4) tube and corresponding polygons Pn where n is the number of
sides. By symmetry #1-a and #1-b are equivalent.

Configurations # f ` P4 P5 P6 P7 P8 P9 P10

1-a 0.0526 1.1548 - 2 1 3 1 1 -
1-b 0.0526 1.1548 - 2 1 3 1 1 -
2-a 0.0638 1.1501 - 1 2 4 - 1 -
2-b 0.0528 1.1798 1 2 - 2 1 2 -
3-a 0.4494 1.2208 - 4 - - 2 2 -
3-b 0.0643 1.1157 - - 2 6 - - -
4-a 0.3751 1.0544 - 2 3 - 1 2 -
4-b 0.0847 0.9834 1 - 1 4 2 - -
5-a 0.0435 0.6723 - - 6 - - 2 -
5-b 0.2458 0.6746 2 - - 2 4 - -
6-a 0.5177 1.1151 - - 4 2 2 - -
6-b 0.3802 1.1098 - 2 2 - 4 - -
7-a 0.3132 1.0767 1 - 3 1 2 1 -
7-b 0.2498 1.1093 - 1 3 1 3 - -
8-a 0.0273 1.1968 - - 3 4 1 - -
8-b 0.1637 1.2151 1 2 1 - 2 2 -
9-a 0.0127 1.2968 - - 2 6 - - -
9-b 0.0161 1.3612 2 2 - - - 4 -
10-a 0.0687 1.1979 1 - 2 3 1 1 -
10-b 0.0393 1.1624 1 1 2 1 1 2 -
11-a 0.0272 1.1240 2 - 2 - 3 - 1
11-b 0.5537 1.0920 - - 5 - 3 - -
12-a 0.0430 0.6309 2 - 2 - 2 2 -
12-b 0.1764 1.0026 - - 4 2 2 - -
13-a 0.2451 0.8439 2 - 2 1 - 3 -
13-b 0.0425 1.1583 - 1 2 3 2 - -
14-a 0.0176 0.7303 2 - 1 2 2 - 1
14-b 0.2985 1.1284 1 - 4 - 1 2 -
15-a 0.0494 1.0936 3 - 1 - 1 2 1
15-b 0.4425 1.1057 - - 4 2 2 - -
16-a 0.0561 1.0353 4 - - - - 2 2
16-b 0.3448 1.1007 - - 4 2 2 - -
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Figure 9.2: Model formation for joining a (6,0) tube with most symmetric defect
where (a) and (b) are for a graphene sheet and (c) and (d) are for a (6,0) tube.

for the atoms A1, A2, A3 and A4 are given by

A1 = σ

(
5

2
,

√
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)
, A2 = σ

(
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,−
√

3

2
, 0

)
,

A3 = σ

(
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2
− 1

2
cos θ, 0,

1

2
sin θ

)
, A4 = σ

(
7

2
,

√
3

2
, 0

)
.

By precisely the same procedure, the coordinates for the atoms A, B, C and D on

the tube can be expressed as

A = (2.105,−1.215, L + 1.42), B = (2.105,−1.215, L),

C = (2.105 + 0.735 sin φ, 0, L− 0.735 cos φ), D = (2.105, 1.215, L),

where the atom C moves around a circular path given by the angle φ and L is the

spacing between the tube and the sheet as shown in Figure 9.2(d). Noting that

L = `+0.659 Å where ` is defined in §9.3. Again following the work of Cox and Hill

[109] the radius of the (6,0) tube is 2.430 Å and the bond angle is given by 117.65◦.
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The variations of θ and φ from the normal physical bond angles, which are 120◦

and 117.65◦ are minimised where each bond length which joins between an atom of

the tube to one on the sheet is restricted to be 1.42 Å. Therefore, the constraints are

the maximum distances of the hexagonal network which are |AC| = |BA3| = 2.474

Å and |CA1| = |A3A4| = 2.460 Å. Using the optimisation package in MAPLE,

all parameters are obtained as θ = 30.73◦, φ = 9.39◦ and L = 2.315 Å, and the

three-dimensional figure is depicted in Figure 9.3 where the dashed and solid lines

represent bonds in the background and foreground, respectively.

Figure 9.3: Three dimensional illustration for a (6,0) tube perpendicularly connected
to a graphene sheet.
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Figure 9.4: Model formation for joining an (8,0) tube with defect #6 where (a) is
for a graphene sheet and (b) and (c) are for an (8,0) tube.
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The same method is exploited to examine the joining of the (8,0) tube with defect

#6 identified as the most likely configuration, which details of the classification can

be found in §9.5. Since the defect #6 has four-fold symmetry, only the atoms in the

first quadrant are examined and the positions of every atom are shown in Figure 9.4.

Note that the spacing L, illustrated in Figure 9.4(c), is equivalent to L = ` + 0.681

Å where ` is defined in §9.3. The calculation of the circular paths are examined and

the coordinates for each atom are then given by:

A1 = σ

(
1

2
, 2
√

3, 0

)
, A2 = σ

(
2,

3
√

3

2
, 0

)
,

A3 = σ

(
5

4
− 1

4
cos θ1,

7
√

3

4
−
√

3

4
cos θ1,

1

2
sin θ1

)
, A4 = σ
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, 2
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)
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B1 = σ

(
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,
√
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)
, B2 = σ

(
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B3 = σ
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√
3
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,
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2
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)
, B4 = σ

(
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2
,
√
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)
,

A = (3.192, 0, L),

B = (2.725 + 0.224 cos φ1 + 0.629 sin φ1, 1.129 + 0.093 cos φ1 + 0.261 sin φ1,

L− 0.681 cos φ1 + 0.243 sin φ1),

C = (2.257, 2.257, L),

D = (1.129 + 0.093 cos φ2 + 0.261 sin φ2, 2.725 + 0.224 cos φ2 + 0.629 sin φ2,

L− 0.681 cos φ2 + 0.243 sin φ2),

E = (0, 3.192, L), F = (3.192, 0, L + 1.42), G = (2.257, 2.257, L + 1.42),

where the radius of the (8,0) tube is 3.192 Å and the bond angle is given by 118.70◦

[109]. The computer package MAPLE is also employed to minimise the bond angles

of the system with the set of the constraints |FB| = |AB3| = |GD| = |CA3| = 2.468

Å and |B4B4| = |BB1| = |A3A4| = |DA2| = 2.460 Å, where |BB3| = |DA3| = 1.42

Å. For this configuration, the parameters are obtained as L = 2.222 Å, θ1 = 38.85◦,

θ2 = 17.16◦, φ1 = −42.29◦ and φ2 = 2.53◦ and the three-dimensional figure is

presented in Figure 9.5(a). The corresponding structure previously obtained by

minimisation of the bond length is shown in Figure 9.5(b), and it is clear that the

two approaches give closely related structures in terms of atom locations. In order
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to give a more mathematical measure for the difference between the atom locations

of these two structures, the mean absolute error is determined, defined by

Error =
1

n

n∑
i=1

|r1i − r2i|, (9.2)

where in this case n = 16 and Error = 0.372 Å (26.19% of bond length). Moreover,

the difference in the spacing between the (8,0) tube and the graphene sheet in terms

of L is obtained as 0.22 Å. Therefore, in this case the two approaches give similar

outcomes.

� � � � � �

Figure 9.5: Three dimensional illustrations for an (8,0) connection with a graphene
sheet by (a) variation in bond angle and (b) variation in bond length.

9.5 Results and discussion

Euler’s polyhedra theorem is utilised here to examine the joining of a graphene

sheet and a carbon nanotube. The details for Euler’s theorem are presented in §7.2,

and here the zigzag (8,0) and the armchair (4,4) tube, which topologically can be

considered to be capped at one end with a hemispherical C60 fullerene comprising

six pentagons, are considered. In order to maintain the Euler characteristic of any

shape that a nanotube is joined to, the connection must necessarily become the

six pentagons with the six heptagons or an equivalent number of other polygons.

Therefore, the polygons which occur at the junction of the tube and the graphene

sheet must satisfy

−2P4 − P5 + P7 + 2P8 + 3P9 + 4P10 = 6, (9.3)

and this equation is confirmed by the results in Table 9.1 and Table 9.2. Note that

(9.3) is also true for any surface comprising of only hexagonal sides, e.g. connecting
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a nanotube to a section of another nanotube to form a T-junction [108]. However,

the square ring is very unstable for the carbon network [101] and heptagons and oc-

tagons can be introduced into the system [102], therefore there are twelve and eleven

possible configurations for joining the (8,0) and the (4,4) tubes with the graphene

sheet, respectively. Nevertheless, defects in a nanotube are experimentally observed

with only pentagonal and heptagonal rings [103], and imposing this experimental re-

quirement leaves only configuration #6 for the zigzag tube. Figure 9.6(a) illustrates

the three-dimensional structure, where the solid lines are for foreground bonds and

the dashed lines indicate hidden or background bonds. In a least squares sense, the

configuration #3 gives the minimum value of f , which is 0.0018 Å2, and therefore

this configuration might also be accepted despite the existence of octagonal rings as

shown in Figure 9.6(b). Similarly by considering only pentagons and heptagons, the

#3-b and #9-a configurations for the armchair (4,4) tube might be the most likely

occurring structures. These structures coincide with the findings of Menon and Sri-

vastava [108] for the T-junction of two carbon nanotubes. The three-dimensional

illustrations for these two configurations are presented in Figure 9.7, where the solid

lines are for foreground bonds and the dashed lines indicate hidden or background

bonds. Noting that, the #9-a defect configuration (see Figure 9.7(b)) is more likely

from a comparison of the values of the least squares function given in equation (9.1).

From these results, the joining of (8,0) tube to the defect #6 and the joining

of (4,4) tube to the defect #9-a are the most likely to occur. In Table 9.3 and

Table 9.4, numerical values of the atom positions in the Cartesian coordinate system

are presented for the purpose of future comparisons. The configurations given are

the sixteen atom positions at the junctions after the optimisation process for the

(8,0) and the (4,4) tubes with the #6 and the #9-a defects, respectively. Note

that the atom positions on the tubes are calculated from the new model for carbon

nanotubes [109] and the atom positions on the graphene sheet are evaluated as

usual, and for these two particular configurations X, Y and θ can be taken to be

zero by an appropriate choice of the coordinate axes, as might be expected from the

symmetries of both configurations.
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Figure 9.6: Connecting an (8,0) tube with a graphene sheet for the defect configu-
rations (a) #6 and (b) #3.

� � � � � �

ll

Figure 9.7: Connecting a (4,4) tube with a graphene sheet for (a) #3-b and (b)
#9-a configurations. The second configuration has the smallest variation in bond
length in a least squares sense.

Table 9.3: Eight coordinate positions for joining an (8,0) tube with defect #6 using
the variation in bond length method.

Positions 1 2 3 4 5 6 7 8
(8,0) tube

x 2.949 2.949 1.222 -1.222 -2.949 -2.949 -1.222 1.222
y -1.222 1.222 2.949 2.949 1.222 -1.222 -2.949 -2.949
z 1.322 1.322 1.322 1.322 1.322 1.322 1.322 1.322

#6 sheet
x 2.840 2.840 1.420 -1.420 -2.840 -2.840 -1.420 1.420
y -1.230 1.230 3.689 3.689 1.230 -1.230 -3.689 -3.689
z 0 0 0 0 0 0 0 0
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Table 9.4: Eight coordinate positions for joining a (4,4) tube with defect #9-a using
the variation in bond length method.

Positions 1 2 3 4 5 6 7 8
(4,4) tube

x 2.389 1.379 -1.379 -2.389 -2.389 -1.379 1.379 2.389
y 1.379 2.389 2.389 1.379 -1.379 -2.389 -2.389 -1.379
z 1.297 1.297 1.297 1.297 1.297 1.297 1.297 1.297

#9-a sheet
x 2.840 0.710 -0.710 -2.840 -2.840 -0.710 0.710 2.840
y 1.230 2.460 2.460 1.230 -1.230 -2.460 -2.460 -1.230
z 0 0 0 0 0 0 0 0

9.6 Summary

Two distinct least square approaches are utilised in this chapter to determine the

perpendicular joining of three particular carbon nanotubes to a flat graphene sheet.

Firstly, all possible structures for connecting the zigzag (8,0) and the armchair (4,4)

carbon nanotubes to a flat graphene sheet are determined. Here, the least squares

method is employed to minimise the variation in bond length at each inter-atomic

junction from the bond length between two carbon atoms. There are eight carbon

atoms at the open end of both (8,0) and (4,4) tubes which require the other bond

to satisfy the sp2 network, and therefore sixteen defect patterns in the graphene

sheet are identified. Furthermore, an adjacent atom on the armchair tube end is

bonded either by three bonds or a single bond so that there are in total thirty-two

configurations that connect the armchair tube and the sheet. There are sixteen

structures for joining the zigzag tube due to the symmetric locations of the atoms

on the tube end. From a topological point of view, Euler’s polyhedra theorem is

utilised to prescribe the polygons which occur at the junction. In order to maintain

the Euler characteristic by connecting the nanotube, (9.3) must be satisfied. This

applies for all cases when a carbon nanotube is connected to a surface comprising

of only hexagonal sides. For reasons of stability, the only carbon rings realizable

are pentagonal, hexagonal, heptagonal and octagonal, and by imposing this the

number of configurations is reduced to twelve and eleven for the zigzag and the

armchair tubes, respectively. Furthermore, octagonal rings are considered less likely

to occur, and therefore only configuration #6 for the zigzag tube and #3-b and
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#9-a for the armchair tube might be expected to be found in practice. The result of

the least squares analysis indicates that the junction which is most favoured is the

configurations #3 for the zigzag and #9-a for the armchair, which are illustrated in

Figure 9.6(b) and Figure 9.7(b).

In terms of the least squares bond angle approach, which assumes that all bond

lengths are fixed to be σ = 1.42 Å, a simple example for joining a flat graphene sheet

to a (6,0) carbon nanotube is presented, which is the most symmetric possibility for

the defect. Subsequently, for the (8,0) tube and the defect structure #6, which is

believed to be the most favoured configuration, a least squares bond angle approach

is undertaken. The structure obtained for the (8,0) and the sheet is shown to be very

similar in terms of atom locations to that found using the bond length approach.



Chapter 10

Joining boron nitride nanotubes
and flat sheets

Since boron nitride nanostructures are considered to be good electronic materials

[34], in this chapter and with reference to the same problem in Chapter 9, the clas-

sification of defect geometries for combining boron nitride structures is elucidated.

Specifically, possible joining structures between a boron nitride nanotube and a flat

sheet of hexagonal boron nitride are determined. Firstly, the appropriate defect

configurations are investigated on which the tube can be connected, given that the

energetically favourable rings for boron nitride structures are rings with an even

number of sides. A new formula E = 6 + 2J relating the number of edges E and

the number of joining positions J is established for each defect, and the number of

possible distinct defects is related to the so-called necklace and bracelet problems

of combinatorial theory. Two least squares approaches, which are the variation in

bond length and the variation in bond angle, are also employed to determine the

perpendicular connection of both zigzag and armchair boron nitride nanotubes with

a boron nitride sheet. Here, three boron nitride tubes, which are (3,3), (6,0) and

(9,0) tubes, are joined with the sheet, and Euler’s theorem is used to verify geo-

metrically that the connected structures are sound, and their relationship with the

bonded potential energy function approach is discussed. For zigzag tubes (n, 0), it

is proved that such connections investigated here are possible only for n divisible by

3. The essential mathematical ideas elucidated here are relevant to combining all

boron nitride nanostructures and are quite different to those required for connecting

the corresponding carbon structures.

142
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10.1 Nomenclature

φ(d) is the Euler’s totient function

σ is the boron-nitrogen covalent bond length

θ is the rotational angle of the boron nitride nanotube

E is the number of edges of the polyhedron

F is the number of faces of the polyhedron

J is the number of joining position between the boron nitride sheet and the

boron nitride nanotube

Pn is the number of n-gonal sides

V is the number of vertices of the polyhedron

Vr, Vθ are the variation summations of bond length and bond angle, respectively

ai,bi are the positions of terminal atoms on the boron nitride sheet and the

boron nitride nanotube, respectively

` is the spacing between the boron nitride sheet and the boron nitride nan-

otube in the positive z-direction

10.2 Introduction

Boron nitride is a binary chemical compound consisting of equal number of boron

and nitrogen atoms with various polymorphic forms. The diamond-like polymorph

of boron nitride is one of the hardest materials known. The hexagonal structure

of boron nitride is geometrically similar to that of graphite in carbon structures

[33, 123], and in the periodic table, boron and nitrogen are adjacent to carbon

[33]. With excellent stability and thermal conductivity, boron nitride can be used in

vacuum technology, the nuclear energy industry, and for the development of X-rays

and lubrication [35].

As with carbon nanostructures, boron nitride nanostructures such as nanotubes

and fullerene-like structures have been widely investigated, with Rubio et al. [34]
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being the first to study a boron nitride nanotube. These authors find that the

electronic properties of boron nanotubes are independent of both their chirality

and the tube radii, and all nanotubes are semiconducting materials. Employing

an arc discharge technique, Terrone et al. [124] synthesise boron nitride nanotubes

and find that the ratio of boron to nitrogen atoms is approximately one to one. A

number of studies show that the most energetically favourable bond in the hexagonal

boron nitride network is the bond between the boron and the nitrogen atoms (see

for example [125–130]). Consequently, boron nitride structures are formed from an

even number of sides to each ring with the atom species alternating, and these rings

are normally squares, hexagons and octagons.

