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Abstract

The focus of this thesis is to develop a framework for solving convolutively mixed
blind signal separation problems in the subband domain. Current methods generally
employ a discrete Fourier transform (DFT) to change the time domain convolutive
model into many instantaneous multiplicative models to save on computations and
convergence time. The motivation for approaching the problem from the subband
domain is that there is an upper bound on the quality of separation for frequency
domain methods where the mixing is done in a reverberant environment and there is
a high number of unknown variables to solve for. This is shown with reference to the
works in (S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, 2001; M. Ikram,
and D. Morgan, 2000; R. Mukai, S. Araki, H. Sawada, and S. Makino, 2004). The
model is developed throughout the thesis in a series of stages. Firstly we investigate
modelling the convolutive Blind Signal Separation (BSS) problem completely in the
time domain. The benefit of this is that by not performing any transforms we elimi-
nate the local frequency permutation problem that is inherent in all convolutive BSS
problems. To solve the permutation problem requires additional computational over-
head. There is a tradeoff however according to how complex the mixing/demixing
system is. The longer the reverberation time of an acoustic environment, the more
unknown variables must be solved. The savings of performing multiplication in the
frequency domain as opposed to convolution in the time domain must be compared

to the savings of not doing the transform operator twice, as well as ensuring the local

Vil



Abstract viii

permutation problem is solved.

Two new algorithms that avoid the local permutation problem are proposed and in-
vestigated. The first uses an alternating least squares approach (ALS) while the sec-
ond uses joint diagonalization of output correlation matrices of the recovered signals.
Where it is plausible to assume that we have some sort of a priori information that
provides a good initial starting point for the unknown demixing system, then we
only need to consider some type of local optimization procedure to solve the un-
known demixing system. Two local optimization procedures investigated include the
steepest gradient descent and Newton methods. Both types of local solvers were
compared and the merits and disadvantages of each are specified in regards to the
convolutive BSS time domain algorithm proposed. Where small convolutive mixing
systems exist, such as in wireless communication mixing systems that assume a two
ray model, the computational overhead that is increased by doing convolution in the
time domain is offset more by the savings of not having to solve the local permutation

problem and execute the transform operation.

In some cases, information pertaining to problem is unavailable. Geometric source
separation assumes that there is some additional knowledge about the layout of the
sensors with spatial reference to the source positions. This allows an angle of inci-
dence of the sound wave impinging on the sensor array to either be known directly or
calculated using various beamforming techniques. If we cannot assume to know such
information, then multivariate complex problems with a high number of parameters
become harder to solve for without getting spurious results from ill-convergence to
local multiminima as opposed to the preferred global minima which corresponds to
the desired demixing system that will allow signal separation. To avoid this, we in-
tegrate one of the proposed time domain convolutive BSS algorithms with a global

optimization routine that is catered to suit the BSS convolutive problem model. A
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branch and bound algorithm that uses division by hyper-rectangles is used to solve
the uninitialized optimization BSS problem. With the validity of the proposed BSS
time domain convolutive algorithm and the global optimization approach being jus-
tified, attention will then be focused on integrating these contributions into a model

which uses subband decomposition before performing signal separation.

Various methods of subband decomposition are considered including using a uni-
form FIR analysis/synthesis filter bank based on DFT modulation as well as cosine
modulation. The prototype window used is based on an extended lapped transform
and was chosen due to the computational benefits of using lapped transforms. A
framework for developing such a subband model is made with the main aspects of
the model being the BSS algorithm and optimization approaches used, the way in
which the observed signals from a multiple-mput-multiple-output (MIMO) mixing
system are decomposed via a filter bank, and the way in which the local permutation
problem is overcome. In our work we propose a new subband detection, correction,
and sorting routine for separated but arbitrarily permuted subbands over the entire

spectrum.

Finally, a general and systematic approach for obtaining experimental measurements
for generating the impulse response of an acoustic environment such as a typical
office room, as well as the inverting MIMO system using wiener-hopf and optimal
filtering theory is presented to allow full availability of information for the problem
modelled in a practical environment as opposed to synthetic testing methods which

are also examined.
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Chapter 1

Preliminaries

1.1 Introduction

Blind Signal Separation (BSS) is a field in Digital Signal Processing (DSP) which has
developed over the last few decades into a broad and diverse method used to separate
a linear or non-linear combination of mixed signals without any prior information of
the mixing system, the source model or the number of sources and sensors. The field
itself has been applied over the years in many different applications and although it
has reached a level of maturity in the various algorithms used to implement specific
models, the majority of cases result with a high computational complexity and long
convergence times that impedes the growth of real-world applications that use BSS,
for example real time applications. This is true especially in the area of convolutive

BSS in reverberant environments where the signal of interest is speech or audio.

Research in convolutive BSS problems has lead to a variety of techniques. In most
cases the algorithms used to model a solution to the convolutive BSS problem have
been designed by exploiting the information in the observed mixtures in the fre-
quency domain. There are limitations on the quality of separation with such methods

and the need for additional assumptions on the problem to prevent ill-convergence to
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a spurious local solution is required. The possibility of substantial gains in BSS is to
merge the convolutive BSS algorithms that are robust, generic and computationally
efficient with efficient subband techniques that effectively reduce the computational
burden of solving one big problem by dividing it into smaller problems. At the same
time it is also important to provide a framework to improve the quality of separa-
tion and eliminate or reduce the limitations that are inherent in the typical frequency

domain approaches.

By investigating BSS in the subband domain, and extending algorithms to incorpo-
rate this aspect, a quantitative evaluation criterion can be developed to assess the
validity of performing BSS in the subband domain as opposed to existing separation

techniques.

This thesis considers several issues in relation to convolutive BSS problems in time,
frequency, and subband domains. Firstly a general method for calculating the mix-
ing responses of a multiple-input-multiple-output (MIMO) system 1n a reverberant
environment is provided. In addition to the mixing responses, the corresponding
inverse MIMO demixing responses as well as the corresponding subband compo-
nents of the demixing responses is given. This allows full knowledge of the entire
mixing/demixing system from a non-blind perspective and provides a benchmark of
results to compare results derived from a blind approach to. Secondly, investiga-
tion of using different time and/or frequency domain algorithms to solve convolutive
BSS problems whilst avoiding the local permutation problem is provided with the
benefits of reduced computation for small to medium scale demixing systems, when
using the proposed time domain algorithm(s), being provided. The next issue con-
sidered relates to optimization of the time domain algorithms. Specifically steepest
gradient descent (SGD) and Newton methods are looked at for local optimization

approaches where good initialization is assumed due to assumed prior knowledge of
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the problem, e.g. spatial layout of sources with respect to sensors. In contrast, a
global optimization approach is provided to allow separation where no initialization
is required. Finally we merge all these approaches together into a subband based

approach for large demixing systems that are exhibited in reverberant environments.

This chapter is organised as follows: Section 1.2 defines the proposed framework for
subband BSS when dealing with convolutive mixing systems in reverberant environ-
ments. Section 1.3 gives a brief historical review of BSS techniques. Section 1.4
provides the motivations for the proposed research. The approach and contributions
of this thesis are described in Section 1.5. Finally, Section 1.6 lists the contributions

in point form.

1.2 Problem Statement

To understand the proposed framework for subband BSS, it is necessary to under-
stand the general concepts of BSS and multi-rate filter banks. Each field will be
briefly defined individually as part of the problem statement and then will be in-
tegrated to a more general problem statement for performing BSS in the subband
domain. A more thorough analysis of varying BSS algorithms and concepts relevant

to the work proposed 1n this thesis 1s provided in Chapter 2.

The problem of BSS is a very general and fundamental one. Related fields using
similar techniques include Independent Component Analysis (ICA), which has also
received a great deal of attention over a similar time span, as well as Principle Com-
ponent Analysis (PCA), deconvolution, and blind equalization to name just a few.
All of these related fields are specific instances that could be derived from the more
generalized BSS problem. Figure 1.1 illustrates a generic description of the BSS

problem.
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Figure 1.1 General Mixing/Demixing system BSS model

Suppose there are M observed signals 1, Z3,. , Zj that are linear or non-linear com-
binations of N independent source signals s1, S, . ., sy. The aim of BSS is to pro-
duce N outputs i, 85, . ., 5y that recreate the original source signals up to some
arbitrary delay. The only assumption that can be made about the sources is that they
are statistically independent which is the fundamental criterion behind BSS and will

be defined in Chapter 2.

The term blind implies that the recovered signals are determined without any prior
knowledge of the source signals or the combination system that mixes them. The two
basic types of sources can be classified as independent and identically distributed i.i.d
sources i.e. stationary sources, and non-stationary sources. The /V source signals are
mixed or filtered by some arbitrary unknown system H. H is usually represented by
an M x N matrix of either scalars for the instantaneous case, or finite impulse re-
sponse (FIR) filters in the case of convolutive mixing. The observed or mixed signals
may or may not have additional noise added to them depending on the complexity of
the model. In most real-world applications the addition of noise is usually the case

but we consider the noiseless case for simplicity.

BSS basically calculates the demixing system, or N x M matrix W, so that when

mixed with the observed signals, recovered signals are obtained that match the un-
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Please see print copy for Figure 1.2

known source signals up to an arbitrary global permutation and scaling factor.

An understanding of filter bank theory, multi-rate systems and lapped transforms is
essential to deciding on what kind of subband decomposition provides the most opti-
mal performance in the context of BSS. A more detailed analysis of the designs and
fundamental building blocks of efficient multi-rate filter banks and block transforms
will be provided in Chapter 2 but a general formulation of an M-channel multi-rate

uniform filter bank system is illustrated with the aid of Figure 1.2.

The M-channel uniform filter bank is an efficient way of attempting to study the gen-
eral theory of alias cancellation and perfect reconstruction (PR), two vitally important
concepts in design criteria for multi-rate systems. A polyphase implementation of the
filter bank, shown above 1n direct form, would be generally used for implementation
due to computational efficiency however, for the purposes of defining the problem

statement of the thesis the simplest approach is taken.

In Figure 1.2 the signal z(n) is split into M subband signals by the M analysis fil-
ters H,(z). Every signal is then decimated by a sub-sampling factor 1 to obtain the
subband signals. These subband signals may be subject to some sort of subband pro-

cessing as commonly found in subband coding for images and speech. The processed
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Figure 1.3 BSS model of a two-mput-two-output (TITO) system.

signals are then passed through R-fold expanders before being recombined via the
synthesis filters F,(z) to produce the reconstructed signal Z(n) (P. Vaidyanathan,

1993).

The reconstructed signal #(n) will not be identical to z(n) due to errors created
by the filter bank system such as aliasing, imaging, amplitude distortion, and phase
distortion which will be discussed in Chapter 2. To overcome and minimise these
errors requires careful design of the analysis and synthesis filter banks. PR-QMF
and pseudo QMF FIR filter banks using cosine modulation have been developed
independently by Koilpillai and Vaidyanathan (Koilpillai and Vaidyanathan, 1992)
and Malvar (H. Malvar, 1990) in the early nineties and have several advantages,
which will be discussed in Chapter 2. The theory presented on these designs also
forms the basis for using Lapped Transforms in the design of the prototype function
from which all impulse responses of analysis and synthesis filters can be derived.

This will be discussed in Chapter 2.

With both areas of BSS and filter banks briefly described, a description of how these
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Figure 1.4 BSS model of a TITO system using subband decomposition.

subjects can be integrated to form the basis of research on the framework for BSS in
the sub-band domain can now be addressed. The problem statement can be described

with the aids of Figures 1.3 and 1.4.

Figure 1.3 shows normal BSS implementation for a TITO system. This describes a
system where we assume there are two sources and two sensors. The majority of
BSS algorithms developed 1n current literature typically use a TITO system, whether
it uses synthetic or real data simulations, to conduct a performance and comparison
evaluation with existing BSS algorithms. Obviously a MIMO system describes the
general case where the number of sources and sensors is unknown and most algo-
rithms are extended from the TITO case to the MIMO case theoretically. Despite
this, actual implementations of these algorithms for the MIMO case are not investi-

gated exhaustively and so for comparison the TITO case is used. Figure 1.3 basically
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represents what could be referred to as direct BSS in the fullband domain.

Figure 1.4 shows the general approach to extending BSS to the sub-band domain,
which is fundamental to this research initiative. The signals coming from different
sensors are first decomposed via filter banks into narrow-band signals, and then the
separation is carried out for narrow-band signals. Finally, the individual solutions
are synthesized to yield the overall solution. As can be seen, the determination of
the demixing system W in the subband domain as opposed to a fullband domain will
save on the number of computations as the demixing system increases in dimension.
Things investigated in this thesis include designing effective time domain BSS algo-
rithms to solve BSS problems without transforming to the frequency domain and thus
eliminating the inherent local frequency permutation problem. An analysis of which
filter bank design works best and is most efficient is given. Whether oversampling,
or critical sampling should be used, uninitialized global optimization techniques for
convergence to global minimums and any possible problems that may arise includ-
ing aliasing, signal recovery and the permutation problem that arises in BSS are also

investigated.
1.3 Blind Signal Separation: A Historical Review

The seminal work on source separation was given in a meeting for Neural Networks
for Computing in Utah, 1986. Jeanny Herault and Christian Jutten contributed a
research paper (J. Herault, and C. Jutten, 1986) that presented a recurrent neural
network model and a learning rule that could blindly separate mixed combinations of
independent signals. The algorithm stemmed from how the central nervous system
is able to differentiate independent signals from mixed signals with the independent

signals, describing some arbitrary body process or movement. The only assumption
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that was made was source independence. This approach was explained and further
developed by Jutten and Herault, and Comon (1991), Cichocki and Moszczynski
(1992), and others. In 1994 Comon contributed a more generic examination of source
separation and Independent Component Analysis (ICA) that crystallized Herault and
Jutten’s findings. He looked at cost functions that minimized the mutual information
between the sensor signals. In the signal processing community an abundance of
algorithms were being formulated based on cumulants during the early nineties when

research on neural networks was also very popular.

Bell and Sejnowski (A. Bell, and T. Sejnowski, 1995) were the first researchers to
investigate and explain the blind source separation problem from an information-
theoretic perspective. They used adaptive methods that proved more plausible from
a neural processing perspective than the cumulant based cost functions proposed by
Comon. During the same time, similar algorithms based on different approaches
were proposed. Gaeta and Lacoume (1990) introduced the maximum likelihood esti-
mation approach; Harhunen and Joutsensalo (1994) developed nonlinear PCA, Giro-
lami and Fyfe proposed negentropy maximization (1996), while Lee and Sejnowski
(1997) provided a unifying framework to the BSS problem by describing the rela-
tionships between the different algorithms. Most algorithms involve defining some
objective function to minimize or maximize, where the solution corresponds to signal

separation.

A lot of the 1nitial investigation done on BSS utilised knowledge of ICA where the
mixing environment was an instantaneous one and in most cases only a two-input-
two-output (TITO) or single-input-single-output (SISO) system. Yellin and Wein-
stein addressed the multichannel BSS problem (D. Yellin, and E. Weinstein, 1994).
To address the problem of convolutive mixtures for real environments a theoretical

framework was described by Lambert (R. Lambert, and A. Bell, 1997). The mul-
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tipath extension of blind source separation methods can be seen in the frequency
domain using FIR matrix algebra. More recently the approach of using Second Or-
der Statistics (SOS) solely as opposed to a combination of Higher Order Statistics
(HOS) and SOS has been investigated. The joint diagonalization approach of multi-
ple cross-correlation matrices over multiple time instances involves exploiting non-
stationary sources such as speech for example, which is quasi-stationary over a short
period of time. Recent research on solving BSS problems in a reverberant convo-
lutive mixing environment using frequency domain approaches, including papers by
(L. Parra and C. Alvino, 2002; L. Parra and C. Spence, 2000; K. Rahbar, J. Reilly
and J. Manton, 2004; K. Rahbar, and J. Reilly, 2001; H. Sawada, R. Mukai, S. Araki,
and S. Makino, 2004a), and (H. Sawada, R. Mukai, S. Araki, and S. Makino, 2004b),
gives new ideas to solving convolutive BSS problems, however such methods have

additional assumptions and certain limitations which will be described in Chapter 2.

These are just a few of the important contributions made to the field of BSS in the
last decade. A more detailed examination of some of the findings that have been
made in the broader areas of instantaneous and convolutive mixing will be given in
Chapter 2 along with a more detailed analysis of current BSS algorithms that assume

non-stationary signals and the use of SOS to achieve separation.
1.4 Motivations and Applications

Over the last ten years the problem of BSS has been investigated extensively with mo-
tivations generated by a wide variety of interests and applications including, higher
order statistics, neural networks and artificial learning, noise cancellation, array beam
forming, speech and image enhancement and recognition, communications over un-

known channels including fading in mobile communications, biomedicine and neu-



Preliminaries 11

rology.

Herault and Jutten conducted the originating work to the BSS problem (J. Herault,
and C. Jutten, 1986). The motivation for the research came from the central nervous
system’ s ability to separate signals. They proposed an adaptive algorithm in a sim-
ple feedback architecture found at various levels of the central nervous system. The
learning rule was based on a neuromimetic approach and was able to simultaneously
separate unknown independent sources using multiple sensors. This idea has since
been extended in the biomedical field to the capturing of electro-encephalographic
(EEG) and magneto-encephalographic (MEG) data. Electrode sensors placed nonin-
vasively on the surface of the head or body obtains a mixed combination of process
signals. A linear decomposition of the observed data via BSS methods can recover
the electrophysiological data for analysis of brain or neuronal processes (S. Makeig,

A. Bell, T. Jung, and T. Sejnowski, 1996).

Adaptive Noise Cancellation (ANC) another application of BSS is a particular case
of the TITO system i.e. 2 sources, 2 sensors separation system. The applications
of ANC include the removal of engine noise from the cockpit of an aircraft, the
removal of cross talk between adjacent communication channels as well as speech

enhancement.

Some of the most commercially viable applications in BSS, which motivates a great
deal of research in the area, are from the fields of speech recognition and enhance-
ment and human acoustics. Practical systems such as hearing aids, speech recognis-
ers and teleconferencing facilities are possible real world applications for BSS. One
of the main attractions to research on BSS lies in attempting to solve the Cocktail
Party Problem. In this problem there are several competing speakers or sources of

speech signals. The difficulties in solving the cocktail party problem have been in-
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vestigated by Torkkola in (K. Torkkola, 1999). One of the main difficulties is the
fact that in real acoustic environments such as rooms they are highly reverberant
requiring very long FIR demixing filters in the order of thousands of taps. The al-
gorithms developed for signal separation are too computationally intensive to deal
with such situations. If a different approach can be taken to reduce the complexity of
models based on real variables then such problems could be solved in practice more

efficiently.

Numerous BSS algorithms have been demonstrated to be effective in a variety of
situations and the theoretical derivations of models are well understood. However,
implementation of many solutions is highly inefficient and computationally expen-
sive. By incorporating a sub-band approach this research hopes to improve upon the

existing separation performance of typically used frequency domain approaches.
1.5 Approach and Contributions of this Thesis

This thesis attempts to improve the quality of separation for convolutive BSS prob-
lems where mixing systems range from a small number of dimensions to a relatively

large number in the case of highly reverberant environments.

A general framework and methodology for deriving a subband based BSS model
is proposed as the theme of the thesis. Each central idea in the thesis serves to
contribute to the overall subband model and improve separation performance over a

typical frequency domain method.

1.5.1 Literature Review, Pre-Requisites and Outstanding Issues

A comprehensive literature review provides current research in the area and identi-

fies potential areas for contribution. The background provides the foundation knowl-
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edge of terms and concepts that are necessary to understand before examining the
proposed contributions including algorithms, methods, and frameworks that are pre-

sented in this thesis.

1.5.2 Acoustic Modelling in Reverberant Environments

When dealing with BSS of convolutively mixed nonstationary sources such as speech
in a reverberant environment, a superior comparative performance is achieved if all
information about the BSS problem is readily available or easily produced through a

series of steps.

In most cases, current literature does not make impulse responses of mixing channels
available but instead provides geometrical layouts of rooms used to conduct exper-
iments or provides observed recordings. If the experiment is treated as a non-blind
problem first, adequate information can be obtained to see how well the blind algo-

rithm performs.

Chapter 3 proposes a method to obtain all relevant information for a MIMO BSS mix-
ing/demixing system in a reverberant environment where convolutive mixing takes
place in the form of multipath propagation. Firstly a method to obtain the MIMO
mixing system is defined as well as the process to find the corresponding demixing
impulse responses. It serves to provide a methodology for conducting experiments
that investigate BSS of convolutively mixed non-stationary speech/audio signals in a

reverberant environment.

1.5.3 Time and Frequency Domain Convolutive BSS Algorithms

The majority of problems that consider convolutive BSS assume a transformation to
the frequency domain. Although this reduces computational complexity and paral-

lels motivation for a subband BSS model, there are certain limitations on separation
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performance of frequency domain methods when impulse responses have thousands
of coefficients due to rooms with long reverberation times. These will be discussed
in Chapter 2. For both the typical frequency domain method and proposed subband
method, the local frequency permutation and scaling problems exist and must be rec-
tified before either taking the inverse fourier transform, or synthesizing in the filter
bank. However if the length of the impulse response is short enough, for example
communication channels that use a two-ray model, then there is incentive to for-
mulate some BSS criteria solely in the time domain which eliminates the overhead

required for solving the local frequency/subband permutation problem.

Chapter 4 provides a new time domain BSS algorithm that solves convolutive BSS
problems that assume non-stationary sources, completely in the time domain. It
also investigates a time-frequency domain alternating least-squares (ALS) BSS al-
gorithm that overcomes the local permutation problem. Mitigating the local permu-
tation problem effectively reduces computational overhead for smaller to medium
sized systems. A pure time domain implementation of BSS for convolutive mixing
is only beneficial up to a certain number of dimensions of the unknown system when
compared to a typical frequency domain method. Both proposed algorithms employ
joint diagonalization and SOS and assume non-stationary input signals. One method
uses an alternating least squares (ALS) approach for optimization while the other
uses Newton and gradient descent methods initially, and then is further extended to

use a global optimization approach.

1.5.4 Uninitialized BSS with Global Optimization

In Chapter 5 we propose a global method of optimization as opposed to typically
used local optimization methods for solving multivariate non-linearly constrained

problems. The main benefit of using a global optimization method is that there is no
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requirement for a good initial starting value for the unknown demixing system. This
is necessary when using local optimization algorithms when the function is multi-
modal to prevent ill-convergence to incorrect local minima. This chapter highlights
some of the different global optimization methods available and customizes a branch-
and-bound algorithm to solve the convolutive BSS problem in the time domain for
one of the proposed time domain algorithms. A comparison is made to an initialized

local frequency domain method for small to medium scale systems.

1.5.5 Subband BSS Model

Chapter 6 extends the proposed time domain BSS algorithm into the subband do-
main. An understanding of the theory of filter-banks, multirate systems, block trans-
forms and lapped transforms is required and is given in Chapter 2. Chapter 2, in
addition to providing a literature review, aims to address the fundamental building
blocks and concepts that need to be addressed when designing efficient filter-bank
systems, especially in the context of BSS. Chapter 6 integrates the global optimiza-
tion, cosine modulated filter-bank model, and one of the proposed time domain BSS
algorithms from Chapter 4. This chapter culminates all concepts discussed through-
out this thesis prior to Chapter 6 and provides a general framework of modelling
BSS problems in the subband domain. Also a new method for solving the subband
permutation problem is given as well as a dyadic sorting routine for all separated

subbands.

1.6 Summary of Contributions in Order of Presenta-
tion

¢ A methodology for obtaining all relevant information in a non-blind sense for

a MIMO mixing/demixing system in a reverberant environment to serve as a



Preliminaries 16

benchmark for comparing blind results to for quality analysis.

¢ An extension to the ACDC (ALS) algorithm introduced by (A. Yeredor, 2002)
is made from the instantaneous case to the convolutive case with non-white

sourccs.

e An extension of the joint-diagonalization algorithm for the instantaneous mix-
ing case introduced by (M. Joho and K. Rahbar, 2002) is made to the convolu-

tive case in the time domain.

e Closed form analytical expressions for gradient and Hessian are derived for the
time domain convolutive BSS algorithm proposed for both the objective and

constraint functions.

e The benefits of avoiding the local permutation problem and solving convolutive
BSS problems completely 1n the time domain when the demixing system has

a small to medium number of dimensions.

e Using global optimization to solve the constrained objective criterion of the

time domain BSS algorithm proposed.

e Evaluating the benefits of not having to assume a priori information to ob-
tain good initial values for the unknown demixing system when using a global

optimization method as opposed to currently used local methods.

e Integrating the existing proposed time domain algorithm with a subband de-
composition of the observed signals and completing the separation phase in
the subband domain for each relevant subband. This framework is proposed
for convolutive mixing BSS problems where the number of dimensions for the
unknown demixing system is relatively high due to long reverberation times in

the mixing environment.
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e A new subband permutation mechanism for detecting and correcting separated
subbands that have differing permutations. Also combined with this is a dyadic

tree sorting routine.



Chapter 2

Literature Review, Pre-requisites, and
Outstanding Issues

2.1 Introduction

For blind signal separation (BSS) of non-stationary convolutively mixed signals in
a reverberant environment, an understanding of some of the fundamental concepts
for BSS theory and subband decomposition is necessary. This chapter firstly defines
the underlying assumption that the majority of BSS algorithms make on the sources
and that is of statistical independence. The various ways to model the unknown
sources is briefly discussed focusing on the two main categories of stationary and
non-stationary sources. The type of algorithmic model used to solve various BSS
problems, will depend on how the sources are modelled, which will depend on the
targeted application. Both types of general mixing models will also be defined start-
ing with the simple instantaneous model and then extending it to the more realistic
convolutive mixing model. A brief discussion on some of the main approaches to
instantaneous and convolutive BSS problems will be given with particular emphasis
on convolutive methods that exploit second order statistics (SOS) via joint diago-

nalization with non-stationary sources. A general description of how convolutive

18
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BSS problems are approached when using a frequency domain method will be also
given highlighting some of the fundamental problems including the local permuta-
tion problem and limitations on separation performance. Various quantitative ways
to measure the quality of separation will be also defined. A review of filter bank the-
ory, lapped transforms, and cosine modulation is provided and a discussion is given
on the adverse-effects that blind signal separation introduces in the subband domain

and how to overcome them.

Finally, a thorough investigation on current literature in the area of convolutively
mixed BSS problems that assume non-stationary sources is given with particular
emphasis on audio/acoutical applications of the problem. The purpose of this final
section is to provide a summary of what current research is being done in the area
of blind signal separation for convolutive mixing in time, frequency, and subband
domains for nonstationary input signals such as speech. Outstanding issues which
have not been addressed in the areas examined are identified and provide a valid

justification for the contributing work proposed in this thesis.

