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Abstract

Fine-scale environmental heterogeneity is predicted to be important in determining
variation in genotypic diversity and in selection for important life history traits in natural
populations. For example, theory suggests that organisms with complex life histories that
involve both sexual and asexual modes of reproduction use sex to produce genotypically
diverse and widely dispersed propagules for the colonisation of distant or unstable habitats,
but rely on asexual reproduction to restock or maintain populations within their parental
habitat. Such organisms should also have great potential for site-specific adaptation as
multiple generations may compete within relatively static conditions. Surprisingly, little is
still known about the importance of fine-scale genotypic variation and the degree of local

adaptation within populations of clonal marine organisms.

In this study, I used two brooding corals (Pocillopora damicornis and Seriatopora hystrix)
and one brooding sea anemone (Actinia tenebrosa), to test for evidence of fine-scale
adaptation and the effects of environmental heterogeneity on variation in genotypic
diversity. Using a combination of genetic and experimental techniques I assessed: 1) if
reproductive mode varies with environmental heterogeneity across habitats, ii) how
genotypic diversity varies over fine spatial scales (centimetres and meters), and iii) if

different clonal genotypes show evidence of fine-scale adaptation to specific habitats.

My data on the population genetics and mode of reproduction for the corals P. damicornis
and S. hystrix did not support theoretical predictions. Brooded larvae from P. damicornis
colonies collected in five reef habitats were all produced asexually. In contrast, brooded
larvae of Seriatopora hystrix were sexually produced, with up to three sires contributing to
some broods (7, (£SE) = 0.32 £ 0.43), and almost half (46%) of the larvae resulting from
self-fertilisation (mean outcrossing rates were ¢, (:SE) = 0.54 £ 0.22). The population
genetic structure of S. hystrix from One Tree Island matched that expected from the mating
system; i.e. a high level of genetic subdivision due to restricted dispersal of gametes, and
consistent heterozygote deficits within populations associated with inbreeding. However,
populations of P. damicornis showed unexpectedly high levels of genotypic diversity and
appear to be maintained by sexual reproduction; G,/G, ranged from 69 to 100% of that
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expected for random mating within 14 sites across six habitats. Interestingly, at three sites
in two habitats G,/G.ranged from 35 to 53%. Two of these sites were recently bleached,
suggesting that asexual recruitment may be favoured after disturbance, although
disturbance alone is probably insufficient to explain this species’ continued investment in

clonal reproduction.

Using a combination of variable microsatellite and allozyme markers, I assessed the genetic
origin of brooded juveniles from adult Actinia tenebrosa collected from boulder and rock
pool habitats to determine if the mode of reproduction varied with environment. Brooded
juveniles displayed identical multi-locus genotypes to that of the brood parent, irrespective
of habitat type or location. However, I found that the level of genotypic diversity varied
widely among 19 A. tenebrosa populations across 2500km of its geographic range along
the east coast of Australia. Some populations showing high levels of clonality while others

displayed the level of genotypic diversity expected for sexual reproduction.

For A. tenebrosa, my results indicate that the importance of sexual and asexual
reproduction may indeed vary among habitats with different levels of heterogeneity
confirming predictions from evolutionary theory. Fine-scale genetic surveys (<1m?) on the
distribution of clones of 4. fenebrosa revealed that clonal diversity was greater on
individual boulders (71%) compared to rock pools (23%). However, samples collected over
larger spatial scales (25m?) revealed little difference in genotypic diversity between boulder
(80%) and rock pool habitats (70%). Clones had limited distributions, although some could
be spread throughout an entire habitat. With the exception of a single clone, I found no
overlap of genotypes between boulder and rock pool habitats on the same rocky shore.

This distinct segregation of genotypes to habitats within the same rocky shore may result
either from highly limited dispersal of asexual propagules and/or fine-scale selection for

certain genotypes in particular habitats.

To test for evidence of local adaptation to fine-scale environmental variation in different
habitats, I reciprocally transplanted 4. tenebrosa both within and between habitats. I found

no evidence of adaptation of clones within habitats, with transplanted anemones performing
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equally well to native anemones in terms of survivorship (Fy 001 = 11.79, P = 0.075),
proportion of adults brooding juveniles (F; 901 = 0.40, P =0.592), mean number of
juveniles/site (F; 281 = 0.801, P = 0.068), mean number of juveniles/brood (F; 12, =1.238,
P =0.382), and growth (F; 903 = 0.007, P =0.942). However, between-habitat transplants
provided evidence that clones of A. tenebrosa are locally adapted at the habitat scale.
Native anemones consistently out-performed foreign anemones transplanted from the
adjacent habitat (survivorship £ 929s=9.58, P < 0.001; proportion adults brooding F;_ ¢ 139
= 3.12, P = 0.05; mean number of juveniles/site F>, 14039 = 3.90, P = 0.028; growth F, =
4.77, P=0.014).

In summary, the results from this study show little evidence that reproductive mode varies
predictably among habitats for any of the three species tested. Furthermore, there appears
to be a mismatch between the population genetic structure and the reproductive output for
two of the three species. Level of genotypic diversity was shown to vary over different
spatial scales, and with habitat to some degree, both in P. damicornis and A. tenebrosa, and
transplant experiments provide evidence of fine-scale adaptation to specific habitats for 4.
tenebrosa. These results suggest that for some species, such as the brooding sea anemone
Actinia tenebrosa, the importance of sexual and asexual reproduction may indeed vary
among habitats with different environmental heterogeneity in the manner predicted by

evolutionary theory.
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