In order to transmit signals to future nanoelectromechanical devices, connections

between a platform and other nanostructures may need to be considered. Given the

consistent electronic properties of boron nitride nanostructures, a hexagonal boron

nitride sheet can be considered as the platform for such devices. Since the electronic

properties of boron nitride nanotubes do not depend on their physical configurations,

this material is a good candidate to transmit signals to other materials. With this

in mind, the perpendicular joining configurations between a boron nitride tube with

a hexagonal boron nitride plane sheet is investigated.

The first question which arises is how defects are determined to which the tube

can be joined such that all the polygons at the junction comprise rings which all

have an even number of sides, such as squares, hexagons and octagons. Firstly, the

relation between the number of edges, which form the defect, and the number of

atoms on the defect, that can be joined with the tube, are determined. Since a closed

defect is required, it is clear that the total angle of such a defect needs to comprise

a complete 360◦ turn. Therefore, each of the six edges of a hexagonal lattice are

assigned the angle values as shown in Figure 10.1. Furthermore, all possible defect

structures that can be joined with the tube open end are examined, and the distinct

number of possible defects relates to the so-called necklace and bracelet problems of

combinatorics.

After the geometric analysis, the least squares minimisation method is further

utilised to examine the perpendicular joining of a boron nitride nanotube and a

flat boron nitride sheet. Here, variations in both bond length and bond angle are
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Figure 10.1: Angle values defined by each of the six sides of a hexagonal lattice.

studied as described in §7.1. In the first method, the distance between an atom on

the tube open end and an atom on the sheet from the ideal bond length, taken to

be σ = 1.45 Å, is minimised. In the latter technique, all bond lengths are assumed

to be fixed to be exactly the assumed bond length σ and the variation in the bond

angle at the connecting site is minimised. Both of these geometric approaches can

be directly related to certain numerical energy minimisation methods used by a

number of authors [13–16] as discussed in §7.3. Moreover, Euler’s polyhedra theorem

is applied for all connected configurations to verify that rings with an even number

of sides occur at the junction.

In the following two sections, a procedure to classify the defect configurations on

hexagonal boron nitride sheet to which the boron nitride nanotubes can be joined is

proposed. Using the two variation methods presented in §7.1, connected structures

are discussed in §10.6 which involve in Euler’s polyhedra theorem and the bonded

interaction energy. A summary of results is presented in §10.7.

10.3 Defect classification

In this and the following sections, the appropriate defect structures on a hexagonal

boron nitride sheet to which boron nitride nanotubes can be perpendicularly joined

such that the connected structures also satisfy Euler’s polyhedra theorem are de-

termined. All the atoms are assumed to require the sp2 configuration to form an

even number-sided polygonal ring network. Compared to the previous study on car-

bon nanotube connections in Chapter 9, there are less possible defect configurations

for boron nitride structures, due to the even number side rings being energetically
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Figure 10.2: Atoms at open end of (a) a zigzag tube and (b) an armchair tube.

more favourable. One implication of this constraint is that a zigzag tube where

two adjacent atoms at the tube open end are connected by two bonds, as shown in

Figure 10.2(a), must join to a defect which has an even number of bonds joining

between the two nearest atoms in order to complete the sp2 structure. Likewise,

two adjacent atoms on the open end of an armchair tube have either one or three

bonds connecting them, as shown in Figure 10.2(b), and therefore an armchair tube

must join to a defect which has an odd number of bonds joining nearest atoms.

Initially, the relationship between the number of edges and the number of atoms

for any defect which will bond to the open end of the nanotube to complete the sp2

structure is determined. In Figure 10.3, some typical defects are depicted and all the

connecting positions for each defect are shown, where atoms are denoted by either

black dots or gray squares depending on whether they require one or two bonds to

complete the sp2 structure, respectively. Consequently, there is one joining position

for the black dot and there are two joining positions for the gray square. In the

case that two hexagons share a side, the edges need to be counted twice. Therefore,

the number of edges and the number of joins which correspond to the defects in

Figure 10.3 are presented in Table 10.1. It can be seen that the number of edges

(E) depends on the number of joining positions (J) which can be written as

E = 6 + 2J. (10.1)

Next, defects are determined such that all atoms which need to be joined with the

tube are connected by either an odd or even number of bonds, and this problem leads

one to consider the angles of the sides for a hexagonal ring. There are six possible

angles with respect to an atom position corresponding to the six sides of the hexagon

as shown in Figure 10.1, and note that the angles are defined in a counter-clockwise
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Figure 10.3: Some typical defects showing the number of edges and the number of
atoms that can be joined (those marked ∗ are possible boron nitride defects).

direction. In other words, each angle is related to the number of bonds connecting

between two adjacent atoms. Consequently, for an armchair (zigzag) tube which

requires an odd (even) number of bonds for the defect, the defect structure needs to

be constructed with 1E, 3E and 5E (0E, 2E and 4E) edges as defined in Figure 10.1.

Note that for convenience, the number of edges 1E, 2E, 3E, 4E, 5E, 6E are simply

referred to by the integers 1, 2, 3, 4, 5, 6 in order to construct the sequences examined

in §10.4. At any joining position there are three possible paths to choose from to

form the defect, and the angle between two of them is -120◦ in a clockwise direction.

Moreover, in every moving step (side), the angle will change by 60◦. Hence, this

can be written as −120J + 60E. From the fact that the defect must be closed, the

total angle obtained by joining the sides of the hexagonal lattice needs to make a

complete 360◦ turn and from (10.1), it can be deduced

−120◦J + 60◦(6 + 2J) = 360◦, (10.2)

which indicates that the total angle of the system will always be 360◦, but note that a
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Table 10.1: Relation between the number of edges (E) and number of joins (J) for
defects (those marked ∗ are possible boron nitride defects).

Configuration Number of edges Number of joins
#1 6 0
#2∗ 10 2
#3∗ 12 3
#4 14 4
#5∗ 14 4
#6 14 4
#7 14 4
#8 16 5
#9∗ 18 6
#10 30 12
#11 16 5

turn of 360◦ only satisfies the rotational requirement but not necessarily the transla-

tional condition that the two end points meet. Alternatively, this argument leading

to equation (10.2) may be viewed as a formal derivation of equation (10.1). In the

next section, combinatorial theory for the so-called necklace and bracelet problems

is employed to determine the distinct defect configurations for both armchair and

zigzag boron nitride tubes.

10.4 Combinatorial theory and possible defects

Only the sequence of 1, 3, 5 and 0, 2, 4 for an armchair (n, n) and a zigzag (n, 0) boron

nitride tube, respectively, can be used, so as to add up to the value of E defined by

(10.1), where J is 2n for an armchair tube and n for a zigzag tube. Moreover, the

number of terms in the sequence must be equal to 2n and n for the armchair and

the zigzag tubes.

For example, for a (6,0) tube E is obtained as E = 18 and six terms chosen from

0, 2, 4 are needed to form a sequence. In this case, there are two distinct ways to gen-

erate the sequences, which are [4, 4, 4, 2, 2, 2] and [4, 4, 4, 4, 2, 0]. The permutations of

these two sets of data, ignoring rotationally symmetric representations, are required

from which all possible defects are determined, and they are given respectively by

{4, 4, 4, 2, 2, 2}, {4, 4, 2, 4, 2, 2}, {4, 4, 2, 2, 4, 2}, {4, 2, 4, 2, 4, 2},
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and

{4, 4, 4, 4, 2, 0}, {4, 4, 4, 4, 0, 2}, {4, 4, 4, 2, 4, 0}, {4, 4, 4, 0, 4, 2}, {4, 4, 2, 4, 4, 0},

noting that square brackets is used to designate the unordered combination, while

the curly braces designate a particular ordering of the permutation. After a rotation,

the second and the third permutations in the first group have a mirror image or flip

symmetry property. Similarly, the first and the second permutations, and the third

and the fourth permutations in the second group also have a mirror image or flip

symmetry property after a rotation. Once the defects are determined, the mirror

image symmetry configurations will provide the same structure when the tube is

joined, and therefore they can be ignored.

This problem is closely related to necklace permutations representing the number

of distinct ways in which a k bead necklace of i colours can be made. Following the

work of Knuth [131] and Ruskey and Sawada [132], the expression for the necklace

permutation may be written

N(k1, k2, ..., ki) =
1

k

∑

d|gcd(k1,k2,...,ki)

φ(d)

(
(k/d)!

(k1/d)!(k2/d)!...(ki/d)!

)
, (10.3)

where k = k1 + k2 + ... + ki and φ(d) is Euler’s totient function given by

φ(d) = d
∏

p|d

(
1− 1

p

)
,

where the product ranges only over all distinct primes p which divide d. In the case

where there are only j beads of black and k− j beads of white for the necklace, the

expression (10.3) simplifies to become

N(k, j) =
1

k

∑

d|(k,j)

φ(d)

(
k/d

j/d

)
, (10.4)

where d denotes all common divisors of k and j and the last term is the usual

binomial coefficient.

However, due to the symmetry of the joining nanotubes, the mirror image sym-

metric configurations need not be considered, and this problem is referred to as the

bracelet permutation, which is a necklace permutation which remains unchanged

when flipped over. To the author’s knowledge, there is no general formula to de-
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termine the necklace permutations for a k bead bracelet of i colours. Nevertheless,

Bower [133] has developed a sequence for k beads of j black and k − j white beads

which can be found in A052307 [133] and can be written as

B(k, j) =
1

2

(
N(k, j) + T (k, j)

)
,

where N(k, j) is defined in (10.4) and

T (k, j) =

(
k/2

j/2

)
k and j are even,

=

(
(k − 2)/2

(j − 1)/2

)
k is even and j is odd,

=

(
(k − 1)/2

j/2

)
k is odd and j is even,

=

(
(k − 1)/2

(j − 1)/2

)
k and j are odd.

Here, the algebraic computer package MAPLE is utilised to determine the defect

possibilities by undertaking the bracelet permutations for beads of three colours.

Firstly, all bracelet permutations are determined for both armchair and zigzag boron

nitride nanotubes for every possible form of sequences. Given that the defects are

required to close a circuit, the number of permutations is reduced, and only the

number of the closed circuit defects are presented in Table 10.2. Clearly some of

the defects do not have a physically sensible structure for which to join an open end

of a circular tube, and such defects will not occur in practice. Since the number of

physically appropriate defects rapidly increases for increasing n for armchair (n, n)

and zigzag (n, 0) tubes, in Figure 10.4, only the defects which are most likely to

occur physically corresponding to certain values of n are depicted.

Table 10.2: Number of possible defects for zigzag (n, 0) and armchair (n, n) boron
nitride tubes.

Zigzag tube Number of defects Armchair tube Number of defects
(3,0) 1 (3,3) 4
(6,0) 2 (4,4) 5
(9,0) 7 (5,5) 17
(12,0) 35 (6,6) 40
(15,0) 231 (7,7) 138

(8,8) 422
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Figure 10.4: Most likely physical defects for various zigzag and armchair nanotubes.
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Numerical results indicate that defects for the zigzag (n, 0) tubes only occur if

n is divisible by 3, a result which can be formally established as follows. To begin,

the defect for the smallest zigzag tube which is the (3,0) tube is determined, and

subsequently this defect is extended to that for (6,0) as shown in Figure 10.4, and

so on. The smallest closed circuit defect corresponding to the (3,0) tube is a closed

circuit defect {4, 4, 4}, as shown in Figure 10.4. The aim is to add edges to this

defect such that the complete circuit defect is still closed and comprises only an even

number of edges between adjacent atoms. As previously noted, zigzag tubes require

a defect which comprise only 0, 2, and 4 edges between connecting atoms. Given

that boron and nitrogen atoms are alternately bonded to form a hexagonal lattice,

two triangular sublattices may be thought of as the basis units super-imposing to

form such a hexagonal network. In Figure 10.5(a), the directional vectors for 2 and 4

are observed to be in opposite directions, and are provided three different directions

for the three sides of the triangular lattices. Consequently, any closed circuit system

will be invariant under translation when adding one of 2 and one of 4 in opposite

directions. Likewise, a closed circuit will be rotationally invariant by adding one of

0 and one of 4 into the system, since the -120◦ of 0 and 120◦ of 4 will balance each

other out, as shown in Figure 10.5(b). Accordingly, there are three possibilities to

add the set of [0, 2, 4] to any closed circuit such that the new defect will still be valid

for a zigzag boron nitride tube and these are:

1. add three 2’s in distinct directions,

2. add three 4’s in distinct directions, and three 0’s to maintain the rotational

invariance,

3. add one 2 in the opposite direction to one 4, and one 0 to maintain the rota-

tional invariance.

For the above three possibilities, it can be seen that if three of 2 are added

to make a complete circuit, the defect is invariant under translation, and the de-

fect is automatically invariant under rotations since the rotational angle of 2 is 0◦.

Similarly, by adding three 0’s and three 4’s provides the zero rotational angle for

the defect, and three 4’s also provide the closed circuit defect which maintains the

translational property. Finally, the directional vectors of 2 and 4 are in opposite
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directions and the system maintains the translational property by adding one of

each, and one 0 is required to maintain the rotational property.
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Figure 10.5: Hexagonal lattice formed from two triangular sublattices for boron
nitride network, (a) translational vectors and (b) rotational angles.

Now, if x, y and z are assigned to be the respective number of each of these

possibilities present in a given defect, it can be shown that

number of 0’s = 3y + z,

number of 2’s = 3x + z,

number of 4’s = 3 + 3y + z,

where the smallest defect for the zigzag tube is {4, 4, 4}, which is added for the

number of 4’s in the last equation. Then, by addition of the above, it can be deduced

(n/3) = 1 + x + 2y + z, (10.5)

and therefore n must be divisible by 3 for a zigzag boron nitride tube. Alternatively,

(10.5) may be derived from (10.1) which becomes E = 2(3x + z) + 4(3 + 3y + z).

Since E = 6 + 2J and J = n for a zigzag tube, one can deduce (10.5).
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10.5 Two least squares approaches

Following the methodology of [11] and §7.1, two least squares approaches, the varia-

tion in bond length and the variation in bond angle, are employed here to determine

the perpendicular connecting structures between a boron nitride nanotube and a

hexagonal boron nitride sheet. The ideal bond length between boron and nitrogen

atoms is assumed to be σ = 1.45 Å [33, 34], and all atoms are connected by the sp2

structure. In this study, all the atom positions and bond angles for the boron nitride

tube are calculated using the same routine as that used by Cox and Hill [109], which

provides a new geometric model of carbon nanotubes, but where the bond length

here is taken to be σ = 1.45 Å.

A brief review for the variation in bond length approach is given here. The ith

terminal atoms at a join location is defined by the position vectors ai = (axi, ayi, azi)

and bi = (bxi, byi, bzi) for a sheet and a tube open end, respectively. The boron

nitride sheet is assumed to be located in the (x, y) plane z = 0, and it is allowed to

move in both x- and y-directions by distances X and Y , respectively, which can be

either positive or negative. The position vector for the atoms at the defect on the

boron nitride sheet is given by ai = (axi + X, ayi + Y, 0). In terms of the atoms on

the tube open end, the spacing between the tube and the sheet is assumed to be

`, and the tube can be rotated about the z-axis through an angle θ. Consequently,

the position vector for the atoms at the tube open end can be written as bi =

(bxi cos θ− byi sin θ, bxi sin θ + byi cos θ, `). Therefore, Euclidean distance between the

atoms is obtained, as given by (7.1), and the objective function (7.2) needs to be

determined.

Again, only a brief summary for the variation in bond angle method is presented,

and full details can be found in §7.1.2. For this approach, the bond lengths are

assumed to be fixed at σ and the bond angles at connection sites are varied so as to

minimise the least square deviations from the physical bond angle values for both

the sheet and the tube. The boron-nitrogen bond length is taken to be σ = 1.45 Å,

the bond angles of the boron nitride sheet are assumed to be 120◦, and the bond

angles on the boron nitride tubes are taken from the new model of carbon nanotubes

[109]. A five steps procedure for determining the position vectors for all atoms at

the junction is presented in §7.1.2.
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10.6 Results and discussion

Once a number of appropriate defects are determined, both the variation in bond

length and the variation in bond angle approaches are undertaken to determine the

most likely connected structures for the tube and the sheet of boron nitride. Here,

some examples of such structures are demonstrated where (3,3), (6,0) and (9,0)

boron nitride nanotubes are joined to the defects shown in Figure 10.6(a), (b) and

(c), which are those where the geometry of the defect corresponds to the circular

cross-section of the tube open end. All numerical calculations are carried out using

the algebraic computer package MAPLE. Three dimensional figures for the (3,3),

(6,0) and (9,0) boron nitride tubes joined with the hexagonal boron nitride sheets

are illustrated in Figure 10.7 - 10.9 for both approaches.

In terms of polygonal rings which occur at the connection site, Euler’s polyhedra

theorem is utilised to verify that the proposed structures are geometrically sound.