2.2 General criteria for Signal Separability

A critical assumption made for all BSS algorithms is that of the sources having statis-
tical independence. Even if nothing is known about the distributions or the paramet-
ric famuly that the sources belong to, information concerning the joint distribution of
the signals can be provided by the mutual independence assumption. Although this
assumption seems generic and simple, it is this very attribute, which provides a robust
theoretical framework for BSS in all its variant forms; the weaker the assumption the

wider the applicability.

A set of random variables y, for « € 1,2,...,m are defined to be independent if
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their joint distribution is a product of their marginal distributions. To further define
this concept of independence, consider the case of two random variables 1, and ys.
The variables y; and y» are considered independent if information on the value of 3
doesn ’t provide any information on the value of y,, and vice versa. This is the case
for the sources but not the mixed signals. The joint probability distribution function

p(y) of the signals can be expressed as,

n

P(y) = p1(s1) X pa(82) X, ooy XPulsn) = [ [ p(1) @.1)

=1
BSS techniques separate the observed signals through establishing statistical inde-
pendence between the output signals. Various techniques to separate the mixed sig-
nals into independent recovered versions of the assumed independent source sig-
nals include maximizing the uncorrelatedness or nongaussianity of the mixed sig-
nals after applying an appropriate separation transform, kurtosis minimization or
maximization, negentropy, mutual information, maximum likelihood, infomax and
other information-theoretic approaches, and joint-diagonalization approaches. Usu-
ally these fundamental approaches derive some objective function that may be sub-
ject to constraints. This objective usually is optimized through a local or global op-
timization method. Additional criterion, depending on the information that is known
a priori, can be made depending on the type of application or environment that BSS

will be performed in.
2.3 Source Modelling

In BSS there are basically two general categories that sources can be divided into, sta-
tionary and non-stationary. Most BSS algorithms that exploit not only second order
statistics (SOS) but also higher order statistics (HOS) to achieve separation usually

assume stationary source signals. For stationary sources additional constraints are
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needed requiring more than SOS. SOS allows decorrelation but HOS allows sepa-
ration when source signals are stationary. As the primary interest is in separating
mixtures of speech in a reverberant environment, the research covered in this thesis
focuses more solely on source signals that are assumed to be non-stationary such as
speech which is considered quasi-stationary over a period of 20 ms. A brief review
of BSS approaches that employ HOS of the observed signals is provided, however

more attention will be reserved for BSS methods that use joint-diagonalization.

Non-stationary sources have distributions that vary in the temporal domain. Non-
stationarity may arise either from the source signals themselves (such as speech), or
from channel impairments (such as fading in wireless communications channels) (B.
Krongold and D. Jones, 2000) . Separation algorithms that assume non-stationary
source signals do not need to use the computationally demanding HOS required by
i.i.d source signals. A set of SOS does not usually provide enough constraints to al-
low separation for stationary signals, however with non-stationary signals the SOS of
the signals are changing with time and can provide enough information to allow sep-
aration using differential correlation. A particular non-stationary BSS algorithm that
separates speech that will be examined for comparison with the proposed algorithms
n the time and subband domains is (L. Parra and C. Spence, 2000). This algorithm
will be reviewed in further detail in Chapter 4 but basically exploits the time-varying

nature of speech.

2.4 Mixing Systems

The simplest BSS mixing model assumes that there are IV statistically indepen-
dent source signals s(t) = [s1(t), s2(t), .. ,sy(t)]T which are combined in a lin-

ear and instantaneous fashion to produce the observation of M mixtures x(t) =
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[z1(2), 22(t), ..., zar(t)]*, where M > N. This combination is described mathemati-

cally as,
N
x,(t) = Zhwsy(t) for1=1,2,.... M. (2.2)
=1

In this model we assume that the unknown source signals s, () are multiplied by
scalar values h,, and added to produce the mixed signals x,(t). In Figure 1.3 the
unknown impulse responses that represent the coupling of source j to sensor i are
given as FIR filters. However for the case of linear instantaneous mixing these are
simply scalars or zero order FIR filters of length one. This makes the mixing process
considerably simpler. This model can also be interpreted more compactly in vector

matrix form as,

x(t) = Hs(t), (2.3)
where,
hii hiz .. hn
hot  hy .. hon
i hai hume o hun ]

and x(¢) and s(¢) are the column vectors as previously defined. The instantaneous
BSS problem exists in recovering the source vector s(t) using only the observed
data x(¢). The BSS problem for the instantaneous case can be formulated as the

computation of an N x M matrix W whose output,
§(t) = Wx(t), (2.5)

is an estimate of the source signal column vector s(t). There are many different BSS
models for determining the separating matrix W that should ideally be the inverse
of the scalar mixing matrix H. The simplicity of assuming instantaneous mixing
is that BSS algorithms can be developed easily however in many cases the instan-

taneous mixing of signals is only a synthetic phenomenon. Replication of mixing
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Figure 2.1 Multipath Propagation in a room.

conditions of systems in the real world is more precisely described by convolutive
mixing systems such as FIR filters. Consider the multipath propagation of sound in
a reverberant acoustic environment such as a typical office room. Multiple copies of
each source signal will arrive at the sensor(s) at delayed intervals. If BSS models as-
suming instantaneous mixing conditions were used this would only take into account
the first copy that arrives at the destination sensor, i.e. the direct path, and would not

provide a true model representative of the real world application.

Although an understanding of how BSS algorithms are developed in an instantaneous
climate is important, algorithms that model realistic scenarios need to be extended to
separate convolutively mixed source signals. A convolutive combination system ac-
counts for the properties of the multipath transmission of signals in a real reverberant
environment. Figure 2.1 illustrates a simple example of multipath propagation in a

room for convolutive mixing.

Multipath propagation introduces different propagation delays to the destination mi-
crophones and signal distortion from signal reflection off physical objects with dif-

ferent damping properties. Each source signal will experience filtering between itself
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and the respective sensors. The filtering properties can be described mathematically

by FIR filters with length P,

3
L

x(t) =) H(r)s(t—7). (2.6)

T

Il
<)

If there are NV sources and M sensors or microphones then there will be NV x M differ-
ent impulse responses representing each of the different propagation or transmission

channels. Equation (2.6) can also be written more compactly as,
x(t) = H(t) x s(t). 2.7)

The convolution operator * is used above. The best type of filter to model the impulse
responses of the direct and cross-channels is the FIR filter. FIR filters are Moving
Average (MA) systems comprised of a polynomial in the z domain. Alternatively
there are Auto Regressive (AR) systems that are all poles or ARMA systems that are a
combination of both poles and zeros. BSS algorithms rely on finding a way of finding
the inverse of the mixing system to perform separation. By modelling the mixing
system as a matrix of FIR filters, the problems of stability of the inverse system are
reduced when compared to using an AR system for example. Ideally if FIR filters
were used to model the mixing system then an AR system would exactly represent
the inverse separating system. However it is common to model the inverse system
also as a FIR filter matrix due to stability. This has the implication that to ideally find
the inverse of a mixing MA system, under the constraint that the inverse also has to be
a MA system, the inverse FIR filter has to be infinitely long. An accurate architecture
to invert a M* order filter is an infinitive impulse response (IIR) filter of M*" order.
However, stable IIR filters are limited to poles inside the unit circle and therefore,
a stable IIR filter exists only for a minimum phase mixing system. FIR filters may
be used to approximate the inverse solution. In real applications the mixing system

may very well be a non-minimum phase system. One of the main problems with
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using MA systems to model both the mixing and separating systems is that in a real
environment the FIR filters require thousands of taps to accurately model the channel
characteristics to a certain approximation. This introduces more computation, which
reduces the convergence speed of BSS models. This is the tradeoff however to ensure
stability of the demixing system which is necessary for real time applications. The
M observed signals x(t) are coupled to the N reconstructed signals §(t) via the
demixing system. The demixing system has a similar structure to the mixing system.
It contains N x M FIR filters of length ),where () > P. The demixing system
can also be expressed as an N x M matrix W(¢), with its element w,,(¢) being the
impulse response from jth measurement to sth output. The reconstructed signal can

be obtained as

o
L

8(t) =) W(n)x(t—r). (2.8)

<
Il
o

2.5 Measuring Performance

There are numerous methods in the field of blind signal separation used to evalu-
ate the performance of various separation algorithms including plots of separated
signals, plots of cascaded mixing/demixing impulse responses and signal to noise
ratios. It is important to use standard data test sets that are available to provide
a unified methodology to making a good comparative analysis between algorithms
in an objective manner. Controllable synthetic test cases are used to examine al-
gorithm performance in trivial to moderately complex test cases allowing accurate
evaluation of separation for different algorithms where information of sources and
mixing/demixing systems are available. In comparison, however; it is also equally
important to test the algorithms in a real environment to demonstrate the effectiveness
of the algorithm in an application sense. Real world recordings for acoustic signal

separation should be considered to reflect the complexity of real mixing systems and
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the success of separation for different BSS algorithms. Sources, mixing systems and
performance measures for synthetic and real cases that are standard tools for eval-
uating blind signal separation are referred to in (D. Schobben, K. Torkkola, and P.

Smaragdis, 1999).

Despite all the different ways of formulating a method of separation, they are all re-
lated to a fundamental measure of statistical independence that can be used to derive
differing objective and contrast functions. This is known as the Kullback-Leibler
distance (KLD) measure. The Kullback-Liebler measures the distance between the
joint probability distribution and the product of the marginal distributions as shown

1n Equation (2.9).

K. J] o) = [ plo)too e s 29)
When
KLp(y), [[pw) =0, (2.10)

then the signals are independent otherwise the measure will be greater than zero. The
idea behind BSS is to minimize the KLLD. Comon used this measure and provided
a unifying framework for Maximum Likelihood (ML), Infomax and Mutual Infor-
mation (MI). Strictly speaking, the KLD is not a distance as it is asymmetric. ML
and MI will be examined briefly along with other methods of deriving BSS objective
functions to give a brief outline of the different approaches for solving BSS prob-
lems, but more focus will be given to methods that exploit non-stationary sources via

joint-diagonalization.

As previously mentioned, there are numerous ways to evaluate the performance of
a BSS algorithm. Lucas and Parra used the Signal to Interference Ratio (SIR) as a
measure of the performance of the algorithm for their experimental results (Parra and

Spence, 2000), as did Ikram and Morgan in (M. Ikram, and D. Morgan, 2000). In the
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frequency domain the SIR is defined for a signal s(¢) in a multi-path channel H(w)
at frequency bin w to be the total signal powers of the direct channel versus the signal

power stemming from the cross channels,

o = 2w 2 [Hu(@) (s, (w) %)
SIR[H, ] - Zw Ez Zg;«éz ‘HZJ(W)‘2<‘SJ(W)12>. (2.11)

In the case of known channels and source signals we can compute the expressions di-

rectly by using a sample average over the available signal and multiplying the powers
with the given direct and cross channel responses. Replacing H(w) by W (w)H(w),
where W(w) is the inverse of H(w), defines STRo which is the output SIR. The
objective of BSS methods is to obtain a high SIR improvement given by the ratio

SIRo/SIR;.

Tkram and Morgan also define an SIR measure to assess the separation achieved for
each source signal. In their experiment they implemented a TITO system in a real

acoustic environment. For example, for source 1, the input SIR is given by,

> Hi(@)Plsa ()
S Hig(w) 2so(w))?” 2.12)

The SIR relations for source 2 are defined in a similar manner. Araki, Makino,

SIR;, =

Nishikawa and Saruwatar1 (S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari,
2001) used a similar method of measuring the performance of a BSS algorithm. In
their paper the noise reduction rate (NRR) was used and is defined as the output
signal-to-noise ratio (SNR) in dB minus the input SNR in dB. The SNR is defined
similarly as above.

NRR, = SNRo, — SNRy,, (2.13)

_ 2w [Auw)s: (w)[?
SNRo, = 10log S 1Ay (@), @) (2.14)

)
— Ew |Hn(w)sl(w)|2
SNRp, = 10log S H,, (@)s, ()2’

(2.15)

where A(w) = W(w)H(w) and ¢ # 3.
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2.6 Stationary Instantaneous BSS

Many BSS algorithms for source signals that have been mixed in a linear, instan-
taneous fashion have been developed over the last decade. A brief explanation of
some of the common methods to deriving objective functions and various methods

of separation will be investigated.

BSS models that assume linear, instantaneous mixing are probably the simplest.
Most of the algorithms that are developed for instantaneous BSS come from the
field of Independent Component Analysis (ICA). ICA was originally developed to
deal with problems relating to the cocktail-party problem. ICA is very closely linked
to BSS in an instantaneous mixing climate. Like Principal Component Analysis
(PCA), it is a linear transformation of multidimensional data to a new coordinate
system. However where PCA only looks at decorrelation, ICA takes the process one
step further by finding statistical independence. The ICA or instantaneous BSS prob-
lem is solved on the basis of minimizing or maximizing certain contrast or objective
functions. Essentially the ICA problem is transformed into a numerical optimization
problem. A good starting point to this section is to describe the various techniques
for deriving the objective functions. A more detailed analysis will be provided for
specific BSS algorithms that the proposed research presented has extended upon in

following chapters.

The key to the ICA model is nonlinear decorrelation and/or nongaussianity, which are
two kinds of higher-order information. Assuming that the column vector § is the sep-
arated signals and the column vector x is the mixture of the independent components
then to estimate one of the components a matrix W needs to be found. If W were
taken as a matrix that maximizes the nongaussianity of WZx then the independent

components would be found up to an arbitrary scaling and permutation factor. The
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idea of maximum nongaussianity is due to the central limit theorem, which states that
sums of non-gaussian random variables are closer to Gaussian than the original ones.
For an explanation of the central limit theorem refer to (A. Hyvérinen, J. Karhunen,
and E. Oja, 2001). To use nongaussianity in ICA a quantitative measure needs to be
defined. Such measurements for nongaussianity include kurtosis, which is a HOS
while other general measurements for formulating objective functions stem from the
general areas of Estimation theory, Information theory and PCA and include maxi-
mum likelihood, mutual information, negentropy and projection pursuit. Although
there are numerous algorithms that slightly vary certain parameters, these are the
general methods used to formulate the optimization problems required to determine

the separation system W, as in most cases a closed form solution does not exist.

2.6.1 Higher Order Statistics

Kurtosis is the most classical form of measuring nongaussianity and is used as an
optimization criterion for the ICA problem. It is a fourth-order cumulant, which is a

HOS. The kurtosis of a random variable y, is defined as,
kurt(y) = E{y'} — 3(E{y*})*. (2.16)

As a preprocessing function to simplify things the random variable y is assumed to
be centered (zero-mean), and have unit variance. Having unit variance, the right hand
side (R.H.S) of Equation (2.16) reduces to E{y*} — 3. If the variable y is Gaussian
then E{y*}, which is the fourth moment, becomes 3(F{y?})? and assuming unit
variance then the R.H.S reduces to zero. So for a Gaussian random variable the
kurtosis is zero while for a non-gaussian variable the kurtosis is non-zero. Kurtosis
can be either negative or positive. If it is negative the random variable is said to be
sub-gaussian while if it is positive the random variable is said to be super-gaussian.

Each distribution can be also described by its peakedness; i.e. essentially the flatter
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the distribution the more sub-gaussian the variable is, while spiky distributions such
as the Laplace distribution describe super-gaussian variables. Many real-world data
sets have super-gaussian distributions. The ICA estimation principle for separation
is to maximise the nongaussianity, which in this case is to maximise a supergaussian
distribution or minimise a subgaussian distribution via kurtosis. One of the main
disadvantages of using kurtosis is that it is very sensitive to outliers and hence is not
a robust measure of nongaussianity. Also for reliable estimation of HOS (cumulants

and moments), it requires much more samples than for SOS.

2.6.2 Estimation Theory

Estimation theory is the study of trying to estimate a quantity of interest from a set
of uncertain measurements. The type of estimation method will depend ultimately
on the assumed data model. The data model of interest for this research is ICA.
Typically a set of measurements will be used to estimate a set of parameters that
describe the data. For example two parameters that are often needed are the mean
w and variance 2. There are two ways of estimating a parameter set from available
data. They are batch type estimation, which is also referred to as off-line estimation.
For this all the measurement data must be firstly available. On-line estimation is the
other technique where the estimates of the parameters are updated using incoming
samples and recursion. This is also referred to as adaptive estimation. A good way to
measure estimation errors is to use an error criterion such as the mean-square error
(MSE) given as,

emse = E{])0 - 0)%}, 2.17)
where 6 and 0 are the true and estimated parameter vectors respectively. However
caution is required in the way the parameters are estimated from the data, as some

methods are not robust in that outliers adversely affect the estimated parameters.

Other estimators include linear least squares method, but one of the main estimating
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models used for ICA is the maximum likelihood (ML) method.

2.6.2.1 Maximum Likelihood

The ML method is based on the relatively simple idea that different probability mod-
els generate different samples and that any given sample is more likely to have come
from some probability models than from others (J. Mendal, 1990). It is closely re-
lated to the infomax principle in the context of BSS. The ML method makes the
assumption that the unknown parameters 6 are constants and no prior information
is available to describe them. The ML estimator corresponds to the value Opr1, that
makes the measured data most likely. Given the data from an experiment and an
assumed model, ML determines the values for the parameters of the model, which
most probably lead to the observed data and hence uses conditional probability. The

likelihood equation is given as,
p(xr|0) = p(x(1),x(2),...,x(T)|6). (2.18)

Many density functions contain an exponential function, which increases the com-
plexity of dealing with such models. It is often easier to work with the logarithm
of the likelihood function, the loglikelihood function. The ML estimator 1s usually

found from solving the loglikelihood function given as,

2 lap(x]8)

50 =0. (2.19)

l0=02r1
One of the simplifying assumptions that is critical to ICA/BSS and allows ML to be
used as a way of modeling the objective (contrast) function to be optimized is that
of statistical independence. With this assumption the likelithood function decouples
nto the product

p(xrlf) = T0)_,p(x(7)|6) (2.20)
Examples of BSS algorithms that use ML cost functions are given in (M. Feder, and

E. Weinstein, 1988; L. Parra, C. Spence, and B. Vries, 1997; J. Cardoso, 1998).
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These sections have briefly looked at the main ways of using estimation theory to
derive objective functions for use in ICA. All the estimation methods mentioned
above assume that the parameters 6 are unknown deterministic constants. Bayesian
estimation assumes that the parameters 6 are random. These random parameters are
modelled using a priori probability density that is known. One example of Bayesian
estimation is Maximum a posteriori (MAP) estimation, which will not be explained

but is worth mentioning for completeness.

2.6.3 Information Theory

Estimation theory for ICA is basically built on deriving a parametric model that pro-
vides the best estimate from which the observed data is obtained. In ICA, infor-
mation theory is the other principal approach to formulating objective functions to
be optimized. With information theory coding of the observed data is required. An
understanding of entropy 1s required for information theory. Entropy is the funda-
mental concept of information theory. Entropy H is defined for a discrete-valued

random variable X as,
H(x)=-» PX=a,)logP(X=aq,), (2.21)
1

where a, are the possible values of X. The entropy of a random variable is the degree
of information that the observation of the variable gives. The more random, unstruc-
tured and unpredictable the variable is, the larger its entropy (J. Mendal, 1990). An
important result relating to nongaussianity is that a Gaussian variable has the largest
entropy among all random variables of equal variance. So entropy can be used as an-
other measure of nongaussianity. Supergaussian distributions have very low entropy,
as most of the values are concentrated in the same range of values. Negentropy,

a form of differential entropy, provides a measure of nongaussianity that is always
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positive and is zero for a Gaussian variable. It is defined as,
J(x) = H(Xgquss) — H(x). (2.22)

The only drawback of using this measure of nongaussianity is that it is computation-
ally demanding. To avoid this ICA algorithms that are based on information-theoretic
contrast functions use approximations to negentropy and also combine aspects of
kurtosis and nonlinear transformations as previously defined. Approximations to ne-
gentropy are found using higher-order moments. An example of an approximation

to negentropy is
p

J(x) ~ Y kIE{G.(x)} — E{G.(v)}], (2.23)

3==1

where k, are positive constants, v is a standardized Gaussian variable, and G, are
nonquadratic nonpolynomial functions. This approach combines the robustness of

negentropy however allows faster computation.

Another technique used to derive a contrast function for ICA is mutual information

(MI). MI between n scalar random variables, x, forz = 1,2, ..., n is defined as,
I(x1, X2, ... Xn) = »_ H(x,) = H(x) (2.24)
=1

A good way of interpreting this result is to relate it to the concept of entropy and
code length. The entropy term H(x,) could be coded separately while H(x) would
provide the code length when x is coded as a random vector, 1.e. all the compo-
nents are coded in the same code. MI shows the code length reduction of coding
the whole vector H(x) as opposed to coding the separate components individually.
If the x, components are statistically independent then MI is zero otherwise it is
non-negative. So if the MI used to model the ICA system were minimized in an op-
timization problem then this would infer that the components are as close to being

statistically independent as possible thus providing near separation.
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All of these techniques used to describe the separation of observed signals in an ICA
framework are equivalent and can be linked through the KLD as shown in (J. Car-
doso, 1998). It can be realized that ML and MI methods are just different realizations
of Kullback-based contrast functions. As mentioned before after a particular contrast
function has been chosen, various learning rules of optimization theory including
natural and relative gradient descent introduced in (S. Amari, 1998), stochastic gra-
dient descent, "Newton-like” algorithms and Lagrangian methods for constrained
optimization, using both types of learning paradigms (i.e. batch learning and on-
line learning), can be implemented to determine the optimum separating system that
will provide the maximum separation of the independent components in the observed
data. Another aspect which will be discussed in Chapter 5 to be considered 1n the
context of optimization is using global optimization to solve the objective functions

without the need for additional constraints or criteria.

2.6.4 Global Scaling and Permutation Ambiguities

Signal separation is not exact as there are two main ambiguities inherent in the pro-
cess. Consider the multichannel instantaneous mixing system A and the instanta-
neous multichannel demixing system B. If BA is the global system, which ideally
should equal the identity matrix I, the first ambiguity is the fact that the complete
global transformation system B A need not equal the identity matrix, but can equal
any diagonal matrix D. This means that separation of independent components can
orly be achieved up to an arbitrary scaling factor. The reason is that both the input s
and mixing system A being unknown quantities, any scalar multiplier in one of the
sources s, can always be cancelled by dividing the corresponding column a, of A by

the same scalar ¢,

X = Z(iaz)(szal). (2.25)
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The arbitrary scaling constants can be chosen in a variety of ways. For example the
model could normalize all the output signals to have unity variance, normalize the
output signals to have the same energy as the corresponding sensor signals or scale
the output signals so that they have the same amplitude as the signal component of

the corresponding sensor signal.

The second ambiguity is that the complete transformation BA need not equal a diag-
onal matrix, but can equal any permuted diagonal matrix (P. Comon, C. Jutten, and
J.Herault, 1991). The permutation matrix can be denoted as P. Therefore the order
of independent components cannot be determined. Combining these two ambiguities
together ICA/BSS can only separate such that BA = PD. These ambiguities are
important especially the permutation problem as it arises when separating convolu-
tively mixed signals in the frequency domain and is a major constraint leading to the
need for additional assumptions and information for separation such as required in

geometric beamforming (L. Parra and C. Alvino, 2002).
2.7 Stationary Convolutive BSS

Section 2.4 covered the basic description of BSS with convolutive mixing. As men-
tioned previously, BSS in a convolutive mixing environment is closely related to
the fields of blind deconvolution/equalization, where there is only one observed sig-
nal which consists of an unknown source signal mixed with itself at different time
delays due to finite propagation speed and multipath propagation being a result of
reverberations of some obstacles. The key to development of many convolutive BSS
algorithms is the close relationship BSS of convolutive mixtures has to the instanta-

neously mixed ICA problems for MIMO systems.

To utilize the development of some of the common models for instantancous ICA
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problems, that were previously highlighted, the convolutive BSS problem needs to
be transformed into a model consistent with ICA. Time domain methods to solv-
ing the convolutive BSS problem in particularly long reverberant environments are
problematic for the reasons of poor convergence times due to more computations as
outlined by (K. Torkkola, 1999; E. Ehlers, H. Schuster, 1997; L. Parra and C. Spence,
2000). The more adopted technique of solving this particular problem where there is
a high number of unknown variables to solve for, is by transforming the convolutive
time-domain model into the multiplicative frequency-domain model, which can ben-
efit from the fast implementation of Fourier transforms and allows the problem to be

modelled in a similar manner to its simpler instantaneous counterpart.

2.7.1 Frequency Domain Methods

Typically for the convolutive mixing BSS model described in Section 2.4, the time-
domain convolutive problem is transformed into independent, multiple short-term
or instantaneous mixing, BSS problems in the frequency domain via the 7T'-point
discrete Fourier transform (DFT). For the frame [x(¢),. ., x(¢ + T')] this is given as
x(w,t) = Y2770 e 2™ 7/Tx(t 4 7). In a compact matrix-vector notation the time-

frequency domain relationships are shown as

x(t) = H(t) « s(t) (2.26)

x(w) = H(w)s(w) (2.27)

3(w) = W(w)x(w), (2.28)
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which corresponds to the original source signals, in the frequency domain, up to an

arbitrary permutation and scaling factor; that 1s
S(w) = W(w)H(w)s(w) = I{w)D(w)s(w). (2.29)

In this case, W (w) € CV*M and H(w) € CM*N, D(w) € CY*¥ is an arbitrary fre-
quency dependent diagonal scaling matrix. The permutation matrix IT(w) € R¥*¥
is frequency dependent and introduces frequency-dependent permutation errors in
the output frequency response. In order to avoid the inherent frequency permutation
problem it is desirable to either make II independent of frequency or derive a criteria

to ensure correct permutation alignment of all separated frequency bins.

2.7.2 Local Scaling and Permutation Ambiguities

The frequency permutation problem inherent in traditional time-frequency domain
ICA models for convolutive mixing still places a restriction on the successful devel-
opment of truly blind separation algorithms, (i.e. no additional assumptions or infor-
mation). The problem is the assignment of signal contributions to different source
channels consistently across different frequencies. In (L. Parra and C. Alvino, 2002),
an attempt to resolve these ambiguities by adding prior information such as micro-
phone position and the assumption that the sources are localized in space was given
in what they have referred to as geometric source separation. Time domain algo-
rithms for solving convolutive BSS problems are viable up to a certain number of
dimensions. Depending on how reverberant the environment is, it is more viable to
solve unknown demixing systems with a small to medium number of variables in
the time domain then in the frequency domain. This is due to the extra computa-
tions required for firstly transforming the problem into the frequency domain via the
DFT, and then solving the local frequency permutation problem. If we model the

entire convolutive BSS problem in the time domain we eliminate the need to solve
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the local frequency permutation problem. A more detailed analysis of a time domain
BSS algorithm which illustrates this is given in Chapter 4. For systems with a higher
number of variables the viability of transforming the problem into the frequency or
subband domain becomes apparent. Combined with the limitations on the quality of
separation for convolutive BSS problems in the frequency domain for environments
with longer reverberation times, the advantages of using a subband model approach

become evident. This will be shown in Chapter 6.

