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“I am enthusiastic over humanity's extraordinary and sometimes very timely 

ingenuities. If you are in a shipwreck and all the boats are gone, a piano top buoyant 

enough to keep you afloat may come along and make a fortuitous life preserver. This is 

not to say, though, that the best way to design a life preserver is in the form of a piano 

top. I think we are clinging to a great many piano tops in accepting yesterday's 

fortuitous contrivings as constituting the only means for solving a given problem.” 

 

- Buckminster Fuller
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ABSTRACT 

 

In this dissertation, the effect of ionic liquid (IL) or classical electrolyte (CE) employed 

on the redox behaviour of many inherently conducting polymers (ICPs) was 

investigated with the ultimate goal of producing flexible batteries. 

 

ICPs can be used in a range of unique applications, and also to replace many metal 

conductors or inorganic semiconductors. Commercialisation of ICPs has, however, been 

limited. Ion and solvent transport in ICPs during redox cycling almost universally leads 

to breakdown of redox activity and desired properties of the material. ILs comprise of 

neat ions in the form of a room temperature melt. ILs show great promise as novel 

electrolytes to enhance the stability of ICPs beyond that observed in CEs and paves the 

way to commercialisation of ICP devices. 

 

Chapter 3 describes fundamental investigations of ICP / IL systems on Pt disk 

electrodes. The redox cycling stability of polypyrrole was increased over those of CE 

systems in the IL 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6). The 

electroactivity in this system showed no degradation over 900 redox cycles. The use of 

1-ethyl-3-methylimidazolium (bis) trifluoromethanesulfonimide (EMITFSI) also 

improved the redox stability of polypyrrole in comparison to the CE systems. The stable 

potential windows of polypyrrole were significantly improved in both IL systems 

compared to CEs. 

 

The transitional behaviour between ILs and CEs was investigated by diluting ILs in a 

common neutral solvent electrolyte, propylenecarbonate (PC). In such IL / CE mixtures, 
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differences were noted in the electrolyte conductivity profile and ICP electroactivity 

with respect to concentration of IL. BMIPF6 exhibited a significantly higher degree of 

ion pairing than EMITFSI, and the strong ion pairing property of BMIPF6 is thought to 

be responsible for unique electrochemical observations absent from the ICP in 

EMITFSI systems. 

 

N-doping is an attractive feature of some ICPs and has promise in charge storage 

applications, providing significant driving potential differences of two or more volts 

against p-doped electrodes. As ILs were found to enhance redox stability of common p-

doping processes in ICPs, investigations were conducted in Chapter 4 to see if the same 

was true for inherently unstable n-doping processes.  

 

Poly-3-p-flourophenylthiophene (P3PFTh) was chosen as a model n-doping system, due 

to its well published n-doping behaviour in classical electrolytes. Surprisingly, n-doping 

responses of P3PFTh in EMITFSI were very poor. The reasons behind this were 

explored by testing other n-dopable polymers in EMITFSI to isolate whether EMITFSI 

was inherently preventing n-doping, and P3PFTh was tested with different ILs to 

investigate P3PFTh / EMITFSI incompatibility.  

 

EMITFSI used as an electrolyte was found to decrease electroactivity of the n-doping 

processes in most polythiophenes, with the exception of polybithiophene (PBiTh). The 

stability of n-doping PBiTh in EMITFSI did not, however, improve to an extent that 

would allow derivative devices to be practical. 
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Spectroelectrochemical Raman studies of the n-doping processes of polythiophenes in 

EMITFSI were conducted in-situ to reveal behaviour that may be responsible for poor 

electrochemical responses. Raman studies showed that both the p-doping and n-doping 

process in polythiophenes occurred with a ‘reverse’ mechanism of ion expulsion upon 

doping (whereas doping processes of ICPs in CEs usually occur by ion insertion). The 

Raman studies also indicated that the physical structure of polythiophene had a large 

effect on the resulting electrochemistry, to an extent that impeded doping processes. 

 

The structure-activity relationships of P3PFTh were investigated by CV using a range 

of growth and cycling electrolytes. Observations were analysed chemometrically to 

identify the effects on electrochemical parameters of electrolyte component (anion or 

cation), whether the dominating effect was from growth or cycling electrolyte, and 

which particular doping / dedoping process was affected by these parameters.  

 

Chapter 5 describes electrochemical charge storage devices based on IL electrolytes 

using various substrates, polymers and configurations. The highest capacity device was 

based on polyaniline doped with ferrocene sulphonic acid on carbon fibre textile for 

both anode and cathode, with a polyvinylidene fluoride (PVDF) separator and EMITFSI 

electrolyte. The flexible charge storage device produced in this way had a maximum 

charge capacity of 58 mAh/g, but degraded quickly on cycling. The most stable device 

was constructed similarly to the highest capacity device, but used polypyrrole and poly-

3-methylthiophene electrodes, with maximum charge capacity of 17 mAh/g, remaining 

unchanged for 60 cycles. 
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