Euler’s polyhedra theorem states that

F + V − E = χ,

where F, V and E denote the numbers of faces, vertices and edges for the given

polyhedron and χ is the Euler characteristic. For the sheet, letting Pn be the number

of n-gon sides and every atom is linked with three others in the sp2 structure, Euler’s

theorem states that

2P4 + P5 − P7 − 2P8 = 0, (10.6)

where any surface which is homeomorphic to a flat sheet has an Euler characteristic

of 0. Given that only an even number of side rings are most energetically favourable,

P5 and P7 are zero. For the junction, once the sheet is joined with the tube three

P4’s are required to form a cap at the unjoined end of the tube to provide the closed

structure, and therefore the equation corresponding to (10.6) is obtained

P8 − P4 = 3. (10.7)

For all three cases examined here, three octagonal rings, zero square rings and

n hexagonal rings occur at the connection site. These results all satisfy Euler’s

polyhedra theorem since hexagons do not arise in equation (10.7) and the three
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Figure 10.6: Defect configurations for (a) (3,3), (b) (6,0) and (3) (9,0) boron nitride
nanotubes.

Figure 10.7: (3,3) nanotube connected with a hexagonal boron nitride sheet by (a)
variation in bond length and (b) variation in bond angle.

Figure 10.8: (6,0) nanotube connected with a hexagonal boron nitride sheet by (a)
variation in bond length and (b) variation in bond angle.
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Figure 10.9: (9,0) nanotube connected with a hexagonal boron nitride sheet by (a)
variation in bond length and (b) variation in bond angle.

nanotubes can be considered to be capped at one end with the polygonal network,

which also satisfies Euler’s polyhedra theorem, so that three octagons are required

to form a closed structure.

A number of authors [13–16] adopt a numerical minimum energy principle such

that the bonded potential energy for small deformations is given by (7.6). The

numerical values for the variation of bond stretching as well as the percentage dif-

ference from the assumed bond length 1.45 Å, and the bending angle as well as the

percentage difference from the assumed bond angle 120◦ for all three examples in

this study are given in Table 10.3. It is clear from (7.6) that the energy of the system

is linearly dependent on the force constants, and all the force constants are positive.

Therefore, the energy of the systems may be compared by separately considering

the various summations in equation (7.6) for which

Vr =
∑

i

(r − r0)
2, Vθ =

∑
i

(θ − θ0)
2.

In terms of the variation in bond length, all bond lengths on the tube and the

sheet are fixed. However, the bond lengths which connect between the atoms at the

tube open end and the atoms on the sheet may vary from the assumed bond length,

and the bond angles at the connection sites may also vary. This means that the

variation in bond length approach affects both the bond stretching and the bending

angle terms in the energy equation. On the other hand, all the bond lengths are fixed

for the variation in bond angle approach and only the bond angle varies, therefore

the bond stretching term will always be zero. The differences between (a) and (b)

in Table 10.3 arise from the fact that for (a) the sheet atoms are fixed in the plane,
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while for (b) the sheet atoms are allowed to move. With these considerations in

mind, it can be said that the variation in bond angle approach (b) gives rise to more

stable structures than those arising from the variation in bond length approach (a).

In addition, the percentage differences are very small so that the harmonic terms in

(7.6) are valid.

Table 10.3: Numerical values for the sum of squared derivations (percentage dif-
ferences) for joining (3,3), (6,0) and (9,0) boron nitride tubes with a boron nitride
sheet by the variation in bond length (a) and the variation in bond angle (b).

Values (3,3) (6,0) (9,0)
(a) (b) (a) (b) (a) (b)

Vr (Å2) 0 0 0 0 0.064 0
Percentage difference (%) 0 0 0 0 0.49 0

Vθ (◦
2
) 78.048 43.859 171.782 49.135 179.760 21.717

Percentage difference (%) 1.08 1.02 3.98 1.14 2.77 0.35

Some of the numerical data for the determination of the possible defect configu-

rations, and the least squares approach for the variation in bond length to find the

best defect configuration for both zigzag and armchair boron nitride tubes are ex-

amined. Using combinatorial theory, all possible defects can be obtained. However,

some of them, such as those shown in Figure 10.10 are thought to be less likely to

be joined with a tube, than those shown in Figure 10.11 which are believed to be

physically more reasonable. Subsequently, only the quasi-circular defects such as

those shown in Figure 10.11 are examined. In Table 10.4 and Table 10.5, the value

for the function f defined in (7.2) and the interspacing between the sheet and the

tube ` for zigzag and armchair tubes are respectively presented for certain defects

which are considered to be physically more likely to occur.

10.7 Summary

With reference to the particular problem of the perpendicular connecting of boron

nitride nanotubes with a boron nitride sheet, this chapter considers two aspects of

defect classification and connection for combining boron nitride structures. Given

that rings with an even number of sides are energetically favourable for boron nitride

nanostructures, the most appropriate defect configurations on the sheet need to be
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determined. The number of possible distinct defect configurations is related to the

necklace and bracelet problems of combinatorial theory. The necklace permutation

method is employed to classify all distinct closed defect possibilities where an arm-

chair (zigzag) tube requires all odd (even) number of bonds connecting between two

adjacent atoms at the defect site. Since additional mirror image symmetrical defects

can be neglected, the bracelet permutation concept is utilised to quantify the most

physically meaningful defects.

Once the defects are obtained, two distinct least squares approaches are em-

ployed to determine the connected structures for the tube and the sheet of boron

nitride. Firstly, the variation in bond length is exploited to minimise the inter-

atomic distance from the assumed bond length σ = 1.45 Å between an atom at

the tube open end and one at the defect on the sheet. In this case, all atoms are

assumed to remain in their own positions on the perfect tube and the perfect sheet

structures. However, the tube is allowed to rotate about its axis and to move in the

axial direction, while the sheet is assumed to be fixed in the plane. Secondly, the

least squares bond angle approach is examined, which assumes that all the bond

lengths are fixed to be σ = 1.45 Å. The atoms at the joining positions for both at

the tube end and at the defect can move around a defined circular path to determine

the most suitable locations to be connected.

Three examples of perpendicular joining boron nitride nanotubes, (3,3), (6,0) and

(9,0) tubes, and the most symmetrical defects are used to illustrate such approaches.

Using the algebraic computer package MAPLE, three dimensional illustrations for

all cases of the two variation approaches are depicted, and Euler’s polyhedra theo-

rem is utilised to verify that the connected structures are geometrically acceptable.

Furthermore, the bonded potential energy for small deformations is evaluated to

determine a measure of the stability of the system. Since the value for the bond

stretching constant is significantly larger than that of the bending angle and from

the least squares calculations, this are led to conclude that the minimisation of the

bond angle procedure provides lower energy values than the minimisation of the

bond length procedure, so that the former most likely provides a better model for

physically occurring molecular structures.
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Table 10.4: Values of least squares function f (Å2) defined by (7.2) and distance `
(Å) for joining zigzag boron nitride tubes with some defects.

Defect configurations f `
(3,0) tube
{4, 4, 4} 0 1.445614
(6,0) tubes
{4, 2, 4, 2, 4, 2} 0 1.449434
{4, 4, 2, 4, 4, 0} 0.000677 0.250835
(9,0) tubes
{4, 2, 2, 4, 2, 2, 4, 2, 2} 0.019121 0.421028
{4, 2, 4, 2, 2, 4, 2, 4, 0} 0.580765 0.679539
{4, 4, 0, 4, 2, 4, 2, 4, 0} 3.419328 0
{4, 4, 0, 4, 4, 0, 4, 4, 0} 5.949885 0
(12,0) tubes
{4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2} 0.309083 1.244449
{4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 0} 4.255253 0
{4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 0} 1.432916 1.019704
{4, 2, 4, 0, 4, 2, 2, 4, 2, 2, 4, 0} 3.142780 0.448532
{4, 2, 4, 0, 4, 2, 4, 0, 4, 2, 4, 0} 4.072747 0.278195
{4, 4, 0, 4, 2, 4, 0, 4, 4, 0, 4, 0} 15.904065 0
(15,0) tubes
{4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2} 0.915522 1.046673
{4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 0} 7.126194 0
{4, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 4, 0} 1.933119 0.907544
{4, 2, 2, 4, 0, 4, 2, 2, 2, 4, 2, 2, 2, 4, 0} 2.543159 0.610721
{4, 2, 4, 0, 4, 2, 2, 4, 0, 4, 2, 2, 4, 2, 0} 8.875528 0
{4, 2, 2, 4, 0, 4, 2, 2, 4, 0, 4, 2, 2, 4, 0} 2.289527 0
{4, 2, 4, 0, 4, 2, 2, 4, 0, 4, 2, 4, 0, 4, 0} 14.082357 0
{4, 4, 0, 4, 0, 4, 2, 4, 0, 4, 2, 4, 0, 4, 0} 32.531784 0
{4, 4, 0, 4, 0, 4, 4, 0, 4, 0, 4, 4, 0, 4, 0} 54.061449 0
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Table 10.5: Values of least squares function f (Å2) defined by (7.2) and distance `
(Å) for joining armchair boron nitride tubes with some defects.

Defect configurations f `
(3,3) tubes
{3, 3, 3, 3, 3, 3} 0 1.450000
{5, 1, 5, 1, 5, 1} 0.000042 1.235115
(4,4) tube
{5, 1, 3, 3, 3, 3, 3, 1} 0.028538 1.147819
(5,5) tubes
{3, 3, 3, 3, 1, 3, 3, 3, 3, 1} 0.449559 0.959827
{5, 1, 3, 3, 3, 3, 1, 5, 1, 1} 0.980817 0.798733
{5, 1, 3, 3, 3, 1, 5, 1, 3, 1} 0.292789 1.097115
{5, 1, 3, 3, 1, 5, 1, 3, 3, 1} 0.906751 1.032654
{5, 1, 5, 1, 1, 5, 1, 5, 1, 1} 4.507192 0
(6,6) tubes
{3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1} 0.511011 1.223435
{5, 1, 3, 3, 3, 1, 3, 3, 3, 3, 1, 1} 2.132008 0.816330
{5, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 1} 0.397135 0
{5, 1, 3, 3, 3, 1, 5, 1, 1, 5, 1, 1} 1.966639 0.439799
{5, 1, 3, 1, 5, 1, 3, 1, 5, 1, 3, 1} 0.774044 1.007332
(7,7) tubes
{3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 1, 1} 5.627837 0
{3, 3, 3, 3, 1, 3, 1, 3, 3, 3, 3, 1, 3, 1} 4.919751 0
{3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 1, 3, 3, 1} 1.483391 1.119239
{5, 1, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1} 1.634777 0.930209
{5, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 1} 0.905888 0.982272
{5, 1, 3, 1, 5, 1, 1, 5, 1, 3, 1, 5, 1, 1} 3.977454 0
(8,8) tubes
{3, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1} 8.093382 0.449886
{3, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 1, 3, 1} 1.808325 1.020557
{5, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 1, 3, 3, 1, 1} 4.099844 0.776275
{5, 1, 3, 1, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 1, 1} 1.742843 0.902405
{5, 1, 3, 3, 1, 3, 3, 3, 1, 3, 3, 1, 5, 1, 1, 1} 6.940624 0
{5, 1, 3, 3, 1, 3, 3, 3, 1, 3, 1, 5, 1, 3, 1, 1} 5.301284 0
{5, 1, 3, 1, 5, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1} 5.726062 0.846815
{5, 1, 3, 1, 5, 1, 1, 5, 1, 1, 5, 1, 1, 5, 1, 1} 12.354890 0
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Figure 10.10: Some typical defect configurations considered to be non-physical.
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Figure 10.11: Some quasi-circular defects considered to more likely candidates to
be joined with a nanotube.
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Chapter 11

Introduction to transversely
isotropic linearly elastic materials

The discovery of carbon nanotubes by Iijima [32] has led to the possible creation

of many new nanoscale devices such as nano-oscillators. The aim of Part IV is

to investigate the wave-like deformation on the tube wall of a double-walled car-

bon nanotube when the inner tube oscillates. In this study, carbon nanotubes are

assumed to be transversely isotropic materials and by using the resultant force dis-

tribution determined in Chapter 3, the deformations are determined. In §11.1, a

background study of elasticity for carbon nanotubes is introduced and an overview

of Part IV is given in §11.2.

11.1 Elasticity of carbon nanotubes

Carbon nanotubes are capable of being realised to be perfectly elastic materials in

the sense that they return to their original configurations when the applied loads

are released [17]. There are many experiments and molecular dynamics simulations

which study their elastic properties (see for example, [15, 17–21, 134]). Yu et al. [18]

study multi-walled carbon nanotubes under load, and obtain values in the range of

270-950 GPa for the Young’s modulus. Alternatively, Zhao et al. [19] use quantum

mechanical and molecular mechanical calculations to model the deformation in car-

bon nanotubes under an applied load. They determine a value in the order of 1 TPa

for the Young’s modulus, which is much higher than values proposed in previous in-

vestigations. These authors suggest that carbon nanotubes are the strongest known

material. Lu [20] presents values of elastic moduli using constant-force models for

both single-walled and multi-walled carbon nanotubes, as well as for nanoropes. He
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finds that the elastic properties are insensitive to the helicity, radius and number

of walls. Tersoff and Ruoff [135], Popov et al. [136], Thostenson and Chou [137]

and Shen and Li [21, 134] propose that carbon nanotubes might be modelled as

a transversely isotropic linearly elastic material. Shen and Li [21, 134] also study

the deformation of carbon nanotubes under loading and obtain values for the elastic

constants and elastic moduli. Jin and Yuan [15] use molecular dynamics simulations

as well as the Lennard-Jones potential to study the elastic properties of single-walled

carbon nanotubes. They determine the elastic moduli using energy and force ap-

proaches which give rise to approximately the same numerical values as Shen and

Li [21, 134].

In terms of the development of the theory for transversely isotropic linearly elas-

tic materials, Elliott [22] is the first to introduce a general three dimensional solution

for such materials. He finds that the solutions for displacements and stresses can be

described in terms of two harmonic functions, and subsequently many researchers

examine the physical properties of such materials. Moreover, Elliott [138] solves

the problems of the rigid conical punch, rigid spherical ball indentation, cylindrical

punch and a disk-shaped ‘Griffith’ crack in solids under tension. The line force in

an infinite plate, elliptical crack and punch and isolated force with plane boundary

are studied by Shield [23]. Payne and Green [24] modify these transversely isotropic

solutions and introduce another potential function for curvilinear coordinates, which

corresponds to Mehler’s expansion theorem. They also study the punch problem, the

Boussinesq problem and crack problems for both pressure prescribed and displace-

ment prescribed cases. Furthermore, Selvadurai [25] studies a rigid disc inclusion

embedded in a transversely isotropic elastic medium of infinite extent. He considers

the displacement and stress equations with no body force and shows that in general

there are three potential functions φ1(r, θ, z), φ2(r, θ, z) and ψ(r, θ, z) needed for the

solution of transversely isotropic materials.

11.2 Overview

In Part IV, the phenomenon of nanoscale oscillators is investigated, and in particular

the generation of a wave-like formation on the outer surface of a double-walled

carbon nanotube arising from the motion of an oscillating inner tube is examined.
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In the following chapter, the basic governing equations for transversely isotropic

linearly elastic materials are formulated. Chapter 13 presents the model formulation

and the analysis of assumed solutions for the displacements and stresses, and the

key mathematical solution details are outlined. Values for the elastic constants for

single-walled and multi-walled carbon nanotubes are discussed in Chapter 13, and

detailed tables of numerical values are listed in Appendix G.
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Governing equations for
transversely isotropic linearly
elastic material

�

�
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Figure 12.1: Diagram for transversely isotropic materials.

Transversely isotropic materials possess a single axis about which the material

is isotropic, but it is not isotropic with respect to any other axis. In other words,

transversely isotropic materials have the same properties in one plane, x− y plane,

but which differ in the normal direction to this plane, the z-direction, which is illus-

trated in Figure 12.1. Such a constitutive assumption has been proposed for carbon

nanotubes (see for example [20, 21]). Isotropic materials are a particular case of

transversely isotropic materials, and for linearly elastic materials a good deal is

known about isotropic materials. Accordingly, results are frequently specialised to

the well known version arising from isotropic linearly elastic materials. We com-

ment that isotropic in materials engineering refers to materials which have the same
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mechanical properties in all crystallographic directions, not in all directions, for

example a material of cubic symmetry will behave the same in each of the face di-

rections which differ from the vertex directions. While homogeneous materials will

have the same mechanical properties in any direction as in a sphere.