2.8 Non-stationary Sources

All the BSS algorithms discussed so far have made the assumption that the sources
are i.i.d signals implying that they are stationary. One of the main reasons for com-
putationally expensive algorithms when dealing with stationary sources is the fact
that in addition to decorrelating or whitening the observed data using SOS, in order
to achieve separation of the independent components a rotation matrix or orthogonal
transformation needs to be applied using HOS such as cumulants or other nonlinear
transformations. Using such HOS causes considerably longer convergence times for
these algorithms. In many real cases the sources themselves often have varying sta-
tistical properties for example speech. As an alternative, any algorithms that model
nonstationary sources can exploit time varying SOS using differential correlation in-
stead of the much more cumbersome and laborious HOS approach. The merits and
disadvantages of the previously discussed HOS were given as an initial investigation
of how best to approach the problem of convolutive BSS. The focus of our proposed
work is more closely related to problems that assume speech input, although the al-
gorithms, models and concepts are applicable to a wide variety of applications. In

this regard, we can make the natural assumption that the sources are non-stationary.
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2.9 Subband Decomposition

The other main area that is vital to the research on extending BSS into the subband
domain is multi-rate systems, filter banks and transform theory. Contributions by
many researchers in the field of multi-rate systems have resulted in a mature the-
ory of multi-rate systems. A good understanding of design methods, fundamental
building blocks and the problems that arise when dealing with subband processing
and reconstruction is necessary before BSS methods can be integrated. This sec-
tion provides a brief overview of the current filter bank models that would be used
for subband decomposition, the different components of the filter bank as well as
the issue of perfect reconstruction (PR) and lossless systems. More efficient filter
bank systems are developed using overlapped block transforms such as the Lapped
Orthogonal Transform (LOT), the Modulated Lapped Transform (MLT) and the Ex-
tended Lapped Transform (ELT). The latter of these is probably the most viable for
efficient and robust design but builds on the other two types of transforms mentioned

and will be reviewed in Section 2.9.5.

2.9.1 Fundamental Concepts

In a multi-rate signal processing system there are four basic stages for probably the
most simple direct structure filter bank design. Figure 1.2 showed an M -channel fil-
ter bank with these basic stages being the analysis filters, the R-fold decimator, the R~
fold expander and the synthesis filters, which perform interpolation. The decimator
is a device that reduces the sampling rate by an integer factor of R (down-sampling)
while the expander is a device that increases the sampling rate by R (up-sampling).
The use of different sampling rates offers benefits such as reduced computational
complexity, which is ideal for the case of BSS as traditional cost functions suffer

from long convergence times. Figure 2.2 shows the basic multi-rate building blocks.
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Figure 2.2 Multirate building blocks
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Figure 2.3 Decimation by factor R = 2 in the time and frequency domain

Without going into too much mathematical detail an R-fold decimator takes an input

sequence z(n) and produces the output sequence
yp(n) = z(nR) (2.30)

where R is an integer. The effect of down sampling in the time and the frequency
domain can be seen in Figure 2.3 with a factor of R = 2. In the frequency domain the
result of decimating by a factor R 1s to expand the input spectrum by a factor of R.
If the input spectrum has a bandwidth larger than 7/ R then the problem of aliasing
occurs. When this occurs it 18 not possible to recover the original signal without a

carefully designed low-pass or band-pass filter with bandwidth 7/ R.

An R-fold expander takes an input signal y(m) and produces an output sequence

x(n) defined as follows,

o(n) = y(n/R) 1f nmod R=0 231)

0 otherwise
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Figure 2.4 Expanding by factor R = 2 in the time and frequency domain

Inserting R — 1 zero samples between each pair of input samples forms the output
sequence. Figure 2.4 shows the effect of up sampling by a factor of R = 2. In Figure
2.4 the output spectrum is formed by shrinking the original spectrum by a factor of
R and replicating the shrunk spectrum R — 1 times. There is no aliasing however
the replicas are due to the effect of imaging. To avoid this it is usual to follow the
expander with a low-pass or band-pass filter having bandwidth equal to 7/ R, so that
only one of the spectral images remains. Using a low-pass filter in the frequency
domain has the effect of interpolation of samples in the time domain. Design of the

analysis and synthesis filters will be reviewed in the following sections.

The analysis and the synthesis filters are Linear Time Invariant (LT1) systems, which
means that the system 1s linear with respect to inputs and outputs, as well as having
shift-invariance. For LTI systems, the system can be completely characterized by the
impulse response h(n) or in the z-domain, H(z). All rational transfer functions will

have the following difference equation form

M=

N
boy(n) = — > _ buy(n—m)+ > _ amu(n —m), (2.32)
m=1

0

3
I

however, for this particular research more attention will be given to FIR filter imple-

mentation due to simplicity and stability. For the particular case of causal FIR filters,
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for the analysis and synthesis filter banks, the R.H.S of Equation (2.32) reduces to
the second term and in direct form the computational order is /N + 1 multipliers, NV
adders, and N delays. There are two particular configurations for direct form struc-
tures of FIR filters and these are standard form and transposed form however for
fast implementation a polyphase form is usually implemented. For more readings
on how these particular configurations are derived refer to (P. Vaidyanathan, 1993; J.

McClellan, R. Schafer, and M. Yodar, 1993).

2.9.2 Maximally Decimated Filter Banks and QMF

The fundamental parts of a typical subband signal processing system have been
looked at. The analysis filter bank should successfully decompose the incoming
signal into its various subband signals, and the synthesis filter bank ideally is able
to recover a close approximation to the input signal from the subbands. Ideally this
would mean that the reconstructed signal is simply a delayed version of the input

signal as shown below,

Z(n) = z(n — D) (2.33)

In order to make an educated choice in choosing a design for the analysis and syn-
thesis filters it is a good idea to investigate the simplest design and extend upon that.
Figure 1.2 presents probably the most simplest and typical subband processing sys-
tem using the filter banks in the form Filter Bank Type 1 (FB-I). It is a M-channel
maximally decimated QMF bank, which is uniform. If no subband processing is
done then the computational complexity of running all the filters in the analysis filter
bank has the same complexity as running a single filter without decimation. In the
proposed research however there will be processing done on the subband signals in
the form of BSS. In the search for perfect aliasing cancellation in design criteria, an

initial review of QMF banks is needed.
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Suppose that the QMF bank is the case where M = 2. Then a simple expression for

the z-transform of the output signal is

X(z) = ‘;‘[HO(Z)FO(Z)+H1(Z)Fl(Z)]X(Z)‘F%[Ho(—Z)Fo(z)JrHl(*Z)Fl(z)]X(—Z)
(2.34)

The aliasing component X (—z) can be cancelled if the filters are chosen to meet the

QMEF condition
Hl(Z) = Ho(—Z), Fo(Z) = H()(Z), Fl(Z) = —Ho(—Z). (235)
This leads to,
X(2) = 5 (=) ~ HAIX(2), 236)

and using Equation (2.33) the other criteria for perfect reconstruction is
H2(2) — H3(—2) = 227", (2.37)

where D is some acceptable system delay. In practice, designing Hy(z) to meet
the alias cancellation condition is possible but only near approximation of the PR
condition is met using nonlinear optimization techniques. The idea in QMF banks
is to permit aliasing in the analysis bank instead of trying to avoid it and choose

synthesis filters so that aliasing is cancelled.

The natural progression from studying the 2-channel QMF bank was the generaliza-
tion to a QMF-like filter bank structure for R-channels. Pseudo-QMEF filter banks
were presented in (H. Nussbaumer, 1981). The basic idea behind this concept is
that aliasing from adjacent bands is cancelled as the transition bandwidth of each
one of the subband filters does not usually overlap with any other bands besides its
neighbours. This can be seen in Figure 2.5. Ideally the different subbands would
have infinite attenuation in the stopband, no transition band whatsoever and cutoff

frequencies every 7/ M, however in practice this would require very high order FIR
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Figure 2.5 Frequency responses of an Mth band filter H(z)

filters which is impractical for real time applications due to more computation and
longer convergence times. As a result, neighbouring bands overlap thus causing

aliasing as shown above.

The derivation of pseudo-QMEF is left for the time being as is the polyphase imple-
mentation of such filter banks. For further detailed analysis on the proofs and the
mathematics refer to (P. Vaidyanathan, 1993). The most common form that gives
M-channel filter banks nearly perfect alias cancellation is where the synthesis filters

are defined by

) = hl)eos{(h+1/2)n = ) + . 238)

fork =0,1,,M —1,and n = 0,1,,L — 1, where M 1s the number of subbands,
L is the length of the filters, and the parameters ¢, control the relative phases of the
modulating cosines. The analysis filters are obtained by time-reversing the synthesis
filters

hg(n) = fe(L —1—n). (2.39)

All the filters can be derived from a single filter A(n) which is referred to as the

prototype. In order to achieve aliasing cancellation by proper design the phases must

be defined by
de= (-1, (2.40)
or,
¢ =1+ (—1)k]%. 2.41)
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Figure 2.6 Polyphase structure of M-channel QMF maximally decimated filter bank

An understanding of these criteria is important when extending this design to block
transforms and then lapped transforms, which will be explained in the following

sections.

2.9.3 Block Transforms

Block transform theory is closely related to multi-rate systems and filter banks through
structures based on the lossless polyphase designs of maximally decimated filter
banks. Figure 1.2 showed a simplified structure of an M -channel maximally deci-
mated filter bank. A more computationally efficient structure is the polyphase imple-
mentation. The polyphase structure, which is rearranged using the noble identities, 1s
shown in Figure 2.6, which leads to PR. In order to obtain PR the following condition

must hold:

R(z2)E(z) = cz7™1 (2.42)

where ¢ is some constant and my is some desired delay. This means that 1f

R(z) = E(2), (2.43)
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where,

E()E(z) = E()E(2) = I, (2.44)
then PR will occur and E(z) is paraunitary or lossless. £(z) can also be orthogonal
and is usually the case when developing block transforms. For a more detailed ana-
lytical analysis of deriving the polyphase structure shown and the concept of lossless
systems an abundance of literature on multi-rate systems and filter bank theory is

readily available.

Signal processing with a block transform is a special case of signal processing in
subbands with a perfect reconstruction FIR filter bank (Malvar, 1992). The basic
concepts of block transforms will be explained briefly before reviewing the basic
motivations behind LOTs and ELTs, the latter of course being prevalent in the initial

stages of the current research for subband decomposition.

To compute the transform of a signal z(n), the signal must be partitioned into blocks.

This can be shown as

z = [¢(mM),z(mM — 1), ..,x(mM — M +1)]* (2.45)

The dimension of z is M , which is referred to as the block size. Also a direct linear

transformation matrix A on z can be given as,
X = ATz, (2.46)

and 1ts inverse transform as,

r = [AT]7'X. (2.47)
If the transformation matrix A is orthogonal than the inverse simply becomes,
AT =A™ (2.48)

giving,

r=AX. (2.49)
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The columns of A are the basis functions of the transform. The number of basis
functions in A is usually the same as the number of signal samples of z, which in
this case is M. Each transformed block is the result of the inner product of the input

block with its respective basis function in A.

The advantage of orthogonality is that the direct and inverse transformations are sim-
ply related by a transposition. Some examples of block transforms that have useful
properties in areas of spectrum estimation, image coding, speech coding and adaptive
filtering include the Discrete Fourier Transform (DFT), the Discrete Hartley Trans-
form (DHT), the Karhunen-Loeve Transform (KLT), the Discrete Cosine Transform

(DCT) and the Type-IV DCT.

With the paraunitary polyphase structure of the M-channel maximum decimated fil-
ter bank, some common properties of block transforms can be seen. The basis func-
tions of the block transform correspond to the impulse responses of the synthesis
filters, and the time-reversed basis functions would be the impulse responses of the
analysis filters. Although the computational complexity of block transforms is good
compared to PR FIR filter banks, one of the main restrictions of block-based trans-
forms is that the FIR filter lengths (or basis function lengths) are of length M that
causes poor stopband attenuation and leads to blocking effects in the reconstruction
phase when quantising the transform coefficients. These blocking effects are a result
of discontinuities at the boundaries of the blocks. For example, in audio applications
a listener would here clicking at the block boundaries. Figure 2.7 gives a better un-
derstanding of the difference between the basis functions of block transforms and

lapped transforms.
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Figure 2.7 Basis functions of block transforms and lapped transforms

2.94 Lapped Transforms

The LOT has longer basis functions than traditional block transforms. In LOTs the
basis function length is 2M where M is the number of subbands. The main reason for
this is that if the basis functions are longer than there will be a smoother transition
to and from zero at the boundaries and the problem of blocking will be avoided.
The following subsections will basically extend upon the idea of overlapping basis
functions and finally arrive at the design of choice for subband decomposition 1n the

current research, which is using a filter bank based on an ELT prototype function.

2.9.4.1 Lapped Orthogonal Transform

As briefly mentioned, a LOT unlike a block transform takes a signal and partitions it
into blocks with L = 2M samples in each block. These samples are transformed by
an orthogonal matrix P of size L x M where M is the number of basis functions or
transform coefficients. This means that there will be an overlap of L — M samples
when computing consecutive LT blocks. A more general definition of the length of

the basis functions is I = N M. Block transforms are a special case of LOT where
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N =1

Again the connection with multi-rate filter banks is made. A LOT is a filter bank in
which the impulse responses of the synthesis filters are the LT basis functions and the
impulse responses of the analysis filters are the time-reversed basis functions. This

can be shown in the following equations.
fr(n) = pa (2.50)
where k =0,1,..., NM —landn = 0,1, ..., NM — 1 and,
hi(n) = fk(NM —1-n)= Pnir—1-nk 2.51)

where p,,;, is the element in the nth row and kth column of P.

2.9.4.2 Modulated Lapped Transform

Design techniques of how the filter responses for modulated lapped transforms are
generated from a single prototype function h(n) are similar to that of Pseudo-QMF
outlined in Section 2.9.2. The MLT is simular to the LOT however, cosine modulation
is used to generate all the different basis functions for both the analysis and synthesis

filters. The normalized MLT basis functions can be written in the form

2 M+1 1
o = h(n)y | =cos{(n + 2+ (k+5)= (2.52)

This means that a careful design of the prototype function using appropriate windowing-
techniques is all that is necessary to generate the responses of all the analysis and
synthesis filters for the multirate filter bank. The only conditions on the design of the

prototype is

h(L —1—mn)= h(n), (2.53)

and,

h2(n) + h*(n+ M) = 1. (2.54)
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Due to the modulation structure of the MLT basis functions in Equation (2.52), very
fast and efficient algorithms can be used to implement any filter banks that use these

responses.

2.9.5 Extended Lapped Transform

Section 2.9.4.2 described how perfect reconstruction filter banks with a large num-
ber of subbands could be obtained from sinusoidal modulation of a single low-pass
prototype and the correct choice of phase angles. In that section the length of the
filter bank impulse responses or basis vectors were restricted to L = oM. Lapped
Transforms like the LOT and the MLT may not be adequate substitutes for QMF fil-
ter banks in applications where a strong subband separation is necessary. The usual
lengths of QMF filters typically go from 4M to 16 M. Tt would be of practical value if
the lengths of the basis functions could be made longer, without much penalty in the
computational complexity (H. Malvar, 1992). This section reviews the scenario when
perfect reconstruction is obtained for a modulated filter bank with a given number of
subbands M and filter length L > 2M. With longer basis functions one can ob-
tain better filtering performances. When there are basis functions of arbitrary length
then this transform is referred to, as an Extended Lapped Transform (ELT) and the
advantages of this particular transform is that better criteria for performance and
computational complexity, in the same order of magnitude as standard block trans-
forms, can be made. This section reviews the design of the prototype function h(n)
for an ELT and also reviews some of the fast algorithms that have been designed for

implementation.

2.9.5.1 Basis Functions and the Prototype

All the basis functions or impulse responses of the different analysis and synthesis

filters are defined using the same cosine modulation function that was used for the
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MLT as shown in Equation (2.52). The phases of the different basis functions p,, are
related by
1 1.7

o = (k+ 5)(N + 5)5 (2.55)

where £ = 0,1, ..., M — 1, and L = NM. Another condition on the phases of the

modulating cosines for PR is that
™
Srr1— ¢ = 2K + 1) (2.56)

From the above two equations it can be seen that a more general notation for the
length of the basis functions is L = 2K M. K is referred to as the overlapping factor
(H. Malvar, 1991). The length of the impulse responses of the FIR filters should be
an even multiple of the number of subbands M. It should also be realized that for

standard block transforms K = 1/2, for LOT and MLT K = 1, and for ELT K > 2.

To obtain PR with filters of any length, the prototype function h(n) needs to satisfy
a PR condition. The following equation is shown in scalar form but stems from the

lossless condition mentioned in Section 2.9.3,

2K —2s—1 ~
> h(n+1M)h(n + 1M + 2sM) = 6(s) (2.57)

1=0
where K 1s the overlapping factor and 1s greater than or equal to 2 for ELTs, 2 =
0,1,..,2KkK—-1,s=0,1,.... K—1,n=0,1,. .,]\;[/2— 1 and 1s the unitary impulse
function. For K = 2, a parameterized family of windows (H. Malvar, 1991) can be

obtained as

h(% —1—1)=—sSy_1_, (2.58)
h(% 1) = SiCr_1y (2.59)
h(y;Z —1—1)=0cSy 1, (2.60)
h(% +1) = CCy_yy» (2.61)
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where ¢, = cos(,) and s, = sin(8,), for2 = 0,1,..., M/2 — 1, with the angles 6,

given by
(2o + D)7
8M

where the free parameter p varies between [0, 1] and controls the frequency responses

(L) 2+ 1)+ ] (262

of the filters in the analysis/synthesis banks.

PR conditions in the design of h(n) do not have a unique solution as for any M and
K there are an infinite number of solutions. A general optimal design technique for
this is based on minimizing the stopband energy of the low-pass prototype defined

by the objective function
1 " wY|2
E, = — |H(e’)|*dw (2.63)

which is a constrained optimization problem where s defines the beginning of the
stopband. A typical choice for w, is 1.2/ M. Ideally the subband responses should
be as close as possible to the ideal bandpass responses and so this forms the crite-
ria for minimizing the stopband energy. A small value of E implies that there is

virtually no aliasing among the subbands that are not neighbours to each other.

2.9.5.2 Performance of Fast Algorithms

One of the most beneficial characteristics of the ELT is that it can be efficiently
computed, with a complexity close to that of standard block transforms without the
problem of blocking effects. As previously mentioned Malvar derived some fast
algorithms for the MLT and more importantly the ELT in the early 90’s with good
performance. These will be looked at briefly as further implementation will lean
towards these more efficient structures in future research. Current research however
will use the simple FIR filter bank structure shown in Figure 1.2 with the impulse
responses of the analysis and synthesis filters being defined by the basis functions of

the ELT transform.
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The benefit of the ELT structure is that a good design for the prototype function h(n)
guarantees that all analysis and synthesis filters will have good bandpass responses.
Also a structure of the modulating functions can lead to a regularly structured matrix,
which leads to a fast algorithm. In (Malvar, 1992) Malvar presents a fast algorithm
for any K using orthogonal butterfly angles and a type-IV DCT. The polyphase com-
ponent matrix E/(z) is implemented as a cascade of two types of matrices: zero-delay
orthogonal factors and pure delays. For a complete mathematical derivation of the
algorithms for K = 1, K = 2 and K > 2 refer to the following (H. Malvar, 1992;

H. Malvar, 1991; Malvar, 1992).

The final computational complexity of the fast ELT is given below

M .
?(21( + logaM + 3) multiplications (2.64)
M §
7(2[( + 3logaM + 1) addatrons (2.65)
The computational complexity is close to that of block transforms, and thus is much

lower than other filter banks such as the QMF bank, providing a motivation to use

such a design for subband decomposition and BSS in the subband domain.

2.9.6 Conclusion

The ELT transform has been presented. The ELTs are a subclass of all PR filter
banks in which the synthesis filters are identical, within time reversal, to the analysis
filters as the orthogonality conditions are met. Filter lengths greater than twice the
number of subbands can be used without much penalty in computational complexity
and many subbands can be used. The benefits of using ELTs over other filter bank
structures such as those based on the LOT, the MLT or the standard block transform
have been reviewed and the implementation and structure of a fast implementation

of a direct and inverse ELT algorithm has been briefly discussed.
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2.10 Identifying Areas for Contribution

In general, the majority of literature for Blind Signal Separation focuses on assessing
a proposed algorithm by evaluating and comparing the separation performance using
some particular metric, as described previously, to a benchmark value. For acoustical
applications that implement some convolutive BSS algorithm to perform separation
of speakers in a room, the mixing model is usually set up with some pre-determined
spatial layout. i.e. speakers and sensor array positions in a room are known. In (A.
Westner, and V. Bove, 1999), a study of the nature of room impulse responses is con-
ducted with discussion on obtaining room impulse responses taken from a conference
room with different locations and source/sensor configurations. The details of the
room layout can be seen in Figures 2.8 and 2.9. Figure 2.9 shows one particular con-
figuration with two speakers and two microphones. The study of the nature of room
impulse responses is given, with emphasis on frequency characteristics and artifacts
of the specific room used for experimentation. Also the provision of acquiring ideal
inverses of the room impulse responses is made using FIR matrix polynomial algebra
techniques with reference to (R. Lambert, 1996). In convolutive mixing models, the

impulse responses are usually modelled as FIR filters as mentioned previously with
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an ideal inverse usually being an IIR filter. However, for purposes of stability, it is
better to use a corresponding FIR filter that approximates the ideal inverse. Other
work presented in this area for considering inversion of multivariate FIR MIMO sys-
tems by FIR MIMO systems can be found in (R. Rajagopal, 2000a). Additionally,
in (M. Hofbauer, 2004a), the problem of Least-Squares optimal FIR inverse-filtering
of a convolutive mixing system, given by acoustic impulse responses, is considered.
The optimal filter is given by the LS-solution of a block-Toeplitz matrix equation, or
equivalently by the time-domain multi-channel wiener filter. The latter of these two
approaches is what we use in our framework in Chapter 3, for finding the optimal
FIR MIMO inverse system of order (), corresponding to the known FIR MIMO mix-
ing system of the reverberant room. These approaches come from a more theoretical
perspective, and use additional resources such as software to obtain room impulse
responses which may not be available for reproducing the BSS experiment. In (A.
Westner, and V. Bove, 1999), the acquisition of the impulse responses of the room
are made using software that computes them approximately. The inversion process,
as also described in (R. Lambert, 1996) is to apply standard scalar matrix algorithms
to invert FIR polynomial matrices. In (A. Westner, and V. Bove, 1999), the following

shows how to invert a 2 x 2 FIR matrix A.

ai;; a
A= 7 (2.66)
Q21 Q22
The inverse to A is:
1 a1 a
W=A"= S 2.67)

a11 * Qoo — Q12 * A1 Q91 Qs

In the above case, A is considered a square matrix, however for the non-square case
the pseudo-inverse of the matrix is taken. i.e. inv(A” A) x A¥. Generally for most
test cases for evaluating new BSS algorithms, recordings or mixtures, made in con-

trolled environments such as the one in (A. Westner, and V. Bove, 1999) are provided
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as benchmark testing measures. A description of the physical layout of sensor po-
sitions with respect to the sources is usually also provided, and can be considered
a priori information that can be used for good initialization for optimization proce-

dures of objective functions if desired.

In an ideal testing case it would be better to have a framework which allows a simple
method for obtaining all information for the mixing and demixing characteristics of
the reverberant environment used in the experiment, in a non-blind fashion. Instead
of only providing recordings of mixed signals using sensor arrays for benchmark
testing with blind performance indicators, a framework for allowing knowledge of
the full system would be more beneficial. This would not only provide a simple
method for replicating experiments, but would allow a best possible solution using

optimal filtering theory, that the proposed BSS solution could be compared to.

In Chapter 3 we address this issue by providing a simple framework or methodology
for acquiring the full information of MIMO mixing/demixing systems in a reverber-
ant environment, without the need for additional resources such as computer software

for acquisition of room responses.

As stated previously one of the focal points of this thesis is the application of convolu-
tive BSS problems with non-stationary sources such as speech in reverberant environ-
ments. In (L. Parra and C. Spence, 2000), a comprehensive analysis of the problem
is provided starting with solving the simple instantaneous case first and then moving
on to the more complex convolutive model. The pre-requisite knowledge of these
mixing models was provided in Section 2.4. This particular work was a good starting
point for the development of our own proposed BSS algorithms presented in Chapter
4. Algorithms presented in (L. Parra and C. Spence, 2000; L. Parra, C. Spence, and

B. Vries, 1997), and (Parra and Spence, 2000), exploit the non-stationarity of acous-
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tic sources. As explained in Section 2.8, there are two main approaches to solving
the convolutive BSS problem. One is with the use of HOS, and one is the use of
changing SOS in the temporal domain. Within the area of speech/acoustic applica-
tions, it is the latter method that is usually adopted when proposing a BSS model to

be applied to an acoustics application.

In (L. Parra and C. Spence, 2000), a least-squares (LS) cost function is generated 1n
the frequency domain to solve the convolutive BSS problem. The noise free criterion
to optimize is
E(w, k) = W(w)Ry(w, k)W (w) — Ay(w, k) (2.68)
W,A, = argmm Zzzlzi{:lHE(w, E)|I?
W, A,
(2.69)
W(r)=0,7>0Q<T,
Wy(w) =1
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The method of joint diagonalization is used, however the inherent local frequency
permutation problem that underpins all convolutive BSS problems is evident and de-
serves special attention. As described in Section 2.7.2, only consistent permutations
for all frequencies will correctly reconstruct the unknown input signals. The solution
proposed in (L. Parra and C. Spence, 2000) was to apply a fixed length FIR filter con-
straint. This constraint is performed by applying a projection operator P to the filter
estimates every iteration. This requires transforming between time and frequency
domains at each iteration which introduces computational overhead. In (M. Ikram,
and D. Morgan, 2000), there is some evidence that the algorithm presented in (L.
Parra and C. Spence, 2000) converges to a local minimum, resulting in insufficient
cancellation of undesired cross signals from the convolutive mixture. Studies from
(M. Ikram, and D. Morgan, 2000) prove that the ideas proposed in the existing litera-
ture are not capable of effectively handling the ’permutation inconsistency” problem,
which becomes worse as the length of room impulse response increase. Benefits of
computational saving are evident for transforming to the frequency domain to per-
form multiplication 1n contrast to convolution in the time domain, for medium to
longer unknown room responses. However, no extensive investigation in the litera-
ture has studied the comparison of a time domain approach using convolution for a
smaller unknown system which avoids the local permutation problem, with the typ-
1cal frequency domain approach with some constraint to solve the local frequency

permutation problem.

