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ABSTRACT

The advent of miniaturised analytical systems has the potential to revolutionise the way
in which chemical and biological analyses are made, due to the benefits of reduced
reagent consumption, increased sensitivity and decreased analysis times. With
increasingly smaller device dimensions comes the need for more efficient methods of
controlling fluid flow on the microscale. Electrokinetic techniques, such as
electrophoresis and electroosmosis, are well suited for delivering analytes and reagents
in microfluidic devices, however high driving voltages and power requirements limit
the size to which the device may be miniaturised and thus limit the applicability of these
flow control methods for portable, hand-held devices. In order to overcome this
limitation, an elegant use of surface tension forces which dominate at the microscale is

necessary.

Conducting organic polymers, such as polythiophene and polypyrrole, have found
widespread use in recent years due to their attractive mechanical properties and
processability, in addition to their ability to be reversibly switched between oxidised
(conducting) and reduced (insulating) forms.  This redox switching may be
accompanied by a change in polymer properties such as wettability and surface energy
which may be altered dramatically upon external stimulation, commonly in the form of

a small applied electrical potential.

The effect of redox switching upon conducting polymer wettability for fluid control in
microfluidic devices is the central theme which was explored in this thesis. In
particular, the aims of this thesis were to characterise the wettability of conducting

polymers and investigate the factors which influence it, as well as explore the use of
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conducting polymers for fluid control in simple, dynamically controlled microfluidic
devices, based on the change in wetting properties upon in-situ electrochemical redox
switching. The role of polymer oxidation state, film thickness, polymerisation substrate
and the configuration of the electrochemical cell used for fluid control were considered.
Goniometry and tensiometry were used to characterise polymer wetting properties,
while microscopy techniques (scanning electron microscopy, atomic force microscopy
and optical profilometry) were used to probe the morphology of polymer and
understand the role of roughness on conducting polymer wettability and fluid
movement. The electrochemical properties of polymers were characterised by cyclic
voltammetry, while Raman spectroscopy was employed to gain insight into the role of
water and film thickness in determining the oxidation state of polyterthiophene in

Chapter 3.

The insights gained during polymer wettability characterisations were extended to
investigate surface tension-induced fluidic control using electrochemical cells in both
channel-based and droplet-based configurations upon the application of a small voltage.
The knowledge gained during the course of this study should form the basis for
developing devices which will contribute to interesting solutions for improving flow

control on the microscale.
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equilibrium contact angle
advancing contact angle
receding contact angle
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surface tension of a liquid
surface tension of a solid

surface tension of the solid-liquid interface
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