12.1 Nomenclature

εij are elements of the strain tensor

φ, φ1, φ2 are the assumed harmonic solutions

λ, µ are the Lamé constants

µ
′

is the shear modulus in the longitudinal direction

ν, ν
′

are the Poisson’s ratios in the transverse plane and in the longitudinal

direction, respectively

σij are elements of the Cauchy stress tensor

τ is the coefficient of tangential friction

ψ is an harmonic function

Ck` are the elastic constants

E, E
′

are the Young’s moduli in the transverse plane and in the longitudinal

direction, respectively

a, b are the radii of the inner and the outer carbon nanotubes, respectively

r, θ, z are a system of cylindrical coordinates

u, v, w are the displacements in Cartesina coordinates x, y, z, respectively

x, y, z are a system of Cartesian coordinates
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12.2 Hooke’s law for transversely isotropic lin-

early elastic materials

For transversely isotropic linearly elastic materials, the stiffness matrix can be writ-

ten in the form



σxx

σyy

σzz

σyz

σzx

σxy




=




C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 2C44 0 0

0 0 0 0 2C44 0

0 0 0 0 0 C11 − C12







εxx

εyy

εzz

εyz

εzx

εxy




, (12.1)

where Ckl (k, l = 1, 2, 3, 4) denote certain constants, σij (i, j = 1, 2, 3) denote the

Cauchy stress tensor in Cartesian coordinates xj (j = 1, 2, 3) = (x, y, z) and here

the strain tensor εij are defined by

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (i, j = 1, 2, 3),

where ui(x, y, z) (i = 1, 2, 3) denote the three displacements (u, v, w). Explicitly in

terms of (x, y, z), the strain tensor can be written as

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εzz =

∂w

∂z
,

(12.2)

εyz =
1

2

(
∂v

∂z
+

∂w

∂y

)
, εzx =

1

2

(
∂w

∂x
+

∂u

∂z

)
, εxy =

1

2

(
∂u

∂y
+

∂v

∂x

)
,

and this notation is adopted by Fung [139], page 94, Sokolnikoff [140], page 22 and

Landau and Lifshitz [141], page 3. However, some authors employ the notation

referred to as the engineering strain such as Ding et al. [142], page 4, Lure [143],

page 9, and Tran-Cong [144], page 2, which are given by

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εzz =

∂w

∂z
,

γyz =

(
∂v

∂z
+

∂w

∂y

)
, γzx =

(
∂w

∂x
+

∂u

∂z

)
, γxy =

(
∂u

∂y
+

∂v

∂x

)
,
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while others, such as Elliott [22], Green and Zerna [145], page 176, Love [146], page

38, and Rekach [147], page 25, employ the strain tensor

exx =
∂u

∂x
, eyy =

∂v

∂y
, ezz =

∂w

∂z
,

eyz =

(
∂v

∂z
+

∂w

∂y

)
, ezx =

(
∂w

∂x
+

∂u

∂z

)
, exy =

(
∂u

∂y
+

∂v

∂x

)
.

We comment that the last two equations have the same definitions but differ only

in the notations for the strain tensor. Throughout the present work, the notation

(12.2) for the strain tensor is consistently adopted.

For transversely isotropic linearly elastic materials, the notations which are in-

verse to (12.1) (i.e. the so-called compliance matrix) becomes




εxx

εyy

εzz

εyz

εzx

εxy




=




S11 S12 S13 0 0 0

S12 S11 S13 0 0 0

S13 S13 S33 0 0 0

0 0 0 S44/2 0 0

0 0 0 0 S44/2 0

0 0 0 0 0 S11 − S12







σxx

σyy

σzz

σyz

σzx

σxy




. (12.3)

Poisson’s ratio and Young’s modulus in the transverse plane and Poisson’s ratio,

Young’s modulus and shear modulus in the longitudinal directions; namely ν, E and

ν
′
, E

′
, µ

′
, respectively, are expressed as

εxx =
1

E
(σxx − νσyy)− ν

′

E ′ σzz, εxz =
1

2µ′
σxz,

εyy =
1

E
(−νσxx + σyy)− ν

′

E ′ σzz, εyz =
1

2µ′
σyz,

εzz = − ν
′

E ′ (σxx + σyy) +
1

E ′ σzz, εxy =
1 + ν

E
σxy,

as well as the following values for the constants Sij

S11 =
1

E
, S12 = − ν

E
, S13 = − ν

′

E ′ , S33 =
1

E ′ , S44 =
1

µ′
.
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The constants Cij can be shown to be given by the expressions

C11 = ∆
(Eν

′2 − E
′
)

(1 + ν)
, C12 = −∆

(E
′
ν + Eν

′2)

(1 + ν)
,

C13 = −∆E
′
ν
′
, C33 = ∆

E
′2

E
(ν − 1), C44 = µ

′
, (12.4)

where the quantity ∆ is defined by

∆ =
E

(E ′ν − E ′ + 2Ev′2)
.

In cylindrical coordinates (r, θ, z) the stiffness matrix involves the same constants

as in Cartesian coordinates, and is given by




σrr

σθθ

σzz

σθz

σrz

σrθ




=




C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 2C44 0 0

0 0 0 0 2C44 0

0 0 0 0 0 C11 − C12







εrr

εθθ

εzz

εθz

εrz

εrθ




. (12.5)

12.3 Hooke’s law for isotropic linearly elastic ma-

terials

For isotropic linearly elastic materials the stiffness matrix (12.1) and compliance

matrix (12.3) become




σxx

σyy

σzz

σyz

σzx

σxy




=
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν







εxx

εyy

εzz

εyz

εzx

εxy




,
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


εxx

εyy

εzz

εyz

εzx

εxy




=
1

E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 1 + ν 0 0

0 0 0 0 1 + ν 0

0 0 0 0 0 1 + ν







σxx

σyy

σzz

σyz

σzx

σxy




,

where ν is the Poisson’s ratio and E is the Young’s modulus. Alternatively, these

relations can be expressed as

εij =
1 + ν

E
σij − ν

E
δijσkk, (12.6)

σij =
E

1 + ν
εij +

νE

(1− 2ν)(1 + ν)
δijεkk,

and in terms of the Lamé constants λ and µ defined by

λ =
νE

(1− 2ν)(1 + ν)
, µ =

E

2(1 + ν)
,

(12.6) becomes

σij = 2µεij + λδijεkk.

12.4 Equilibrium equations for transversely isotropic

linearly elastic materials

12.4.1 Cartesian coordinates (x, y, z)

The equilibrium equations for a force balance in Cartesian coordinates are

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ fx = 0,

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ fy = 0, (12.7)

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ fz = 0.
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The equilibrium equations can be also concisely written in tensor form

∂σij

∂xi

+ fj = 0.

If this equation involves an acceleration, it becomes the equation of motion, i.e.

∂σij

∂xi

+ fj = ρ
d2ui

dt2
,

where ui (i=1,2,3) denotes displacements. From (12.1), the stress equations are

given explicitly by

σxx = C11εxx + C12εyy + C13εzz, σyy = C12εxx + C11εyy + C13εzz,

σzz = C13(εxx + εyy) + C33εzz, σyz = 2C44εyz,

σxz = 2C44εxz, σxy = (C11 − C12)εxy.

From (12.1) and (12.7), three equilibrium equations in terms of displacements are

obtained and then given by

C11
∂2u

∂x2
+

(C11 − C12)

2

∂2u

∂y2
+ C44

∂2u

∂z2
+

∂

∂x

(
(C11 − C12)

2

∂v

∂y
+ (C13 + C44)

∂w

∂z

)
= 0,

(C11 − C12)

2

∂2v

∂x2
+ C11

∂2v

∂y2
+ C44

∂2v

∂z2
+

∂

∂y

(
(C11 + C12

2

∂u

∂x
+ (C13 + C44)

∂w

∂z

)
= 0,

C44

(
∂2w

∂x2
+

∂2w

∂y2

)
+ C33

∂2w

∂z2
+ (C13 + C44)

∂

∂z

(
∂u

∂z
+

∂v

∂y

)
= 0. (12.8)

On assuming that

u =
∂φ

∂x
, v =

∂φ

∂y
, w = k

∂φ

∂z
,

is a solution of the equilibrium equations for some function φ(x, y, z), (12.8) becomes

C11

(
∂2φ

∂x2
+

∂2φ

∂y2

)
+ [C44 + k(C13 + C44)]

∂2φ

∂z2
= 0,

C11

(
∂2φ

∂x2
+

∂2φ

∂y2

)
+ [C44 + k(C13 + C44)]

∂2φ

∂z2
= 0,

[kC44 + (C13 + C44)]

(
∂2φ

∂x2
+

∂2φ

∂y2

)
+ kC33

∂2φ

∂z2
= 0.
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These equations will be identical if

C44 + k(C13 + C44)

C11

=
kC33

kC44 + (C13 + C44)
= ϑ,

where ϑ is a constant. From this equation, the quadratic equation for k is obtained

which is

C44(C13 + C44)k
2 + [C2

44 + (C13 + C44)
2 − C11C33]k + C44(C13 + C44) = 0, (12.9)

and if k1 and k2 are the solutions of (12.9) then ϑi (i = 1, 2) are given by

ϑi =
C44 + ki(C13 + C44)

C11

=
kiC33

kiC44 + (C13 + C44)
, (i = 1, 2), (12.10)

and φi(x, y, z) satisfies the equation

∇2φ + ϑi
∂2φ

∂z2
= 0, (i = 1, 2),

where ∇2 = ∂2

∂x2 + ∂2

∂y2 . (12.9) can be simplified to give

k2 + (2 + β)k + 1 = 0,

where β = (C2
13 − C11C33)/(C44(C44 + C13)), and the displacements become

u =
∂

∂x
(φ1 + φ2), v =

∂

∂y
(φ1 + φ2), w =

∂

∂z
(k1φ1 + k2φ2). (12.11)

In linear elasticity, the super position principle plays an important role, so that if

two solutions for the displacement for transversely isotropic linearly elastic materials

are linearly independent to each other, then adding the two solutions gives rise a

more general solution of the system. Assuming that

u =
∂ψ

∂y
, v = −∂ψ

∂x
, w = 0, (12.12)
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is a solution where ψ is a harmonic function (12.8) becomes

(C11 − C12)

2

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ C44

∂2ψ

∂z2
= 0,

(C11 − C12)

2

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ C44

∂2ψ

∂z2
= 0, (12.13)

(C13 + C44)
∂

∂z

(
∂2ψ

∂z∂y
− ∂2ψ

∂z∂y

)
= 0.

Since (12.13)3 is always true for ψ 6= 0, on introducing ϑ3 such that

2C44

C11 − C12

= ϑ3, (12.14)

ψ satisfies the equation

∇2ψ + ϑ3
∂2ψ

∂z2
= 0.

For the isotropic case, k1 = k2 = 1 and ϑ1 = ϑ2 = ϑ3 = 1, where the passage to this

limit has to be done carefully.

Thus, by superposition of the two solution (12.11) and (12.12), the displacements

in Cartesian coordinates for a transversely isotropic linearly elastic material are given

by

u =
∂

∂x
(φ1 + φ2) +

∂ψ

∂y
, v =

∂

∂y
(φ1 + φ2)− ∂ψ

∂x
, w =

∂

∂z
(k1φ1 + k2φ2),

and the stress equations in terms of the functions φ1(x, y, z), φ2(x, y, z) and ψ(x, y, z)

are obtained from the relations of strain, displacements solutions, and equation

(12.1) as the following:

σxx = C11
∂2

∂x2
(φ1 + φ2) + C12

∂2

∂y2
(φ1 + φ2) + (C11 − C12)

∂2ψ

∂x∂y

+C13
∂2

∂z2
(k1φ1 + k2φ2),
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σyy = C12
∂2

∂x2
(φ1 + φ2) + C11

∂2

∂y2
(φ1 + φ2)− (C11 − C12)

∂2ψ

∂x∂y

+C13
∂2

∂z2
(k1φ1 + k2φ2),

σzz = C13

[
∂2

∂x2
(φ1 + φ2) +

∂2

∂y2
(φ1 + φ2)

]
+ C33

∂2

∂z2
(k1φ1 + k2φ2),

σyz = C44

[
(1 + k1)

∂2φ1

∂y∂z
+ (1 + k2)

∂2φ2

∂y∂z

]
− C44

∂2ψ

∂x∂z
,

σxz = C44

[
(1 + k1)

∂2φ1

∂x∂z
+ (1 + k2)

∂2φ2

∂x∂z

]
+ C44

∂2ψ

∂x∂z
,

σxy = (C11 − C12)
∂2

∂x∂y
(φ1 + φ2)− (C11 − C12)

2

[
∂2ψ

∂x2
− ∂2ψ

∂y2

]
.

12.4.2 Cylindrical polar coordinates (r, θ, z)

In cylindrical polar coordinates (r, θ, z), the equilibrium equations can be written in

vector form as follows:

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

∂σrz

∂z
+

σrr − σθθ

r
+ Fr = 0,

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

∂σθz

∂z
+

2

r
σrθ + Fθ = 0, (12.15)

∂σrz

∂r
+

1

r

∂σθz

∂θ
+

∂σzz

∂z
+

1

r
σrz + Fz = 0,

and the strain relations in term of displacements for transversely isotropic materials

are

εrr =
∂u

∂r
, εθθ =

1

r

∂v

∂θ
+

u

r
, εzz =

∂w

∂z
,

(12.16)

εrθ =
1

2

(
1

r

∂u

∂θ
+

∂v

∂r
− v

r

)
, εrz =

1

2

(
∂w

∂r
+

∂u

∂z

)
, εθz =

1

2

(
∂v

∂z
+

1

r

∂w

∂θ

)
.
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where (u, v, w) = (ur, uθ, uz). From the matrix for Hooke’s law (12.5), the stress

equations are

σrr = C11εrr + C12εθθ + C13εzz, σθθ = C12εrr + C11εθθ + C13εzz,

σzz = C13(εrr + εθθ) + C33εzz, σθz = 2C44εθz,

σrz = 2C44εrz, σrθ = (C11 − C12)εrθ.

(12.17)

From these relations, the equilibrium equations (12.15) for transversely isotropic

materials can be written as

C11
∂2u

∂r2
+

(C11 − C12)

2

1

r2

∂2u

∂θ2
+ C44

∂2u

∂z2
+

(C11 + C12)

2

1

r

∂2v

∂r∂θ
+ (C13 + C44)

∂2w

∂r∂z

+C11
1

r

∂u

∂r
− (3C11 − C12)

2

1

r2

∂v

∂θ
− C11

1

r2
u + Fr = 0,

(C11 − C12)

2

∂2v

∂r2
+ C11

1

r2

∂2v

∂θ2
+ C44

∂2v

∂z2
+

(C11 + C12)

2

1

r

∂2u

∂r∂θ
+ (C13 + C44)

1

r

∂2w

∂θ∂z

+
(3C11 − C12)

2

1

r2

∂u

∂θ
+

(C11 − C12)

2

1

r

∂v

∂r
− (C11 − C12)

2

1

r2
v + Fθ = 0, (12.18)

C44
∂2w

∂r2
+ C44

1

r2

∂2w

∂θ2
+ C33

∂2w

∂z2
+ (C13 + C44)

∂2u

∂r∂z
+ (C13 + C44)

1

r

∂2v

∂θ∂z

+(C13 + C44)
1

r

∂u

∂z
+ C44

1

r

∂w

∂r
+ Fz = 0,

where Ckl are the constants appearing in Hooke’s law as given by (12.1). Following

the same strategy as in Cartesian coordinates, the general solutions are obtained in

form of

u =
∂

∂r
(φ1 + φ2) +

1

r

∂ψ

∂θ
, v =

1

r

∂

∂θ
(φ1 + φ2)− ∂ψ

∂r
, w =

∂

∂z
(k1φ1 + k2φ2),

(12.19)

where k1 and k2 are the roots of (12.9) which correspond to ϑ1 and ϑ2 in (12.10).

Following (12.1), the strain relations and the displacement solution (12.19), the
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stress equations in term of displacements can be written as

σrr

C44

= −(1 + k1)
∂2φ1

∂z2
− (1 + k2)

∂2φ2

∂z2
− 2

ϑ3

[(
1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
(φ1 + φ2)− ∂

∂r

(
1

r

∂ψ

∂θ

)]
,

σθθ

C44

= −(1 + k1)
∂2φ1

∂z2
− (1 + k2)

∂2φ2

∂z2
− 2

ϑ3

[
∂2

∂r2
(φ1 + φ2) +

∂

∂r

(
1

r

∂ψ

∂θ

)]
,

σzz

C44

=
(k1C33 − ϑ1C13)

C44

∂2φ1

∂z2
+

(k2C33 − ϑ2C13)

C44

∂2φ2

∂z2
,

(12.20)

σrθ

C44

=
2

ϑ3

[
1

r

∂2

∂r∂θ
− 1

r2

∂

∂θ

]
(φ1 + φ2) +

1

ϑ3

[
2

r

∂ψ

∂r
+ ϑ3

∂2ψ

∂z2
+

2

r2

∂2ψ

∂θ2
,

]

σθz

C44

= (1 + k1)
1

r

∂2φ1

∂θ∂z
+ (1 + k2)

1

r

∂2φ2

∂θ∂z
− ∂2ψ

∂r∂z
,

σrz

C44

= (1 + k1)
∂2φ1

∂r∂z
+ (1 + k2)

∂2φ2

∂r∂z
+

1

r

∂2ψ

∂θ∂z
.

12.5 Simple shear problem for transversely isotropic

linearly elastic materials

The simple shear problem shown in Figure 12.2 is considered by assuming that

φ1 = Ar2z + Bz3 + Cz log r, φ2 = Dr2z + Ez3 + Fz log r, (12.21)

are the solutions for a transversely isotropic linearly elastic material, where A,B, C, D, E

and F are constants. Since they satisfy

(
∂2

∂r2
+

1

r

∂

∂
+

1

r2

∂2

∂θ2
+ ϑi

∂2

∂z2

)
φi = 0, i = 1, 2,

the following conditions are obtained

2A + 3ϑ1B = 0, 2D + 3ϑ2E = 0.