In Chapter 4, with reference to (M. Ikram, and D. Morgan, 2000) and non-optimal
performance of current methods such as those presented in (L. Parra and C. Spence,
2000), there is motivation to propose new BSS algorithms that solve the convolutive
problem completely in the time domain for smaller systems and thus avoid the over-

head of solving the inherent local frequency domain problem as well as the overhead



Literature Review, Pre-requisites, and Outstanding Issues 59

of transforming to and from other domains such as the frequency domain. In (S. Ku-
rita, H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura, 2000; H. Sawada, R. Mukai,
S. Araki, and S. Makino, 2004a; M. Ikram, and D. Morgan, 2000), and (M. Ikram,
and D. Morgan, 2002), emphasis is made on solving the permutation problem as op-
posed to avoiding it in the first place, by using knowledge of beamforming which
assumes the distance between elements on the sensor array is known or the angle of
incidence of the impinging waveform from sources to sensors is known. The merits
of methods that avoid the local permutation problem rather than solve it have not
been investigated for smaller to medium sized systems and provide motivation for
work in this area. Two different algorithms based on avoiding the local permuta-
tion problem are proposed in Chapter 4, with initial emphasis on initialized gradient

descent and Newton based methods of optimization.

Common frequency domain methods used for convolutive BSS problems with non-
stationary sources such as speech, always have some particular criterion which re-
quires some method of optimization. For convolutive BSS problems, transform to
the frequency domain simplifies the separation process, however introduces a local
permutation problem which must be resolved. The motivation for avoiding this local
permutation problem leads to the work in Chapter 4. This work initially assumes
a good initial starting point for the criterion in the region of the global minimizer.
The justification of this 1s that the criterion in most cases defines a multivariate non-
convex problem which if poorly initialized, will lead to a sub-optimal solution. Good
initialization, requires additional a priori information, otherwise ill-convergence may
result. Recently, much work has been done in the area of combining adaptive beam-
forming techniques and convolutive blind signal separation for the purposes of solv-
ing the inherent local permutation problem introduced. In (L. Parra and C. Alvino,

2002), the geometric information available to adaptive beamforming is exploited and
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is introduced into the BSS algorithm as the initialization of filter parameters and
as regularizations using penalty terms; both approaches are not limited to SOS ap-

proaches and can be extended to HOS.

When dealing with small to medium sized unknown demixing systems, instead of
introducing beamforming techniques that either solve the permutation problem by
analysing beamforming patterns to 1nitialize unknown filters in the frequency do-
main before optimization or use constraint functions, a more direct method is to
use the approach of global optimization. A good justification here is that geometric
source separation techniques require additional resources to calculate beam patterns,
or use knowledge of source or sensor array geometric configurations. In the true
essence of BSS, when knowledge of such information is unknown, and the prior-
ity of solving or avoiding the local frequency domain approach is paramount, the
combination of an uninitialized global optimization algorithm and a BSS convolu-
tive method that avoids the local permutation problem, is adequately justified. Such

a proposed method is introduced in Chapter 5.

In (L. Parra and C. Alvino, 2002), the use of geometric and adaptive beamforming
with relation to BSS is explored. The motivation for using additional criteria is to
avoid the local frequency permutation problem by utilizing additional information
and to avoid ill-convergence to local minima. The work explored in (L. Parra and
C. Alvino, 2002) will now be briefly elaborated on. Firstly with reference to beam
patterns and the sensor array response, for a linear array with omnidirectional sensors
and a far-field source, the sensor response depends only on the angle, § = 6(q),

between the source and linear array,
d(w,q) = d(w, §) = e~ iP/wsm(®) (2.70)

where p = [py, .., pn] are the sensor positions of the array and c is the wave prop-
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agation speed. In beamforming literature, each unknown FIR filter in the demixing

system produces a beam or beam pattern. The quantity
Ir(w, )| = [[w* (w)d(w, O) 2.71)

can be plotted where the magnitude response of each beam pattern can be plotted as
a function of frequency w versus 8, the incident angle on the sensor array. From the
plot we can visualize the frequency response of a given beam. With this information
available a set of geometric constraints is then derived to solve the local permutation
problem. An unconstrained objective BSS function used in (L. Parra and C. Spence,
2000), is used as the BSS criterion to be optimized as shown below,

JW) = 3 () [Ryy (8, ) — diag[Ryy (£, )] @72

t,w

The above criterion is a simultaneous diagonalization problem which, if uncon-
strained will suffer from ill-convergence and/or the local permutation problem. To
avoid this, a geometric constraint is imposed. Firstly the assumption that the sources
are localized at angles of § = [y, ..., 0)] is made. The response of the unknown
FIR filters in demixing system W for the directions in 6 is given by W (w)D(w, 0),
where D(w, 0) = [d(w, 61),.. ,d(w, Ox)]. The penalty term added as a constraint to

Equation (2.72) is,
Jo1(w) = ||deag[W (w)D(w, 8)] — I||?, (2.73)

or

Joo(w) = [|[W(w)D(w, ) - TI|I*. (2.74)
As a summary of the work presented in (L. Parra and C. Alvino, 2002), the geometric
information that either assumes knowledge of 6 or the sensor positions p in the linear
array, was introduced into the convolutive BSS algorithm as initialization of the fil-
ter parameters to ensure reasonable convergence to a separating system that doesn’t

exhibit the local frequency permutation problem.
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Similar work presented in (H. Sawada, R. Mukai, S. Araki, and S. Makino, 2004a)
proposes another way of estimating directions of arrival for solving the local permu-
tation problem. The Moore-Penrose pseudoinverse W (f) of the separation matrix
W(f) obtained by ICA is found. Then the direction 6, of a source corresponding to

the 2-th row of W(f) is calculated by

arg((W=,,/[W~1],,)
2n fe=i(d, — dJ') ,

0, = arccos (2.75)

where c is the propagation velocity and d, is the position of sensor 7. Again the
assumption that a linear array of sensors is used with knowledge of the relative sensor
positions d is made. This information may not always be available. Other works
that adopt similar approaches with beamforming and assume priori knowledge of
source localization for solving the local permutation problem include, (R. Aichner,

and H.Buchner, 2003) and (M. Ikram, and D. Morgan, 2002).

Alternative to the methods discussed above, if information such as sensor locations
or source localization angles are not known then poor initialization leads to poor sep-
aration performance, local permutation problems and ill-convergence. For small to
medium sized systems where such information is not present, there is motivation to
present a convolutive BSS algorithm that avoids the local permutation problem com-
pletely, as presented in Chapter 4, along with a global optimization algorithm that
does not require any initialization information to find the correct separating system.

Such a method is presented in Chapter 5.

So far we have discussed the motivation to propose a BSS solution to the convo-
lutive BSS problem that avoids the permutation problem all together. The benefits
of such a proposal would be seen systems that are small to medium sized. Also, a
global optimization method is proposed for problems where information for good

initialization is unavailable. For higher order demixing systems with longer impulse
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responses that are reflective of highly reverberant environments, the motivation for
maintaining the time domain convolutive BSS algorithm becomes less. The reason
for this is that the computational overhead required for performing convolution in the
time domain without needing to solve the local permutation problem becomes higher
than the computational overhead of performing multiplication in the frequency do-
main and solving the local permutation problem introduced, as unknown dimensions

increases.

The motivation for investigating convolutive BSS within a subband domain frame-
work as opposed to a frequency domain framework does not come from a computa-
tional perspective, but rather from the limiting factor of separation performance by
the frequency domain. In Chapter 6 we investigate BSS within a subband frame-
work. In (S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, 2001) the limitation
of frequency domain BSS is discussed by showing that the frequency domain BSS
framework is equivalent to two sets of frequency domain adaptive beamformers. As
a result it is shown that the performance of frequency domain BSS is upper bounded
by that of adaptive beamformers. For a TITO system, two sets of beamformers are

summarized as

Wi Wi Hy Hyp ¢ O
- (2.76)

War W Hy Hy 0 ¢

An adaptive beamformer (ABF) is derived firstly for a null towards the jammer signal
S1 when S, is the target signal, and then secondly for a null towards the jammer Sy
when S is the target signal. For a more precise derivation of how the equivalence
is defined refer to (S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, 2001) and
references therein. It is stated that although BSS and ABF can reduce reverberant
sounds to some extent, they mainly remove sounds from the jammer direction which

explains the poor separation performance of BSS in a room with longer reverberation
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characteristics.

Also in (S. Araki, S. Makino, R. Aichner, T.Nishikawa and H. Sarawatari, 2003), a
subband based blind source separation for convolutive mixtures of speech is investi-
gated. The motivation for working in the subband domain comes from the draw-back
of frequency domain BSS, i.e. when a long frame with a fixed frame shift 1s used
to cover reverberation, the number of samples in each frequency becomes small and
the separation performance is degraded. It is shown that unknown demixing FIR
filters in each subband allow more effective separation with rooms with long rever-
beration. The subband model is presented as a series of stages. Firstly, a subband
decomposition of the observed signals is realized using a single sideband modulation.
Next a time-domain BSS algorithm is proposed based on time-delayed decorrelation
for non-stationary signals. Finally, a synthesizing stage is used to combine separated
subbands back into the fullband domain to obtain the recovered signals up to a global

permutation and scaling factor.

Not much focus has been given to performing BSS within a subband framework.
Obviously as discussed previously, methods to solve the inherent local permutation
problem introduced by transforming convolution to multiplication in a different do-
main need to be proposed due to there being many uncoupled separation problems
in the subband/frequency domain framework. In (S. Araki, S. Makino, R. Aichner,
T.Nishikawa and H. Sarawatari, 2003), constraint null beamformers are used to ini-
tialize the unknown demixing FIR filters within each subband to prevent the local
permutation problem. i.e. To design the initial value, an assumption that the mix-
ing system H = {h,,} represents only the time difference of sound arrival 7,; with

respect to the midpoint between the microphones is made. Then

H(w) = {hy,(w)} = ezp(ywy,), (2.77)
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where 7,, = -df sin #,. Here an assumption is made that the position of the 7-th mi-
crophone given by d; is known, as well as the direction of the +-th source 6, is known
for the good initialization. For the work proposed in Chapter 6, a good investigation
of a few different ways of designing the filter bank using extended lapped transforms
is given for performing subband decomposition. Another issue to be addressed with
regards to solving convolutive BSS problems within a subband domain framework is
that no work has been proposed that jointly addresses the issue of getting improved
separation perfofmance, without needing additional assumptions on available infor-
mation used for good initialization. This initialization is paramount in ensuring that
the local permutation problem introduced by converting the problem from the time
domain into some transform domain is addressed. If such information is not available
in the problem space then methods that use global optimization need to be embraced
and emphasis of combining good separation algorithms within subbands, with such

optimization techniques is well justified.



Chapter 3

Acoustic Modelling

3.1 Introduction

The contribution of this chapter is to provide a repeatable general method to ob-
tain all information of modelling a convolutively mixed BSS problem in a rever-
berant environment in a non-blind sense. In most cases, current literature provides
recorded mixtures of speech or audio in a reverberant environment, or alternatively
provides spatial layouts of rooms for setting up experiments with acoustic record-
ings and microphone arrays, as identified in Chapter 2. There is no obvious or direct
method to determine the entire global system, comprised of the mixing and demix-
ing systems. The benefit of having some model which allows total knowledge of the
mixing/demixing systems for acoustic BSS mixing experiments and testing of BSS
algorithms, is that an 1deal solution generated from such a model can then be used
as a benchmark for comparing the solution of the existing or newly proposed BSS

algorithms to.

A better quantitative comparison of how well the proposed BSS algorithm performs
can be made if we firstly assume a non-blind approach for that particular acoustic

environment. Of course this only serves as a tool for conducting quality of separa-
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tion of the algorithms and allowing a more effective comparative analysis tool for
different BSS algorithms. Firstly we define a framework or methodology for obtain-
ing impulse responses of a MIMO system so as to model the room response that
couples each source to each sensor. By doing this we can have an analytical repre-
sentation of the MIMO mixing system. After obtaining the information related to the
mixing system, it is then necessary to obtain the corresponding inverting system that
approximates a delayed identity MIMO system so that recovery of the initial sources

is made up to an arbitrary system delay.

3.2 Acquiring Room Response

The focus of this work is on acoustic environments and in particular multi-channel
room reverberation and finding a demixing system that will result in the separation of
the unknown multiple nonstationary input sources from their mixtures. When evalu-
ating the performance of separation algorithms in realistic scenarios where there is a
high level of reverberation due to multipath propagation, it is often desirable to know
the acoustical impulse response of actual rooms. A standard data set! and unified
methodologies for testing separation performance of algorithms for synthetic and
actual mixed signals measured 1n simulated and real reverberant environments are
available from the authors of (D. Schobben, K. Torkkola, and P. Smaragdis, 1999).
Whilst most literature provides geometry of the rooms and experimental setup, as
identified in Chapter 2, actual impulse responses for MIMO mixing systems of rooms
are not usually provided. A common approach to obtain room impulse responses for
is to use the maximum length sequence (MLS) method as described in (J. Borish, and

J. Angell, 1983). With the MLS method it is possible to measure the acoustic im-

"This data 1s available from http //www?2 ele tue nl/1ca99/
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pulse response with a great amount of accuracy and repeatability. The MLS method?
is based on a cross-correlation technique and is highly immune to extraneous noise
of all kinds. This property demonstrates usefulness for acoustical measurements in
very noisy environments. The method uses a signal that is a deterministic periodic
pseudo-random binary sequence and is used as a source signal to be propagated from
source positions through loud speakers. It is generally required that 1ts length be at
least equal to the reverberation time of the room. It has similar spectral properties
as true random white noise. From signal theory we know that the cross-correlation
between an input signal s(k) and an output signal x(k) of a linear time-invariant
(LTI) system, is related to the auto-correlation of the input by a convolution with the

system impulse response,
Ry, (k) = Rgs(k) = h(k). 3.1

An important property of the signal used in the MLS method,like that of white noise,
is that its auto-correlation function is approximately an impulse represented by the

Dirac delta function,

Ras(k) ~ 8(k), (3.2)

leading to

R (k) = R(k). (3.3)

Therefore the impulse response of the unknown channel can be found by cross-
correlating the MLS mput signal(s) s(k) with the received/observed signal(s) z(k)
from the microphones. If using FIR filters to model the impulse responses of respec-
tive channels, then the length of the filters will depend on the sampling frequency
and where the majority of information is contained from acoustic echoes, i.e direct

sound and primary reflections from walls, floor, ceiling, and other objects.

2Generated with Aurora software plug-ins for CoolEditPro 21 available at
http //www ramsete com/Aurora/download/Aurora33Betal zip
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Figure 3.1 A section of a typical MLS signal

The most efficient technique to experiment with real world signals is to take a clean
sound source such as that from the TIMIT corpus of speech and convolving it with a
known impulse response of a room as can be obtained by the MLS method above for
a MIMO system. By using artificially generated mixtures, we know what the mixing
filters are and we can use them to determine how long separating filters need to be for
good results. Additionally better quantitative analysis can be performed (A. Westner,
and V. Bove, 1999). An example of a typical MLS signal is shown in Figure 3.1.
To obtain the multi-channel impulse responses of a TITO mixing system in a rever-
berant room of dimension 2.28m x 5.21m x 3 45m, the MLS signal(s) were played
synchronously through two Genelec® 2029A loud-speakers. The mixed signals were
recorded simultaneously at a sampling frequency of 48kHz using two Shure SM57
dynamic unidirectional microphones with a cardioid pickup pattern shown in Figure
3.2, which isolates the main sound source and minimizers background noise. All
input/outputs were synchronized and interfaced to a Digi 001 PCI card through an 8
channel analogue I/O Digi 001 audio hardware box with 2 microphone preamps for

recorded inputs available from the company Digidesign and is shown in Figure 3.3.
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Please see print copy for Figure 3.2

Figure 3.3 Digidesign Digi001 8 channel analogue I/O with 48kHz sampling.

The physical layout of the room is shown in Figure 3.4. Also for purposes of initial-
ization for other typically used BSS methods to avoid ill-convergence and solve the
permutation indeterminacy, the direction of arrival (DOA) angle is calculated using
simple trigonometry. After calculating the TITO system impulse response at 48kHz,
we downsample to 8kHz and discard the impulse response after a reverberation time
of 200ms as the dominant echo information of the room is contained within. This
corresponds to a FIR filter length of P = 1600 for each channel respectively. The re-

sulting room impulse response coupling each source s(t) to each sensor x(t) is given
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Figure 3.4 Geometrical properties of room layout and direction of arrival of sources imping-
ing on array manifold.

in Figure 3.5. These results using this general non-blind approach to obtaining room

mixtures are used for comparison with simulations that use a blind approach.
3.3 Inverting the Room

The second part of the contribution is to have a method to find the corresponding
inverting MIMO demixing system to the MIMO room response found in the pre-
vious section. A process to identify the corresponding MIMO demixing system is
necessary to provide an ideal solution to be used as a comparative benchmark for
differing separation methods. This benchmark solution can be evaluated and com-
pared against other solutions that are found using various BSS techniques, including

the ones proposed in Chapter 4,5, and 6.

As described in Section 2.4, the MIMO demixing system W (¢) required for decon-

volution has a FIR structure which can be expressed in the z-domain using the causal
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Figure 3.5 Measured room 1mpulse responses with reverberation time of 200ms 1.e. P=1600,
for down-sampled rate of 8kHz for a TITO system.

z-transform

Wy(2) =3 wy(n)z™, ¥2,V) (3.4)
n=0

The demixing system is a matrix of FIR filters or moving average (MA), all-zero
systems. Ideally, inversion of the known convolutive mixing MIMO system should
be represented by an all- pole, auto-regressive (AR) system or IIR filters. However
good approximation using inverse FIR filters is possible and provides a more stable
process. The ideal inverse FIR filter will have an infinite length but this cannot be
practically realized and so the inverse FIR filter channels must be approximated up
to an arbitrary length that is suitable for the BSS application. A common assumption
of BSS methods is that the order of the true channel(s) P or inverse channel(s) ()
is known. In (A. Liavas, P. Regalia, and J. Delmas, 1999) effective channel order
determination is made by applying a rank detection procedure to an over-modelled
data covariance matrix. Other research that investigates finding the inversion of mul-
tivariate FIR MIMO systems by FIR MIMO systems and deriving conditions for the

minimum FIR filter length is provided in (R. Rajagopal, 2000b). In our case, for
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Figure 3.6 System 1dentification of the inverse FIR filter for a SISO system.

applications of BSS to room acoustics, the channel order has been shown via exper-
iment to be P ~ 1600 for 8kHz sampling frequency. To obtain a good estimate of
the order of the demixing system () for our BSS algorithm, the Wiener solution was

calculated using optimal filtering theory, similar to that in (M. Hofbauer, 2004b).

The basic system 1dentification model used to solve the discrete Wiener-Hopf normal
equation for a single-input-single-output (SISO) system is given as a block diagram
in Figure 3.6. According to the orthogonality principle given by Equation (5.94) in
(A. Mertins, 1999), the following orthogonality condition for a SISO system must be

satisfied by the optimal filter solution,

Q-1
E{ls(n—d) =) _w(g)z(n - g)lz*(n— )} = 0, (3.5)

q=0
where 7 = 0,1, ..., ) — 1. For the MIMO FIR system case, this can be extended to
the block diagram given in Figure 3.7. The aim is to find a set of N M filters w,,,
7 =1,..,M,2=1,...,N, with  FIR coefficients, so that the output §,(n) is an

estimate of the desired signal, the delayed source, i.e. s,(n — d),

M

8.(n) = su(n—d) = (wyy(n) *x,(n)). (3.6)

J
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Figure 3.7 MIMO system 1dentification for demixing FIR system using MMSE.
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Figure 3.8 Wiener solution to TITO FIR demixing system with reverberation time of 250ms
1.6.Q=2000, delay of for down-sampled rate of 8kHz.

In the MIMO case we are solving V x M Wiener-Hopf equations for a specified
system delay d. Using segments of speech from the TIMIT corpus of speech and
mixing them using the acquired mixing system given in Figure 3.5 we can obtain our
mixtures x(n) and desired signals s(n — d) for some desired system delay d. Exper-
imenting with different values of the order () of the demixing system and a system
delay d in milliseconds we use the Wiener solution for the MIMO FIR demixing
system. Figure 3.8 gives the impulse responses for the TITO case which inverts the
mixing process illustrated in Figure 3.5. The reverberation time is Tr = 250ms,
corresponding to an order of the demixing system of () = 2000 for a sampling fre-
quency of 8kHz. The system delay that provided good results when looking at the
global system shown 1n Figure 3.9, by cascading the mixing and demixing systems

together, was d = 50ms.
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Figure 3.9 Global TITO FIR system, 1.e. cascaded mixing and demixing FIR systems.

3.4 Conclusions

This chapter has provided a methodology for obtaining non-blind results for both a
MIMO convolutive mixing system using FIR filters, and the corresponding MIMO
convolutive demixing system of FIR filters that allows recovery of the input sig-
nals up to an arbitrary system delay. The importance of this is that this information
about the unknown MIMO demixing system to be derived in the blind case is readily
available and allows a better comparative analysis of how different BSS algorithms

perform to our proposed BSS algorithms and with each other.



Chapter 4

Time and Frequency Domain
Convolutive BSS models

4.1 Introduction

The two main contributions made in this chapter are two different algorithms that aim
at solving the local frequency permutation problem that arises 1n convolutively mixed
BSS problems that transform a BSS model from the time to the frequency domain
as is commonly the practice. The main reason for transformation to the frequency
domain is the computational savings that are made by converting convolution in the
time domain to multiplication in the frequency domain. Although this transforma-
tion benefits from the savings on computation just described, additional overhead is
introduced from the transformation operator such as the DFT, as well as the compu-
tation introduced due to the introduction of the local frequency permutation problem
which must be solved for successful separation up to an arbitrary delay and scaling

factor.

The benefits of the computational savings of converting to a transform domain against
the disadvantages of having to solve the local permutation problem within that do-

main must be assessed as there is a trade-off. By proposing two new BSS algo-
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rithms that eliminate the local permutation problem by either staying completely in
the time domain, or by performing common operations for all frequencies, we can
assess the validity of performing the proposed approaches instead of the typically
used frequency domain approach for various systems within the context of BSS in an
acoustic environment. Computational complexity for convolutive mixing/demixing
systems rises as the dimensions of the system increase. For large systems there is a
large capacity to benefit from computational savings by converting to the frequency
domain for example. The trade-off becomes good and when the overhead introduced
from having to solve the local frequency permutation problem is minimal in compar-
ison to the computational savings made by performing operations in the transform
domain, the frequency domain method is justified. However, where a smaller mix-
ing/demixing system exists, the trade-off of transforming to the frequency domain is
not warranted and validates the proposed algorithms in this chapter. The motivation
for both convolutive BSS algorithms in this chapter is to provide models that achieve
separation up to a global permutation whilst avoiding the local frequency permu-
tation problem which 1s commonly found in most convolutive BSS algorithms and
must always be solved for, thus requiring additional computational overhead. The
latter model will be integrated into our proposed subband domain model 1n Chapter
6 when dealing with larger more complex systems that are evident 1n reverberant

environments.

The first algorithm presents an extension of the ACDC algorithm introduced n (A.
Yeredor, 2002) for the instantancous mixing problem to the more general convolu-
tive mixing problem with nonwhite sources. Further assumptions made on the source
signals are their mutual statistical independence, nonstationarity and smoothness of
their power spectra. The algorithm iterates the estimation of the mixing system (AC

step) and the source statistics (DC step) until convergence is achieved. The proposed
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algorithm operates in the frequency domain, but unlike most frequency domain algo-
rithms, it carries out some of the operations jointly for all frequencies. This allows

us to overcome frequency dependent permutation and scaling problems.

In addition to the proposed ACDC algorithm, this chapter also proposes a new algo-
rithm for solving the Blind Signal Separation (BSS) problem for convolutive mixing
completely in the time domain. The closed form expressions used for first and sec-
ond order optimization techniques derived in (M. Joho and K. Rahbar, 2002) for
the instantaneous BSS case are extended to accommodate the more practical con-
volutive mixing scenario. Traditionally convolutive BSS problems are solved 1n the
frequency domain (Rahbar and Reilly, 2003; Ikeda and Murata, 1999) but this re-
quires additional solving of the inherent frequency permutation problem. Where this
is good for higher order systems, systems with a low to medium number of vari-
ables benefit from not being subject to a transform such as the DFT. We demonstrate
the performance of the algorithm using two optimization methods with a convolu-
tive synthetic mixing system and real speech data. A summary of both algorithms is

given in Section 4.4
4.2 ALS Approach

Consider a linear mixing process where N source signals s1(n), . ,sy(n)are mixed
in a convolutive manner into M > N observable signals z;(n), ...,z (n). This

operation can be expressed in matrix notation as

x(n) = Z_ H(m)s(n —m) 4.1)
with s(n) = [s1(n),s2(n),...,sny(m)], x(n) = [z1(n),22(n),...,za(n)]*, and

[H(n)],, = h,,;(n). The terms h, ,(n) denote the impulse responses from input j to

output 2 of the mixing system. The aim is to identify the impulse responses £, ,(n)
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on the basis of the observed signals z1(n), z2(n),. ..,z (n) up to the well known
scaling and permutation ambiguities that are inherent to all blind identification and
separation algorithms (J. Cardoso, 1998; Cichocki A. and Amari S.-1., 2002). The
assumptions made about the input signals are theirr mutual statistical independence
and quasi-stationarity over short periods of time, but nonstationarity in a more gen-
eral sense, similar to (L. Parra and C. Spence, 2000; J. Anemuller, and B. Kollmeier,
2000; D. Pham, and J. Cardoso, 2001; K. Rahbar, J. Reilly, and J. Manton, 2002; A.
Yeredor, 2002) and smoothness of their power spectra. These assumptions are for ex-
ample well justified for independent speech signals. In particular, the assumption of
nonstationarity of the sources allows us to solve the problem based on second-order
instead of higher-order statistics (Cichocki A. and Amari S.-I., 2002; L. Parra and C.
Spence, 2000; D. Pham, and J. Cardoso, 2001; A. Yeredor, 2002).

