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“l am enthusiastic over humanity's extraordinary and sometimes very timely
ingenuities. If you are in a shipwreck and all the boats are gone, a piano top buoyant
enough to keep you afloat may come along and make a fortuitous life preserver. This is
not to say, though, that the best way to design a life preserver is in the form of a piano
top. | think we are clinging to a great many piano tops in accepting yesterday's

fortuitous contrivings as constituting the only means for solving a given problem.”

- Buckminster Fuller



ABSTRACT

In this dissertation, the effect of ionic liquid (IL) or classical electrolyte (CE) employed
on the redox behaviour of many inherently conducting polymers (ICPs) was

investigated with the ultimate goal of producing flexible batteries.

ICPs can be used in a range of unique applications, and also to replace many metal
conductors or inorganic semiconductors. Commercialisation of ICPs has, however, been
limited. Ion and solvent transport in ICPs during redox cycling almost universally leads
to breakdown of redox activity and desired properties of the material. ILs comprise of
neat ions in the form of a room temperature melt. ILs show great promise as novel
electrolytes to enhance the stability of ICPs beyond that observed in CEs and paves the

way to commercialisation of ICP devices.

Chapter 3 describes fundamental investigations of ICP / IL systems on Pt disk
electrodes. The redox cycling stability of polypyrrole was increased over those of CE
systems in the IL 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPFs). The
electroactivity in this system showed no degradation over 900 redox cycles. The use of
1-ethyl-3-methylimidazolium (bis) trifluoromethanesulfonimide (EMITFSI) also
improved the redox stability of polypyrrole in comparison to the CE systems. The stable
potential windows of polypyrrole were significantly improved in both IL systems

compared to CEs.

The transitional behaviour between ILs and CEs was investigated by diluting ILs in a

common neutral solvent electrolyte, propylenecarbonate (PC). In such IL / CE mixtures,



differences were noted in the electrolyte conductivity profile and ICP electroactivity
with respect to concentration of IL. BMIPFg exhibited a significantly higher degree of
ion pairing than EMITFSI, and the strong ion pairing property of BMIPFg is thought to
be responsible for unique electrochemical observations absent from the ICP in

EMITFSI systems.

N-doping is an attractive feature of some ICPs and has promise in charge storage
applications, providing significant driving potential differences of two or more volts
against p-doped electrodes. As ILs were found to enhance redox stability of common p-
doping processes in ICPs, investigations were conducted in Chapter 4 to see if the same

was true for inherently unstable n-doping processes.

Poly-3-p-flourophenylthiophene (P3PFTh) was chosen as a model n-doping system, due
to its well published n-doping behaviour in classical electrolytes. Surprisingly, n-doping
responses of P3PFTh in EMITFSI were very poor. The reasons behind this were
explored by testing other n-dopable polymers in EMITFSI to isolate whether EMITFSI
was inherently preventing n-doping, and P3PFTh was tested with different ILs to

investigate P3PFTh / EMITFSI incompatibility.

EMITEFSI used as an electrolyte was found to decrease electroactivity of the n-doping
processes in most polythiophenes, with the exception of polybithiophene (PBiTh). The
stability of n-doping PBiTh in EMITFSI did not, however, improve to an extent that

would allow derivative devices to be practical.



Spectroelectrochemical Raman studies of the n-doping processes of polythiophenes in
EMITEFSI were conducted in-situ to reveal behaviour that may be responsible for poor
electrochemical responses. Raman studies showed that both the p-doping and n-doping
process in polythiophenes occurred with a ‘reverse’ mechanism of ion expulsion upon
doping (whereas doping processes of ICPs in CEs usually occur by ion insertion). The
Raman studies also indicated that the physical structure of polythiophene had a large

effect on the resulting electrochemistry, to an extent that impeded doping processes.

The structure-activity relationships of P3PFTh were investigated by CV using a range
of growth and cycling electrolytes. Observations were analysed chemometrically to
identify the effects on electrochemical parameters of electrolyte component (anion or
cation), whether the dominating effect was from growth or cycling electrolyte, and

which particular doping / dedoping process was affected by these parameters.

Chapter 5 describes electrochemical charge storage devices based on IL electrolytes
using various substrates, polymers and configurations. The highest capacity device was
based on polyaniline doped with ferrocene sulphonic acid on carbon fibre textile for
both anode and cathode, with a polyvinylidene fluoride (PVDF) separator and EMITFSI
electrolyte. The flexible charge storage device produced in this way had a maximum
charge capacity of 58 mAh/g, but degraded quickly on cycling. The most stable device
was constructed similarly to the highest capacity device, but used polypyrrole and poly-
3-methylthiophene electrodes, with maximum charge capacity of 17 mAh/g, remaining

unchanged for 60 cycles.
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