In this problem, the oscillation of carbon nanotubes in the axial-direction (z-

direction) is considered and the two boundary conditions for each tube are assumed
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Figure 12.2: Diagram of double-walled carbon nanotubes.

to be

σrr = 0, σrz = 0, r = b,

σrr = 0, σrz = τ, r = a,

where τ denotes the tangential friction generated by the inner tube which is assumed

to be constant. From the stress equations in (12.20)1 and (12.20)6, the boundary

conditions and the solutions given by (12.21), they may be deduced

− 2

ϑ3

(
2A +

C

b2
+ 2D +

F

b2

)
− 6(1 + k1)B − 6(1 + k2)E = 0,

(1 + k1)

(
2Ab +

C

b

)
+ (1 + k2)

(
2Db +

F

b

)
= 0,

− 2

ϑ3

(
2A +

C

a2
+ 2D +

F

a2

)
− 6(1 + k1)B − 6(1 + k2)E = 0,

(1 + k1)

(
2Aa +

C

a

)
+ (1 + k2)

(
2Da +

F

a

)
=

τ

µ
.
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On solving these equations, the constants A, B, C, D, E and F are obtained

A =
τaϑ1[ϑ2 − ϑ3(1 + k2)]

2µ(b2 − a2)[ϑ1ϑ2(k2 − k1) + ϑ3(ϑ1 − ϑ2)(1 + k1)(1 + k2)]
,

B =
−τa[ϑ2 − ϑ3(1 + k2)]

3µ(b2 − a2)[ϑ1ϑ2(k2 − k1) + ϑ3(ϑ1 − ϑ2)(1 + k1)(1 + k2)]
,

C =
−τab2

µ(b2 − a2)(k2 − k1)
,

D =
−τaϑ2[ϑ1 − ϑ3(1 + k1)]

2µ(b2 − a2)[ϑ1ϑ2(k2 − k1) + ϑ3(ϑ1 − ϑ2)(1 + k1)(1 + k2)]
,

E =
τa[ϑ1 − ϑ3(1 + k1)]

3µ(b2 − a2)[ϑ1ϑ2(k2 − k1) + ϑ3(ϑ1 − ϑ2)(1 + k1)(1 + k2)]
,

F =
τab2

µ(b2 − a2)(k2 − k1)
.

Further, the displacements in the r-direction and z-direction can be written as fol-

lows:

µu =
τaϑ3[ϑ2(1 + k1)− ϑ1(1 + k2)]

(b2 − a2)[ϑ1ϑ2(k2 − k1) + ϑ3(ϑ1 − ϑ2)(1 + k1)(1 + k2)]
rz,

µw =
τa{k1ϑ1[ϑ2 − ϑ3(1 + k2)]− k2ϑ2[ϑ1 − ϑ3(1 + k1)]}

2(b2 − a2)[ϑ1ϑ2(k2 − k1) + ϑ3(ϑ1 − ϑ2)(1 + k1)(1 + k2)]
r2 +

τab2

(b2 − a2)
log r

− τa{k1[ϑ2 − ϑ3(1 + k2)]− k2[ϑ1 − ϑ3(1 + k1)]}
(b2 − a2)[ϑ1ϑ2(k2 − k1) + ϑ3(ϑ1 − ϑ2)(1 + k1)(1 + k2)]

z2. (12.22)

If in the quadratic equation (12.9), values of Cij are substituted for the isotropic

linearly elastic material, then k1 = k2 = 1 and the values of ϑi corresponding to ki

in (12.10) are ϑ1 = ϑ2 = ϑ3 = 1. Thus, in order to deduce the isotropic solution

from the above equations, k1 and k2 are assumed to be given by

k1 = 1 + ε, k2 = 1− ε,

where ε ¿ 1. From (12.10) and (12.14), ϑ1, ϑ2 and ϑ3 are determined to be

ϑ1 = 1 +
ε

2(1− ν)
, ϑ2 = 1− ε

2(1− ν)
, ϑ3 = 1,
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and on substituting those values of ki and ϑi into (12.22)1 and (12.22)2 and then

letting ε tend to zero, it can be shown that

µu =
−τaν

(b2 − a2)(1 + ν)
rz,

µw =
τa

2(b2 − a2)(1 + ν)
(z2 − r2) +

τab2

(b2 − a2)
log r.

12.6 Simple shear problem for isotropic linearly

elastic materials

In this section, the solution for the simple shear problem of a isotropic linearly elastic

material as given by Lure [143] is formally derived. The displacement equations for

isotropic linearly elastic materials of torsion-free axial-symmetric problems are given

in [143], and can be written as

u = 4(1− ν)Br − ∂

∂r
(rBr + zBz + B0),

w = 4(1− ν)Bz − ∂

∂z
(rBr + zBz + B0),

where Br, Bz and B0 satisfy Laplace’s equation. Suppose Br is zero and that

B0 =
A

2
(2z3 − 3zr2) + Bz log r, Bz =

C

2
(2z2 − r2) + B log r,

are solutions for the isotropic linearly elastic material. From the stress and dis-

placement equations for the isotropic linearly elastic material and the boundary

conditions

σrr = 0, σrz = τ0, for r = b,

σrr = 0, σrz = −τ1, for r = a,
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the following four equations are obtained

(3A + C) + 8ν(1− ν)C − 6ν(A + C) + (1− 2ν)(B + D)
1

b2
= 0,

(3A + C) + 8ν(1− ν)C − 6ν(A + C) + (1− 2ν)(B + D)
1

a2
= 0,

[(3A + C)− 2(1− ν)C]b + [2(1− ν)D − (B + D)]
1

b
=

τ0(1 + ν)

E
,

[(3A + C)− 2(1− ν)C]a + [2(1− ν)D − (B + D)]
1

a
=
−τ1(1 + ν)

E
.

On solving these equations, A,B, C and D are given by

A =
(4ν + 1)(τ0b + τ1a)

6E(b2 − a2)
, B =

ab(1 + ν)(τ0a + τ1b)

2E(1− ν)(b2 − a2)
,

C =
−(τ0b + τ1a)

2E(b2 − a2)
, D =

−ab(1 + ν)(τ0a + τ1b)

2E(1− ν)(b2 − a2)
,

and the displacement equations for torsion-free axial-symmetric deformations for

isotropic linearly elastic materials yield

µu =
ν(τ0b + τ1a)

(b2 − a2)(1 + ν)
rz,

(12.23)

µw =
(τ0b + τ1a)

2(b2 − a2)(1 + ν)
(r2 − z2)− ab(τ0a + τ1b)

(b2 − a2)
log r.

Now, for the special case τ0 = 0 and τ1 = −τ the displacements become

µu =
−τaν

(b2 − a2)(1 + ν)
rz,

µw =
τa

2(b2 − a2)(1 + ν)
(z2 − r2) +

τab2

(b2 − a2)
log r,

which are in complete agreement with those obtained in the previous section.
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Wave-like deformations for
oscillating carbon nanotubes

Double-walled carbon nanotubes are widely studied as possible gigahertz oscillators,

where the inner tube oscillates within the outer tube. These oscillators can gener-

ate frequencies in the gigahertz range. They are also known to generate wave-like

deformations on the outer surface. In this chapter, such induced deformations on

the surface of the outer tube are studied, as generated by the moving inner tube.

Double-walled carbon nanotubes are modelled as transversely isotropic linearly elas-

tic materials. Using a force distribution for the resultant van der Waals forces arising

from the interatomic interactions, a dynamical linearly elastic problem is solved, and

it is shown that the resulting solution exhibits wave-like behaviour.

13.1 Nomenclature

σij are element of the Cauchy stress tensor

τ is the coefficient of tangential friction

Cij are the elastic constants

Jn is the Bessel function of the first kind

L1, L2 are the half-lengths of the inner and the outer tubes, respectively

Yn is the Bessel function of the second kind

W is the maximum force value

a, b are the radii of the inner and the outer carbon nanotubes, respectively

184
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h is the thickness of the outer tube

r, θ, z are a system of cylindrical coordinates

u, w are the displacements in the r- and z-directions, respectively

13.2 Model formulation and boundary conditions

A double-walled uncapped carbon nanotube is considered where the half-length of

the inner and outer tubes are L1 and L2, respectively, the inner tube has radius a, the

outer tube has radius b and the thickness of the outer tube is assumed to be h, and

for convenience, c is defined as c = b + h. The force distribution for double-walled

carbon nanotubes is determined using the continuum approach for which the atoms

are assumed to be smeared over the surfaces on both the inner and outer tubes as

derived in §3.3. The resultant van der Waals force is calculated assuming prescribed

surface densities of carbon atoms along the surfaces r = a for the inner tube and

r = b for the outer tube, and is evaluated by two surface integrals. Further, these

surface inter-atomic interactions described by the van der Waals force are assumed

to dominate. Transversely isotropic linearly elastic equations are utilised to model

the deformations for the outer tube assuming a stress free boundary condition on

the outer surface r = c and a stress σrz = τ and σrr = 0 acting on the inner surface

r = b. The stress τ is the van der Waals force per unit contact area which is assumed

to arise from the motion of the inner tube moving in the z-direction, as illustrated

in Figure 13.1.
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Figure 13.1: Diagram of double-walled carbon nanotube.

The length of the outer tube is assumed to be very long in comparison to the

length of the inner tube, so that the contact area is given by A = 4πaL1. Further,
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the force distribution for double-walled carbon nanotubes, derived in §3.3 and shown

in Figure 13.2, can be idealised by the dotted line shown, that is, the actual force

distribution is approximated in terms of rectangular functions as follows

f(z) = W [H(z + L1 + L2)−H(z − L1 + L2)]

−W [H(z + L1 − L2)−H(z − L1 − L2)], (13.1)

where W denotes the maximum value on the force axis. The Fourier series expansion

for an odd function is given by

f(z) =
∞∑

n=1

bn sin nz, bn =
1

2L

∫ 2L

−2L

f(z) sin

(
nπz

2L

)
dz, (13.2)

where f(z) is a piecewise continuous function in the interval [−2L, 2L] and has

period 4L. Using (13.1) and (13.2), the Fourier series expansion for the van der

Waals force with period 4(L1 + L2) for arbitrary lengths L1 and L2 can be written

as

f(z) =
2W

π

∞∑
n=1

1

n

{
cos

(
nπ

2

)
− cos

[
nπ(L2 − L1)

2(L1 + L2)

]}
sin

[
nπz

2(L1 + L2)

]
. (13.3)

� � �
�

� �

� � � � � � � � � �

	 
 � �� � � � �� � � � � � 
� � �

� �

Figure 13.2: Force distribution approximated by rectangular functions.

From the oscillatory behaviour, this force is time dependent with angular fre-
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quency ω and from (13.3) it may be supposed

f(z, t) =
2W

π

∞∑
n=1

1

n

{
cos

(
nπ

2

)
− cos

[
nπ(L2 − L1)

2(L1 + L2)

]}
sin

[
nπz

2(L1 + L2)

]
eiωt.

(13.4)

Further, the angular frequency ω is assumed to be obtained from the oscillation

frequency f derived in §3.3 where ω = 2πf and L1 6= L2. This oscillation frequency

is derived for an inner tube extruded an initial distance d from the end of the outer

tube and simultaneously given an initial velocity v0 in the negative z-direction.

Finally, the stress boundary conditions at r = c are σrz = σrr = 0, while at r = b

they can be written as

σrz =
W

2aL1π2

∞∑
n=1

1

n

{
cos

(
nπ

2

)
− cos

[
nπ(L2 − L1)

2(L1 + L2)

]}
sin

[
nπz

2(L1 + L2)

]
eiωt,

σrr = 0.

In the process of modelling the van der Waals force by equation (13.3), the usual

continuum practice of ignoring the small scale effects are employed, which occur at

the four points Z = ±(L1 + L2) and Z = ±(L1 − L2).

In adopting this approach, by necessity any information pertaining to the atomic

lattice length characteristics is excluded, and the critical length characteristic em-

bodied in (13.3) is the macro-length (L1 +L2). Having established (13.3) as the van

der Waals force, (13.4) is merely the time-dependent form of (13.3) with a prescribed

angular velocity ω, which is specifically adopted in order that the governing contin-

uum equations admit separable solutions. However, (13.4) is by no means unique

and other forms are possible, but these alternatives would not necessarily give rise

to tractable equations.

13.3 Displacement and shear force solutions

Assuming that the displacements of the outer tube (u, v, w), where u, v and w are the

physical components of displacement in the r, θ and z directions, are synchronised

with respect to the motion of the inner tube and they therefore have the same

angular frequency. Moreover, assuming that there is no torsional motion, v becomes
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zero and u and w can be written as

u(r, z, t) =
∞∑

n=1

fn(r) cos(knz)eiωt, w(r, z, t) =
∞∑

n=1

gn(r) sin(knz)eiωt.

On solving the momentum equations (12.18) neglecting any body force, it may be

readily shown that the functions fn(r) and gn(r) are given by

fn(r) = An1J1(pn1r) + An2Y1(pn1r) + An3J1(pn2r) + An4Y1(pn2r),

gn(r) = Sn1[An1J0(pn1r) + An2Y0(pn1r)] + Sn2[An3J0(pn2r) + An4Y0(pn2r)],

where J0, J1 and Y0, Y1 are Bessel functions of the first and second kinds, respectively,

An1, An2, An3 and An4 denote four arbitrary constants and pn1, pn2, Sn1 and Sn2 are

constants which involve the elastic constants and are given by

pn1 =

√
(C2

13 − C11C33 + 2C13C44)k2
n + (C11 + C44)ρω2 +

√
qn

2C11C44

,

pn2 =

√
(C2

13 − C11C33 + 2C13C44)k2
n + (C11 + C44)ρω2 −√qn

2C11C44

,

Sn1 =
pn1

2kn(C13 + C44)(ρω2 − C33k2
n)

[
(2C13C44 + C2

13 + C11C33)k
2
n

+(C44 − C11)ρω2 −√qn

]
,

Sn2 =
pn2

2kn(C13 + C44)(ρω2 − C33k2
n)

[
(2C13C44 + C2

13 + C11C33)k
2
n

+(C44 − C11)ρω2 +
√

qn

]
,

and

qn = (C11C33 − C2
13)

[
C11C33 − 4

(
C44 +

C13

2

)2
]
k4

n + (C11 − C44)
2ρ2ω4

−2ρω2k2
n

{
C33C

2
11 − [2C2

44 + (C33 + 2C13)C44 + C2
13]C11 − 2C13C

2
44 − C2

13C44

}
.

From the stress-strain relations for σrr and σrz in (12.16) and (12.17), they can
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be written as

σrr =
∞∑

n=1

cos(knz)eiωt

{
An1

[
αnJ0(pn1r)− C11

r
J1(pn1r)

]

+An2

[
αnY0(pn1r)− C11

r
Y1(pn1r)

]
+ An3

[
βnJ0(pn2r)

−C11

r
J1(pn2r)

]
+ An4

[
βnY0(pn2r)− C11

r
Y1(pn2r)

]}
,

(13.5)

σrz = −
∞∑

n=1

C44 sin(knz)eiωt

[
An1γnJ1(pn1r) + An2γnY1(pn1r)

+An3δnJ1(pn2r) + An4δnY1(pn2r)

]
,

where αn, βn, γn and δn are further constants defined by

αn = pn1C11 − knSn1C13, βn = pn2C11 − knSn2C13,

γn = pn1Sn1 + kn, δn = pn2Sn2 + kn.

From the boundary conditions at r = b and (13.5)2, it can be deduced

kn =
nπ

2(L1 + L2)
, τn =

W

2naL1π2C44

{
cos

[nπ(L2 − L1)

2(L1 + L2)

]
− cos

(nπ

2

)}
,

and from the stress boundary conditions, a system of four equations in the four un-

knowns Ani (i = 1, 2, 3, 4) can be formulated. These may be readily solved using the

algebraic computer package MAPLE and the details are summarised in Appendix F.

13.4 Tables of elastic constants

Experiments and theoretical studies have shown that carbon nanotubes can be mod-

elled as transversely isotropic linearly elastic materials where the elastic constants

and elastic moduli define their elastic properties. In this study, three contributions

by Jin and Yuan [15], Lu [20] and Shen and Li [134] are examined, all of whom eval-

uate the elastic constants and elastic moduli for both single-walled and multi-walled

carbon nanotubes.

Jin and Yuan [15] use molecular dynamics simulations as well as the Lennard-

Jones potential to study the elastic properties of single-walled carbon nanotubes.

They determine the values of elastic moduli, denoted as Poisson’s ratio νzθ, νθz,
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Young’s moduli Ez, Eθ and shear modulus Gθz, and elastic constants C33 and C23,

by using energy and force approaches, which give approximately the same numeri-

cal values. Here, the values of elastic moduli from the force approach are employed

throughout. Terminology utilised here: E, E
′
, µ

′
and C13 refer to their Ez, Eθ, Gθz

and C23, respectively. Poisson’s ratio in longitudinal direction ν
′
is given by averag-

ing νθz and νzθ and Poisson’s ratio in transverse plane ν is obtained by solving C33

in (12.4). Thus, the values of elastic constants for single-walled carbon nanotubes

based on Jin and Yuan [15] are shown in Appendix G, Table G.1.