Approaches to solve the above mentioned blind identification problem can be di-
vided into time and frequency domain methods. In this work, we use a frequency
domain approach to transfer the convolutive time-domain mixing process into an in-
stantaneous mixing processes in the frequency domain. Let x(w), H(w), and s(w)
denote the Fourier transforms of the sequences x(n), H(n), and s(n), respectively.
Assuming that a total number of K frequencies wy = 27k/K, k=0,1,. K —1
are observed, we may replace Equation (4.1) with K instantaneous mixing processes
of the form

x(wy) = H{wy)s(w). 4.2)

~

The aim is to find estimates H(wy) such that the remaining ambiguities can be ex-

pressed as

A

H(w) = Hw)PD(w) Vw (4.3)

where P is a permutation matrix and D(w) is a (possibly frequency dependent) di-

agonal scaling matrix. Thus, we essentially look at a setting that is similar to the
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one in (K. Rahbar, J. Reilly, and J. Manton, 2002). Differences between our ap-
proach and the one in (K. Rahbar, J. Reilly, and J. Manton, 2002) are that we assume
colored instead of white source signals and that we use a different approach to de-
termine the unknown mixing system. Our method can be seen as an extension of the
ACDC algorithm that was introduced in (A. Yeredor, 2002) for instantaneous mix-
ing. We transfer the ACDC algorithm to the frequency domain and optimize some of
the involved parameters for all frequencies simultaneously. This joint optimization
allows us to overcome the frequency dependent scaling and permutation ambiguity

problems that occur with all frequency-domain approaches.

The notation for Section 4.2 is as follows. Vectors and matrices are printed in bold-
face. The superscript {-}* means transposition and complex conjugation of a matrix
or vector. The superscript {-}* denotes the pseudoinverse. E{-} means the expecta-
tion operation. |- || is the Frobenius norm of a matrix. The symbols ® and ® denote
the Kronecker and Hadamard products, respectively. The term v = diag[u] denotes
the formation of a diagonal matrix v from a set of values u as well as forming a
column vector v from the diagonal elements of a matrix u. If the argument is a set

of matrices, then the result is a block diagonal matrix.

4.2.1 Algorithmic Model

We assume the signals z,(n) to be observed during 7' different time epochs and
rewrite Equation (4.2) as

X(wg, t) = H{wg)s(wg, t), t=1,2,...,T (4.4)

Given the observations x(wy, t) it is straightforward to find estimates for the cross-
power spectral density matrices R, ; = E{x(ws, t)x (wi, t)}, and based on Equa-

tion (4.4), these can be described as

R, = H(wp)A,, H” (W), 4.5)
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where A, ; are the cross-power spectral density matrices of the nonstationary in-
put processes s(wy, t). Because the different sources are assumed to be statistically

independent, the matrices A, ; are diagonal.

The criterion to find estimates for the mixing systems H(wy) and the unknown input

power spectra A, ; is defined as

K—
mm C =Y C,, (4.6)

with

Z IR, .. — H(wp) Au, JH (wi)])%. 4.7)

The minimization involves two steps that are repeated until convergence. First, we
carry out a so-called AC step, where the criterion is minimized with regard to in-
dividual columns of H(wy), while matrices A, ; remain constant (cf. (A. Yeredor,
2002)). This step is carried out repeatedly for all columns of H(wy), until conver-
gence. In the second step, the DC step, C' is minimized with respect to A, ;. Then,
another AC step is carried out, and so on, until the final minimum is reached. In
order to minimize the effect of different scale factors and permutations at different
frequencies, a projection procedure is included in the AC step that ensures that the
identified time-domain impulse responses do not significantly exceed a maximum,

pre-determined length.

4.2.1.1 The AC Step (Part 1)

In this step, we minimize C,, with respect to the ¢th column of H(wy) for each

frequency wy, se[;arately. Using the equality

N

H(wi) A, H (i) = Y A9y, bl (4.8)

n=1
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where hy,, ,, is the nth column of H(wy), Alrt) [Aw, tlnn are the diagonal ele-

ments of A, ., and

N

RO, =Ry, — Y Ae9h, bl (4.9)
n=1,n#L

we can write

Z IR, — Ay, bl |12 (4.10)

Similar to (A. Yeredor, 2002) for instantaneous mixing, this criterion can be rewritten

as
Cup = Cup, — 20l Py thoy, o+ Do (bl by, )%, (4.11)
with
P,..= ZA‘*’“ RO, +RY ), (4.12)
and
T
ka’g — Z[)\EWk,t)]Q- (4.13)

t=1

The optimal vector h,,, , is given by

hwk,£ = bwk,Z ﬁwk,é (414)

where [, ¢ is the unit-norm eigenvector of P, , that corresponds to the largest pos-
itive eigenvalue p,, » (A. Yeredor, 2002). The optimal prefactors b,, ¢, computed

separately for each frequency, are given by by, ¢ = (tu, ¢/Puy.0) %

4.2.1.2 The AC Step (Part 2)

Minimizing the objective criterion for each frequency separately does not allow us
to resolve any of the permutation and scale ambiguities. Therefore, at this stage,
we employ a projection technique that is similar to the one in (K. Rahbar, J. Reilly,
and J. Manton, 2002) in order to jointly compute the prefactors b, , that result in

time domain responses h, ,(n) of given, arbitrary length P. The vectors 4,, , remain
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the ones computed in Part 1 of the AC step. Note that concentrating h, ,(n) in time
will also yield smooth frequency responses H, ,(w), which are characteristic for most

real-world mixing systems.

Let
Bf(n) - [ejwonﬂwo,& ejwrnﬁwhf BRI erJK_lnﬁwK_l,e]' (4']5)
Then, the time-domain impulse responses hy(n) = [hyo(n),. ., hare(n)]? that cor-

respond to h,, , are given by

1
hg(n) = ? Be(’fl) Qly, (416)
with ap = [Dug., bwrty- > bug_,e]” - The vector o, that maximizes
P-1 K-1
th(n)hg(n) subject to Z h(n)h,(n) = 1, 4.17)
n=0 n=0

is the one that maximizes off Way, subject to aff Qe = 1 with

P-1 K-1
U => BI(n)Byn), Q=Y B/'(n)Byn). (4.18)
n=0 n=0

This optimal vector «, is given by the eigenvector that corresponds to the largest
eigenvalue p of the generalized eigenvalue problem W, = p€2ay, normalized such

that o Qo = 1.

4.2.1.3 The DC Step

In this step, we minimize C' with respect to A, ;. We first rewrite the criterion for
each ¢ and frequency wy, as a squared Euclidean norm of a difference vector (cf. (A.
Yeredor, 2002))
Cont = 8wt — Hur A tll2, (4.19)
with
At = deag(de, 4,
a,: = vec(Ry,.), (4.20)

Hy, = (HYwp)®1)© (1 H{ws)).
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Computing the optimal vectors A, ; for each frequency separately is straightforward:
Aupt = HE a,, .. However, such an approach has the drawback that the large degree
of freedom may make the tradeoff between the spectral properties of the sources and
the mixing system too easy to allow for an accurate estimation of the true under-
lying random processes on the basis of a finite number of observations. Therefore,
algorithms like the one in (K. Rahbar, J. Reilly, and J. Manton, 2002) simplify the
source modelling to white sources and absorb all coloration into the mixing system.
In practice, however, one often has some a priori knowledge about the source signals,
which could be exploited during the blind identification process. In the following,

we assume that the power density spectra )\gf’“’t) are smooth functions of frequency

and that spectral samples Awwt) o — 1,2,.. , K can be well approximated in the
form

A® = By 4.21)
with A\ = [Aﬁ"o’t), A /\,({”K“l’t)]T, where B isa T x ) matrix with Q < T

whose columns contain appropriate smooth basis functions.

We now consider the simultaneous optimization of all unknown values A“w) for a
given ¢ using the approximation given by Equation (4.21). For this, we first define

the cost function

K1
Co= Clpt = llac — HAl5, (4.22)
k=0
where 3 ) _ }
>\u}0,t aWOat
e = : y A= : ; (4.23)
L )‘wk—ht i B Aug_1,t i
H = drag[Hug, Huys - -+ Hug_, - (4.24)

Equation (4.21) can be rewritten as

A =Bv;, B=[B®Iyxn], (4.25)
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and hence we can write

Ce = [lac = Hvil3, (4.26)
with 7 = HB. The vector v; that minimizes Equation (4.26) is given by
ve = Hta,. (4.27)

Given vy, the vector \;, containing all values )\%‘”’C’t) required to set up the matrices
Aw,,,¢ for the next AC step, are found from Equation (4.23). Depending on the basis
B used, it is not assured that all A%wk’t) turn out positive. Therefore, we include one

. J*t
more step where any negative values A are set to zero.

4.2.2 Simulation Results

We consider the case where two nonstationary, colored source signals are mixed with
a two-input two-output mixing system. The autocorrelation sequences of the sources
were randomly generated for each time epoch as 75" (m) = olice(m) * e (—m)

where O’zt are uniform random variables and ¢, ;(m) are length-3 sequences of real-

valued Gaussian random variables. The mixing system was chosen as
H(0) = , H(1)= . 4.28
0= =53] @.28)

This is a paraunitary system, and its inverse, delayed to become causal, is given by
G(0) = H(1), G(1) = H(0). For the cascade of both systems we have C(n) =
Yo G(m)H(n —m) = 6,1

In the tests, K = 64 frequency points were considered. The basis sequences included

1n the columns of matrix B for the DC step were chosen as

( V2/T, 5€{0,5
V1/T, otherwise

with g = 0,1,...,J and J = 4. Note that this exactly describes Jth order moving

2m

T)’ Yy = (4.29)

B, , =, cos(

average source modeling.
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Figure 4.1 Value of objective function on a logarithmic scale versus the number of full iter-
ations.

Initial values for the estimated mixing system were randomly generated by adding
Gaussian random variables with standard deviation 0 = 0.1 to the coefficients of
the true system. Figure 4.1 shows the convergence behavior for 20 different starting
points and the same input statistics. As the examples show, in most cases the value
of the objective function decreased to extremely low values. Only three times out
of 20 the algorithm got trapped in a local minimum with a relatively high value for
C. In all cases where the final value C' was below —200 dB the power spectra
of the sources were perfectly estimated, and also the mixing system was identified
up to permutations and scaling. For cases where the final value was around —14dB
the estimates were close to the true values. For one of these cases, four pairs of the
identified source power spectra are depicted in Figure 4.2 togther with the true ones.
As can be seen, even for these cases the estimated source power spectra are very

close to the true ones. Also the cascades of the estimated mixing systems and the
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Figure 4.2 Source power spectral densities (psd’s) and their estimates Legend: — psdl; —-
— psd2; o estimate for psdl, x estimate for psd2.

inverse to the true one were near-perfect, as can be seen in the following example:

: ]
Clo) = | 00007 00002
0.0007 0.0002
[ 1 0.0008 |
C(1) = (4.30)
0.0009 -1
Clay— | 00012 ~00002

—-00012  0.0002
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4.3 Fullband TDBSS Approach

4.3.1 General Overview

Blind Signal Separation (BSS) (K. Pope and R. Bogner, 1996a; K. Pope and R.
Bogner, 1996b) has been a topic which attracted many researchers in recent years.
With the advent of more powerful processors and the ability to realize more com-
plex algorithms BSS has found useful applications in the areas of audio processing
such as speech recognition, audio interfaces, and hands free telephony in reverberant
environments. In view of the exponential growth of mobile users in the wireless-
communications world together with the limited capacity of resources available for
data transmission, modern communication systems increasingly require training-less
adaptation, to save on bandwidth capacity or to accommodate unpredictable channel
changes. Future systems must utilize spatial diversity multiple access techniques that
obtain their channel information exclusively from the received signal. These systems
fit the instantaneous and convolutive BSS models. Blind algorithms are useful here
as they can be self-recovering and do not require a priori knowledge of any training
sequence (Feng and Kammeyer, 1998). For example communication systems such
as GSM can devote up to 22% of their transmission ttme to pilot tones which could
be otherwise used for data transmission (T. Petermann, D. Boss, and K. Kammeyer,
1999). BSS has also found a fruitful application in multimedia modelling, and recent
work on modelling combined text/image data for the purpose of cross-media retrieval

has been made using ICA (Larsen et al., 2003).

There is an abundance of various methods used to solve BSS problems, as described
in Chapter 2, and these are often application dependent, however; Section 4.3 in-
vestigates an algorithm which demonstrates the convolutive mixing model which is

relevant to the applications mentioned above and provides a method that avoids the
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frequency domain permutation problem. The most prevalent of the aforementioned
applications suitable for this particular BSS criterion is in the area of speech process-

ing as it exploits the nonstationarity assumption of the algorithm.

We extend approaches in (M. Joho and K. Rahbar, 2002) to the convolutive mixing
cases. In Section 4.3.2 the approaches in (M. Joho and K. Rahbar, 2002) are briefly
reviewed. The proposed extended approach for convolutive mixing cases 1s given in
Section 4.3.3. Section 4.3.4 presents the simulation results giving the performance
of two local optimization methods: Gradient, and Newton optimization with speech

data.

The following notations are used 1n Section 4.3. We use bold upper and lowercase
letters to show matrices and vectors, respectively in the time, frequency and z do-
mains, e.g., A(t), A(w), A(z) for matrices and a(t) for vectors. Matrix and vector
transpose, complex conjugation, and Hermitian transpose are denoted by ()7, (+)*,
and (-)# £ ((-)*)7, respectively. E{-} means the expectation operation. || - || = is the
Frobenius norm of a matrix. ® 1s the Kronecker product and T'race(A) 1s the trace
of matrix A. With a = diag(A) we obtain a vector whose elements are the diagonal
elements of A and deag(a) 1s a square diagonal matrix which contains the elements
of a ddiag(A) 1s a diagonal matrix where its diagonal elements are the same as the

diagonal elements of A and
of f(A) £ A — ddrag(A). (4.31)

1yxnisan N x N matrix of ones, Oy is an N x [V matrix of zeros, and Iy is the
N x N identity matrix. vec(A) forms a column vector by stacking the columns of

A. The operator maty pg(a) reshapes a vector a of length NMQ to an N x MQ)

(N,L)

matrix. The matrices P,rs, Pgaq, and Pyes™” in Table 4.1 are mainly defined in
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accordance with (M. Joho and K. Rahbar, 2002). P,¢; and P 4, are given by

P,ss = diag(vec(of f(Inxn))), (4.32)

P gag = drag(vec(Iy)). (4.33)

The matrix P$:™ is the permutation matrix defined by

PWDyec(AT) = vec(A), (4.34)

vee

for N x L matrices A. Note that for N # L the matrix pLy) is, in general, not

self-inverse like the one that occurs in (M. Joho and K. Rahbar, 2002).

4.3.2 Review of Instantaneous BSS

This section gives a brief review of the instantaneous BSS algorithm proposed in
(M. Joho and K. Rahbar, 2002) which will be extended to our proposed fullband
convolutive time domain BSS algorithm given in Section 4.3.3. Assuming that the
sources are statistically independent and nonstationary, we observe the measured
signals over K different time window frames. In each frame the SOS are considered
stationary, while between adjacent frames the SOS are slowly changing. We define
the following noise free instantaneous BSS problem. It should be noted that if noise
is to be considered, denoising methods that utilize wavelets is a common method that
can be incorporated into the BSS process. In the instantaneous mixing cases both the
mixing and demixing matrices are constant, that is, H(¢) = H and W(t) = W. In

this case the reconstructed signal vector can be expressed as
8(t) = Wx(t). (4.35)
The instantaneous correlation matrix of §(¢) at time frame % can be obtained as

Risr = WRy, t W, (4.36)
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where R, ;. is defined as,
Rawp = E{x(k)x"(k)}. (4.37)

For a given set of K observed instantaneous correlation matrices, {Rq, i, the
aim is to find a matrix W that minimizes the following cost function
K 2
H
T2 Billof F(WRee s W), (4.38)
k=1
where {0} are positive weighting normalization factors such that the cost function

1s independent of the absolute norms and are given as
K
> Bl Rowill3 = 1. (4.39)
k=1

Perfect joint diagonalization is possible under the condition that {Rq, 1} = H{A, , }JH"
where { A x} are diagonal matrices due to the assumption of the mutually indepen-
dent unknown sources. This means that full diagonalization is possible, and when
this is achieved, the cost function given in Equation (4.38) is zero at its global mini-
mum. This constrained non-linear nonconvex multivariate optimization problem can
be solved using various techniques including steepest gradient-based descent (SGD),
Newton and global optimization routines. However, the performance of the first two
techniques depends on the 1nitial guess of the global minimum, which 1n turn relies
heavily on an initialization of the unknown system that is near the global trough.
If this is not the case then the solution may be sub-optimal as the algorithm gets
trapped in one of the local multi-minima points. Global optimization routines such
as those that utilize tunnelling, smoothing, simulated annealing and a combination
of first and second order methods allow a more robust convergence of the cost func-
tion to the global minimum without additional requirements or priori knowledge of
source locations with respect to the sensors for good initialization. The area of global

optimization with respect to BSS problems remains an open problem as geometric
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beamforming and the use of generalized eigenvector decomposition or matrix pen-
cils (C. Chang, Z. Ding, S. Yau, and F. Chan, 2000) are more generally used for good
initialization when solving the inherent permutation indeterminacy for convolutive
BSS in the frequency domain. The area of global optimization with reference to BSS

will be looked at in more detail in Chapter 5.

To prevent a trivial solution where W = 0 would minimize Equation (4.38), some
constraints need to be placed on the unknown system W to prevent this. One possible
constraint is that W is unitary. This can be implemented as a penalty term such as

given below

T & [WWFH — 17, (4.40)

or as a hard constraint that is incorporated into the adaptation step in the optimiza-
tion routine. For problems where the unknown system is constrained to be unitary,
Manton (J. Manton, 2002) presented a routine for computing the Newton step on the
manifold of unitary matrices referred to as the complex Stiefel manifold. For further
information on derivation and implementation of this hard constraint refer to (M.

Joho and K. Rahbar, 2002) and references therein.

The closed form analytical expressions for first and second order information used
for gradient and Hessian expressions 1n optimization routines and the learning rules
for the instantaneous BSS algorithm can be found in (M. Joho and K. Rahbar, 2002).
Both the steepest gradient descent (SGD) and Newton methods are implemented

following the same frameworks used by (M. Joho and K. Rahbar, 2002).

4.3.3 Proposed Convolutive TDBSS

Most BSS algorithms that assume convolutive mixing reformulate the problem into
many problems in the frequency domain using a Fourier transform. By solving many

BSS problems 1n the frequency domain for individual frequency bins one can exploit
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the same algorithm derivation as the instantaneous mixing BSS algorithm given in the
previous section and also referred to in (M. Joho and K. Rahbar, 2002). However the
inherent frequency permutation problem remains a problem and will always need to
be addressed. The tradeoff is that by formulating algorithms in the frequency domain
we can perform less computations and processing time falls but we still must fix
the permutations for individual frequency bins so that they are all aligned correctly.
This section aims to provide a way to utilize the existing algorithm developed for
instantaneous BSS from (M. Joho and K. Rahbar, 2002) and apply it to convolutive

mixing but avoid the permutation problem.

We extend the above instantaneous approach to the convolutive case whilst remaining
in the time domain. Section 2.4 gives the necessary background to model a typical
MIMO convolutively mixed BSS system. We still assume that the demixing system
and reconstructed signals are defined by Equation (2.8), however; we want to main-
tain similar expressions to those generated in the instantaneous case. It can be shown

that Equation (2.8) can be written in the following matrix form
§(n) = WX(n), (4.41)
where W € CVN*@M ig given by
W =[W(0),W(l), ,W(@Q-1)], (4.42)

and X (n) € COMx1 is defined as

X(n) = | . (4.43)

| x(n—(@—-1))

The output correlation matrix at time frame & can be derived as

Rs 1(0) = WRxx 1 (0)WT, (4.44)
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where,

Ry 1 (0) = B{X (k)X (k)} (4.45)

Correlation matrices for the recovered sources for all necessary time lags are given
by
R (1) = WE{X (K) X" (k + 7)W= WRxx ik (T)WT. (4.46)

Using the joint-diagonalization criterion in (M. Joho and K. Rahbar, 2002) for the
instantaneous modelling of the BSS problem, we can formulate a similar expression
for convolutive mixing in the time domain. Considering the correlation matrices with

all different time lags we should have the following cost function

Tmax K

T2 303 Burllof WRran(r)WH)|[7. (4.47)

T==Tman k=1

The only difference between 7; and J3 is that we now take into account all the
different time lags 7 for the correlation matrices for each respective time window &

where the SOS are changing. Also [y, is now defined as

Tmax K

S0 Besl

T=—Tman k=1

R (T3 = 1, (4.48)

and we note the new structure of VW. In the 1deal case where we know the ex-
act demixing system W,geq, all off-diagonal elements would approximately equal
zero and the value of the objective function would reach its global minimum where
J3 = 0. Each value of & represents a different time window frame where the SOS are
considered stationary over that particular ttme frame. In adjacent non-overlapping
time frames £ and £ + 1, the SOS are changing due to the non-stationarity assump-
tion. As this is a non-linear constrained optimization problem with NQ) M unknown

parameters we can rewrite it as
Wopt = argmm J3(W)
4% (4.49)

s/t Ja= |ddiagOWWH —T)||7. = 0.
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Due to the structure of the matrices and with the technique of matrix multiplication
to perform convolution in the time domain, optimization algorithms similar to those
performed in the instantaneous climate can be utilized. Notice also that in the in-
stantaneous version the constraint used to prevent the trivial solution, W = 0 was a
unitary one. In the convolutive case a different constraint 7, is used where the row
vectors of VW are normalized to have length one. Again referring to the SGD and
Newton algorithms closed form analytical expressions of the gradient and Hessian
deduced by Joho and Rahbar (M. Joho and K. Rahbar, 2002) were extended slightly
to accommodate the time domain convolutive climate of the new algorithm. These
expressions are shown in Table 4.1. They are similar to the method proposed in (M.
Joho and K. Rahbar, 2002), however, they work for convolutive mixing in the time
domain. Full derivations of the gradient and hessian closed form analytical expres-
sions are given in Appendix A.1. For convenience, Rxx x(7) is denoted as R} ;
for the fullband time domain. With these expressions the SGD and Newton meth-
ods are summarized in the Tables 4.2 and 4.3 respectively. Table 4.2 is relatively
easy to interpret as it is a simple iterative update or learning rule with a fixed step
size. As an alternative to a constant step-size u the natural gradient method proposed
by Amari (S. Amari, 1998) could be used instead of the absolute gradient although
faster convergence can be expected from second-order methods. Table 4.3 gives the
general Newton update with penalty terms incorporated to ensure that the Hessian of
the constraint, denoted as Hy, and the gradient of the constraint, denoted as G4, are
accounted for in the optimization process. Note the 7, defines the constraint given

in Equation (4.49) and expresses the unit energy of the rows of W.
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Table 4.1

Closed form analytical expressions for the gradient and Hessian of the cost function and

row-normilization constraint.

Cost function - J3

Tmax T 2
s =0 S Berllof FOVRE x W,

Gradient - G3

+of FOWRL x n TWHYWRS 4 1}

G3 =2 S Ber{of fOVRE x JWVIWRE 7

Hessian - Hy

+Ryw | ® Off(WREcX,kHWH))

+

_|.

+

H; =257 S Ber{ Ry w i ® of FWRE 5 W)
Ry WE®IN)Pors W RLx " @ In)

(

(R%

(Rya s W @ In)Poss W Ry ." ® 1)
Rix WV ® IN)P'S]chN)POff(W*RZ\aX k ®Iy)
(

R x s, "WH @ Tn)Pos s Plec™ W RE " @ In)}

Row-normalized Constraint 74

Ji = |[ddagOWWH — 1)

Constraint Gradient G4

Gy = dddragWWH — T3 )W

Constraint Hessian Hy

H, = 4 (Iyg ® ddiagWW? —1y))

+4AWT QIN)Pgrag(W* @ Iy)

(N,MQ)

+2 Pvec (IN & WH)Pdw,g (W* ® IN)

+2 (W @ In)P guag(In @ W*)(PSM D
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Table 4.2
Gradient descent subband BSS algorithm for the joint-diagonalization task with a weighted
constraint.

Initialization (r = 0) - W),
Forr = 1,2, ..., till convergence
w, = p{vec(Gsz + aGy)}

AWT = matN’MQ(wr)
Wr+1 = WT - AWr

Table 4.3
Newton-type subband BSS algorithm for the joint-chagonalization task with a weighted con-
straint.

Initialization (r = 0) - W)
Forr = 1,2, ..., till convergence
w, = pu(Hz + aHy) 'vec(Gs + aGy)

AWT = matN,MQ (Wr>
Wr_|_1 = Wr,» - AWT

4.3.4 Simulation Results

To demonstrate the performance of the extended convolutive BSS algorithm 1n the
time domain we firstly investigated the instantaneous BSS algorithm using a variety
of optimization techniques. A set of X = 15 real diagonal square matrices {A}
were randomly chosen representing the unknown source input uncorrelated matri-
ces. The diagonal assumption is crucial to all BSS problems as it reflects that the
sources are mutually independent allowing separation. Following the assumption
that the unknown separating system W is unitary, preventing the trivial solution, the

observed correlation matrices can be constructed where {R; r} = {HAH?} and
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H is chosen as a two by two unitary mixing matrix,

H=— . 4.50
o (4.50)

This first simulation compares the different optimization methods used in (M. Joho
and K. Rahbar, 2002) for the instantaneous case. Equation (4.38) forms the objec-
tive to be optimized while Equation (4.40) forms the constraint preventing a trivial
solution of the unknown separating system W. Figure 4.3 shows the comparison
of the convergence rates of each optimization algorithm for ten independent runs
with ten distinct sets of correlation matrices. It is evident that with the second order
information available, convergence of the Newton algorithm is much quicker. The
optimization for this particular instantaneous BSS problem where the system is as-
sumed to be unitary is performed on the Stiefel manifold. The step size p = 0.2
was used and the various slopes of the different convergence curves of the gradient
method depends entirely on the ten different sets of randomly generated diagonal

input matrices.

