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Abstract

Worldwide nanotechnology is a major focus in science and technology, and most
research in this area deals with chemical, physical and biological issues or a combina-
tion of these areas, but to date very little work has been undertaken on mathematical
modelling. Rather than employing large-scale computations using molecular dynam-
ics simulation, in this thesis elementary mechanical principles and classical applied
mathematical modelling procedures are utilised to examine three specific areas in
nanotechnology.

Firstly, the Lennard-Jones potential function for the non-bonded interaction po-
tential energy between two molecules and the continuum approximation, which as-
sumes that the interatomic interactions can be modelled by smearing the atoms
uniformly across surfaces, are undertaken to investigate the mechanical properties
of certain nanostructures, namely double-walled carbon nanotubes, nanopeapods,
nanocones and carbon onions. Owing to their special mechanical, electrical and ther-
mal properties, these nanostructures promise many applications for future nanoscale
devices, such as nano-bearings and nano-oscillators. This thesis examines issues re-
garding nano-oscillators constructed from these nanostructures. In particular, the
van der Waals interaction energy, the suction energy, the offset location and the oscil-
latory behaviour are determined. Analytical expressions are obtained as a function
of the radii and the lengths of the structures. In addition, all the predicted mechan-
ical properties derived here are in excellent agreement with results from molecular
dynamics simulations.

The second area is the joining of nanostructures by invoking the principle that
the atoms arrange themselves in such a way that the total squared deviation of the
distance between atoms at the junction and some ideal bond length is a minimum.
Initially, toroidal molecules are described, which are formed from three distinct car-
bon nanotube sections, through minimisation of the total squared deviation of the
distance between two carbon atoms at the junction from the ideal physical bond
length. Representative formulae for the mean generating toroidal radius and tube
radius of the tori are determined. Following this is to determine the perpendicular
joining structures for carbon nanotubes and flat graphene by two least squares ap-

proaches, which are the variation in bond length and the variation in bond angle.
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Such a combined structure might constitute a transmission platform for ultra small
computer chips. Given that the corresponding boron nitride nanostructures are also
good semiconductors, the corresponding combined structures are also determined.
However, the essential mathematical ideas for combining boron nitride structures are
quite different to those required for connecting the corresponding carbon structures,
since only rings with an even number of sides are energetically favourable.

The third area in this thesis involves the elastic model of carbon nanotubes.
Here, carbon nanotubes are assumed to be modelled as transversely isotropic linearly
elastic materials which have the same properties in one plane, but vary in the normal
direction to this plane. The equilibrium equations are derived and they can be
shown to generalise those for isotropic materials. Further, wave-like deformations
on the outer-most surface of the oscillating carbon nanotubes are investigated. On
neglecting any frictional effects and assuming that the inner surface atoms of the
outer tube and those located on the outer surface of the inner tube dominate the
van der Waals force, expressions for displacements in the r- and z-directions are
obtained.

The major contribution of this thesis is the use of conventional applied mathe-
matical modelling techniques to formulate analytical expressions for nanostructures.
Broadly three mechanical issues are studied, including (i) van der Waals interaction
energy and oscillatory behaviour for nanostructures, (ii) geometry of combining two
nanostructures and (iii) deformation of carbon nanotubes as transversely isotropic
materials. However, many of the theoretical structures proposed here have yet to
be confirmed either experimentally or by molecular dynamics simulations; and as
such the work might be considered as a first step to settling some of the important
physical principles in nanotechnology. In summary, the new elements of the thesis

comprise:

e Analytical expressions to determine the equilibrium locations, force distribu-

tions and oscillatory behaviours for nested nanostructures,
e Simple least squares methods to connect two nanostructures,

e Flastic model for the deformations of double-walled carbon nanotubes.
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