Lu [20] uses an empirical force-constant model and the Lennard-Jones potential

function to investigate the elastic properties of carbon nanotubes and nanoropes.

For the carbon nanotube structures, he finds that the elastic moduli are insensitive to

the radius, the helicity and the number of walls. He also reports values of the elastic

constants C11 and C33 and elastic moduli, namely Poisson ratio ν, bulk modulus

B, Young’s modulus Y and shear modulus M for both single-walled and multi-

walled carbon nanotubes. Here, Poisson ratio, Young’s modulus and shear modulus

are defined by ν
′
, E

′
and µ

′
, respectively. E and ν are obtained by solving the

equations for C11 and C33 in (12.4). Finally, the elastic constants for single-walled

and multi-walled carbon nanotubes based on Lu [20] are shown in Appendix G,

Table G.2 and Table G.3, respectively.

Shen and Li [134] also study the elastic properties of single-walled and double-

walled carbon nanotubes by assuming that carbon nanotube structures are trans-

versely isotropic linearly elastic materials. They calculate five elastic moduli, de-

noted as Poisson’s ratio ν12, Young’s modulus E11, shear moduli G12, G23 and bulk

modulus K23, by analysing the deformations under loading conditions. Note that in

their work 1 denotes the longitudinal or Z direction, and E11, ν12, G12, K23 and G23

refer to E
′
, ν

′
, µ

′
, K and G, respectively. Therefore, the values of elastic constants

are obtained by using the formulae in (12.4), shown in Appendix G, Table G.4 and

Table G.5.

The large variation in the numerical values of these elastic constants is primarily

due to the uncertainty regarding the actual values of the wall thickness, the different

potential functions in the study, the calculation methods, and the size of the time

step [148, 149].
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13.5 Numerical results

In this section, the displacements u and w for a double-walled carbon nanotubes

modelled as a transversely isotropic linearly elastic material are plotted. Using the

algebraic computer package MAPLE, the displacements u and w versus an arbitrary

point on the z axis of the outer surface of the outer tube are shown. Following the

determination in §3.3, the same values of the van der Waals constants to determine

the van der Waals force are used. For the elastic constants Cij, the values given in

Table G.3 for n = 2 are used. Of particular practical interest is the case when the

initial velocity is zero and the extrusion distance is d = L1, for which the graphs of

the displacements u and w are given in Figure 13.3 and Figure 13.4 where W = 1,

h = 0.66 Å, L1 = 10 nm and L2 = 500 nm.

The wave-like deformations which depend on both space and time on the outer

surface of the outer tube are observed. The deformation in the r-direction is a

transverse wave representing the rippling on the surface, whereas the deformation

in the z-direction is a longitudinal wave tending to compress the tube. Further,

the deformation amplitude in the z-direction is much larger than that in the r-

direction, showing that the tube behaves more like a spring. Moreover, the largest

deformations are at the ends of the outer tube arising from the large attractive force

there. Due to the assumed negligible friction, the deformation has the same pattern

every 14.24 ps, which is the period T of the oscillation. At t = 0 and t = T/2,

the deformations have the same shape in both r and z directions but are opposite

in phase. Similarly for t = T/4 and t = 3T/4, the deformations at these times

also have the same pattern but are opposite in phase, as shown in Figure 13.3 and

Figure 13.4.

13.6 Summary

Here oscillating carbon nanotubes have been modelled as transversely isotropic lin-

early elastic materials where the oscillating inner tube moves in the axial direction

while the outer tube remains fixed. Furthermore, the length of the inner tube L1

is assumed to be very small in comparison to the length of the outer tube L2. The

van der Waals force distribution evaluated in §3.3 is assumed. On neglecting any
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Figure 13.3: The displacement u(c, z, t) on the outer surface of the outer tube (a)
at t = 0, (b) at t = T/4, (c) at t = T/2 and (d) at t = 3T/4 where T is the period
of the oscillation.
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Figure 13.4: The displacement w(c, z, t) on the outer surface of the outer tube (a)
at t = 0, (b) at t = T/4, (c) at t = T/2 and (d) at t = 3T/4 where T is the period
of the oscillation.



Chapter 13: Wave-like deformations 194

frictional effects and assuming that the inner surface atoms of the outer tube and

those located on the outer surface of the inner tube dominate the van der Waals

force, the transversely isotropic linear elastic model is applied to the outer tube and

expressions for displacements in the r- and z-directions are calculated. Deformations

on the outer surface of the double-walled carbon nanotube due to the oscillations of

the inner tube occur in both the r- and z-directions. A transverse wave occurs in

the r-direction which gives a rippling effect on the surface, while a longitudinal wave

occurs in the z-direction which tends to compress the tube. The amplitude of the

deformation in the axial direction is much larger than that in the radial direction,

which implies that the nanotube oscillator behaves like a spring.

The analysis presented here represents only a first step, and a more realistic

model might result if the two effects of inter-tube friction and fluctuations in the

nanotube due to a finite temperature are incorporated. These effects may con-

ceivably be larger than those examined here. We comment that these calculations

ignore the small variations in potential arising from the discrete structure or the

corrugation of the tubes and there are two points to be noted. The first is that

the corrugation energy gives rise to a conservative potential which does not give

a frictional force and ultimately these interaction will decrease the amplitudes to

zero. Secondly, the corrugation energy per bump is small but there are many bumps

per cycle, and these corrugation barriers convert some potential energy to heat and

thermal effects.
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Chapter 14

Summary

In this thesis, applied mathematical modelling and elementary mechanical tech-

niques have been employed to formulate analytical expressions for certain systems

of nanostructures. In addition, the algebraic computer package MAPLE is utilized

throughout to calculate numerical solutions of each of the problems. These theoreti-

cal investigations have generated new physical formulae applicable at the nanoscale,

and which might be seen as a first step to create new derives in the field of nan-

otechnology. There are three main focuses in this thesis:

1. Continuum modelling of nanostructures,

2. Geometry of joining nanostructures,

3. Carbon nanotubes as transversely isotropic materials,

and a brief summary of each of these three topics is given below.

14.1 Continuum modelling for nanostructures

The Lennard-Jones potential function and the continuum approximation employed

throughout Part II are introduced in Chapter 2. The van der Waals interaction

energies and the resulting oscillatory behaviours for both carbon and boron nitride

nanostructures are studied.

In Chapter 3, force distributions arising from the interatomic interactions for

two concentric carbon nanotubes are considered and shown to be approximated by

the Heaviside step functions. This has the advantage that Newton’s second law can

be utilized to describe the oscillatory motion of the inner carbon nanotube when it

is extruded and given an initial velocity. The oscillation frequency is shown to be in

196
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the order up to 80 gigahertz, and the shorter the inner tube the higher the frequency.

In terms of the suction energy, its value depends on the difference of the tube radii,

where the closer this value to zero, the less likely the inner tube will be accepted into

the outer one. Further, the inner tube is spontaneously sucked into the outer tube

and has its maximum suction energy when the difference of their radii is precisely

equal to 3.44 Å. The equilibrium offset position for a double-walled carbon nanotube

is also determined, assuming that the inner tube is already accepted inside. This

equilibrium position of the offset inner tube tends to be closer to the outer tube wall

as the radius of the outer tube increases. Particularly, the two notions of acceptance

and suction energy are fundamental to the process of encapsulating drugs or genes

in nano-carriers for targeted deliveries.

In Chapter 4, a well-known self-assembled hybrid carbon nanostructure com-

prising the C60 fullerenes and a carbon nanotube, the so-called nanopeapods, is

investigated. Firstly, three suction site scenarios for a C60 molecule entering a car-

bon nanotube are determined. The binding energies for the three mechanisms are

compared and it is found that the C60 molecule is most likely to enter through the

carbon nanotube by the head-on configuration, and least likely by the molecule en-

tering around the edge of the tubes open end. Once C60 fullerenes are encapsulated

into a single-walled carbon nanotube, two nonlinear patterns for a C60 fullerene

chain, zigzag and spiral, are examined. The chain is found to be formed linearly

along the (10,10) tube axis and discernible zigzag patterns exist for both the (16,16)

and (20,20) tubes. Likewise, a linear C60 fullerene chain is observed along the (10,10)

tube axis and spiral patterns are detected for the (16,16) and (20,20) tubes. In gen-

eral, the interaction between the C60 molecules determines the equilibrium position

and the angular spacing of the system, whereas the interaction between the C60

fullerene and the carbon nanotube determines the offset position of the chain.

Chapter 5 considers the three related problems for nanocones entering carbon

nanotubes, which are (i) the potential energy, (ii) the suction energy and (iii) the

frequency of oscillation. Both carbon and boron nitride nanocones are investigated.

Due to the lack of specific data, the known Lennard-Jones constants determined

for plane sheets of carbon-carbon atoms are employed for carbon cones, and the

mixing rule is undertaken for boron nitride cones. The equilibrium position increases
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with decreasing cone angle or increasing number of pentagons. Furthermore, the

equilibrium location always occurs when one cone is inside the other, so that nested

double-cones might be expected to form in practice. The carbon cone which is

assumed initially at rest outside the tube is sucked into the tube when the cone

base radius and the tube radius differ by 2.49 Å to 2.54 Å, and this is irrespective

of the direction of the vertex. The oscillatory behaviour is then examined assuming

that the carbon nanocone is located co-axially and that it is sucked into the tube

by van der Waals forces alone. Newton’s second law, neglecting the frictional force,

is employed to determine the frequency, which is shown to be in gigahertz range, 15

to 90 GHz.

In Chapter 6, the interspacing between two adjacent layers of spherical and ellip-

soidal carbon onions is considered. The analysis gives rise to the possible dimensions

for each shell of the carbon onions. Moreover, the equilibrium spacing is observed

to decrease as the shell is further away from the inner core and this is due to the de-

creasing curvature for the larger spheroids. Finally, an approximate equation for the

determination of the equilibrium spacing for any two adjacent layers of a spherical

and an ellipsoidal carbon onion is provided.

14.2 Geometry of joining nanostructures

A key new concept for determining the joining of nanostructures is presented in

Chapter 7. Here, the principle is invoked that two nanostructures join in such a way

that the total least squares derivations from some ideal bond length is minimized.

Two geometric approaches, the variations in bond length and in bond angle, are

employed to determine model structures for physically occurring molecules for nan-

otori and connecting structures for tubes and sheets of carbon and boron nitride.

Furthermore, Euler’s theorem is used to check the consistency for each topologi-

cal configuration for such structures, and the calculations for the bonded potential

energy for a small deformation are carried out to verify combined molecules.

The main contribution of Chapter 8 is the application of the a least squares

approach to determine the basic elbow unit and toroidal structures formed from

three distinct carbon nanotubes. There are two approaches used in the minimization

routines, which are the unconstrained and constrained cases for the bend angles. In
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terms of the unconstrained procedure, all the physical parameters are allowed to

attain their optimum values themselves, however there is no guarantee that the

elbow sections can be joined to each other and form a complete toroidal shaped

structure with a 360◦ turn. Therefore, the analysis is repeated with the angles φ1

and φ2 constrained to the value φ1 + φ2 = 180◦/n where n ∈ {2, 3, 4, ..}. Here,

two distinct elbows are considered which are (5,0)-(4,4)-(7,0) and (3,3)-(6,0)-(4,4).

Since the principal aim is to construct toroidal molecules by joining elbow sections,

these elbow sections are exploited so that the sum of their bend angles is a factor of

360. Following the analysis of two elbow types, toroidal shaped molecules are then

investigated. A straightforward procedure is established to determine the mean

generating toroidal radius c and the mean tube radius a.

In Chapter 9, the use of two distinct least squares approaches are employed to

determine the perpendicular joining of three particular carbon nanotubes to a flat

graphene sheet. Firstly, all possible structures for connecting the zigzag (8,0) and

the armchair (4,4) carbon nanotubes to a flat graphene sheet are determined using

the variation in bond length to minimize the bond length between two carbon atoms

at each inter-atomic junction. There are sixteen structures for joining the zigzag

tube and thirty-two configurations for joining the armchair tube. Euler’s theorem

is utilized to prescribe the polygons which occur at the junction, and for reasons

of stability, the only carbon rings realizable are pentagonal, hexagonal, heptagonal

and octagonal, and by imposing these conditions the number of configurations is

reduced. Furthermore, octagonal rings are considered less likely to occur in practice,

and therefore only one configuration for the zigzag tube and two structures for the

armchair tube might be expected to be found in practice. In terms of the variation

in bond angle approach, a simple example for joining a flat graphene sheet to a

(6,0) carbon nanotube is presented, which is the most symmetrical possibility for

the defect. Subsequently for the (8,0) tube and the defect structure, a least squares

bond angle approach is undertaken. The structure obtained for the (8,0) and the

sheet is shown to be very similar in terms of atom locations to that found using the

bond length approach.

Chapter 10 considers two aspects of defect classification and connection for boron

nitride structures. Given that rings with an even number of sides are energetically
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favourable for boron nitride nanostructures, the number of possible distinct defect

configurations is determined utilizing the necklace and bracelet problems from com-

binatorial theory, where an armchair (zigzag) tube requires all odd (even) number

of bonds connecting between two adjacent atoms at the defect site. Once the de-

fects are obtained, two distinct least squares approaches are employed to determine

the connected structures for the tube and the sheet of boron nitride. Three exam-

ples of perpendicular joining boron nitride nanotubes, which are (3,3), (6,0) and

(9,0) tubes and the most symmetrical defects are used to illustrate such approaches.

Three dimensional illustrations for all cases of the two variation approaches are de-

picted, and Euler’s theorem is utilized to verify that the connected structures are

geometrically acceptable. Furthermore, the bonded potential energy for small de-

formations is evaluated to determine a measure of the stability of the system. Since

the value for the bond stretching constant is significantly larger than that for the

bending angle and from the least squares calculations, this are led to conclude that

the minimization for the bond angle procedure provides lower energy values than the

minimization for the bond length procedure, so that the former most likely provides

a better model for physically occurring molecular structures.

14.3 Carbon nanotubes as transversely isotropic

linearly elastic materials

A brief overview of the elasticity of carbon nanotubes is given in Chapter 11. As-

suming that the carbon nanotube can be modelled as transversely isotropic linearly

elastic materials, Hooke’s law and the equilibrium equations for such materials are

presented in Chapter 12. In addition, a simple shear problem for both isotropic

and transversely isotropic materials is investigated and it is found that there is a

relationship between the two types of isotropic materials.

In Chapter 13, oscillating carbon nanotubes are modelled as transversely isotropic

linearly elastic materials, and the oscillating inner tube moves only in the axial di-

rection while the outer tube remains fixed. Furthermore, the length of the inner

tube is assumed to be very small in comparison to the length of the outer tube. The

van der Waals force distribution is calculated from the continuum approximation.

On neglecting any frictional effects and assuming that the inner surface atoms of
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the outer tube and those located on the outer surface of the inner tube dominate

the van der Waals force, the transversely isotropic linear elastic model is applied to

the outer tube and expressions for the displacements in the r- and z-directions are

obtained. A transverse wave occurs in the r-direction, which gives rise to a rippling

effect on the surface, while a longitudinal wave occurs in the z-direction which tends

to compress the tube. The amplitude of the deformation in the axial direction is

much larger than that in the radial direction, implying that the nanotube oscillator

behaves like a spring.

In summary, the new elements of this thesis comprise:

• Analytical expressions to determine the equilibrium locations, force distribu-

tions and oscillatory behaviour for nested carbon and boron nitride nanostruc-

tures including double-walled carbon nanotubes, nanopeapods, nanocones and

onions,

• Two simple least squares procedures to connect two nanostructures, and a

method to classify the defects for a boron nitride sheet,

• Transversely isotropic linearly elastic model for the deformations of double-

walled carbon nanotubes with an oscillating the inner tube.
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Appendix A

Analytical solution for
double-walled carbon nanotubes

Analytically three types of integrals for the Lennard-Jones potential function are

evaluated. These three integrals are involved in the solution for the total potential

energy of the nanostructure system, mainly for the double-walled carbon nanotubes,

and they are determined in following sections.

A.1 Evaluation of the integral Jn

Consider the integral

J∗n =

∫ 2π

0

∫ 2π

0

dθ1dθ2

λn
, (A.1)

where λ2 = a2 + b2 − 2ab cos(θ1 − θ2). Since the integrand is a symmetric function

of θ1 − θ2, the intermediate integral J∗∗n defined by

J∗∗n =

∫ 2π

0

dθ1

{α + β sin2[(θ1 − θ2)/2]}n/2
,

where α = (a− b)2 and β = 4ab can be shown by differentiation with respect to θ2

to be independent of θ2, namely

dJ∗∗n

dθ2

=

∫ 2π

0

− ∂

∂θ1

(
1

{α + β sin2[(θ1 − θ2)/2]}n/2

)
dθ1 = 0.

Thus, θ2 is set to zero and one can trivially perform the θ2 integration so that (A.1)

becomes

J∗n = 8π

∫ π/2

0

dx

λn
,
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where λ2 = (a− b)2 + 4ab sin2 x and the integral Jn may be defined by

Jn =

∫ π/2

0

dx

λn
=

∫ π/2

0

dx

(α + β sin2 x)n/2
.