With the SGD and Newton methods, convergence to the global minimum depends
entirely on a good initial starting point Wy,. The starting point selected 1n this simu-

lation was

W, = cos(l) —sin(l) | @51)

sin(l) cos(1)

Although techniques like geometric beamforming (L. Parra and C. Alvino, 2002; S.
Araki, S. Makino, T. Nishikawa, and H. Saruwatari, 2001) are good procedures to al-
low feasible starting points for optimization, they require additional information and
assumptions on the problem space. To investigate the performance of the extended
instantaneous BSS algorithm to the convolutive case in the time domain the SGD and

Newton algorithm implementations in (M. Joho and K. Rahbar, 2002) were altered

to the learning rules given in Tables 4.2 and 4.3 respectively. As the constraint no
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Figure 4.3 Convergence of differing optimization methods for instantaneous BSS.

longer requires the unknown system W to be unitary, the constraint was changed to
that given in Equation (4.49). The technique of weighted penalty functions was used
to ensure the constraints preventing the trivial solution were met. No longer perform-
ing the optimization on the Stiefel manifold as in (M. Joho and K. Rahbar, 2002) the
SGD and Newton algorithms were changed to better reflect the row normalization
constraint for the convolutive case. Using the causal z-transform
00
H,(z)= Zhw (n)z7", ¥4, Vy, (4.52)
n=0

a first-order, P = 2, two-input-two-output (TITO) two tap FIR known mixing system

was chosen and is given below in the z domain as

14+2z7t 14271
H(z) = (4.53)

—14+2z1t 14271

The corresponding known demixing system which would separate mixed signals

which are produced by convolving the source signals with the TITO mixing system
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H(z) given above is

1| 1+271 1—271
Wogear (2) = 1 . (4.54)
1—2z7t 14271

This is the exact known inverse multiple-input-multiple-output (MIMO) FIR system
of the same order. The convolution of these two systems in cascade would ensure the
global system G(2) = W,4eq;(2)H(z) would be a delayed version of the identity,
i.e. 27'I. Using matrix multiplication to perform convolution in the time domain,

Equation (4.42) can be used to represent the equivalent structure of Equation (4.54),

1 11 1 -1
szdeal = . (455)
11 -1 1

Through empirical analysis we set the parameters ¢ = 0.6 and o = 0.2 and solve the
constrained optimization problem given in Equation (4.49) using the SGD and New-
ton methods. A set of K = 15 real diagonal square uncorrelated matrices for the
unknown source input signals were randomly generated. Using convolution in the
time domain a corresponding set of correlation matrices Ry, for each respective
time instant £ = 1, .., 15 at multiple time lags 7 were generated for the observed sig-
nals. Each optimization algorithm was run ten independent times and convergence
graphs were observed and are shown in Figure 4.4. The various slopes of the differ-
ent convergence curves of the gradient method depends entirely on the ten different
sets of randomly generated diagonal input matrices. Poor initial values for the un-
known system lead to convergence to local minima as opposed to the desired global
minimum. The initialization of the SGD and Newton algorithms plays an important
role in the convergence to either a local or global minimum. Initial values for the
estimated demixing system VW were generated using a perturbed version of the true
demixing system. This was done by adding Gaussian random variables with stan-

dard deviation o = 0.1 to the coefficients of the true system. In most cases this
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Figure 4.4 Convergence of gradient descent and Newton algorithms for a first order TITO
FIR demixing system over 10 trials

initial value is set by exploiting some sort of a priori knowledge about the problem

such as geometrical layout of sources in relation to the sensors.

After convergence of the objective function to an order of magnitude approximately
equal to 10734 the unknown demixing FIR filter system W, in cascade with the
known mixing system H(z), resulted in a global system which was equivalent to

a scaled and permuted version of the true global system 2~'T as can be seen by the
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following example,

—0.17 017
G(0) = x 10714,
0.19 —0.19
2 0
G(l): )
0 2
—0.23 —0.23
G(2) = x 10714
~0.14 —0.14

(4.56)

A first order system has been identified up to an arbitrary global permutation and

scaling factor. The TITO system identified above using the optimization algorithms

has only 8 unknown variables to identify. We now examine a MIMO FIR mixing

system with a higher dimension. Again we have chosen an analytical MIMO mul-

tivariate system whose exact FIR inverse is known. The 3rd order mixing system is

given below 1n the z domain

Hy(z) = -4 -4z 4 2724 273

Hp(2) = -7 727" + 273,

Hgl(Z) =7— 7Z~1 —+ 2_3,

Hyp(2) =9-9271 — 272+ 272

(4.57)

(4.58)
(4.59)

(4.60)

The corresponding known inverse FIR system of the same order is given below also

in the z domain as

1aea; 1
Wﬁ Z(Z) = EHQQ(Z),
1
1deal
=—-—H
Wis (z) 13 12(Z)’
1
Wg{eal(z) = ——Hy (2),

4.61)
(4.62)

(4.63)
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Figure 4.5 Convergence of Newton algorithms for first and third order TITO FIR demixing
systems over 10 trials.

1
wideal(2) = —Hy, (2). (4.64)

T 13
The convolution of the mixing and demixing MIMO FIR systems given in Equations
(4.57-4.64) gives the identity matrix I exactly. A comparison of the convergence
behaviour for the more efficient Newton method 1s given in Figure 4.5 using the same
methods described for the first order systems above, keeping the learning factor and
weighting terms the same. We see from the figure that with twice as many unknown
variables to solve for the demixing system, the third order unknown system takes
longer to converge by roughly a factor of two. Both systems converge to their global
minimums due to good initialization at approximately 1072, For the third order
system, one trial produced an outlying convergence curve that takes more iterations

r than the other trials. This is dependent on the randomly generated set of diagonal

correlation matrices { R, } where k = 1,2, ..., 15 for each trial.

To test the performance of the algorithm on real speech data two independent seg-

ments of speech were used as input signals to the MIMO FIR mixing system given in
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Figure 4.6 (a) and (b) are the two original signals, (c) and (d) are the convolutively mixed
signals, (e) and (f) are the permuted separated results.

Equation (4.53). These signals were both 4 seconds long and sampled at 8kHz. The
signals were convolutively mixed with the synthetic mixing system to obtain 2 mixed
signals. With the assumption that speech is quasi-stationary over a period of approx-
imately 20ms, the observed mixed signals were buffered and segmented into 401
frames each having 160 samples in length. The nonstationarity assumption assumes
that the SOS in each frame does not change. The correlation matrices R%  , can be
found via Equations (4.45,4.46) for K = 401 frames of the two mixed signals. This
allows the method of joint diagonalization by minimizing the off-diagonal elements
of the correlation matrices of the recovered signals at each respective time lag 7 as
defined in Equations (4.47,4.49). Figure 4.6 shows the input, mixed and recovered
speech signals. A good qualitative recovery is confirmed by subjective listening to

the recovered audio signals and inspection of graphs (e) and (f) in Figure 4.6.
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4.4 Conclusions

This chapter has proposed two new BSS algorithms in a convolutive mixing environ-
ment. Firstly a new method for the blind estimation of convolutive mixing systems
in the presence of colored sources has been presented with an ACDC ALS algorithm
which avoids the local frequency permutation problem. The results show that the al-
gorithm estimates both the source spectra and the mixing system with little variance
if it converges to a low value of the objective function. Further work will be directed
toward automatic initialization of the algorithm and optimization for recorded data
such as speech and audio. Also a new method for convolutive BSS in the time do-
main extending upon an existing instantaneous BSS framework has been presented.
This method avoids the inherent permutation problem when dealing with solving the
convolutive BSS problem in the frequency domain. Optimization algorithms includ-
ing SGD and Newton methods have been compared. Future work will be directed at
implementing the simulations where the orders of the mixing and demixing MIMO

FIR systems are higher.



Chapter 5

Uninitialized BSS with Global
Optimization

5.1 Introduction

In this chapter we discuss the efficiency and implementation details of applying the
branch-and-bound global optimization algorithm Dividing Rectangles (DIRECT) (D.
R. Jones, DIRECT, 2001; M. Bjorkman and K. Holmstrom, 1999; D. R. Jones, C. D.
Perttunen, and B. E. Stuckman, 1992) with clustering (K. Holmstrom, and M. Ed-
vall, 2004) to solve an uninitialized convolutive blind signal separation (BSS) prob-
lem driven by nonstationary sources in the time domain (TD) for the multiple-input-
multiple-output (MIMO) system case as proposed in Chapter 4. Current methods for
solving such multi-modal BSS problems involve the use of local optimization tech-
niques as described in Chapter 2. The main motivation for using global optimization
approaches such as the one described in this chapter for BSS problems 1s that we
cannot always assume a priori knowledge. Current methods, as described in Chapter
2, obtain information using additional assumptions on the problem to ensure good
initialization in the region of attraction, or basin, of the global minimum so as to

prevent convergence to a local minimum corresponding to a sub-optimal solution.

107
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By using global optimization we eliminate the need for additional assumptions for
good initialization of the unknown demixing system and solve the problem where
the global minimum corresponds to the optimal demixing system. The BSS algo-
rithm implemented in the time domain in Chapter 4, avoids the frequency permuta-
tion problem and has less computational overhead than the typically used frequency
domain method for a small to medium number of dimensions. The use of global op-
timization using the DIRECT algorithm is compared to a local optimization method.
The number of function evaluations, iterations till convergence and quality of sepa-
ration for all methods is examined. Computational complexity of both a frequency
domain method with initialization and sorting of permutations, and the proposed
time domain algorithm using global optimization is also examined. The benefits of
using global optimization when compared to local optimization techniques in BSS
problems as far as complexity goes is justified for small to medium sized demixing
systems but the primary motivation is where 1nitialization information is not read-
ily available to the problem. We firstly give a brief mathematical description of the
generic DIRECT optimization algorithm. Then we see how the algorithm is adapted
to accommodate the solving of our proposed multi-modal uninitialized BSS problem.
Finally some simulations comparing the proposed optimization method and time do-
main algorithm from Chapter 4 to a typical frequency domain approach with local

optimization using additional information in the problem space are given.

In all problems, optimization of the criteria is essential and there are many algorithms
which use additional assumptions or a priori knowledge for good initial starting
points for local optimization methods. Also the traditional approach to convolutive
BSS problems is to transform the problem into the frequency domain and solve many
instantaneous problems and then sort the separated outputs for each respective fre-

quency bin to ensure correct alignment across the entire frequency spectrum for cor-
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rect reconstruction of the unknown input signals (L. Parra and C. Alvino, 2002). For
our particular problem we assume a multiple-input-multiple-output (MIMO) con-
volutive mixing system of FIR filters. A backward model is used to generate the
separated nonstationary source signals. Source signals are assumed to be nonsta-
tionary on the justification that most real-world signals are inherently nonstationary
or cyclostationary. The time domain algorithm formulated in Chapter 4 1s used in
conjunction with the proposed global optimization framework of this chapter. This
algorithm exploits the nonstationarity of the input signals and uses a method of joint-
diagonalization to minimize the off-diagonal elements of the correlation matrices of
the reconstructed signals over K different time window frames. In each of these
frames the SOS are stationary, while between adjacent frames, k, and k£ + 1, the
SOS are slowly changing. The algorithm avoids the permutation problem and is a
more effective approach to solving the demixing system where the number of dimen-
sions is relatively small to medium scale. In this chapter the input signals and mix-
ing/demixing system can be real or complex-valued and the MIMO channel impulse
responses are time-invariant over a finite interval. When looking at local methods of
optimization, closed form analytical expressions for the gradient and Hessian of the
objective function, as well as the constraint Jacobian, and Hess1an of the second term
of the Lagrange function, are taken from Table 4.1 with proofs given in Appendix
A.1. The demixing MIMO system that performs deconvolution on the observed sig-
nals is found when we solve for the global minimizer of the constrained multivariate

BSS optimization problem.

The main applications of interest in which this problem can be applied is in audio
signal processing and communications systems. Multiple acoustic nonstationary sig-
nals recorded simultaneously in a reverberant environment by multiple microphones

have a mixing system that can be modelled by the convolutive MIMO system of FIR
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filters. For highly reverberant environments where the reverberation time is high, es-
timation of demixing systems requires estimation of demixing FIR filters of several
thousand taps when sampling at 8kHz, and incorporation of some sort of transform
to the frequency domain (L. Parra and C. Spence, 2000) or the subband domain is
necessary. Array beamforming is generally used for successful initialization for local

optimization methods.

Wireless communications systems where signal separation plays an important role
is in applications using wireless multi-user mobile communication systems where
shared use of the same frequency band by mobile users is made (N. Sellami, M.
Siala, and I. Fijalkow, 2004; Feng and Kammeyer, 1998). For MIMO multipath
fading channels that are flat (frequency non-selective), we can model the mutlipath
channels using the instantaneous mixing model for BSS. However if the channel is
assumed to be non-flat (frequency selective) then we can assume a MIMO system of
FIR filters can be used to model the channel (J. Choi, 2004). In applications such as
these, multiple antennas, utilizing spatial diversity, can transmit cyclostationary dig-
ital signals such as symbol streams, or space-time block codes, through a multipath
propagation MIMO channel, impinging on a uniform linear antenna array. These
received signals must be equalized so as to recover the transmitted signals. Typi-
cally some training sequence known by the transmitter and receiver, such as pilot
and data symbols, 1s sent periodically to identify the unknown mixing channel. This
overhead reduces available bandwidth that could be otherwise utilized for the user’ s
data. If the geometry of the antenna manifold is known we obtain good initialization
for local optimization. In both of the above cases where we cannot assume additional

knowledge, global optimization methods for BSS prove useful.

There are numerous global optimization methods available throughout literature to

solve multimodal nonconvex nonlinearly constrained optimization problems without
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any priori information for an initial starting point in the basin of attraction of the
global minimum(s). Methods that utilize the Lipschitz constant, simulated anneal-
ing, genetic evolution, multistart searches, random uniform distributed search, clus-
tering and P-algorithms are ubiquitous in the field of global optimization and a good
review for various methods is given in (R. Horst, and P. M. Pardalos, 1995). How-
ever few approaches have been considered when dealing with BSS problems. The
main categories of global optimization include methods with guarantee of some tol-
erance threshold and Bayesian methods. In particular, the branch-and-bound method
derived from the areas of interval analysis and combinatorial optimization is imple-
mented to solve the time domain BSS objective function. A guarantee is provided
to find the global minimizer z* with a desired accuracy after a predictable number
of steps. The method does not require the calculation of a derivative or Hessian,
although efficiency is improved when expressions for these, such as in Table 4.1,
are available; this will be investigated in more detail in Section 5.2.3. The prob-
lem space is bounded and is split recursively by branching into smaller and smaller
sections based on some preferential selection system and is guaranteed to converge
within tolerance thresholds if the objective is continuous in the basin of attraction of

the global minimizer.
5.2 DiRect Algorithm

The DIRECT algorithm is one particular type of branch-and-bound method which
uses an adaptive combination of global and local optimization methods. A complete
mathematical description of the generic DiRect algorithm from (M. Bjorkman and
K. Holmstrom, 1999) is provided in Table 5.1 for completeness. The explanation for
parameters used in Table 5.1 are provided in Table 5.2. A simple summary of the

main steps of the algorithm is presented in Table 5.3 with more elaboration on these
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steps given in the following sections when using the algorithm with reference to the

BSS problem.

The basic steps of the algorithm given in Table 5.3 will be briefly summarized but for
a more detailed description of the algorithm, refer to (M. Bjorkman and K. Holm-
strom, 1999). The original version of the DIRECT algorithm solved problems of the
form given by Equation (5.1) without the nonlinear constraint ¢(z). For our con-
strained optimization problem, a newer version of DIRECT that accounts for such
constraints ¢(z) is implemented using the glcFast function from (Holmstrom, 2002)

based on 1deas from (D. R. Jones, DIRECT, 2001) and 1s given by

min  f(z)
x
s/t zp<z<zy (5.1
br < Az < by

cr, Scfz) < ey

where z, 2z, zy € R™, c(x), cr, cy € R™, A € R™*™ and by, by € R™2, where m;
and my are the number of nonlinear and linear constraints respectively. It should be

noted that in our implementation of BSS to acoustic applications we use a cosine-
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modulated FIR filter bank that decomposes the real observed signals into real sub-
band component signals. Within each subband the DIRECT algorithm can optimize
with respect to a real demixing system. To apply the DIRECT algorithm when the
unknown demixing system is complex, some minor alterations to the implementation
steps of the algorithm need to be made but this is left for future work. For the com-
plex demixing system case, this also doubles the amount of variables to solve for.
This may occur when using a DFT modulated FIR filter bank for decomposition of
real observed signals into complex subband components, or when the observed sig-
nals are digital modulation signals such as QAM,QPSK as found in communication

applications.

The search space is limited to an n-dimensional unit hypercube. The algorithm pro-
ceeds by partitioning the hypercube into smaller hyper-rectangles, by trisection, each
having a sampling point at its center, i.e. a point where the objective function is to

be evaluated. Figure 5.1 shows an example of partitioning on a hypothetical problem
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when the number of dimensions is n = 2. Figure 5.2 shows a hypothetical example
of the division process for n = 3. Each iteration ¢ begins by selecting one or more of
the hyper-rectangles for further search. The function is evaluated at the new points
and then the new potential hyper-rectangles are chosen and subdivided with the new
points for evaluation being the center of the new hyper-rectangles. The selection

criteria from (D. R. Jones, C. D. Perttunen, and B. E. Stuckman, 1992) is as follows,

Selection Criterion. Select a rectangle for further search if there exists an f* satis-
Jying
(fr = f)/de < (fs = [*)/ds, Vs # 7 (5.2)

f* Sfmzn_57 (53)

where € > 0 is the desired accuracy. Note that f, and f; denote the function value
at the center of hyper-rectangles r and s respectively, where hyper-rectangle s is the
previous good hyper-rectangle and hyper-rectangle = 1s the current one. d, and d;
denote the distance from the center of the hyper-rectangle to its vertices and ¢ is
the tolerance error to which we find our global mimimum up to. For our particular
problem we know that the global optimum occurs when the value of our objective
function in Equation (4.47) has J3 = 0. This additional information allows us to
assume we know the function value of the global minimum f*. Finding the set of
potentially optimal hyper-rectangles S is equivalent to finding the lower-right con-
vex hull of a particular set of points on a plane. This becomes a subproblem of the
algorithm. Convex hulls are briefly described in the Section 5.2.1, but for further
detailed reference on this part of the algorithm refer to (D. R. Jones, DIRECT, 2001;
M. Bjorkman and K. Holmstrom, 1999; F. Preparata, and M. Shamos, 1985). After
finding all the optimal sub-hyper-rectangles we repeat the process until our updated
value fp., is within the tolerance threshold or we reach a pre-determined number of

iterations or number of function evaluations. The corresponding approximate global



Uninitialized BSS with Global Optimization 116

Please see print copy for Figure 5.1 and Figure 5.2

minimizer ., will correspond to the value of the final best sample point or center
point of the most optimal sub-hyper-rectangle. Once this point is identified we can
conclude that x,,,, is in the basin of attraction of the global minimizer and so a local
search can be performed for further refinement if desired. This particular method of
optimization is adaptive and combines both a global and local search method elim-
inating both the cumbersome slow convergence of a pure global method such as a
random search and the unreliability of a pure local method that may become trapped
in a local multiminima point. The global method intelligently continually identifies

basins of convergence to a better minimum.

If we compare the general criterion in Equation (5.1) to our proposed time domain
BSS problem in Equation (4.49) we see that we must place bounds on the unknown
demixing system W. Also it is seen that there is no linear equality constraints and

only one nonlinear constraint to prevent the trivial solution.
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5.2.1 Convex Hulls

In general, if S is a set of points in a plane, then the convex hull of S is the smallest
convex polygon that contains all points of S. When selecting hyper-rectangles if we
only used a global search then we would select one of the biggest hyper-rectangles
in each iteration i.e. point B in Figure 5.3. By doing this, the hyper-rectangles
would become smaller at about the same rate and sampled points would represent
a uniform grid in the n-dimensional normalized hypercube search space. In (D. R.
Jones, DIRECT, 2001), to avoid this, a balance between global and local behavior is
introduced by selecting not one but many hyper-rectangles. A relative size measuring
the distance from the center of each hyper-rectangle to each of the vertices is given.
It is hard to visualize this concept in space-time for more than 3 or 4 dimensions.
Figure 5.3 from (D. R. Jones, DIRECT, 2001) shows a plot of points with each
point corresponding to one of the hyper-rectangles in the partition for one iteration.
The abscissa represents the size/distance for each hyper-rectangle from smallest to
largest. The ordinate is the function value corresponding to the sampled middle
points of the hyper-rectangles. DIRECT selects the points on the lower-right convex
hull indicated in the figure corresponding to the potentially optimal hyper-rectangles

selected for further sub-division.

5.2.2 Clustering

When midpoints are selected from optimal hyper-rectangles, these points appear in
clusters. The function glcCluster from (Holmstrom, 2002) incorporates the benefits
of using a clustering algorithm with the DIRECT algorithm to eliminate redundancy
of identifying points belonging to the same basin of attraction. i.e. points that will
converge to the same minimum. For details on the clustering algorithm used in our

implementation refer to (K. Holmstrom, and M. Edvall, 2004). Basically the cluster-
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ing algorithm is integrated with DIRECT as follows:

1. Identify feasible points using DIRECT algorithm

2. Apply aclustering algorithm on all sampled points by DIRECT to identify a set

of clusters. The point with the lowest function value in each cluster is selected
3. Perform alocal search on each of the best cluster points as initial starting values

4. If the best point found from local searches is better than best point found in
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the initial global search, we perform DIRECT again with an initial value cor-

responding to the best point found in this step

5. If the DIRECT algorithm with initial value is better than in step 4, we repeat

again until we are satisfied.

5.2.3 Sequential Quadratic Programming

In this section we discuss the method of local optimization that is incorporated into
the DIRECT algorithm. As shown in Tables 4.2 and 4.3, the local optimization meth-
ods employed were the steepest gradient descent method and the Newton method.
Both of these methods used the closed form analytical expressions of Table 4.1. The
use of penalty terms for both optimization methods was used to ensure the constraint
J1 given in Equation (4.49) was met. Here the penalty term o was chosen heuristi-
cally and the step size parameter p was kept constant during each iteration. Naturally
the Newton method converged much quicker than the typically used gradient descent

method but required an initial value which was close to the solution to prevent ill-
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convergence to local multiminima. The local optimization solver used in conjunction
with glcCluster as part of the DIRECT algorithm is the solver snopt from (Holm-
strom, 2002) which stands for Sparse Nonlinear Optimization. This routine uses a
large-scale sequential quadratic programming (SQP) sub solver and assumes sparse
linear or nonlinear constraints. The problem specified in Equations (4.49) and (5.1)
fits this model. SNOPT uses the SQP algorithm to obtain search directions from a
sequence of quadratic programming subproblems. Each QP subproblem minimizes
a quadratic model of a certain Lagrangian function subject to a linearization of the
nonlinear constraints. An augmented Lagrangian merit function is reduced along
each search direction to ensure convergence from any starting point (Gill, 2002).
Known expressions of first and second order derivatives of the objective function
and constraints are provided in Table 4.1. If these are not specified then they are
calculated using finite differences or automatic differentiation. As in Equation (5.1)
there are bounds placed on the variables and there is a nonlinear equality constraint
¢(x), which in our problem is 7;. The merit function for step-length, (i.e. 1), control
is an augmented Lagrangian. A brief summary of the SQP method is given but for a

more detailed mathematical explanation refer to (Gill, 2002) and references therein.

The basic process of SNOPT involves major and minor iterations. Each major itera-
tion r is a QP subproblem where a search direction 1s chosen towards the next iterate
r + 1. The constraints of the subproblem are formed from the linear constraints, in
our problem there are none, and the nonlinear constraint linearization. The QP sub-
problem is to minimize a quadratic approximation to a modified Lagrangian function
subject to some QP constraints. Solving the QP subproblem at each iteration is itself
an iterative procedure with the minor iterations of a SQP method being each iteration
of the QP method. After a QP subproblem has been solved for one major iterate,

new estimates of the nonlinear programming (NP) solution are computed using a
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line search procedure employing a cubic interpolation method, on the augmented
Lagrangian merit function. The line search determines the adaptive step size pu, for
that particular iterate » where 0 < p, < 1 such that the new point gives a sufficient
decrease in the merit function. Other local optimization solvers were explored such
as conSolve which implements the SQP algorithm by Schittkowski with Augmented
Lagrangian merit function described in (P. E. Gill, W. Murray, and M. A. Saunders,
1997), and nipSolve which implements the Fletcher SQP algorithm described in (R.
Fletcher, and S. Leyffer, 1997). Both of these methods though are sub-optimal com-

pared to the snopt solver described above.

5.3 Simulation Results

The local methods used in Chapter 4 were the steepest gradient descent and the New-
ton methods. Both methods utilized exact closed form analytical expressions for the
gradients and Hessian of the objective function [J5 and constraint function 7, given
in Equation (4.49). Here we will denote these to be Gs, G4, H3, and Hy respec-
tively. In Chapter 4 we used the learning rules for gradient and Newton methods
given in Table 4.2 and 4.3. Also the constraint was incorporated as a penalty term.
The penalty coefficient o was determined heuristically. Also the step size parameter
u was kept constant and also determined heuristically. In this chapter to perform the
initialized local optimization the solver snopt from (Holmstrom, 2002) is used. This
routine uses a sequential quadratic programming (SQP) algorithm. The algorithm
obtains search directions from a sequence of quadratic programming subproblems.
At each major iteration, an approximation is made of the Hessian of the Lagrangian
function using a quasi-Newton updating method. A search direction is found and
then a line search procedure using a cubic interpolation method to find the adaptive

step size for each search direction is used. Unlike the methods used 1n chapter 4, the
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search step p is not constant and changes with each iteration. Also the penalty term «
is found exactly using a Lagrangian multiplier. This proves to be more optimal than
the methods used in chapter 4. For a more detailed description of the SQP algorithm
refer to (P. E. Gill, W. Murray, and M. A. Saunders, 1997). In our simulation we
use a first order FIR filter MIMO mixing system also used in Chapter 4 withn = 8
dimensions. We define it as

H(2) = 14271, —1+4271 ‘ 5.4

—1+2z7Y 14271

As in Chpater 4, the corresponding known demixing system which would separate

mixed signals which are produced by convolving the source signals s(t) with the

TITO FIR mixing system H(%) is given as

Wzdeal(z) = - (5.5
4 1—271, 14271

This is the exact known inverse TITO FIR system of the same order. The convo-
lution of these two systems in cascade would ensure the global system, G(z) =
W .ieai(2)H(2), would be a delayed version of the identity, i.e. 27'I. To test the
convergence of the algorithms we generate a set of K = 15 real diagonal square un-
correlated matrices { R  }. From this we convolve with the mixing system to obtain
R x - For the global optimization approach we do not initialize, however for the
local optimization approach we use a perturbed version of the true demixing system
as the good starting point to ensure convergence to the correct solution. Normally
this is done using some geometric beamforming method. Figure 5.4 shows conver-
gence information about the local methods with good and bad initialization as well
as the global method with no initialization. The local method with good initialization
converges in 26 iterations while the global method converges in 41 iterations. We can
see that even with a small variation in the starting point for a local method of opti-

mization on a nonconvex problem with many multiminima, we can become trapped



Uninitialized BSS with Global Optimization 123

Global vs. Local

10° ‘
——  gleCluster
snopt—good
10 ot snopi—bad
E ey TR
= 10 ¢ |
~10
10 L ! 1 I L
0 10 20 30 40 50
1900 — gleCluster
o m800 I snopt—-good |
8 g snopt—bad
2 £600
£
5400
S M
“ " 200
0 1 P O T B N R L L P ob o
0 10 20 30 40 50

Iterations

Figure 5.4 Comparison of global and local optimization routines, glcCluster and snopt

in a local minima and we do not obtain the correct solution. For problems where we
cannot assume additional knowledge of the problem we see the advantages of using
a global approach. The resultant global system for the bad initialized local method
and the global method is shown in Equations (5.6) and (5.7) respectively. The global

system for the good initialized local method is very similar to Equation (5.7).

