#3kx¢] UNIVERSITY
il OF WOLLONGONG
¢ ¥ AUSTRALIA

University of Wollongong - Research Online

Thesis Collection

Title: Developing a subband model for blind signal separation in an acoustic environment
Author: lain Trent Russell

Year: 2005

Repository DOI:

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The
University does not authorise you to copy, communicate or otherwise make available electronically to any
other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright
Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be
exercised, without the permission of the author. Copyright owners are entitled to take legal action against
persons who infringe their copyright. A reproduction of material that is protected by copyright may be a
copyright infringement. A court may impose penalties and award damages in relation to offences and
infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving
the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily
represent the views of the University of Wollongong.

Research Online is the open access repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au


https://dx.doi.org/
mailto:research-pubs@uow.edu.au

University of Wollongong

Research Online

%Jgisvéle_rzs&yf)of Wollongong Thesis Collection University of Wollongong Thesis Collections

2005

Developing a subband model for blind signal separation in an acoustic
environment

lain Trent Russell
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University
does not authorise you to copy, communicate or otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act
1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,
without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe
their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to copyright material.
Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong.

Recommended Citation

Russell, lain Trent, Developing a subband model for blind signal separation in an acoustic environment,
PhD thesis, School of Electrical, Computer and Telecommunications Engineering, University of
Wollongong, 2005. http://ro.uow.edu.au/theses/553

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au


https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages

NOTE

This online version of the thesis may have different page formatting and pagination
from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or
study. The University does not authorise you to copy, communicate or otherwise make available
electronically to any other person any copyright material contained on this site. You are
reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A
reproduction of material that is protected by copyright may be a copyright infringement. A court
may impose penalties and award damages in relation to offences and infringements relating to
copyright material. Higher penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material into digital or electronic form.




Developing A Subband Model for Blind Signal
Separation in an Acoustic Environment

A thesis submitted in fulfilment of the
requirements for the award of the degree
Doctor of Philosophy
from
THE UNIVERSITY OF WOLLONGONG
by

Iain Trent Russell
Bachelor of Telecommunications Engineering (Honours Class I)

ScHOOL OF ELECTRICAL, COMPUTER
AND TELECOMMUNICATIONS ENGINEERING
2005



Statement of Originality

This is to certify that the work described in this thesis is entirely my own, except

where due reference 1s made in the text.

No work in this thesis has been submitted for a degree to any other university or

institution.

Signed

Tain Russell

22nd August, 2005

il



iit

Dedicated to my family



Acknowledgments

I would like to thank my supervisors, Dr. Jiangtao Xi, Prof. Joe Chicharo, and Prof.
Alfred Mertins for their academic advice and continual support throughout the PhD.
Gratitude is extended to Alfred and Jiangtao for making it an easy transition between
supervisors over the course of the first two years of the project. I am also very grateful
to Alfred for approaching me and providing the opportunity to do a PhD, providing

the necessary scholarship and initial insight to the overall thesis topic.

Special thanks goes to Gaurav Srivastava and Dr. Mehran Abolhasan who as work
colleagues always created an enjoyable atmosphere in the office and always fostered

good discussions on topics ranging from women, politics, engineering, and religion.

Many thanks go to the members of TITR and the Whisper lab who made the last
three years of hard work a pleasureable experience! The insight from different areas
of research often provided a different way of approaching many problems specific to
the area of BSS and was greatly appreciated. Special thanks also goes to Dr. Jason

Lukasiak for his academic advice from time to time.

Finally I would like to express my deepest thanks to my parents, and family, for their

encouragement, support and understanding over the last few years.

iv



Author’s Publications

Much of the work in this thesis has been published or has been submitted for publi-

cation as academic papers. These papers are:

1. Alfred Mertins and Iain Russell, ”An extended ACDC algorithm for the blind
estimation of convolutive mixing systems,” in Proceedings of Seventh International
Symposium on Signal Processing and its Applications (ISSPA 2003), Paris, France,
July 2003, vol. 2, pp. 527-530.

2. Iamn Russell, Alfred Mertins, and Jiangtao Xi, ”Time domain optimization tech-
niques for blind separation of non-stationary convolutive mixed signals,” in Proceed-
ings of 9th IASTED International Conference on Signal and Image Processing (SIP
2003), Honolulu, Hawaii, USA, August 2003, pp. 440-445.

3. lain Russell, Jiangtao Xi, Alfred Mertins, and Joe Chicharo, ”Blind separation
of nonstationary convolutively mixed signals in the time domain,” in Proceedings
of 7th International Symposium on DSP for Communication Systems (DSPCS03),
Coolangatta, Qld, Australia, December 2003, pp. 93-98.

4. lain Russell, Jiangtao Xi, Alfred Mertins, and Joe Chicharo, "Blind source sepa-
ration of nonstationary convolutively mixed signals in the subband domain,” in Pro-
ceedings of IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP 2004), Montreal, Canada, May 2004, pp. V-481-V-484.



Author’s Publications vi

5. Tain Russell, Jiangtao Xi, Alfred Mertins, and Joe Chicharo, “Integration of DFT
and cosine-modulated filter banks with blind separation of convolutively mixed non-
stationary sources,” in Proceedings of 3rd Sensor Array and Multichannel Signal

Processing Workshop (SAM2004), Barcelona, Spain, July 2004, pp. CDRom.