Making the substitution t = cot x to obtain

Jn =

∫ ∞

0

(1 + t2)n/2−1

(β + α + αt2)n/2
dt =

1

(α + β)n/2

∫ ∞

0

(1 + t2)n/2−1

(1 + γt2)n/2
dt,

where γ = α/(α + β). Now on writing this integral in the form

Jn =
1

(α + β)n/2

∫ ∞

0

1

[1− (1− γ)t2/(1 + t2)]n/2

dt

(1 + t2)
,

this leads to make the substitution

z =
t

(1 + t2)1/2
, t =

z

(1− z2)1/2
, dt =

dz

(1− z2)3/2
,

and the substitution u = z2 gives

Jn =
1

(α + β)n/2

∫ 1

0

dz

[1− (1− γ)z2]n/2(1− z2)1/2

=
1

2(α + β)n/2

∫ 1

0

u−1/2(1− u)−1/2

[1− (1− γ)u]n/2
du.

From Gradshteyn and Ryzhik [150] (p. 995, eq. 9.111) it may be deduced

Jn =
π

2(a + b)n
F

(n

2
,
1

2
; 1;

4ab

(a + b)2

)
,

where F (a, b; c; z) denotes a hypergeometric function. From Erdélyi [151], since two

of the numbers ±(1 − c), ±(a − b), ±(a + b − c) are equal to each other it can be

shown that this result admits a quadratic transformation, which leads to a Legendre

function. Using the transformation

F (a, b; 2b; 4z/(1 + z)2) = (1 + z)2aF (a, a + 1/2− b; b + 1/2; z2),

gives

Jn =
π(1 + ξ)n

2(a + b)n
F (n/2, n/2; 1; ξ2),
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where ξ = b/a. Using the definitions from Gradshteyn and Pyzhik [150] (pp. 960,

998)

P µ
ν (z) =

1

Γ(1− µ)

(
z − 1

z + 1

)−µ/2(
z + 1

2

)ν

F

(
− ν,−ν − µ; 1− µ;

z − 1

z + 1

)
,

and

F (a, b; c, z) = (1− z)c−a−bF (c− a, c− b; c; z),

where P µ
ν (z) is a Legendre function of the first kind. In this case µ is zero, and the

integral in terms of the Legendre function is obtained and given by

Jn =
π

2(a2 − b2)n/2
Pn/2−1

(
a2 + b2

a2 − b2

)
.

A.2 Evaluation of the integral Kn

Here the integral Kn is determined. Since λ2 is an even function of θ1 − θ2, as

mentioned in §A.1 either intermediate integral is independent of the other variables,

and therefore this second variable is assigned to have zero value. In this event one

integration may be trivially performed and may be deduced

K∗
n = 8π

∫ π/2

0

dx

λm(λ2 + P 2
j )n

,

where λ2 = (a− b)2 +4ab sin2 x. Instead of considering the above equation, only the

integral Kn is considered which is given by

Kn =

∫ π/2

0

dx

λm(λ2 + P 2
j )n

. (A.2)

On letting µ = (a− b)2, σ = (a− b)2 + P 2
j and ν = 4ab, (A.2) becomes

Kn =

∫ π/2

0

dx

(µ + ν sin2 x)m/2(σ + ν sin2 x)n
.

Making the substitution t = cot x to obtain

Kn =

∫ ∞

0

(1 + t2)n+m
2
−1

(ν + µ + µt2)m/2(ν + σ + σt2)n
dt

=
1

(µ + ν)m/2(σ + ν)n

∫ ∞

0

(1 + t2)n+m
2
−1

(1 + βt2)m/2(1 + γt2)n
dt,
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where β = µ/(µ + ν) and γ = σ/(σ + ν). Now on writing this integral in the form

Kn =
1

(µ + ν)m/2(σ + ν)n
×

×
∫ ∞

0

1

[1− (1− β)t2/(1 + t2)]m/2[1− (1− γ)t2/(1 + t2)]n
dt

(1 + t2)
,

and makes the substitution

z =
t

(1 + t2)1/2
, t =

z

(1− z2)1/2
, dt =

dz

(1− z2)3/2
,

and the substitution u = z2, so that

Kn =
1

2(µ + ν)m/2(σ + ν)n

∫ 1

0

u−1/2(1− u)−1/2

[1− (1− β)u]m/2[1− (1− γ)u]n
du,

noting that µ + ν = (b + a)2, σ + ν = (b + a)2 + P 2
j , β = (b − a)2/(b + a)2 and

γ = [(b− a)2 + P 2
j ]/[(b + a)2 + P 2

j ]. According to Bailey [152] (p. 73), the definition

of an Appell hypergeometric function of two variables and of the first kind is defined

by

F1

(
α : β, β

′
; γ; x, y

)
=

∞∑
n=0

∞∑
m=0

(α)m+n(β)m(β
′
)n

m!n!(γ)m+n

xmyn. (A.3)

Also from Bailey [152], the expression for the function F1 in terms of a definite

integral and a series involving the ordinary hypergeometric function (pp. 77 and

79), are

Γ(α)Γ(γ − α)

Γ(γ)
F1

(
α; β, β

′
; γ; x, y

)
=

∫ 1

0

uα−1(1− u)γ−α−1

(1− ux)β(1− uy)β′
du,

(A.4)

F1

(
α; β, β

′
; γ; x, y

)
=

∞∑
i=0

(α)i(β)i

i!(γ)i

F
(
α + i, β

′
; γ + i; y

)
xi,

so that Kn becomes

Kn =
π

2(a + b)m[(a + b)2 + P 2
j ]n

∞∑
i=0

(1/2)i(m/2)i

(i!)2
×

×F
(1

2
+ i, n; 1 + i;

4ab

(a + b)2 + P 2
j

)[
4ab

(a + b)2

]i

,

where F (a, b; c; z) denotes the usual hypergeometric function.
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A.3 Evaluation of the integral Ln

Similar to the previous two sections, the integral Ln can be written as

L∗n = 8π

∫ π/2

0

1

λn
tan−1

(
Pj

λ

)
dx,

where λ2 = (a− b)2 + 4ab sin2 x. For convenience, Ln is defined by

Ln =

∫ π/2

0

1

λn
tan−1

(
Pj

λ

)
dx.

Since (Pj/λ)2 < ∞, from Gradshteyn and Ryzhik [150] (p. 59, eq. 1.644.1), it is

obtained

tan−1

(
Pj

λ

)
=

Pj√
λ2 + P 2

j

∞∑

k=0

(2k)!

22k(k!)2(2k + 1)

(
P 2

j

λ2 + P 2
j

)k

,

and thus

Ln =
∞∑

k=0

P 2k+1
j (2k)!

22k(k!)2(2k + 1)

∫ π/2

0

1

λn(λ2 + P 2
j )k+1/2

dx.

From the result for Kn in Appendix A.2, it may be deduced

Ln =
π

2

∞∑

k=0

P 2k+1
j (2k)!

22k(k!)2(2k + 1)
· 1

(µ + ν)n/2(σ + ν)k+1/2
×

×F1

(1

2
;
n

2
, k +

1

2
; 1; 1− β, 1− γ

)
,

and using the reduction of Appell’s hypergeometric functions (A.4), the formula for

Ln is given by

Ln =
π

2

∞∑

k=0

∞∑
i=0

P 2k+1
j (2k)!

22k(k!)2(2k + 1)(a + b)n[(a + b)2 + P 2
j ]k+1/2

(1/2)i(n/2)i

(i!)2
×

×F
(1

2
+ i, k +

1

2
; 1 + i;

4ab

(a + b)2 + P 2
j

)[
4ab

(a + b)2

]i

.

Commenting that Colavecchia et al. [153] examine in some detail the numerical

evaluation of the usual hypergeometric and the Appell hypergeometric functions.
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Analytical solution for an offset
position defined in (3.5)

The analytical solution of the total potential energy for an offset inner tube inside an

outer tube given by (3.5) is determined. For convenience, the integral En is defined

by

En =

∫ π/2

0

∫ π/2

0

1

λn
dθ1dθ2, n = 5, 11, (B.1)

where

λ2 = a2 + b2 − 2ab cos(θ1 − θ2)− 2ε(b cos θ2 − a cos θ1) + ε2. (B.2)

On letting x = a cos θ1 − b cos θ2 and y = a sin θ1 − b sin θ2, it may be deduced

x2 + y2 = a2 + b2 − 2ab cos(θ1 − θ2).

From (B.2), λ2 = (x + ε)2 + y2 is deduced and the Jacobian matrix can be written

as

dxdy =
√

4a2b2 − [a2 + b2 − (x2 + y2)]2dθ1dθ2.

Then (B.1) becomes

En =

∫ ∫

R

dxdy√
4a2b2 − [a2 + b2 − (x2 + y2)]2[(x + ε)2 + y2]n/2

, (B.3)

where R is a region shown in Figure B.1(b). The equations for each segment can

be written as AB: x ∈ [−b, a − b] and y =
√

a2 − (x + b)2, BC: x ∈ [−b, 0] and

y = a − √b2 − x2, CD: x ∈ [0, a] and y = −b +
√

a2 − x2 and AD: x ∈ [a − b, a]

and y = −
√

b2 − (x− a)2.
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Figure B.1: Mapping diagram of (a) θ1 − θ2 plane to (b) x− y plane.

Firstly, x = r cos θ and y = r sin θ are substituted into (B.3) to deduce

En =

∫ ∫

S

rdrdθ√
4a2b2 − (a2 + b2 − r2)2[r2 + 2rε cos θ + ε2]n/2

,

where S is a region shown in Figure B.2. On letting A = r2 + ε2, B = 2rε and

C =
√

4a2b2 − (a2 + b2 − r2)2, the expression En becomes

En =

∫ ∫

S

rdrdθ

C(A + B cos θ)n/2
.

Using the fact that cos θ = 1− 2 sin2(θ/2), it may be deduced

En = 2

∫ ∫

S∗

rdrdt

C(A + B)n/2(1− k2 sin2 t)n/2
, (B.4)

where t = θ/2 and k2 = 2B/(A + B) > 0 and S∗ denotes the region shown in

Figure B.2. For convenience, the intermediate integral is defined as

Fn =

∫ t

0

ds

(1− k2 sin2 s)n/2
, n = 5, 11,

which is given by

F5 =
1

3(k2 − 1)2
[(k2 − 1)F (t, k)− 2(k2 − 2)E(t, k)]

(B.5)

−k2{5− k2[3 + 2(2− k2) sin2 t]}
3(k2 − 1)2(1− k2 sin2 t)3/2

sin t cos t,
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q
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Figure B.2: Diagram of r2 − θ plane.

and

F11 =
1

315(k2 − 1)5
[4(k2 − 1)(k2 − 2)(16k4 − 31k2 + 31)F (t, k)

−(128k8 − 616k6 + 1179k4 − 1126k2 + 563)E(t, k)]

+
k2 sin t cos t

315(k2 − 1)5(1− k2 sin2 t)9/2
[k8(128k8 − 616k6 + 1179k4 − 1126k2

+563) cos8 t− 4k6(k2 − 1)(128k8 − 632k6 + 1242k4 − 1219k2 + 625) cos6 t

+k4(k2 − 1)2(768k8 − 3888k6 + 7878k4 − 8015k2 + 4265) cos4 t (B.6)

−2k2(k2 − 1)3(256k8 − 1328k6 + 2784k4 − 2973k2 + 1681) cos2 t

+(k2 − 1)4(128k8 − 680k6 + 1479k4 − 1681k2 + 1069)],

where F and E are the incomplete elliptic integral of the first kind and the second

kind, respectively. Substituting (B.5) and (B.6) back into (B.4), the final integral

with respect to r is numerically determined to obtain En.

Alternatively, (B.3) can be evaluated by defining the intermediate integral Gn,

Gn =

∫

R

dy√
4a2b2 − [a2 + b2 − (x2 + y2)]2[(x + ε)2 + y2]n/2

, n = 5, 11,

and letting y2 = a2+b2−x2−ξ, P = a2+b2+2xε+ε2, A = 4a2+b2, B = a2+b2−x2

and C = −4a2b2 to obtain

Gn = −1

2

∫

R∗

dξ

(P − ξ)(n−1)/2
√

(P − ξ)(A− ξ)(B − ξ)(ξ − C)
,
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where R∗ denotes the region shown in Figure B.1 with y2 = a2 + b2 − x2 − ξ. This

integral structure has been evaluated by Byrd and Friedman [154], and in this case

(n − 1)/2 = 2 and 5. From the formula by Byrd and Friedman [154] (eq. 253.24)

which is given by

∫ c

y

dt

(b− t)m
√

(a− t)(b− t)(c− t)(t− d)
=

g

(b− c)m

∫ u1

0

(1− α2sn2u)mdu, (B.7)

where snu is a Jacobian elliptic function, k2 = [(a − b)(c − d)]/[(a − c)(b − d)],

snu1 = sin φ =
√

[(b− d)(c− y)]/[(c− d)(b− y)], α2 = (c − d)/(b − d) and g =

2/
√

(a− c)(b− d). It follows from Byrd and Friedman [154] (eq. 331) that

γm =

∫
(1− α2sn2u)mdu, (B.8)

and

γ0 = u,

γ1 =
(k2 − α2)u + α2E(φ, k)

k2
,

γ2 =
1

3k4
[(3k4 − 6α2k2 + 2α4 + k2α4)u + 2(3α2k2 − α4 − k2α4)E(φ, k)

+α4k2snu cnu dnu],

γm+3 =
1

(2m + 5)k2
[2(m + 2)(3k2 − α2 − k2α2)γm+2 + (2m + 3)(2α2k2 + 2α2

−α4 − 3k2)γm+1 + 2(m + 1)(α2 − 1)(k2 − α2)γm + α4(1− α2sn2u)m+1 ×
×snu cnu dnu],

where u = F (φ, k), k
′2 = 1 − k2, F and E are the incomplete elliptic integral of

the first kind and the second kind, respectively, and cnu and dnu are the Jacobian

elliptic functions. By using (B.7) and (B.8) together with the recurrence formulae

for γm, it is possible to determine E∗
n analytically. However, for the final solution

for En, equation (B.3) needs to be integrated with respect to x which is determined

numerically.



Appendix C

Derivation of interaction energy
for C60 fullerenes

The derivation of the potential energy between two C60 molecules is summarised

here. To start, the calculation of the interaction energy between a carbon atom

and a C60 fullerene is reviewed, utilising the Lennard-Jones potential function and

the continuum approximation. Subsequently, the potential energy between the two

C60 fullerenes is obtained by performing another surface integral over a spherical

fullerene.

� � � �
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� 	
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f
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 � �
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Figure C.1: Diagram of atom interacting with C60 fullerene

The derivation of the potential energy between a carbon atom and a C60 fullerene

was first given by Ruoff and Hickman [43] and Mahanty and Ninham [155] and then

later adopted by Cox et al. [57]. As shown in Figure C.1, with the carbon atom

located outside the spherical fullerene, the distance between the atom and a typical

atom on the C60 fullerene ρ is given by ρ2 = a2 + r2
1 − 2ar1 cos φ, where a is a radius

of a C60 fullerene. The potential energy for a carbon atom interacting with the
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spherical fullerene is obtained by E∗ = −Q6 + Q12 where Qn (n = 6, 12) are defined

by

Qn = Cnηf

∫

Σ

1

ρn
dΣ,

where ρ denotes the distance from a carbon atom to a typical surface element of the

spherical molecule dΣ. The constants C6 and C12 are the Lennard-Jones potential

constants A and B, respectively, and ηf represents the atomic surface density of a

C60 fullerene. Therefore, the interaction energy between the carbon atom and the

C60 fullerene is given by

E∗(r1) =
πaηf

r1

[
A

2

(
1

(r1 + a)4
− 1

(r1 − a)4

)
− B

5

(
1

(r1 + a)10
− 1

(r1 − a)10

)]
. (C.1)

Following the work of Cox et al. [57], the fractions over common denominators are

expanded and reduced to fractions in terms of powers of (r2
1 − a2), hence

A

2r1

(
1

(r1 + a)4
− 1

(r1 − a)4

)
= −4aA

(
1

(r2
1 − a2)3

+
2a2

(r2
1 − a2)4

)
, (C.2)

and

B

5r1

(
1

(r1 + a)10
− 1

(r1 − a)10

)
= −4aB

5

(
5

(r2
1 − a2)6

+
80a2

(r2
1 − a2)7

(C.3)

+
336a4

(r2
1 − a2)8

+
512a6

(r2
1 − a2)9

+
256a8

(r2
1 − a2)10

)
.

The full details of the derivation of (C.1) can be found in Cox et al. [57].
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Figure C.2: Diagram of two interacting C60 fullerenes

To determine the interaction between two spherical fullerenes, with their centres

at a distance r apart, a surface integral of (C.1) over another spherical fullerene needs

to be performed, which has the parametric equation (x1, y1, z1) = (a sin θ1 cos φ1,
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a sin θ1 sin φ1, a cos θ1). Here, the distance r1, as illustrated in Figure C.2, is given

by r2
1 = a2 + r2 − 2ar cos φ1. Thus, the potential energy between two spherical

fullerenes is obtained from E∗∗ = −P6 + P12, where Pn (n = 6, 12) are defined by

Pn = ηf

∫ 2π

0

∫ π

0

Qna2 sin φ1dφ1dθ1.