0733 —-0733
G’(O) = )
—0.735 0.735
r
0.009 1.364
G(1) = , (5.6)
0.005 1.364
—0.728 —0.728
G(2) =
0.727  0.727
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—-0.663 0.663
G(0) = x 1079,
0.907 —0.907
0 -2
G(1) = ; (5.7
2 0
—0.798 —0.798
G(2) = x 1078,
—0.398 —0.398

5.4 Benefits for Small to Medium Scale Systems

When you keep a cost function for convolutive BSS in the time domain, then you
can elegantly avoid a permutation problem arising in the algorithm. When dealing
primarily with acoustical signals, the demixing filters of interest for dereverberation
are a few thousand taps long and large scale optimization methods generally have
a high computational cost due to computing analytical expressions of Hessian and
Jacobian matrices of objective and constraint functions making these methods un-
feasible. However if the applications that a particular convolutive BSS algorithm is
being applied to fall into the communications area, then unknown demixing filters are
generally much shorter and the benefits of not having to solve the permutation prob-
lem are evident with less computations as there is no transform function or permu-
tation sorting/correction. Recently in (M. Joho, 2004), a time-domain algorithm was
developed for convolutive BSS that avoids the inherent frequency permutation prob-
lem. This algorithm derives the objective function over all cross-correlations over all
time-lags, and the update-equation, entirely in the time domain and carries out fast

convolution in the frequency domain. Still, the algorithm performs transforms of the
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Please see print copy for Figure 5.5

data from the time to frequency domain and back again a few times which increases
computational overhead. In Figure 5.5, a comparison of computations for a typical
initialized frequency domain method using geometric beamformers in (L. Parra and
C. Spence, 2000; L. Parra and C. Alvino, 2002), with the uninitialized convolutive
BSS time domain method using glcCluster is given. It illustrates that for demixing
FIR filter MIMO systems where the number of taps is relatively small, the compu-
tational complexity, measured by the flops function in Matlab v5.3, is less for the
glcCluster method when the number of dimensions is less than approximately 36,
corresponding to a FIR filter length of 9 taps for a TITO system. To benefit from
this time-domain convolutive uninitialized BSS problem using the glcCluster and
snopt solvers we require that the unknown demixing system(s) be a small to medium
number of dimensions. To achieve this for acoustic applications where the number
of variables in the fullband is a few thousand, it is necessary to perform subband
decomposition on the observed fullband mixed signals using a uniform FIR filter

bank with oversampling to obtain subband components that have fewer variables to
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solve for within each respective subband. Decoupled subbands will still result with
the permutation problem which must be solved, however as realized in (S. Araki, S.
Makino, T. Nishikawa, and H. Saruwatari, 2001; M. Ikram, and D. Morgan, 2000;
R. Mukai, S. Araki, H. Sawada, and S. Makino, 2004; S. Araki, S. Makino, R. Aich-
ner, T.Nishikawa and H. Sarawatari, 2003) motivation for adopting subband based
BSS is due to the upper bound placed on separation performance for other typical

convolutive BSS methods.

5.5 Conclusions

In this chapter we have presented a method to solve convolutive BSS problems driven
by nonstationary signals where no additional information is available to provide a
good initial starting point in the region of the global minimizer corresponding to the
true demixing system. A global optimization algorithm DIRECT is used on a time
domain BSS model that avoids the frequency permutation problem that other con-
volutive BSS models have to solve. The benefits of using this approach to solve
for demixing systems that have a low to medium number of dimensions are seen by
comparing our approach to a frequency domain BSS model that solves the permuta-
tion problem using a projection operation and that uses additional assumptions on a
priori knowledge along with geometric beamforming to obtain a good initializer for

the multivariate nonconvex problem.



Chapter 6

Subband BSS Model

6.1 Introduction

In this chapter we solve blind signal separation (BSS) of nonstationary convolutively
mixed source signals in an acoustic environment using a subband domain model for
the general multiple-input-multiple-output (MIMO) system case. The motivation for
subband based BSS is due to the upper bound placed on separation performance due
to equivalence between adaptive beamformers (ABF) and BSS when using the typ-
ical frequency domain BSS approach for highly reverberant environments as shown
in (S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, 2001; M. Ikram, and D.
Morgan, 2000; R. Mukai, S. Araki, H. Sawada, and S. Makino, 2004) and discussed
in Chapter 2. A subband approach also solves the permutation indeterminacy more
effectively than a frequency domain BSS approach when long reverberation times are
censidered by using FIR filters in each subband as shown 1n (S. Araki, S. Makino,
R. Aichner, T.Nishikawa and H. Sarawatari, 2003). Oversampled M channel FIR
filter banks using both DFT modulation and cosine modulation designs are used in
conjunction with the proposed time domain blind source separation (BSS) algorithm
given in Chapter 4. This BSS algorithm has been shown to blindly separate the

fullband versions of non-stationary convolutively mixed sources in the time domain.

127
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However further savings on convergence and computational complexity can be made
by using subband decomposition on the mixed signals before implementation of the
time domain BSS algorithm 1n each subband. An extended lapped transform (ELT)
prototype is modulated using a cosine-modulated (CM) FIR filter bank and then with
a DFT modulated FIR filter bank. Both of these designs are compared to the typical
frequency domain BSS approach to solving these convolutive non-stationary BSS
problems such as in (L. Parra and C. Spence, 2000). A new adjacent subband cou-
pling metric is used with a dyadic sorting routine to detect and fix permutations
amongst subbands before the synthesizing stage of the filter bank. The introduction
of global optimization using the Dividing Rectangles (DIRECT) algorithm (D. R.
Jones, DIRECT, 2001; M. Bjorkman and K. Holmstrom, 1999; D. R. Jones, C. D.
Perttunen, and B. E. Stuckman, 1992) with clustering (K. Holmstrom, and M. Ed-
vall, 2004), given in Chapter 5 for solving uninitialized BSS problems in individual
subbands, is integrated into the subband domain where no additional assumptions are
required for estimating good initializers based on geometric beamforming, directivity
patterns, or known direction-of-arrival (DOA) angles, as is the case in (L. Parra and
C. Alvino, 2002; R. Mukai, H. Sawada, S. Araki, and S. Makino, 2004; W. Wang,
J. Chambers, and S. Sanei, 2004; H. Sawada, R. Mukai, S. Araki, and S. Makino,
2004a). ICA’99 benchmark data for both synthetic and real test cases are used for
simulations and evaluation indicators such as the signal-to-interference (SIR) ratio
is used when comparing the proposed model to a typical frequency domain BSS

method.

For BSS problems that have convolutive mixing systems that model real environ-
ments using MIMO FIR filters, the number of unknown variables that must be es-
timated is in the order of several thousand. Traditionally these convolutive BSS

models are solved by transforming to the frequency domain such as in (L. Parra
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and C. Spence, 2000). As an alternative, we are motivated to investigate different
methods of separation by including a subband preprocessor before implementing the
time domain BSS algorithm given in chapter 4. To reduce the convergence time for
solving the total number of unknown parameters in the fullband model, subband de-
composition is performed as a preprocessor to the time domain BSS algorithm thus
solving in the subband domain as opposed to the fullband. This is implemented us-
ing oversampled uniform filter bank models satisfying perfect reconstruction (PR),
including DFT and CM FIR filter banks such as in (J. Kliewer, and A. Mertins, 1998;
Koilpillar and Vaidyanathan, 1992). These two models are then compared to the tra-
ditional frequency domain BSS method given in (L. Parra and C. Spence, 2000) and

the separation performance for each model is measured.

In Section 6.2 a typical frequency domain method to solving convolutive BSS prob-
lems is given. References to the limitations of such methods are also made. Section
6.3 defines the oversampled uniform filter bank models including the CM and DFT
modulated filter banks based on an ELT prototype. Section 6.4 integrates the filter
banks with the fullband time domain convolutive BSS algorithm to allow subband
BSS with global optimization. Section 6.5 gives a comparative analysis of the sub-
band based BSS models with a traditional frequency domain method with focus on
the separation performance using the SIR BSS metric. The real mixing response of
a typical office room is measured and identified. This identified system is mixed
synthetically with segments of real speech signals taken from the TIMIT corpus of
speech to produce some mixed signals. These mixed signals are used as input to each
of the three convolutive BSS models and initialization of the unknown demixing sys-
tem to be identified is a perturbed version of the known demixing system. Section 6.6
proposes a new subband coupling metric which solves the local permutation prob-

lem before the synthesis stage of the filter bank. A dyadic sorting routine for aligning
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adjacent subbands across the entire spectrum is provided in Section 6.7. Simulation

results are presented in Section 6.8 and the conclusions are given in Section 6.9.
6.2 Frequency Domain Methods and Limitations

Typically for the convolutive mixing BSS model described in Section 2.4, the time-
domain convolutive problem is transformed into independent, multiple short-term
or instantaneous mixing, BSS problems in the frequency domain via the 7-point
discrete Fourier transform (DFT). For the frame [x(¢),...,x(¢ + T)] this is given as
x(w,t) = Y1) e 27/Tx(t 4 7). In a compact matrix-vector notation the time-

frequency domain relationships are shown as

x(t) = H(t) * s(t) 6.1)

x(w) = H(w)s(w) (6.2)

$(w) = W(w)x(w), (6.3)

which corresponds to the original source signals, in the frequency domain, up to an

arbitrary permutation and scaling factor; that is
$(w) = W(w)H(w)s(w) = ITI{w)D(w)s(w) (6.4

In this case, W(w) € CV*M and H(w) € CM*N, D(w) € CN*V is an arbitrary fre-
quency dependent diagonal scaling matrix. The permutation matrix IT(w) € RV*¥
is frequency dependent and introduces frequency-dependent permutation errors in

the output frequency response. In order to avoid the inherent frequency permutation
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problem it is desirable to either make II independent of frequency or derive a criteria

to ensure correct permutation alignment of all separated frequency bins.

A typical convolutive BSS criterion in the frequency domain is to exploit the nonsta-
tionary assumption of the source signals and use joint diagonalization on the SOS of
the observed signals to minimize the off-diagonal elements of the output cross-power
spectra R, . (w) using the most recent observed cross-power spectra R, ;(w) over
all frequency bins. The relationship between observed and output cross-power spec-
tra is as follows. The statistically independent source cross-power spectra is given

as

R p(w) = E{sp(w)si(w)?}, (6.3)

where due to independence, ideally the set of {Ry;x(w)} V k, w are diagonal matri-

ces. The observed and output cross-power spectral matrices are given as
Reo i(w) = B{xp(w)xi(w)"}, (6.6)

and

R 1 (W) = W(w)Ryp i (W)W (w)H, 6.7)

respectively. This leads to a criterion for simultaneous diagonalization of R (w) V &, w.

A possible objective function for the frequency domain approach is given as,

T K
T 23S anullof F(W (@) R s (@) WH () [, 6.8)
w=1 k=1
where
K -1
A = (Z Rz (7)) - (6.9)
k=1
The criterion then can be defined as
Wopt = arg min Ts(W(w))
W(w) (6.10)

s/t Jo = |lddiag(W(w)W#(w) — Iy} = 0,
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where the constraint J5 is used to prevent the trivial solution. This general joint di-
agonalization model can be found in (L. Parra and C. Alvino, 2002; L. Parra and C.
Spence, 2000; M. Joho and K. Rahbar, 2002) with a different constraint to prevent
the trivial solution. Other approaches include the use of an alternating least squares
(ALS) optimization method which can be found in (K. Rahbar, J. Reilly and J. Man-
ton, 2004) and (A. Yeredor, 2002). However, to prevent the frequency permutation
problem additional constraints based on a priori knowledge on the spatial geometry
of the array manifold, or source/sensor location using blind beamforming are usually
introduced for good inttialization of the unknown demixing system in each frequency

bin, i.e. W{w).

In (L. Parra and C. Spence, 2000), a noise free criterion very similar to that given in

Equation (6.10) is given below as
E(w, k) = W(w)Rp(w, )W (w) — Ag(w, k) (6.11)

W, Ay = argmin Zz::lzllc{:lnE(w’ k)H2
W, A,,
(6.12)
W(r)=0,7>Q «<T,
Wy (w) =1

For this convolutive BSS frequency domain algorithm, only consistent permutations
for all frequencies will correctly reconstruct the sources and the constraint on filter
size () versus the frequency resolution 1/7 links the otherwise independent frequen-
cies and solves the problem. The filter constraint is achieved via a projection oper-
ator that zeros the appropriate delays for every demixing channel. In (S. Araki, S.
Makino, T. Nishikawa, and H. Saruwatari, 2001) and (M. Ikram, and D. Morgan,
2000) the limitations of the frequency domain method are considered when mixing

is conducted in reverberant rooms where the microphones are not positioned close to

the sources resulting in long demixing FIR filters. It is shown that such a constraint is
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not effective for long reverberant environments and that the separation performance is
highly limited where such long impulse responses are evident. Other methods found
in (L. Parra and C. Alvino, 2002; H. Sawada, R. Mukai, S. Araki, and S. Makino,
2004a) and (H. Sawada, R. Mukai, S. Araki, and S. Makino, 2004b) used to solve the
permutation problem utilize geometric constraints or initializers based on positions
of sources and sensors to mitigate the problem. Beam patterns or knowledge of the
direction of arrival (DOA) of the target source impinging on the sensor array mani-
fold is utilized however when this information is not available other methods used to
detect and correct permutation inconsistency between adjacent frequency bins proves

useful.
6.3 Subband Model

To utilize BSS in the subband domain we must perform subband decomposition using
some type of uniform or non-uniform FIR filter bank. As Figure 6.1 shows, we have
chosen an oversampled uniform M channel modulated FIR filter bank in direct form
based on the modulation of an ELT prototype function h(n) from (Malvar, 1992)
given by

h(n) = _QL\/i + —i—cos [(n+ %)ﬁ

Two designs of modulated FIR filter banks that exhibit perfect reconstruction (PR)

). (6.13)

are investigated for subband BSS and these are cosine modulated (CM) filter banks
and discrete Fourier transform (DFT) modulated filter banks. We investigate both
designs but we are more interested in the former design as it uses real subband
components where we do not need to modify the DIRECT algorithm to accommo-
date complex variables and in our acoustic application we are observing real sig-
nals. Without performing any subband processing on the decomposed mixed signals

x?l‘bz My (p, k), where £k is the time frame index and p = 0, 1,..., M — 1 is the sub-
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band index, we obtain PR. Performing subband BSS using the algorithm referred to
in Chapter 4, aliasing is introduced and so we must oversample by the factor % to
minimise this. Direct form versions of the filter banks are used here for simplicity
however equivalent polyphase structures for both types filter banks can improve effi-
ciency (J. Kliewer, and A. Mertins, 1998; Koilpillai and Vaidyanathan, 1992). Also
further information on implementing efficient fast ELT FIR filter banks with overlap-
ping analysis filters using DCT IV and advantages of using ELT prototype functions

can be found in (Malvar, 1992).

6.3.1 Cosine Modulated FB

A filter bank is said to be cosine modulated if all analysis and synthesis filters are
generated by cosine modulation of one or two prototype filters. The prototype low-
pass filter has a cutoff of £/ oM for M filters. Individual analysis and synthesis
filters have real coefficients and are of equal length. The impulse responses of the

synthesis FIR filters are defined as

fm) = )y Zeosloor L DT e

and the analysis filters are related as

fo(n) = hyp(L — 1 —n), (6.15)

where p = 0,1, .,M — 1, and n = 0,1, ..., L — 1. For the ELT prototype defined
in Equation (6.13), L = 4M. Due to the oversampling factor % to obtain PR of the
filter bank a scalar of \/% must be multiplied with each f,(n). Figure 6.2 shows
the impulse responses for the analysis filters for the first two subbands as well as the
magnitude frequency responses of the first three subbands for an ELT CM FIR FB

when M = 8.
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Figure 6.1 General subband MIMO BSS model with oversampling factor %

6.3.2 DFT Modulated FB

Thus filter bank uses exponential modulation. The individual analysis and synthesis
filters have complex coefficients in the DFT filter design. The prototype lowpass
filter has a cutoff of +7/M for M filters. Note that we consider a 2M-band DFT
and M band cosine-modulated filter bank so that the subbands are of equal spectral
width in both filter bank designs. The impulse response of the synthesis FIR filter is
defined as

fo(n) = h(n)eGPO—55Y) (6.16)

and the analysis filters are related as
fo(n) = hy(n), (6.17)

where p = 0,1, . ,M —1l,andn =0,1,...,.L — 1 with L = 2M. The scalar factor

1/ 1%4”_}2 again must be added due to the oversampling factor.
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Figure 6.2 (a) Shows the impulse responses for the analysis filters for the first two subbands
and (b) shows the magnitude frequency responses of the first three subbands for an ELT CM
FIR FB when M = 8.

6.4 Integration of TDBSS into Subband Model

There are three stages to the subband model as shown 1n Figure 6.1. Firstly we de-
compose the M fullband mixed signals x(t) into M subbands via the analysis stage
of the filter bank to obtain the subband signals X?f,bz , M}(p, k) where k is the time
frame index and p = 0,1, .. , M — 1 is the subband index. With the cosine modu-
lated design, the fullband mixed signals are convolved with the respective impulse
responses of the analysis filters defined in Equation (6.15) and then oversampled by
the factor % while convolution with the impulse responses defined in Equation (6.17)
provides the DFT modulated result for each subband also after subsampling by R.
In Chapter 4 we solve a problem in the fullband domain where there exist ' N M @)’
free parameters. Shorter FIR filters of length ), can be solved for each subband
using DIRECT which effectively reduces the overall convergence time of the algo-

rithm to find the unknown demixing system. Note that each subband BSS problem
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is a MIMO problem where there are M input signals from each respective subband
of the mixed signals and N separated output signals for each respective subband.
In the second stage, integration of the fullband time domain BSS algorithm given
in Chapter 4 is simply made by substituting the subband versions of the mixed sig-
nals x§}%  ,;,(p, k) and the unknown demixing system W**(p), for the fullband

versions of the mixed signals x(¢) and the unknown demixing system W, and solve

Y sub

p separation problems where p = 0,1,.., M — 1. For simplicity, x{{5 M) (p, k)
is denoted as x, 5, W**(p) is denoted as W,, and R, ,,(7) is denoted as R7%, ;.
Substituting Wy, @, and R}, . for W, Q and R% ;. in all expressions in Table 4.1
respectively, will provide the subband expressions for J3 ,, G35, H3 p, J4,p, G4, and
H, ;. It should be noted that the value of (},, will be determined by the decided value
of  in the fullband domain, the number of subbands M, the length of the analysis
FIR filters L and the oversampling ratio %. A more detailed explanation of choos-
ing the subband filter length ), can be found in (J. Reilly, M. Wilbur, M. Seibert,
and N. Ahmadvand, 2002). Before the final stage we correct any permutation ambi-
guities and ensure consistent scaling between adjacent separated subbands for each
signal. The final stage of the model is the synthesis stage and involves upsampling
the separated subband signals é?be N} (p, k) by R and convolving this result with
the respective impulse responses of the synthesis filters defined in Equation (6.14)
and (6.16). This will provide the N fullband separated signals §(¢). For each sub-
band BSS problem the global optimization method DIRECT is used. To overcome
the local subband permutation problem when geometric information is unavailable,

a dyadic sorting routine used to align all subbands to the same permutation is used

and described in Section 6.7.
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6.5 Comparing Subband and Frequency Domain BSS
Models

In this section we report the results of separation of two mixed signals in a realis-
tic environment such as an office room given in Figure 3.4 using the three differ-
ent models described in Section 6.3. As described in Chapter 3, we identify the
MIMO convolutive mixing impulse responses Hyyoun (7) coupling two loudspeakers
and two microphones in a reverberant environment. The technique used to obtain
the corresponding known demixing impulse responses for separation Wy, 50, (7), OF
equivalently Wepouwn, is described in Chapter 3. Using 8k H z as the sampling rate,
Winown has a FIR filter length of () = 2048 for a response time of 7 = 250ms. The
two 1nput signals s(¢) are speech segments taken from the TIMIT corpus of speech.
These signals are convolutively mixed with Hyy,oun (7) and provide the mixed signals
x(t) which are observed by the two cardioid microphones that have an inter-element

spacing of 38cm. These mixed signals are used for each particular algorithm.

For the cosine modulated FIR filter bank model we decompose the unknown fullband
demixing system W into M = 256 subbands with a subsampling factor of R = 64.
This will mean that instead of trying to solve the nonlinearly constrained optimization
problem given in Equation (4.49) for' NM Q' = 8196 unknown variables we have in
each subband only 192 variables to solve for. Similarly for the DFT modulated model
we decompose the unknown fullband demixing system into M = 512 subbands
with a subsampling factor of R = 128. This ensures that the spectral width of the
analysis and synthesis filters in the DFT modulated case is the same as that for the
cosine modulated case. For this simulation the Newton method time domain BSS
algorithm for convolutive mixtures given in Table 4.3 was used to solve for each

subband unknown demixing system. To achieve this the fullband mixed signals x(t)
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were passed through the analysis stage shown in Figure 6.1 for each subband model
to obtain the X?Sﬁ, ’ M}(p, m) subband signals respectively. Initial values of each
subband unknown demixing system were set to a perturbed version of the known
demixing subband system Wi —(p,m). For explanation on how this is achieved
refer to Section 6.8.2. In most cases information on the demixing system is unknown
and geometric beamforming (S. Araki, S. Makino, R. Aichner, T.Nishikawa and H.
Sarawatari, 2003) 1s used to provide initialization information for the optimization
process however in this case we are comparing the separation performance of the
algorithms and initialization is the same for all three algorithms. In Section 6.8 we
examine the integration of the global optimization algorithm presented in Chapter 5.
The weighting factor for the penalty term for the constraint in the Newton update
from Table 4.3 is set to & = 0.2 and the learning coefficient 1s © = 0 8. The number
of time frames over which joint diagonalization is performed is K = 128 which
corresponds to a non-stationary time period for speech of 20 — 30 ms. The typical
BSS frequency domain approach also sets the required variables of the algorithm to
be ) = 2048, T = 4096, K = 128 and an initial value for the unknown system in
each frequency bin 7' that is derived by simply taking a 7T’-point Fourier transform
of the perturbed known fullband demixing system Wiy,own- In order to evaluate the
performance of the proposed BSS methods we used the signal to interference ratio
SIR, = SIRp, — SIRy,, discussed in Chapter 2 and again defined in Section 6.8.
SIR means the ratio of a target-originated signal to a jammer-originated signal (L.
Parra and C. Spence, 2000). For the subband BSS models the fullband converged
solutions for WV after the synthesis stage are then converted to the frequency domain
via a T-point DFT to allow comparison with the BSS frequency domain approach
using the SIR metric. Figure 6.3 shows the performance comparison of the two
proposed methods with the typical frequency domain method. After each iteration

through the algorithms we measure the SIR in decibels for each method. We only
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Figure 6.3 Separation performance using three different BSS techniques for two TIMIT
speech segments recorded with two cardiotd microphones 1n a reverberant office environ-
ment.

look at the first 10 iterations for the three methods. Initially we see that the subband
based BSS that uses the DFT FIR filterbank has the highest SIR at 14.85 dB. After
the 6th iteration the subband based BSS algorithm using the ELT prototype with CM

is better with a higher SIR than the other two methods.
6.6 Subband Coupling Metric

As shown with the frequency domain approach, solving the convolutive BSS prob-
lem results in a permutation indeterminacy. With the limitations on separation perfor-
mance for the frequency domain approach, a subband based approach for convolutive
BSS is applied instead. This however will still result with a permutation ambiguity

for each separated subband. The subband permutation ambiguity can be defined as

é?lt,bl »N}(p’ k) = Hps?f,bz ,N}(pa k), (6.18)

where IT, is the subband dependent permutation matrix for the p™* subband where

p = 0,1,.... M — 1. There are two steps to correcting this permutation problem.
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Firstly a criterion for detecting a different permutation between consecutive pairs
of adjacent subbands is required. A typical approach for resolving permutations
between adjacent separated frequency bins in the frequency domain approach is to
exploit the cross-frequency correlation or interactions between the separated cross
frequency spectra for adjacent frequency bins when the sources are speech signals. In
(J. Anemuller, 2001) and (N. Murata, S. Ikeda, and A. Ziehe, 2001), this method was
employed exploiting the amplitude modulation correlation across adjacent frequency
bands due to the spectrum modulation of speech. A similar metric is derived with
respect to separated adjacent subbands for the TITO system case. The derivation of
incorrect permutation detection and correction for the general MIMO system will
be saved as a future exercise. After correctly identifying a permutation ambiguity
between two adjacent subbands after separation, a correction routine must be carried

out. The detection and correction steps are described as follows.

After successfully identifying the demixing system of FIR filters W, for all sub-
bandsp = 0,1, ..., M —1, we obtain the separated subband components for each sig-
nal. Each solution achieved via global optimization is decoupled and thus the local
permutation indeterminacy results between arbitrary separated subbands. We may
utilize information from the assumption that our unknown input signals are speech.
Over a time frame of 20 ms, speech 1s considered stationary. Observing the respective
decomposed separated signals for the same time frame of speech over all subbands in
the ideal case, where there exists no local permutation indeterminacies, there exists
a higher correlation between the complex envelopes of adjacent subbands from the
same separated signal then there does between the complex envelopes of adjacent
subbands from the different signals. Using this fact and assuming the local scaling

indeterminacy between separated subbands is solved, we can employ the normalized
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cross-correlation metric defined below as

asub asub
o (p1.1) = — A P 1)) ¢ B8, 1)) (6.19)
V Env{85(p,, k) 12/ Env{83%(p,, k) }?

where pmy (., p;) represents the cross correlation of the complex envelopes of ad-

jacent subbands p, and p, of the k™ stationary time frame of speech between the
separated subband signals §5 and §5%*. We define the function to obtain the com-

plex envelope of the respective separated subband signal to be
Env{8®(p,k)} = [8"(p, k) + yH{8®(p, k)}| * ho(n), (6.20)

where H{.} 1s the Hilbert function and a low pass filter, o defined in Equation (6.15),
is used to obtain the envelope of the subband signal. If the adjacent subbands p, and

p, have the same permutation then it is expected that

pulpnp,) +p2a(pnpy) _ 6.21)
Pr2(Pes py) + P21(p2s )

If this 1s not the case, then we conclude that there is a incorrect permutation at one
of the adjacent subbands and must permute one of the subbands to meet the above
condition. This correlation ratio detection test for a TITO system can be applied over

all consecutive adjacent separated subbands.