6. Iain Russell, Jiangtao Xi, and Alfred Mertins, ”Time Domain Blind Separation of
Nonstationary convolutively mixed signals,” in Signal Processing for Telecommuni-

cations and Multimedia, Vol. 27, Springer, New York, 2004, pp. 15-29.

7. Iain Russell, Jiangtao Xi, and Alfred Mertins, ”Global optimization of unini-
tialized convolutive blind signal separation problems in the time domain,” Proceed-
ings of 3rd Workshop on the Internet, Telecommunications, and Signal Processing

(WITSP 2004), Adelaide, Australia, December 2004, pp. CDRom.

8. Tain Russell, Jiangtao Xi, Alfred Mertins, and Joe Chicharo, ” Uninitialized sub-
band blind signal separation of nonstationary convolutively mixed signals in acous-
tics using global optimization,” Submitted to IEEFE Transactions on Speech and Au-

dio Processing.



Abstract

The focus of this thesis is to develop a framework for solving convolutively mixed
blind signal separation problems in the subband domain. Current methods generally
employ a discrete Fourier transform (DFT) to change the time domain convolutive
model into many instantaneous multiplicative models to save on computations and
convergence time. The motivation for approaching the problem from the subband
domain is that there is an upper bound on the quality of separation for frequency
domain methods where the mixing is done in a reverberant environment and there is
a high number of unknown variables to solve for. This is shown with reference to the
works in (S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, 2001; M. Ikram,
and D. Morgan, 2000; R. Mukai, S. Araki, H. Sawada, and S. Makino, 2004). The
model is developed throughout the thesis in a series of stages. Firstly we investigate
modelling the convolutive Blind Signal Separation (BSS) problem completely in the
time domain. The benefit of this is that by not performing any transforms we elimi-
nate the local frequency permutation problem that is inherent in all convolutive BSS
problems. To solve the permutation problem requires additional computational over-
head. There is a tradeoff however according to how complex the mixing/demixing
system is. The longer the reverberation time of an acoustic environment, the more
unknown variables must be solved. The savings of performing multiplication in the
frequency domain as opposed to convolution in the time domain must be compared

to the savings of not doing the transform operator twice, as well as ensuring the local

Vil



Abstract viii

permutation problem is solved.

Two new algorithms that avoid the local permutation problem are proposed and in-
vestigated. The first uses an alternating least squares approach (ALS) while the sec-
ond uses joint diagonalization of output correlation matrices of the recovered signals.
Where it is plausible to assume that we have some sort of a priori information that
provides a good initial starting point for the unknown demixing system, then we
only need to consider some type of local optimization procedure to solve the un-
known demixing system. Two local optimization procedures investigated include the
steepest gradient descent and Newton methods. Both types of local solvers were
compared and the merits and disadvantages of each are specified in regards to the
convolutive BSS time domain algorithm proposed. Where small convolutive mixing
systems exist, such as in wireless communication mixing systems that assume a two
ray model, the computational overhead that is increased by doing convolution in the
time domain is offset more by the savings of not having to solve the local permutation

problem and execute the transform operation.

In some cases, information pertaining to problem is unavailable. Geometric source
separation assumes that there is some additional knowledge about the layout of the
sensors with spatial reference to the source positions. This allows an angle of inci-
dence of the sound wave impinging on the sensor array to either be known directly or
calculated using various beamforming techniques. If we cannot assume to know such
information, then multivariate complex problems with a high number of parameters
become harder to solve for without getting spurious results from ill-convergence to
local multiminima as opposed to the preferred global minima which corresponds to
the desired demixing system that will allow signal separation. To avoid this, we in-
tegrate one of the proposed time domain convolutive BSS algorithms with a global

optimization routine that is catered to suit the BSS convolutive problem model. A



Abstract ix

branch and bound algorithm that uses division by hyper-rectangles is used to solve
the uninitialized optimization BSS problem. With the validity of the proposed BSS
time domain convolutive algorithm and the global optimization approach being jus-
tified, attention will then be focused on integrating these contributions into a model

which uses subband decomposition before performing signal separation.

Various methods of subband decomposition are considered including using a uni-
form FIR analysis/synthesis filter bank based on DFT modulation as well as cosine
modulation. The prototype window used is based on an extended lapped transform
and was chosen due to the computational benefits of using lapped transforms. A
framework for developing such a subband model is made with the main aspects of
the model being the BSS algorithm and optimization approaches used, the way in
which the observed signals from a multiple-mput-multiple-output (MIMO) mixing
system are decomposed via a filter bank, and the way in which the local permutation
problem is overcome. In our work we propose a new subband detection, correction,
and sorting routine for separated but arbitrarily permuted subbands over the entire

spectrum.

Finally, a general and systematic approach for obtaining experimental measurements
for generating the impulse response of an acoustic environment such as a typical
office room, as well as the inverting MIMO system using wiener-hopf and optimal
filtering theory is presented to allow full availability of information for the problem
modelled in a practical environment as opposed to synthetic testing methods which

are also examined.
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