By using appropriate substitutions and integrations, Pn becomes

Pn =
4π2a2Cnη

2
f

r(2− n)(3− n)

(
1

(2a + r)n−3
− 1

rn−3
− 1

(2a− r)n−3
+

1

(−r)n−3

)
, (C.4)

and for n even this simplifies to yield

Pn =
4π2a2Cnη2

f

r(2− n)(3− n)

(
1

(2a + r)n−3
− 1

(2a− r)n−3
− 2

rn−3

)
,

a formula which is also given in Girifalco [42]. Using the constant values given in

Table 3.1, the equilibrium distance for two C60 fullerenes is obtained and given by

r0 = 10.0550 Å.
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Analytical solution for
nanopeapods

The analytical calculations for the potential energy of nanopeapods in Chapter 4

are presented.

D.1 Evaluation of the integral Gn

Firstly, the integral Gn is defined, which can be written as

Gn =

∫ ∞

0

dz

[b2 − a2 + (z − Z)2]n
.

On letting λ2 = b2 − a2 and making the substitution x = z − Z, it can be deduced

Gn =

∫ ∞

−Z

dx

(λ2 + x2)n
,

where n is a certain positive integer. Then the substitution x = λ tan ψ yields

Gn =

∫ π/2

− tan−1(Z/λ)

λ sec2 ψ

λ2n sec2n ψ
dψ

=
1

λ2n−1

∫ π/2

− tan−1(Z/λ)

cos2(n−1) ψdψ. (D.1)

The evaluation for (D.1) can be found in Gradshteyn and Ryzhik [150] (page 149,

No. 2.513 3) from which it can be deduced

∫
cos2(n−1) ψdψ =

1

22(n−1)

[(
2(n− 1)

(n− 1)

)
ψ +

n−2∑

k=0

(
2(n− 1)

k

)
sin[(2n− 2k − 2)ψ]

(n− k − 1)

]
,

(D.2)
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where
(

n
m

)
is the binomial coefficient. By evaluating (D.2) at ψ = π/2 and ψ =

− tan−1(Z/λ) an analytical expression for Gn may be obtained.

D.2 Evaluation of the integral Hn

The integral Hn is defined in the form of

Hn =

∫ π

−π

∫ ∞

0

1

(ρ2 − a2)n
dzdθ,

where n is a certain positive integer and ρ2 = (b−x)2 + 4bx sin(θ/2) + (z−Z)2. On

letting λ2 = (b− x)2 + 4bx sin2(θ/2)− a2, it can be deduced

Hn =

∫ π

−π

∫ ∞

0

1

[λ2 + (z − Z)2]n
dzdθ.

On making the substitution u = z − Z, Hn becomes

Hn =

∫ π

−π

∫ ∞

−Z

1

(λ2 + u2)n
dudθ

=

∫ π

−π

∫ π/2

− tan−1(Z/λ)

λ sec2 ψ

λ2n sec2n ψ
dψdθ,

where the final line is obtained by substituting x = λ tan ψ. Finally, Hn simplifies

to become

Hn =
1

λ2n−1

∫ π

−π

∫ π/2

− tan−1(Z/λ)

cos2(n−1) ψdψdθ.

By using the formula given by (D.2) and evaluating the above equation at ψ = π/2

and ψ = − tan−1(Z/λ), there are three forms for the integral for θ ∈ (0, π/2) which

need to be determined, and are given by

Js =

∫ π/2

0

dv

λs
, Ks,t =

∫ π/2

0

dv

λt(λ2 + Z2)s
, Ls =

∫ π/2

0

1

λs
tan−1

(
Z

λ

)
dv, (D.3)

where λ is defined by λ2 = (b− x)2 + 4bx sin2(v/2)− a2. The detailed integrations

of (D.3) can be found in Appendix A.

D.3 Evaluation of the integral In

The integral In is given by

In =

∫ ∞

−∞

∫ π

−π

1

(ρ2
m − a2)n

dzdθ,



Appendix D 217

where m = i and j. On letting λ2
i = (b + ε)2 − 4bε sin2(θ/2) − a2 and λ2

j =

(b− ε)2 + 4bε sin2(θ/2)− a2, In becomes

In =

∫ −π

π

∫ L

−L

1

[λ2
m + (z + Zm)2]n

dzdθ,

where Zi = Z(2i− 1) (i = 1, 2, ..., k) and Zj = 2Z(j − 1) (j = 1, 2, ..., k + 1). Upon

making the substitution xm = z + Zm, it can be deduced

In =

∫ −π

π

∫ Zm+L

Zm−L

1

(λ2
m + x2

m)n
dxmdθ =

∫ π

−π

∫ π/2

−π/2

λm sec2 ψ

λ2n
m sec2n ψ

dψdθ,

where the final line is obtained by substituting xm = λm tan ψ and letting L tend to

infinity. Finally, In simplifies to become

In =
1

λ2p+1
m

∫ π

−π

∫ π/2

−π/2

cos2p ψdψdθ, (D.4)

where p = n − 1. The solution for (D.4) can be found in Gradshteyn and Ryzhik

[150] (page 149, No. 2.513 3) and is given by (D.2). By evaluating (D.2) at ψ = π/2

and ψ = −π/2 and using the fact that sin 2x = 2 sin x cos x, it may be deduced

In =
π

22p

(
2p

p

) ∫ π

−π

1

λ2p+1
m

dθ =
4π

22p

(
2p

p

) ∫ π/2

0

1

λ2p+1
m

dx,

where x = θ/2 and λ2
i = (b + ε)2− 4bε sin2 x− a2 and λ2

j = (b− ε)2 + 4bε sin2 x− a2.

The analytical expression for this equation can be found in Appendix A.1.
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Degenerate hypergeometric
functions

The details of the degenerate hypergeometric function of (5.3) are presented in this

appendix. The degenerate hypergeometric function is the hypergeometric function

which can be written as the finite summation of a polynomial. For convenience, Jm

is defined as

Jm = F (m, 1/2; 1; z), (E.1)

where m is a positive integer. Following Erdélyi [151], (E.1) admits the degenerate

hypergeometric function in the case number 16 (p.72) with a degenerated solution

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z).

Then it can be deduced

Jm = (1− z)1/2−mF (1−m, 1/2; 1; z). (E.2)

In terms of a series, the hypergeometric function is given by

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

n!(c)n

zn,

where

(a)n = Γ(a + n)/Γ(a) = a(a + 1)(a + 2)...(a + n− 1) and (a)0 = 1.
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Here, J3 and J6 need to be evaluated, and from (E.2) they can be written as

J3 =
1

(1− z)5/2

2∑
n=0

(−2)n(1/2)n

n!(1)n

zn =
1

(1− z)5/2

(
1− z +

3

8
z2

)
,

J6 =
1

(1− z)11/2

5∑
n=0

(−5)n(1/2)n

n!(1)n

zn

=
1

(1− z)11/2

(
1− 5

2
z +

15

4
z2 − 25

8
z3 +

175

128
z4 − 63

256
z5

)
.
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Mathematical solution for Ani
(i = 1, 2, 3, 4) defined in §13.3

In this appendix, the main details for solving the stress boundary conditions, as a

system of four equations in four unknowns, is shown. The system of four equations

and four unknowns can be written in matrix form which is given by

MA =




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44







An1

An2

An3

An4




=




0

0

0

τn




, (F.1)

where the components of the matrix M depend on n and are defined by

M11 = αnJ0(pn1c)− C11

c
J1(pn1c), M12 = αnY0(pn1c)− C11

c
Y1(pn1c),

M13 = βnJ0(pn2c)− C11

c
J1(pn2c), M14 = βnY0(pn2c)− C11

c
Y1(pn2c),

M21 = γnJ1(pn1c), M22 = γnY1(pn1c),

M23 = δnJ1(pn2c), M22 = δnY1(pn2c),

M31 = αnJ0(pn1b)− C11

b
J1(pn1b), M32 = αnY0(pn1b)− C11

b
Y1(pn1b),

M33 = βnJ0(pn2b)− C11

b
J1(pn2b), M34 = βnY0(pn2b)− C11

b
Y1(pn2b),

M41 = γnJ1(pn1b), M42 = γnY1(pn1b),

M43 = δnJ1(pn2b), M42 = δnY1(pn2b),
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and τn is defined by

τn =
W

2naL1π2C44

{
cos

[
nπ(L2 − L1)

2(L1 + L2)

]
− cos

(nπ

2

)}
.

On using Cramer’s rule to solve (F.1), it can be obtained

An1 =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 M12 M13 M14

0 M22 M23 M24

0 M32 M33 M34

τn M42 M43 M44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
−τn

∆

∣∣∣∣∣∣∣∣∣∣∣∣

M12 M13 M14

M22 M23 M24

M32 M33 M34

∣∣∣∣∣∣∣∣∣∣∣∣

,

An2 =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M11 0 M13 M14

M21 0 M23 M24

M31 0 M33 M34

M41 τn M43 M44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
τn

∆

∣∣∣∣∣∣∣∣∣∣∣∣

M11 M13 M14

M21 M23 M24

M31 M33 M34

∣∣∣∣∣∣∣∣∣∣∣∣

,

An3 =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 0 M14

M21 M22 0 M24

M31 M32 0 M34

M41 M42 τn M44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
−τn

∆

∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 M14

M21 M22 M24

M31 M32 M34

∣∣∣∣∣∣∣∣∣∣∣∣

,

An4 =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 M13 0

M21 M22 M23 0

M31 M32 M33 0

M41 M42 M43 τn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
τn

∆

∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 M13

M21 M22 M23

M31 M32 M33

∣∣∣∣∣∣∣∣∣∣∣∣

,

where ∆ = det(M).
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Relationship of moduli for
transversely isotropic linearly
elastic materials

With the notation

E ≡ Young’s modulus, ν ≡ Poisson’s ratio

K ≡ bulk modulus, µ and λ are Lamé constants,

the relationships between these constants are given by:

λ =
2µν

1− 2ν
=

µ(E − 2µ)

3µ− E
= K − 2

3
µ =

Eν

(1 + ν)(1− 2ν)
=

3Kν

1 + ν
=

3K(3K − E)

9K − E
,

µ =
λ(1− 2ν)

2ν
=

3

2
(K − λ) =

E

2(1 + ν)
=

3K(1− 2ν)

2(1 + ν)
=

3KE

9K − E
,

ν =
λ

2(λ + µ)
=

λ

3K − λ
=

E

2µ
− 1 =

3K − 2µ

2(3K + µ)
=

3K − E

6K
,

E =
µ(3λ + 2µ)

λ + µ
=

λ(1 + ν)(1− 2ν)

ν
=

9K(K − λ)

3K − λ
= 2µ(1 + ν)

=
9Kµ

3K + µ
= 3K(1− 2ν),

K = λ +
2

3
µ =

λ(1 + ν)

3ν
=

2µ(1 + ν)

3(1− 2ν)
=

µE

3(3µ− E)
=

E

3(1− 2ν)
.

Moreover, the following expressions are frequently used,

µ

λ + µ
= 1− 2ν,

λ

λ + 2µ
=

ν

1− ν
.
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The formulae (12.4) are utilised to convert the elastic moduli to the elastic con-

stants Cij and to compare the values of the elastic constants based on the work of

Jin and Yuan [15], Lu [20] and Shen and Li [134].

The values of the elastic constants based on the three sets of data given by Jin

and Yuan [15], Lu [20] and Shen and Li [134] are shown in Tables G.2 - G.5. The

values of the elastic moduli and elastic constants for single-walled carbon nanotubes

(10, 10) are compared as shown in Table G.6. The major problem in this study is

that every author describes the various elastic moduli by a different nomenclature.

However, the values of the elastic moduli in the longitudinal direction of each author

compare very well, but there are quite significant differences in the transverse plane.

In terms of the elastic constants, the results from Jin and Yuan [15] and Lu [20] are

only slightly different, but there are significant differences with the results of Shen

and Li [134]. The value of the in-plane shear modulus (G23) from [134] is reported

in GPa, whereas the other elastic moduli are expressed in TPa.

Table G.1: Elastic constants of single-walled carbon nanotubes (n, n) based on Jin
and Yuan [15].

n C11 C12 C13 C33 C44 C11 − C12

6 1.368 0.198 0.254 1.432 0.483 1.169
7 1.348 0.145 0.251 1.432 0.487 1.203
8 1.388 0.075 0.249 1.432 0.489 1.263
9 1.388 0.054 0.247 1.432 0.492 1.284
10 1.342 0.125 0.246 1.431 0.493 1.217
11 1.346 0.139 0.245 1.431 0.494 1.210
12 1.336 0.073 0.244 1.430 0.493 1.263
13 1.341 0.098 0.243 1.430 0.494 1.243
14 1.335 0.065 0.243 1.429 0.494 1.269
15 1.339 0.092 0.242 1.427 0.495 1.247
16 1.335 0.064 0.242 1.428 0.495 1.271
17 1.332 0.030 0.242 1.428 0.495 1.302
18 1.335 0.064 0.241 1.428 0.492 1.271
19 1.338 0.087 0.241 1.427 0.495 1.251
20 1.337 -0.022 0.241 1.427 0.495 1.359
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Table G.2: Values of elastic constants for single-walled carbon nanotubes (n1, n2)
based on Lu [20].

(n1, n2) C11 C12 C13 C33 C44 C11 − C12

(5,5) 0.397 0.132 0.148 1.054 0.436 0.265
(6,4) 0.397 0.126 0.146 1.054 0.437 0.271
(7,3) 0.397 0.126 0.146 1.055 0.454 0.271
(8,2) 0.397 0.132 0.148 1.057 0.452 0.265
(9,1) 0.396 0.140 0.150 1.058 0.465 0.256
(10,0) 0.396 0.133 0.148 1.058 0.451 0.263
(10,10) 0.398 0.133 0.147 1.054 0.457 0.265
(50,50) 0.399 0.135 0.148 1.054 0.458 0.264

(100,100) 0.399 0.135 0.148 1.054 0.462 0.264
(200,200) 0.399 0.135 0.148 1.054 0.478 0.264

Table G.3: Values of elastic constants for the series of multi-walled carbon nanotubes
(5n, 5n) where n = 1, 2, 3, ...and N is a number of walls based on Lu [20].

N C11 C12 C13 C33 C44 C11 − C12

1 0.397 0.113 0.143 1.050 0.436 0.283
2 0.412 0.137 0.148 1.130 0.455 0.275
3 0.413 0.071 0.130 1.150 0.464 0.342
4 0.412 0.141 0.149 1.170 0.472 0.271
5 0.411 0.142 0.149 1.180 0.481 0.269
6 0.411 0.142 0.149 1.180 0.491 0.269
7 0.410 0.074 0.130 1.180 0.502 0.336
8 0.410 0.143 0.149 1.190 0.514 0.267
9 0.410 0.143 0.149 1.190 0.527 0.267
10 0.410 0.143 0.149 1.190 0.541 0.267

Table G.4: Values of elastic constants of single-walled carbon nanotubes (n, n) based
on Shen and Li [134].

n C11 C12 C13 C33 C44 C11 − C12

10 0.00664 0.00330 0.00161 1.06052 0.44200 0.00334
15 0.00198 0.00099 0.00048 0.70715 0.30100 0.00099
20 0.00083 0.00042 0.00020 0.53106 0.22700 0.00042
25 0.00043 0.00021 0.00010 0.42503 0.18200 0.00021
30 0.00025 0.00012 0.00006 0.35402 0.15200 0.00012
35 0.00016 0.00008 0.00004 0.30401 0.13100 0.00008
40 0.00010 0.00005 0.00002 0.26601 0.11400 0.00005
45 0.00007 0.00004 0.00002 0.23601 0.10200 0.00004
50 0.00005 0.00003 0.00001 0.21300 0.09200 0.00003
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Table G.5: Values of elastic constants of double-walled carbon nanotubes which the
inner tube (5, 5) and the outer tube (n, n) based on Shen and Li [134].

n C11 C12 C13 C33 C44 C11 − C12

10 0.04090 0.01972 0.00946 1.58295 0.49300 0.02118
15 0.03492 0.01675 0.00775 1.41233 0.39800 0.01818
20 0.03129 0.01496 0.00680 1.32200 0.35300 0.01633
25 0.02882 0.01376 0.00618 1.27179 0.32700 0.01506
30 0.02703 0.01290 0.00571 1.24163 0.31000 0.01413
35 0.02565 0.01224 0.00538 1.21153 0.29800 0.01341
40 0.02454 0.01171 0.00511 1.19144 0.28900 0.01284
45 0.02365 0.01128 0.00489 1.18137 0.28200 0.01236
50 0.02288 0.01092 0.00470 1.17131 0.27700 0.01196

Table G.6: The values of elastic moduli and elastic constants for single-walled carbon
nanotube (10, 10) of three studies [15, 20, 134].

Elastic moduli, constants [15] [20] [134]

E
′

1.235 0.972 1.060
ν
′

0.259 0.278 0.162
µ
′

0.493 0.457 0.442
E 1.241 0.344 0.005
ν 0.019 0.296 0.497

C11 1.342 0.398 0.00664
C12 0.125 0.133 0.00330
C13 0.246 0.147 0.00161
C33 1.431 1.054 1.06052
C44 0.493 0.457 0.44200
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