6.7 Dyadic Sorting Routine

To ensure a uniform permutation between all subbands for p = 0,1,.. , M — 1, the
detection and correction criterion described in Section 6.6 must be applied between
all pairs of separated subbands. The easiest approach to do this 1s via a sequen-
tial sorting routine where we correct the permutation for the first two subbands and
then every adjacent subband after that relative to it’s previous subband. However as
shown in (K. Rahbar, and J. Reilly, 2001), the disadvantage of this is that in a worse

case scenario, half of all the subbands will have one permutation and the other half
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will have another. To prevent this we adopt the same dyadic tree-structured sorting
routine as in (K. Rahbar, and J. Reilly, 2001) however we now do it with respect
to separated subbands as opposed to frequency bins and also assume that the total
number of subbands M is an integer power of 2. An example of such a tree structure
is shown in Figure 6.4. After detection and correction of permutations in adjacent
subbands, corrected subband signals belonging to each individual sorted group are
added together to obtain the next signal corresponding to higher level up in the tree.
Again the subband permutation detection criterion is established using the envelopes
of the new signals at the higher level. This process is repeated until all subbands have
the same permutation at the lowest level of the tree. A brief description of the sorting

routine is given below.

1. Assume a hierarchial level index [, where [ = 0, 1, ..., logs(M ) — 1. The zeroth
level is the bottom level in Figure 6.4 and is also the initial value for {. Also

define X0(k) = R;¥,, where p =0,1,. ,M — land 7 = 0.

FOR [ =0,1, .. logs(M)— 1, START

2. Divide the available separated subbands §?1‘b2 .~y (P, k) at hierarchial level [

into groups of two bins, with group index u, where v = 0,1, ..., M /(2H1) — 1.

3. Let II'(8,) for each 7 € [2u,2u + 1] be the permutation matrix for the hier-
archial level [ and group u estimated from the proposed permutation criterion.
Then for all groups u = 0, 1, .. ,J\7[/(2l) and 7 € [2u,2u + 1], we update the

order of diagonal values of X)(k) using

SH(k) = I'(3,) S (MIT(3,) (6.22)
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Please see print copy for Figure 6.4

We only update the diagonal values of X9(k) for one value of 7 in the set

[2u, 2u + 1] so we do not do redundant permutation sorting.
4. Update the order of the columns of §f11”’2 (0, k) using

é?sz N} (2, k)Hl(ég) (6.23)

5. For each group u calculate

S (k) = 25, (k) + o4, (k),  1# loga(M) =1 (6.24)

END

6.8 Simulation Results

6.8.1 Benchmark ICA’99 Dataset

There are numerous methods in the field of blind signal separation used to evalu-
ate the performance of various separation algorithms including plots of separated

signals, plots of cascaded mixing/demixing impulse responses and signal to noise
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ratios. It is important to use standard data test sets that are available to provide
a unified methodology to making a good comparative analysis between algorithms
in an objective manner. Controllable synthetic test cases are used to examine al-
gorithm performance in trivial to moderately complex test cases allowing accurate
evaluation of separation for different algorithms where information of sources and
mixing/demixing systems are available. In comparison however 1t is also equally im-
portant to test the algorithms in a real environment to demonstrate the effectiveness
of the algorithm in an application sense. Real world recordings for acoustic signal
separation should be considered to reflect the complexity of real mixing systems and
the success of separation for different BSS algorithms. Sources, mixing systems and
performance measures for synthetic and real cases that are standard tools for eval-
vating blind signal separation are referred to in (D. Schobben, K. Torkkola, and P.

Smaragdis, 1999).

6.8.2 Synthetic Testing

To test the proposed cosine subband convolutive BSS algorithm with the proposed
permutation detection and dyadic sorting network we use the synthetic mixing im-
pulse response filters for a TITO network generated in a virtual room with dimensions
10m x 10m x 10m. The impulse responses of the mixing system with reference to the
positions of the sources and microphones in the virtual room, shown 1n Figure 6.5, are
generated using the simroommix.m function available from http://www?2.ele.tue.nl/1ca99.
Assuming a sampling rate of 8 kHz, the synthetic impulse responses obtained are
shown in Figure 6.6. They have a reverberation time of 130 ms corresponding to a
filter length of P = 1039. The primary or dominant echo information of the virtual
room is found in the first 64 ms of the impulse responses, corresponding to P = 512
so we ignore the trailing information. Using the Wiener filtering approach to obtain

the corresponding demixing filters explained in Chapter 3, we obtain demixing FIR
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Figure 6.5 Virtual room synthetic mixing environment at 8kHz sampling frequency gener-
ated with the simroommx.m function

filters with impulse responses shown 1n Figure 6.7. These have a reverberation time
of 200 ms corresponding to a filter length of () = 1600. The mixing and demixing
TITO FIR systems in cascade produces a global system which is a scaled and delayed
version of the identity matrix I ;. The delay from the Wiener solution corresponds to

a delay of 32 ms.

With the TITO fullband demixing system available, we then employ the method pro-
posed in (J. Reilly, M. Wilbur, M. Seibert, and N. Ahmadvand, 2002) which allows
us to obtain the correct subband components for each of the respective demixing
channels. Subband decomposition of a large filter into its subband components via
a uniform M channel CM FIR FB with a subsampling factor of R is given via the
following least-squares approximation taken from (J. Reilly, M. Wilbur, M. Seibert,

and N. Ahmadvand, 2002) and adapted for our problem,

Wiy, s = Hyi(n)p r, (6.25)

where p = 0,1, ..., M — 1 is the subband index, H;; is the Moore-Penrose pseudo-



Subband BSS Model 147

TITO Mixing Channels with P=1039 Treverb=130 ms
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Figure 6.6 Virtual room synthetic mixing impulse responses at 8kHz sampling frequency
and reverberation time of 130 ms.

inverse of the Toeplitz convolutive matrix H,, defined in (J. Reilly, M. Wilbur, M.
Seibert, and N. Ahmadvand, 2002), and @i(n), r = (h,(n) * W,,(n)) . The length
of each of the subband components for each respective fullband demixing impulse

responses can be defined as,

Q+L

— e (= =+ (6.26)

By having an 1dea of what the subband components for each demixing FIR filter in
the TITO system should be, a comparison can be made to blind solutions for the sep-
arating TITO system in each subband after uninitialized global optimization to see
whether the scaling and permutation indeterminacies are evident between separated
subbands. For the synthetic case it was assumed that there were M = 256 subband
channels, and the oversampling ratio was 2, giving R = 128. The length of the anal-
ysis FIR filters was L = 4M = 1024 and the length of the fullband demixing FIR
filters was ¢} = 1600, resulting in a length of subband components for each demixing

TITO system of (), = 14. So now instead of having a single multivariate non-convex
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Figure 6.7 Wiener solution to TITO FIR synthetic demixing system with reverberation time
of 200ms 1.e. Q=1600, delay=32ms

non-linear optimization problem with 6400 dimensions for a TITO demixing system,
there is p = M = 256 optimization problems each with 56 dimensions to solve for.
The two put signals s(t) were 4 second speech segments taken from two different
utterances from the TIMIT corpus of speech. The signals were matched to ensure
the average volume level was the same and then were downsampled to a sampling
rate of 8 kHz. The input signals were mixed with the synthetic mixing filters H(7),
taken from the virtual room setup in Figure 6.5, to generate the fullband observed
signals to be used as input into the CM FIR FB shown 1n Figure 6.1. Assuming the
input signal is stationary over a specific time frame then for speech this time frame
is a period of 20 ms. At a sampling rate of 8 kHz this corresponds to frame of length
160 samples. The observed signal is then segmented into frames of length 20 ms
each and a subband decomposition of every frame of the observed signal is done to
obtain the cross-correlation matrices R, ,(7), for every stationary frame %, over all

time lags 7, to carry out the joint diagonalization task using global optimization for

each respective subband p individually. Figure 6.9 shows the separated subbands for
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the first 2 adjacent subbands. It was noted that in this particular simulation there was
no scaling discrepancy between separated subbands, however there was permutation
indeterminacies at various subbands. After the separation stage the first non-zero kth
stationary frame from each respective separated subband was checked for any per-
mutation using the envelope correlation criteria described in Section 6.6. Detection
and correction of permutations between all adjacent subbands was carried out using
the dyadic sorting routine to ensure consistent results across all pairs of adjacent sub-
bands. The separated subbands were passed through the synthesis stage of the CM
FIR FB to obtain the fullband separated signals. A qualitative analysis was done with
listening tests of the separated signals indicating fairly good separation. In addition
to this a quantitative analysis was done by comparing the signal-to-interference (SIR)
ratio of our proposed method with a typical frequency domain approach described in
Section 6.2 from (L. Parra and C. Spence, 2000) with geometric beamforming used
for 1nitialization from (L. Parra and C. Alvino, 2002). The angle of incidence or di-
rection of arrival (DOA) of the beam was calculated using simple trigonometry from
the location of the sources and sensors of the virtual room in Figure 3.4. The SIR is

defined as SIR = SIRp — SIR;, where,

Do D |Au(W)SZ(w)|2
SIRo, = 101lo e 5 6.2
O S A T, [Ay(@)5,@) @20
Zw Z@ ‘Hu(w)sz(w”Q .
> Zz;éj Zg |HU(W)SJ(W)|2

A(w) = W(w)H(w) and » # j. SIR means the ratio of a target-originated signal to a

SIR; = 10log (6.28)

jammer-originated signal (L. Parra and C. Spence, 2000). The SIR metric above can
be used for the frequency domain approach however to use it for the subband domain
approach there must be a method to convert from the subband demixing components
back to the fullband demixing system. As we do not currently have a method of
doing this we calculate the equivalent technique in the subband domain for finding

the SIR. In the subband approach, the SIR 1s defined as SIR = SIRo — SIR;y,
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Figure 6.8 Ideal global TITO FIR system for virtual room.

where,
A, %S, 2
SIRo = 10log Zp Z’ | ? p‘ 5 (6.29)
Zp Zz;éj Ey ,A'Up * SJP'
H, %3, |
SIR; = 10log Zp ZZ‘ i pl (6.30)

2op 2oty 2oy [ Hug, ¥ SJpIT

A, =W, xH, and 2 # . Note that the subband components of the fullband mixing
system can be found using the method described in (J. Reilly, M. Wilbur, M. Seibert,
and N. Ahmadvand, 2002). The typical BSS frequency domain approach sets the
required variables of the algorithm to be () = 1600,7" = 4096, K = 204 and an
initial value for the unknown system in each frequency bin 7' that is derived using
prior knowledge of the geometrical location of the sources respective to the sensors
as described in (L. Parra and C. Alvino, 2002). Table 6.1 shows that the SIR was
shightly better for our proposed approach without the need for initialization when

performing the optimization of the objective function.
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First 2 adjacent separated subbands for TITO system
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Figure 6.9 First two separated adjacent subbands for p = 1, 2 when M =256, R = 128.

Table 6.1 Separation performance comparison using SIR

Alg. SIR (dB) Synth. | SIR (dB) Real
Parra/Spence 18.2 15.4
SBSS 21.3 17.5

6.8.3 Real Testing

To test a real case scenario, the same approach for the synthetic testing model was
used but instead of using artificially produced mixing impulse responses, recordings
were taken in a real reverberant room. In Chapter 3, the process of generating the im-
pulse responses taken from a reverberant environment was explained. The benefit of
this is that we can work out a good approximation of the mixing system, and then find
the corresponding MIMO fullband inverting demixing system and its corresponding
subband components for measures of reference to our blind solution in the subband
domain. The measured room impulse response was found using the MLS method as
explained previously. The TITO mixing system had a reverberation time of 200ms

corresponding to FIR filters of length P = 1600 shown in Figure 3.5. The demixing
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FIR filters found by solving the Wiener-Hopf equations had a reverberation time of
250ms corresponding to FIR filters of length ) = 2000. Using the method proposed
in (J. Reilly, M. Wilbur, M. Seibert, and N. Ahmadvand, 2002), we found the sub-
band components using the least-squares approach for the demixing FIR filters of the
fullband TITO demixing system. Using a CM FIR FB with M = 512 and R = 256,
Equation (6.26) gives the length of the unknown demixing systems W, to be ), = 9
for all subbands. The same two input speech signals of 4 seconds in length used in
the synthetic testing and taken from the TIMIT corpus of speech were used in this
simulation. At a sampling frequency of 8 kHz, the number of stationary frames to
jointly diagonalize in each subband was K = 210. After detecting and correcting
permutations between adjacent subbands using the dyadic sorting approach, the sep-
arated subbands were passed through the synthesis stage of the filter bank to obtain
the fullband separated signals up to a global permutation and scaling factor. The
quality of separation from this method was also compared to the frequency domain
method described in Section 6.2 which uses an initialization based on a priori knowl-
edge using geometric beamforming taken from (L. Parra and C. Alvino, 2002). The
parameters for the frequency domain method in this case were = 2000, T = 4096,
and K = 210 with an angle of incidence calculated from Figure 3.4. The SIR for
both methods is given in Table 6.1 showing a slight improvement without the extra
knowledge of the location of sources to sensors required for the initialized frequency
domain approach. With a slightly larger demixing system to solve for due to a longer
reverberation time, the SIR is slightly lower for both approaches than the synthetic
case as shown in Table 6.1. For better performance it is expected that the effects of
aliasing due to the subband processing introduced can be decreased by increasing
the oversampling factor although this will also have implications on the size of the

unknown demixing systems within each subband.
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6.9 Conclusions

The main contributions of this chapter collectively demonstrate a general framework
to approach the problem of BSS using a subband approach when convolutive mix-
ing of nonstationary audio/speech sources in a reverberant environment exists. The
motivation of using a subband analysis in the context of BSS as opposed to the typ-
ical frequency domain approach has been briefly discussed due to the upper bounds
and limitations on separation performance for the frequency domain approach as dis-
cussed in (S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, 2001; M. Ikram,
and D. Morgan, 2000; R. Mukai, S. Araki, H. Sawada, and S. Makino, 2004) and
verified by our SIR results for our proposed subband method. A methodology for
conducting experiments to obtain room impulse responses, their corresponding in-
verting systems and the subband components for MIMO systems has been identified
and serves to provide available information in the non-blind case to compare blind
results to. The introduction of global optimization as a method to solve blind systems
without the need for additional information about source/sensor locations is investi-
gated using a branch-and-bound technique and can be used for smaller type BSS
convolutive problems without the frequency permutation problem. For larger rever-
berant blind systems, subband decomposition allows large problems with infeasible
convergence times to be reduced to many smaller type BSS problems. Avenues for
future research include investigation of other PR filter bank polyphase models and
global optimization methods that can improve separation performance further whilst

simultaneously reducing computational complexity and convergence times.



Chapter 7

Conclusions and Suggestions for
Further Research

7.1 Conclusions

The focus of this thesis has aimed at developing a methodology and framework to
model the convolutively mixed BSS problem in the subband domain, with an empha-
sis on applications involving reverberant acoustic environments and nonstationary
signals such as speech. The validity of proposing such a subband model to conduct
BSS for convolutively mixed signals as opposed to the typical frequency domain
approach is justified through the limitations and upper bounds placed on separation
performance in longer reverberant environments for the frequency domain approach
as evidenced in (L. Parra and C. Alvino, 2002; H. Sawada, R. Mukai, S. Araki, and

S. Makino, 2004a) and (H. Sawada, R. Mukai, S. Araki, and S. Makino, 2004b).

Firstly as proposed in (Chapter 3), to assess the performance of the model developed,
a priori information available in a non-blind sense aids in a comparative analysis of
the proposed model with reference to other typical models/approaches to solving the
same problem. Developing a systematic approach to obtaining all relevant informa-

tion of the problem space is paramount and provides a more analytical framework for

154
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comparison of the proposed subband model to a typical frequency domain approach.
The method proposed serves as a tool for conducting a more effective comparative
analysis of separation quality between two or more BSS approaches to the problem
of separation of speech 1n a reverberant acoustic environment. A framework for ob-
taining the impulse responses of a MIMO system used to model a room response is
proposed using the MLS technique. Then the process of obtaining the inverse re-
sponse of the MIMO system is proposed utilizing the Wiener-Hopf theory to obtain
the appropriate FIR filter responses of the corresponding MIMO demixing system
is proposed.This provides all relevant information of the convolutive BSS model,

realized for a practical problem.

For all convolutive BSS problems, there is always the inherent 1ssue of the local fre-
quency permutation problem. Many typical approaches transform the problem into
the frequency domain, via the DFT, and attempt to solve many instantaneous BSS
problems in each frequency bin. In (Chapter 4), we proposed two new algorithms in
time and in time-frequency domains to avoid the local permutation problem. There
are implications of solving the local permutation problem in the frequency domain.
Usually the benefits of transforming a convolutive time-domain problem to a multi-
plicative frequency domain problem is evident due to savings 1n computations and
convergence time, which is good for practical real time applications. However, the
benefits of proposing a pure time-domain or time-frequency domain system become
evident for small to medium size convolutive mixing systems as the savings of not
having to solve the local permutation problem, outweigh the costs of performing the
DFT transform twice, and having to use some projection operation to avoid the local
permutation problem, as is the case with typical approaches in literature. This chap-
ter proposes two new BSS algorithms that avoid the local permutation problem that

remains evident in other approaches.
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Most current BSS models that are used to solve convolutive BSS problems with
non-stationary sources such as speech make use of some additional information or
assumption of the problem and use local optimization routines. For example, with
speech signal processing and array/geometric beamforming for BSS in a room, i.e.
the ’cocktail party’ problem, prior knowledge of the spatial layout of sources with
respect to the sensors is used to provide good initial starting points for the unknown
demixing system so as to avoid ill-convergence to local multiminima in a non-convex
multimodal optimization problem. In (Chapter 5), we propose the integration of
a specific branch-and-bound global optimization method with the convolutive BSS
time domain model proposed in (Chapter 4), to solve the BSS problem without ref-
erence to any additional information or assumptions. This makes the problem truly
blind which in essence is the idea behind BSS. Where there exist problems that one
cannot assume additional criteria on the problem, the justification of such a proposed
method becomes evident. The DiRect algorithm is customized to fit the BSS problem
criteria for convolutive mixing and global optimization is performed and compared

to existing techniques.

For (Chapters 3,4, and 5), the main benefits are primarily related to smaller to medium
sized convolutive mixing systems. In practical problems however where we have re-
verberant environments doing the mixing, impulse responses for MIMO FIR filter
systems become very long. In such cases it becomes more viable to conduct signal
separation 1n the frequency or subband domain. With the limitations on frequency
domain signal separation performance being cited previously 1n this thesis and dis-
cussed in Chapter 2, the motivation to develop a subband based framework to con-
duct BSS in for convolutive models becomes apparent. In (Chapter 6) we integrate
the different proposed models and methods of this thesis into a subband framework.

Subband decomposition is performed on observed signals using oversampled CM
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and DFT FIR filter bank models based on an ELT prototype. Both of these models
are compared when performing initialized BSS with the Newton local optimization
method, and then uninitialized BSS with the DiRect global algorithm within each
subband is performed and compared to the typical frequency domain approach. For
the global approach it is seen that a CM FIR filter bank subband decomposition,
followed by the separation phase performs slightly better than a typical frequency
domain separation approach as far as quality of separation is concerned. Separation
in the subband domain, like the frequency domain, requires the solving of the local
permutation problem, and a new detection of permuted separated adjacent subbands
is proposed along with a dyadic sorting routine to ensure correct alignment of all

separated subbands over the entire spectrum.
7.2 Suggestions for Future Research

A potentially fruitful area of future research work is in applying the uninitialized
global optimization methods for convolutive time domain BSS with nonstationary
source signals to wireless communications applications, where there exist more smaller
to medium scale mixing and demixing systems which can benefit from the proposed
algorithms presented in (Chapters 4 and 5). For those communications applications
where the observed signals are represented as complex signals, the DiRect global op-
timization algorithm must be changed slightly to handle optimization of multivariate
complex signals. Also, if DFT composition is used on real observed signals result-
ing in complex frequency bin signals, then the DiRect global optimization algorithm

again would need to be changed slightly to accommodate the complex case.

The proposed subband detection and correction schemes currently only consider the

TITO mixing and demixing system case. The proposed method needs to be extended



Conclusions and Suggestions for Further Research 158

to accommodate the more general MIMO mixing and demixing system cases. Also,
the current structure of FIR filter bank used is a direct one. As explained in Section
2.9, polyphase representation and design of filter banks would prove more computa-
tionally beneficial resulting 1n faster implementations. In (Malvar, 1992) presented
a fast algorithm for any overlapping factor using orthogonal butterfly angles and a
type-IV DCT. With reference to this, the subband FIR filter bank could be improved.
In addition to this, a further investigation into the filter bank parameters including the
overlapping factor, the design of the prototype window, the method of modulation,

the subsampling factor, and the number of subbands is suggested.

Different global optimization methods could also be considered in relation to op-
timizing the BSS problem when there is no additional information present in the

problem space, within the subband domain.
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Appendix A

Proof of Closed Form Analytical
Expressions for Gradient and Hessian

A.1 Proof of Closed Form Analytical Expressions for
Gradient and Hessian

Useful equations and relations for matrix calculus, Frobenius norm, trace, vec(.), and
the Kronecker product functions, originally cited from (J. W. Brewer, 1978) and also
given in appendices B and C in (M. Joho and K. Rahbar, 2002) are helpful in the
following derivations. We firstly provide the derivation of the objective function Js,
and then the constraint J;. The objective function is given as

Tmar K

V) = YN Berllof FOVREx WG, @Aan

T=—Tm g k=1

If we ignore the summations we get,

1>

llof fWRxxWH)||%

IWRxaWH |5, — |lddiagWR x 2 WH)|[5,

r(WR 22 WIWR 2 WH)

trOWRx x WH ddriag(WR 3 x W) (A2)

Js(W)

Following on from (J. Manton, 2002) and (M. Joho and K. Rahbar, 2002), the second-
order Taylor series approximation of some cost function J with respect to W €

CNXM@ in the non-square matrix form is,

TW+6Z) = TW)+ R{tr(Z7Gw)}
+ é;vec(Z)HHerc(Z)

2
+ %—]R{vec(Z)Tvaec(Z)} +0(8%), A3

where Gy € CV*MQ g the derivative of J evaluated at W, and {Hyy + Cw} €

CNMQXNMQ s the Hessian of 7 evaluated at VW. The derivation of the derivative
and Hessian of the objective function J3 given in Equation (4.47) follows similar
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steps as in (K. Rahbar, J. Reilly and J. Manton, 2004), however we derive it for the
nofn-square case.

Ta(W + 6Z) TaW) + 46R{tr(Z7 of fOVRx 2 W YWR 2 x )}
202 (ZH of fWRx 2 WHYZRx x

ZHof f(ZRx 2 WH)WRxx)

262 R{tr(ZRx x W of f(ZR x 2 WH))}

+ 0% (A4
The last three terms of Equation (A.4) can be rewritten as,

+ o+ o+

tr(ZHof fOWRx 2 WH)ZR x )
= vec(ZYH (R ® of FWRxa WH))vec(Z) (A5)
tr(ZHof fIZRxx WH)WRx x)
= vec(Z)Pvec(of f(ZRx 2 WH)WRx 1))
= vee(Z)! (REWT @ In)vec(of fF(ZRxxWH))
=vec(Z)TRLWT ® IN)Poffvec(ZR;(xWH)
= vec(Z)T(RE 2 WT @ IN)Po sy (W Ry x © In)vec(Z) (A 6)
tr(ZRxxWH of f(ZRx x W)
= vec(Z) TP vec(Ry x WH o f f(ZR x x WH)
= vec(Z) TP (Iv ® R WH)vec(of f(ZRx xWH))
= vec(Z)TPR" (In @ RaaWH)Pos pvec(ZRxxWH)
= vec(Z) TP (Iny @ Rya WP ;s (W R x ® Iy )vec(Z)
= vee(Z)T (R x W @ IN)PSY P s s (W R & ® In)vec(2) (A7
After substituting the terms in Equations (A.5-A.7) into Equation (A.4), we equate
the corresponding terms for the gradient and Hessian matrices with the second order
Taylor series approximation in Equation (A.3) to obtain,
Gw = 2offOWRxaWIHWRE,
+ of (WRExWH)WRxx}, (A8)
and
2{(Ryx ® of WWR2x2WH))
(REx ® of FOVRE W)
(RE2WT @ In)Poss(W* Ry x ® L)
(RiaW? @ In)Poss(W* RE x ® L)
RxaxWH @ In)P P, (W R ®1n)
(RELWH @ In)PossPLLY (W RE x © In)} (A9)

{Hw +Cw}

i

+ o+ o+ o+

Considering all k = 1,2, , K time window frames, over all time lags 7 = — T, -+, Trnax

these expressions are expanded to Gz and H3 given in Table 4.1. The constraint func-
tion is given as
lddiagWWH — 1)

= tr{ddiagWWH —1§)ddiagOWWH — 1)}

= tT{ddzag(WWH)ddzag(WWH)

- 2ddiag(WWH) + 1y} (A 10)
Using the same approach as in Equation (A.4), we derive,

Ja(W + 0Z) Ja(W) + 45R{tr (ZH (ddrag(WWT) — In )W)}

20% {vec(Z)H vec((ddiagOWWH) — Ix)Z)
vee(ZYH vee(drag(ZWHYW)}
62 {vec(Z) Tvec(ddrag(WZH )W)
vec(Z)TPf,IZcMQ)vec(WHddzag(ZWH))}
0(5%) (A11)

Ts(W)

+ + o+ o+
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The last four terms of Equation (A.11) can be rewritten as

vec((ddiag(WWT) — In)Z)
= (Ipq © ddiagWWH — 1) vec(Z) (A 12)
vec(diag(ZWHYW)
= WT & Iy)vec(ddiag(ZWH))
= (WT @ In)P gqgvec(ZWH)
= WT @ IN)P gp0y (W* @ Iy )vec(Z) (A 13)
vec(ddiag(WZHE )W)
= (W & In)vec(ddriagOVZT))
= WH @ IN)P gagvec(WZH)
= W7 ® In)Parag(Iy © WPV yeo(z) (A 14)
PN My ec(WH ddiag(ZWH))
=PI M 1y @ WH)vec(ddriag(ZWH))
=PNMD 1y @ WHYP 4,0 vec(ZWH)
=PI Iy @ WHP g1y (W* @ I )vec(Z) (A15)

After substituting the terms in Equations (A.12-A.15) into Equation (A.11), we equate
the corresponding terms for the Jacobian and constraint Hessian matrices with the
second order Taylor series approximation in Equation (A.3) to obtain,

Gw = A(ddiagOWWH) — 1w (A 16)
and

H{(Tprg ® ddragOWWH — 1))
VT @IN)Paag(W* @ In)}

2{WH @ IN)Pgrag(In ® W*)ngcMQ)T

PN Iy @ WP g0, (W* @ 1)} (A17)

{Hw +Cw}

i

+ o+ 4+

The Jacobian and constraint Hessian matrices, G4 and Hy, are given in Table 4.1.
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