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Abstract

Fine-scale environmental heterogeneity is predicted to be important in determining 

variation in genotypic diversity and in selection for important life history traits in natural 

populations.  For example, theory suggests that organisms with complex life histories that 

involve both sexual and asexual modes of reproduction use sex to produce genotypically 

diverse and widely dispersed propagules for the colonisation of distant or unstable habitats, 

but rely on asexual reproduction to restock or maintain populations within their parental 

habitat. Such organisms should also have great potential for site-specific adaptation as 

multiple generations may compete within relatively static conditions.  Surprisingly, little is 

still known about the importance of fine-scale genotypic variation and the degree of local 

adaptation within populations of clonal marine organisms. 

In this study, I used two brooding corals (Pocillopora damicornis and Seriatopora hystrix)

and one brooding sea anemone (Actinia tenebrosa), to test for evidence of fine-scale 

adaptation and the effects of environmental heterogeneity on variation in genotypic 

diversity.  Using a combination of genetic and experimental techniques I assessed: i) if 

reproductive mode varies with environmental heterogeneity across habitats, ii) how 

genotypic diversity varies over fine spatial scales (centimetres and meters), and iii) if 

different clonal genotypes show evidence of fine-scale adaptation to specific habitats.

My data on the population genetics and mode of reproduction for the corals P. damicornis 

and S. hystrix did not support theoretical predictions.  Brooded larvae from P. damicornis

colonies collected in five reef habitats were all produced asexually.  In contrast, brooded 

larvae of Seriatopora hystrix were sexually produced, with up to three sires contributing to 

some broods (rp (±SE) = 0.32 ± 0.43), and almost half (46%) of the larvae resulting from 

self-fertilisation (mean outcrossing rates were tm (±SE) = 0.54 ± 0.22).  The population 

genetic structure of S. hystrix from One Tree Island matched that expected from the mating 

system; i.e. a high level of genetic subdivision due to restricted dispersal of gametes, and 

consistent heterozygote deficits within populations associated with inbreeding. However, 

populations of P. damicornis showed unexpectedly high levels of genotypic diversity and 

appear to be maintained by sexual reproduction; Go/Ge ranged from 69 to 100% of that 
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   xv

expected for random mating within 14 sites across six habitats. Interestingly, at three sites 

in two habitats Go/Ge ranged from 35 to 53%.  Two of these sites were recently bleached, 

suggesting that asexual recruitment may be favoured after disturbance, although 

disturbance alone is probably insufficient to explain this species’ continued investment in 

clonal reproduction.

Using a combination of variable microsatellite and allozyme markers, I assessed the genetic 

origin of brooded juveniles from adult Actinia tenebrosa collected from boulder and rock 

pool habitats to determine if the mode of reproduction varied with environment.  Brooded 

juveniles displayed identical multi-locus genotypes to that of the brood parent, irrespective 

of habitat type or location. However, I found that the level of genotypic diversity varied 

widely among 19 A. tenebrosa populations across 2500km of its geographic range along 

the east coast of Australia.  Some populations showing high levels of clonality while others 

displayed the level of genotypic diversity expected for sexual reproduction.

For A. tenebrosa, my results indicate that the importance of sexual and asexual 

reproduction may indeed vary among habitats with different levels of heterogeneity 

confirming predictions from evolutionary theory.   Fine-scale genetic surveys (<1m2) on the 

distribution of clones of A. tenebrosa revealed that clonal diversity was greater on 

individual boulders (71%) compared to rock pools (23%). However, samples collected over 

larger spatial scales (25m2) revealed little difference in genotypic diversity between boulder 

(80%) and rock pool habitats (70%). Clones had limited distributions, although some could 

be spread throughout an entire habitat.  With the exception of a single clone, I found no 

overlap of genotypes between boulder and rock pool habitats on the same rocky shore.  

This distinct segregation of genotypes to habitats within the same rocky shore may result 

either from highly limited dispersal of asexual propagules and/or fine-scale selection for 

certain genotypes in particular habitats.

To test for evidence of local adaptation to fine-scale environmental variation in different 

habitats, I reciprocally transplanted A. tenebrosa both within and between habitats. I found 

no evidence of adaptation of clones within habitats, with transplanted anemones performing 
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equally well to native anemones in terms of survivorship (F1, 0.01 = 11.79, P = 0.075), 

proportion of adults brooding juveniles (F1, 0.01  = 0.40, P = 0.592), mean number of 

juveniles/site (F1, 2281 = 0.801, P = 0.068), mean number of juveniles/brood (F1, 12.2 = 1.238, 

P = 0.382), and growth (F1, 0.03 = 0.007, P = 0.942).  However, between-habitat transplants 

provided evidence that clones of A. tenebrosa are locally adapted at the habitat scale.  

Native anemones consistently out-performed foreign anemones transplanted from the 

adjacent habitat (survivorship F2, 0.298 = 9.58, P < 0.001; proportion adults brooding F2, 0.139

= 3.12, P = 0.05; mean number of juveniles/site F2, 14039 = 3.90, P = 0.028; growth F2,  = 

4.77, P = 0.014). 

In summary, the results from this study show little evidence that reproductive mode varies 

predictably among habitats for any of the three species tested.  Furthermore, there appears 

to be a mismatch between the population genetic structure and the reproductive output for 

two of the three species. Level of genotypic diversity was shown to vary over different 

spatial scales, and with habitat to some degree, both in P. damicornis and A. tenebrosa, and 

transplant experiments provide evidence of fine-scale adaptation to specific habitats for A.

tenebrosa. These results suggest that for some species, such as the brooding sea anemone 

Actinia tenebrosa, the importance of sexual and asexual reproduction may indeed vary 

among habitats with different environmental heterogeneity in the manner predicted by 

evolutionary theory.
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